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Abstract

In this work, we study the metric distortion problem in voting theory under a limited
amount of ordinal information. Our primary contribution is threefold. First, we consider
mechanisms that perform a sequence of pairwise comparisons between candidates. We show
that a popular deterministic mechanism employed in many knockout phases yields distor-
tion O(logm) while eliciting only m − 1 out of the Θ(m2) possible pairwise comparisons,
where m represents the number of candidates. Our analysis for this mechanism leverages
a powerful technical lemma developed by Kempe (AAAI ‘20). We also provide a matching
lower bound on its distortion. In contrast, we prove that any mechanism which performs
fewer than m−1 pairwise comparisons is destined to have unbounded distortion. Moreover,
we study the power of deterministic mechanisms under incomplete rankings. Most notably,
when agents provide their k-top preferences we show an upper bound of 6m/k + 1 on the
distortion, for any k ∈ {1, 2, . . . ,m}. Thus, we substantially improve over the previous
bound of 12m/k established by Kempe (AAAI ‘20), and we come closer to matching the
best-known lower bound. Finally, we are concerned with the sample complexity required
to ensure near-optimal distortion with high probability. Our main contribution is to show
that a random sample of Θ(m/ϵ2) voters suffices to guarantee distortion 3 + ϵ with high
probability, for any sufficiently small ϵ > 0. This result is based on analyzing the sensitivity
of the deterministic mechanism introduced by Gkatzelis, Halpern, and Shah (FOCS ‘20).
Importantly, all of our sample-complexity bounds are distribution-independent.

From an experimental standpoint, we present several empirical findings on real-life
voting applications, comparing the scoring systems employed in practice with a mechanism
explicitly minimizing (metric) distortion. Interestingly, for our case studies, we find that the
winner in the actual competition is typically the candidate who minimizes the distortion.

1. Introduction

Aggregating the preferences of individuals into a collective decision lies at the heart of social
choice, and has recently found numerous applications in areas such as information retrieval,
recommender systems, and machine learning (Volkovs & Zemel, 2014; Volkovs et al., 2012;
Beliakov et al., 2011; Fürnkranz & Hüllermeier, 2010; Legrand & Nicoloyannis, 2005). The
classic theory of von Neumann & Morgenstern (1944) postulates that individual preferences
are captured through a utility function, assigning numerical (or cardinal) values to each
alternative. Yet, in voting theory, as well as in most practical applications, mechanisms
typically elicit only ordinal information from the voters, indicating an order of preferences
over the candidates. Although this might seem at odds with a utilitarian representation,
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it has been recognized that it might be hard for a voter to specify a precise numerical
value for an alternative, and providing only ordinal information substantially reduces the
cognitive burden. This begs the question: What is the loss in efficiency of a mechanism
extracting only ordinal information with respect to the utilitarian social welfare, i.e., the
sum of individual utilities over a chosen candidate? The framework of distortion, introduced
by Procaccia & Rosenschein (2006), measures exactly this loss from an approximation-
algorithms standpoint, and has received considerable attention in recent years.

As it turns out, the approximation guarantees we can hope for crucially depend on
the assumptions we make on the utility functions. For example, in the absence of any
structure Procaccia & Rosenschein (2006) observed that no ordinal deterministic mechanism
can obtain bounded distortion. In this work, we focus on the metric distortion framework,
introduced by Anshelevich et al. (2015), wherein voters and candidates are thought of as
points in some arbitrary metric space; this is akin to models in spatial voting theory (Cho
& Endersby, 2003). In this context, the voters’ preferences are measured by means of their
“proximity” from each candidate, and the goal is to output a candidate who (approximately)
minimizes the social cost, i.e., the total distance to the voters. A rather simplistic view
of this framework manifests itself when agents and candidates are embedded into a one-
dimensional line, and their locations indicate whether they are “left” or “right” on the
political spectrum. However, the metric distortion framework has a far greater reach since
no assumptions whatsoever are made for the underlying metric space.

Importantly, this paradigm offers a compelling way to quantitatively compare different
voting rules commonly employed in practice (Skowron & Elkind, 2017; Kempe, 2020a; Goel
et al., 2017; Anshelevich et al., 2015), while it also serves as a benchmark for designing
new mechanisms in search of better distortion bounds (Gkatzelis et al., 2020; Munagala
& Wang, 2019). A common assumption made in this line of work is that the algorithm
has access to the entire total orders of the voters. However, there are many practical
scenarios in which it might be desirable to truncate the ordinal information elicited by
the mechanism. For example, requesting only the top preferences could further relieve the
cognitive burden since it might be hard for a voter to compare alternatives which lie on
the bottom of her preferences’ list (for additional motivation for considering incomplete or
partial orderings we refer to the works of Fotakis et al. (2021); Chen et al. (2013); Benferhat
et al. (2004), and references therein), while any truncation in the elicited information would
also translate to more efficient communication. These reasons have driven several authors
to study the decay of distortion under missing information (Kempe, 2020b; Anshelevich &
Postl, 2016; Gross et al., 2017; Fain et al., 2019; Borodin et al., 2022), potentially allowing
some randomization (see our related work subsection). In this work, we follow that line of
research, offering several new insights and improved bounds over prior results.

1.1 Contributions and Techniques

First, we study voting rules which perform a sequence of pairwise comparisons between
two candidates, with the result of each comparison being determined by the majority rule
over the entire population of voters. This class includes many common mechanisms such
as Copeland’s rule (Saari & Merlin, 1996) or the minimax scheme of Levin & Nalebuff
(1995), and has received considerable attention in the literature of social choice; cf., see the
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discussion of Lang et al. (2007), and references therein. Within the framework of (metric)
distortion, the following fundamental question arises:

How many pairwise comparisons between two candidates are needed to
guarantee non-trivial bounds on the distortion?

For example, Copeland’s rule (and most of the common voting rules within this class)
elicits all possible pairwise comparisons, i.e.

(
m
2

)
= Θ(m2), and guarantees distortion at

most 5 (Anshelevich et al., 2015). Thus, it is natural to ask whether we can substantially
truncate the number of elicited pairwise comparisons without sacrificing too much the ef-
ficiency of the mechanism. We stress that we allow the queries to be dynamically adapted
during the execution of the algorithm. In this context, we provide the following strong
positive result:

Theorem 1.1. There exists a deterministic mechanism that elicits only m − 1 pairwise
comparisons and guarantees distortion O(logm).

The corresponding mechanism is particularly simple and natural: In every round we
arbitrarily pair the remaining candidates and we only extract the corresponding compar-
isons. Next, we eliminate all the candidates who “lost” and we continue recursively until
a single candidate emerges victorious. Interestingly, this mechanism is widely employed
in practical applications, for example in the knockout phases of many competitions, with
the difference that typically some “prior” is used in order to construct the pairings. The
main technical ingredient of the analysis is a powerful lemma developed by Kempe via an
LP duality argument (Kempe, 2020a). Specifically, Kempe characterized the social cost
ratio between two candidates when there exists a sequence of intermediate alternatives such
that every candidate in the chain pairwise-defeats the next one. We also supplement our
analysis for this mechanism with a matching lower bound on a carefully constructed in-
stance (Proposition 3.6). Moreover, we show that any mechanism which performs (strictly)
fewer than m − 1 pairwise comparisons has unbounded distortion (Proposition 3.1). This
limitation applies even if we allow randomization either during the elicitation or the winner
determination phase. Indeed, there are instances for which only a single alternative can
yield bounded distortion, but the mechanism simply does not have enough information to
identify the “right” candidate.

Next, we study deterministic mechanisms which only receive an incomplete order of
preferences from every voter, instead of the entire rankings. This setting has already received
attention in the literature, most notably by Kempe (2020b), and has numerous applications
in real-life voting systems. Arguably the most important such consideration arises when
every voter provides her k-top preferences, for some parameter k ∈ [m]. Kempe (2020b)
showed that there exists a deterministic mechanism which elicits only the k-top preferences
and whose distortion is upper-bounded by 79m/k; using a powerful tool developed in Kempe
(2020a) this bound can be improved all the way down to 12m/k. However, this still leaves
a substantial gap with respect to the best-known lower bound, which is 2m/k if we ignore
some additive constant factors. Thus, Kempe (2020b) left as an open question whether the
aforementioned upper bound can be improved. In our work, we make substantial progress
towards bridging this gap, proving the following:
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Theorem 1.2. There exists a deterministic mechanism that only elicits the k-top prefer-
ences and yields distortion at most 6m/k + 1.

We should stress that the constant factors are of particular importance in this framework;
indeed, closing the gap even for the special case of k = m has received intense scrutiny in
recent years (Anshelevich et al., 2015; Munagala & Wang, 2019; Kempe, 2020a; Gkatzelis
et al., 2020). From a technical standpoint, the main technique for proving such upper
bounds consists of identifying a candidate for which there exists a path to any other node
such that every candidate in the path pairwise-defeats the next one by a sufficiently large
margin (which depends on k). Importantly, the derived upper bound crucially depends on
the length of the path. Our main technical contribution is to show that there always exists a
path of length 2 with the aforedescribed property, while the previous best result by Kempe
established the claim only for paths of length 3.

Although our approach can potentially bring further improvements, closing the gap
inevitably requires different techniques. In particular, a promising direction appears to
stem from extending some of the claims established by Gkatzelis et al. (2020). Indeed, we
observe that a natural generalization of their main technical ingredient would lower the
upper bound to 4m/k − 1 (Proposition 4.7), which appears to be optimal when k is close
to m. More precisely, Gkatzelis et al. (2020) proved that a certain graph always has a
perfect matching when the entire rankings are available; we conjecture that under k-top
preferences there always exists a perfect matching for a subset of a k/m fraction of the
voters (see Conjecture 4.6 for a more precise statement).

We also provide some other important bounds for deterministic mechanisms under miss-
ing information. Most notably, if the voting rule performs well on an arbitrary (potentially
adversarially selected) subset of the voters can we quantify its distortion over the entire
population? We answer this question with a sharp upper bound in Theorem 4.3. In fact,
we use this result as a tool for some of our other proofs, but nonetheless we consider it to be
of independent interest. It should be noted that even in the realm of partial or incomplete
rankings there exists an instance-optimal mechanism via linear programming; this was first
observed by Goel et al. (2017) when the total orders are available, but it directly extends
in more general settings. Interestingly, we show that the recently introduced mechanism of
Gkatzelis et al. (2020) which always obtains distortion at most 3 can be substantially outper-
formed by the LP mechanism. Namely, for some instances the mechanism of Gkatzelis et al.
(2020) yields distortion almost 3, while the instance-optimal mechanism yields distortion
close to 1.

Finally, we consider mechanisms which receive information from only a “small” random
sample of voters; that is, we are concerned with the sample complexity required to ensure
efficiency, which boils down to the following fundamental question:

How large should the size of the sample be in order to guarantee near-optimal
distortion with high probability?

More precisely, we are interested in deriving sample-complexity bounds which are inde-
pendent of the number of voters n. This endeavor is particularly motivated given that in
most applications n ≫ m. Naturally, sampling approximations are particularly standard in
the literature of social choice. Indeed, in many scenarios one wishes to predict the outcome
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of an election based on a small sample (e.g. in polls or exit polls), while in many other
applications it is considered even infeasible to elicit the entire input (e.g. in online surveys).
In this context, we will be content with obtaining near-optimal distortion with high proba-
bility (e.g. 99%). This immediately deviates from the line of research studying randomized
mechanisms wherein it suffices to obtain a guarantee in expectation; cf., see Anshelevich
& Postl (2016). We point out that it has been well-understood that a guarantee only in
expectation might be insufficient in many cases; for example, Fain et al. (2019) considered
as the objective the squared distortion as a proxy in order to limit as much as possible
the variance in the distortion. In fact, Fain et al. (2019) are also concerned with sample
complexity issues, but from a very different standpoint.

We stress that we only allow randomization during the preference elicitation phase;
for a given random sample, which corresponds to the entire rankings of the voters, the
mechanisms we consider act deterministically. Specifically, we analyze two main voting
rules along this vein.

Theorem 1.3 (Approximate Copeland). For any sufficiently small ϵ > 0 there exists a
mechanism that takes a sample of size Θ(log(m)/ϵ2) voters and yields distortion at most
5 + ϵ with probability 0.99.

The techniques required for the proof of this theorem are fairly standard. More im-
portantly, we analyze the sample complexity of PluralityMatching, the mechanism
of Gkatzelis et al. (2020) which recovers the optimal distortion bound of 3 (among deter-
ministic mechanisms). In this context, we establish the following result:

Theorem 1.4 (Approximate PluralityMatching). For any sufficiently small ϵ > 0
there exists a mechanism that takes a sample of size Θ(m/ϵ2) voters and yields distortion
at most 3 + ϵ with probability 0.99.

More precisely, the main ingredient of PluralityMatching is a maximum-matching
subroutine for a certain bipartite graph. Our first observation is that the size of the maxi-
mum matching can be determined through a much smaller graph which satisfies a “propor-
tionality” condition with respect to a maximum-matching decomposition. Although this
condition cannot be explicitly met since the algorithm is agnostic to the decomposition, our
observation is that sampling (with sufficiently many samples) will approximately satisfy
this requirement, eventually leading to the desired conclusion.

We stress that we do not guarantee that the winner in our sample will coincide with
that over the entire population. In fact, the sample complexity bounds for the winner
determination problem—for virtually every reasonable voting rule—depend on the margin
of victory; see the work of Dey & Bhattacharyya (2015). However, we argue that this feature
is undesirable. For one thing, the algorithm does not have any prior information on the
margin, and hence it is unclear how to tune this parameter in practice. More importantly,
in many scenarios the margin might be very small, leading to a substantial overhead in the
sample-complexity requirements of the mechanism. One of our conceptual contributions is
to show that we can circumvent such limitations once we espouse a utilitarian framework.
Indeed, all of our bounds are distribution-independent (and instance-oblivious).

We should also point out that, although we are emphasizing sample-complexity consid-
erations, we believe that our results have another very clear motivation. Namely, given that
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in most applications n ≫ m, it is important to provide sublinear algorithms whose running
time does not depend on n. In this context, we provide a Monte Carlo implementation of
PluralityMatching whose time complexity scales independently of n.

To conclude, we provide several preliminary experimental findings in real-life voting
applications from the standpoint of the (metric) distortion framework. We are mostly
concerned with comparing the results of the scoring systems used in practice against a
mechanism that explicitly attempts to minimize the distortion; the latter is realized with
the instance-optimal linear programming mechanism of Goel et al. (2017) (see Section 2.1).
Specifically, we analyze the efficiency of the scoring rule used in the Eurovision song contest
and the Formula One world championship (Sections 6.1 and 6.2); both of those case studies
fit within the main theme of this paper regarding the efficiency of voting rules under partial
or incomplete rankings. Interestingly, on both occasions we find that the winner in the
actual competition is usually the candidate who minimizes the distortion.1

1.2 Related Work

Research in the metric distortion framework was initiated by Anshelevich et al. (2015).
Specifically, they analyzed the distortion of several common voting rules, most notably
establishing that Copeland’s rule has distortion at most 5, with the bound being tight for
certain instances. They also conjectured that the ranked pairs mechanism always achieves
distortion at most 3, which is also the lower bound for any deterministic mechanism. This
conjecture was disproved by Goel et al. (2017),2 while they also studied fairness properties
of certain voting rules. Moreover, Skowron & Elkind (2017) established that a popular
rule named single transferable vote (STV) has distortion O(logm), along with a nearly-
matching lower bound. The barrier of 5 set out by Copeland was broken by Munagala &
Wang (2019), presenting a novel deterministic rule with distortion 2+

√
5. The same bound

was obtained by Kempe (2020a) through an LP duality framework, who also articulated
sufficient conditions for proving the existence of a deterministic mechanism with distortion
3. This conjecture was only recently confirmed by Gkatzelis et al. (2020), introducing the
plurality matching mechanism. Closely related to our study is also the work of Gross et al.
(2017), wherein the authors provide a near-optimal mechanism that only asks m+1 voters
for their top-ranked alternatives. The main difference with our setting is that we require
an efficiency guarantee with high probability, and not in expectation.

Broader Context. Beyond the metric case most focus has been on analyzing distor-
tion under a unit-sum assumption on the utility function, ensuring that agents have equal
“weights”. In particular, Boutilier et al. (2015) provide several upper and lower bounds,
while they also study learning-theoretic aspects under the premise that every agent’s utility
is drawn from a distribution; cf., see the work of Procaccia et al. (2009). Moreover, several
multi-winner extensions have been studied in the literature. Caragiannis et al. (2016b)
study the committee selection problem, which consists of selecting k alternatives that max-
imize the social welfare, assuming that the value of each agent is defined as the maximum
value derived from the committee’s members. We also refer to Benadè et al. (2017) for

1. Our code is publicly available at https://github.com/ioannisAnagno/Voting-MetricDistortion.
2. A tight bound of Θ(

√
m) for the ranked pairs mechanism was subsequently given by Kempe (2020a).
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the participatory budgeting problem, and to Benadè et al. (2019) when the output of the
mechanism should be a total order over alternatives (instead of a single winner).

More special metric spaces have been considered by Feldman et al. (2016); Fain et al.
(2017); Anagnostides et al. (2022), strengthening some of the results we previously de-
scribed. The trade-off between efficiency and communication has been addressed by Mandal
et al. (2019, 2020), while Amanatidis et al. (2020) investigated the decay of distortion under
a limited amount of cardinal queries—in addition to the ordinal information. We should
also note a series of works analyzing the power of ordinal preferences for some fundamental
graph-theoretic problems (Filos-Ratsikas et al., 2014; Anshelevich & Sekar, 2016a,b; An-
shelevich & Zhu, 2018). Finally, we point out that strategic issues are typically ignored
within this line of work. We will also posit that agents provide truthfully their preferences,
but we refer to Bhaskar et al. (2018); Caragiannis et al. (2016a, 2018) for rigorous consid-
erations on the strategic issues that arise. We refer the interested reader to the excellent
survey of Anshelevich et al. (2021), as we have certainly not exhausted the literature.

2. Preliminaries

A metric space is a pair (M, d), where d : M×M → R constitutes a metric on M, i.e., (i)
∀x, y ∈ M, d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles), (ii) ∀x, y ∈ d(x, y) = d(y, x)
(symmetry), and (iii) ∀x, y, z ∈ M, d(x, y) ≤ d(x, z)+d(z, y) (triangle inequality). Consider
a set of n voters V = {1, 2, . . . , n} and a set of m candidates C = {a, b, . . . , }; candidates
will be typically represented with lowercase letters such as a, b, w, x, but it will be sometimes
convenient to use numerical values as well. We assume that every voter i ∈ V is associated
with a point vi ∈ M, and every candidate a ∈ C to a point ca ∈ M. Our goal is to select
a candidate x who minimizes the social cost : SC(x) =

∑n
i=1 d(vi, cx). This task would be

trivial if we had access to the agents’ distances from all the candidates. However, in the
standard metric distortion framework every agent i provides only a ranking (a total order)
σi over the points in C according to the order of i’s distances from the candidates. We
assume that ties are broken arbitrarily, subject to transitivity, but we will not abuse the
tie-breaking assumption.

In this work, we are considering a substantially more general setting wherein every agent
provides a subset of σi. More precisely, we assume that agent i provides as input a set Pi of
ordered pairs of distinct candidates, such that (a, b) ∈ Pi =⇒ a ≻i b, where a, b ∈ C; it will
always be assumed that Pi corresponds to the transitive closure of the input. We will allow
Pi to be the empty set, in which case i does not provide any information to the mechanism;
with a slight abuse of notation, we will let Pi ≡ σi when i provides the entire order of
preferences. We will say that the input P = (P1, . . . ,Pn) is consistent with the metric d if
(a, b) ∈ Pi =⇒ d(vi, ca) ≤ d(vi, cb),∀i ∈ V , and this will be denoted with d ▷ P. We will
represent with top(i) and sec(i) i’s first and second most preferred candidates, respectively.
We may also sometimes use the notation ab = {i ∈ V : a ≻i b}.

A deterministic social choice rule is a function that maps an election in the form of
a 3-tuple E = (V,C,P) to a single candidate a ∈ C. We will measure the performance
of f for a given input of preferences P in terms of its distortion, namely, the worst-case
approximation ratio it provides with respect to the social cost:
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distortion(f ;P) = sup
SC(f(P))

mina∈C SC(a)
, (1)

where the supremum is taken over all metrics such that d▷P. That is, once the mechanism
selects a candidate (or a distribution over candidates if the social choice rule is random-
ized), an adversary can select any metric space subject to being consistent with the input
preferences. Similarly, in Section 3 where we study mechanisms that perform pairwise com-
parisons, the adversary can select any metric space consistent with the elicited comparisons.
The distortion of a social choice rule f is defined as the supremum of distortion(f ;P) (1)
taken over all possible input preferences P (and possible values of n), under a fixed value
for the number of candidates m. We point out the following:

Proposition 2.1. Under any given preferences P, there exists a metric space consistent
with P.

This proposition follows immediately from Proposition 1 of Anshelevich et al. (2015),
which established the claim when P = σ.

2.1 Instance-Optimal Voting

An important observation is that under any input preferences P there exists a deterministic
instance-optimal mechanism; this was noted by Goel et al. (2017) (see also Boutilier et al.
(2015)) when P = σ, but their mechanism directly applies to our more general setting. We
briefly present their idea, as we will also employ this mechanism for our experiments.

The first ingredient is an optimization problem that allows to compare a pair of distinct
candidates, subject to the set of preferences given to the mechanism. Specifically, for
a, b ∈ C, with a ̸= b, consider the following linear program Metric-LP(a, b):

maximize
∑n

i=1 xi,a
subject to

∑n
i=1 xi,b = 1;

xi,p ≤ xi,q, ∀(p, q) ∈ Pi,∀i ∈ V ;
xi,i = 0, ∀i ∈ V ∪ C;
xi,j = xj,i, ∀i, j ∈ V ∪ C;
xi,j ≤ xi,k + xk,j ,∀i, j, k ∈ V ∪ C.

(2)

It should be pointed out that some of the constraints in Metric-LP (2) are redundant,
in the sense that they are implied by others, but we will not dwell on such optimizations
here. We will represent with D(a|b) the value of the linear program Metric-LP(a, b); if it
is unbounded, we let D(a|b) = +∞. We also note that the linear program is always feasible
by virtue of Proposition 2.1. In this context, the mechanism of Goel et al. (2017) consists
of the following steps:

• For any pair a, b ∈ C, with a ̸= b, compute D(a|b); also let D(a|a) = 1.

• Set D(a) = maxb∈C D(a|b).

• Return the candidate b with the minimum value D(a) over all a ∈ C; ties are broken
arbitrarily.
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This mechanism will be referred to as Minimax-LP to distinguish from the minimax
voting scheme of Simpson and Kramer (Levin & Nalebuff, 1995). The Minimax-LP rule
essentially performs brute-force search over all possible metrics in order to identify the can-
didate who minimizes the distortion; nonetheless, it can be solved in poly(n,m) time given
that the Metric-LP admits a strongly polynomial time algorithm; this follows because the
bit complexity L—the number of bits required to represent it (Karmarkar, 1984)—is small:
L = O(log(n+m)). Moreover, it is easy to establish the following:

Theorem 2.2. For any given preferences P, the Minimax-LP rule is instance-optimal in
terms of distortion.

In particular, when P = σ we note that Minimax-LP always yields distortion at most
3 by virtue of the upper-bound of Gkatzelis et al. (2020). Nevertheless, in this work we will
be mostly interested in providing upper bounds on the distortion of Minimax-LP under
incomplete rankings.

3. Sequence of Pairwise Comparisons

In this section, we are considering voting rules that perform a sequence of pairwise com-
parisons between two candidates, with the result of each comparison being determined by
the majority rule over the entire population of voters. To put it differently, consider the
tournament graph T = (C,E) where (a, b) ∈ E if and only if candidate a pairwise-defeats
candidate b; that is, |ab| ≥ n/2. (It will be tacitly assumed without any loss of generality
that ties are broken arbitrarily so that T is indeed a tournament.) We are studying mecha-
nisms which elicit edges from T , and we want to establish a trade-off between the number
of elicited edges and the distortion of the mechanism. We commence with the following
lower bound:

Proposition 3.1. There are instances for which any deterministic mechanism which elicits
(strictly) fewer than m− 1 edges from T has unbounded distortion.

Sketch of Proof. Consider a family of tournaments T as illustrated in Figure 1, with the set
C∗ containing a single candidate. Then, there are metric spaces for which all the voters are
arbitrarily close to the candidate in C∗ and arbitrarily far from any other candidate. Thus,
any mechanism with bounded distortion has to identify the candidate in C∗. However, any
pairwise comparison can eliminate at most one candidate from being in C∗. As a result, if
T̂ = (C, Ê) is the subgraph based on the elicited edges, there will be at least two distinct
candidates which could lie in C∗ for some tournament in T consistent with T̂ , leading to
the desired conclusion.

In fact, the same limitation applies even if we allow randomization, either during the
elicitation or the winner determination phase. On the other hand, we will show that m− 1
edges from T suffice to obtain near-optimal distortion. To this end, we will employ a
powerful technical lemma due to Kempe, proved via an LP-duality argument.

Lemma 3.2 (Kempe (2020a)). Let a1, a2, . . . aℓ be a sequence of distinct candidates such
that for every i = 2, . . . , ℓ at least half of the voters prefer candidate ai−1 over candidate ai.
Then, SC(a1) ≤ (2ℓ− 1)SC(aℓ).
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Figure 1: A hard class of tournament graphs when fewer than m− 1 pairwise comparisons
are elicited (see Proposition 3.1). C∗ contains a single candidate whose is located arbitrarily
closed to all the voters in the underlying metric space.

Armed with this important lemma, we introduce the DominationRoot mechanism.
DominationRoot determines a winning candidate with access only to a pairwise compar-
ison oracle; namely, O takes as input two distinct candidates a, b ∈ C and returns the losing
candidate based on the voters’ preferences (recall that in case of a tie the oracle returns an
arbitrary candidate).

Algorithm 1: DominationRoot

Input: Set of candidates C, Pairwise comparison oracle O;
Output: Winner w ∈ C;
1. Initialize S := C;
2. Construct arbitrarily a set Π of ⌊S/2⌋ pairings from S;
3. For every {a, b} ∈ Π remove O(a, b) from S;
4. If |S| = 1 return w ∈ S; otherwise, continue from step 2;

We refer to Figure 2 for an illustration of DominationRoot. The analysis of this
mechanism boils down to the following simple claims:

Claim 3.3. DominationRoot elicits exactly m− 1 edges from T .

Proof. The claim follows given that for every elicited edge we remove a candidate for the
rest of the mechanism, until only a single candidate survives.

Claim 3.4. DominationRoot returns a candidate w which can reach every other node in
T in paths of edge-length at most ⌈logm⌉ in T .

Proof. Consider the partition of candidates C1, . . . , Cr such that Ci contains the candidates
who were eliminated during the i-th round for i ∈ {1, 2, . . . , r− 1}, and Cr = {w}. Observe
that every candidate a ∈ Ci (with i ∈ {1, 2, . . . , r − 1}) was pairwise-defeated by some
candidate in Cj for j > i; thus, the claim follows inductively since r = ⌈logm⌉.

We now arrive to one of our central results, establishing that only m − 1 pairwise
comparisons suffice to obtain near-optimal distortion:
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Figure 2: An implementation of DominationRoot for m = 14 candidates. Nodes corre-
spond to candidates and edges to pairwise comparisons. We have highlighted with different
colors pairwise comparisons that correspond to different rounds of the mechanism. Also,
the “height” of every candidate indicates the order of elimination.

Theorem 3.5. DominationRoot elicits only m−1 edges from T and guarantees distortion
at most 2⌈logm⌉+ 1.

Proof. The theorem follows directly from Claim 3.3, Claim 3.4, and Lemma 3.2.

This theorem, along with Proposition 3.1, imply a remarkable gap depending on whether
the mechanism is able to elicit at least m − 1 pairwise comparisons. We also provide a
matching lower bound for the distortion of DominationRoot:

Proposition 3.6. There exist instances for which DominationRoot yields distortion at
least 2 logm+ 1.

Proof. We will first show that the bound established in Lemma 3.2 is tight. Indeed, consider
a set of ℓ of candidates {1, 2, . . . , ℓ}, for an even number ℓ, and two voters (the instance
directly extends to an arbitrary even number of voters) positioned according to the pattern
of Figure 3a. Then, the following profile of preferences is consistent with the underlying
metric space:

• 1 ≻1 3 ≻1 2 ≻1 5 ≻1 · · · ≻1 ℓ− 2 ≻1 ℓ;

• 2 ≻2 1 ≻2 4 ≻2 3 ≻2 · · · ≻2 ℓ ≻2 ℓ− 1.

Now observe that—at least under some tie-breaking rule—candidate i pairwise-defeats
candidate i−1 for i = 2, 3, . . . , ℓ. Moreover, it follows that SC(i) = 2i−1, for all i, implying
that SC(ℓ)/SC(1) = 2ℓ− 1, as desired.

Next, consider m candidates such that m is a power of 2. We first consider ℓ = logm+
1 candidates positioned according to our previous argument (Figure 3a); the rest of the

1459



Anagnostides, Fotakis & Patsilinakos

candidates are located arbitrarily far from the voters. It is easy to see that there exists
a sequence of pairings (Figure 3b) such that cℓ will be declared victorious, leading to a
distortion of 2 logm+ 1 by virtue of our previous argument.

(a) A metric embedding of voters and candida-
tes establishing that Lemma 3.2 is tight.

(b) A sequence of pairings such that cℓ emerges
victorious. We have highlighted with different col-
ors pairings that correspond to different rounds.

Figure 3: Proof of Proposition 3.6.

4. Distortion of Deterministic Rules under Incomplete Orders

In this section, we complement our previous results that assumed access to pairwise com-
parisons (Section 3) by characterizing the distortion of deterministic voting mechanisms
under different classes of incomplete preferences. We commence this section with another
useful lemma by Kempe (2020a).

Lemma 4.1 (Kempe (2020a)). Consider three distinct candidates w, y, x ∈ C such that
|wy| ≥ αn and |yx| ≥ αn, with α ∈ (0, 1]. Then,

SC(w)

SC(x)
≤ 2

α
+ 1.

In particular, notice that if w is the winner in Copeland’s rule, it follows that for any
candidate x there exists some other candidate y such that w pairwise-defeats y and y
pairwise-defeats x (Moulin, 1986); thus, applying Lemma 4.1 for α = 1/2 implies that the
winner in Copeland’s rule has distortion upper-bounded by 5. This was initially established
by Anshelevich et al. (2015).

As a warm-up, we first employ this lemma to characterize the distortion when, for all
pairs of candidates, at least a small fraction of voters has provided their pairwise prefer-
ences. We stress that all of our upper bounds are attainable by the Minimax-LP rule,
but nonetheless our proofs are constructive in the sense that we provide (efficiently imple-
mentable) mechanisms that obtain the desired bounds.

Proposition 4.2. Consider an election E = (V,C,P) such that for every pair of distinct
candidates a, b ∈ C, it holds that

∑n
i=1 1 {(a, b) ∈ Pi ∨ (b, a) ∈ Pi} ≥ α · n, with α ∈ (0, 1].

Then, there exists a voting rule that obtains distortion at most 4/α+ 1.
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Proof. Consider a complete, weighted and directed graph G = (C,E,w) such that

wa,b =

∑n
i=1 1{(a, b) ∈ Pi}

n
.

In words, wa,b represents the fraction of voters who certainly prefer a to b; observe that
if we had the complete rankings it would follow that wa,b + wb,a = 1, but here we can only
say that wa,b+wb,a ≤ 1. Moreover, by assumption, we know that wa,b+wb,a ≥ α, implying
that wa,b ≥ α/2 or wb,a ≥ α/2. With that in mind, we construct from G an unweighted

and directed graph Ĝ = (C, Ê) according to the following threshold rule: (a, b) ∈ Ê ⇐⇒
wa,b ≥ α/2. We have argued that our assumption implies that (a, b) ∈ Ê ∨ (b, a) ∈ Ê. As

a result, we can deduce that Ĝ contains as a subgraph a tournament; thus, there exists a
king vertex w (Reid, 1982) so that every node a ∈ C is reachable from w in at most 2 steps,
and our claim follows directly from Lemma 4.1.

We remark that this upper bound is tight up to constant factors, at least for certain
instances. Indeed, if we only have an α fraction of the votes in the presence of 2 candidates,
it is easy to show an Ω(1/α) lower bound for any mechanism, even if we allow randomization.

4.1 Missing Voters

Building on Proposition 4.2, consider an election E = (V,C,P) and a mechanism that has
access to the votes of only a subset V \ Q of voters, where Q ⊂ V is the set of missing
voters such that |Q| = ϵ · n. If the mechanism performs well on V \Q, can we characterize
the distortion over the entire set of voters as ϵ increases? Observe that this setting is
tantamount to Pi = ∅ for all i ∈ Q. In the following theorem we provide a sharp bound:

Theorem 4.3. Consider a mechanism with distortion at most ℓ w.r.t. an arbitrary subset
with (1 − ϵ) fraction of all the voters, for some ϵ ∈ (0, 1). Then, the distortion of the
mechanism w.r.t. the entire population is upper-bounded by

ℓ+
ϵ

1− ϵ
(ℓ+ 1).

Proof. Consider a candidate b ∈ C with distortion at most ℓ w.r.t. the agents in V \ Q.
Moreover, consider some arbitrary candidate a ∈ C, and let Sb =

∑
i∈V \Q d(vi, cb), and Sa =∑

i∈V \Q d(vi, ca); observe that, by assumption, Sb/Sa ≤ ℓ. Our analysis will distinguish
between the following two cases:

Case I: Sb ≥ Sa > 0.3 Then, for all i ∈ Q it follows that

Sbd(vi, ca) + Sad(ca, cb) ≥ Sa(d(vi, ca) + d(ca, cb)) ≥ Sad(vi, cb),

and hence,

Sad(vi, cb) ≤ Sad(ca, cb) + Sbd(vi, ca) + d(ca, cb)d(vi, ca);

summing over all i ∈ Q gives

3. The case where Sa = 0 can be trivially handled. Indeed, it implies that Sb ≤ ℓ× Sa = 0, which in turn
yields that d(ca, cb) = 0; thus, SC(a) = SC(b).
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Sa

∑
i∈Q

d(vi, cb) ≤ |Q|Sad(ca, cb) + Sb

∑
i∈Q

d(vi, ca) + d(ca, cb)
∑
i∈Q

d(vi, ca)

≤ |Q|Sad(ca, cb) + Sb

∑
i∈Q

d(vi, ca) + |Q|d(ca, cb)
∑
i∈Q

d(vi, ca). (3)

Moreover, observe that

(3) ⇐⇒
Sb +

∑
i∈Q d(vi, cb)

Sa +
∑

i∈Q d(vi, ca)
≤ Sb + |Q|d(ca, cb)

Sa
. (4)

Next, we have that d(ca, cb) ≤ d(vi, ca) + d(vi, cb),∀i; summing over all i ∈ V \ Q implies
that (n− |Q|)d(ca, cb) ≤ Sa + Sb ≤ (ℓ+ 1)Sa. Therefore, along with (4) we obtain that

SC(b)

SC(a)
≤ ℓ+

|Q|
n− |Q|

(ℓ+ 1) = ℓ+
ϵ

1− ϵ
(ℓ+ 1).

Case II: Sb < Sa. In this case, we can simply observe that

SC(b)

SC(a)
≤

Sb +
∑

i∈Q d(vi, ca) + |Q|d(ca, cb)
Sa +

∑
i∈Q d(vi, ca)

≤ 1 + |Q|d(ca, cb)
Sa

.

Thus, the proof follows given that (n− |Q|)d(ca, cb) ≤ Sa + Sb < 2Sa.

A few remarks are in order. First, Borodin et al. (2019) provided a similar result when
the revealed votes contain complete preferences; it is plausible that their approach can be
extended along the line of Theorem 4.3. In fact, if all the voters in the set V \ Q had
provided their entire rankings, we could derive a similar result via Proposition 4.2, but,
unlike Proposition 4.2, Theorem 4.3 is parameterized in terms of the distortion with respect
to the voters in V \Q. Theorem 4.3 will be a useful tool in the sequel in order to establish
bounds under k-top preferences (Proposition 4.7) and random sampling (Theorem 5.9), but
we consider it to be of independent interest beyond those applications. We also point out
that the derived bound in Theorem 4.3 is tight for certain instances. For example, consider
an instance on the line with only two candidates a and b, so that every candidate receives
half of the votes among the voters in V \ Q; assume without loss of generality that a is
selected as the winning candidate, having distortion 3 w.r.t. the voters in V \Q. However,
we have to accept that (1−ϵ)/2 fraction of the voters could reside in the midpoint (ca+cb)/2,
while the rest of the agents could all lie in cb; thus, the distortion of candidate a reads

SC(a)

SC(b)
=

1−ϵ
2

d(ca,cb)
2 + 1−ϵ

2 d(ca, cb) + ϵd(ca, cb)

1−ϵ
2

d(ca,cb)
2

= 3 + 4
ϵ

1− ϵ
,

which matches the bound of Theorem 4.3 when ℓ = 3.
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4.2 Top Preferences

In this subsection, we investigate how the distortion increases when every voter provides
only her k-top preferences, for some parameter k ∈ [m]. It should be noted that the two
extreme cases are by now well understood. Specifically, when k = m the mechanism has
access to the entire rankings, and we know that any deterministic mechanism has distortion
at least 3, matching the upper bound established by Gkatzelis et al. (2020). On the other
end of the spectrum, when k = 1, the plurality rule—which incidentally is the optimal
deterministic mechanism when only the top preference is given—yields distortion at most
2m − 1 (Anshelevich et al., 2015). Consequently, the question is to quantify the decay of
distortion as we gradually increase k. We commence by reminding a lower bound given
by Kempe (2020b):

Proposition 4.4. Any deterministic mechanism that elicits only the k-top preferences from
every voter out of the m alternatives has distortion Ω(m/k).

More precisely, the best lower bound is 2m/k, ignoring some additive constant factors;
for completeness, we provide a proof in Appendix A. In the following theorem we come
closer to matching this lower bound.

Theorem 4.5. There exists a deterministic mechanism that elicits only the k-top prefer-
ences from every voter out of m candidates and has distortion at most 6m/k + 1.

Before we proceed with the proof, it is important to point out that having only the k-top
preferences is not subsumed by our previous consideration in Proposition 4.2; e.g., even if
k = m−2, there could be two candidates which lie on the last two positions of every voter’s
list, and hence, it is impossible to know which one is mostly preferred among the voters.

Proof of Theorem 4.5. Let Li be the set with the k-top preferences of voter i. For a candi-
date a ∈ C, we let

Va =

∑n
i=1 1{a ∈ Li}

n
;

i.e., the fraction of voters for which a is among the k-top preferences. Notice that
∑

a∈C Va =
k, and hence, by the pigeonhole principle there exists some candidate x such that Vx ≥ k/m.
Similarly to Proposition 4.2 we consider the weighted, complete and directed graph G =
(C,E,w), so that

wa,b =

∑n
i=1 1{(a, b) ∈ Pi}

n
.

Moreover, based on G we construct the unweighted and directed graph Ĝ = (C, Ê), so that
(a, b) ∈ Ê ⇐⇒ wa,b ≥ k/(3m); the constant 1/3 in the threshold is selected as the largest

number which makes the following argument work. In particular, we will show that Ĝ has
a king vertex, and then the theorem will follow by virtue of Lemma 4.1.

Let C ′ = {a ∈ C : ∃b ∈ C \ {a}.(a, b) /∈ Ê ∧ (b, a) /∈ Ê} and C∗ = C \ C ′. Observe that
the induced subgraph on C∗ contains as a subgraph a tournament, and as such, it has a
king vertex w ∈ C∗ (we will argue very shortly that indeed C∗ ̸= ∅). As a result, if C ′ = ∅
the theorem follows.
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In the contrary case, C ′ contains at least two (distinct) nodes; let a, b ∈ C ′ be such that
(a, b) /∈ Ê ∧ (b, a) /∈ Ê. An important observation is that Va ≤ 2k/(3m) and Vb ≤ 2k/(3m).
Indeed, for the sake of contradiction let us assume that Va > 2k/(3m). Given that (a, b) /∈ Ê
we can infer that b is preferred over a in at least a k/(3m) fraction of the voters; however,
this would imply that (b, a) ∈ Ê, which is a contradiction. Similarly, we can show that
Vb ≤ 2k/(3m). Consequently, x cannot belong in the set C ′, where recall that x is a
candidate for which Vx ≥ k/m, verifying that C∗ ̸= ∅.

Next, it is easy to see that for all a ∈ C ′, (x, a) ∈ Ê; this follows since Va ≤ 2k/(3m) for
all a ∈ C ′ while Vx ≥ k/m. As a result, if x = w or if there exists the edge (w, x) ∈ Ê, then
w can reach every node in at most 2 steps, and the theorem follows. Otherwise, it follows
that there exists a path of length 2 from w to x since w is a king vertex in the induced
subgraph on C∗ and x ∈ C∗. We shall distinguish between two cases.

First, assume that for all z ∈ C∗
1 , (x, z) ∈ Ê, where C∗

1 is the subset of C∗ which is

reachable from w via a single edge. Then, given that we have assumed that (w, x) /∈ Ê and
the induced graph on C∗ is a tournament, it follows that (x,w) ∈ Ê, and subsequently x
can reach every node in C in paths of length at most 2, as desired.

Finally, assume that there exists some y ∈ C∗
1 such that (x, y) /∈ Ê. This implies that

y is preferred over x in at least a 2k/(3m) fraction of the voters. If for every candidate
a ∈ C ′ it holds that (w, a) ∈ Ê or (z, a) ∈ Ê for some z ∈ C∗

1 , we can conclude that w

can reach every node in Ĝ in at most 2 steps, again reaching the desired conclusion. On
the other hand, assume that there exists b ∈ C ′ such that (w, b) /∈ Ê and (z, b) /∈ Ê for all
z ∈ C∗

1 . By the definition of the set C∗, we can infer that (b, w) ∈ Ê and (b, z) ∈ Ê for
all z ∈ C∗

1 . Moreover, we know that from all of the votes candidate y received, candidate
b was below in at most a k/(3m) fraction (over all the voters); otherwise, it would follow
that (y, b) ∈ Ê. As a result, since y is preferred over x in at least a 2k/(3m) fraction of the
voters, we can conclude that (b, x) ∈ Ê, in turn implying that b can reach every node in Ĝ
in paths of length at most 2, concluding the proof.

From an algorithmic standpoint, although our proof of Theorem 4.5 is constructive,
leading to an efficiently implementable voting rule, the established upper bound can also
be subsequently attained by the instance-optimal Minimax-LP mechanism. Theorem 4.5
substantially improves over the previous best-known bound which was 12m/k (Kempe,
2020b,a). Nonetheless, there is still a gap between the aforementioned lower bound (Propo-
sition A.1). Before we conclude this section, we explain how one can further improve upon
the bound obtained in Theorem 4.5.

Conjecture 4.6. If we assume that every agent provides her k-top preferences for some
k ∈ [m], there is a candidate a ∈ C and a subset S ⊆ V such that

• There exists a perfect matching M : S → S in the integral domination graph of a (see
Definition 5.4 in the next section);

• |S| ≥ n× k/m.

When k = m, this was shown to be true by Gkatzelis et al. (2020). On the other end
of the spectrum, when k = 1 it is easy to verify that the plurality winner establishes this
conjecture.
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Figure 4: The anatomy of our proof for Theorem 4.5. The set of candidates is partitioned
into a “good” set C∗ and a “bad” set C ′; C∗ has a king vertex w, and we can essentially
apply the reasoning of Proposition 4.2. A key observation is that C ′ is always dominated
by some node in C∗, namely x.

Proposition 4.7. If Conjecture 4.6 holds, then there exists a deterministic mechanism
which elicits only the k-top preferences and yields distortion at most 4m/k − 1.

Proof. Let a ∈ C be the candidate which satisfies Conjecture 4.6. Then, it follows that a
yields distortion at most 3 w.r.t. the voters in the set S (Gkatzelis et al., 2020). As a result,
Theorem 4.3 implies that the distortion of a is upper-bounded by

3 + 4
n− |S|
|S|

≤ 4m

k
− 1.

5. Randomized Preference Elicitation and Sampling

Previously, we characterized the distortion when only a deterministically (and potentially
adversarially) selected subset of voters has provided information to the mechanism. This
raises the question of bounding the distortion when the mechanism elicits information from
only a small random sample of voters. Here, a single sample corresponds to the entire
ranking of a voter. We stress that randomization is only allowed during the preference
elicitation process; for any given random sample as input, the mechanism has to select a
candidate deterministically. We commence this section with a simple lower bound, which
essentially follows from a standard result due to Canetti et al. (1995).

Proposition 5.1. Any mechanism which yields distortion at most 3+ ϵ with probability at
least 1− δ requires Ω(log(1/δ)/ϵ2) samples, even for m = 2.

Proof. Consider two candidates a, b, and assume that exactly (1−ϵ)/2 fraction of the voters
prefer candidate a. It is easy to verify that a yields distortion strictly larger than 3 + ϵ;
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thus, any mechanism with distortion at most 3+ ϵ has to return candidate b. However, the
winner determination problem with margin ϵ requires Ω(log(1/δ)/ϵ2) samples to solve with
probability 1− δ (Canetti et al., 1995), concluding the proof.

5.1 Approximating Copeland

We begin by analyzing a sampling approximation of Copeland’s rule. Below we summarize
the main result of this subsection.

Theorem 5.2. For any sufficiently small ϵ > 0 and δ > 0 there exists a mechanism that
takes a sample of size c = Θ(log(m/δ)/ϵ2) voters and yields at most 5 + ϵ distortion with
probability at least 1− δ.

We recall that when the entire input is available, Copeland yields distortion at most
5 (Anshelevich et al., 2015). It follows from Theorem 5.2 that Θ̃(m/ϵ2) bits of information
in total from the voters suffice to yield 5 + ϵ distortion with high probability, where the
notation Θ̃(·) suppresses poly-logarithmic factors. Before we proceed with the proof of
Theorem 5.2, we state the following standard fact:

Lemma 5.3 (Chernoff-Hoeffding Bound). Let {X1, X2, . . . , Xc} be a set of i.i.d. random
variables with Xi ∼ Bern(p) and Xµ = (X1 +X2 + · · ·+Xc)/c; then,

P(|Xµ − p| ≥ ϵ) ≤ 2e−2ϵ2c.

Proof of Theorem 5.2. Consider the complete, weighted and directed graph G = (C,E,w)
so that wa,b = |ab|/n. We will show how to use the random sample in order to construct a

graph Ĝ = (C,E, ŵ) which approximately preserves the weights of G with high probability.
In particular, consider some parameters ϵ ∈ (0, 1/2) and δ ∈ (0, 1), and take a sample
S of size |S| = c = Θ(log(m/δ)/ϵ2) from the set of voters V ; for simplicity, we assume
that the sampling occurs with replacement in order to guarantee independence, but the
result holds even without replacement given that the dependencies are negligible; e.g., see
the work of Kontorovich & Ramanan (2008). Now we let ŵa,b = |{i ∈ S : a ≻i b}|/c.
Lemma 5.3 implies that |ŵa,b − wa,b| < ϵ with probability at least 1 − δ/m2. Thus, the
union bound implies that for all distinct pairs a, b we have approximately preserved the
weights: |ŵa,b − wa,b| < ϵ with probability at least 1− δ.

From Ĝ we construct the directed graph T = (C, Ê) so that (a, b) ∈ Ê ⇐⇒ ŵa,b ≥ 1/2;
if ŵa,b = ŵb,a for some distinct candidates a, b ∈ C, we only retain one of the edges arbitrarily
(this conundrum can be avoided by taking c to be odd). In this way, T will be a tournament,
and as such, there exists a candidate w which can reach every node in T in at most 2 steps.
Thus, for any a ∈ C there exists some intermediate candidate b ∈ C so that |wb| ≥ 1/2− ϵ
and |ba| ≥ 1/2 − ϵ. As a result, Lemma 4.1 implies that the distortion of w is upper-
bounded by 4/(1 − 2ϵ) + 1 ≤ 5 + 16ϵ, for any ϵ ≤ 1/4. Finally, rescaling ϵ by a constant
factor concludes the proof.

5.2 Approximating Plurality Matching

In light of Proposition 5.1, the main question that arises is whether we can asymptotically
reach the optimal distortion bound of 3. To this end, we will analyze a sampling approxi-
mation of PluralityMatching, a deterministic mechanism introduced by Gkatzelis et al.
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(2020) that obtains the optimal distortion bound of 3. To keep the exposition reasonably
self-contained, we recall some basic facts about PluralityMatching.

Definition 5.4 (Gkatzelis et al. (2020), Definition 5). For an election E = (V,C, σ) and
a candidate a ∈ C, the integral domination graph of candidate a is the bipartite graph
G(a) = (V, V,Ea), where (i, j) ∈ Ea if and only if a ⪰i top(j).

Proposition 5.5 (Gkatzelis et al. (2020), Corollary 1). There exists a candidate a ∈ C
whose integral domination graph G(a) admits a perfect matching.

Before we proceed let us first introduce some notation. For this subsection it will be
convenient to use numerical values in the set {1, 2, . . . ,m} to represent the candidates. We
let Πj =

∑
i∈V 1{top(i) = j}, i.e. the number of voters for which j ∈ C is the top candidate.

For candidate j ∈ C we let G(j) be the integral domination graph of j, and Mj be a
maximum matching in G(j). In the sequel, it will be useful to “decompose” Mj as follows.
We consider the partition of V into V 0

j , V
1
j , . . . , V

m
j such that V k

j = {i ∈ V : Mj(i) = k} for

all k ∈ [m], while V 0
j represents the subset of voters which remained unmatched under Mj ;

see Figure 5.

Figure 5: An example of a matching decomposition in the integral domination graph of
candidate 1.

Moreover, consider a set S = S0
j ∪ S1

j ∪ · · · ∪ Sm
j such that Sk

j ⊆ V k
j for all k; we also

let c = |S|, and Π′
j = c/n×Πj . For now let us assume that Π′

j ∈ N for all j. We let GS(j)
represent the induced subgraph of G(j) w.r.t. the subset S ⊆ V and the new plurality
scores Π′

j . We start our analysis with the following observation:

Observation 5.6. Assume that S is such that |Sk
j |/c = |V k

j |/n for all k. Then, if MS
j

represents the maximum matching in GS(j), it follows that |MS
j |/c = |Mj |/n.
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Sketch of Proof. First, it is clear that |MS
j | ≥

∑m
k=1 |Sk

j | = c/n
∑m

k=1 |V k
j | = c/n × |Mj |.

Thus, it remains to show that |MS
j | ≤ c/n× |Mj |. Indeed, if we assume otherwise, we can

infer via an exchange argument than Mj is not a maximum matching.

Let us denote with Φj = Mj/n; roughly speaking, we know from the work of Gkatzelis
et al. (2020) that Φj is a good indicator for the “quality” of candidate j. Importantly,
Observation 5.6 tells us that we can determine Φj in a much smaller graph, if only we
had a sampling-decomposition that satisfied the “proportionality” condition of the claim.
Of course, determining explicitly such a decomposition makes little sense given that we
do not know the sets V k

j , but the main observation is that we can approximately satisfy
the condition of Observation 5.6 through sampling. It should be noted that we previously
assumed that Π′

j ∈ N, i.e., we ignored rounding errors. However, in the worst-case rounding
errors can only induce an error of at most m/c in the value of Φj ; thus, we remark that our
subsequent selection of c will be such that this error will be innocuous, in the sense that it
will be subsumed by the “sampling error” (see Lemma 5.8). Before we proceed, recall that
for p, p̂ ∈ ∆([k]),

dTV(p, p̂)
def
= sup

S⊆[k]
|p(S)− p̂(S)| = 1

2
∥p− p̂∥1,

where ∥ · ∥1 represents the ℓ1 norm. In this context, we will use the following standard fact:

Lemma 5.7 (Canonne (2020)). Consider a discrete distribution p ∈ ∆([k]) and let p̂ be the
empirical distribution derived from N independent samples. For any ϵ > 0 and δ ∈ (0, 1),
if N = Θ((k + log(1/δ))/ϵ2) it follows that dTV(p, p̂) ≤ ϵ with probability at least 1− δ.

As a result, if we draw a set S with |S| = c = Θ((m + log(1/δ))/ϵ2) samples (without
replacement4) we can guarantee that

m∑
k=0

∣∣∣∣∣ |Sk
j |
c

−
|V k

j |
n

∣∣∣∣∣ ≤ 2ϵ;

m∑
k=1

∣∣∣∣∣Π̂k

c
− Πk

n

∣∣∣∣∣ ≤ 2ϵ,

where Sk
j represents the subset of S which intersects V k

j , and Π̂k is the empirical plurality
score of candidate k. Thus, the following lemma follows directly from Observation 5.6 and
Lemma 5.7.

Lemma 5.8. Let Φ̂j = |M̂j |/c, where M̂j is the maximum matching in the graph GS(j).

Then, if |S| = Θ((m+ log(1/δ))/ϵ2) for some ϵ, δ ∈ (0, 1), it follows that (1− ϵ)Φj ≤ Φ̂j ≤
(1 + ϵ)Φj with probability at least 1− δ.

Theorem 5.9. For any sufficiently small ϵ > 0 and δ > 0 there exists a mechanism that
takes a sample of size Θ((m+ log(m/δ))/ϵ2) voters and yields distortion at most 3+ ϵ with
probability at least 1− δ.

4. Although the samples are not independent since we are not replacing them, observe that the induced
bias is negligible for n substantially larger than m.
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Proof. Fix some ϵ ∈ (0, 1/4) and δ ∈ (0, 1). If we draw Θ((m + log(m/δ))/ϵ2) samples,
Lemma 5.8 along with the union bound imply that (1 − ϵ)Φj ≤ Φ̂j ≤ (1 + ϵ)Φj for all

j ∈ [m], with probability at least 1− δ, where Φ̂j is defined as in Lemma 5.8. Conditioned

on the success of this event, let w = argmaxj∈C Φ̂j . Proposition 5.5 implies that there

exists some candidate x for which Φx = 1; hence, we know that Φ̂w ≥ Φ̂x ≥ 1 − ϵ, in turn
implying that Φw ≥ (1 − ϵ)/(1 + ϵ) ≥ 1 − 2ϵ (Lemma 5.8). As a result, it follows that
there exists a subset of voters V ′ for which there exists a perfect matching in the integral
domination graph G(w), with |V ′| ≥ n(1−4ϵ). Thus, it follows that for the subset of voters
in V ′ candidate w yields distortion at most 3 (Gkatzelis et al., 2020), and Theorem 4.3 leads
to the desired conclusion.

6. Experiments

In this section, we present experiments conducted on real-life voting applications. In par-
ticular, we are interested in comparing the efficiency—measured in terms of distortion—of
the voting system employed in practice with the instance-optimal mechanism, namely the
Minimax-LP mechanism (recall Theorem 2.2). Also, note that the Minimax-LP rule can
be used to obtain the exact distortion of every candidate w.r.t. the given preferences. The
induced LPs in Minimax-LP will be solved via the Gurobi software (Gurobi Optimization,
2021).

The experimental results we present in the sequel (Sections 6.1 and 6.2) are primar-
ily related to our theoretical considerations in Section 4, where we established distortion
bounds under incomplete rankings. We point out that, for both of our case studies, sam-
pling is not appropriate due to the limited number of voters. In fact, as we point out in
Section 7, understanding the performance of Minimax-LP using sampling may require new
techniques, and it is therefore left as an open problem. Additional empirical investigations
on real-world voting systems pertinent to our theoretical results is left for future work.

6.1 Eurovision Song Contest

We first analyze the performance of the scoring system used in the Eurovision song contest,
so let us first give a basic overview of the competition and the voting rule employed. Fist
of all, we will only focus on the final stage of the competition, wherein a set of m coun-
tries compete amongst each other and a set of n countries—which is a strict superset of
the contenders—provide their preferences over the finalists. Eurovision employs a specific
positional scoring system which works as follows. Every country assigns 12 points to its
highest preference, 10 points to its second-highest preference, and from 8 to 1 points to each
of its next 8 preferences, respectively; note that no country can vote for itself. This scoring
system shall be referred to as the Scoring rule. It should be noted that Skowron & Elkind
(2017) quantify the distortion for some specific scoring rules (e.g. the harmonic rule). We
will make the working hypothesis that for every country the assigned scores correspond
to its actual order of preferences. Nonetheless, we stress that the assigned scores of every
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country have been themselves obtained by preference aggregation,5 and as such, they are
themselves subject to distortion, but we will tacitly suppress this issue.6

We will focus on the competitions held between 2004 and 2008. During these years, the
number of finalists (or candidates) m was 24, with the exception of 2008 where 25 countries
were represented in the final. For our experiments we used a dataset from Kaggle. Observe
that every “voter” only provides its top k = 10 preferences, while the countries which are
represented in the final are 0-decisive (see Anshelevich & Postl (2016)). The main question
that concerns us is whether the Scoring rule employed for the competition yields very
different results from the optimal Minimax-LP mechanism. Our results are summarized in
Table 1, while for more detailed findings we refer to Appendix C.

Perhaps surprisingly, on all occasions the winners in the two mechanisms coincide. On
the other hand, there are generally substantial differences below the first position. It is also
interesting to note that on all occasions the winner has a remarkably small distortion, at
least compared to the theoretical bounds.

Table 1: Summary of our findings for the Eurovision song contests held between 2004
and 2008. For every year, we have indicated the top three countries according to the
Minimax-LP rule and the Scoring system employed in the actual contest.

Year
Minimax-LP rule Scoring rule

# of Countries
Country Distortion Country Score

2004
Ukraine 1.1786 Ukraine 280

36Serbia & Montenegro 1.4444 Serbia & Montenegro 263
Turkey 1.4746 Greece 252

2005
Greece 1.4068 Greece 230

39Switzerland 1.4127 Malta 192
Moldova 1.4194 Romania 158

2006
Finland 1.3000 Finland 292

38Romania 1.4262 Russia 248
Russia 1.4407 Bosnia & Herzegovina 229

2007
Serbia 1.3235 Serbia 268

42Ukraine 1.3667 Ukraine 235
Russia 1.5231 Russia 207

2008
Russia 1.3562 Russia 272

43Greece 1.4507 Ukraine 230
Ukraine 1.4923 Greece 218

6.2 Formula One

Furthermore, we analyze the performance of the voting system employed in the Formula
One (F1) world championship. In particular, we imagine that every competing driver
constitutes a distinct candidate, while every race in the calendar corresponds to a “voter”;
the “preferences” of every race are indicated by the order in which the drivers complete the
race. We will assume that when two drivers fail to terminate, they will not be comparable

5. For the years we are considering, the scores were mainly determined by televoting, with some few excep-
tions.

6. We refer the interested reader to the work of Filos-Ratsikas & Voudouris (2021).
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(in the spirit of partial orderings). The scoring rule employed in F1 assigns to the first 10
drivers the points 25, 18, 15, 12, 10, 8, 6, 4, 2, 1, respectively, and the driver who manages to
collect the most number of points throughout the championship is declared the winner; with
a slight abuse of notation, this rule will also be referred to as the Scoring rule. We will
be analyzing the championships held between 2016 and 2020 using a dataset from Kaggle.
A noteworthy detail is that for the last two years the scoring system assigned an additional
point to the driver with the fastest lap, but for simplicity, the Minimax-LP will not use
any such information. Our results are summarized in Table 2. Again, the driver who won
the championship is also the candidate who minimizes distortion, with the sole exception of
2016, where—if we are to accept the metric distortion framework—Lewis Hamilton should
have won the championship.

Table 2: Summary of our findings for the F1 world championships held between 2016 and
2020. For every year we have indicated the top three drivers according to the Minimax-LP
rule and the Scoring system employed.

Year
Minimax-LP rule Scoring rule

# of Drivers # of Races
Driver Distortion Driver Score

2020
Lewis Hamilton 1.6667 Lewis Hamilton 347

23 17Valtteri Bottas 5 Valtteri Bottas 223

Max Verstappen7 5.6667 Max Verstappen 214

2019
Lewis Hamilton 1.7059 Lewis Hamilton 413

20 21Valtteri Bottas 4 Valtteri Bottas 326

Max Verstappen8 4.4 Max Verstappen 278

2018
Lewis Hamilton 2 Lewis Hamilton 408

20 21Sebastian Vettel 3.6 Sebastian Vettel 320
Kimi Räikkönen 4.4 Kimi Räikkönen 251

2017
Lewis Hamilton 2.2 Lewis Hamilton 363

25 20Sebastian Vettel 3 Sebastian Vettel 317
Valtteri Bottas 3.1818 Valtteri Bottas 305

2016
Lewis Hamilton 2.8333 Nico Rosberg 385

24 21Nico Rosberg 3 Lewis Hamilton 380
Daniel Ricciardo 3.9091 Daniel Ricciardo 256

7. Open Problems

There are several compelling avenues for future research related to our work. First, it
would be interesting to study the performance of the DominationRoot mechanism under
randomized pairings; we suspect that this might lead to a substantial improvement since
our lower bound (Proposition 3.6) is very brittle, but we did not pursue this direction. As
we previously alluded to, in practice the pairings are typically constructed using some form
of prior, so it might be interesting to formalize the guarantees of such techniques. It would
also be meaningful to quantify the decay of distortion from O(logm) to O(1) (the latter
of which is the bound achievable when the mechanism has access to the entire tournament
graph) if we gradually elicit more than m−1 pairwise comparisons. More broadly, exploring

7. Tie with Lando Norris.
8. Tie with Sebastian Vettel and Charles Leclerc.
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further ways in which incomplete information could present itself in voting scenarios is an
important direction. One concrete suggestion revolves around approval-based mechanisms;
see, e.g., the work of Pierczynski & Skowron (2019).

With regards to the power of deterministic mechanisms that elicit only the k-top pref-
erences, an obvious question is to settle Conjecture 4.6. As we showed in Proposition 4.7,
this would immediately improve our upper bound, but it would still require some further
work to close the gap for every value of k ∈ [m]. Furthermore, can we reduce the sample
complexity established in Theorem 5.9 without sacrificing the efficiency? We argued that
the dependence on ϵ and δ cannot be improved, but establishing the optimal dependence
on the value of m requires future research. Finally, can we establish provable guarantees
for the performance of Minimax-LP under a random sample of voters?
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Appendix A. Lower Bound for k-top Preferences

In this section, we present for completeness a lower bound for deterministic mechanisms
that have access only to the k-top preferences of every voter.

Proposition A.1. Any deterministic mechanism that elicits only the k-top preferences
from every voter out of the m alternatives has distortion Ω(m/k).

Proof. First of all, assume without any loss of generality that k | (m − 1),9 and let n =
(m−1)/k be the number of voters. For simplicity, let us enumerate the number of candidates
as C = {1, 2, . . . , n× k} ∪ {x}. Now consider some preference profile P in which the k-top
preferences of voter i correspond to the set of candidates {(i − 1)k + 1, . . . , (i − 1)k + k}
according to some arbitrary order; observe that all of these sets are pairwise disjoint.

Based on these preferences, the mechanism has to select some candidate. If x is selected,
the lower bound follows trivially since x could actually be the last choice for every voter.
Therefore, let us assume that candidate 1 was selected by the mechanism; this hypothesis is
without loss of generality due to the symmetry of the input P. The main observation is that
the agents and the candidates could be located on the metric space of Figure 6. Indeed, it
is easy to check that the induced metric space is consistent with the given preferences. As
a result, it follows that

SC(1)

SC(x)
=

D + (n− 1)× (δ + 2D)

D + (n− 1)× δ
=

1 + (n− 1)× (δ/D + 2)

1 + (n− 1)× δ/D
. (5)

9. If it is not the case that k | (m−1), take k′ to be the smallest number larger than k such that k′ | (m−1),
and apply our argument for k′; given that k′ < 2k, we will establish again a lower bound of Ω(m/k),
even though the mechanism had more information than the k-top preferences.
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Thus, for δ/D ↓ 0, we obtain that SC(1)/SC(x) → 2n− 1 = Ω(m/k).

Figure 6: The metric space considered for the proof of Proposition A.1, where δ/D ↓ 0 for
some positive numbers δ and D. The distance between two points is simply the shortest
path in the graph.

We should note that although in our worst-case example the number of voters n is
smaller than the number of candidates m, which is not the canonical case, our argument
directly extends whenever n is a multiple of (m − 1)/k, allowing n to be arbitrarily large.
Moreover, a similar construction shows an Ω(m/k) lower bound for α-decisive metrics, in
the sense of Anshelevich & Postl (2016), for any α ∈ [0, 1]; indeed, it suffices to place the
voters within the “cluster” of their k-most preferred candidates.

Appendix B. Plurality Matching vs Minimax-LP

In this section, we compare the PluralityMatching mechanism of Gkatzelis et al. (2020)
with the instance-optimal mechanism, namely Minimax-LP; here, we tacitly posit that
P = σ, i.e. all the agents provide their entire rankings to the mechanism.

B.1 Instance Optimality

The first question that arises is how far could the distortion of PluralityMatching be
with respect to the instance-optimal candidate. To address this question, we commence
with the following proposition:

Lemma B.1 (Lemma 6, Gkatzelis et al. (2020)). For any election E = (V,C, σ), a candidate
a ∈ C can be selected by PluralityMatching only if plu(a) ≥ veto(a).

With this lemma at hand, we consider an instance with n = m voters V = {1, 2, . . . ,m}
and a set ofm candidates C = {a, . . . }. We assume that for every voter i ∈ [n−1], sec(i) = a,
while the (single) top-preferences of all the voters i ∈ [n − 1] are assumed to be pairwise-
distinct. Finally, the last voter places candidate a in her last place, while her preferences
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are otherwise arbitrary. An example with four candidates {a, b, e, f} corresponds to the
following input:

• b ≻1 a ≻1 e ≻1 f ;

• f ≻2 a ≻2 b ≻2 e;

• e ≻3 a ≻3 f ≻3 b;

• b ≻4 f ≻4 e ≻4 a.

In general, observe that for any candidate b ∈ C \ {a}, it follows that |ab| = n − 2.
Further, we will use the following standard lemma:

Lemma B.2. Consider two (distinct) candidates a, b ∈ C such that |ab| ≥ αn > 0. Then,

SC(a)

SC(b)
≤ 2

α
− 1.

This implies that the distortion of candidate a is 1 + O(1/m). However, given that
plu(a) = 0 < 1 = veto(a), we know from Lemma B.1 that a cannot be selected by
PluralityMatching. We will show that every other candidate yields distortion close
to 3. In particular, consider the metric space illustrated in Figure 7. It is easy to ver-
ify that the induced metric space is consistent with the given preferences. But, it follows
that SC(a) = m, while SC(b) = 2 + 3(m − 2) = 3m − 4 for any b ̸= a, implying that
SC(b)/SC(a) = 3−O(1/m). As a result, we have arrived at the following conclusion:

Proposition B.3. For any sufficiently small ϵ > 0 and m = O(1/ϵ) there is a profile of pref-
erences σ such that Minimax-LP yields distortion at most 1+ϵ, while PluralityMatching
yields distortion at least 3− ϵ.

Figure 7: A metric space embedded on an unweighted and undirected graph; this example
corresponds to m = n = 4, but the pattern should be already clear.
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B.2 Decisive Metrics

Moreover, it is natural to compare these mechanisms in more refined metrics. Specifically,
we espouse the α-decisiveness assumption of Anshelevich & Postl (2016), according to which
d(vi, cp) ≤ α · d(vi, cq), where p = top(i) and q = sec(i), and α ∈ [0, 1] some parameter;
notice that the general case corresponds to α = 1, while for α = 0 every voter also serves
as a candidate. The first observation is that this particular refinement can be addresses by
simply incorporating some additional constraints in the linear program. More precisely, for a
pair of distinct candidates a, b this leads to the following linear program Metricα-LP(a, b):

maximize
∑n

i=1 xi,a
subject to

∑n
i=1 xi,b = 1;

xi,top(i) ≤ α · xi,sec(i),∀i ∈ V ;

xi,p ≤ xi,q, ∀(p, q) ∈ Pi,∀i ∈ V ;
xi,i = 0, ∀i ∈ V ∪ C;
xi,j = xj,i, ∀i, j ∈ V ∪ C;
xi,j ≤ xi,k + xk,j , ∀i, j, k ∈ V ∪ C.

(6)

Here we have assumed that every agent i provides her most preferred candidate top(i), as
well as her second most preferred candidate sec(i). Having solved the Metricα-LP(a, b) (6)
for every distinct pair of candidates a, b, we simply select the candidate who minimizes the
maximum cost obtained over all other candidates; this mechanism shall be referred to as
the Minimaxα-LP. Similarly to Theorem 2.2, we can establish the following:

Proposition B.4. For any given preferences P and any α ∈ [0, 1] the Minimaxα-LP rule
is instance-optimal in terms of distortion under α-decisive metrics.

We should point out that for α-decisive metrics PluralityMatching always yields a
candidate with distortion 2+α. Moreover, Gkatzelis et al. (2020) showed a lower bound of
2 + α− 2(1− α)/m′ for deterministic mechanisms, where m′ = 2⌊m/2⌋; thus, they showed
that their mechanism obtains the optimal distortion only when m → ∞ or when α = 1,
leaving a substantial gap.

We will show that Minimaxα-LP can substantially outperform PluralityMatching
even for α-decisive metrics with α close to 0. Specifically, consider an election with 3
candidates and 2 voters10 with the following preferences: σ1 = a ≻ b ≻ e, and σ2 = e ≻ b ≻
a. For this election, b could be returned by PluralityMatching (Gkatzelis et al., 2020).
However, we claim that b yields distortion 2+α, while a and e have distortion 1+2α. Indeed,
we will show that candidate a has always distortion upper-bounded by 1+2α (by symmetry,
the same holds for e), while for candidate b there exists a metric space for which b yields
distortion 2+α. Specifically, we have that d(ca, cb) ≤ d(v1, ca)+d(v1, cb) ≤ (1+α)d(v1, cb);
thus, we obtain that

d(v1, ca) ≤ αd(v1, cb), (7)

d(v2, ca) ≤ d(v2, cb) + d(ca, cb) ≤ (1 + α)d(v1, cb) + d(v2, cb). (8)

10. This example is taken from Gkatzelis et al. (2020).
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Summing these inequalities yields that SC(a) ≤ (1 + 2α)d(v1, cb) + d(v2, cb) ≤ (1 +
2α)SC(b). Similarly, we can prove that SC(a) ≤ (1 + 2α)SC(e). On the other hand, for
candidate b, Gkatzelis et al. (2020) considered the metric space of Figure 8.

Figure 8: A metric space embedded on a graph.

Naturally, the distance between a pair of nodes is the corresponding shortest path in
the graph. Thus, for this instance it follows that SC(e) = 1, while SC(b) = 2+α, implying
that the distortion of b is 2 + α. Thus, for α → 0 PluralityMatching loses a factor of
2 with respect to the optimal candidate, which would be identified by the Minimaxα-LP
rule by virtue of Proposition B.4.

Proposition B.5. There exists a preference profile σ such that Minimaxα-LP yields dis-
tortion 1+2α, while PluralityMatching yields distortion at least 2+α under α-decisive
metrics.

Nonetheless we should point out that PluralityMatching does not require knowing
the value of parameter α, unlike the instance-optimal mechanism.

Appendix C. Additional Experimental Results

In this section, we provide additional details about our empirical findings. Specifically, in
Figure 9 we juxtapose the scores of the finalists in the Eurovision song contest (based on
the Scoring rule) with their distortion as determined by Minimax-LP. We note that we
have removed the following “outliers”:

• For the year 2006, the countries Malta and Spain which incurred a distortion of 24.3333
and 18.0000 respectively.

• For the year 2007, the countries Ireland and United Kingdom which incurred a dis-
tortion of 27.0000 and 13.6667 respectively.

• For the year 2008, the countries United Kingdom, Germany and Poland which incurred
a distortion of 20.5000, 20.5000 and 14 respectively.

Similarly, in Figure 10 we juxtapose the scores accumulated by the drivers based on the
Scoring rule with their distortion as determined by Minimax-LP. These results follow
after removing the following “outliers”:
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Figure 9: Scoring rule vs Minimax-LP for the Eurovision song contests during the years
between 2004 and 2008. For every country we have indicated only the first 5 letters according
to the entry in the dataset.

• For the year 2016, the driver Stoffel Vandoorne who incurred a distortion of 41.

• For the year 2017, the drivers Paul di Resta, Jenson Button, Brendon Hartley, and
Antonio Giovinazzi who incurred a distortion of ∞, ∞, 19, and 39 respectively.

• For the year 2020, the drivers Pietro Fittipaldi, Jack Aitken, and Nico Hulkenberg
who incurred a distortion of 16, 33, and 16 respectively.
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Figure 10: Scoring rule vs Minimax-LP for the F1 world championships during the years
between 2020 and 2016. For every driver we have indicated only the first 5 letters of his/her
(last) name according to the entry in the dataset.
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