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Abstract

As autonomous systems and robots are applied to more real world situations, they
must reason about uncertainty when planning actions. Mission success oftentimes cannot
be guaranteed and the planner must reason about the probability of failure. Unfortunately,
computing a trajectory that satisfies mission goals while constraining the probability of
failure is difficult because of the need to reason about complex, multidimensional probability
distributions. Recent methods have seen success using chance-constrained, model-based
planning. However, the majority of these methods can only handle simple environment
and agent models. We argue that there are two main drawbacks of current approaches
to goal-directed motion planning under uncertainty. First, current methods suffer from
an inability to deal with expressive environment models such as 3D non-convex obstacles.
Second, most planners rely on considerable simplifications when computing trajectory risk
including approximating the agent’s dynamics, geometry, and uncertainty. In this article,
we apply hybrid search to the risk-bound, goal-directed planning problem. The hybrid
search consists of a region planner and a trajectory planner. The region planner makes
discrete choices by reasoning about geometric regions that the autonomous agent should
visit in order to accomplish its mission. In formulating the region planner, we propose
landmark regions that help produce obstacle-free paths. The region planner passes paths
through the environment to a trajectory planner; the task of the trajectory planner is to
optimize trajectories that respect the agent’s dynamics and the user’s desired risk of mission
failure. We discuss three approaches to modeling trajectory risk: a CDF-based approach,
a sampling-based collocation method, and an algorithm named Shooting Method Monte
Carlo. These models allow computation of trajectory risk with more complex environments,
agent dynamics, geometries, and models of uncertainty than past approaches. A variety
of 2D and 3D test cases are presented including a linear case, a Dubins car model, and
an underwater autonomous vehicle. The method is shown to outperform other methods in
terms of speed and utility of the solution. Additionally, the models of trajectory risk are
shown to better approximate risk in simulation.

1. Introduction

Motion planning under uncertainty is a challenging problem that is applicable to many
intelligent systems. With the application of autonomous systems to more real-world en-
vironments, algorithms must deal with increasingly uncertain surroundings. Autonomous
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cars must quickly make decisions while navigating urban environments. Autonomous un-
derwater vehicles must accomplish a range of scientific and exploratory tasks while dealing
with uncertain ocean currents.

Motion planning for general dynamical systems is a hard problem. Adding uncertainty
makes the problem much more computationally-intensive. This is because the agent must
reason about a large number of scenarios, which represent what could happen over the course
of a mission. Mathematically, mission uncertainty is often represented as a probability
distribution describing the agent’s state or environment. In the context of motion planning,
reasoning about uncertainty involves integrating the probability distribution to compute
quantities such as the expected trajectory cost and the probability of collision. Because
the integrand and the limits of integration are often complex, it is unlikely that there is an
analytic solution to these integrals. Compounding the problem is the fact that the agent
must not only reason about uncertainty, but must often do so quickly.

Consider the example of an autonomous underwater glider carrying out a science mission
around Kolumbo, an undersea volcano off the coast of Greece. The mission calls for the
glider to explore features of the seafloor such as underwater hydrothermal vents. While the
seafloor geometry is known fairly well, there are uncertain ocean currents in the volcano’s
caldera, which can sweep it off course. Because recharging batteries is a time-consuming
and labor-intensive operation, the glider must try to optimize its energy usage in order to
remain operational as long as possible. The glider works in tandem with a team of scientists.
The scientists dictate a set of regions they would like to explore and the glider plans its
trajectory. The science team knows the mission is risky for the glider; they accept there is a
likelihood they will lose some of their gliders to the scorching hydrothermal vents. However,
they would like to keep their failures to less than 5% of the missions attempted.

This setting shares many characteristics of a risk-bound motion planning problem and
poses a number of challenges to the motion planner. First, the glider’s motion plan must be
safe. While the science team has accepted that the mission is risky, they want to limit this
risk to some predetermined mission failure rate. This bound on failure probability or risk,
termed a probabilistic or chance constraint, gives the risk-bound motion planning problem
its name. Second, the glider must accomplish a set of goals. For example, the glider might
be tasked with exploring a region of the ocean where it is required to remain no more than
a certain distance from the seafloor for observations. Third, in a typical use case, a team
of scientists uses the motion planner as a tool to evaluate different motion plans. Therefore
the motion planner should produce solutions quickly. Fourth, the glider should minimize
energy usage to maximize uptime; therefore, optimizing a utility function is also important.

While this example is used to motivate the requirements for our method, the problem
is very general and encountered in many areas of autonomous systems. The planner’s
requirements are summarized in the following four points:

� Integrating risk-bound motion planning with complex environments: Real
world agents must interact with a large variety of obstacles. They must be able to
quickly reason about complex, three-dimensional, non-convex obstacles and produce
trajectories that respect risk-bounds with respect to obstacle collision.
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� Reasoning about complex environment-constrained goals: Agents are often
required to accomplish complicated goals that constrain their trajectories in relation
to their environment.

� Meet performance metrics in terms of computation time and trajectory
utility: The planner must not only model stochasticity but oftentimes produce so-
lutions very quickly such as for real time systems. Additionally, many systems have
cost metrics that should be minimized such as energy usage.

� Modeling risk for non-Gaussian stochasticity & non-trivial agent geometry:
A common approach to risk-bound motion planning is to simplify the problem by
assuming the agent is a point robot and that all uncertainty is Gaussian. These
assumptions often do not hold in real world applications. Particularly in the case
of nonlinear dynamical systems, state distributions are non-Gaussian and the agent’s
geometry must be considered when computing trajectory risk.

1.1 Overview of the Approach

Our approach is to solve the risk-bound motion planning problem using hybrid search.
The search consists of a region planner and a trajectory planner. These components are
introduced in the following subsections; a formal problem statement is given in Section 3.

1.1.1 The region planner

The purpose of the region planner is to determine an appropriate set of active geometric
constraints that allow the agent to accomplish its mission. To do this, the region planner
reasons about geometric regions of the agent workspace, termed regions throughout this
article. The regions are used to model obstacle-avoidance constraints, goal constraints,
and other geometric constraints on the agent’s trajectory. The region planner connects
sequences of regions into paths. Each path can be compiled into a set of constraints on the
agent’s continuous state trajectory.

The region planner receives as inputs an agent and a sequence of goals that the agent
must accomplish. The agent is described by dynamical equations of motion and its geometry.
A set of obstacles is also input, which the agent must avoid with some probability. The
output of the region planner is an ordered set of regions, a path, that represents a sequence of
geometric constraints on the agent’s position. This path is input to the trajectory planner.

1.1.2 The trajectory planner

The task of the trajectory planner is to optimize a trajectory that respects the path’s
implied geometric constraints as well as other constraints such as the agent’s dynamics.
Importantly, the trajectory planner models trajectory risk. In this article, we describe
three models of risk. The trajectory planner uses techniques from trajectory optimization
and off-the-shelf optimization libraries.

The trajectory planner receives as inputs a sequence of region constraints from the region
planner. It requires a model of the agent’s dynamics and a predetermined bound on mission
failure, i.e. the chance constraint. The output of the trajectory planner is a trajectory that
satisfies the geometric path constraints, dynamics constraints, and chance constraint.
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2. Related Work

In spite of the complexity of motion planning under uncertainty, its real world applicability
has driven many advancements in recent years. The relevant approaches are summarized
into three subsections: motion planning approaches relying on hybrid search, approaches
used to model the chance constraint, and methods for workspace decomposition.

2.1 Hybrid Search for Motion Planning

The core of our approach to solving the risk-bound motion planning problem is a hybrid
search. Hybrid search is a technique that has seen interest in recent years to solve problems
with discrete and continuous decision variables, such as combined task and motion planning
problems.

An early example of a hybrid planner is Kongming, which searches over discrete and
continuous decision variables to solve the goal-directed planning problem (Li, 2010). Kong-
ming introduces a Hybrid Flow Graph, which is similar to our Region Graph; the Hybrid
Flow Graph uses flow tubes to describe continuous actions. Kongming shows that hybrid
search can be effective in planning for real world scenarios including an underwater vehicle.
Unlike the present work, Kongming does not reason about risk and the focus is on planning
for simple linear systems in 2D environments. Innovative work presents ScottyActivity, an
approach that combines activity and trajectory planning over long horizons (Fernandez-
Gonzalez, Williams, & Karpas, 2018). The Scotty planner decomposes the workspace into
convex subregions and performs graph search over the subregions. The insight underly-
ing the Scotty trajectory planner is that, assuming linear equations of motion, fast convex
optimization routines can be used by the trajectory planner and trajectories over long
time horizons generated. The Scotty planner shows the promise of hybrid search; however,
this article distinguishes itself in a number of ways. First, Scotty focuses on deterministic
problems rather than those with uncertainty. Secondly, while Scotty relies on agents with
linearized dynamics and environments with 2D convex obstacles, our work relaxes these
assumptions to allow for a wider variety of agents and environments.

Another example of hybrid search is the pSulu planner (Ono, Williams, & Blackmore,
2013). The pSulu planner solves a Chance-Constrained Qualitative State Plan (CCQSP)
using a form of hybrid search. Unlike Scotty, pSulu is focused on solving risk-bound path
planning problems. Rather than decompose the workspace via convex subregions, pSulu
models the motion planning problem with obstacles as a disjunctive linear program. De-
termining how an agent avoids an obstacle reduces to making assignments to a disjunctive
clause. The resulting hybrid search is solved using a branch and bound scheme and convex
optimization. While our work solves a similar problem as pSulu, it expands on pSulu’s capa-
bilities in various ways. First, as the authors note, pSulu’s disjunctive program scales poorly
to cases with complex environments. Secondly, pSulu’s computation of trajectory risk is
limited to cases for which there is an easily-evaluated cumulative distribution function, such
as the Gaussian case.

Other approaches have proposed hybrid search to solve motion planning problems with
complex goals expressible in Linear Temporal Logic (LTL) (Bhatia, Kavraki, & Vardi,
2010), (Fainekos, Kress-Gazit, & Pappas, 2005), (Vasile & Belta, 2014). These are similar
to our present method by relying on a high level planner that reasons about discrete choices
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in combination with a lower level planner that considers models of the agent’s dynamics.
Work in (Bhatia, Maly, Kavraki, & Vardi, 2011) is representative of these approaches and
contains themes similar to our work. The authors propose a geometry-based abstraction of
the robot workspace and show that it outperforms a geometry-ignoring abstraction. The
authors also discuss a lazy high level search that allows for considerable computational
speed-up. Unlike our proposed method, these methods are not focused on planning under
uncertainty. Furthermore, the geometric discretizations that allow the discrete planner to
reason about continuous workspaces tend to be applicable to simple 2D environments, e.g.
triangulations of polygonal workspaces.

A large number of other approaches to the motion planning problem combine aspects of
hybrid search. Work in (Plaku, Kavraki, & Vardi, 2009) uses hybrid search with nonlinear
systems to quickly determine unsafe states. In this work, hybrid search is necessitated
by the system’s dynamics; systems are considered which are described by continuous and
discrete dynamics. Learning has seen success in a hybrid approach to motion planning. In
(Faust, Ramirez, Fiser, Oslund, Francis, Davidson, & Tapia, 2018), a probabilistic roadmap
(PRM) planner is combined with reinforcement learning to generate long trajectories for
nonlinear systems.

2.2 Models of the Chance Constraint

Many techniques have been developed in literature to simplify the problem of motion plan-
ning under uncertainty. A good overview of various techniques for planning under uncer-
tainty is described in (Prékopa, 1995).

A common method of approximating trajectory risk is to assume a state distribution
for which there is a quick-to-evaluate cumulative distribution function (CDF), such as the
Gaussian distribution. This is the approach taken in (Blackmore, Ono, & Williams, 2011)
where the authors combine a disjunctive program with a CDF-based evaluation of the chance
constraint. Another approach does not directly assume Gaussian uncertainty but models
the state distribution of an agent that collides with an obstacle as a truncated Gaussian
(Patil, van den Berg, & Alterovitz, 2012). This can still be considered a CDF-based method
as computing the cumulative distribution of the truncated Gaussian requires the ability to
compute the Gaussian CDF. Finally, an extension of the popular rapidly-exploring random
tree (RRT) algorithm is proposed in (Luders, Kothari, & How, 2010). Chance constraints
are added to the basic RRT formulation; it is not only necessary that a path avoids collisions
but also that the path is feasible with respect to the chance constraint. To evaluate the
risk, the method deploys an approximation similar to (Blackmore et al., 2011). Another
sampling-based motion planner is presented in (van den Berg, Abbeel, & Goldberg, 2011)
where the focus is on linear systems with partial observability. Similar to other approaches
presented in this paragraph, system noise is assumed Gaussian.

A limitation of the methods that rely on cumulative distribution functions is the avail-
ability of easy-to-evaluate CDFs. Because of this, sampling-based Monte Carlo methods
have also seen wide interest. An early work in sampling-based trajectory risk approximation
is provided in (Blackmore, Ono, Bektassov, & Williams, 2010). This work samples from
a distribution that represents the agent’s state uncertainty and uses an indicator variable
to signal whether a sample is in collision or not. Because of its use of indicator decision
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variables, this work requires a mixed integer linear program (MILP) to compute a trajec-
tory. Furthermore, because there is a one-to-one correspondence between indicator variables
and samples, accurately modeling the collision risk can generate a very large optimization
problem. One advantage of sampling-based techniques is that they can readily take ad-
vantage of trends in hardware development, specifically using the parallelization provided
by graphics processing units (GPUs). This idea is explored in (Ichter, Schmerling, Agha-
mohammadi, & Pavone, 2017) where a probabilistic roadmap (PRM) is built and the risk
is evaluated by collision checking trajectory scenarios. While sampling-based methods can
approximate complex stochastic processes, a downside is their convergence in approximat-
ing the underlying uncertainty. There are a number of variance-reduction methods, one of
which is discussed in (Janson, Schmerling, & Pavone, 2018). In this work, the method of
control variates and importance sampling is used to reduce the variance in Monte Carlo
computations of the collision probability.

In spite of the prevalence of CDF and sampling-based methods, other innovative ap-
proaches to the risk-bound motion planning problem have also been discussed in literature.
A method is discussed in (Jasour, Hofmann, & Williams, 2018) where the authors model
complex distributions via a sequence of moments. While the method can model complex
probability distributions of the obstacles’ surface, it is unclear how the method scales to
large 3D environments.

2.3 Workspace Decompositions

The central idea behind this work’s region planner is to decompose the agent workspace
into regions and then use graph search to determine good paths or sequences of regions.
This section reviews select strategies in literature to generate partitions of the workspace.

One of the most popular approaches is to discretize the workspace into a grid, as shown
in Fig. 1, Pane A (LaValle, 2006). There are many variations of this idea and techniques
to generate the discretization. A common method is to use the discretization to produce
an occupancy map where each cell relays information about its contents, i.e. whether or
not it is obstacle-free (Elfes, 1989). Additionally, many discretization schemes are possible
with uniform being the simplest to generate and others attempting to discretize the robot
configuration space (Ziegler & Stiller, 2009). The authors in (Hrabar, 2008) show it is
possible to extend the method to 3D workspaces and present the innovative idea of using
different map resolutions for modeling the environment and for planning. These methods
can be readily applied to kinodynamic motion planning with complex dynamics as shown
in (Sucan, Ioan A. and Kavraki, Lydia E., 2010). In this work, the focus is on efficiently
generating cells to ensure the agent state space is explored and that cells are generated on an
as-needed basis. Because the partitioning of the workspace is typically complete, searches
that utilize this strategy can often produce globally optimal solutions (LaValle, 2006). In
general, grid-based approaches have the downside of choosing an appropriate scale for the
discretization. It may be very difficult to determine a priori how many discretizations are
required for a given problem.

Another set of techniques are similar to grid-base occupancy maps but decompose the
workspace using geometric features such as obstacle vertices. For example, the Polyanya
algorithm performs any-angle path planning on a 2D map that relies on a partitioning
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Figure 1: An illustration of various methods to partition the workspace. Assume an agent
must travel from I to G and avoid the shaded obstacles on the left and right. Pane A illus-
trates a uniform grid-based discretization, with an individual cell labeled Ri. A challenge
of this approach is that the cells may be a poor approximation of the obstacle geometry.
Therefore, some approximation scheme is typically necessary where information about the
cell, such as whether it contains an obstacle, must be averaged over the entire cell. Pane
B illustrates methods that attempt to generate convex regions from the free region of the
workspace, Wfree. These approaches have the benefit that paths traveling within a convex
region are guaranteed to be collision free (Gonzalez, 2018; Deits & Tedrake, 2015). For
example, an agent whose trajectory lies in convex regions R1 - R5 in Pane B will avoid
obstacles. This has the drawback that a separate method is required to connect the regions
and it can be difficult to determine if enough regions have been generated to connect I
and G. Pane C illustrates methods that rely on geometric algorithms such as triangulations
or trapezoidal decompositions. Unlike the grid-based methods, these approaches rely on
the obstacles’ geometry to generate regions. However, they are typically uninformed with
respect to the underlying motion planning problem and can generate unnecessary regions.
Pane D illustrates the strategy taken in this work. Our approach attempts to only reason
about obstacle geometry relevant to the task of navigating from I to G, such as the blue
obstacle facets in Pane D. Using these facets, we form geometric constraints that the tra-
jectory must satisfy, depicted here as the ray L emanating from the vertex connecting the
two blue facets incident to L. The resulting trajectory is depicted in orange.
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of the workspace via a Constrained Delaunay Triangulation. The algorithm is shown to
deliver optimal solutions quickly (Cui, Harabor, & Grastien, 2017). The trapezoidal map
algorithm decomposes 2D workspaces into sets of trapezoids, which can then be used to solve
the path planning problem (Berg, Cheong, Kreveld, & Overmars, 2008). The algorithm
creates the map by drawing vertical lines from every obstacle vertex. An advantage of these
methods is that the algorithms to generate the decompositions are typically efficient. The
trapezoidal decomposition and Delaunay triangulation can be computed in O (n log n) time
(Berg et al., 2008). One downside of these strategies is that, similar to grid partitionings,
the partitioning is typically done agnostic of the search problem. This means that they can
generate unnecessarily complex partitionings. This is an undesirable property for hybrid
search because the complexity is exponential in the depth of the search tree. The problem
of unnecessarily-generated regions is illustrated in Fig. 1, Pane C.

An innovative scheme that relies on semi-definite programming (SDP) to create convex
regions is proposed in (Deits & Tedrake, 2015); this algorithm is named Iterative Regional
Inflation by Semidefinite Programming, IRIS. IRIS is integrated into a hybrid search for
multi-agent path planning in (Gonzalez, 2018). ScottyPath is proposed, which combines a
region planner that selects sequences of convex regions with a trajectory planner that opti-
mizes a trajectory constrained to lie inside those regions. To generate convex regions from
the obstacle free region of the workspace, ScottyPath relies on IRIS. In the case of convex
obstacle fields, IRIS is fast because it can take advantage of efficient SDP solvers. Scotty-
Path then connects the regions together to form a graph. There are two main drawbacks to
the ScottyPath / IRIS approach. First, it requires computation of the connectivity graph
a priori. Second, IRIS generates convex regions by sampling from the free region of the
workspace; it is difficult to determine a priori whether the number of samples is sufficient
to generate a connectivity graph that allows for a path from the initial state to the goal
state. Rather than requiring them to be explicitly computed, the regions presented in our
present work are implicitly defined given an obstacle surface.

2.4 Summary of Contributions

To the best of our knowledge, our proposed method is the first risk-bound, goal-directed
motion planning algorithm that enables hybrid search for agents with non-trivial geometry,
nonlinear dynamics, and non-Gaussian stochasticity.

The region planner’s contributions focus on enabling fast hybrid search in complex
environments. We propose:

1. A type of obstacle-avoidance constraint, termed landmark region, that is fast to gen-
erate, allows missions with complex polytope obstacle geometries, and provides a
geometric simplification for modeling risk (Section 4.1)

2. A hybrid search strategy First Feasible Hybrid Search that generates feasible solu-
tions quickly for complex agents and environments by attempting to reduce expensive
trajectory optimization calls (Section 5)

The trajectory planner’s contributions focus on three chance constraint models of in-
creasing complexity:
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Figure 2: Overview of the hybrid search components and their corresponding sections

1. A model that combines CDF-based chance constraints and landmark regions to pro-
vide a fast, coarse risk approximation (Section 7)

2. A model of risk for agents whose geometry is important when calculating the chance
constraint; our insight is to combine sampling-based collision checking with trajectory
optimization (Section 8)

3. Shooting Method Monte Carlo whose insight is to combine a Monte Carlo method with
the shooting method of trajectory optimization to model non-Gaussian stochasticity
in nonlinear dynamical systems (Section 9)

2.5 Organization

This article is organized around the components of the hybrid search, first explaining the
region planner and then the trajectory planner. Section 3 defines the problem statement
and provides an overview of the notation associated with the hybrid search. A formalism
is introduced: the chance-constrained trajectory planning mission. Section 4 describes the
region planner in detail. A key idea in this section is our proposed landmark region, a type of
obstacle-avoidance constraint. Section 5 introduces First Feasible Hybrid Search, which is a
state space search used by the region planner for finding good paths through the workspace.
The second half of the paper focuses on the trajectory planner and three models of risk.
Section 6 introduces the trajectory planner. Section 7 describes how a CDF-based model
may be integrated with the region planner’s landmark regions as a coarse model of risk.
Section 8 introduces a sampling-based model of the chance constraint that is appropriate for
agents whose geometry must be considered when computing trajectory risk. Third, Section
9 discusses Shooting Method Monte Carlo, a risk model appropriate for nonlinear, non-
Gaussian systems. Finally, the paper concludes with a number of test cases and benchmarks
in Sections 10.2 through 10.5. While the trajectory planner’s three models of risk are the
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focus of the article, Appendices A and B provide details of the underlying collocation
and shooting trajectory optimizations used by the trajectory planner. An overview of the
architecture and how components interact is shown in Fig. 2.

3. Problem Statement

We consider the problem of an agent navigating from an initial state I to a sequence of
goal states G while avoiding obstacles with probability 1− ε. The purpose of the algorithm
is to output an open loop control trajectory u. The control outputs u represent inputs to
the agent’s actuators. Throughout this work we use the term agent to denote a general
autonomous system.

The navigation problem stated above can be framed as the following optimal control
problem:

minimize
x,u,h

E [J (x0:K ,u0:K−1,h0:K−1)] (1)

subject to ẋ = f (x,u) + w (2)

P

(∧
k∈K

xk ∈ Wfree

)
≥ 1− ε (3)

x0 ∈ I (4)

xkg ∈ Gg ∀ 0 ≤ g ≤ G (5)

Term (1) is the objective function; it requires minimization of the expected trajectory
cost. There are a wide number of forms the objective can take from minimizing mission
time to minimizing fuel consumption or path distance. Constraint (2) represents the agent’s
dynamics. It is written generally because there are many possible numerical integration /
discretization schemes when performing a trajectory optimization (e.g. Euler, trapezoidal).
The left-hand side is the time derivative of the agent’s state x. The right-hand side con-
sists of two terms. The term f (x,u) represents the agent’s deterministic equations of
motion. The second term, w, represents the problem’s source of uncertainty; w is a vector
of continuous random variables. A simple case is zero mean additive Gaussian noise where
w ∼ N (0,Σ). While it is possible to consider other sources of uncertainty, e.g. environ-
mental uncertainty due to incomplete mapping data, this article focuses on uncertainty in
the agent’s state generated by various forms of w in Eq. (2).

Constraint (3) is the probabilistic or chance constraint which ensures that the probability
of obstacle collision is at most ε. The constraint is challenging because of the need to
integrate the agent’s state probability distribution over Wfree, the obstacle free region of
the workspace. This region is often non-convex and the integral intractable. Term (4) is a
constraint on the agent’s initial state. Term (5) constrains the agent’s trajectory to visit
various goal regions at specific time steps, indexed by k, i.e. xkg ∈ Gg. The total number
of goals is G. G represents a geometric region of the workspace that constrains the agent
in some way. Boldfaced G is a sequence of goals indexed by g, i.e. G = [G0, . . . ,Gg, . . . ,GG].
To fully specify the problem, we introduce a formalism, the chance-constrained trajectory
planning mission, ccTPM. The ccTPM is a tuple < A,E,G, I, J, ε > where:
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� A =< f ,B > is the agent consisting of a set of dynamical equations of motion f and
a geometric shape B

� E represents the environment, composed of polytope obstacles

� G is a sequence of goal regions that constrain the agent in some way along its trajectory

� I is an initial state

� J is an objective function to be minimized

� ε is the value of the chance constraint, i.e. a bound on the probability of trajectory
failure

The formalism is inspired by the qualitative state plan (QSP) in (Léauté, 2005) and the
chance-constrained qualitative state plan (ccQSP) from (Ono et al., 2013). The goal region
G is similar to the ccQSP episode in that episodes impose constraints on the evolution of
the agent’s state. However, rather than focus explicitly on temporal constraints as episodes
do, the region construct imposes geometric constraints on the agent’s trajectory over a
sequence of time steps. Additionally, we assume that the input sequence G is ordered. In
many cases, given an unordered set of goals and generating an ordering that is both feasible
and minimizes a cost function is a non-trivial task. However, assuming G is ordered allows
the present article to focus on planning with respect to more expressive environments than
those considered by the ccQSP in (Ono et al., 2013). Orderings may be determined by
using methods discussed in (Ono et al., 2013) or (Fernandez-Gonzalez et al., 2018).

3.1 Hybrid Search

The hybrid search consists of two levels: an upper level region planner and a lower level
trajectory planner. The region planner determines which regions of the workspace should be
explored as potential candidates for trajectories that travel from the initial state to a goal
or between goal states. Given an ordered set of regions, the lower level trajectory planner
optimizes a trajectory that is constrained to travel through these regions. An overview of
the hybrid search is depicted in Fig. 3.

The region planner’s regions are denoted with R. In general, R (and the term region)
refers to some Euclidean space in the agent’s workspace, W. In this article, R has di-
mensionality less than or equal to d where d is the dimensionality of the workspace. For
example, in a 2D environment, R can refer to a ray (1D) or a rectangle (2D) or a variety
of other 2D shapes. Another assumption in this work is that R are convex. This allows
them to be readily translated into trajectory constraints input to the trajectory planner.
One of the advantages of defining R to be general is to allow them to model a wide range of
desired agent behaviors in the workspace. Both I and G discussed in the previous section
are types of regions, i.e. I ∈ R and G ∈ R. For example, a rectangle, line, or point could
all represent goal regions. In Section 4.1, we introduce landmark regions, denoted by L,
which guide the agent around obstacles. Regions can also be combined to form motion
primitives. Ordered sets of regions form paths, i.e. P = [R0,R1, . . . ,Rn, . . . ,RN ]. Regions
along paths are indexed by n with the total number of regions being N . The region planner
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Figure 3: Example of the region planner and trajectory planner. The region planner pro-
duces a candidate sequence of regions and the trajectory planner optimizes a trajectory
constrained to these regions. Dashed segments represent landmark regions, denoted with
L; these are a type of obstacle-avoidance region introduced in Section 4.1. Variables ω4 and
ω5 are waypoint states which must lie on landmark regions L4 and L5. Red dots represent
knot points of the trajectory optimization where the trajectory is indicated as TP,1.

passes paths to the trajectory planner as candidate sequences of geometric constraints that
guide the agent from some initial state to some goal state or sequence of goal states.

The trajectory planner then optimizes a trajectory T constrained to lie on or in P. A
trajectory constrained in this way is denoted TP . Trajectories T are sequences of state and
control variables that describe the agent’s motion. The form of T depends on the type of
trajectory optimization. This article uses collocation trajectory optimization, where trajec-
tories are sequences of tuples (xk,uk, hk) and the shooting method, which uses sequences
of (uk, hk). Variable xk represents the robot’s state at knot index k, i.e. xk ∈ Rm where
m is the dimension of the robot’s state. Variable uk represents the control input at knot
index k, i.e. uk ∈ Rp where p is the number of control inputs. Variable hk ∈ R repre-
sents the time step, i.e. the amount of time between two knot points. It may be held
constant (a discrete time formulation) but is often included as a decision variable output
by the trajectory optimizer. An important point is that trajectory knots are indexed using
k and regions are indexed using n. This is because the number of knots on a trajectory is
typically much greater than the number of regions on a path. The number of knots in a
trajectory optimization is determined by how accurate the interpolated trajectory must be
with respect to the true trajectory; the number of regions on a path is dictated by obstacle
geometry and goal states.

In order to constrain the trajectory to lie in or on P, we denote certain states waypoint
states, ω. These represent the agent’s position in the workspace. For 2D workspaces,
ωn = (x, y) and for 3D workspaces ωn = (x, y, z). Waypoints are indexed by n, which
means only select trajectory knot points are constrained by a region. For example, if there
are Kn trajectory knots per waypoint, then the 3Kth

n knot is constrained by R3. This
construction is illustrated for a simple toy example in Fig. 3. A number of methods are
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possible to determine the number of knot points between regions, Kn. The simplest is to
assume Kn is constant; another method is to use the distance between regions to determine
Kn. In this work, we assume the agent has a unique set of waypoint states, i.e. we assume
the agent is a point or rigid body and do not consider multi-link robots.

A second set of agent states are termed configuration states, in reference to the config-
uration space used in robot motion planning (LaValle, 2006). Configuration states define
the agent’s configuration; if the agent consists of a rigid body B then the configuration
states specify the position of all points in B in the workspace (Choset, 2010). For example,
if the agent consists of a polyhedron in 3D, one representation of the configuration states
is (x, y, z, ψ, θ, φ) where ψ, θ, and φ are Euler angles as described in (Triantafyllou, 2004).
Configuration states are important for computing the collision risk in agents with non-trivial
geometry (presented in Section 8 of this paper).

3.2 Assumptions Modeling Agent & Environment Geometry

We assume the environment E consists of a set of closed, continuous obstacle polytopes, E,
i.e. polygons in 2D workspaces and polyhedra in 3D. Each polytope is composed of facets,
F , which are polygons in 3D and edges in 2D. Each facet is bordered by a set of sub-facets,
S. Geometrically, the sub-facets are line segments in 3D workspaces and points in 2D
workspaces. For a triangulated polyhedron, each facet has three sub-facets, i.e. |S| = 3. In
2D, each edge facet has two points, i.e. |S| = 2. For each facet, an outward pointing normal
vector n̂ is assumed known. Each facet can access its neighboring facets; in 2D each vertex
contains a pointer to the neighboring edges; in 3D the halfedge data structure as described
in (Kettner, 2018) is used to link neighboring facets.

Polytopes are used for three reasons. First, polytopes are a linear approximation of a
surface and can efficiently represent many real-world objects and surfaces (Berg et al., 2008).
Second, polytopes enable generation of landmark constraints that allow for computation of
the collision probability, as described in Section 7. Thirdly, polytopes greatly simplify
the collision-checking process because many efficient algorithms exist to check collisions
between polytope facets (Ericson, 2005). Because of this, many approaches in literature
also implicitly require polytope-based obstacles (Jimenez, Thomas, & Torras, 1998).

4. The Region Planner

The purpose of the region planner is to determine a path P, which the trajectory planner
can compile into constraints and use to compute a feasible risk-bound trajectory. The path
must contain the agent’s initial state and all goals necessary to solve the ccTPM. The path
should be constructed with regard to the ccTPM’s objective, i.e. minimizing the time or
distance traveled, and avoid generating unnecessary constraints for the trajectory planner.
Furthermore, the path should help the trajectory planner produce feasible paths with re-
spect to the obstacle-avoidance chance constraint. The region planner is characterized by
discrete choices, i.e. whether to include a region on a path. It has three chief components:
a type of obstacle-avoidance region (termed landmark region) covered in Section 4.1; a set
of methods to efficiently connect regions to form paths, covered in Section 4.2; and a search
strategy termed First Feasible Hybrid Search to determine which paths are passed to the
trajectory planner, Section 5. The region planner can be viewed as reasoning about and
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Figure 4: The region planner’s task is to find paths through the region graph and pass them
to the trajectory planner.

Figure 5: The plane and coordinate system that represent a landmark region Ln for a 3D
workspace. The dotted lines do not represent a constraint; they are shown to illustrate the
plane.

searching a region graph. In this undirected graph, regions are vertices and connections be-
tween regions are edges. Directed edges in the region graph represent orderings of regions,
i.e. paths. This construction is depicted in Fig. 4.

4.1 Landmark Regions

Landmark regions are types of regions designed to model obstacle-avoidance constraints.
Geometrically, landmark regions are bounded hyperplanes. In three dimensions, this hy-
perplane is a bounded plane and in two dimensions, the constraint is a ray. The plane is
bounded because it is bordered by a line `n incident to an obstacle sub-facet. For each
sub-facet S in an environment, there is a corresponding implied landmark constraint L.
The geometry is illustrated in Figs. 5 and 6. The bounded hyperplane extends upwards
and in all directions from the blue line in Fig. 5. The hyperplane’s orientation divides the
angle between the two neighboring obstacle facets. If the angle between the facets is 2α
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Figure 6: The ray that represents a landmark region Ln for a 2D workspace.

(measured on the side of the obstacle surface with outward pointing normal vectors), then
the hyperplane is positioned α from each neighboring facet.

An advantage of using a hyperplane is that the transformation from the global waypoint
states ωn to a coordinate system embedded in the plane is linear. In three dimensions this
transformation is:

sn = (ωn − ~on) • ŝn (6)

rn = (ωn − ~on) • r̂n (7)

wn = (ωn − ~on) • ŵn (8)

where (ŝn, r̂n, ŵn) form an orthogonal basis of the embedded coordinate system. Direction
r̂n runs along the line `n (i.e. it runs along the obstacle’s surface), direction ŝn measures
the distance from the obstacle’s surface to the waypoint and will be used in Section 7 to
approximate the collision risk. Direction ŵn is normal to the plane. Vector ~on is the vector
from the origin of the global coordinate system to the origin of the embedded coordinate
system. Variables (sn, rn, wn) are the agent’s waypoint state transformed into the embedded
coordinate system. In order for waypoint states to lie on the corresponding landmark
regions, the constraints are necessary:

wn = 0 ∀ n ∈ N (9)

In two dimensions, the formulation is analogous. Instead of lying on a plane, the waypoint
is constrained to lie on a ray that emanates from a vertex. The 2D embedded basis (ŝn, ŵn)
is illustrated in Fig. 6.

There are a number of insights that motivate the landmark region construction. First,
they are completely defined given a polytope surface. This means that they do not require
optimization to generate as required by convex decomposition methods such as described in
(Deits & Tedrake, 2015). Secondly, they do not place restricting conditions on the obstacle
shape or dimensions such as requiring obstacles to be 2D or convex. Third, the number
of landmark regions is dictated by obstacle complexity; more complex obstacles will have
larger numbers of landmarks and simpler environments will have fewer. This contrasts
with uniform workspace discretizations typical of occupancy maps where the discretization
scale is difficult to select a priori. Finally, the landmark region compiles into simple linear
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constraints on the agent trajectory. The challenge is not constructing the landmark regions,
but connecting them into paths. This is covered in the next section.

4.2 Enumerating Region Graph Edges

Given the landmark regions described in the preceding section, it is necessary to connect
them to form paths through the region graph. This section describes two methods for
region graph edge enumeration. First, in Section 4.2.1 a heuristic-based “Polytope to the
Goal” technique is developed that helps determine which regions may be active on the
shortest path to the goal. This method uses the insight that environments are likely very
complex and only a small number of surfaces will serve as active constraints for motion
planning. It attempts to bypass irrelevant regions by shooting a polytope directly to the
next goal region. The method is useful for problems whose objective seeks to minimize
the agent’s distance traveled, trajectory time, or energy usage. Second, in Section 4.2.2 we
describe a method that enumerates paths using obstacle surface facets directly. The second
method is useful when the heuristic-based approach fails, e.g. due to the heuristic becoming
trapped in an obstacle crevasse. Many other problem-specific edge enumeration strategies
are possible. For example, it may be desired that an agent travel with a constant direction
along a surface. In this case, paths may be formed by enumerating neighboring landmark
regions along a predetermined direction.

Before describing methods for enumerating connections between regions to form paths,
we define a grounded path.

Definition 4.1. A grounded path is a sequence of pairs consisting of a region and waypoint
state, i.e. Pgrounded = [(I, ωI) , (L1, ωL1) , (L2, ωL2) , . . . ]. Each waypoint is constrained to
lie within the corresponding region.

The purpose of the grounded path is to maintain an estimate of where the optimal
trajectory travels through a region. As described in the following section, the waypoints
on a grounded path serve as points to use when computing a heuristic cost estimate of the
path. To simplify notation, P is used to refer to a grounded path and path, the difference
being clear from context.

4.2.1 Heuristic-Based Polytope to the Goal

The purpose of the heuristic approach is to determine landmark regions that likely lie on
shortest paths between the initial region and goal region or between goal regions. It is
inspired by the Rapidly-Exploring Random Tree strategy of sampling from the goal state
and attempting to connect the present search tree to the goal (LaValle & Kuffner Jr., 2000).
The approach consists of shooting a polytope to the goal (abbreviated PtG) and detecting
collisions along this polytope. If there are collisions, the landmark regions incident to the
sub-facets of the colliding obstacle facet are enumerated and new paths created by appending
the new landmark regions to the parent path. The PtG is an approximation of the state
distribution describing the agent’s position if it were to travel directly to the goal. For
example, if the agent’s position uncertainty grows proportionally to the distance traveled
D and the state standard deviation σ, the width of the PtG’s base may be proportional to
Dσ.
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Figure 7: An illustration of the heuristic-based Polytope to Goal method. 1.) A polygon
is directed at the goal and a collision checker collects collisions along this polygon. 2.)
Landmark regions (i.e. rays in 2D) are enumerated at the sub-facets of the closest colliding
facet, in this case F0. 3.) Based on a heuristic cost estimate, the process repeats using a
point on L2 as the parent. 4.) The shape of the polygon approximates state uncertainty,
e.g. a multiple of the state uncertainty’s standard deviation.

Specifically, given a grounded path P, let the final pair on the grounded path be denoted
(Rf , ωf ). Let G be the current goal to which the agent is navigating. A polytope is generated
with vertex at ωf and directed towards the goal. The geometry of the polytope reflects belief
about the agent’s position uncertainty. In 2D, a triangle is used to model the PtG while
in 3D workspaces a tetrahedron is used. More complex shapes are possible depending on
the accuracy with which one approximates the agent’s state distribution. Collisions are
collected along the PtG. Ignoring degenerate collisions, the PtG will collide with a set of
facets F . Denote the closest colliding facet to ωf as F0. Let SF0 be the set of sub-facets
associated with F0 and L be the set of landmark regions associated with each sub-facet in
SF0 . New paths are generated by appending Lnew ∈ L to the original grounded path P.
For example, in 3D, if the PtG collides with a triangulated surface, three new paths are
created. If the original grounded path is P = [(I, ωI) , (L1, ω1)], three new paths of the form
P = [(I, ωI) , (L1, ω1) , (Lnew, ωnew)] are generated. Point ωnew represents an estimate of
where the optimal trajectory traverses Lnew. It may be generated by performing a partial
trajectory optimization or simply by taking the closest point on Lnew to L1. While the
latter method is inaccurate, it is likely much simpler to compute.

Importantly, the process can be repeated by selecting one of the children as the new
parent, re-shooting a polytope to the goal (using ωnew as the vertex), and collecting collisions
along this polytope. The selection of children is covered more fully when discussing the

17



Strawser & Williams

Figure 8: Using only the PtG approach, Ltwice will be inserted onto the path twice; the
black line represents the original path. The algorithm attempts to avoid Ltwice by forming
paths along the surface, shown in red as paths A and B. Climbing a single vertex from
Ltwice finds LA,1 and LB,1; however, both paths will result in Ltwice being part of another
path loop. On forming a second loop, the algorithm enumerates the neighbors of LA,1 and
LB,1, finding paths to LA,2 and LB,2. The path [I,Ltwice,LA,1,LA,2] is able to progress to
the goal. The dotted blue line from I to LA,2 indicates how the path may be rewired.

region graph search strategy in Section 5. The PtG method is illustrated on a 2D toy
problem in Fig. 7.

4.2.2 Avoiding Path Loops

If the proposed algorithm uses only the heuristic-based PtG, path loops could result and
the algorithm may not terminate. This is because the PtG could become trapped in an
obstacle surface feature and continuously intersect the same facet. The search must reach a
new landmark region where the PtG can continue making progress to the goal. To do this,
a loop check is performed; this checks whether a landmark region has been added twice
to a path. If a loop is detected, the algorithm attempts to move away from the landmark
region that generated the loop by traversing the obstacle surface. The idea is illustrated in
Fig. 8. Landmark region Ltwice has been inserted into the path twice. Two paths are then
generated each ending with a landmark region that neighbors Ltwice: LA,1 and LB,1. If
Ltwice causes another loop, new paths are generated which end in the neighbors of LA,1 and
LB,1 (in this case including LA,2, from which progress can be made to the goal). A visited
list of landmark regions keeps track of which L have been added to paths attempting to
avoid Ltwice; this prevents the procedure from generating a path loop itself. The subroutine
is described in Alg. 4, AvoidPathLoop, in Section 5.1.4.

A caveat of using neighboring facets to avoid loops is that the resulting path may be very
poor (consider [I,Ltwice,LA,1,LA,2] in Fig. 8). Because of this, before the region planner
passes a path to the trajectory planner, an attempt is made to re-wire it. Specifically, given
a path P = [I,L1, ...,Ln−1,G], a subroutine finds a subset of P that begins at I and ends
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at G, which passes collision checks between each Ln. The rewiring is shown as the blue line
in Fig. 8 connecting I to LA,2.

5. First Feasible Hybrid Search

Given the region graph’s vertices and methods for enumerating its edges, we now specify
the search that generates candidate paths through the region graph and passes them to
the trajectory planner. First Feasible Hybrid Search has the objective of generating good,
feasible paths quickly in complex environments. The key innovation behind FFHS is inte-
grating the region and trajectory planners in a way that accomplishes this task. Because
trajectory optimization calls are expensive, the search seeks to minimize them.

FFHS solves the goal-directed trajectory planning problem stated in Section 3 sequen-
tially. Because the input goal sequence G is ordered, the task of FFHS is to determine a
sequence of regions that help navigate the agent between successive goals. For example,
it determines a path from goal Gg−1 to Gg and then from goal Gg to Gg+1. Because the
algorithm operates on pairs of goals, we use the term current goal sequence to denote the
pair of goal regions between which FFHS is attempting to generate a path. The current
goal sequence consists of parent goal Gg and child goal Gg+1. To simplify the exposition, we
assume that the initial region I is included as the first element of the sequence G such that
G0 is equal to I. Given this formulation, we define the notions of a complete path, prefix
path, and suffix path.

Definition 5.1. Given the current goal sequence [Gg,Gg+1], a prefix path Ppre is a grounded
path that contains parent goal Gg but does not contain the child goal region Gg+1 or any
goal region g′ for g′ > g, i.e. Ppre =

[
(I, ωI) , . . . ,

(
Gg, ωGg

)
, . . . , (Rn, ωn)

]
, where no other

goal region follows
(
Gg, ωGg

)
.

Definition 5.2. Given the current goal sequence [Gg,Gg+1], a suffix path Psuf is a grounded
path that contains the current child goal region Gg+1 but does not contain the parent goal
region Gg or any goal region g′ for g′ < g, i.e. Psuf =

[
. . . ,

(
Gg+1, ωGg+1

)
, . . . , (GG, ωG)

]
,

where no other goal region precedes
(
Gg+1, ωGg+1

)
.

Definition 5.3. A grounded path is complete with respect to the current goal sequence
[Gg,Gg+1] if it contains both Gg and Gg+1.

Definition 5.4. A grounded path is mission complete if it contains all goals in the sequence
G in their proper order: Pmc =

[
(I, ωI) , . . . ,

(
Gg, ωGg

)
, . . . ,

(
Gg+1, ωGg+1

)
, . . . , (GG, ωGG)]

The insight behind First Feasible Hybrid Search is that only mission complete paths are
passed to the optimizer to reduce the number of calls to the trajectory planner. FFHS gen-
erates a mission complete path using heuristics to compare path costs without performing
full trajectory optimizations. Once a mission complete path is found, the path is passed to
the trajectory planner for optimization.

Regarding the chance constraint, a caveat of this approach is that it may be necessary
to ensure the trajectory is feasible with respect to risk post-optimization. This is the case
when the chance constraint model formulates constraints directly from the path P. Because
the path P is generated using deterministic heuristics, it may differ substantially from the
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Figure 9: Illustration of key steps of First Feasible Hybrid Search on a toy problem. 1) The agent
must navigate from initial region I, i.e. the current goal sequence is [I,G]. 2) The initial search node
A contains a prefix with only the initial region and a suffix with only the goal region; the heuristic
cost is the distance between them. 3) A is popped from the queue and a polygon is shot to the goal.
4) Edge F0 is the closest intersection; two new search nodes are created, B and C, with landmark
regions L1 and L2 added to the respective prefix paths. Heuristic costs hB and hC are estimated as
f = gpre + hpre,suf + gsuf where gpre is the heuristic cost estimate of the prefix path (a solid green
line), hpre,suf is the cost estimate from the final prefix region to the initial suffix region (dashed
green line), and gsuf is the heuristic estimate of the suffix path. 5) Node B has a lower heuristic
value, hB < hC , and is popped from the queue; a second polytope to the goal is generated from ω1.
6) The prefix path of node D is mission complete and passed to the trajectory optimizer. 7) The
risk-bound trajectory optimization produces a trajectory (red) that is further from the obstacles
than the heuristically-generated path (green). However, it is invalid because it intersects an obstacle
unseen to the heuristic-based method. 8) The trajectory is split into a new prefix (cyan) and suffix
(brown) based on the conflicting obstacle. The node is re-added to the queue (node F ). 9) Node E
now has the lowest heuristic value. 10) The trajectory optimized from node E’s path is validated
by subroutine V alidateTrajectory.
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Algorithm 1: First Feasible Hybrid Search

Input: A ccTPM planning problem
Output: A trajectory T that satisfies the ccTPM

1 PriorityQueue.Initialize(Nroot)
2 do
3 N ← PathGenerator(PriorityQueue.pop())
4 if N .IsMissionComplete() then
5 TrajectoryP lanner (N )
6 if TrajectoryP lanner.Success then
7 V alidateTrajectory (N )

8 while N .IsMissionComplete() ∧ ¬N .IsV alidated()
9 if N .IsMissionComplete() ∧N .IsV alidated() then

10 return success

11 else
12 return failure

Algorithm 2: PathGenerator

Input: The current candidate node N
Output: A mission complete path P that satisfies all ccTPM goals

1 if N .IsMissionComplete() then
2 RewirePath (N )
3 return N
4 if N .IsPathComplete() then
5 Gg+1 ← SelectNextUnassignedGoal(N )
6 Nc ← InitNodeStartingNextPath (N ,Gg+1)
7 PathGenerator (Nc)
8 else
9 Nc ← GenerateNextBestChild (N )

10 PathGenerator (Nc)
11 end

risk-bound trajectory post-optimization. The optimized risk-bound trajectory may intersect
obstacles not included on P. The validation step ensures the optimized trajectory is feasible;
if it is not, it is split into new prefix and suffix paths at the infeasible segment.

5.1 Components of FFHS

FFHS is described in detail in Algorithms 1 - 7 and in the following paragraphs. A step-
by-step overview of FFHS is given in Fig. 9 on a 2D problem. To focus on the search, this
section treats the trajectory optimizer as a black box optimizer; it is described in detail in
the second half of this article and the appendices.
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Algorithm 3: GenerateNextBestChild

Input: A parent search node Np, the current goal Gg
Output: A child search node Nc

1 if CheckForPathLoops (Np) then
2 Nc ← AvoidPathLoop (Np,pre)
3 return Nc
4 else
5 PtG← GenPtG (Np,pre,Np,suf ,Gg)
6 ClosestFacet← CollisionChecker (Np,pre, P tG)
7 Children← GenChildren (ClosestFacet)
8 PriorityQueue.Insert(Children)
9 return PriorityQueue.pop()

10 end

Algorithm 4: AvoidPathLoop

Input: A prefix path Ppre with a loop, a landmark region Ltwice that was inserted
into the current path twice.

Output: An updated path P ′ that attempts to lead away from the sub-facet
generating the loop or failure

1 Lvisited ← GetV isitedList(Ltwice)
2 PLtwice ← GetSurfacePaths(Ltwice)
3 PriorityQueueL ← GetPriorityQueue(Ltwice)
4 P ′pre ← Ppre,I:Ltwice

5 P ′Ltwice
← ExpandNeighbors(PLtwice ,Lvisited)

6 if P ′Ltwice
= ∅ and PriorityQueueL.Empty() then

7 if ~vPtclosest,G • n̂Ptclosest < 0 then
8 return Failure

9 Pavoid ← PLtwice:Lclosest
10 else
11 for P ∈ P ′Ltwice

do

12 for F ∈ P.LastF do
13 if Dist(F ,G) < Dist(Ptclosest,G) then
14 Lclosest ← InitializeLandmarkRegion (Fclosest)
15 PLtwice:Lclosest ← Concatenate (P,Lclosest)
16 end
17 PriorityQueueL.insert(P)

18 end
19 Pavoid ← PriorityQueueL.Pop()

20 P ′ ← Concatenate(P ′pre,Pavoid)
21 return P ′
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Algorithm 5: ExpandNeighbors

Input: A set of paths PLtwice starting at Ltwice, a visited list Lvisited containing all
landmark regions in PLtwice

Output: An updated P ′Ltwice
and Lvisited

1 P ′Ltwice
← ∅

2 for P ∈ PLtwice do
3 Lnbrs ← GetNeighbors (P.Last)
4 for L ∈ Lnbrs do
5 if L /∈ Lvisited then
6 Lvisited.Insert(L)
7 Pnew ← P.Append(L)
8 P ′Ltwice

.Insert(Pnew)

9 end

10 end
11 return P ′Ltwice

, Lvisited

Algorithm 6: RewirePath

Input: A mission complete path Pmc.
Output: An updated path P ′mc with equal or lower heuristic cost than Pmc

1 for Pcomp ∈ Pmc do
2 R← Pcomp.GetRegions()
3 Gg ← Pcomp.InitialState()
4 Gg+1 ← Pcomp.GoalState()
5 P ′comp ← AStar (Gg,Gg+1,R)

6 Pmc.Replace
(
Pcomp,P ′comp

)
7 end

5.1.1 FFHS

The high level search, First Feasible Hybrid Search, is provided in Algorithm 1. The search
begins by initializing a priority queue with the root node, Nroot. Each node on the search
tree is a tuple N = (Ppre,Psuf , h) where Ppre is a grounded prefix path, Psuf is a grounded
suffix path, and h is a heuristic estimate of the node’s cost. The root node is initialized
with a prefix path of I (i.e. G0) and suffix path of G1. The priority queue stores nodes
ordered by their heuristic cost. The top of the priority queue is popped and it is input to
the PathGenerator. The path generator attempts to return a mission complete path. If
it is successful, the node is passed to the trajectory planner for optimization. It may be
the case that the path generator was unable to find a complete path (as in the case of an
infeasible problem), which necessitates the check N .IsMissionComplete() (Line 4 of Alg.
1). In this case, the trajectory planner is unable to run and the algorithm returns failure.
After trajectory optimization, the resulting trajectory may be validated (Line 7) depending
on the risk model.
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Algorithm 7: ValidateTrajectory

Input: A trajectory T post-optimization, the node that generated the trajectory,
N , with grounded complete path P

Output: An assignment to the node’s validation flag, N .IsV alidated, or failure
1 IsPathV alid← True
2 for (xk,xk+1) ∈ T do
3 if IsTrajectoryInfeasible (xk,xk+1) then
4 if (Ln,Ln+1) ∈ Lvisited then
5 return Failure

6 else
7 Lvisited.Insert (Ln,Ln+1)
8 end
9 Npre = Pn≤k

10 Nsuf = Pn>k
11 IsPathV alid← False
12 PriorityQueue.Insert(N )

13 end
14 N .IsV alidated← IsPathV alid

5.1.2 Path Generator

The goal of the PathGenerator, Alg. 2, is to receive a node and attempt to generate a
mission complete path. There are three cases to consider for PathGenerator. First, if the
node’s prefix path is already mission complete (Line 1 of Alg. 2), an attempt is made to
rewire the path and the path is returned. Second, if the path is complete but not mission
complete, it means that the algorithm has found a path between the current goal sequence
[Gg−1,Gg] and must find a path to goal g + 1. In this case, the algorithm generates a new
node Nc where Nc has a prefix path equal to that of node N and a suffix path containing(
Gg+1, ωGg+1

)
(Line 6). The third case is that N contains neither a mission complete nor

a complete path. In this case, the algorithm attempts to generate a path between current
goal sequence Gg and Gg+1 and calls GenerateNextBestChild.

5.1.3 GenerateNextBestChild

The purpose of the subroutine, GenerateNextBestChild, Alg. 3, is to complete the path
between Gg and Gg+1 by adding landmark regions to the prefix path of the parent node
Np. The methods in GenerateNextBestChild that enumerate landmark regions are those
described in Section 4.2. First, a loop check is performed on the prefix path of the parent
node (Line 1). If a loop is found, an attempt is made to climb from the loop using the
strategy described in Section 4.2.2 (Alg. 4, AvoidPathLoop). If no loop is found, the
method of shooting a polytope to the goal is used. As described in the previous section, a
polytope is shot to the goal and collisions are collected along this polytope. Child nodes are
generated for each sub-facet of the closest colliding facet. These children are then added to
the priority queue. This is the same priority queue initialized in Line 1 of Alg. 1. The best
candidate is returned from the queue (PriorityQueue.pop()).
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5.1.4 Avoiding Path Loops

The subroutine to avoid path loops is described in Alg. 4. The core idea behind Avoid-
PathLoop is to generate paths extending from the landmark region that caused the loop,
Ltwice, that run along the obstacle surface until the PtG is once again able to make progress
to the goal. First, the algorithm retrieves a number of data structures associated with Ltwice,
Lines 1 - 3. Lvisited is a set of landmark regions AvoidPathLoop has previously explored
attempting to avoid Ltwice. PLtwice is a set of previously generated paths running along
surface E , where E is the polytope obstacle surface to which Ltwice is incident. PLtwice is
initialized with a single path consisting of only Ltwice the first time Ltwice causes a loop.
PriorityQueueL is a queue of paths AvoidPathLoop relies on to avoid Ltwice; it is initialized
as empty. In Line 4, P ′pre is initialized as the path from the first element on Ppre, I, to the
first occurrence of Ltwice. In Line 5, a new set of candidate paths is generated that attempt
to lead away from Ltwice that travel along E . The subroutine ExpandNeighbors is given
in Alg. 5. If the new set of paths, P ′Ltwice

, is not empty, then each path in P ′Ltwice
is added

to PriorityQueueL, Line 17. In this case, the top of the queue is popped, Line 19, and
the path leading along the surface, Pavoid, is concatenated with P ′pre, Line 20. This path
is then returned. Certain edge cases must be considered. If ExpandNeighbors finds no
new paths and PriorityQueueL is empty, AvoidPathLoop sets Pavoid to PLtwice:Lclosest , the
path running along E from Ltwice to Lclosest. Lclosest is the landmark region incident to the
point on E that is closest to the current goal, Ptclosest. Path PLtwice:Lclosest is determined
via a check on Line 13. AvoidPathLoop iterates over all facets F neighboring the final
landmark region on P, Line 12, where P ∈ P ′Ltwice

. For each facet, a check is performed to
determine if any point on the facet is closer to the goal than the obstacle surface incident to
the current Lclosest. If it is, Ptclosest and path PLtwice:Lclosest are replaced. The closet point
on F to G may not lie on a subfacet of E , i.e. it may lie on an interior point of F . In this
case, a landmark region is initialized that is incident to the obstacle surface at the closest
point, Line 14. Ptclosest may also be used as a certificate of infeasibility once all F on E
have been explored. A check is performed on the sign of the dot product between vectors,
~vPtclosest,G and n̂Ptclosest , Line 7. Vector ~vPtcloseset,G represents the vector from the closest
point on obstacle surface E to goal G. Vector n̂Ptclosest is the normal vector of the obstacle
surface at Ptclosest. If the dot product between these vectors is negative, the algorithm
fails. This method of checking facet visibility to the goal is inspired by the backface culling
technique in computer graphics (Breen, Regli, & Peysakhov, 2020).

Subroutine ExpandNeighbors is given in Alg. 5. Given a set of paths PLtwice , each
with initial landmark region Ltwice, the purpose of the subroutine is to generate a new set
of paths, P ′Ltwice

which are not in visited set Lvisited. This is done by iterating over each
path and retrieving the neighbors of its final landmark region, Line 3. If the neighbor L is
not a member of Lvisited, a new path is created by appending L to P to create a new path
Pnew. The set of new paths and updated visited list is returned.

5.1.5 Rewiring Complete Paths

An additional optimization regarding the region planner is rewiring the path after a mission
complete path has been generated. After exiting AvoidPathLoop, the new path may be poor
because it travels along the obstacle surface. An example is shown in Fig. 8 where the path

25



Strawser & Williams

Figure 10: Illustration of the geometry used to validate a trajectory with respect to the
chance constraint where the state distribution is assumed Gaussian. The trajectory is
checked for collisions within three standard deviations on each side of the (x, y) states. In
general, σp increases with each trajectory knot k.

could be improved by removing a number of landmark regions. To prevent poor paths from
being passed to the trajectory planner, an attempt is made to rewire complete paths (Line 2
of Alg. 2). The simple subroutine is given in Alg. 6. The routine iterates over all complete
paths Pcomp in the mission complete Pmc. For each complete path, the following components
are enumerated: the path’s starting region Gg, ending region Gg+1, and the set of regions
connecting the start and end, R. A* is performed to connect Gg to Gg+1 constrained to the
set of regions R. A difference from the vanilla A* is that two regionsR andR′ are considered
neighbors if it is possible to generate a collision-free or probabilistically feasible path from
R to R′ (this is checked using a variant of IsTrajectoryInfeasible). Consequently, the
original path Pcomp is replaced with P ′comp where P ′comp has equal or lower heuristic cost
(due to having equal or a fewer number of regions connecting Gg to Gg+1).

5.1.6 Trajectory Validation

Validation is required for certain chance constraint models to ensure the path is feasible.
Specifically, if the chance constraint calculation depends on the path’s regions, trajectory
validation is necessary post trajectory optimization. The reason is because PathGenerator
forms P using deterministic heuristics; it may be that the risk-bound trajectory is signif-
icantly different from the deterministic trajectory. In other words, a trajectory optimized
with respect to the constraints implied by P may not be feasible because the sequence P
was not created with regard to risk. This is true for the CDF-based model presented in
Section 7; risk is only evaluated at landmark regions along the path.

The validation subroutine is provided in Alg. 7, ValidateTrajectory. The subroutine
relies on pairwise validations; the trajectory is iterated over and each pair of states is checked
for feasibility. The subroutine IsTrajectoryInfeasible (xk,xk+1) checks feasibility between
states xk and xk+1. The simplest validation is to check for collisions between the waypoint
states ωk and ωk+1. Collision checking can also be used to validate stochastic trajectories
if a bound on the agent’s state distribution is known at future times. For example, consider
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the case of a linear dynamical system with Gaussian noise where the discrete-time dynamics
are given by:

xk+1 = Axk = Buk + w (10)

where w is a vector of random variables, w ∼ N (0,Σ). As shown in (Blackmore, Li, &
Williams, 2006), the distribution of x is known at all future times; it is Gaussian with mean
µk and covariance matrix Σk where

µk =

k−1∑
i=0

Ak−i−1Bui +Akx0 (11)

Σk =
k−1∑
i=0

Ak−i−1Σ
(
AT
)k−i−1

(12)

Eq. (12) can be used to bound the state distribution at all time steps k and enable trajectory
validation. For example, consider the problem of an agent navigating a 2D workspace. In
this case, the agent travels between waypoint states ωk = (x, y)k and ωk+1 = (x, y)k+1. Let
~rk be the vector in the direction of travel and ~pk be a unit vector perpendicular to ~rk. The
standard deviation perpendicular to the direction of travel is given by:

σpk =
√
~pTkΣk~pk (13)

Given σpk , the state distribution can be bounded and validated via collision checking. Be-
cause the Gaussian distribution has infinite support, it is practical to bound the trajectory
to some constant multiple of σpk . The geometry of the validation process for a system with
a Gaussian state distribution is illustrated in Fig. 10.

If a collision is found between trajectory knots k and k + 1, the complete path P is
split into new prefix and suffix paths, Lines 9 and 10 of Alg. 7. The notation Npre = Pn≤k
indicates that all regions prior to and including knot k are placed onto the prefix; Nsuf =
Pn>k indicates that all regions following knot point k are placed onto the suffix. The node
is marked as invalid and inserted into the global priority queue, i.e. the queue in Line 1 of
Alg. 1.

In addition to discrete-time linear dynamics of the form Eq. 10, it is possible to validate
other system types using this strategy if there is an efficient method to compute a bound
on the agent’s state distribution. This often means making some type of simplifying as-
sumptions. For example, for nonlinear dynamical systems, there is seldom an analytic form
for the state distribution. For continuous-time systems, one must decide if the underlying
stochastic process is best modeled using discrete or continuous time. Bounds can be gen-
erated for certain simple continuous time stochastic processes such as Brownian motions.
Rather than rely on Alg. 7 to determine whether a trajectory is feasible with respect to the
chance constraint, another possibility is to rely on a better chance constraint model that
models risk between regions on P such as the sampling-based methods in Sections 8 and 9.

5.2 Discussion of the Algorithm’s Properties

5.2.1 Soundness

For general motion planning problems under uncertainty, soundness with respect to the
chance constraint is difficult to prove because of the difficulty modeling the agent’s state
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distribution and environment geometry. As shown in Section 5.1.6, when the state is linear
between collocation steps and stochasticity is additive Gaussian noise, the trajectory can
be validated to within a small number δ of the chance constraint. This follows from the
assumption that the state distribution is known at any future time and a bound on its
support can be computed. A small number δ is necessary because the Gaussian has infinite
support; even checking a large region around the path does not mean all probability mass
has been captured.

5.2.2 Termination

Termination of FFHS is described fully in Appendix C. In summary, it is necessary to show
that AvoidPathLoop does not generate infinitely many loops. Appendix C shows that
calls to AvoidPathLoop due to the same Ltwice will eventually return path PLtwice:Lclosest .
Once this occurs, landmark region Ltwice is said to be explored. We then show that under
certain geometric constraints on the Polytope to Goal, no two explored landmark regions
will form loops. In the case of infeasible problems, the region planner is guaranteed to
eventually find the closest point on the polytope obstacle surface that separates I from G,
which causes the check on Line 7 of Alg. 4 to return true and the algorithm to fail. This
shows that the region planner will terminate by failing or returning a candidate path to
the trajectory planner. A further edge case is whether trajectory planner failure causes the
same infeasible path to be passed between the region and trajectory planners such as in the
case of a feasible deterministic problem but infeasible stochastic problem. To prevent this,
either the trajectory planner or V alidateTrajectory maintains a cache of which paths have
caused failure.

5.2.3 Completeness

For the deterministic case of a point robot navigating from an initial state to a goal state
the algorithm is complete. For stochastic problems, completeness in the general case is very
difficult to achieve because path feasibility is dependent on the assumptions underlying
the stochastic model. In the deterministic case, completeness follows from the fact that
given a set of polytope obstacle surfaces E that separate I from G, AvoidPathLoop will
eventually find the closest point on each E ∈ E to the goal if it does not first fail or find
the goal. The landmark region incident to the closest point will be added and popped from
the PriorityQueue. The search will continue until Alg. 3 pops a path from the queue
whose final element is able to shoot unobstructed to the goal. We discuss completeness and
provide a proof in Appendix C.

5.2.4 Complexity

We analyze the complexity of First Feasible Hybrid Search treating the trajectory planner,
Line 5 of Alg. 1, as a black box. The complexity of the trajectory planner is dependent
on the underlying trajectory optimization routine and model of uncertainty. Our focus is
on Alg. 2, PathGenerator. PathGenerator shares worst case complexity with state space
search, O

(
bd
)
, where b is the branching factor and d is path depth. For 2D environments

composed of polygon obstacles, the branching factor is two. Each node, whether expanded
via the PolytopeToGoal or AvoidPathLoop methods has two potential children. For 3D
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environments with triangulated polyhedron obstacles, the branching factor is three when
a child is expanded via the PolytopeToGoal method. Because search is exponential in
the depth of the tree, longer paths should be avoided. This is the motivation for the
PolytopeToGoal method, which attempts to bypass irrelevant landmark regions. Subrou-
tine AvoidPathLoop potentially creates longer paths. In the case of triangulated polyhedral
surfaces, we can write a simple bound for the number of paths originating at Ltwice and
added to PriorityQueueL. At the first level, Ltwice has four neighbors. At every subsequent
call to ExpandNeighbors, Line 5, each landmark region has at most two neighbors that
are not already in Lvisited. This results in an upper bound on the number of paths:

Dist∑
k=1

2k+1 (14)

where Dist is the maximum distance (number of facets) separating Ltwice from any other
obstacle sub-facet sharing the same polytope surface. For a general polyhedron, Dist is
difficult to compute but can be bounded via Hirsch’s Conjecture as |F | − d, the number
of facets minus the polytope’s dimension (Santos, 2012). For triangulated polyhedra, the
number of landmark regions is bounded by 3|F | and d = 3. Therefore, the number of paths
originating from Ltwice via calls to AvoidPathLoop is bounded by:

|PLtwice | =
3|F |−3∑
k=1

2k+1 (15)

where F in Eq. 15 refers to facets on the obstacle polyhedron to which Ltwice belongs. Eq.
15 shows the algorithm’s dependence on |F |; the algorithm will be challenged by missions
with many obstacle concavities (i.e. AvoidPathLoop is called often) where concavities have
complex surface geometry, e.g. |F | is large.

5.2.5 Optimality

First feasible hybrid search is greedy and does not provide a guarantee on finding the optimal
solution. The goal of the algorithm is to compute good trajectories quickly. If the use case
demands higher quality solutions than the greedy solution, it is trivial to make FFHS into
an anytime algorithm where the best solution is recorded as an incumbent and the search
continues until the priority queue is exhausted. We provide experimental results in Section
10.3.3 that illustrate FFHS’s performance against an interleaved hybrid search that takes a
strategy akin to A*, i.e. for every new region added to a path, a trajectory optimization is
performed to evaluate the cost of each partial path.

Similar to completeness, optimality is difficult to prove for motion planning under un-
certainty because of the required simplifications when computing expected cost. Most
approaches consider only deterministic cost functions (Blackmore et al., 2011) or simple
cost functions for which the expected cost is straightforward to compute, i.e. the linear
quadratic Gaussian (LQG) controller (Ono et al., 2013). Even if simple cost functions are
assumed, the effect of colliding with obstacles between collocation knots is almost always
ignored.
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6. The Trajectory Planner

Given a path from the region planner, the trajectory planner computes a continuous state
and time trajectory that satisfies the ccTPM. Because it deals with continuous decision
variables rather than discrete, this problem is solved using a different strategy than the
region planner. Whereas the region planner relies on graph search, the trajectory planner
makes use of off-the-shelf optimization libraries.

The difference between the problem statement in Section 3 and the problem solved by
the trajectory planner is the addition of the region constraints:

ωn ∈ Rn ∀ Rn ∈ P (16)

These constraints, generated by the region planner, make it easier to formulate and solve
the trajectory planner’s underlying trajectory optimization. In the case of linear dynamical
systems and Gaussian uncertainty, Constraints (16) allow the trajectory planning problem
to be formulated as a convex program. For nonlinear dynamical systems with more complex
risk models, the trajectory planning problem is formulated as a nonlinear program. Even
in these cases, Constraints (16) aid in generating feasible guesses for the decision variables,
which are often necessary for solver convergence.

The process of transforming a continuous state trajectory optimization into a mathe-
matical program with a finite number of decision variables is termed transcription. The
trajectory optimizations in this article are transcribed into nonlinear programs and solved
as a sequential quadratic program (SQP). SQPs enable us to consider a wide variety of
dynamical systems and solve the three chance constraint models in Sections 7 - 9. In spite
of their expressiveness, SQPs are not without shortcomings. Specifically, SQPs do not, in
general, reach global optima as convex programs do. Because our strategy is to seek good
feasible solutions quickly rather than optimal ones, this is not a major drawback. Second,
SQPs require initial guesses for their decision variables, which must typically be feasible or
close to feasible. This is a more significant drawback as initial guesses are oftentimes hard
to generate for complex systems. Strategies to overcome this include maintaining a cache
of previously solved trajectories and using these as guesses for future optimizations. This
article relies on the SNOPT SQP solver (Gill, Murray, Saunders, & Wong, 2017). While
certain details of our implementation are specific to SNOPT, most are shared among SQP
libraries. The user defines an SQP by providing the solver with access to a function that
evaluates the objective and constraints and (optionally) a function that evaluates the Ja-
cobian matrices of the objective and the constraints. The Jacobian is the gradient of the
objective and constraints with respect to each of the decision variables. While the Jacobians
may be approximated via finite difference, in general, the algorithm’s efficiency is improved
if analytic expressions for them are explicitly provided.

To solve the ccTPM via hybrid search, we must transcribe the chance constraint into a
form that adequately models the agent’s real world trajectory risk while still being tractable
for the underlying trajectory optimizer. In Sections 7 through 9, we present three methods of
approximating Constraint (3) of increasing complexity. Section 7 details a CDF-based model
appropriate for linear systems with Gaussian uncertainty. Section 8 describes a sampling-
based method when agent geometry is important to consider and Section 9 presents Shooting
Method Monte Carlo, which is appropriate for nonlinear and non-Gaussian systems. The
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CDF-based and sampling-based models of Sections 7 and 8 rely on collocation trajectory
optimization. Collocation is a general method for trajectory optimization that approximates
a trajectory via discretization at knot points. Trajectories T take the form:

Tcollocation = [x0,u0, h0,x1,u1, h1, . . . ,xk,uk, hk, . . . ,xK ,uK ] (17)

where states xk, control inputs uk, and time steps hk are decision variables indexed by
collocation knot k. The third model, Shooting Method Monte Carlo, relies on the shooting
method. Shooting methods involve simulating a choice of control inputs and iteratively
correcting the resulting trajectory until it converges to a desired goal. Shooting trajectories
take the form:

Tshooting = [u0, h0,u1, h1, . . . ,uk, hk, . . . ,uK ] (18)

where states xk are determined via integrating the dynamics given uk and hk. Because
the focus of this article is on the chance constraint, we leave other details of our trajectory
optimization to Appendix A for collocation trajectory optimization and Appendix B for the
shooting method.

Recall from Subsection 3.1 that the trajectory planner receives a path P from the region
planner. It also requires specification of the agent’s equations of motion, an objective
function, and a risk bound ε. The trajectory planner outputs a trajectory T and an objective
value, J . These are passed back to the region planner for trajectory validation and possibly
comparison with other trajectories.

7. CDF-Based Chance Constraints

The chance constraint models the probability that the solution to the ccTPM fails in ex-
ecution. This article focuses on failure due to collision with an obstacle. Mathematically,
this is described by Constraint (3), repeated here:

P

(∧
k∈K

xk ∈ Wfree

)
≥ 1− ε (19)

The constraint is difficult to compute because it involves the integration of a probability
distribution over possibly many dimensions as the state evolves in time. Simplifications
are almost always made concerning the underlying stochastic process, the agent’s state dis-
tribution, and the agent and environment’s geometric complexity. This section focuses on
CDF-based chance constraints. This is a simplification appropriate to agents with linear
dynamics whose geometry is unimportant when computing collision risk, i.e. point robots.
Although the agent’s waypoint state distribution is assumed Gaussian, this method is appli-
cable for any distribution with an easy-to-compute cumulative distribution function. While
the notion of easy-to-compute is somewhat arbitrary, the inclusion of the single and multi-
variate Gaussian CDF in many popular numerical libraries and the speed with which it is
computed enables us to classify it in this category (Jones, Oliphant, Peterson, et al., 2001).

The CDF-based model is most appropriate for longer trajectories where the emphasis is
on computing trajectories quickly that coarsely approximate the true collision risk. Com-
puting the mission paths for underwater gliders provide a good motivation for this strategy.
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In certain circumstances, there is a very poor knowledge of the probability distributions fol-
lowed by ocean currents. A coarse model of risk can be as accurate as a very refined model
whose underlying stochastic process does not match the system’s true stochastic process.
The coarse model is much less computationally-intensive.

Eq. (19) is termed a joint chance constraint because it involves the state at various time
steps. The first simplification for CDF-based methods is to make an assumption about the
stochastic process’ interdependence at different time steps. This allows the intractable joint
chance constraint to be broken into simpler individual chance constraints. One method to
approximate the joint chance constraint is through independence; under independence as-
sumptions the probability of trajectory success is the product of the individual probabilities.
Similar models have been discussed in other work such as (van den Berg et al., 2011). In
the formulation used in our present work, the probability of success at landmark region n is
modeled by conditioning on the success of past transitions and the law of total probability:

P (Sn) = P (Sn|Sn−1, . . . , S1)P (Sn−1|Sn−2, ..., S1) . . . P (S1) (20)

where Sn is the event of the agent succeeding at landmark region n. Each term is assumed
Markovian: the probability of success at region n is conditionally independent of success at
n− 2 given its success at n− 1. Using this fact, (20) can be simplified:

P (SN ) = P (Sn|Sn−1)P (Sn−1|Sn−2) . . . P (S1) (21)

The independence assumption is used to simplify Constraint (19) into a product involving
each success event:

P (SN ) =

N∏
n=1

P (Sn|Sn−1) ≥ 1− ε (22)

Eq. (22) simplifies the joint chance constraint computation into the computation of indi-
vidual chance constraints. The individual chance constraint is the probability of success at
a specific point in time. Mathematically, it is given by the integral:

P (Sn) =

∫
`
f (xn) dxn (23)

where f (xn) is a distribution of the agent’s state at region n and ` represents the limits of
integration. In general, Eq. (23) must be computed using numerical methods; however, the
central assumption of this section is that we have access to a subroutine that can quickly
evaluate the integral. What must be specified are the limits of integration `.

An advantage of the region planner’s landmark regions is that they form not only con-
straints on waypoint states but also enable a geometric simplification for computing CDF-
based chance constraints. Without a geometric simplification, the limits of integration to
compute Eq. (23) are often non-convex. Consider the bivariate state distribution in the left
pane of Fig. 11; the distribution encompasses the triangular obstacle. Instead of computing
the integral with respect to the non-convex space, it is simplified by projecting the distri-
bution onto the landmark region. This model simplifies the chance constraint; in place of
computing P (xn ∈ Wfree), the approximation P (xn ∈ Ln) is computed. The latter term
is easier to compute because Ln is convex.
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Figure 11: Illustration of the variables, projection, and bounds relevant to the risk compu-
tation at each waypoint for a CDF-based chance constraint in a 2D workspace. The left
image represents the bivariate state distribution centered at the waypoint ωn. The right
image depicts the projection of the distribution onto the landmark region Ln. To model the
risk at the waypoint, the single variate distribution N

(
sn, σ

2
n

)
is integrated from sn = 0 to

sn =∞.

The integral is computed as follows. Recall from Section 4.1 in 2D, the waypoint states
ω = (x, y) are projected onto a landmark region Ln with orthogonal basis (ŝ, ŵ). Coordinate
ŝ runs parallel the landmark region ray and ŵ is orthogonal to the ray. The distribution
of the agent’s waypoint states is projected onto the landmark region and integrated along
the ŝ-coordinate. The mean of the projected distribution is the value of the sn coordinate,
introduced in Section 4.1. Intuitively, sn represents the agent’s distance from the obstacle.

The projected distribution is integrated along the landmark region from sn = 0 to ∞.
This construction is illustrated in Fig. 11. This idea of computing the chance constraint by
integrating with respect to the agent’s distance from an obstacle is used in a similar manner
in (Blackmore et al., 2011). The integration required to evaluate the chance constraint at
a single waypoint, the probability of success P (Sn), is:

P (Sn) =
1√

2πσs

∫ ∞
0

exp

(
− (s− sn)2

2σ2
s

)
ds = 1− Φ

(
−sn
σ2
s

)
(24)

where Φ is the cumulative distribution function of the standard normal. Eq. (24) is used
with Eq. (22) to evaluate the joint chance constraint.

7.1 Multivariate Gaussians in 3D Workspaces

Under the independence assumption discussed above, the joint chance constraint for 3D
workspaces can be transformed into individual chance constraints:∧

n∈N
P (xn ∈ Wfree) =

∏
n

ΦΣ,` ≥ 1− ε (25)

where ΦΣ,` is the cumulative distribution function of the multivariate Gaussian distribution
with correlation matrix Σ integrated with respect to bounds `. While this integral is
difficult to evaluate, very efficient numerical integration routines have been implemented
such as those described in (Genz, 1992). In terms of (r, s) variables, the constraint may be
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Figure 12: Illustration of the projection of the state distribution onto the landmark region
for a 3D workspace. The dotted ellipses indicate the projection of the multivariate Gaussian
onto the plane. The distribution is then integrated from the line `.

written using the bivariate normal distribution as (Weisstein, 2018):

ΦΣ,` =

∫ ∞
−∞

∫ ∞
0

1

2πσsσr
√

1− ρ2
exp

(
− z

2 (1− ρ2)

)
dsdr (26)

z =
(s− sn)2

σ2
s

− 2ρ (s− sn) (r − rn)

σsσr
+

(r − rn)2

σ2
r

(27)

where ρ is the correlation coefficient. In this expression sn and rn are the decision variables
determined by the optimizer (i.e. the waypoints) after being transformed from the global
coordinates xn = (x, y, z)n using transformation Eqs. (6) - (8). Similar to the 2D case; the
lower bound of the inner integral is at s = 0, i.e. the line ` as shown in Fig. 12.

8. Sampling-Based Chance Constraints

While the approach presented in the previous section provides a simple method to approxi-
mate trajectory risk, it is in many ways inadequate to model more complex systems. There
was assumed access to a quickly-evaluated cumulative distribution function. It was also
assumed that the agent was modeled well as a point robot. In this section, we discuss an
approach that relaxes these assumptions. We propose a method that models trajectory risk
for agents with rigid bodies and for which we do not have access to an easy-to-evaluate
cumulative distribution F but only a distribution f from which we can draw samples. To
do this, a Monte Carlo sampling approach is used.

Computing the collision probability involves integrating a multivariate density with re-
spect to limits `, which are a function of the agent and obstacles’ geometry. Computing
these limits is challenging because it is non-trivial to compute whether a given agent con-
figuration is in collision with an obstacle. Consider the rectangular polygon that models a
simple car as shown in Fig. 13. The configuration states of the rectangle are q = (x, y, θ).
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Figure 13: Computing the collision risk of even a simple rectangular shape is challenging.
A possible distribution of the rectangular car’s state is shown in gray. Not only is there
uncertainty in states (x, y) but also orientation θ. An integration to compute the collision
risk must be performed over all configurations that collide.

Additionally, assume that the probability distribution describing these states is uniform,
f (q) ∼ U , in some set (0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ θ < 2π):

f (x, y, θ)

{
1

2πab , for 0 ≤ x < a, 0 ≤ y < b, 0 ≤ θ < 2π

0, otherwise
(28)

In this case, the probability of success at time step k is:

P (Sk) =
1

2πab

∫
`
1q∈Cfreedq (29)

where Cfree is the free region of the agent’s configuration space. The integral in Eq. (29) is
equivalent to determining the volume of the free region of the agent’s configuration space
over the support of the distribution f . In general, this is a very difficult region to determine,
not to mention compute its volume (LaValle, 2006).

Instead of attempting to analytically compute the limits of integration, our approach
combines collision checking and Monte Carlo simulation. We model trajectory risk for agents
with rigid body geometry B by sampling from its configuration states along a trajectory,
determining the number of samples in collision, and using this number to approximate tra-
jectory failure. While Monte Carlo methods have previously been used to model trajectory
risk, our innovation is integrating the method with our trajectory planner and enable its use
with nonlinear optimizers, such as SQP solvers. Although many efficient algorithms exist
for collision checking, (Ericson, 2005), integrating the proposed method with a trajectory
optimization subroutine is nontrivial. Collision checks are step functions as a function of
the agent’s state: for a given state, an agent is either in collision or not. The derivative of a
step function is a Dirac delta function and is non-zero only at the point of collision. Because
SQP solvers rely on information from the Jacobian matrix in order to satisfy the problem’s
constraints, simply using a step function in an optimizer does not work well. Rather than
using the collision check directly as an indicator of whether an agent configuration is in
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collision, we propose the intersecting region Wint between the agent and obstacle. This
region provides a continuous measure of whether an agent configuration is in collision and
allows us to approximate the chance constraint with a constraint with a non-zero Jacobian
over a larger region.

We explain the model in the following subsections. First, we describe the chance con-
straint model that is a function of the intersecting region between the agent and obstacles.
Second, we describe how the intersecting regionWint is computed for 2D and 3D workspaces.
Third, we describe how the Jacobian of this constraint is computed. Finally, we mention a
shortcoming of this model: the need for a distribution f from which we can sample agent
configurations.

8.1 Approximating Trajectory Risk via Intersecting Region

We seek to approximate the original chance constraint, Eq. (3), for agents with rigid body
geometry:

P

(∧
k∈K
Wa,k ∈ Wfree

)
≥ 1− ε (30)

whereWa,k represents the region of the workspace occupied by an agent with rigid body
B at trajectory step k. Given a trajectory T , we draw samples from this trajectory that
approximate the agent’s configuration state distribution. How these samples are drawn
is discussed in Section 8.4. For now, we assume that we are able to generate a sequence
of agent body configurations Wa,k,s. Variable s indexes the sampling scenario. If Wobs

represents the workspace occupied by the obstacles, let Wint,s be the intersecting region
between the agent and obstacles summed over the entire trajectory scenario. Specifically:

Wint,s =
∑
k

Wa,k,s ∩Wobs (31)

To model the collision probability, an indicator variable is set to one if the intersecting
region is greater than zero, and zero otherwise:

P (Collision) ≈ 1

S

∑
s

1|Wint,s|>0 (32)

where |Wint,s| is the size of the intersecting region of scenario s and S is the total number
of scenarios. The Jacobian of the indicator function is a Dirac delta function; Eq. (32)
has a non-zero gradient only at the point of collision between the agent and the obstacle.
This provides the optimizer with little information about how to satisfy the constraint and
would likely prevent the optimizer from succeeding. Instead, this paper approximates the
indicator variable through a sigmoid function. The sigmoid has seen prior use in non-convex
optimization problems to approximate indicator or barrier functions (Freund, 2004). The
general form of the sigmoid is:

Sigα (s) =
1

1 + exp (−αs)
(33)
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Figure 14: The shape of a general sigmoid function

Figure 15: The modification of the sigmoid function used to approximate 1|Wint|>0. In-
creasing α improves the approximation.

where α is a parameter that dictates the steepness of the slope. A plot of this function is
shown in Fig. 14. The figure illustrates how the sigmoid approximates an indicator variable;
negative arguments model the case 1A = 0 and positive arguments model the case 1A = 1.
The sigmoid becomes a better approximation to the indicator function as α grows large.

Eq. (33) must be modified to model the collision constraint. The intersecting region
cannot be negative and the function should be zero at |Wint| = 0. This suggests using a
sigmoid of the form:

Sigα (s) = A2

(
1

1 + exp (−αs−A1)
−A0

)
(34)

where A0, A1, and A2 are constants that provide the required offset and scaling. This
function is shown in Fig. 15. The indicator function of Eq. (32) is approximated as:

1|Wint|>0 ≈ Sigα (|Wint|) = A2

(
1

1 + exp (−α|Wint| −A1)
−A0

)
(35)

37



Strawser & Williams

Figure 16: The intersecting region Wint is the triangle defined by ABC. The dashed lines
represent interface facets; they are used to compute the partial derivatives of the change in
intersection area as a function of the decision variables.

and the collision probability approximated as:

P (Collision) ≈ 1

S

∑
s

Sigα (|Wint,s|) (36)

The overall chance constraint, denoted Ccc, is written:

ε− 1

S

∑
s

Sigα (|Wint,s|) ≥ 0 (37)

An advantage of the sigmoid function is that it is straightforward to differentiate when
computing the Jacobian matrix. Specifically,

dSigα (s)

ds
= Sigα (s) (1− Sigα (s)) (38)

The chain rule is used to derive the gradients with respect to the configuration states. The
Jacobian of the chance constraint Ccc with respect to a configuration state xn is:

∂Ccc
∂xn

=
dSigα (Wint)

dWint

∂Wint

∂xn
(39)

One downside to the sigmoid approximation is tuning α. As shown in Fig. 15, increasing
α enables a better approximation to the collision check. However, this also makes the
derivative nonzero over a smaller region and makes it more difficult to integrate into a
sequential quadratic program. We discuss the impact of α on the chance constraint model
in Section 8.5.

8.2 Computing the Intersecting Region, Wint

In two dimensions, the intersection of two polygons produces another polygon or, if the
intersection occurs at only one point, a point. Computing the intersection is termed clip-
ping. In general, computing clippings for general polygons is difficult. In spite of this,
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many efficient algorithms have been proposed for general polygons such as Vatti’s clipping
algorithm, presented in (Vatti, 1992), and an implementation in (Johnson, 2014).

In three dimensions, computation of the intersecting volume is more complicated. Al-
gorithms exist to compute the intersecting volume between two convex polyhedra such as
described in (Powell & Abel, 2015). This clipping algorithm decomposes the subject and
clipping polyhedra into planar graphs representing vertices and edges. Clipping occurs by
searching through the vertices of the subject graph and clipping vertices that lie on one
side of a clipping plane. Because requiring obstacles to be convex would limit our applica-
tion, we discuss a method to approximateW3

int for convex agent geometries but non-convex
obstacles in Appendix D.

8.3 Generating the Collision Jacobians

SQP optimization routines are made more efficient by providing analytic derivations of
the constraint Jacobians; i.e. the partial derivatives of each constraint with respect to
the decision variables. An advantage of modeling the chance constraint using intersecting
regions is that the constraint’s gradients are relatively straightforward to compute using
techniques from vector calculus. Given two intersecting polytopes, it is necessary to compute
the change in the intersecting region with respect to the optimization’s decision variables.
Specifically, we must determine ∂Wint

∂xn
in Eq. (39).

Only the configuration states affect the agent’s position in the workspace. Namely, it is
necessary to compute ∂Wint/∂xi where xi is a configuration state. For the 2D rectangular
agent this means computing:

∂Aint
∂xk

,
∂Aint
∂yk

,
∂Aint
∂θk

∀ k ∈ K (40)

where Aint is the intersecting area. For the rigid body polyhedral agent whose orientation
is described by Euler angles (ψ, θ, φ), it is necessary to compute:

∂Vint
∂xk

,
∂Vint
∂yk

,
∂Vint
∂zk

,
∂Vint
∂ψk

,
∂Vint
∂θk

,
∂Vint
∂φk

∀ k ∈ K (41)

where Vint is the intersecting volume.
The insight into evaluating these gradients is that they can be computed by integrating

the flux Φ over certain facets of Wint. Flux is an idea from physics that models how
much of a substance is flowing through a surface. The total amount of transfer over the
surface is computed by integrating a vector field with respect to the surface (Anton, 1999).
In this circumstance, flux can be used to compute the amount of incremental area (or
volume) entering or leaving Wint due to an incremental change in one of the configuration
states. This is exactly the quantity expressed by terms (40) and (41). Before describing the
integration, we state a definition:

Definition 8.1. An interface facet is a facet of Wint that lies at the interface between
regions Wint and Wa \Wint

Intuitively, incrementally changing a configuration state could generate an incremental
region flux across each interface facet. This produces a change in Wint. This is shown
for the rectangular agent in collision in Fig. 16. For each configuration state (x, y, θ), the
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Figure 17: Examples of collision gradients for a 2D rectangular agent. Decision variables
(x, y) are assumed located at the center of area; rotations θ are around the center of area.
Arrows indicate the direction that the interface facets BC and AC change due to an in-
cremental change in one of the configuration states. They are opposite the flux. Arrows
extending into the white region (Wa) symbolize flux is heading into Wint, i.e. the gradient
∂Wint/∂State is increasing. Arrows extending into the red region Wint indicate that flux is
coming out of Wint, i.e. the gradient ∂Wint/∂State is decreasing.

flux is computed using a line integral for each interface facet of the intersecting area. For
example, the triangle ABC in Fig. 16 represents the intersecting area. Only segments BC
and AC represent interface facets. This is because segment AB is entirely embedded in
Wobs; an infinitesimal change in AB does not affect Wint. On the other hand, BC and
AC separate Wint and Wa \ Wint. An infinitesimal change in their position will cause an
infinitesimal change in Wint. The total flux (the total gradient) is the sum of the fluxes
over each interface facet i:

∂Wint

∂x
= Φx =

∑
i

Φx,i (42)

where Φx means the flux generated by an incremental change in state x. Flux is computed
through integration. In W ∈ R3, this is a surface integral:

Φi =

∫ ∫
i
F (x, y, z) · n (x, y, z) ds (43)

where F is a function that describes the rate of change of points (x, y, z) ∈ Wint due to
changes in the configuration state. The surface normal n (x, y, z) is constant across the
facets of Wint. The integral is carried out over the interface facet i. For W ∈ R2, the flux is
computed in a similar manner except that Eq. (43) is a line integral. The following sections
provide some examples computing Eq. (43) for the test cases.

8.3.1 Generating gradients for W2

Computing the collision gradients for the polygonal 2D agent requires integrating Eq. (43)
as a line integral over edges that are interface facets. An illustration of these computations
is shown in Fig. 17.
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The x and y gradients are straightforward to compute:

Φx,i =
dA

dx

∣∣∣∣
i

= −
∫
i
n̂xdi = −n̂x`i (44)

Φy,i =
dA

dy

∣∣∣∣
i

= −
∫
i
n̂ydi = −n̂y`i (45)

where subscript i represents the ith interface facet. Variables n̂x and n̂y represent the x and
y components of outward facing, unit-length normals. Because neither n̂x nor n̂y change
over the edge, the normals may be taken outside the integrals. This results in the integral
simplifying to the normal multiplied by the length of the edge, `i.

The gradient with respect to θ is more difficult to compute because the flux due to
rotation varies over the edge. The gradient with respect to a change in θ is:

dA

dθ

∣∣∣∣
i

=

∫
i
((cy − y) n̂y + (cx − x) n̂x) ds (46)

where (cx, cy) represent the agent’s center of rotation, (x, y) represent x and y points along
the line, and s is a parameter that denotes position along the interface facet. To evaluate
the line integral along the interface facet i, it is necessary to rewrite x and y in terms of
s. If the vertices of edge AC are (x0, y0) and (x1, y1), x and y can be written in terms of
parameter s as: x (s) = x0 + s (x1 − x0) and y (s) = y0 + s (y1 − y0) where 0 ≤ s ≤ 1. This
parameterization allows the integral to be rewritten in terms of s:

dA

dθ

∣∣∣∣
i

=

∫ 1

0
(cy − y0 − syd + cx − x0 − sxd)

√
(xd)

2 + (yd)
2ds (47)

where xd = x1−x0 and yd = y1−y0 and the fact was used that di =
√

(dx/ds)2 + (dy/ds)2ds.

The integral in Eq. (47) is straightforward to evaluate.
Given the gradients with respect to each facet, Eqs. (44), (45), and (47), the total

gradient is given by their sum over all interface facets:

dA

dx
=
∑
i

dA

dx

∣∣∣∣
i

(48)

dA

dy
=
∑
i

dA

dy

∣∣∣∣
i

(49)

dA

dθ
=
∑
i

dA

dθ

∣∣∣∣
i

(50)

8.3.2 Generating gradients for W3

The strategy for determining the gradients for the three dimensional case is similar, although
computations are more complicated. The intersecting region Wint is now a polyhedron and
the facets between the obstacle and the agent are polygons. Surface integrals must be used
to compute the flux. In the case of a polyhedron, gradients must be computed with respect
to each of the six states in (41). Similar to the 2D case, the position gradients are simpler
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to compute than the orientation gradients. Let Fi represent the interface facet. The x
gradient is:

dVint
dx

∣∣∣∣
i

= −
∫
Fi

n̂xds = −n̂xAi (51)

where the left-hand side indicates the change in volume Vint of Wint with respect to the
change in x, n̂x is the outward facing normal of the ith interface facet, and Ai is the facet’s
area. As in the 2D case, the flux is constant over the surface so n̂x can be pulled outside
the integral. Similar equations hold for the y and z directions.

For orientation, the surface integrals require more effort. We want to compute the
following quantities with respect to interface facet Fi:

∂Vint
∂ψ

∣∣∣∣
i

,
∂Vint
∂θ

∣∣∣∣
i

,
∂Vint
∂φ

∣∣∣∣
i

(52)

The strategy behind our approach is to derive an expression for the rate of change of points
on Fi due to changes in Euler angles (ψ, θ, φ) and integrate this expression over the surface
Fi. To derive the rate of change of points on Fi, we begin with the equation for the velocity
of a point on a rigid body due to a rotation ~ω: ~vp = ~ω × ~r. This allows us to write the
integral, Eq. (43):

Φi =

∫ ∫
i
F (x, y, z) · n (x, y, z) ds (53)

=

∫ ∫
i
~vp · n (x, y, z) ds (54)

=

∫ ∫
i
(~ω × ~r) · n (x, y, z) ds (55)

In the following, we specify ~ω and ~r, and provide an expression to evaluate the integral.
AssumeWint has been triangulated such that Fi is a triangle. Let (u, v) be a coordinate

system embedded in Fi so that the position vector from the agent polyhedron’s (Wa) center
of volume to a point on Fi is:

~r = 〈r0,x − rc,x + uûx + vv̂x, r0,y − rc,y + uûy + vv̂y, r0,z − rc,z + uûz + vv̂z〉 (56)

where r0 = (r0,x, r0,y, r0,z) is the point in global coordinates representing the origin of Fi’s
local (u, v) coordinate system. Point rc = (rc,x, rc,y, rc,z) is the agent polyhedron’s center of
volume. Unit vectors û = 〈ûx, ûy, ûz〉 and v̂ = 〈v̂x, v̂y, v̂z〉 are bases for the (u, v) coordinate
system, expressed in global coordinates.

Given this expression for ~r, the precise form of ~ω depends on the axis of rotation and
the order of rotation. For example, if rotations are performed in order φ, θ, ψ about the z
then y then x axes, ~ω terms take the form:

~ωφ = [0, 0, 1]T (57)

~ωθ = RTψ [0, 1, 0]T (58)

~ωψ = RTθ R
T
ψ [1, 0, 0]T (59)
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Figure 18: One possible sampling scheme where samples are drawn from the nominal tra-
jectory (shown in bold). Red outlines indicate samples in collision.

where Rψ and Rθ are appropriate rotation matrices as defined in (Triantafyllou, 2004).
Using these expressions and a simplification discussed in (Anton, 1999), the surface integral
can be written:

dVint
dψ

∣∣∣∣
i

=

∫ ∫
(~ωψ × ~r) · (~ru × ~rv) dudv (60)

with similar expressions for gradients with respect to angles φ and θ. The second cross
product, ~ru × ~rv, is due to the parameterization of Fi with (u, v), where ~ru and ~rv are the
partial derivatives of ~r with respect to u and v. To simplify the limits of integration, we
use the fact that Fi is a triangle such that (60) becomes:

dVint
dψ

∣∣∣∣
i

=

∫ v1

0

∫ mv+b

0
(~ωψ × ~r) · (~ru × ~rv) dudv (61)

where v1, m, and b are constant geometric properties of the triangle, i.e. (u, v) are integrated
over the regions: 0 ≤ u ≤ mv + b and 0 ≤ v ≤ v1. Eqs. (59) and (56) can be plugged
into (61), for a double integral that is straightforward to evaluate. In order to ensure the
gradients are computed quickly, the integral can be symbolically computed before run time.

8.4 Sampling from the Collocation Knots

The approach presented in this section approximates the chance constraint by sampling
from a probability distribution of the configuration states along a trajectory and computing
which samples are in collision. We have not yet specified which distribution is used for
sampling. One simple method is to assume there is some nominal state trajectory given by
the collocation knots. Given this trajectory, samples can be drawn from each knot using
some distribution f , from which it is possible to draw samples. For example, assume qk are
the nominal configuration states at a collocation knot k and the uncertainty is approximated
by a multivariate Gaussian distribution, f = N (µ,Σ). Samples are generated at knot k by
sampling from f and adding the samples Zs to qk:

qk,s = qk + Zs ∀ s ∈ S (62)

This scheme is illustrated in Fig. 18. While straightforward, this method relies on knowl-
edge of f : a distribution that we can sample from that describes the state distribution along
the trajectory. Aside from simple linear systems with Gaussian uncertainty, the true state
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Figure 19: Comparison of the chance constraint error in simulation versus the upper bound
on error, Eq. (67). The error is for a single trajectory knot.

distribution is often unknown and complex. Even for linear systems with Gaussian uncer-
tainty, the state distribution is not truly Gaussian because configurations in collision must
be removed. The crux of the issue is that the method presented in this section still focuses
on modeling P (Sk), i.e. the focus is on computing the individual chance constraint at each
collocation knot rather than the joint chance constraint. The independence assumptions
made in Section 7 to simplify the joint chance constraint do not hold for many systems.
We address these issues in Section 9; rather than focusing on computing risk at individual
indices, we compute risk over entire trajectories.

8.5 Selecting the Sigmoid Parameter α

To approximate the chance constraint using a sigmoid function, sigmoid parameter α must
be selected. In this section, we discuss a simple bound on the simulation error as a function
of α. Our method approximates the chance constraint via equation (32), repeated here:

P (Collision) ≈ 1

S

∑
s

1|Wint,s|>0 (63)

Eq. (63) represents a Monte Carlo method, which converges as O
(
S−1/2

)
(Owen, 2013).

However, the chance constraint approximation relies on approximating Eq. (63) with Eq.
(36), repeated:

P (Collision) ≈ 1

S

∑
s

Sigα (|Wint,s|) (64)

The impact of the sigmoid is a bias in the chance constraint approximation:

1

S

∑
s

1|Wint,s|>0 ≥
1

S

∑
s

Sigα (|Wint,s|) (65)
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As α increases, the approximation improves and the RHS of Eq. (65) approaches the LHS.
Denote the bias as B such that:

1

S

∑
s

1|Wint,s|>0 =
1

S

∑
s

Sigα (|Wint,s|) +B (66)

Bias B is a random variable dependent on the state samples Zs; each scenario contributes
more to the bias if the intersecting region |Wint,s| is greater than zero but Sigα (|Wint,s|) < 1.
Let rB be the region of the workspace for which 0 < Sigα (|Wint,s|) ≤ 1− δ, where δ is some
infinitesimally small number. Intuitively, if a sample lands in rB, it will cause a greater bias
and the sigmoid will be a poor approximation to the indicator function. The expected value
of B can be written E [B] = E [Bs]E [SrB ]. The first term E [Bs] represents the expected
bias per sample. It is challenging to compute exactly because it represents the expected
value of the sigmoid as a function of Wint integrated over rB. It may be upper bounded by
1. The second term, E [SrB ], represents the expected number of scenarios that fall into rB.
This term can be written

E [SrB ] = SFrB (67)

where FrB is the CDF of f integrated across rB. Note that as α →∞, the region rB goes
to 0. For Gaussian f , rB → 0 means FrB → 0 and consequently the bias B goes to 0. The
upper bound is depicted graphically in Fig. 19; the blue line is the error of the simulated
trajectory; the orange line is the result of Eq. (67).

9. Shooting Method Monte Carlo

Up to now, we have relied on a simplification of the joint constraint into individual chance
constraints and focused on computing the individual constraints. In doing this, we ignored
the joint distribution of states between different time steps. Additionally, we assumed that
the distribution at each time step was known and we either had access to its cumulative
distribution function F or could sample from its distribution f . In the case of nonlinear
dynamics or non-Gaussian noise, f is unlikely to be known.

In this section, we propose a method that computes the joint chance constraint by
forward simulating realizations of entire trajectories. We then determine which scenarios fail
and use this information to compute the overall trajectory risk. To do this, we incorporate a
different method of trajectory optimization: the shooting method. In the deterministic case,
the shooting method works by forward simulating a trajectory and updating the control
inputs until the final simulated state matches the goal state, pictured in Fig. 20. The insight
underlying this section is that the shooting method of trajectory optimization is similar to
a single Monte Carlo simulation of a stochastic process. We combine the two strategies into
the Shooting Method Monte Carlo (SMMC) algorithm.

Shooting Method Monte Carlo proceeds as follows. Decision variables are control inputs
u and time steps h; unlike the collocation method states x are not explicit decision variables
but are determined via simulation of the equations of motion. First, a set of samples is drawn
from the distribution describing the additive noise in the dynamical equations of motion.
The number of samples is SMK where S is the total number of scenarios, M is the number
of dynamics states, and K is the planning horizon. In the case that the mathematical
program is solved via a sequential quadratic program, the algorithm proceeds iteratively.

45



Strawser & Williams

Figure 20: An illustration of the shooting method where a set of control inputs is simulated
forward in time.

At each iteration, the SQP optimizer assigns values to the decision variables, u and h, and
asks for an evaluation of the objective and constraint functions or the Jacobian matrix of the
objective and constraints. Given these decision variable assignments, the agent’s trajectory
is simulated across S scenarios by integrating the equations of motion. Importantly, we
assume u and h are deterministic; they are the same across all scenarios. However, each
trajectory scenario Ts relies on a different sequence of samples Zs such that the set of
scenarios T approximate the agent’s trajectory distribution f .

Given the results of the simulations, a defect di is calculated for each constraint Ci. In
the deterministic case, the defect is measured as:

Ci − Ci (u,h) = di (68)

where Ci is the desired value of constraint i and Ci (u,h) is the value of the constraint
resulting from simulating the dynamics using decision variables (u,h). For example, if the
desired goal at state xK is xgoal and the simulated state at step K is xK , the defect is
di = xgoal − xK . The task of the trajectory optimization routine is to reduce defects to
some small tolerance.

In the case of Shooting Method Monte Carlo, the trajectory is simulated S times and
there is no single Ci (u,h). Instead, SMMC approximates the expected value of each con-
straint Ci that results from simulating the trajectory with respect to decision variables
(u,h) and samples Zs. SMMC’s defect is expressed as:

Ci − Ef̂
[
Ci (u,h)

]
= di (69)

where f̂ is the trajectory’s simulated empirical distribution. The expected value in Eq. (69)
is:

Ĉi = Ef̂
[
Ci (u,h)

]
=

1

S

∑
s

Ci,s (u,h) (70)

where Ĉi is used to represent the constraint’s expected value. For SMMC, two types of
constraints rely on Eq. (70): the chance constraint and the region constraints. Approxi-
mating the objective follows a similar scheme. The value of the objective is computed for
each scenario, Js, and the expected cost is approximated as:

Ĵ = Ef̂ [J ] =
1

S

∑
s

Js (71)
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Algorithm 8: Shooting Method Monte Carlo

Input: An agent A, environment E, sequence of regions P,
objective J , and chance constraint ε

Output: A sequence of control inputs u and time steps h
1 Z← Draw SMK standard normal samples
2 while Optimizer tolerance is not met do
3 for s ∈ S do
4 Ts ← SimulateTrajectory (u,h,Zs)
5 if Optimizer requires a constraint evaluation then
6 Js ← EvaluateTrajectoryCost (Ts)
7 Ccc,s ← EvaluateTrajectoryRisk (Ts)
8 Cr,s ← EvaluateRegionConstraints (Ts)
9 end

10 if Optimizer requires a Jacobian evaluation then
11 Js (u,h)← EvaluateJacobians (u,h)
12 end

13 end

14 Ĵ , Ĉ, Ĵ← ComputeExpectedV alues (J∀s∈S ,C∀s∈S ,J∀s∈S)

15 u,h← Optimizer.UpdateDecisionV ariables
(
Ĵ , Ĉ, Ĵ

)
16 end

An overview of the SMMC algorithm is shown in Alg. 8. The algorithm proceeds un-
til the optimizer reaches some optimality and feasibility tolerance set by the user, Line 2.
Next, the algorithm loops over all scenarios s ∈ S. The inner loop begins by simulating
the trajectory forward in time, Line 4. The trajectory Ts is dependent on MK random
variable samples specific to scenario s as well as the control inputs and time steps, (u,h).
Depending on what is required by the optimizer, the algorithm evaluates either the objec-
tive and constraints or the Jacobian matrix of the objective and constraints. In the case
that a constraint and objective evaluation is required, the trajectory cost Js, chance con-
straint Ccc,s, and region constraints Cr,s are evaluated for each scenario, Lines 6 - 8. Each
evaluation is dependent on the simulated trajectory Ts. If a Jacobian evaluation is required,
the Jacobian matrix J specific to scenario s is computed. An important feature of SMMC
is that the entire inner loop, Lines 3 - 13, can take advantage of hardware parallelization
such as provided by a GPU. This is discussed further in the results section. Line 14 relies
on Eqs. (70) and (71) to compute the expected value of the objective and constraints.
Notation J∀s∈S , C∀s∈S , J∀s∈S represents the fact that ComputeExpectedV alues computes
the expected value across all scenarios in S. Note that we use a slight overload of nota-
tion; J represents the objective function while boldface J represents the Jacobian matrices.
Finally, Line 15 passes the evaluations of the objective, constraints, and the Jacobians to
the underlying optimization subroutine. This routine returns an updated set of control
variables and time steps, (u,h).

Evaluation of the chance constraint at each time step proceeds very similarly to the
method in Section 8. The probability of failure is approximated by taking the sigmoid of
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Figure 21: Illustration of the trajectory sampling and simulation strategy used by SMMC.
The red trajectory is in collision and its Wint,s is positive.

the total intersecting region over an entire scenario:

P (Collision) ≈ 1

S

∑
s∈S

Sigα (|Wint,s|) (72)

An important difference between the method in this section and Section 8 is how the
agent’s configuration state at knot k under scenario s, i.e. Wa,k,s, is calculated. In the
collocation case, this is done by using the nominal trajectory T and drawing samples at
each configuration state qk by sampling from a distribution f . In contrast, for SMMC, each
Wa,k,s is generated directly from each trajectory scenario Ts, which is itself the result of
forward integrating the stochastic dynamics. The difference between the sampling strategies
of the collocation method and SMMC is shown by contrasting Figs. 18 and 21. The
collocation method samples at each collocation knot and ignores dependencies between
time steps in the stochastic process. SMMC better approximates these dependencies by
simulating entire trajectories.

Other details of Shooting Method Monte Carlo follow directly from the standard shoot-
ing method. Because the focus of this article is on the model of risk and not the underlying
trajectory optimization, the details are left to Appendix B.

10. Results

Four sets of test cases are included. First, a test case is run comparing the hybrid search’s
ability to quickly compute feasible paths for linear systems in 2D workspaces using CDF-
based chance constraints. Second, a case is performed for a linearized AUV model exploring
the Kolumbo undersea volcano. Third, a nonlinear Slocum glider model is explored to
illustrate the collocation sampling-based chance constraint approach. Finally, Shooting
Method Monte Carlo is illustrated on a Dubins car. The first two cases in Sections 10.2
and 10.3 showcase First Feasible Hybrid Search’s ability against other planners in terms of
time to reach an initial solution and trajectory cost. The latter tests, Sections 10.4 and
10.5, show the performance of the various chance constraint models in simulation.
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10.1 Computing Environment

Benchmarks were performed on a machine with an Intel i7-4790 CPU at 3.60 GHz with 16
GB RAM. GPU tests utilized an Nvidia GeForce 1080 Ti. The algorithms are implemented
in C++ and, for GPU-based parallelization, Nvidia’s Cuda. SNOPT Version 7.6 was used
as an optimizer for the trajectory planner (Gill et al., 2017).

10.2 Linear Models with CDF-Based Chance Constraints

This section describes a number of examples and benchmarks that illustrate First Feasible
Hybrid Search (FFHS) on agents with linear dynamics. The examples model trajectory risk
via the CDF-based approximation described in Section 7. All test cases in this section rely
on double-integrator linear dynamics of the form:

ẋ = Ax +Bu + w (73)

where w ∼ N (0, 5) and

x =


x
ẋ
y
ẏ

 , A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

B =


0 0
1 0
0 0
0 1

u =

[
ux
uy

]
(74)

For 2D environments, Eq. (24) was used to model risk and for 3D environments, Eqs.
(25) and (26) were used. For each test, the risk was set to ε = 0.20, e.g. a 20% probability
of failure. Minimizing the trajectory’s Euclidean distance was used for an objective.

The algorithm was benchmarked against two other approaches from literature that also
rely on linear models and CDF-based chance constraints. First, a benchmark was per-
formed against the chance-constrained rapidly-exploring random tree (CC-RRT) approach
discussed in (Luders et al., 2010). This algorithm extends the popular RRT planning algo-
rithm to the probabilistic case. In brief, points are sampled from the state space and a set
of nearest neighbors computed, which currently lie on the search tree. Paths are extended
from the neighbors in an attempt to connect with the new sample. The probabilistic ver-
sion requires not only that paths are collision free but also respect a chance constraint. The
reader is referred to the innovative work in (Luders et al., 2010) for full details.

A second benchmark was performed against a disjunctive linear programming (DLP)
approach similar to that presented in (Blackmore, 2008). This work considered convex,
two dimensional obstacles. In this setting, Wfree can be described by a conjunction of
disjunctions:

xk ∈ Wfree ∀ k ⇐⇒
∧
k

∨
l

ajlxk ≥ bjl (75)

where l represents the lth linear constraint of the jth obstacle and a and b are constants
relating to surface geometry. Because of the disjunction, an integer decision variable zj,k,l
is required that encodes whether the jth obstacle has constraint l active at time step k:

ajlxk − bjl +Mzj,k,l ≤ 0 (76)
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(a) Example 100 trapezoidal obstacle test case
(b) FFHS can handle non-convex obstacles,
which the disjunctive linear program cannot.

Figure 22: Example environments for the 2D linear models

(a) Comparison of the time taken to find initial
feasible solutions for environments with various
numbers of 2D convex obstacles.

(b) Objective values for FFHS and CC-RRT on
a 2D obstacle test cases with 100 obstacles. Ver-
tical dashed lines indicate the time to find the
first feasible solution. The objective is the path’s
Euclidean distance.

Figure 23: Results for the 2D linear models

where M is a big positive constant. Constraint (76) necessitates the use of a MILP solver;
our benchmarks relied on (Gurobi Optimization, Inc., 2014).

Example trajectories produced by the FFHS algorithm are shown in Figs. 22a and
22b. Benchmarking plots are provided in Figs. 23a - 23b. As shown in Fig. 23a, CC-
RRT and FFHS outperformed the DLP considerably in terms of speed. One reason for
this is that, as presented in (Blackmore, 2008), the DLP lacks a heuristic to dictate which
obstacle constraints may be relevant. This means that the DLP must solve a MILP which
accounts for all obstacle constraints in the environment. Large obstacle fields will generate
enormous mixed integer linear programs even when only a small number of the constraints
are relevant.

Fig. 23a shows that CC-RRT and FFHS are close in performance with CC-RRT having
a slight advantage in time taken to find an initial feasible solution. This is illustrated
on a single 100-obstacle test case in Fig. 23b where CC-RRT is able to generate an initial
feasible solution faster. On the other hand, FFHS performs well when comparing the quality
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of solutions. Typically, FFHS can find a solution almost as fast as CC-RRT but the solution
is often much better. The results show that there is value in the hybrid search and using a
trajectory optimizer to improve paths. The hybrid search often leads to considerably better
paths in a similar amount of time as the RRT-based approach.

10.3 Exploring the Kolumbo Undersea Volcano

A test case was performed on a Slocum Glider AUV exploring the undersea volcano Kolumbo
off the coast of Greece. In this scenario, a team of scientists uses the motion planner to
design trajectories for science goals; the planner should be fast to provide quick feedback
whether a set of goals is feasible for the glider and minimize the time and energy usage
required. There are certain regions of interest on the seafloor such as a ridge at the caldera’s
northeast corner.

This section, Section 10.3, describes a linearized model that relies on CDF-based chance
constraints and is appropriate for long missions; Section 10.3.1 describes the simplified
dynamical model, Section 10.3.2 describes the objective used to approximate glider energy
usage, and Section 10.3.3 describes experimental results. The next section, Section 10.4,
models risk using sampling-based chance constraints; this is more computationally intensive
and is better for shorter trajectories when a more precise estimate of trajectory risk is
needed.

10.3.1 Linearized “Sawtooth” Dynamics

The undersea Slocum glider has unique dynamics that enable high energy efficiency and
long duration missions. This section develops a simple linearized model that captures the
glider’s basic sawtooth trajectory pattern. A thorough description of underwater glider
design is provided in (Davis, C. Eriksen, & P. Jones, 2002).

The glider’s motion is driven by a buoyancy engine. This means that rather than relying
solely on propellers for thrust like a typical sea vessel, the glider can change its buoyancy
and produce lift and drag similar to an airplane. The glider alternates between modes of low
buoyancy and high buoyancy, which cause the vehicle to move between peaks and troughs,
inflection points. Its motion through the sea resembles a sawtooth pattern. The glider is
also characterized by difficulty localizing its position in the caldera. It is unable to use GPS
underwater and must rely on dead reckoning, depth sensors, and sonar sensors that output
the distance to the seafloor. Traveling through open ocean may take the glider away from
the seafloor and out of range of its sonar sensors; it may be more advantageous to travel
along the seafloor even if it results in a longer trajectory.

The results presented in this section model the glider’s dynamics as linear between
inflection points. Inflection points are modeled as regions R in the hybrid search. The
glider operates in a depth band d and travels at a pitch angle β to the horizontal. Glider
inflection regions are generated via a simple geometric procedure; they are inserted between
every pair of landmark regions by alternating between peaks and troughs. This construction
is illustrated in Fig. 24. Trajectory collocation knots are constrained to lie within each
inflection region, i.e. the trajectory planner picks where in each region the glider will
inflect. The size of the region is dictated by the range of pitch angles one allows; this is
typically 15-25◦.
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Figure 24: Integrating the glider’s sawtooth trajectory with the region planner’s L. The
glider travels at an angle β to the horizontal in depth band d.

Figure 25: Illustration of the lawnmower motion primitive where the glider explores the ridge
at the caldera’s northeast corner. The trajectory is denoted by cyan lines with lawnmower
goals in yellow.

10.3.2 Objective Function

Because mission range is important to the glider, its energy consumption must be considered.
To simplify the problem, this test case assumes rules of thumb for energy consumption, i.e.
how much energy a certain maneuver will require. There are two important maneuvers:
inflecting and changing the glider’s yaw. The first maneuver is much more energy intensive
because it requires using the buoyancy engine; changing the glider’s buoyancy at large
depths necessitates operating a pump at high pressures. To model both of these effects and
the trajectory’s time, a multi-term cost function is assumed:

J = ct

K∑
k=0

hk + cinflection

K∑
k=0

1inflection,k + cyaw

K−1∑
k=0

∆yaw,k,k+1 (77)
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Open
Ocean

Multi-Goal
Constrained to

Seafloor

Lawnmower
Pattern
Small

Lawnmower
Pattern
Large

FFHS 55 133 69 102 556

CC-RRT 11 148 1064 100 992

CC-RRT-Connect 11 104 388 97 754

Interleaved 37 90,440 17,437 4,018 Timeout

Table 1: Comparison of search times for different search strategies on five test cases. Times
listed are the times taken to generate an initial feasible solution. Times are in milliseconds.
A timeout was set at 5 minutes.

The first term represents a penalty on the trajectory’s time; ct is a constant that penalizes
time usage. The second term, cinflection, represents an estimate of the energy used by an
inflection and the indicator function 1inflection,k represents whether there is an inflection
at knot point k. The final term relates to the energy usage by changes in yaw; cyaw is the
estimated energy usage per change in degree of yaw and ∆yaw,k,k+1 represents the change in
glider yaw from trajectory knot k to k+1. For this study, ct was set to 100, cinflection set to
10, 000 to account for the approximately 10kJ used for a change in the buoyancy, and cyaw
set to 2 (Rudnick, Davis, Eriksen, Fratantoni, & Perry, 2004). For a practical discussion of
the glider’s propulsion and energy usage, the reader is referred to (Cooney, 2016).

10.3.3 Results for Various Missions

Five missions were used as test cases. A basic “Open Ocean” case requires motion through
the open ocean above the caldera. A “Multi-Goal” case requires the glider to reach three
randomly placed goals in the caldera. Thirdly, “Constrained to Seafloor” forces the glider
to travel within 50m of the seafloor for better localization. Finally, “Lawnmower Pattern
Small” and “Lawnmower Pattern Large” call for lawnmower patterns that explore the ridge
along the caldera’s northeast corner. An example lawnmower pattern is shown in Fig. 25.
Lawnmower patterns are generated by creating a grid of goals (yellow in Fig. 25). The grid
is generated for a square defined by minimum and maximum latitude-longitude coordinates.

First Feasible Hybrid Search (FFHS) was benchmarked against CC-RRT and two addi-
tional approaches. We modified the RRT-Connect algorithm as described in (J. Kuffner &
Lavalle, 2000) to handle chance constraints. RRT-Connect expands on vanilla RRT by grow-
ing trees from both start and goal states. Our modified algorithm, “CC-RRT-Connect,”
expands and connects trees similar to RRT-Connect, but calculates trajectory feasibility
in terms of the chance constraint, similar to CC-RRT. A final benchmark was performed
against a variant of hybrid search. One of the characteristics of hybrid search is that there
are many ways in which the path planner and trajectory planners can interact. One possi-
bility is that the trajectory planner is called after every successor is generated by the region
planner. This is similar to the strategy used by ScottyPath in (Gonzalez, 2018). This is
termed an “Interleaved” hybrid search because of how the region planner and trajectory
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Open
Ocean

Multi-Goal
Constrained to

Seafloor

Lawnmower
Pattern
Small

Lawnmower
Pattern
Large

FFHS 56 299 122 187 924

CC-RRT 116 2,817 617 2,257 50,750

CC-RRT-Connect 116 1,710 599 647 5,306

Interleaved 56 234 81 165 Timeout

Table 2: Comparison of the value of the cost function, Eq. (77), for test cases. Values listed
are the objective value for the initial feasible solution rounded to the nearest thousand. A
timeout was set at 5 minutes.

planners are tightly interleaved. This contrasts to the depth first strategy of First Feasible
Hybrid Search.

For the RRT-based benchmarks,“CC-RRT” and “CC-RRT-Connect,” the glider’s saw-
tooth motion was generated by extending trajectories at feasible pitch angles in the direction
of newly sampled points. Trajectories were extended until they no longer satisfied the chance
constraint or arrived at the same latitude-longitude position as the sampled point. While
RRT-based algorithms are good at exploring the search space through sampling, they must
be modified to account for constrained trajectories such as those that must travel near a
surface, i.e the “Constrained to Seafloor” use case. To perform the benchmarks described
here, the sampling was unmodified but paths that did not travel within a certain distance
to the seafloor for a pre-specified distance were pruned.

Results of the benchmarks are presented in Tables 1 and 2. Comparing against Inter-
leaved Hybrid Search, FFHS produces solutions much more quickly. FFHS search times can
be measured in milliseconds while times for Interleaved Hybrid Search are better measured
in seconds. This is because the environment is complex and contains a huge number of
potential constraints; there are a large number of potential paths that could be passed to
the trajectory planner. While trajectory planner calls are typically measured in hundreds
of milliseconds, calling the trajectory planner hundreds of times over the course of one
planning instance (such as in the case of the Interleaved Hybrid Search) will greatly slow
the overall search. Because FFHS is greedy, the Interleaved Hybrid Search on completion
produces solutions of better quality than FFHS, shown in Table 2. The Interleaved Hybrid
Search’s solutions were typically less than 20% better than FFHS. Whether this improve-
ment in solution quality is worth the wait is at the user’s discretion; it may be the case that
the user has a long time to generate plans before execution. On the other hand, in cases
where the user may want to test a large number of missions to determine which best suits
their needs, the time to generate a trajectory may be a more desirable property.

FFHS also compares well against CC-RRT and CC-RRT-Connect. Regarding time
to find an initial solution, Table 1, FFHS produced trajectories in times comparable to
the RRT-based methods. For certain cases, “Constrained to Seafloor” and “Lawn Mower
Pattern Large,” FFHS is faster. FFHS shows a large performance improvement when
considering trajectory cost, Table 2. This is likely due to the environments being large; CC-
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RRT and CC-RRT-Connect often found initial solutions far off course. The performance
of both would likely be improved by allowing sampling to continue or performing some
post-processing step. An advantage of FFHS is that its trajectory planner is similar to a
risk-bound post-processing step for the region planner; while variants of RRT exist that
provide smoothing, to the best of our knowledge, they have not been extended to the
risk-bound case. Another advantage that FFHS has over the RRT-based implementations
used in these tests is the use of motion primitives. For the “Constrained to Seafloor” test,
FFHS relies on a motion primitive to compute the path along the seafloor; this is quicker
to generate than the modification of CC-RRT and CC-RRT-Connect that simply prunes
paths that do not travel along the seafloor. It is likely possible to generate a better sampling
scheme for CC-RRT and CC-RRT-Connect, such as only sampling points from regions close
to obstacles.

10.4 Navigating a Ridge in Kolumbo

This use case illustrates hybrid search applied to a nonholonomic system where agent ge-
ometry is important to modeling collision risk. The case showcases the advantage of Section
8’s sampling-based model versus the simpler CDF-based model presented in Section 7 and
other prior work. The planner is tasked with computing glider trajectories that run along
a ridge at the undersea volcano’s northeast corner. The planner must reason about uncer-
tain ocean currents that may push the glider into the ridge. Unlike previous cases, a more
accurate nonlinear model is used for the glider’s dynamics.

10.4.1 Nonlinear Slocum Glider Model

This use case closely follows the glider model in (Leonard & Graver, 2001) where the glider’s
equations of motion are derived using conservation of energy and momentum. The chief
difference between the model used in this article and in (Leonard & Graver, 2001) are the
control inputs. The model in (Leonard & Graver, 2001) assumes the glider has access to
two control inputs: a stationary point mass whose mass value can be varied and a movable
point mass. The stationary point mass models the buoyancy engine; the glider’s overall
buoyancy is altered by changing its mass. Moving the movable point mass affects the center
of buoyancy and consequently the glider’s pitch. To simplify the model, we assume the
glider has a variable mass but uses adjustable fins to change pitch and yaw rather than a
movable mass. This removes the movable point mass’s state from the equations of motion
and allows for a slightly simpler model.

While (Leonard & Graver, 2001) focuses on control of a 2D test case, this work uses a
full 3D dynamical model as a test case. It relies on thirteen states and three control inputs.
The states are:

[xi, yi, zi, vx,b, vy,b, vz,b, ψ, θ, φ, ωx, ωy, ωz,mb] (78)

States (xi, yi, zi) are the glider’s waypoint states in the inertial reference frame, while states
(vx,b, vy,b, vz,b) are velocity states in the glider’s body reference frame. Angles (ψ, θ, φ) are
Euler angles that transform the inertial frame to the body frame by a rotation φ about the
original z axis, a rotation θ about the new y axis, and finally a rotation ψ about the new
x axis as described in (Triantafyllou, 2004). States (ωx, ωy, ωz) are the rates of rotation
around the x, y, and z axes in the body frame. mb is the mass of the buoyancy engine.
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(a) A trajectory under the assumption of
small ocean currents and little uncertainty
about the currents.

(b) A trajectory under larger uncertainty
in the ocean currents. The trajectory opti-
mizer generates a significantly different tra-
jectory than the case with low uncertainty.

(c) Depiction of the samples used to com-
pute the trajectory risk.

Figure 26: Various simulations of the nonlinear glider model avoiding a ridge. The glider’s
geometry is modeled as a polyhedron.

We assume three control inputs: upitch, uyaw, and umbuoyancy
. Inputs upitch and uyaw model

input fin angles; umbuoyancy
is the change in mass of the buoyancy engine.

10.4.2 Results

Example trajectories are shown in Figs. 26a and 26b. Fig. 26a presents a trajectory where
there is little uncertainty that the ocean currents are small. In this case, a multivariate
Gaussian was added to the configuration states (x, y, z, ψ, θ, φ) with µ = [0, 0, 0, 0, 0, 0] and
σx = 0.05, σy = 0.05, σz = 0.05, σψ = 0, σθ = 0, σφ = 0 (all off-diagonal terms in the
covariance matrix are assumed zero). As shown in Fig. 26a, the small amount of uncertainty
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Algorithm 9: Collocation Simulation

Input: A chance-constrained trajectory planning mission,
ccTPM

Output: ε′, the simulated risk of trajectory T
1 T ← FFHS (ccTPM)
2 total failures← 0
3 for s ∈ total simulations do
4 for qk ∈ T do
5 Zs ← DrawSample (f)
6 qk,s ← qk + Zs
7 Wa,k,s ← ComputeBodyLocation

(
qk,s

)
8 if InCollision (Wa,k,s) then
9 total failures← total failures+ 1

10 Go to next scenario

11 end

12 end
13 ε′ ← total failures/total simulations

means the optimizer can place the trajectory very close to the ocean floor; the generated
trajectory is smooth with a slight curve to compensate for the ridge. The second example,
Fig. 26b, presents a trajectory generated under more uncertainty in the ocean currents.
For this example, µ = [−5.0, 0,−5.0, 0, 0, 0] and σx = 5.0, σy = 0, σz = 5.0, σψ = 0, σθ = 0,
σφ = 0 (once again, all off-diagonal terms in the covariance matrix were zero). As depicted in
Fig. 26b, this changes the output trajectory considerably. The optimizer produces a solution
where the glider is kept at approximately the same depth until abruptly descending after
passing the ridge. Both Figs. 26a and 26b show the nominal glider trajectory, i.e. they plot
the knot points of the collocation trajectory optimization. As described in Section 8, the
chance constraint is computed via sampling from distributions describing the configuration
states and adding the samples to the collocation decision variables. A plot of these samples
is shown in Fig. 26c. This test case was for 100 samples per collocation knot; for clarity,
only every third sample is shown in the figure.

An essential question for all planners that deal with uncertainty is how well the returned
plan matches the risk bound when executed in the real world. Unfortunately, most real world
systems are prohibitively expensive to risk losing in order to test algorithmic performance.
Therefore, simulation is used with various degrees of precision possible. The results in
this section were generated using Collocation Simulation, Alg. 9. First, a trajectory T is
generated using FFHS or possibly another planner. Second, the trajectory is simulated to
determine whether the trajectory optimizer has produced a plan that meets the risk bound,
ε. The simulation mimics the collocation trajectory optimization in Section 8 by assuming
a nominal configuration state qk exists, sampling from state distribution f , and producing
the configuration state under scenario s, qk,s, Line 6 of Alg. 9. Using qk,s, the agent’s
geometry in the workspace, Wa,k,s, is generated. The fraction of simulations in collision
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(a) The ability to meet the chance constraint in
simulation as a function of α

(b) Comparison of using sampling to approxi-
mate a chance constraint on a CPU vs. a GPU

(c) Error of a CDF-based
chance constraint model
vs. a sampling-based
model in simulation. The
sampling-based model as-
sumed α = 200 and used
800 scenarios.

Figure 27: Numerical results of the sampling-based chance constraint model using colloca-
tion trajectory optimization

provides the simulated trajectory risk, ε′. Algorithm performance is measured by how well
the simulated trajectory risk ε′ matches the desired trajectory risk ε of the ccTPM.

Numerical results are presented in Figs. 27a - 27c. Figure 27a presents the ability of
the sampling-based chance constraint model to approximate the trajectory risk in simu-
lation as a function of the α parameter of Eq. (36). The approximation improves as α
increases, which means the risk of the planned trajectory more closely matches the risk of
the simulated trajectory. A significant advantage of sampling-based methods to approxi-
mate trajectory risk is that they are typically straightforward to parallelize. Collision checks
and the corresponding Jacobian computations can be parallelized across the threads of a
GPU. The improvement is significant as shown in Fig. 27b, which compares the glider ridge
navigation computation on a GPU vs. a CPU. There is a cost to transferring data to the
GPU; instances with few samples per time step perform better on a CPU. However, as the
number of scenarios becomes large, there is a clear advantage to the GPU implementation.
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Algorithm 10: Shooting Method Simulation

Input: A chance-constrained trajectory planning mission,
ccTPM

Output: ε′, the simulated risk of trajectory T
1 T ← FFHS (ccTPM)
2 total failures← 0
3 for s ∈ total simulations do
4 x0,s ← x0

5 for (uk,hk) ∈ T do
6 xk+1,s ← SimulateTrajectory (xk,s,uk,hk)

Wa,k,s ← ComputeBodyLocation (xk+1,s)
7 if InCollision (Wa,k,s) then
8 total failures← total failures+ 1
9 Go to next scenario

10 end

11 end
12 ε′ ← total failures/total simulations

Figure 27c shows the advantage of using a sampling-based chance constraint model ver-
sus a simpler CDF-based model. Both models assume the same nonlinear glider dynamics.
The CDF-based model assumes the glider’s geometry is concentrated at a single point and
the methods of Section 7 used to compute trajectory risk when solving the ccTPM. The
sampling-based model uses the method in Section 8 and specifically 8.4 to model trajectory
risk. Each output trajectory generated using the different chance constraint models is then
simulated using Alg. 9. The error in Fig. 27c is the difference between the ccTPM’s desired
risk level ε and the simulated risk level, ε′. As is shown in the figure, the sampling-based
chance constraint matches the trajectory risk in simulation much better than the CDF-based
model. For all tests, the chance constraint value was ε = 0.20. Typically, the CDF-based
model computed a trajectory with an active chance constraint (i.e. P (Fail) = ε), but the
corresponding simulated trajectory had little risk. The reason is that the CDF-based model
does not account for the agent’s body shape B; without this, it is impossible to accurately
model trajectory risk.

10.5 Shooting Method Monte Carlo with a Dubins Car

To illustrate the SMMC algorithm, a Dubins car model is used. The Dubins car is one of
the simplest possible nonlinear models, which models a car in the xy-plane with steering
angle θ (LaValle, 2006). To illustrate the trajectory planner’s ability to model the risk of
agents with non-trivial geometry, we model the car’s geometry as a rectangle with length
and width dx and dy.

The algorithm was tested with the Dubins car navigating around an obstacle. An
example set of simulations is shown in Figs. 28 and 29. Benchmarks are shown in Figs. 30,
31, and Table 3. The simulation in Fig. 28 shows simulations of Dubins car trajectories
given an initial guess for the decision variables (u,h). As mentioned previously, the initial
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Figure 28: Simulations of trajectories using an initial guess for the control inputs u

Figure 29: Simulations of trajectories using the optimized control inputs

trajectory should be feasible and is, in general, non-trivial to generate. Fig. 29 shows
the resulting set of trajectories with (u,h) optimized via SMMC, which respect the chance
constraint.

A Dubins car benchmark was performed testing the three risk models presented in
this article for their ability to match the chance constraint in simulation. For this test,
trajectories were produced using the respective model: the CDF-based method of Section
7, the collocation with sampling method of Section 8, and SMMC in Section 9. Unlike the
results presented in the previous section that compare sampling-based collocation versus a
CDF-based method (shown in Fig. 27c), these use a different simulation described by Alg.
10. Rather than assume a nominal configuration state qk as in Alg. 9, Alg. 10 forward
integrates the dynamics using the methods of Appendix B.1. The chief difference is Line
6, SimulateTrajectory, which forward integrates the stochastic dynamics one step. Alg.
10 is a more realistic simulation than Alg. 9 because it does not assume the existence of a
nominal state at each step k. Using this form of simulation, Fig. 30 plots the three models’
chance constraint simulation error for trajectories of various length. SMMC is able to best
match the chance constraint in simulation. The collocation with sampling method shows
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Figure 30: Comparison of the three chance constraint models’ ability to approximate the
chance constraint in simulation for the Dubins car

Figure 31: Plot depicting SMMC’s ability to approximate the chance constraint in simula-
tion as a function of the sigmoid’s α parameter

worse performance because it assumes a nominal trajectory and draws Gaussian samples
from this trajectory. Due to the agent’s nonlinear dynamics, the true state distribution
is likely not Gaussian. The CDF-based method performs poorly as it models neither the
agent’s true distribution nor geometry. For these benchmarks, the chance constraint, ε,
was set to 0.15. For the two sampling-based methods, α was set to 5e6 and the number of
scenarios S set to 2500. Uncertainty in the agent’s dynamics, represented by σx, σy, σθ in
Eqs. (97) - (99) was set to 0.1 for all variables.

Fig. 31 shows how increasing the value of α in the sigmoid function improves the
accuracy of SMMC in respecting the chance constraint. As α increases, the sigmoid function
approaches the indicator function that indicates whether a scenario is in collision or not.
This plot was also generated using Shooting Method Simulation, Alg. 10. Finally, Table 3
provides examples of how parallelization speeds up SMMC. The second column shows the
time taken to run SMMC using only a CPU without parallelization. The third column shows
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Number of Scenarios CPU (secs) GPU (secs) Hot Start

100 28.2 16.1 No

137 6.4 2.3 Yes

149 9.3 3.1 Yes

3732 182.2 24.3 Yes

Table 3: Table illustrating the improvement enabled by parallelization of SMMC on a GPU

the algorithm run on the same test cases but using parallelization to simulate trajectories
and determine whether each is in collision. The final column, Hot Start, indicates whether
the optimization was initialized with a solution from a previous optimization. The table
shows that parallelization reduces the algorithm run time with the largest speed up coming
when the number of scenarios is large. The makes sense; when there are a fewer number of
scenarios to simulate, the time spent in the nonlinear optimizer dominates the overall run
time. When there is a large number of scenarios, the time spent simulating each scenario
dominates the run time.

11. Conclusion

In this article we presented an approach to hybrid search that solves the risk-bound mo-
tion planning problem for a richer set of environments, agent dynamics, agent geometries,
and underlying stochastic processes than previously possible. We frame the problem as a
ccTPM, a chance-constrained trajectory planning mission. The ccTPM models an agent
that must accomplish a sequence of goals while constrained to a probability of mission fail-
ure. We solve the problem via hybrid search. There are two components of the hybrid
search, a region planner and a trajectory planner. The job of the region planner is to pro-
duce candidate paths through the environment that achieve a sequence of goals. To achieve
this, we introduce the notion of a landmark region which allows for the construction of an
implicit region graph. A search method is introduced, First Feasible Hybrid Search, which
greedily searches the region graph in order to produce good solutions quickly in complex
environments. The region planner’s paths are passed to a trajectory planner, whose job
is to produce a trajectory that is dynamically feasible, minimizes a cost function, and is
risk-bound. We presented three approaches to modeling trajectory risk, i.e. the chance
constraint of a trajectory. We presented a fast approximation that relies on the availability
of a cumulative distribution function to model the agent’s state distribution. Second, we
developed a sampling-based collocation method that models the risk of collision for agents
with rigid bodies. Third, Shooting Method Monte Carlo models the joint chance constraint
via simulating large numbers of trajectories. Different chance constraint models may be
appropriate for different applications. The computationally simpler CDF-based method is
appropriate for long trajectory missions. Sampling based-methods are important when the
agent’s geometry is relevant to computing risk and SMMC provides a more computationally
intensive method that allows for modeling of non-Gaussian state distributions.
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The benchmarks of hybrid search show its promise against state-of-the-art approaches.
The method is able to handle much more complex environments than past planning ap-
proaches such as a disjunctive linear program, due to its use of a heuristic. The method
also performs well against sampling-based chance-constrained RRT; it performs almost as
quickly as CC-RRT but typically produces paths that are of much higher quality. Shoot-
ing Method Monte Carlo is able to better approximate the true collision risk of agents in
simulation versus other models of trajectory risk.
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Appendix A. Collocation Trajectory Optimization

The next two appendices detail the trajectory optimization used by the trajectory planner.
Appendix A describes the collocation trajectory optimization. Appendix B describes the
shooting method optimization underlying Shooting Method Monte Carlo.

The CDF-based and sampling-based chance constraint models of Sections 7 and 8 both
rely on trajectory optimization via direct collocation. As mentioned in Section 6, colloca-
tion methods involve discretizing trajectories at knot points. Direct collocation means the
objective is minimized directly rather than the necessary conditions of optimality, i.e. an
indirect method. Typically, trajectory optimization via direct collocation requires decision
variables of states x, control inputs u, and (optionally) time steps h. For an overview of
trajectory optimization the reader is referred to (Betts, 2009) and (Kelly, 2017).

An overview of the direct collocation trajectory optimization used in this article is shown
in Fig. 32. Initial guesses for the decision variables are input as well as configuration state
samples used to model the chance constraint (i.e. Zs in Eq. (62)). The trajectory optimiza-
tion proceeds by the SQP solver iterating between function and Jacobian evaluations and
updating the decision variables. While the chance constraint models are described earlier
in the article, the following sections describe the path constraints, the objective function,
and the dynamics constraints.

A.1 Path Constraints

The path passed by the region planner to the trajectory planner is compiled into sets of
constraints. The form of the constraints depends on the region type. In the case of landmark
regions, the waypoint states ω of the agent are constrained to lie on the hyperplane. Recall
from Section 3.1 we assume the agent has a unique set of waypoint states that characterize
its position in the workspace, i.e. ω = (x, y) or ω = (x, y, z). To ensure the waypoint states
at knot Kn are constrained to the landmark region Ln, the waypoint states are transformed
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Figure 32: An overview of the col-
location trajectory optimization
inputs, outputs, and function eval-
uations. The box in red relates
to the sampling-based chance con-
straint described in Section 8. It
can be parallelized on a GPU.

Figure 33: The above three panes illustrate how agents with geometry are integrated into
the region planner’s Ln. The pane on the left depicts the landmark region with a point
robot; the point robot is constrained to lie on the ray at ŵn = 0 and the risk evaluated as a
function of the point’s distance along the axis ŝn as described in Section 7. The middle pane
shows how waypoints are handled for agents with geometry (such as a Dubins car modeled
as a rectangle); only the states (x, y) are relevant to determining whether the agent lies
on the ray Ln. A similar construction holds for 3D workspaces where the waypoint states
are (x, y, z). For this construction, the ŝn axis is no longer required because the risk is
computed via sampling rather than an evaluation of a CDF. This is illustrated in the pane
on the right; samples are generated using the decision variables at the kth collocation knot.
The sampling method is described in Section 8.
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into the coordinate wn using Eq. (8), restated here for clarity:

wn = (ωn − ~on) • ŵn (79)

To constrain the waypoint states to the hyperplane, the constraint is necessary:

wn = 0 (80)

Fig. 33 depicts how point robots and agents with non-trivial body geometry are constrained
to the landmark waypoint.

If the region is not a landmark region but a convex polytope of dimension d forWd, the
waypoint states are constrained to lie within the polytope by considering the planes that
support the polytope’s facets. For example, if the 3D waypoint states ωn = (x, y, z)kn are
constrained to lie inside a polyhedral region, the following set of constraints are used:

ax+ by + cz + d ≥ 0 ∀ hs ∈ HS (81)

where HS is a set of half spaces, the intersection of which describe the polyhedron. Con-
stants a, b, c, d define the plane that bounds half space hs. The normal vector of this half
space points inside the polyhedron. This type of region might represent a “stay in” goal
region.

Finally, it is possible to constrain a set of waypoint states to a single point. This might
be useful to constrain an initial state value. In this case, the constraint is trivial:

ωn=0 = (x, y, z)k=0 = (x, y, z)I (82)

where (x, y, z)I are user-dictated initial state values.

A.2 Objective Function

A wide variety of objective functions are possible including minimizing the distance trav-
eled, minimizing time, or minimizing the control input. A simple objective minimizing the
distance traveled, in the W2 case, is:

J =
K−1∑
k

√
(xk+1 − xk)2 + (yk+1 − yk)2 (83)

with an added z state for the W3 case.

A.3 Dynamic Constraints

Part of the challenge of transcribing the optimal control problem as a nonlinear optimization
problem is transforming the dynamics from continuous time to a finite number of variables
and constraints. This involves approximating the state derivatives ẋ = f (x,u) with a nu-
merical quadrature rule. To do this, there are many possibilities depending on the accuracy
and complexity of the desired approximation. The simplest possible approximation is the
Euler method:

ẋ ≈ xk+1 − xk
hk

= f (xk, uk) (84)
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Because of its simplicity, Euler’s method has been widely used in previous motion planning
under uncertainty and motion planning algorithms (Gonzalez, 2018), (Ono et al., 2013),
(Blackmore et al., 2011). While simple, Euler’s method is order h, which means its error
scales as a function of the time step. This is relatively poor and typically higher order
approximations are used.

For more complex dynamical systems such as the 3D Slocum glider model, this work
relies on the trapezoidal method and Hermite-Simpson method. The trapezoidal method
relies on the trapezoidal rule to integrate the dynamics:

xk+1 − xk ≈
1

2
hk (f (xk+1, uk+1) + f (xk, uk)) (85)

Because both the left and right-hand sides are defined in terms of xk+1 and it is generally
difficult to solve for xk+1 explicitly, the trapezoidal method is implicit. The trapezoidal rule
has error of order h2. In general, reducing hk by a factor of two will reduce the error by a
factor of four. The Hermite-Simpson quadrature rule is slightly more complex:

xk+1 − xk ≈
1

6
hk

(
f (xk+1, uk+1) + 4f

(
xk+ 1

2
, uk+ 1

2

)
+ f (xk, uk)

)
(86)

where the k + 1
2 index indicates that the method requires a knot at the midpoint between

knots k and k + 1. While more complex than trapezoidal collocation, Hermite-Simpson
quadrature has fourth order error, O

(
h4
)

(Betts, 2009).

Appendix B. Shooting Method Trajectory Optimization

Shooting methods are a general approach to trajectory optimization in the deterministic
setting. They contrast with collocation by integrating the equations of motion given a set of
control inputs. The inputs are then updated according to the error between the integrated
trajectory and the desired trajectory. This idea is depicted in Fig. 20 in Section 9. A mul-
tiple shooting method has multiple simulations and defects along a single trajectory. Each
defect measures the amount that a trajectory segment mismatches the following segment.
In general, Jacobian matrices for shooting methods are more complex to generate because
the state at each step k relies on control inputs at time steps 0 to k − 1.

In this appendix, we first discuss how we simulate trajectories subject to additive Gaus-
sian noise. Next, we discuss calculations required for the Jacobian matrix. Finally, we
present our formulations for the objective function and region constraints.

B.1 Simulating Dynamics via a Continuous Time Stochastic Process

The CDF-based risk model in Section 7 assumes risk is only computed at landmark regions;
the sampling-based model of Section 8 samples and computes risk at collocation knots.
Prior work such as (Ono et al., 2013) assumes a discrete time stochastic process. These
models are disadvantageous for a couple of reasons. First, real world dynamical systems
are described by continuous time differential equations. Using a discrete time stochastic
process inherently requires some form of time discretization. Second, many of the numerical
integration routines for nonlinear systems require precise specification of the time step.
Many trajectory optimization routines (such as this article’s collocation method) make the
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Figure 34: Illustration of how trajectories can become more conservative simply by de-
creasing time step size when the stochastic process variance is held constant. The diagram
assumes the probability of failure is evaluated only at trajectory knots (red dots). For the
same variance, trajectory A has fewer waypoints (a larger time step) and therefore fewer
evaluations of path risk. This enables the optimizer to bring it closer to the obstacle while
maintaining the overall chance constraint.

time step h a decision variable that is changed by the optimizer. These issues raise the
question of how to vary the stochastic model as the time step is changed for models that
rely on a discrete time stochastic process. The simplest approach is to assume the stochastic
model has a constant variance, i.e. the variance is not a function of the time step. This
assumption creates the following contradiction: to satisfy the same chance constraint, a
trajectory with a greater number of shorter time steps must be more conservative than a
trajectory with a smaller number of longer time steps. This problem is illustrated in Fig.
34.

To solve these issues, for SMMC we model uncertainty in the agent’s dynamics using
a continuous time stochastic process. This allows us to connect the agent’s continuous
time dynamics with continuous time stochasticity, rather than employing a discrete time
approximation. It also allows us to model how the stochastic process’s variance varies with
the integration time step h.

The continuous time stochastic model used in SMMC is a Wiener process. A Wiener
process (Brownian motion) is a continuous time stochastic process that can be thought of
as the limit of a random walk as the step size becomes small (Kloeden & Platen, 2011).
A Wiener process W is defined by three properties: W0 = 0, W as a function of time t is
continuous with probability 1, and W has independent increments such that Wt+s −Ws ∼
N (0, t) (Brzezniak & Zastawniak, 1999). The Wiener process is useful because it typically
serves as the source of randomness in a stochastic differential equation (SDE). This SDE
can be used to model the uncertain evolution in time of a dynamical system.

The general form of a stochastic differential equation (SDE) written in differential form
is:

dX (t) = f (t,X (t)) +B (t,X (t)) dW (t) (87)

where X is a random variable and dW (t) represents a Wiener process. Variable B represents
a diffusion coefficient. For this work, only diffusion terms are considered where B (t,X (t))
is constant. Eq. (87) is written only symbolically to mean the integral equation (Kloeden
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& Platen, 2011):

Xt = Xt0 +

∫ t

t0

f (s,X (s)) ds+

∫ t

t0

B (s,X (s)) dWs (88)

In general, analytic solutions to Eq. (88) exist only in the simplest cases and numerical
routines must be used. Unfortunately, the same numerical integration procedures used for
deterministic differential equations do not, in general, have analogs for their stochastic coun-
terparts because of the different underlying calculuses. Fortunately, the simplest method,
the Euler method, does have an analog for stochastic differential equations. For SDEs, it is
known as the Euler-Maruyama method (Kloeden & Platen, 2011).

The Euler-Maruyama method approximates Eq. (88) via:

Xk+1 = Xk + hkf (t,Xk) +B∆Wk (89)

where ∆Wk = Wk+1 − Wk, the change in the Brownian motion over the time interval
hk = tk+1 − tk. Variable ∆Wk is a random variable with ∆Wk ∼ N (0, hk). This enables
the original SDE, Eq. (87), to be simulated in the following manner. At each time step, a
normal random variable is sampled with µ = 0 and σ2 = hk. Then the state is propagated
forward using:

Xk+1 = Xk + hkf (t,Xk) +BZ (90)

where Z is the sampled random variable. Eq. (90) is used as the basis for the numerical
simulation of the dynamics in the shooting method trajectory optimization.

We provide the Dubins car as an example, which is used to benchmark Shooting Method
Monte Carlo in Section 10.5. Its equations of motion are:

ẋ = cos (θ) (91)

ẏ = sin (θ) (92)

θ̇ =uθ (93)

The stochastic differential equations for the Dubins car are:

dXt = cos (θ) + σxdWt (94)

dYt = sin (θ) + σydWt (95)

dΘt = uθ + σθdWt (96)

The equations are discretized using Eq. (90):

Xk+1 = Xk + hk cos (Θk) + σxZx (97)

Yk+1 = Yk + hk sin (Θk) + σyZy (98)

Θk+1 = Θk + uθ + σθZθ (99)

where Zx, Zy, and Zθ are samples drawn from a normal distribution with µ = 0 and
σ2 = hk. Eqs. (97) - (99) along with samples Zx, Zy, and Zθ are used in the function
SimulateTrajectory, Line 4 of Alg. 8.
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B.2 Formulation of the SMMC Mathematical Program

We illustrate how the objective and region constraints are formulated for SMMC. We first
describe how the Jacobian matrix is calculated because it is used to derive Jacobians for the
objective and region constraints. We derive equations for the 2D case; it is straightforward
to extend them for 3D workspaces. Many of the calculations, particularly deriving the
Jacobians, follow directly from the shooting method for deterministic systems.

B.2.1 Computing the SMMC Jacobian Matrix

The Jacobian matrix is more complex to compute than in the collocation case because of
the need to account for the effect of control inputs from time t0 to tK on state xk,s. The
Jacobian requires computing the derivative of the objective and constraint functions with
respect to the decision variables, i.e. the control inputs and time steps:

J (u,h) =



∂J
∂u0,0

∂J
∂u1,0

. . . ∂J
∂hK

∂C0
∂u0,0

∂C0
∂u1,0

. . . ∂C0
∂hK

...
...

...
...

∂CI
∂u0,0

∂CI
∂u1,0

. . . ∂CI
∂hK


(100)

where J is the objective and Ci is the ith constraint. Because the states x are no longer
decision variables but are determined through simulation, they are functions of u and h, i.e.
xk,s (u0:k−1,h0:k−1). This means the value of constraint i at time step k, Ci,k, is possibly
dependent on control inputs at all prior time steps. Fortunately, the Jacobian computation
may be simplified by propagating certain gradients forward in time. Suppose we want to

compute
∂Ci,k′
∂up,k

, the change in constraint Ci,k′ due to a change in control input up,k where

k′ > k. The gradient
∂Ci,k′
∂up,k

may be simplified using the chain rule of differentiation as:

∂Ci,k′

∂up,k
=

S∑
s

M∑
m

∂Ci,k′

∂xm,k′,s

∂xm,k′,s
∂up,k

+

P∑
p

∂Ci,k′

∂up,k′−1
(101)

The first term in the first sum on the right-hand side,
∂Ci,k′
∂xm,k′,s

, denotes the change in the

constraint due to the change in the state at k′ for scenario s. Its precise form depends on
the constraint Ci,k′ and is covered in the following sections. The second term in the first
sum represents the change in the state value xm,k′,s due to the change in control input up,k
where k′ > k. In the case k′ − 1 = k, xm,k′,s may be an explicit function of up,k and the
derivative is straightforward to compute using the dynamics. In the case k′− 1 > k, xm,k′,s
is not an explicit function of up,k, and it is necessary to compute this using the chain rule.
Namely,

∂xm′,k′,s
∂up,k

=

M∑
m

∂xm′,k′,s
∂xm,k′−1,s

∂xm,k′−1,s

∂up,k
, k′ − 1 > k (102)
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Note the recursive nature of Eq. (102). The RHS computes
∂xm′,k′,s
∂up,k

in terms of xm,k′−1,s

while
∂xm′,k′,s
∂xm,k′−1,s

can be computed from the dynamics. This suggests an approach for comput-

ing the gradients over the entire time horizon by maintaining terms
∂xm′,k′,s
∂up,k

. Specifically,

the dynamics equations are used to compute the initial terms:

∂xm,1,s
∂up,0

∀ m, p, s (103)

Subsequently, these terms are used to compute
∂xm,2,s

∂up,0
using (102). This approach can

be used to compute any
∂xm,k′,s
∂up,k

for k′ > k. As an example of this computation, consider

the Dubins car dynamics using an Euler-Maruyama integration scheme as described in Eqs.
(97) - (99):

Xk+1 =Xk + hk cos (Θk) + σx
√
hkZ (104)

Yk+1 =Yk + hk sin (Θk) + σy
√
hkZ (105)

Θk+1 =Θk + uθ + σθ
√
hkZ (106)

Eqs. (104) - (106) are equivalent to Eqs. (97) - (99) except Z is sampled from a standard
normal distribution, i.e. Z ∼ N (0, 1). The partial derivatives of the states with respect to
the decision variables are straightforward to compute:

∂Xk+1

∂hk
= cos (Θk) +

σxZ

2
√
hk

(107)

∂Yk+1

∂hk
= sin (Θk) +

σyZ

2
√
hk

(108)

∂Θk+1

∂hk
=
σθZ

2
√
hk

(109)

∂Θk+1

∂uθ
=1 (110)

These gradients can then be used with Eq. (102) to compute the general
∂xm′,k′,s
∂up,k

.

Computation of the objective Jacobian proceeds similarly. Rather than compute the
Jacobian for each of I constraints, there is only one objective. Eq. (101) may be rewritten
as:

∂J

∂up,k
=

S∑
s

M∑
m

∂J

∂xm,k′,s

∂xm,k′,s
∂up,k

+
P∑
p

∂J

∂up,k′−1
(111)

The method of computing gradients and propagating them forward is shown in Alg. 11.

B.2.2 Objective

Similar to the collocation case in Appendix Section A.2, the Euclidean distance may be
used as an objective function. In terms of states (x, y), this is:

J (x) =
K−1∑
k=0

√
(xk+1 − xk)2 + (yk+1 − yk)2 (112)
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Algorithm 11: Method for computing the Jacobian matrix J,
Eq. (100), by propagating the gradients forward. K is a list

containing all transition gradients,
∂xm,k

∂up,k′
for k > k′.

Input: A set of I dynamics equations describing the evolution of
the system state.

Output: The Jacobian matrix, J
1 for s← 1 to S do
2 for k ← 1 to K do
3 for xm ∈ xs, up ∈ u do

4 Compute
∂xm,k,s

∂up,k−1
using Eq.(102) and store in K

5 end
6 for k′ ← 1 to k do
7 for ik ← 1 to Ik do

8
∂Cik,k

∂up,k′
← ∂Cik,k

∂up,k′
+
∑M

m
∂Ci,k

∂xm,k−1,s

∂xm,k−1,s

∂up,k′

9 end

10 end

11 end

12 end

For the shooting method, the dependence on the control inputs may be made explicit,
because each (xk, yk) state is computed as the result of a simulation dependent on u0:k−1:

J (u) =
K−1∑
k=0

√
(xk+1 (u0:k)− xk (u0:k−1))2 + (yk+1 (u0:k)− yk (u0:k−1))2 (113)

An advantage of SMMC is that the expected cost is straightforward to compute after
performing the trajectory simulations. The expected cost is approximated by summing over
all scenarios, from Eq. (71):

Ef̂ [J (u)] =
1

S

S∑
s

K−1∑
k=0

√
(xk+1,s − xk,s)2 + (yk+1,s − yk,s)2 (114)

B.2.3 Objective Jacobian

Computing the Jacobian matrix requires the approach outlined in subsection B.2.1. What
remains is to compute ∂J

∂xm,k′
, the derivative of the objective with respect to the states. Given

the objective in (114), there are four derivatives that must be computed: the derivative of
the objective with respect to xk+1, xk, yk+1, and yk:

∂J

∂xk+1,s
=

xk+1,s√
(xk+1,s − xk,s)2 + (yk+1,s − yk,s)2

(115)

∂J

∂xk,s
=

−xk,s√
(xk+1,s − xk,s)2 + (yk+1,s − yk,s)2

(116)
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∂J

∂yk+1,s
=

yk+1,s√
(xk+1,s − xk,s)2 + (yk+1,s − yk,s)2

(117)

∂J

∂yk,s
=

−yk,s√
(xk+1,s − xk,s)2 + (yk+1,s − yk,s)2

(118)

These equations are used along with Eq. (111) to compute the objective gradients.

B.2.4 Region Constraints

Similar to the collocation method, SMMC receives as input a sequence of regions, which
is compiled into constraints on the waypoint states. As mentioned in the introduction to
SMMC, unlike the collocation method, there is not a deterministic set of knot points or a
nominal trajectory that can be constrained to lie on or in each region. Rather than constrain
the waypoint state to lie on a region, the expected value of the waypoint state is required to
lie in or on the region. For example, a landmark region constraint is written as Ef̂ [wn] = 0.

In terms of the waypoint states ωn,s = (x, y)kn,s, the constraint can be written:

Ef̂ [wn] ≈ 1

S

S∑
s

(ωn,s (u,h)− ~on) • ~wn = 0 (119)

Recall that ~on and ~wn are functions of the landmark region’s geometry; ωn,s is dependent
on the simulated trajectory. The gradients are straightforward to compute:

∂wn
∂xk=n,s

=~wn,x (120)

∂wn
∂yk=n,s

=~wn,y (121)

These equations can be substituted in Eq. (101) for term
∂Ci,k′
∂xm,k′,s

to compute the full

gradients.

Appendix C. Completeness and Termination of First Feasible Hybrid
Search

We discuss termination and completeness of FFHS. Recall that we assume the environment
consists of a set of closed continuous polytope obtacles E. The obstacles are without holes
or self-intersections.

C.1 Termination

We show termination of FFHS by considering the following cases: a feasible problem fails
to terminate in the region planner, an infeasible problem fails to terminate in the region
planner, and the trajectory planner’s failure causes FFHS to fail to terminate. First, we
state a number of lemmas.
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Figure 35: Geometry illustrating the width of the Polytope to Goal required for guaranteed
termination. Similar geometry holds for a tetrahedron PtG in 3D.

Lemma C.1. Given two obstacle surfaces E1 and E2 with closest points to the goal Pt1,closest
and Pt2,closest where the distance from Pt2,closest to the goal is less than the distance from
Pt1,closest to the goal, a simplex Polytope to the Goal (PtG) shot from Pt2,closest will not
return E1 as the closest collision if its base is less than 2

√
3 times its height.

Proof. Consider the 2D geometry depicted in Fig. 35. Given two closed polytope obstacle
surfaces, E1 and E2, each with closest points to the goal Pt1,closest and Pt2,closest where
the distance from Pt2,closest to the goal, d2, is less than d1. In the figure, a PtG shown
in gray is directed from Pt2,closest to the goal. We assume the PtG is a simplex, i.e.
triangle in 2D and tetrahedron in 3D. The red dashed semicircle indicates the region within
distance d2 to Pt2,closest. The blue dotted semicircle indicates points within distance d2

to G. Pt1,closest must be outside of the blue semicircle because d2 < d1. Line 6 of Alg.
3, CollisionChecker, returns the closest collision to Pt2,closest. The subroutine will return
Pt1,closest if it is intersected by the PtG and if Pt1,closest is closer to Pt2,closest than G. This
is not possible if the PtG remains within the intersection of the red and blue semicircles
as pictured in Fig. 35, i.e. the PtG’s width is less than

√
3d2 at the intersection of the

semicircles. If the triangular PtG’s width is less than 2
√

3 its height, the closest collision
to Ptclosest,2 is guaranteed to be G.

Lemma C.2. Given a landmark region Ltwice that repeatedly causes path loops and triggers
calls to AvoidPathLoop; the algorithm will eventually reach a state when all executions of
AvoidPathLoop due to Ltwice return PLtwice:Lclosest or, in the case of infeasibility, failure.

Proof. Lemma C.2 follows from the fact that AvoidPathLoop maintains a visited list of
landmark regions added to its queue. Given landmark region Ltwice, which triggers a call
to AvoidPathLoop and is incident to obstacle surface E , and the set of all L also incident
to E , the visited list Lvisited ensures that each L ∈ E will be popped from priority queue
PriorityQueueL at most once as the final landmark region on a path. Therefore, there are
a finite number of calls to AvoidPathLoop due to Ltwice until PriorityQueueL is empty.
After this, PLtwice:Lclosest will always be returned if AvoidPathLoop does not fail on Line
8. That AvoidPathLoop will eventually find the closest point on E to the goal, Ptclosest,
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follows from continuity of the polytope and that all L incident to E will eventually be
enumerated.

Definition C.3. If AvoidPathLoop has popped all landmark regions sharing surface E
with Ltwice and returns PLtwice:Lclosest , landmark region Ltwice is said to be explored.

Lemma C.4. Given the set of polytope obstacle surfaces E intersected by a line drawn
from I to G, if it does not first fail nor find the goal, FFHS will eventually find the closest
point on each surface E ∈ E to the goal.

Proof. This follows from Lemmas C.1 and C.2. By induction, assume that there is exactly
one surface E1 intersected by a line from I to G . Lemma C.2 shows that, if FFHS does not
first find the goal, AvoidPathLoop will eventually find Pt1,closest. For the inductive step,
assume Lemma C.4 holds for n surfaces and that an n+ 1th surface is inserted between
the closest point to the goal on the nth surface and the goal. Lemma C.1 shows that a
PtG satisfying certain geometric constraints will intersect the n+ 1th surface as the closest
collision. Lemma C.2 implies that AvoidPathLoop will eventually find the closest point on
this surface if it does not first terminate.

C.1.1 Termination of the Region Planner for Feasible Problems

In the case of feasible problems with a PtG that satisfies the conditions of Lemma C.1,
the only way that the region planner would fail to terminate and return a candidate path
to the trajectory planner is if there were a sequence of explored landmark regions L, each
incident to different obstacles surfaces E, that generated a loop. We use induction to show
this is impossible. Assume the environment consists of two closed polytope surfaces E1 and
E2 with E2 closest to the goal, i.e. d2 < d1. Assume the algorithm has reached a state
where L1 incident to E1 and L2 incident to E2 are both explored landmark regions. Assume
a PtG from Ptclosest,1 intersects L2, which triggers a call to AvoidPathLoop and returns
PL2:Lclosest , because L2 is explored. The algorithm would not terminate if a PtG directed
from Ptclosest,2 to the goal potentially intersected L1 as the closest collision. However,
Lemma C.1 shows that for a PtG less than a certain width, this is impossible. A similar
argument is used for the inductive step. Assume the environment consists of n surfaces
for which the algorithm terminates. Assume an n+ 1th surface is added which has a point
Ptclosest,n+1 closer to G than any other Ptclosest,n. A PtG shot from Ptclosest,n+1 will not
return as its closest intersection any of the surfaces in En by Lemma C.1. This means that
no loop will form between any of the explored landmark regions. Hence, the algorithm will
terminate.

Due to Lemma C.1, termination is only guaranteed for PtG’s less than a certain width.
Because the PtG is a heuristic that seeks to approximate the agent’s state distribution, it
is possible to reduce its size to meet the geometric constraint in Lemma C.1. However,
systems that exceed this bound suggest very high levels of trajectory uncertainty that may
make planning unrealistic.

C.1.2 Termination of the Region Planner for Infeasible Problems

Let a separating surface be a polytope surface that divides the workspace with I on one
side of this surface and G on the other. Let Eseparating be the first separating surface that
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a line from I to G encounters. FFHS will fail on the closest point of this surface to the
goal. That the algorithm will find the closest point follows from Lemma C.4. To terminate,
AvoidPathLoop checks the sign of the dot product between the surface normal at this point
and a vector from this point to the goal, Line 7 of Alg. 4. For a separating surface, this dot
product will be negative because the closest point on Eseparating will not be visible from the
goal.

C.1.3 Termination in Cases of Trajectory Planner Failure

If the deterministic problem is feasible but the stochastic problem is infeasible such that the
trajectory planner fails, termination depends on the chance constraint model. If the trajec-
tory is validated post-optimization, a check is made in ValidateTrajectory to determine if
the pair of landmark regions (Ln,Ln+1) surrounding infeasible trajectory states (xk,xk+1)
has previously caused an infeasibility, Line 4 of Alg. 7. If so, the algorithm returns fail-
ure. For sampling-based chance constraints, which do not rely on V alidateTrajectory, a
check should be performed if the same path has been optimized twice. While this check
can be complex, trajectory optimization via sampling-based chance constraints typically
dominates the algorithm’s runtime compared to the region planner. In both of these cases,
the algorithm is guaranteed to terminate.

C.2 Completeness

We prove completeness of FFHS for the deterministic case and a point robot. We avoid
the stochastic case because trajectory feasibility is dependent on assumptions regarding
stochasticity. In the deterministic case, the PtG in Alg. 3 collapses to a line; Lemma C.1
always holds. We assume the point robot may travel infinitesimally close to the obstacle
surface. Waypoint states ω constrained to lie in landmark region L may be also be placed
infinitesimally close to the subfacet incident to L, e.g. in 2D they lie infinitesimally close
to the obstacle vertex supporting L. In 3D, we assume ω lie at the point on L closest to G.
For the discussion of completeness, we assume the trajectory planner will always succeed
and V alidateTrajectory return true if the subroutine receives an obstacle-free path.

In this simplified case, completeness follows from Lemma C.4 and the fact that, for
feasible problems, FFHS will eventually find the closest point on each surface that intersects
a line drawn from I to G if it does not first find the goal. FFHS would only fail prematurely
if there were a surface between I and G where the closest point on this surface was not
visible to the goal, i.e. a separating surface between I and G. However, we have assumed the
deterministic problem is feasible so there can be no such surface. It is then straightforward
to show that if FFHS finds the closest point to the goal on each of these surfaces, it will
find the goal via a PtG satisfying Lemma C.1.

Appendix D. Computing Wint for Non-Convex Obstacles

In this appendix, we describe a technique that allows approximation of Wint for 3D en-
vironments with non-convex obstacles. It is possible to transform arbitrary obstacles into
a set of convex obstacles; however, the process of finding a good convexification is a hard
problem (Deits & Tedrake, 2015). A popular technique is to transform environments into
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Figure 36: Illustration of the method to compute an approximation of the intersecting
region Wint for non-convex obstacles and a convex agent Wa. The key is to approximate
the obstacle surface (outlined in red) that lies inside the agent with a plane, PL. How this
plane is constructed depends on the geometry; in the image, a set of obstacle vertices V
(shown in green) lie inside Wa. The vertices’ positions and outward normals are averaged
together to generate PL; the normal of PL creates the halfspace HSPL. The intersecting
volume W ′int is computed as the intersection of halfspace HSPL with Wa.

collections of cuboids or voxels (Jetchev & Toussaint, 2010); however, a priori insight is
required to properly size the cuboids. We propose a different approach to approximate
Wint for convex Wa but possibly non-convex Wobs. The insight is that Wint does not need
to be precisely computed. Instead, we compute a proxy for Wint, denote this as W ′int, that
has the following properties. First, W ′int = 0 if the sample agent configuration is not in
intersection and Wint′ > 0 if it is. Second, W ′int should increase as the agent and obstacles
become more in collision and should decrease as they become less in collision. These crite-
ria suggest the following approach to modeling W ′int. Rather than compute the polyhedron
Wint via clipping Wa with possibly non-convex Wobs, the facets of Wobs lying inside Wa

are approximated via a plane PL. The intersection of convex Wa with PL is convex and
its volume can be computed via a standard clipping algorithm. The method is illustrated
graphically in Fig. 36.

Specifically,Wa is the convex polyhedron describing the region of the workspace occupied
by the agent with rigid body B that is in intersection with the possibly non-convex obstacle
polyhedron Wobs. Let F be the triangular facets of Wobs which lie inside Wa at least at
one point. In order to specify the plane PL, we must specify a point in the plane and its
normal vector. There are three cases to consider.

1. At least one vertex V of F lies inside Wa. If this is the case, all vertices lying inside
Wa are enumerated. Given this set of vertices V , the approximating plane PL is
generated by averaging the position and inward pointing normal vectors of V .

2. No vertices of F lie inside Wa but the edge of at least one facet in F does. Let the
set of all edges of F that lie in Wa be E. Define a new line segment E′ which is
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created by averaging each endpoint of the edges in E. E′ is guaranteed to intersect
Wa. A point on E′ defines a point on PL. The normal vector of PL is generated by
averaging the inward pointing normal vectors of the facets adjacent to edges in E;
this attempts to approximate the surface of Wobs.

3. Finally, neither vertices nor edges of F lie in Wa. If this is the case, F must be of
cardinality 1; subsequently, the plane that supports this facet is used as PL.

The normal vector of PL (pointing inside the obstacle surface) defines a halfspace with
which W ′int can be computed via a clipping algorithm. Specifically, W ′int = Wa ∩ HSPL
where HSPL is the halfspace defined by PL. This region, W ′int, can then be used in Eq.
(31) to approximate the chance constraint.
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Prékopa, A. (1995). Stochastic Programming. Kluwer Academic Publishers Group, Dor-
drecht; Norwell, MA.

Rudnick, D. L., Davis, R. E., Eriksen, C. C., Fratantoni, D. M., & Perry, M. J. (2004).
Underwater gliders for ocean research. In Marine Technology Society Journal, pp.
48–59.

Santos, F. (2012). Diameter of polytopes and the Hirsch conjecture. https://www3.math.
tu-berlin.de/combi/MDS/summerschool12-material/santos_1.pdf.

Sucan, Ioan A. and Kavraki, Lydia E. (2010). Kinodynamic Motion Planning by Interior-
Exterior Cell Exploration. Springer Berlin Heidelberg.

Triantafyllou, M. (2004). Kinematics of moving frames. https://ocw.mit.edu/courses/

mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-

underwater-vehicles-13-49-fall-2004/lecture-notes/lec1.pdf.

van den Berg, J., Abbeel, P., & Goldberg, K. Y. (2011). LQG-MP: Optimized path planning
for robots with motion uncertainty and imperfect state information. International
Journal of Robotics Research, 30 (7), 895–913.

Vasile, C. I., & Belta, C. (2014). Reactive sampling-based temporal logic path planning.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.
4310–4315.

Vatti, B. R. (1992). A generic solution to polygon clipping. Commun. ACM, 35 (7), 56–63.

Weisstein, E. W. (2018). Bivariate normal distribution. From MathWorld—A Wolfram Web
Resource. http://mathworld.wolfram.com/BivariateNormalDistribution.html.

80



Motion Planning Under Uncertainty with Complex Agents and Environments

Ziegler, J., & Stiller, C. (2009). Spatiotemporal state lattices for fast trajectory planning in
dynamic on-road driving scenarios. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1879–1884.

81


