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Abstract
Many goal-reaching reinforcement learning (RL) tasks have empirically verified that

rewarding the agent on subgoals improves convergence speed and practical performance.
We attempt to provide a theoretical framework to quantify the computational benefits of
rewarding the completion of subgoals, in terms of the number of synchronous value itera-
tions. In particular, we consider subgoals as one-way intermediate states, which can only be
visited once per episode and propose two settings that consider these one-way intermediate
states: the one-way single-path (OWSP) and the one-way multi-path (OWMP) settings.
In both OWSP and OWMP settings, we demonstrate that adding intermediate rewards to
subgoals is more computationally efficient than only rewarding the agent once it completes
the goal of reaching a terminal state. We also reveal a trade-off between computational
complexity and the pursuit of the shortest path in the OWMP setting: adding interme-
diate rewards significantly reduces the computational complexity of reaching the goal but
the agent may not find the shortest path, whereas with sparse terminal rewards, the agent
finds the shortest path at a significantly higher computational cost. We also corroborate
our theoretical results with extensive experiments on the MiniGrid environments using
Q-learning and some popular deep RL algorithms.

1. Introduction

Markov decision processes (MDPs) (Bertsekas, 1995; Bertsekas & Tsitsiklis, 1996; Puter-
man, 2014; Russell & Norvig, 2009) provide a powerful framework for reinforcement learn-
ing (RL) and planning (Bertsekas, 2019; Sutton & Barto, 2018; Szepesvári, 2010; Siciliano
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et al., 2010; LaValle, 2006; Russell & Norvig, 2009) tasks. In particular, many practical
tasks (Brockman et al., 2016; Vinyals et al., 2017, 2019; Berner et al., 2019; Ye et al., 2020)
containing specific goal states rely heavily on reward design, especially by rewarding the
agent upon its arrival on some one-way subgoals (each subgoal can only be visited once per
episode) (Racanière et al., 2017; Popov et al., 2017; Vinyals et al., 2017, 2019; Berner et al.,
2019; Ye et al., 2020). Wen et al. (2020) introduced a framework that decomposes the orig-
inal MDP into “subMDPs”, and demonstrated that decomposing an MDP into subMDPs
indeed leads to statistical and computational efficiency, under certain assumptions. Wen
et al. (2020) provides an insightful framework for studying subgoals from a hierarchical RL
perspective, but it does not clearly address how rewarding subgoals helps the goal-reaching
tasks. To better understand the reward design for goal-reaching tasks, we consider the
one-way subgoals as one-way intermediate states (the non-terminal states where the agent
receives intermediate rewards upon its arrival). Then we show that under some practically
verifiable assumptions on the intermediate states and simple conditions on the intermediate
rewards, rewarding the agent on intermediate states is indeed more computationally efficient
for learning a successful policy that reaches the goal states in terms of synchronous value
iteration (SVI).

1.1 Motivating Examples

We first start with two examples (the Maze and the Pacman Game in Figure 1) to reveal
the existence of one-way intermediate states in different goal-reaching tasks. For the Maze
problem, suppose one episode ends when the agent reaches the goal, then the Maze problem
does not have one-way intermediate states, since all previously visited states can be revisited
in one episode. In contrast, the Pacman game intrinsically possesses one-way intermediate
states, because the Pacman cannot revisit the states where the previously consumed food
pellets are available.

We conduct a toy experiment on the Pacman game to demonstrate how the design of
intermediate states and intermediate rewards affects the behavior of an agent under the
greedy policy (Sutton & Barto, 2018). In the Pacman game, the agent (Pacman) wins
when it consumes all the food before being caught by the ghost. Intuitively, if we want
the Pacman to win the game, we need to design the MDP such that the agent receives
positive rewards for winning, consuming food, surviving (not being caught by the ghost),
and negative rewards for losing (being caught by the ghost). With the aforementioned
intuition, we design several different reward functions for the Pacman game. Comparing
reward settings (1), (2), and (3) in Table 1, the Pacman performs better when the MDP
contains positive intermediate rewards for consuming food (visiting one-way intermediate
states). This observation matches the common belief that integrating prior knowledge of the
task into the reward design is generally helpful. However, designing rewards based on prior
knowledge could sometimes negatively affect the performance. In setting (4), where the
Pacman receives a positive reward for survival (visiting non one-way intermediate states),
the Pacman focuses more on dodging the ghost rather than consuming food, and eventually
gets caught by the ghost. At this point, a natural question is:

How does the design of intermediate rewards affect the behavior of a greedy policy for
goal-reaching tasks?
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Figure 1: Examples of two practical tasks. The thick curves represent walls. The agent can take
actions from {left, right, up, down} and move to the corresponding adjacent locations. The agent
stays at the original location if it hits a wall after taking an action. (a): In the maze problem, each
state in the MDP is the agent’s position. The goal is to find the end from the start. The shortest
path is marked with blue dashed curves. (b): In the Pacman game, each state contains the position
of the Pacman, the ghost, and all remaining food pellets. The agent (Pacman) needs to consume all
the pellets while avoiding the ghost, and each food pellet can only be eaten once. The ghost moves
simultaneously with the Pacman. The Pacman wins once all pellets are consumed and loses if it
is caught by the ghost. We use the TikZ code from https://gist.github.com/neic/9546556 to
draw the ghost.

rf rs 0 ep 100 eps 500 eps 1000 eps 1500 eps 2000 eps 2500 eps
(1) 0 0 0.0% 0.1% 0.1% 0.6% 89.5% 93.7% 96.0%
(2) 1 0 0.0% 0.5% 33.0% 78.0% 92.6% 97.8% 98.4%
(3) 10 0 0.0% 0.1% 57.8% 93.6% 95.7% 97.0% 97.9%
(4) 1 1 0.0% 0.0% 1.9% 2.5% 2.2% 7.7% 12.9%

Table 1: The win rate (averaged among 1000 trials) of the Pacman game shown in Figure 1b after
{0, 100, 500, 1000, 1500, 2000, 2500} Q-learning training episodes under a greedy policy. We compare
the performance under 4 different reward function designs. In all settings, the winning reward is 10
and the losing reward is -10. rf is the reward of consuming a food pellet. The Pacman receives a
survival reward rs if it is not caught by the ghost after taking an action. Our implementation of the
Pacman is based on the code from Berkeley CS188 (https://inst.eecs.berkeley.edu/~cs188/
fa18/project3.html). Details of the experiments are provided in Appendix C.1.

1.2 Our Formulation and Main Results

1.2.1 One-Way Intermediate States

To study the conditions under which goal-reaching problems with one-way intermediate
states enjoy computational benefits, we consider two one-way intermediate state settings as
shown in Figure 2: 1) one-way single-path (OWSP), and 2) one-way multi-path (OWMP).
In both settings, we assume the existence of one-way intermediate states (formally defined
in Assumption 3.2) that behave like “one-way” checkpoints that cannot be revisited in one
episode and intermediate rewards are assigned to the arrival at such states. Many practical
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RL tasks implicitly adopt this one-way property, as practitioners often identify subgoals
and assign a one-time reward for their completion in solving challenging tasks in addition
to the terminal rewards which occur once the agent reaches the goal states (Brockman et al.,
2016; Vinyals et al., 2017, 2019; Berner et al., 2019; Ye et al., 2020). For the case where
intermediate states are non one-way, we provide an example where the agent gets stuck at
an intermediate state permanently instead of pursing the goal, if the intermediate rewards
are not “properly” designed. As we have observed in setting (4) of the Pacman game in
Table 1, improperly designed intermediate rewards can negatively affect the agent’s ability
to find a successful policy that reaches the goal.

s0

. . .
...

. . . si1

. . .
...

. . . si2

. . .

siN

. . .
...

. . . ST

(a) In this case, all intermediate states SI = {si1 , si2 , . . . , siN } have to be visited in
a certain order.
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. . .
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. . . sij′2

. . .

sijm
...
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. . .

...
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(b) In this case, only a subset of intermediate states SJ = {sij1 , sij2 , . . . , sijm } (or
SJ′ = {sij′1 , sij′2 , . . . , sij′m′

}) with at least n states (m,m′ ≥ n) have to be visited in
a certain order.

Figure 2: The transition graph of different settings in Assumption 3.3

1.2.2 Main Results

We focus on comparing the two following reward settings of deterministic MDPs:

• The sparse reward setting: the agent only receives terminal rewards B while
reaching the goal (terminal states);

• The intermediate reward settings: the agent receives equal magnitude intermedi-
ate rewards BI upon the arrival of intermediate states, for both OSWP and OWMP
intermediate state settings.

Note that the intermediate rewards BI could be different from the terminal rewards B, and
we formally define the reward functions in Table 3 in Section 3.3.

The OWSP Intermediate Reward Setting Intuitively, the OWSP setting, which re-
wards the one-way intermediate states in addition to terminal rewards, is more computation-
ally efficient than only having terminal rewards alone, because the OWSP setting reduces
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the problem from finding the terminal states to finding the closest intermediate states. For
example, considering the environment provided in Figure 3, the number of SVI required to
obtain a greedy successful policy using sparse terminal rewards is 8 (the distance or mini-
mum required steps from the initial state s0 to the terminal state ST ), whereas the OWSP
intermediate reward setting (Figure 4) reduces such computational complexity to 3 (the
maximum distance between two intermediate states). Intuitively, Figure 4 suggests that
the computational complexity of finding a successful policy can be reduced by rewarding
the one-way intermediate states. The computational complexity for obtaining a successful
policy (in terms of SVI) with sparse terminal rewards and the OWSP intermediate reward
settings are formalized in Proposition 4.1 and 4.2, respectively. Moreover, Proposition 4.1
and 4.2 show that a greedy policy follows the shortest path to ST in both sparse terminal
rewards and OWSP setting.
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Figure 3: An example of the evolution of a zero-initialized value function via SVI in the one-way
single-path (Assumption 3.3 (a)) in sparse reward setting (Table 3). Each block in the 4 × 4 grid
represents a state, the green state is the terminal state, the blue state is the initial state, and the
thick curves represent walls that the agent cannot pass through. The cyan triangles are the one-way
intermediate states. The orientation of the apex of a given cyan triangle represents the direction of
each intermediate state. Namely, si1 can only be visited from the left, and si2 can only be visited
from the right, and neither si1 nor si2 can be revisited. The agent can choose any action from
{left, right, up, down}, and the agent will stay in the same state if it takes an action that hits the
wall. Note that the value function of the terminal state remains 0 because the MDP stops once the
agent reaches ST , so for any terminal state st ∈ ST , Vk(st) is never updated.
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Figure 4: An example of the evolution of a zero-initialized value function via SVI in the one-way
single-path (Assumption 3.3 (a)) intermediate reward setting (Table 3). α = BI + γ2BI , and the
remaining settings are the same as Figure 3.

The OWMP Intermediate Reward Setting Similar to the OWSP setting, the OWMP
is also more computationally efficient than using sparse terminal rewards (in terms of SVI),
provided the conditions allow a greedy policy to recursively find the closest intermediate
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state and eventually reach the terminal state. Theorem 4.3 provides the conditions that
enable the agent to find the closest intermediate state when the terminal states are not
directly reachable (formally defined in Definition 3.4), and when the terminal states are
directly reachable, Theorem 4.4 characterize such conditions and the associated computa-
tional complexity of finding a successful policy. Nevertheless, unlike the OWSP setting
or the sparse terminal reward setting, such a policy does not necessarily find the shortest
path from s0 to ST . Our result in the OWMP setting illustrates a trade-off between the
computational complexity and the pursuit of shortest path – adding intermediate rewards
on one-way intermediate states generally reduces computational complexity, but it does not
necessarily find the shortest path.

Our Contributions In this work, we make the following contributions:

1. We propose a framework that studies the computational complexity for goal-reaching
tasks in terms of synchronous value iteration (SVI);

2. We propose two one-way intermediate rewards setting: the one-way single-path (OWSP)
and the one-way multi-path intermediate reward settings (OWMP) and connect both
settings to practical task;

3. In both OWSP and OWMP settings, we demonstrate that assigning intermediate
rewards on one-way intermediate states (in addition to terminal rewards) is more
computationally efficient than the sparse reward setting where the agent only receives
terminal rewards at the terminal states.

4. We reveal a trade-off between the computational complexity and the pursuit of the
shortest path in the OWMP intermediate settings versus the sparse reward setting.
That is, comparing to the sparse reward setting where the agent only receives terminal
rewards and follows the shortest path to the goal, rewarding the agent at one-way
intermediate states (in addition to terminal states) generally reduces computational
complexity but the agent does necessarily follow the shortest path.

5. We conduct extensive experiments in both OWSP and OWMP settings to demonstrate
the computational benefits of rewarding one-way intermediate states and OWMP’s
trade-off between computational complexity and the shortest path. In particular, even
though our theoretical analysis adopts SVI, the computational gains and the trade-off
appear in both traditional ε-greedy Q-learning and popular deep RL methods such as
DQN (Mnih et al., 2015), A2C (Mnih et al., 2016), and PPO (Schulman et al., 2017).

1.3 Organization of this Paper

The rest of this paper is organized as follows. In Section 2, we introduce the basics of
MDPs and the definition of successful policies. We then provide the formal definition of
intermediate states, the OWSP and OWMP intermediate states in Section 3.1. We then
discuss how these assumptions are well reflected in RL tasks observed in practice (Section
3.2). In Section 4, we separate provide the computational complexity of finding a successful
trajectory for both the OWSP and OWMP settings. In Section 5, we discuss the connection
between the trajectory generated by a greedy policy and the shortest path for each setting.
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We then provide experimental results in Section 6 to corroborate our theoretical results in
Section 4. In Section 7, we discuss the connection between our work and some prior works,
the implication of our results, and potential future directions. The proof and experimental
details are deferred to the appendix.

2. Background and Problem Formulation

2.1 Assumptions of the MDP

Basics of MDPs We use a quintuple M = (S,A, P, r, γ) to denote an MDP, where S is a
finite state space, A is a finite action space, γ ∈ (0, 1) is the discount factor, r : (S×A)×S 7→
[0,∞) is the reward function of each state-action pair (s, a) and its subsequent state sa, and
P is the probability transition kernel of the MDP, where P (sa|s, a) denotes the probability of
the subsequent state sa of a state-action pair (s, a). In particular, we focus on deterministic
MDPs: the transition kernel satisfies ∀(s, a) ∈ S ×A, ∃sa ∈ S, such that P (sa|s, a) = 1 and
reward function r(s, a, sa) only depends on the subsequent state sa. We say a state s′ is
reachable from s if there exists a path or a sequence of actions {a1, a2, . . . , an} that takes the
agent from s to s′.1 Note that the definition of reachability does not necessarily imply s is
reachable from s, since there may not exist a path from s to itself. Our model also considers
a fixed initial state s0 ∈ S and terminal states ST ⊂ S. Without further explanation, we
assume the terminal state ST is reachable from all s ∈ S. All in all, MDP begins at state
s0 and stops once the agent reaches any state s ∈ ST .

Definition 2.1 (Distance between States) Given an MDP M = (S,A, P, r, γ) with
initial state s0 ∈ S, ∀s ∈ S\ST , s

′ ∈ S, we define the distance D(s, s′) : S × S 7→ N as
the minimum number of required steps (≥ 1) from s to s′. We slightly abuse the notation of
D(·, ·) by writing D(s,ST )

.
= min

s′∈ST

D(s, s′) as the minimum distance from s to ST .

2.2 Successful Q-Functions

In the preceding deterministic MDP formulation, we aim at solving a goal-reaching RL
problem (Kaelbling, 1993b; Sutton et al., 2011; Andrychowicz et al., 2017; Andreas et al.,
2017; Pong et al., 2018; Ghosh et al., 2019; Eysenbach et al., 2020a, 2020b; Kadian et al.,
2020; Fujita et al., 2020; Chebotar et al., 2021; Khazatsky et al., 2021) or a planning
problem (Bertsekas & Tsitsiklis, 1996; Boutilier et al., 1999; Sutton et al., 1999; Boutilier
et al., 2000; Rintanen & Hoffmann, 2001; LaValle, 2006; Russell & Norvig, 2009; Nasiriany
et al., 2019). We say a Q-function is successful if its associated greedy policy (Sutton &
Barto, 2018) leads the agent to the terminal states ST from the initial state s0.

Definition 2.2 (Successful Q-functions) Given a deterministic MDP M = (S,A, P, r, γ),
with initial state s0. We say Q(·, ·) is a successful Q-function of M if the greedy policy with
respect to Q generates a path {s0, a0, s1, a1, . . . , sH} such that ∀i = 0, 1, . . . , H − 1, si /∈ ST

and sH ∈ ST .

1. A similar definition of reachability appears in (Forejt et al., 2011).
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All theoretical results of this work are based on synchronous value iteration:

Vk+1(s)
.
= max

a∈A
{Qk(s, a)} , ∀s ∈ S,

Qk(s, a) = r(s, a, sa) + γVk(sa), ∀(s, a) ∈ S ×A.
(2.1)

The convergence of synchronous value iteration has been well studied (Puterman, 2014;
Sutton & Barto, 2018; Bertsekas, 2019), hence we use it as a starting point for studying the
effect of intermediate states and intermediate rewards to be introduced later in Section 3.

3. Intermediate States and Intermediate Rewards

3.1 Intermediate States

We state the formal definition of intermediate states in Definition 3.1, and provide two
follow-up assumptions (Assumption 3.2, 3.3) regarding the intermediate states.

Definition 3.1 (Intermediate States) Given an MDP M = (S,A, P, r, γ) with initial
state s0 ∈ S and terminal states ST , we define intermediate states SI = {si1 , si2 , . . . , siN } ⊂
S\ST as the states that satisfy

r(s, a, sa) > 0, ∀sa ∈ SI , (3.1)

where sa is the subsequent state of the state-action pair (s, a).

Assumption 3.2 (One-Way Intermediate States) Given an MDP M = (S,A, P, r, γ)
with initial state s0 ∈ S, terminal states ST , and intermediate states SI , we assume that
each intermediate state sij ∈ SI can only be visited at most once in one episode under any
policy, namely, ∀j ∈ [N ], D(sij , sij ) = ∞.

Intuitively, Assumption 3.2 characterizes the states that “cannot be revisited” in one
episode, upon the agent’s arrival. For example, in the Pacman game (Figure 1b), if the
Pacman reaches a location (x, y) that contains a food pellet, then the Pacman cannot go
back to previous states where the consumed food pellet is still available at (x, y). Similarly
for the door & key environment (Chevalier-Boisvert et al., 2018) that will be presented
in Section 6, once the agent picks up a key at location (x, y), it possesses the key for the
rest of that episode. Assumption 3.2 is widely adopted in practice (Brockman et al., 2016;
Vinyals et al., 2017, 2019; Berner et al., 2019; Ye et al., 2020), as many subgoals identified
by designers are usually one-way (see more discussion in Section 3.2).

Assumption 3.3 (Different Settings of Intermediate States) Given an MDP M =
(S,A, P, r, γ) with initial state s0 ∈ S, intermediate states set SI = {si1 , si2 , . . . , siN } and
terminal states ST satisfying Assumption 3.2, we study these different settings of SI :

(a) Any path from s0 to ST has to visit all states in SI in a certain order (i.e., in the
order of si1 , si2 , . . . , siN ).

(b) Any path from s0 to ST has to visit at least n intermediate states {sij |sij ∈ SI , j ∈
J ⊂ [N ], |J | ≥ n} in a certain order.
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Assumptions 3.2 and 3.3 characterize intermediate states as different one-way paths
consisting of subgoals that the agent has to complete in a certain order. If we consider all
paths from s0 to ST that pass though the same intermediate states as an equivalence class,
the goal-reaching problem using setting (a) is a single-path problem, while setting (b) is a
multi-path problem. Additionally, Assumption 3.3 indicates that from a given state s, not
every intermediate state si ∈ SI can be directly visited (without first visiting any other
intermediate states). Thus, it is worth considering the directly reachable intermediate (and
terminal) states from a given state s and the minimum distance between two intermediate
states.

Definition 3.4 (Direct Reachability) Given an MDP M = (S,A, P, r, γ) with terminal
states ST and intermediate states SI = {si1 , si2 , . . . , siN } satisfying Assumption 3.2, ∀s ∈
S\ST , let Id(s) ⊂ [N ] denote the indices of directly reachable intermediate states of s. That
is, ∀j ∈ Id(s), there exists a path from s to the intermediate state sij in the transition graph
of M that does not visit any other intermediate state.

Similar to the intermediate states SI , we say the terminal states ST are directly reachable
from a state s if there exists a path from s to ST that does not contain any intermediate
states.

Assumption 3.5 (Minimum Distance) Given an MDP M = (S,A, P, r, γ) with termi-
nal states ST and intermediate states SI = {si1 , si2 , . . . , siN } satisfying Assumption 3.2,
∀s ∈ S\ST , we assume the distance between any two intermediate states is at least h ∈ N+,
and the distance between any intermediate state and ST is also at least h. Namely, ∀sij ∈ SI ,
we have

min
j′∈Id(sij )

D(sij , sij′ ) ≥ h, and min
j∈[N ]

D(sij ,ST ) ≥ h, (3.2)

where Id(sij ) is the set of indices of directly reachable intermediate states from sij (see
Definition 3.4).

In practice, although the minimum distance h between two intermediate states (and an
intermediate state to ST ) is task dependent, it is generally fair to assume that h satisfies
1 < h < D(s0, ST ).

The aforementioned assumptions (Assumption 3.2, 3.3, and 3.5) are connected to our
main results in the following respects:

1. The one-way Assumption 3.2 and 3.3 provide the key theoretical framework for our
main result. The key insight of the computational gain in Section 4 is that, if the
MDP contains some one-way intermediate states, then one can reduce the computa-
tional complexity of finding the terminal states ST to the complexity of finding the
closest intermediate states, which eventually leads to ST . The detailed dependence of
Assumption 3.2 and 3.3 on our main result is provided in Table 4.

2. We use Assumption 3.5 for quantitatively analyzing the relative scale of the terminal
rewards versus the intermediate rewards that leads the agent to the closet intermediate
states and eventually to ST .
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Assumption 3.2 and 3.3 are highly task dependent because they characterize the connec-
tions of the one-way intermediate states of different tasks. In the next subsection, we will
introduce some practical tasks that adopt Assumption 3.2 and 3.3.

3.2 The Interpretation of Intermediate States

We list several practical tasks that adopt Assumption 3.3 in Table 2 to interpret Assumption
3.3. As illustrated in Table 2, the multi-path intermediate state setting (Assumption 3.3
(b)) is more common in practical tasks than the single-path setting (Assumption 3.3 (a)),
because the single-path setting is essentially a special case of the multi-path setting.

Assumption 3.3 (a) (b)

Maze (Figure 1a) 7 7
Pacman (Figure 1b) 7 3
Montezuma ((Brockman et al., 2016)) 3 3
Go ((Silver et al., 2016, 2017)) 7 7
Dota2 ((Berner et al., 2019)) 7 3
StarCraft II ((Vinyals et al., 2017, 2019)) 7 3
Honor of Kings ((Ye et al., 2020)) 7 3

Table 2: Examples of some RL applications that adopt
different settings in Assumption 3.3.

Assumption 3.3 does not hold
for the Maze (See Figure 1a) be-
cause the agent can repeatedly visit
any state in the maze. As for Go,
Assumption 3.3 also does not hold
because the existence of subgoals in
Go remains ambiguous. Except for
the Maze problem and Go, Assump-
tion 3.3 (b) fits the others practical
tasks in Table 2 naturally. More-
over, the stronger Assumption 3.3
(a) holds for Montezuma because it
requires the agent to visit specific states in a certain order, e.g., the agent will need to pick
up a key and unlock a door to proceed to the next chapter. The Pacman game satisfies
Assumption 3.3 (b) – considering each state in the Pacman game consists of the location
of the Pacman, the ghost, and the remaining foods, then the states where “the Pacman
consumes a food pellet (the location of the Pacman first coincides with an available food
pellet)” can be viewed as a one-way intermediate state. Hence each episode of the Pacman
game contains n (the total number of food) intermediate states, and these states appear in
the order in which the number of available food is decreasing. As for Dota2, StarCraft II,
and Honor of Kings, their winning conditions require the agent to “destroy” the enemy’s
base. However, the enemy’s base is not assailable before the agent completes several sub-
tasks. For example, in Dota2 or Honor of Kings, 3 towers block each of the roads to the
enemy’s base. The agent must first sequentially destroy the 3 towers to reach the enemy’s
base.2 If one views the state where the agent destroys a tower in Dota2 or Honor of Kings
as an intermediate state, Assumption 3.3 (b) is naturally satisfied, because the agent need
to visit at least 3 intermediate states to attack the enemy’s base.

Note that even though some of the practical tasks (Pacman, Montezuma, Dota2, Star-
Craft II, and Honor of Kings) mentioned in Table 2 satisfy Assumption 3.3, our theoretical
results to be introduced in Section 4 may not be directly applied to these tasks; this is
because they contain other factors that cannot be characterized by our current theoretical
assumptions (e.g., the deterministic MDP assumption mentioned in Section 2.1, the equal
magnitude assumption to be mentioned in Section 3.3).

2. Information on the rules and gameplay of Dota are available online; i.e., https://purgegamers.true.
io/g/dota-2-guide/. The rule of Honor of Kings is similar to Dota2.
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3.3 Rewards

We assume the reward function r(s, a, sa) of a state-action pair (s, a) only depends on
the subsequent state sa. In particular, our theoretical results (Section 4) and experiments
(Section 6) focus on comparing these two reward settings: the sparse reward setting where
there are no intermediate states in the environment hence the agent only receives positive
rewards at ST , and the intermediate reward setting, meaning that the environment contains
intermediate states so the agent receives rewards at both ST and SI . Formally, we write
the reward functions of the sparse reward setting and the intermediate reward setting as
follows:

Sparse Rewards Intermediate Rewards

r(s, a, sa) B 0 B BI 0
Condition sa ∈ ST sa ∈ S\ST sa ∈ ST sa ∈ SI sa ∈ S\(ST ∪ SI)

Table 3: The sparse reward setting and the intermediate reward setting.

As shown in Table 3, we assume the agent receives terminal rewards B once it reaches
st ∈ ST , and receives intermediate rewards BI once it reaches an intermediate state si ∈ SI .
Note that we are not claiming that the applications provided in Table 2 satisfies the inter-
mediate reward setting in Table 3 where all intermediate rewards have the same magnitude.
In fact, the reward setting in Table 3 only matches the Pacman game in Table 2, where we
assign all food with equal intermediate rewards. Still, our theoretical results in Section 4 re-
lying on the equal magnitude of intermediate rewards can be further generalized to the case
where intermediate rewards are different. We defer the discussion of such generalization to
unequal magnitude of intermediate rewards in Section 7 and leave the formal studies of the
generalization for future.

4. Main Results

We study the conditions for both the sparse reward and intermediate reward setting, under
which the Q-function Qk(·, ·) is a successful Q-function (Definition (2.2)), where Qk(·, ·) is
the Q-function after k update of SVI (2.1) from zero initialization:

Q0(s, a) = 0, V0(s) = 0, ∀(s, a) ∈ S ×A. (4.1)

And if Qk(·, ·) is indeed a successful Q-function, we further discuss the computational com-
plexity k (the minimum number of SVI) of obtaining a successful Qk(·, ·).

For the sparse reward setting, we first show that for a large enough k, Qk(·, ·) is a
successful Q-function and provide its computational complexity in Section 4.1. Next, we
discuss the following MDP settings as shown in Table 3.
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Assumption 3.2 Assumption 3.3

The One-Way Single-Path (OWSP) setting 3 (a)

The One-Way Multi-Path (OWMP) setting 3 (b)

The Non One-Way (NOW) setting 7 7

Table 4: Requirements of different assumptions for the main result.

For the OWSP setting, we show that Qk(·, ·) is a successful Q-function for sufficiently
large k and provide its computational complexity in Section 4.2. For the OWMP setting,
we introduce a sufficient condition under which Qk(·, ·) is successful for a large enough k,
and the corresponding computational complexity in Section 4.3. As for the Non One-Way
(NOW) setting, we provide an example where Qk(·, ·) is not successful for any k in Section
4.4. The required assumptions for the OWSP, OWMP, and NOW are provided in Table 4.

4.1 Sparse Rewards

Given zero-initialized value functions (4.1), Figure 3 demonstrates the evolution of Vk(s) as
the number of SVI (k) increases. A direct implication of Figure 3 is that, at iteration k,
∀s ∈ S\ST , given d = D(s,ST ), the value function Vk(·) satisfies:

Vk(s) = γd−1B · 1{d ≤ k}. (4.2)

The derivation of (4.2) is provided in Lemma B.1. With (4.2), we know that when k ≥
D(s0,ST ), the value function at the initial state Vk(s0) would be positive. Hence, a greedy
policy that recursively finds the next state with the largest value from s0, will generate a
path which eventually reaches ST , whenever k ≥ D(s0,ST ). More precisely, we have:

Proposition 4.1 (Sparse Rewards) Let M = (S,A, P, r, γ) be a deterministic MDP
with initial state s0 and terminal states ST . If the reward function r(·) follows the sparse
reward setting (Table 3) and the value function and Q-function are zero-initialized (4.1),
then after any k ≥ D(s0,ST ) synchronous value iteration updates (2.1), the Q-function Qk

is a successful Q-function, and a greedy policy follows the shortest path from s0 to ST .

We provide a sketch proof here and leave the details in Appendix A.2. With (4.2) from
Lemma B.1, we can write the value function in this setting as Vk(s) = γd−1B ·1{d ≤ k}, d =
D(s,ST ). Hence a greedy policy taking the agent to the subsequent state with maximum
value function will lead the agent one step closer to ST . Recursively applying the same
argument, we conclude that after k ≥ D(s0,ST ) SVI, an agent following the greedy policy
finds ST from s0.

Note that our result in the sparse reward setting (Proposition 4.1) might seem similar to
the classic convergence result for SVI via dynamical programming (Bertsekas, 1995; Sutton
& Barto, 2018). However, our setting only focuses on the conditions that allow a greedy to
find ST from the initial state s0, rather than all state s ∈ S. Therefore, the computational
complexity in the sparse reward setting relies on the distance D(s0,ST ). Furthermore, in
the OWSP and OWMP settings to be introduced later, our proofs contain share the similar
method as the sparse reward setting, hence Proposition 4.1 serves as a good preliminary
result for the later parts.
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4.2 One-Way Single-Path Intermediate Rewards

Similar to the sparse reward setting, we first illustrate the evolution of the one-way single-
path (OWSP) intermediate rewards in Figure 4. As shown in Figure 4, after k synchronous
iterations, the value function at each state s equals to the sum of discounted rewards from
all future intermediate states and the terminal states. The value function Vk(s) of state s
at iteration k is provided in Lemma B.2. In this case, when k satisfies

k ≥ max{D(s0, si1), D(si1 , si2), . . . , D(siN−1 , siN ), D(siN ,ST )},

Qk(·, ·) is a successful Q-function and a greedy policy will recursively find the next interme-
diate state, eventually reaching ST . More precisely, we have:

Proposition 4.2 (Single-path Intermediate States) Let M = (S,A, P, r, γ) be a de-
terministic MDP with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and ter-
minal states ST . Suppose M satisfies Assumption 3.2 and 3.3 (a). If the reward function
r(·) follows the intermediate reward setting (Table 3) and the value function and Q-function
are zero-initialized (4.1), then after

k ≥ dmax
.
= max{D(s0, si1), D(si1 , si2), . . . , D(siN−1 , siN ), D(siN ,ST )} (4.3)

synchronous value iteration updates (2.1), the Q-function Qk is a successful Q-function, and
a greedy policy follows the shortest path from s0 to ST .

We defer the details to Appendix A.3. To outline, we provide an explicit formulation of
Vk(s) for this setting in Lemma B.2, and show that when k ≥ dmax, a greedy agent will
move one step forward to the next closest intermediate state and eventually reach ST .

Comparing to Proposition 4.1, we know that, the computational complexity (in terms
of obtaining a successful Q-function) of an MDP M with the sparse reward setting can be
reduced from D(s0,ST ) to

max{D(s0, si1), D(si1 , si2), . . . , D(siN−1 , siN ), D(siN ,ST )},

if M adopts the OWSP intermediate reward setting.

4.3 One-Way Multi-Path Intermediate Rewards

As shown in Table 2, comparing to the OWSP setting, the OWMP setting applies to more
practical tasks and can be considered as a special case of the OWSP setting. Therefore,
Proposition 4.2 for the OWSP setting cannot be directly generalized to the OWMP case,
since moving towards one intermediate state does not necessarily lead to ST in the OWMP
case.

Still, the intuition for the computational complexity of obtaining a successful Q-function
in the OWMP setting is similar to the OWSP setting. For a state s, under some conditions
regarding rewards B, BI , and intermediate states SI , a greedy agent finds the closest di-
rectly reachable intermediate state sij1 of s (Definition 3.4) after a sufficient number SVI.
From any intermediate sijm ∈ SI , the greedy agent recursively finds the closest directly
reachable intermediate state sijm+1

of sijm and eventually reaches ST , since intermediate
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states cannot be revisited and the number of total intermediate states is finite. The next
theorem characterizes the sufficient conditions for an agent starting from s ∈ S\ST following
a greedy policy to find the closest directly reachable intermediate of s.

Theorem 4.3 (Finding the Closest SI) Let M = (S,A, P, r, γ) be a deterministic MDP
with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and terminal states ST .
Suppose M satisfies Assumption 3.2, 3.3 (b), and 3.5, if the reward function r(·) follows
the intermediate reward setting (Table 3) and the value function and Q-function are zero-
initialized (4.1), then ∀s ∈ S\ST that cannot directly reach ST , after

k ≥ d = D(s,SI)
.
= min

j∈Id(s)
D(s, sij ) (4.4)

synchronous value iteration updates (2.1), an agent following the greedy policy will find the
closest directly reachable intermediate state sij⋆ of s (D(s, sij⋆ ) = D(s,SI)), given B

BI
∈(

0, 1
1−γh

)
if γ + γh ≤ 1 or B

BI
∈

(
1

1−γh ,
1−γ
γ1+h

)
if γ + γh > 1, where h is the minimum

distance between any two intermediate states (Assumption 3.5).

Here we highlight some key insights of the proof and leave the details in Appendix A.4.
We first show that, when k is not large (k < D(s,SI) + h), Vk(s) will only be affected by
the closest SI . Hence the value function Vk(s) has the same property as the sparse reward
setting provided in Proposition 4.1, namely, Vk(s) increases as D(s,SI) decreases. Then
when k ≥ D(s,SI) + h, we show that the monotonicity between Vk(s) and D(s,SI) still
holds using the relative magnitude B/BI . More specifically, we use the bound of B/BI to
show the reward from pursuing the closest SI will be larger than the overall rewards of any
other trajectories that do not pursuit the closest SI . With the monotonicity of Vk(s) and
D(s,SI), we conclude a greedy agent finds the closest intermediate state.

A direct implication of Theorem 4.3 is that, when the magnitude of the terminal re-
ward B is not significantly larger than the intermediate reward BI , ∀s ∈ S\ST , after
k ≥ max

s∈S\ST

min
j∈Id(s)

D(s, sij ) iteration of SVI updates, a greedy agent eventually finds to an

intermediate state from which ST is directly reachable. When ST is directly reachable, the
next theorem illustrates the condition that enables a greedy agent follow to pursue the
shortest path to ST .

Theorem 4.4 (Finding the Shortest Path to ST ) Let M = (S,A, P, r, γ) be a deter-
ministic MDP with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and terminal
states ST . Suppose M satisfies Assumption 3.2, 3.3 (b), and 3.5, the reward function r(·)
follows the intermediate reward setting (Table 3), and the value function, Q-function are
zero-initialized (4.1). ∀s ∈ S\ST , let

d = D(s,ST ) and dI = D(s,SI)
.
= min

j∈Id(s)
D(s, sij ). (4.5)

If ST is directly reachable from s, and d and dI satisfy

d <

dI + log 1
γ

[
(1− γh) B

BI

]
, if B

BI
< 1

1−γh ,

dI + log 1
γ

(
B

BI+γhB

)
, if B

BI
≥ 1

1−γh ,
and d < dI + h− 1, (4.6)
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where h is the minimum distance between two intermediate states (Assumption 3.5), then
after k ≥ d synchronous value iteration updates (2.1), an agent following the greedy policy
will pursue the shortest path to ST .

The proof of Theorem 4.4 shares the same idea as the proof of Theorem 4.3. We first
provide an explicit expression of the value function Vk(s) for k ≤ dI + h, in Lemma B.3.
In addition, we demonstrate that Vk(s) is monotonic decreasing as D(s,ST ) increases when
k ≤ dI + h, since Vk(s) is only affected by the closest SI and ST when k ≤ dI + h. Then
we show the value function is monotonically decreasing as the distance D(s,ST ) increases
for all k ≥ d, when the conditions in Theorem 4.4 are satisfied. Similar to Theorem 4.3,
we use the relative magnitude B/BI to show the the monotonicity of Vk(s) still holds when
k > dI +h. More precisely, we use the bound of B/BI to ensure the rewards from pursuing
ST will be larger than all future rewards from any other trajectories that do not pursuit
ST . Finally, we use the monotonicity of Vk(s) to show that greedy policies find the shortest
path to ST . The proof of Theorem 4.4 is provided in Appendix A.5.

Intuitively, Theorem 4.4 indicates that, if a state s is “close enough” to the terminal
states ST , then the greedy policy will lead the agent from s to ST following the shortest
path, given sufficient number of value iteration updates. Note that Theorem 4.4 implicitly
uses the fact that, in the OWMP setting, there could exist some states from which both SI

and ST are directly reachable (see Figure 2b).
All in all, when B and BI satisfy the conditions in Theorem 4.3 and when

k ≥ max
s∈S\ST

min
j∈Id(s)

D(s, sij ),

a greedy agent will recursively find the closest directly reachable intermediate state, until the
terminal state ST is directly reachable. When ST is directly reachable and D(s,ST ), D(s,SI)
satisfy the conditions provided in Theorem 4.4, the agent following the greedy policy will
pursue the shortest path to ST . We shall clarify that our theoretical results (Theorem 4.3
and 4.4) on the OWMP setting only provides sufficient conditions of obtaining successful
Q-functions, but successful Q-functions can actually be obtained under broader conditions,
as will be presented in Section 6.

4.4 Non One-Way Intermediate Rewards

The theoretical results in the non one-way intermediate (NOW) reward setting is out of the
scope of this work, since we do not have additional assumptions on the intermediate states.
Still, we provide an example where SVI never finds a successful Q-function in Example 4.5
to demonstrate the effect of non-ideal reward design.

Example 4.5 (Synchronous Value Iteration Fails) Suppose we are given an MDP en-
vironment as shown in Figure 5, with B = 10, BI = 100, and γ = 0.9. The value function
converges when k ≥ 2. However, ∀k ≥ 1, a greedy policy will stay in si instead of moving
to ST .

As shown in Example 4.5, if we set the intermediate rewards BI on some non one-way
intermediate states, and when the intermediate rewards are significantly larger than the
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Figure 5: An example of the evolution of a zero-initialized value function during SVI in the non
one-way intermediate reward setting, with B = 10, BI = 100, and γ = 0.9. The agent may move
left, right, up, or down. The cyan circle is the intermediate state that can be repeatedly visited from
s0 and from itself (by taking actions “right” and “up” and hitting a wall). The remaining settings
are the same as Figure 3.

terminal rewards, a greedy policy will lead the agent to visit the intermediate states repeat-
edly rather than pursuing the terminal states. A direct implication from Example 4.5 is
that, to prevent an agent from staying at non one-way intermediate states, the intermediate
rewards on these non one-way intermediate states should be relatively small.

5. Connections to Finding the Shortest Path

We discuss the connections between the different reward settings (sparse reward, OWSP,
OWMP, NOW) and their connections to finding the shortest path in this section.

The Sparse Reward Setting The sparse reward setting requires no prior knowledge
nor assumptions of the subgoals of the tasks, because it contains no intermediate states.
Hence, it can further be applied to general goal-reaching tasks. In addition, as illustrated in
Proposition 4.1, the successful policy obtained by SVI pursues the shortest path but at the
cost of high computational complexity (D(s0,ST ) total number of SVI). The computational
complexity in the sparse reward setting motivates the use of intermediate rewards: practical
tasks with well-designed intermediate rewards should be more computationally efficient than
the same task with only sparse terminal rewards.

The OWSP Intermediate Reward Setting As mentioned in Section 3.2, the OWSP
intermediate reward setting only applies to limited number of tasks seen in practice. How-
ever, when the subgoals of the goal-reaching tasks indeed has the one-way single-path struc-
ture, Proposition 4.2 shows that the computational complexity of obtaining a successful
Q-function can be significantly reduced, and a greedy policy will find the shortest path
from s0 to ST .

The OWMP Intermediate Reward Setting Comparing to the OWSP setting, the
OWMP intermediate setting has much broader practical applications. Though the OWMP
intermediate setting is more prevalent, the downside is that generally a greedy policy with a
successful Q-function will pursue the closest intermediate states instead of the shortest path
to ST . Figure 6 illustrates the trade-off between computational complexity and achieving
the shortest path is provided: A greedy policy reaches ST when k (the number of SVI)
equals 1 or 2, by recursively pursuing the closest intermediate state (path 1). When k > 2
and the terminal rewards B and intermediate rewards BI satisfy the conditions stated in
Theorem 4.4, the greedy policy will find ST via the shortest path (path 2).
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s0 ST

SI

Path 1

Path 2

Figure 6: The trade-off between the minimum computational complexity and the pursuit of the
shortest path in the OWMP intermediate reward setting. The cyan isosceles triangles are the one-
way intermediate states and the orientations of each isosceles triangle represents the direction of each
intermediate state – the agent at a given intermediate state can only visit the next state pointed by
the orientation of the apex. The remaining settings are the same as Figure 3.

6. Experiment

We experimentally verify in several OpenAI Gym MiniGrid environments that the agent is
able to learn a successful trajectory more quickly in OWSP and OWMP intermediate reward
settings than the sparse reward setting. We verify our findings on ε-greedy asynchronous
Q-learning algorithm, and three popular deep RL algorithms: DQN (Mnih et al., 2015),
A2C (Mnih et al., 2016), and PPO (Schulman et al., 2017). For all experiments, the agent
observes the whole environment. For asynchronous Q-learning, each state is represented as
a string encoding of the grid. For deep RL algorithms, each state is an image of the grid.
The detailed parameters and additional related experiments are provide in Appendix C.2.2.
See https://github.com/kebaek/minigrid for the code to run all presented experiments.

The main purpose of our experiments is to justify the following indications from our
theoretical results: 1) adding intermediate rewards on one-way intermediate states reduces
computational complexity; 2) there is a trade-off between computational complexity and
the pursuit of the shortest path in the OWMP setting. Although we have discussed many
examples of RL applications in Table 2, we choose the OpenAI Gym MiniGrid environments
(Brockman et al., 2016; Chevalier-Boisvert et al., 2018) rather than the Games (Pacman,
Montezuma, Dota2, StarCraft II, and Honor of Kings) discussed in Table 2 due to limited
computational resources and the intrinsic randomness in these Game.

6.1 Environmental Setting

Single-Path Maze The 7x7 grid maze (Figures 7a and 7b) consists of a single path that
the agent must navigate through to reach the terminal state. This environment will be used
to study the computational benefit of having well-designed intermediate rewards for the
OWSP setting. See Figure 7 for possible actions and reward design. Note that this maze
environment is one-way since each intermediate reward may only be obtained once, i.e.,
the blue circle disappears from the environment once the agent reaches the corresponding
square.

3-Door/4-Door These 9x9 grid mazes (Figures 7c and 7d) consist of 3 different paths to
to the terminal state each sealed by a series of locked doors. Each door has a corresponding
key of the same color. The goal of the agent is to reach the terminal state by picking up the
corresponding keys to unlock all the doors along at least one of the three paths. Note that
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this environment is one-way since a door cannot lock once unlocked and a key cannot be
dropped once picked up. These environments will be used to study the computational ben-
efit of having well-designed intermediate rewards and the trade-off between computational
complexity and shortest path for the OWMP setting (Section 4.3).

(a) Sparse reward (b) Intermediate re-
ward

(c) 3-Door env. (d) 4-Door env.

Figure 7: The red triangle is the agent and the green square is the terminal state. (a)-(b): The Single-Path
Maze environment. Agent takes actions from {go forward, turn 90◦, turn −90◦}. For the sparse reward
setting (a), the agent receives a terminal reward of +10. For the intermediate reward setting (b), the agent
also receives +1 for arriving at any square with a blue circle. (c)-(d): The Door-Key environments. Agent
takes actions from {go forward, turn 90◦, turn −90◦, pick up key, open door}. For the sparse reward setting
of (c) and (d), the terminal reward is +10. For the intermediate reward setting of (c) and (d), the agent
also receives +2 for picking up a key or opening a door. All rewards in environments (a)-(d) can only be
obtained once per episode.

6.2 Results

On the Single-Path Maze environment and the 3-Door environment, we compare the num-
ber of training episodes required for the agent to find a successful policy in the sparse
reward setting and the intermediate reward setting (See Figure 7a and 7c for more details
about reward design). For 0.8 ε-greedy Q-learning, we train 100 independent models and
evaluate each model once, for a total of 100 trials. For the deep RL algorithms, we train 10
independent models, and evaluate each model 10 times with different seeds, for a total of
100 trials. Win rate is computed as the number of trials that reach the terminal state out
of 100.

As expected, we observe that it takes ε-greedy Q-learning 36 episodes to reach a win
rate of 100% whereas in the sparse reward setting, ε-greedy Q-learning is only able to reach
a win rate of 10% for the same number of episodes (See Table 5). Similarly for the 3-Door
setting, if the agent is also rewarded for picking up keys and opening doors, significantly
less training episodes are required to obtain a win rate of 100% (See Table 5). We observe
a similar phenomena on popular deep RL algorithms: DQN, A2C, and PPO (See Figure
8). Our experimental findings on the computational benefits of using intermediate rewards
corroborate our theoretical claim in Section 4.

On the 4-Door environment, we test two intermediate reward settings where the agent
is either rewarded 10 or 1000 points for reaching the terminal state. Additionally, the agent
is rewarded 2 points for either picking up a key or opening a door. The shortest successful
path to the terminal state (12 steps) has the least number of doors to unlock, thus less
intermediate rewards, whereas the longest of the three paths to the terminal state contains at
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Maze (Figure 7a and 7b) 3-Door (Figure 7c)
# Episodes Sparse Intermediate # Episodes Sparse Intermediate

18 6/100 59/100 40 3/100 90/100

24 7/100 82/100 80 10/100 100/100

30 6/100 95/100 120 43/100 100/100

36 10/100 100/100 160 74/100 100/100

Table 5: Asynchronous Q-learning: Computational Complexity. We report the number of wins out
of 100 trials (100 training sessions evaluated once each) after different training episodes for both the
sparse reward and intermediate reward settings.

Setting 1: +10 Setting 2: +1000

# Episodes Wins Rewards Steps Wins Rewards Steps
50 64/100 11.28 ± 2.08 95.52 ± 82.58 71/100 11.12 ± 2.30 84.39 ± 79.48

150 99/100 11.2 ± 2.03 24.71 ± 18.10 100/100 11.06 ± 1.99 22.53 ± 3.56

350 100/100 11.1 ± 1.93 22.65 ± 3.40 100/100 10.14 ± 2.60 20.88 ± 4.70

750 100/100 11.18 ± 1.80 22.85 ± 3.24 100/100 9.24 ± 2.85 19.39 ± 5.54

1550 100/100 11.64 ± 1.42 23.36 ± 2.62 100/100 5.52 ± 1.10 12.95 ± 1.64

3150 100/100 12.0 ± 0.0 24.0 ± 0.0 100/100 4.46 ± 0.84 12.23 ± 0.42

Table 6: 4-Door (Figure 7d) Trade-Off for Asynchronous Q-Learning. We report the number of wins
out of 100 trials (100 training sessions evaluated once each), averaged total intermediate rewards,
and averaged number of steps taken after different training episodes. The agent receives a terminal
reward of +10 in Setting 1 +1000 in Setting 2. The agent also receives +2 for picking up a key and
+2 for opening a door in both settings. The episode maxes out at 324 steps.

least 3 doors to unlock, thus more possible intermediate rewards to collect. We compare the
average steps required during evaluation for the agent to reach the terminal state between
these two settings. From Section 4.3, we expect that in this OWMP setting, the agent
identifies the shortest successful path with Q-learning given a well-designed discount factor
and a good ratio between intermediate/terminal rewards. For a discount factor of 0.9, we
observe that if the terminal reward is 1000, the path taken by an agent trained by ε-greedy
Q-learning converges to the shortest path of 12 steps. On the other hand, if the terminal
reward is 10, the path taken by the agent converges to that of 24 steps and on average
collects more intermediate rewards (See Table 6). Similarly, with a discount factor of 0.8
for DQN and 0.9 for A2C and PPO, we observe that the agent chooses the shortest successful
trajectory when rewarded 1000 points for reaching the terminal state during training, and a
longer successful trajectory with more intermediate rewards when rewarded 10 points. Our
experimental findings on the trade-off between computational efficiency and the shortest
path corroborate our theoretical claim in Section 4.3.
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Figure 8: Deep RL: Computational Complexity. We compare the average number of steps an agent
takes to reach the terminal state in the Single-Path Maze and 3-Door environments between sparse
versus intermediate reward settings. If the agent does not reach the terminal state, the episode
maxes out at 324 steps for 3-Door and 196 steps for Single-Path Maze. The results are averaged
over 100 trials (10 training sessions evaluated 10 times each)
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Figure 9: Deep RL: Trade-Off. We compare the average number of steps an agent takes to reach
the terminal state in the 4-Door environment if the terminal reward is 10 versus 1000. The agent
also receives an intermediate reward of 2 when it picks up a key or opens a door. If the agent does
not reach the terminal state, the episode maxes out at 324 steps. The results are averaged over 100
trials (10 training sessions evaluated 10 times each)

7. Related Works and Discussion

7.1 Related Works

Hierarchical RL Hierarchical reinforcement learning and planning are two fundamental
problems that have been studied for decades (Dayan & Hinton, 1993; Kaelbling, 1993a; Parr,
1998; Parr & Russell, 1998; McGovern et al., 1998; Sutton et al., 1998; Precup et al., 1998;
Sutton et al., 1999; Dietterich, 2000; McGovern & Barto, 2001) (See Barto & Mahadevan,
2003 for an overview of other earlier works on hierarchical RL and Chapter 11.2 in the
book Russell & Norvig, 2009 for hierarchical planning). After the success of deep learning
(LeCun et al., 2015; Goodfellow et al., 2016), recent works have revisited hierarchical RL
under the deep RL framework (Kulkarni et al., 2016; Vezhnevets et al., 2017; Andreas
et al., 2017; Le et al., 2018; Xu et al., 2020) (see Chapter 11 in the review paper Li,
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2018 for other hierarchical deep RL literature). Prior theoretical attempts on hierarchical
RL formulated the problem as MDP decomposition problems (Dean & Lin, 1995; Singh
et al., 1998; Meuleau et al., 1998; Wen et al., 2020) or solving subtasks with “bottleneck”
states (Sutton et al., 1999; McGovern & Barto, 2001; Stolle & Precup, 2002; Simsek &
Barreto, 2008; Solway et al., 2014). Our result is closely related to Wen et al. (2020) in the
following two aspects: 1) Our one-way assumption (Assumption 3.2) on the intermediate
states is similar to the exit state of subMDPs (Definition 1 in Wen et al., 2020), in the
sense that our one-way intermediate states can be viewed as the exit states that separate
the MDP into subMDPs; 2) Our quantitative results of different MDP settings suggest
that partitioning the large MDP via intermediate states and intermediate rewards generally
reduce the computational complexity, which corroborates the computational efficiency of
subMDPs in Wen et al. (2020). Though we come to similar theoretical conclusions that
intermediate rewards lead to reduced computational complexity, in this work, we simplify
down the assumptions and build a theoretical framework that is well connected to practice.

Reward Design With the recent success of deep learning, RL has experienced a re-
naissance (Krakovsky, 2016) and has demonstrated super-human performance in various
applications (Mnih et al., 2013, 2015; Silver et al., 2016, 2017; Vinyals et al., 2017, 2019;
Berner et al., 2019; Ye et al., 2020; Fuchs et al., 2021). The reward design varies from task
to task. For example, in Go (Silver et al., 2016, 2017), the agent only receives terminal
rewards at the end of the game (+1 for winning and -1 for losing); for Starcraft II (Vinyals
et al., 2019), the reward function is usually a mixture win-loss terminal rewards (+1 on a
win, 0 on a draw, and -1 on a loss) and intermediate rewards based on human data; for mul-
tiplayer online battle arena (MOBA) games (OpenAI, 2018; Berner et al., 2019; Ye et al.,
2020), the reward functions are generally heavily handcrafted (see Table 6 of Berner et al.,
2019 and Table 4 of Ye et al., 2020) based on prior knowledge. Besides task-dependent
reward design, other works also have studied the reward design for general RL or robotic
tasks (Singh et al., 2009, 2010; Sorg et al., 2010; Vezhnevets et al., 2017; Van Seijen et al.,
2017; Raileanu & Rocktäschel, 2020; Ratner et al., 2018, 2018; He & Dragan, 2021) (See
Guo, 2017; Doroudi et al., 2019 and references therein; also see other literature in Chapter
5 of the review paper Li, 2018).

Goal-Conditioned RL Goal-conditioned RL, the problem of learning a policy that
reaches certain goal states, has been empirically studied in many prior works (Kaelbling,
1993b; Sutton et al., 2011; Andrychowicz et al., 2017; Fu et al., 2018; Pong et al., 2018;
Ghosh et al., 2019; Eysenbach et al., 2020a, 2020b; Kadian et al., 2020; Fujita et al., 2020;
Chebotar et al., 2021; Khazatsky et al., 2021). The goal-conditioned RL is closely related to
the sparse reward setting in our framework, where the agent only receives terminal rewards
at the terminal (goal) states. Moreover, the empirical observations where goal-reaching
tasks can be improved via pursuing subgoals (Andreas et al., 2017; Nasiriany et al., 2019)
also corroborate with the computational benefits of rewarding intermediate states suggested
by our theoretical results in Section 4.

Connection to Reward Shaping (Ng et al., 1999) For a given MDP M with reward
function r, (Ng et al., 1999) proposed a potential-based shaping function F , such that the
same MDP M with shaped reward F + r has the same optimal policy as M with the
original reward function r. Part of our result is related to reward shaping (Ng et al., 1999)
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in the sense that, when certain conditions are satisfied (Assumption 3.3 (a)), greedy policies
under the sparse reward setting and the intermediate reward setting are the same, as they
both follow the shortest path from s0 to ST . Comparing to reward shaping, the advantage
of our work is also on the practical side, since the assumptions of the potential function
F is generally hard to satisfy. F is usually approximated via neural networks in practice,
which requires extra engineering efforts. On the contrary, as we have discussed in Section 3
and Section 6, our assumptions on the one-way intermediate states (Assumption 3.3) and
relative magnitude between intermediate rewards BI and terminal rewards B can easily be
implemented in practice.

7.2 Discussion

Practical Implications Our work theoretically verifies the common practice of adding
intermediate rewards to speed up training in reinforcement learning. Formally, in order to
find a goal-reaching successful policy, adding intermediate rewards based on prior knowledge
of the practical tasks is generally more computationally efficient than using sparse terminal
rewards alone. However, unless the intermediate rewards are carefully designed (e.g., like the
OWSP setting described in Section 4.2), greedy policies usually do not follow the shortest
path to the terminal states. To prevent the agent from getting stuck at non one-way
intermediate states (e.g., like the case discussed in Example 4.5), we can assign relatively
smaller rewards (compared to the terminal rewards) to non one-way intermediate states.
Our findings corroborate the reward design of Dota2 in Table 6 of (Berner et al., 2019): one
can understand the “Win” (with reward +5) as terminal states; “XP Gained” (with reward
+0.002), “Gold Gained” (with reward +0.006), and “Gold Spent” (with reward +0.0006)
as non one-way intermediate states;“T1 Tower” (with reward +2.25), “T2 Tower” (with
reward +3), “T3 Tower” (with reward +4.5), “T4 Tower” (with reward +2.25), “Shrine”
(with reward +2.25), and “Barracks” (with reward +6) as one-way intermediate states.

Negative Rewards One limitation of this work is that we only consider positive rewards,
but in many applications described before, the agent may receive negative rewards upon the
arrival of some unfavorable states. We will provide several examples here to provide some
intuitions on the effect of negative rewards in Figure 10 and leave formal studies to future.
In Figure 10 (a), for an intermediate state with negative reward which is not in the path
from s0 to ST , then given enough computational complexity, a greedy agent still finds ST .
However, if there is an intermediate state with negative reward that is in the path from s0 to
ST , the behavior of a greed agent will depend on the magnitude of the negative rewards. As
shown in Figure 10 (b) and (c), when the magnitude of the negative intermediate rewards
r(s, a, s−) is relatively small (as shown in (b), r(s, a, s−) = −1), then a greedy agent will
still find ST because the overall reward from ST and s− is larger than 0; however, when
the magnitude of the negative reward is large (as shown in (b), r(s, a, s−) = −10), then a
greedy agent will not find ST because the overall reward of s0 and ST is smaller than 0.

Unequal Magnitude Intermediate Rewards Another limitation of this work is the
equal magnitude intermediate reward. In Section 3.3, we assume all intermediate rewards
are equal magnitude BI (but can be different from the terminal rewards B). Such equal
magnitude assumption helps us provide a bound w.r.t. relative magnitude between termi-
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7.29 0 0

8.1 7.29 0

9 10

(a) r(s, a, s−) = −1

6.39 0 0

8.1 6.39 0

9 10

(b) r(s, a, s−) = −1

0 0 0

8.1 0 0

9 10

(c) r(s, a, s−) = −10

s0

s−

ST

Figure 10: An example of the value functions after k = 4 iterations of SVI and with terminal
rewards B = 10, γ = 0.9, with different structures and magnitude of negative intermediate rewards.

nal rewards and intermediate rewards (the bound of B/BI described in Theorem 4.3 and
Theorem 4.4), hence ensuring the monotonicity of the value function Vk(s) w.r.t. D(s,SI),
D(s,ST ) in Theorem 4.3, Theorem 4.4, respectively. One way to generalize the equal mag-
nitude intermediate rewards is to assume all intermediate rewards are bounded between
[Bl, Br], and then apply the same techniques as Theorem 4.3 and 4.4 to provide bounds
that involve B/Bl and B/Bu.

7.3 Future Works

Our work can be extended in these following directions: 1) Generalize from the deterministic
MDPs in our framework to stochastic MDPs; 2) Study the tightness of the bounds for
the relative magnitude B/BI in Theorem 4.3 and 4.4; 3) Generalize to other scenarios
that contains negative rewards (e.g., from “bad” terminal states or intermediate states); 4)
Generalize to intermediate rewards of unequal magnitude; 5) Study how rewarding “good”
non one-way intermediate states (instead of just one-way states) affects the goal-reaching
problems in general.
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Appendix A. Extra Definition and Proof of Section 4

A.1 Definition of Correct and Incorrect Actions

We introduce the definition of correct and incorrect actions to facilitate the future proof.

Definition A.1 (Correct and Incorrect Actions) Let sa be the subsequent state the
state-action pair (s, a), we define the correct action set A+(s) of a state s ∈ S\ST as

A+(s) = {a|a ∈ A, D(sa,ST ) = D(s,ST )− 1}. (A.1)

Conversely, we can define the incorrect action set of a state s ∈ S as

A−(s) = {a|a ∈ A\A+(s)}. (A.2)

A.2 Proof of Proposition 4.1

Proposition A.2 (Sparse Rewards) Let M = (S,A, P, r, γ) be a deterministic MDP
with initial state s0 and terminal states ST . If the reward function r(·) follows the sparse
reward setting (Table 3) and the value function and Q-function are zero-initialized (4.1),
then after any k ≥ D(s0,ST ) synchronous value iteration updates (2.1), the Q-function Qk

is a successful Q-function, and a greedy policy follows the shortest path from s0 to ST .

Proof ∀d ≤ k, let Sd denote the set of states that is distance d to the desired terminal
state ST , and let ad+ ∈ A+(sd), ad− ∈ A−(sd) denote a correct action and an incorrect
action of sd, respectively. From Lemma B.1, we know that

Vk(s
d) =

{
γd−1B, ∀k, d ∈ N+, d ≤ k,

0, otherwise.

Combine Lemma B.1 with the Q-function update in value iteration (2.1):

Qk(s, a) = r(s, a, sa) + γVk(sa), ∀(s, a) ∈ S ×A,

we know that

Qk(s
d, ad+)

(i)
=

{
γd−1B, if d ≤ k,

0, otherwise,
(A.3)

Qk(s
d, ad−)

(ii)

≤

{
γdB, if d ≤ k,

0, otherwise,
(A.4)

where inequality (ii) holds since Definition A.1 implies that D(sd
ad−

,ST ) ≥ D(s,ST ). We
shall clarify equality (i) for the case when d = 1: in this case, Vk(s) = 0 always holds
∀s ∈ ST because given a state-action pair (s, a), the MDP stops once the subsequent state
sa ∈ ST , hence we have

Qk(s
1, a1+) = r(s1, a1+, s1a1+) + γVk(s

1
a1+) = B. (A.5)
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Since γ < 1, we know that

Qk(s
d, ad−) < Qk(s

d, ad+), ∀k ≥ d, (A.6)

which implies
argmax

a∈A
Qk(s

d, a) ∈ A+(sd), ∀k ≥ d. (A.7)

Now consider s0, let dm = D(s0,ST ), (A.6) implies that any greedy action is a correct
action:

a0 = argmax
a

Qk(s0, a) ∈ A+(s0), ∀k ≥ dm (A.8)

By Definition A.1, the subsequent state s1 of state-action pair (s0, a0) has distance at most
dm (D(s1,ST ) ∈ [dm − 1, dm]) to ST , again (A.6) implies that

a1 = argmax
a

Qk(s1, a) ∈ A+(s1). (A.9)

Likewise, we know that the greedy policy generates a trajectory {s0, a0, s1, a1, . . . }, such
that

ai = argmax
a

Qk(si, a) ∈ A+(si), (A.10)

which eventually ends up with a state sn ∈ ST , since Definition A.1 indicates that si+1 is
one step closer to ST than si. Hence, we conclude that Qk is a successful Q-function. When
k ≥ d, since (A.10) shows that every action taken by the greedy policy will take the agent
one step closer to ST , we can also conclude that the greedy policy also pursues the shortest
path from s0 to ST .

A.3 Proof of Proposition 4.2

Proposition A.3 (Single-path Intermediate States) Let M = (S,A, P, r, γ) be a de-
terministic MDP with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and ter-
minal states ST . Suppose M satisfies Assumption 3.2 and 3.3 (a). If the reward function
r(·) follows the intermediate reward setting (Table 3) and the value function and Q-function
are zero-initialized (4.1), then after

k ≥ dmax
.
= max{D(s0, si1), D(si1 , si2), . . . , D(siN−1 , siN ), D(siN ,ST )} (A.11)

synchronous value iteration updates (2.1), the Q-function Qk is a successful Q-function, and
a greedy policy follows the shortest path from s0 to ST .

Proof The proof of this Proposition is a direct result of Lemma B.2. Similar to Lemma
B.2, ∀j ∈ [n+ 1], let S[j−1,j) denote the sets

S[j−1,j) =


{s ∈ S|D(s, si1) < ∞} if j = 1,

{s ∈ S|D(s, sij ) = ∞, D(s, sij+1) < ∞} if j = 2, 3, . . . , N,

{s ∈ S|D(s, sin) = ∞, D(s,ST ) < ∞} if j = N + 1.

(A.12)
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For a state sd ∈ S[j−1,j), let

d = [dj , dj+1, . . . , dn+1]
⊤ ∈ Rn+1, (A.13)

where dl = D(s, sil), ∀l = j, j + 1, . . . , N and dN+1 = D(s,ST ), denote a vector whose
entries are the distance from s to intermediate states sij (and the terminal states ST ). Let
ad+ ∈ A+(sd), ad− ∈ A−(sd) denote a correct and an incorrect action of sd. Combine
Lemma B.2 with the Q-function update in value iteration (2.1)

Qk(s, a) = r(s, a, sa) + γVk(sa), ∀(s, a) ∈ S ×A,

we know that

Qk(s
d, ad+) =

N+1∑
l=j

v(k, dl)Bl = Vk(s), (A.14)

Qk(s
d, ad−)

(i)

≤ γ

N+1∑
l=j

v(k, dl)Bl = γVk(s), (A.15)

where

v(k, dl) =

{
γdl−1, ∀k, d ∈ N+, dl ≤ k + 1,∀l ∈ [N + 1],

0, otherwise,
and Bl =

{
BI , if l ∈ [N ],

B, if l = N + 1,

(A.16)
and inequality (i) holds because Definition A.1 implies D(sd

ad−
,ST ) ≥ D(sd,ST ) and As-

sumption 3.2 guarantees that previous intermediate states si1 , si2 , . . . , sij−1 cannot be revis-
ited. Since γ < 1, notice that when k ≥ dj , we have

Qk(s
d, ad+) > Qk(s

d, ad−), (A.17)

which implies
argmax

a∈A
Qk(s

d+, a) ∈ A+(sd). (A.18)

Now consider s0, since we assume that k ≥ dmax, therefore (A.17) implies that the greedy
action is a correct action:

a0 = argmax
a

Qk(s0, a) ∈ A+(s0). (A.19)

By Definition A.1 and Assumption 3.2, we consider the following two cases:

• The subsequent state s1 of state-action pair (s0, a0) does not reach si1 , (s1 ∈ S[0,1)),
then s1 has distance at most d1 to states si1 :

D(s1, si1) ∈ [d1 − 1, d1]. (A.20)

Since k ≥ dmax ≥ d1, (A.17) implies that the greedy action is a correct action:

a1 = argmax
a

Qk(s1, a) ∈ A+(s1). (A.21)
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• The subsequent state s1 of state-action pair (s0, a0) reaches si1 , (s1 ∈ S[1,2)), then s1
has distance at most d2 to states si2 :

D(s1, si2) ∈ [d2 − 1, d2]. (A.22)

Since k ≥ dmax ≥ d2, (A.17) implies that the greedy action is a correct action:

a1 = argmax
a

Qk(s1, a) ∈ A+(s1). (A.23)

Likewise, we know that greedy execution generates a trajectory {s0, a0, s1, a1, . . . }, such
that

ai = argmax
a

Qk(si, a) ∈ A+(si), (A.24)

which eventually ends up with a state sn ∈ ST , since Definition A.1 indicates that si+1 is
one step closer to ST than si. Hence, we conclude that Qk is a successful Q-function. When
k ≥ dmax, since (A.24) shows that every action taken by the greedy policy will take the
agent one step closer to ST , we can also conclude that the greedy policy also pursues the
shortest path from s0 to ST .

A.4 Proof of Theorem 4.3

Theorem A.4 (Finding the Closest SI) Let M = (S,A, P, r, γ) be a deterministic MDP
with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and terminal states ST .
Suppose M satisfies Assumption 3.2, 3.3 (b), and 3.5, if the reward function r(·) follows
the intermediate reward setting (Table 3) and the value function and Q-function are zero-
initialized (4.1), then ∀s ∈ S\ST , if ST is not directly reachable from s, then after

k ≥ d = D(s,SI)
.
= min

j∈Id(s)
D(s, sij ) (A.25)

synchronous value iteration update (2.1), an agent following the greedy policy will find the
closest directly reachable intermediate state sij⋆ of s (D(s, sij⋆ ) = D(s,SI)), given that
B
BI

∈
(
0, 1

1−γh

)
when γ + γh ≤ 1 or B

BI
∈

(
1

1−γh ,
1−γ
γ1+h

)
when γ + γh > 1, where h is the

minimum distance between two intermediate states (Assumption 3.5).

Proof Recall the definition of directly reachable intermediate states (Definition 3.4) of
state s: {sij , ∀j ∈ Id(s)}. ∀s′ ∈ S, such that

d′ = D(s′,SI) = min
j∈Id(s′)

D(s′, sij ) > d (A.26)

is the minimum distance from s′ to its closest directly reachable intermediate state, it suffices
to show Vk(s) > Vk(s

′), since Vk(s) > Vk(s
′) can directly lead to Qk(s, ai+) > Qk(s, ai−):

Qk(s, ai+)
(i)
= r(s, ai+, sai+) + γVk(sai+)

(ii)
> γVk(sai−)

(iii)
= r(s, ai−, sai−) + γVk(sai−)

(iv)
= Qk(s, ai−),

(A.27)
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where ai+ ∈ A+
I (s) is an action that leads to the closest directly reachable intermediate

states of state s and ai− ∈ A−
I (s) is the other actions that do not. Equality (i) and (iv) hold

by the synchronous value iteration update (2.1), inequality (ii) holds since D(sai− ,SI) >
D(sai+ ,SI) and we have assumed Vk(s) > Vk(s

′) holds ∀s, s′ such that D(s′,SI) > D(s,SI),
and equality (iii) holds because sai− is not an intermediate state. Moreover, if the agent at
s takes an action ai+ and moves to sai+ , we will have

k ≥ d− 1 = D(sai+ , sij ) (A.28)

if sai+ is not an intermediate state, which implies that the action given by the greedy policy
will still lead sai+ one step forward to the closest directly reachable intermediate states.
Therefore, we only need to show Vk(s) > Vk(s

′),∀s, s′ such that D(s′,SI) > D(s,SI), which
will be our main focus in the remaining proof.

When d < k < d + h. In this case, all intermediate rewards are the same (all equal to
BI), Lemma B.1 implies that

Vk(s) = v(k, d)BI , ∀k < d+ h, (A.29)

where d = D(s,SI) and

v(k, d) =

{
γd−1, d ≤ k,

0, otherwise.
(A.30)

Proposition 4.1 implies that the agent will find a path to the closest intermediate state sij⋆0
:

D(s, sij⋆0
) = D(s,SI), (A.31)

and
Vk(s) = γd−1BI > γdBI ≥ Vk(s

′). (A.32)

When k ≥ d + h. To complete this theorem, we need to show that, when k ≥ d + h,
Vk(s) > Vk(s

′) still holds. Let π be any deterministic policy and suppose under policy π,
the agent starting from s′ will visit the sequence of intermediate states before reaching ST :

{sij⋆0 , sij⋆1 , . . . , sij⋆uπ , sij⋆uπ+1
}, (A.33)

where we slightly abuse the notation by assuming sij⋆
uπ+1

∈ ST . Hence, the discounted
reward V π

k (s′) starting from state s′ following policy π satisfies

V π
k (s′) ≤ γd

′−1BI +

[
uπ∑
l=1

γdl−1

]
BI + γduπ+1−1B︸ ︷︷ ︸

Γ(π)

,
(A.34)

where

dl = D(s′, sij⋆0
) +

l−1∑
m=0

D(sij⋆m , sij⋆m+1
)
(i)

≥ d′ + lh, ∀l = 1, 2, . . . , uπ + 1, (A.35)
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where inequality (i) hold because of Assumption 3.5. Hence, we know that

Γ(π) = γd
′−1BI +

[
uπ∑
l=1

γdl−1

]
BI + γduπ+1−1B

(ii)

≤ γd
′−1

[
uπ∑
l=0

γlh

]
BI + γd

′+(uπ+1)h−1B︸ ︷︷ ︸
f(uπ)

,

(A.36)
where inequality (ii) holds because of (A.35) and γ < 1. By the synchronous value iteration
update (2.1), and (A.34) the value function of any state s, s′ satisfy:

γd−1BI ≤ Vk(s), Vk(s
′) = max

π
V π
k (s′) ≤ max

π
f(uπ), (A.37)

Next we will show γd−1BI > f(uπ) holds ∀π, (which directly leads to Vk(s) > Vk(s
′), for

any policy from (A.37), after taking the max over all policy π) under these two following
conditions: 1) B

BI
∈
(
0, 1

1−γh

)
when γ + γh ≤ 1; 2) B

BI
∈
(

1
1−γh ,

1−γ
γ1+h

)
when γ + γh > 1.

• When B
BI

∈
(
0, 1

1−γh

)
and γ + γh ≤ 1.

Since B
BI

∈
(
0, 1

1−γh

)
, we know that BI − (1− γh)B > 0, hence

f(uπ) < f(uπ) + γd
′+(uπ+1)h−1

[
BI − (1− γh)B

]
= γd

′−1

[
uπ∑
l=0

γlh

]
BI + γd

′+(uπ+1)h−1B + γd
′+(uπ+1)h−1

[
BI − (1− γh)B

]
= γd

′−1

[
uπ+1∑
l=0

γlh

]
BI + γd

′+(uπ+2)h−1B = f(uπ + 1) < · · · < f(∞)

= γd
′−1

[ ∞∑
l=0

γlh

]
BI =

γd
′−1

1− γh
BI

(i)

≤ γd

1− γh
BI

(ii)

≤ γd−1BI ,

(A.38)

where inequality (i) holds because (A.26) implies d′ ≥ d+1, and inequality (ii) holds
because γ + γh ≤ 1 implies that γ

1−γh ≤ 1.

• When B
BI

∈
[

1
1−γh ,

1−γ
γ1+h

)
and γ + γh > 1.
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When γ+γh > 1, we know that the interval
(

1
1−γh ,

1−γ
γ1+h

)
is well defined as γ+γh > 1

implies 1
1−γh < 1−γ

γ1+h . Since B
BI

> 1
1−γh , we know that (1− γh)B −BI > 0, hence

f(uπ) < f(uπ) + γd
′+uπh−1

[
(1− γh)B −BI

]
= γd

′−1

[
uπ∑
l=0

γlh

]
BI + γd

′+(uπ+1)h−1B + γd
′+uπh−1

[
(1− γh)B −BI

]
= γd

′−1

[
uπ−1∑
l=0

γlh

]
BI + γd

′+uπh−1B = f(uπ − 1) < · · · < f(0)

= γd
′−1BI + γd

′+h−1B
(i)

≤ γdBI + γd+hB
(ii)

≤ γd−1BI .

(A.39)

where inequality (i) holds because (A.26) implies d′ ≥ d+1, and inequality (ii) holds
because B

BI
≤ 1−γ

γ1+h implies that γBI + γ1+hB ≤ BI .

Hence, we conclude that f(uπ) < γd−1BI , ∀π, which leads to the result that Vk(s) >
Vk(s

′), ∀k ≥ d+ h and ∀s, s′ ∈ S satisfying (A.26). This result indicates that we still have
Vk(s) > Vk(s

′) in the future update of synchronous value iteration. Therefore, we conclude
that Vk(s) > Vk(s

′), ∀s, s′ ∈ S satisfying D(s′,SI) > D(s,SI), which completes the proof.

A.5 Proof of Theorem 4.4

Theorem A.5 (Finding the Shortest Path to ST ) Let M = (S,A, P, r, γ) be a deter-
ministic MDP with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and terminal
states ST . Suppose M satisfies Assumption 3.2, 3.3 (b), and 3.5, the reward function r(·)
follows the intermediate reward setting (Table 3), and the value function, Q-function are
zero-initialized (4.1). ∀s ∈ S\ST , suppose ST is directly reachable from s, and let

d = D(s,ST ) and dI = D(s,SI)
.
= min

j∈Id(s)
D(s, sij ). (A.40)

If d and dI satisfies:

d <

dI + log 1
γ

[
(1− γh) B

BI

]
, if B

BI
< 1

1−γh ,

dI + log 1
γ

(
B

BI+γhB

)
, if B

BI
≥ 1

1−γh ,
and d < dI + h− 1, (A.41)

where h is the minimum distance between two intermediate states (Assumption 3.5), then
after k ≥ d synchronous value iteration updates (2.1), an agent following the greedy policy
will pursue the shortest path to ST .

Proof By the update of Q-function in the synchronous value iteration update (2.1), it
suffices to show

Qk(s, a
+) = r(s, a+, sa+) + γVk(sa+) > r(s, a−, sa−) + γVk(sa−) = Qk(s, a

−), (A.42)
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when condition (A.41) is satisfied. Lemma B.3 implies that when k < dI + h, we have

Vk(s) = max{v(k, dI)BI , v(k, d)B}, (A.43)

where

v(k, d) =

{
γd−1, ∀k, d ∈ N+, d ≤ k,

0, otherwise.
(A.44)

Hence we will focus on proving (A.42) in the remaining proof.

When d ≤ k < dI + h− 1. In this case, the conditions in (A.41) first guarantee it exists
a k such that d ≤ k < dI + h− 1. First, we will show both conditions

d < dI + log 1
γ

[
(1− γh)

B

BI

]
and d < dI + log 1

γ

(
B

BI + γhB

)
,

indicate that
γdIBI < γdB. (A.45)

• For d < dI + log 1
γ

[
(1− γh) B

BI

]
, we have

d− dI < log 1
γ

[
(1− γh)

B

BI

]
⇐⇒

(
1

γ

)d−dI

< (1− γh)
B

BI

⇐⇒ γdIBI < (1− γh)γdB =⇒ γdIBI < γdB.

(A.46)

• For d < dI + log 1
γ

(
B

BI+γhB

)
, we have

d− dI < log 1
γ

(
B

BI + γhB

)
⇐⇒

(
1

γ

)d−dI

<
B

BI + γhB

⇐⇒ γdI (BI + γhB) < γdB =⇒ γdIBI < γdB.

(A.47)

Now consider a correct action a+ ∈ A+(s) and an incorrect action a− ∈ A−(s), we will next
show

Qk(s, a
+) = v(k, d)B, and Qk(s, a

−) ≤ max{γv(k, dI − 1)BI , γv(k, d)B}. (A.48)

• For Qk(s, a
+), when d = 1, we have

Qk(s, a
+) = r(s, a, sa+) + γVk(sa+)

(i)
= B = v(k, 1)B, (A.49)

where equality (i) holds because sa+ ∈ ST , hence r(s, a, sa+) = B and Vk(sa+) = 0.
When d > 1, we have

Qk(s, a
+) = r(s, a, sa+) + γVk(sa+)

(ii)
= γv(k, d− 1)B

(iii)
= v(k, d)B. (A.50)

Equality (ii) holds because r(s, a, sa+) = 0 and Lemma B.3 implies Vk(sa+) = v(k, d−
1)B. Equality (iii) holds because when k ≥ d, γv(k, d − 1) = γd−1 = v(k, d). Hence,
we conclude that Qk(s, a

+) = v(k, d)B.
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• For Qk(s, a
−), consider these two following subsets of A−(s): a−i+ ∈ A+

I (s) ∩ A−(s)
and a−i− ∈ A\(A+

I (s)∪A+(s)), where A+
I (s) is the set of actions that take state s one

step closer to SI :

A+
I (s)

.
= {a|a ∈ A, D(sa,SI) = D(s,SI)− 1}, (A.51)

and D(s,SI) is defined as

D(s,SI)
.
= min

j∈Id(s)
D(s, sij ) = dI . (A.52)

We will next show that

Qk(s, a
−
i+) ≤ max{γv(k, dI − 1)BI , γv(k, d)B}, ∀a−i+ ∈ A+

I (s) ∪ A−(s),

Qk(s, a
−
i−) ≤ max{γv(k, dI)BI , γv(k, d)B}, ∀a−i− ∈ A\(A+

I (s) ∪ A+(s)).
(A.53)

When dI = 1, we know that sa−i+
∈ SI , hence r(s, a−i+, sa−i+

) = BI . Moreover, when
k < dI + h, we have Vk(sa−i+

) = 0, this is because V0(sa−i+
) is initialized as 0 and it

takes at least h update of synchronous value iteration for Vk(sa−i+
) to be positive but

k < dI + h− 1 = h. Hence, we know that

Qk(s, a
−
i+) = BI = γv(k, 0)BI ≤ max{γv(k, 0)BI , γv(k, d)B}. (A.54)

As for Qk(s, a
−
i−), we have r(s, a−i−, sa−i−) = 0 and Vk(sa−i−

) = max{v(k, d′I)BI , v(k, d
′)B},

where
d′I = D(sa−i−

,SI) ≥ dI , d
′ = D(sa−i−

,ST ) ≥ d. (A.55)

Hence, we have

Qk(s, a
−
i−) = r(s, a−i−, sa−i−

) + γVk(sa−i−
)

(i)
=γmax{v(k, d′I)BI , v(k, d

′)B} ≤ max{γv(k, 1)BI , γv(k, d)B},
(A.56)

where equality (i) holds by Lemma B.3. Therefore, we conclude that (A.53) holds
when dI = 1.
When dI > 1, we have r(s, a−i+, sa−i+

) = 0 and r(s, a−i−, sa−i−
) = 0. In this case, let

d′ = D(sa−i−
,ST ), then

Qk(s, a
−
i+) = r(s, a−i+, sa−i+

) + γVk(sa−i+
)

(i)
=γmax{v(k, dI − 1)BI , v(k, d

′)B} ≤ max{γv(k, dI − 1)BI , v(k, d)B},
(A.57)

where equality (i) holds by Lemma B.3. For Qk(s, a
−
i−), we have r(s, a−i−, sa−i−

) = 0

and Vk(sa−i−
) = max{v(k, d′I)BI , v(k, d

′′)B}, where

d′I = D(sa−i−
,SI) ≥ dI , d

′′ = D(sa−i−
,ST ) ≥ d. (A.58)
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Hence, we have

Qk(s, a
−
i−) = r(s, a−i−, sa−i−

) + γVk(sa−i−
)

(i)
=γmax{v(k, d′I)BI , v(k, d

′′)B} ≤ max{γv(k, dI)BI , γv(k, d)B},
(A.59)

where equality (i) holds by Lemma B.3. Therefore, we conclude that (A.53) holds
when dI > 1.
A direct implication of (A.53) is that

Qk(s, a
−) < max{Qk(s, a

−
i+), Qk(s, a

−
i−)}

≤max{max{γv(k, dI − 1)BI , γv(k, d)B},max{γv(k, dI)BI , γv(k, d)B}}
=max{γv(k, dI − 1)BI , γv(k, d)B}.

(A.60)

Therefore, we have shown (A.48) for d ≤ k < dI +h−1. Hence, combine (A.48) and (A.45),
we have

Qk(s, a
−)

(i)

≤max{γv(k, dI − 1)BI , γv(k, d)B} ≤ max{γdI−1BI , γ
dB}

≤max{γdI−1BI , γ
d−1B} (ii)

= γd−1B = v(k, d) = Qk(s, a
+),

(A.61)

where inequality (i) follows (A.48) and equality (ii) holds due to (A.45). Hence, know that
a greedy action will select a+ ∈ A+(s). If we let d′, d′I denote the distance between sa+ to
ST and SI , respectively, we have

d′ = D(sa+ ,ST ) = d− 1, d′I = D(sa+ ,SI) ≥ dI − 1, (A.62)

which implies d′ and d′I still satisfy (A.41). Recursively applying the above argument, we
conclude that a greedy policy will find the shortest path to ST , when d ≤ k < dI + h− 1.

When k ≥ dI + h− 1. To complete the theorem, we need to show when k ≥ dI + h− 1,
Qk(s, a

+) > Qk(s, a
−) still holds. We have already shown that

Qk(s, a
+) = v(k, d)B = γd−1B,

when d ≤ k < dI + h − 1, and the Q-function from the synchronous value iteration (2.1)
update is non-decreasing, hence when k ≥ dI + h− 1, we know that Qk(s, a

+) ≥ v(k, d) =
γd−1B and it suffices to show that γd−1B ≥ Qk(s, a

−). Let π be a deterministic policy and
suppose the agent starting from s will visit the following sequences of intermediate states
before reaching ST under policy π:

{sij⋆0 , sij⋆1 , . . . , sij⋆uπ , sij⋆uπ+1
}, (A.63)

where we slightly abuse the notation by assuming sij⋆
uπ+1

∈ ST . By the synchronous value
iteration update (2.1), the Q-function of state action pair (s, a−) under policy π satisfies

Qπ
k(s, a

−) ≤ γdI−1BI +

[
uπ−1∑
l=1

γdl−1

]
BI + γduπ−1B︸ ︷︷ ︸

Γ(π)

, (A.64)
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where

dl = D(s, sij⋆0
) +

l−1∑
m=0

D(sij⋆m , sij⋆m+1
)
(i)

≥ dI + lh, ∀l = 1, 2, . . . , uπ + 1, (A.65)

where inequality (i) holds because of Assumption 3.5. Hence, we know that

Γ(π) = γdI−1BI +

[
uπ−1∑
l=1

γdl−1

]
BI + γduπ−1B

(ii)

≤ γdI−1

[
uπ−1∑
l=0

γlh

]
BI + γdI+uπh−1B︸ ︷︷ ︸

f(uπ)

,

(A.66)
where inequality (ii) holds because of (A.65) and γ < 1. By the synchronous value iteration
update (2.1), the Q-function of state action pair (s, a+) when k ≥ dI + h − 1 satisfies
Qk(s, a

+) ≥ γd−1B, and the Q-function of state action pair (s, a−) satisfies

Qk(s, a
−) = max

π
Qπ

k(s, a
−) ≤ max

π
f(uπ). (A.67)

Next we will show γd−1B > f(uπ) holds ∀π (which directly leads to Qk(s, a
+) > Qk(s, a

−))
in these following two conditions: 1) d < dI + log 1

γ

[
(1− γh) B

BI

]
when B

BI
∈
(
0, 1

1−γh

)
; 2)

d < dI + log 1
γ

(
B

BI+γhB

)
when B

BI
≥ 1

1−γh .

• When d < dI + log 1
γ

[
(1− γh) B

BI

]
and B

BI
∈
(
0, 1

1−γh

)
.

Since B
BI

∈
(
0, 1

1−γh

)
, we know that BI − (1− γh)B > 0, hence

f(uπ) < f(uπ) + γdI+uπh−1
[
BI − (1− γh)B

]
= γdI−1

[
uπ−1∑
l=0

γlh

]
BI + γdI+uπh−1B + γdI+uπh−1

[
BI − (1− γh)B

]
= γdI−1

[
uπ∑
l=0

γlh

]
BI + γdI+(uπ+1)h−1B = f(uπ + 1) < · · · < f(∞)

= γdI−1

[ ∞∑
l=0

γlh

]
BI =

γdI−1

1− γh
BI

(i)
< γd−1B,

(A.68)

where the last inequality holds because d < dI + log 1
γ

[
(1− γh) B

BI

]
.

• When d < dI + log 1
γ

(
B

BI+γhB

)
and B

BI
≥ 1

1−γh .
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When B
BI

> 1
1−γh , we know that (1− γh)B −BI ≥ 0, hence

f(uπ) < f(uπ) + γdI+(uπ−1)h−1
[
(1− γh)B −BI

]
= γdI−1

[
uπ−1∑
l=0

γlh

]
BI + γdI+uπh−1B + γdI+(uπ−1)h−1

[
(1− γh)B −BI

]
= γdI−1

[
uπ−2∑
l=0

γlh

]
BI + γdI+(uπ−1)h−1B = f(uπ − 1) < · · · < f(1)

= γdI−1BI + γdI+h−1B
(i)

≤ γd−1B.

(A.69)

where the last inequality holds because d < dI + log 1
γ

(
B

BI+γhB

)
.

Hence, we conclude that γd−1B > f(uπ),∀π. This result implies that a greedy action
will select a+ ∈ A+(s). If we let d′, d′I denote the distance between sa+ to ST and SI ,
respectively, we will have

d′ = D(sa+ ,ST ) = d− 1, d′I = D(sa+ ,SI) ≥ dI − 1, (A.70)

which indicates that d′ and d′I still satisfy (A.41). Recursively applying the above argument,
we conclude that a greedy policy will find the shortest path to ST , when k ≥ dI + h − 1.
Combine this result with the case where d ≤ k < dI +h− 1, we have shown that the greedy
policy finds the shortest path to ST , after k(k > d) synchronous value iteration update.

Appendix B. Auxiliary Lemmas

Lemma B.1 (Vk(s) with Sparse Rewards) Let M = (S,A, P, r, γ) be a deterministic
MDP with desired terminal states ST and initial state s0. If the reward function r(·) satisfies
the sparse reward setting (Table 3) and the Q-function is zero-initialized (4.1), ∀d ∈ N+, let
Sd denote the set of states whose distance to the terminal state ST is d:

Sd = {s ∈ S|D(s,ST ) = d}.

Then ∀k ∈ N+,∀sd ∈ Sd, Vk(s
d) satisfies:

Vk(s
d) =

{
γd−1B, ∀k, d ∈ N+, d ≤ k,

0, otherwise.
(B.1)

Proof We will use induction to prove the results. Recall the synchronous value iteration
update (2.1):

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)} , ∀s ∈ S.

We first check the induction condition (B.1) for the initial case k = 1.
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Initial Condition for k = 1. Since the agent only receives reward r(s, a, sa) = B when
sa ∈ ST , by the value iteration update, we have:

V1(s) =

{
B, if s ∈ S1,

0, otherwise,
(B.2)

hence, the initial condition is verified.

Induction. Next, suppose the condition (B.1) holds for 1, 2, . . . , k, we will show it also
holds for k + 1. In this case, we only need to verify Vk+1(s

d) = γkB for d = k + 1, because
the induction assumption already implies

Vk+1(s
d) =

{
γd−1B, ∀k, d ∈ N+, d ≤ k,

0, otherwise.

Note that when d = k + 1 > 1, we have

r(sk+1, a, sk+1
a ) = 0, ∀a ∈ A, and Vk(s

k+1
a )

(i)

≤ Vk(s
k) = γk−1B, (B.3)

where sk+1
a is the subsequent state of state-action pair (sk+1, a), and inequality (i) becomes

equality if only if a is a correct action a ∈ A+(s) (see Definition A.1). Hence, we know that

Vk+1(s
k+1) = max

a∈A

{
r(sk+1, a, sa) + γVk(s

k+1
a )

}
= γkB. (B.4)

As a result, we conclude that

Vk+1(s
d) =

{
γd−1B, ∀k, d ∈ N+, d ≤ k + 1,

0, otherwise,

which completes the proof.

Lemma B.2 (Vk(s) with Intermediate Rewards Setting (a)) Let M = (S,A, P, r, γ)
be a deterministic MDP with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and
terminal states ST . Suppose M satisfies Assumption 3.2, and 3.3 (a), if the reward function
r(·) follows the intermediate reward setting (Table 3) and the Q-function is zero-initialized
(4.1), ∀j ∈ [N + 1], let S[j−1,j) denote the set of states such that

S[j−1,j) =


{s ∈ S|D(s, si1) < ∞} if j = 1,

{s ∈ S|D(s, sij ) = ∞, D(s, sij+1) < ∞} if j = 2, 3, . . . , N,

{s ∈ S|D(s, siN ) = ∞, D(s,ST ) < ∞} if j = N + 1.

(B.5)

Given a state sd ∈ Sd
[j−1,j), where d = [dj , dj+1, . . . , dN , dN+1]

⊤ ∈ Rn−j+2 is a vector, such
that dj < dj+1 < · · · < dn < dN+1 denote the distance from sd to sij , sij+1 , . . . , siN ,ST ,
respectively:

dl = D(sd, sil), ∀l = j, j + 1, . . . , n, and dN+1 = D(sd,ST ). (B.6)
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Then ∀k ∈ N+,∀sd ∈ Sd, Vk(s
d) satisfies the following conditions:

Vk(s
d) =

N+1∑
l=j

v(k, dl)Bl, (B.7)

where

v(k, dl) =

{
γdl−1, ∀k, d ∈ N+, dl ≤ k, ∀l ∈ [N + 1],

0, otherwise,
and Bl =

{
BI , if l ∈ [N ],

B, if l = N + 1.

(B.8)

Proof We will use induction to prove the results. Recall the synchronous value iteration
update (2.1):

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)} , ∀s ∈ S.

We first check the induction condition (B.7) for the initial case k = 1.

Initial Condition for k = 1. When k = 1, the value function of states s before reaching
sij will not be affected by the rewards from sij+1 , sij+2 , . . . , siN ,ST and will only be updated
using the intermediate reward from sij . As similarly proven for the sparse reward case
(Lemma B.1), we have

V1(s) =

{
BIl , if D(s, sil) = 1,∀l ∈ [N + 1],

0, otherwise,
(B.9)

which implies V1(s
d) =

∑N+1
l=j v(1, dl)Bl, hence, the initial condition is verified.

Induction. Next, suppose the conditions (B.7) hold for 1, 2, . . . , k, we will show they also
hold for k + 1. By the induction assumption, we know that

Vk(s
d) =

N+1∑
l=j

v(k, dl)Bl,

holds for 1, 2, . . . , k, therefore we only need to show the induction condition (B.7) holds when
it exists l′ ∈ {j, j + 1, . . . , N + 1}, such that dl′ = k+ 1, because v(k, dl′) remains the same,
∀dl′ 6= k + 1 when we change k to k + 1. Suppose sd ∈ S[j−1,j) satisfies D(sd, sil′ ) = k + 1,
since dj < dj+1 < · · · < dl′ = k + 1, we will discuss the following cases.

• When j < N + 1 and l′ < N + 1. For a correct action a+ ∈ A+(sd), we have

r(sd, a+, sda+) + γVk(s
d
a+)

=

{
BI + γVk(s

d
a+) = BI + γ

∑l′−1
l=j+1 γ

dl−2BI + γ · γk−1B, if dj = 1,

γVk(s
d
a+) = γ

∑l′−1
l=j γdl−2BI + γ · γk−1B, if dj > 1.

=

l′−1∑
l=j

γdl−1BI + γkBI =

l′∑
l=j

v(k + 1, dl)BI =

N+1∑
l=j

v(k + 1, dl)Bl,

(B.10)
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where the last equality holds because of (B.8). For an incorrect action a− ∈ A−(sd)
we have

r(sd, a−, sda−) + γVk(s
d
a−)

(i)
= γVk(s

d
a−)

(ii)

≤
l′−1∑
l=j

γdlBI , (B.11)

where equality (i) holds because r(sd, a−, sda−) = 0 and inequality (ii) holds because
of γ < 1. Since k + 1 > 1, we know that r(sd, a, sda) = 0 and hence

r(sd, a−, sda−) + γVk(s
d
a−) < r(sd, a+, sda+) + γVk(s

d
a+). (B.12)

By the value iteration update (2.1), we know that

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}

= r(sd, a+, sda+) + γVk(s
d
a+) =

N+1∑
l=j

v(k + 1, dl)Bl,
(B.13)

which completes the induction for this case.

• When j < N + 1 and l′ = N + 1. For a correct action a+ ∈ A+(sd), we have

r(sd, a+, sda+) + γVk(s
d
a+)

=

{
BI + γVk(s

d
a+) = BI + γ

∑N
l=j+1 γ

dl−2BI + γ · γk−1B, if dj = 1,

γVk(s
d
a+) = γ

∑N
l=j γ

dl−2BI + γ · γk−1B, if dj > 1.

=

N∑
l=j

γdl−1BI + γkB =

N+1∑
l=j

v(k + 1, dl)Bl.

(B.14)

For an incorrect action a− ∈ A−(sd) we have

r(sd, a−, sda−) + γVk(s
d
a−) = γVk(s

d
a−) ≤

N∑
l=j

γdlBI . (B.15)

Since k + 1 > 1, we know that r(sd, a, sda) = 0 and hence

r(sd, a−, sda−) + γVk(s
d
a−) < r(sd, a+, sda+) + γVk(s

d
a+). (B.16)

By the value iteration update (2.1), we know that

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}

= r(sd, a+, sda+) + γVk(s
d
a+) =

N+1∑
l=j

v(k + 1, dl)Bl,
(B.17)

which completes the induction for this case.
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• When j = N + 1 and l′ = N + 1. For a correct action a+ ∈ A+(sd), we have

r(sd, a+, sda+) + γVk(s
d
a+) = γkB = v(k + 1, dl)Bl. (B.18)

For an incorrect action a− ∈ A−(sd) we have

r(sd, a−, sda−) + γVk(s
d
a−)

(i)
= 0, (B.19)

where equality (i) holds because Definition A.1 implies that D(sda− ,ST ) ≥ D(sd,ST ) =
k + 1. Since k + 1 > 1, we know that r(sd, a, sda) = 0 and hence

r(sd, a−, sda−) + γVk(s
d
a−) < r(sd, a+, sda+) + γVk(s

d
a+). (B.20)

By the value iteration update (2.1), we know that

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}

= r(sd, a+, sda+) + γVk(s
d
a+) = v(k + 1, dN+1)B,

(B.21)

which completes the induction for this case.

Hence, we know the induction condition (B.7) holds for k + 1, which completes the proof.

Lemma B.3 (Vk(s) when ST is Directly Reachable) Let M = (S,A, P, r, γ) be a de-
terministic MDP with initial state s0, intermediate states SI = {si1 , si2 , . . . , siN }, and termi-
nal states ST . Suppose M satisfies Assumption 3.2, 3.3 (b), and 3.5, if the reward function
r(·) follows the intermediate reward setting (Table 3) and the value function and Q-function
are zero-initialized (4.1), ∀s ∈ S\ST , if ST is directly reachable from s and suppose

d = D(s,ST ) and dI = D(s,SI)
.
= min

j∈Id(s)
D(s, sij ), (B.22)

then after k ≤ dI + h synchronous value iteration updates (2.1), the value function Vk(s)
satisfies

Vk(s) = max{v(k, dI)BI , v(k, d)B}, (B.23)

where

v(k, d) =

{
γd−1, ∀k, d ∈ N, d ≤ k,

0, otherwise.
(B.24)

Proof Similar to the definition of A+(s), let A+
I (s) denotes the set of actions that lead s

one step closer to SI :

A+
I (s) = {a|a ∈ A, D(sa,SI) = D(s,SI)− 1}. (B.25)

We will use induction to prove the results. Recall the synchronous value iteration update
(2.1):

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)} , ∀s ∈ S.

We first check the induction condition (B.23) for the initial case k = 1.
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Initial Condition for k = 1. When k = 1, we know that

V1(s) = max
a

{r(s, a, sa) + γVk(sa)}

=


max{BI , B}, if dI = d = 1,

BI , if dI = 1, d > 1,

B, if d = 1, dI > 1,

0, otherwise
= max{v(1, dI)BI , v(1, d)B},

(B.26)

which verifies the initial condition (B.23).

Induction. We will discuss the following cases: (a) dI ≤ k+1, d = 1, (b) dI ≤ k+1, d > 1,
and (c) dI > k + 1.

(a) When dI ≤ k + 1, d = 1. In this case, we consider these following actions:

a+ ∈ A+(s), a−i+ ∈ A+
I (s)\A

+(s), a−i− ∈ A(s)\(A+
I (s) ∪ A+(s)). (B.27)

• For any a+ ∈ A+(s). In this case, d = 1 implies that sa+ ∈ ST . Hence we have

r(s, a+, sa+) = B, Vk(sa+) = 0 =⇒ r(s, a+, sa+) + γVk(sa+) = B, (B.28)

• For any a−i+ ∈ A+
I (s)\A+(s). In this case, let

d′ = D(sa−i+
,ST ), (B.29)

by the definition of A+
I (s) (B.25), we know that

d′ = D(sa−i+
,ST ) ≥ d = 1, D(sa−i+

,SI) = D(s,SI)− 1 = dI − 1 ≤ k. (B.30)

Hence, the induction condition (B.23) implies that

Vk(sa−i+
) = max{v(k, dI − 1)BI , v(k, d

′)B}. (B.31)

If dI > 1, we know that r(s, a, sa−i+
) = 0, and hence

r(s, a−i+, sa−i+
) + γVk(sa−i+

)

=γmax{v(k, dI − 1)BI , v(k, d
′)B} (i)

= max{v(k + 1, dI)BI , γv(k, d
′)B},

(B.32)

where equality (i) holds because γv(k, dI − 1) = γv(k, k) = γk = v(k + 1, k + 1) =
v(k + 1, dI). When dI = 1, we have

r(s, a−i+, sa−i+
) + γVk(sa−i+

) = BI . (B.33)
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• For any a−i− ∈ A\(A+
I (s) ∪ A+(s)). In this case, let

d′′ = D(sa−i+
,ST ) ≥ d = 1, d′I = D(sa−i+

,SI) ≥ dI = k + 1, (B.34)

the induction condition (B.23) implies that

Vk(sa−i+
) = max{v(k, d′I)BI , v(k, d

′′)B}. (B.35)

Similar to the previous case for a−i+, we also have r(s, a, sa−i+
) = 0, and hence

r(s, a−i−, sa−i−
) + γVk(sa−i−

) = max{γv(k, d′I)BI , γv(k, d
′′)B}. (B.36)

Combine (B.28), (B.32), (B.36), and the synchronous value iteration update (2.1), when
dI > 1 we have

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}

= max
{
B,max{v(k + 1, dI)BI , γv(k, d

′)B},max{γv(k, d′I)BI , γv(k, d
′′)B}

}
(i)
= max{v(k + 1, dI)BI , B} = max{v(k + 1, dI)BI , v(k + 1, 1)B},

(B.37)

where equality (i) holds because d′, d′′ ≥ 1 implies that γv(k, d′)B, γv(k, d′′)B ≤ γB < B.
Similarly, using (B.28), (B.33), (B.36) when dI = 1, we have

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}

= max
{
B,BI ,max{γv(k, d′I)BI , γv(k, d

′′)B}
}

(ii)
= max{BI , B} = max{v(k + 1, 1)BI , v(k + 1, 1)B},

(B.38)

where equality (ii) holds because d′I , d
′′ > 1. Hence, we have verified the induction condition

(B.23) for dI ≤ k + 1, d = 1.

(b) When dI ≤ k + 1, d > 1. In this case, we also consider these following actions:

a+ ∈ A+(s), a−i+ ∈ A+
I (s)\A

+(s), a−i− ∈ A(s)\(A+
I (s) ∪ A+(s)). (B.39)

• For any a+ ∈ A+(s). Similarly, let

d′I = D(sa+ ,ST ), (B.40)

hence we know that

D(sa+ ,ST ) = d− 1 ≥ 1, d′I = D(sa+ ,SI) ≥ D(s,SI)− 1 ≤ k. (B.41)

The induction condition (B.23) implies that

Vk(sa+) = max{v(k, d′I)BI , v(k, d− 1)B}. (B.42)

Notice that d > 1 implies that r(s, a+, sa+) = 0, hence

r(s, a+, sa+) + γVk(sa+) = max{γv(k, d′I)BI , γv(k, d− 1)B}. (B.43)
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• For any a−i+ ∈ A+
I (s)\A+(s). In this case, let

d′ = D(sa−i+
,ST ), (B.44)

by the definition of A+
I (s) (B.25), we know that

d′ = D(sa−i+
,ST ) ≥ d > 1, D(sa−i+

,SI) = D(s,SI)− 1 = k. (B.45)

Hence, the induction condition (B.23) implies that

Vk(sa−i+
) = max{v(k, dI − 1)BI , v(k, d

′)B}. (B.46)

If dI > 1, so r(s, a, sa−i+
) = 0, and hence

r(s, a−i+, sa−i+
) + γVk(sa−i+

)

=γmax{v(k, dI − 1)BI , v(k, d
′)B} = max{v(k + 1, dI)BI , γv(k, d

′)B},
(B.47)

the last equality holds for the same reason described in the previous case for dI >
1, d > 1. When dI = 1, we have

r(s, a−i+, sa−i+
) + γVk(sa−i+

) = BI . (B.48)

• For any a−i− ∈ A\(A+
I (s) ∪ A+(s)). Similar to the case where dI = k + 1, d = 1, let

d′′ = D(sa−i+
,ST ) ≥ d > 1, d′I = D(sa−i+

,SI) ≥ dI = k + 1, (B.49)

the induction condition (B.23) implies that

Vk(sa−i+
) = max{v(k, d′I)BI , v(k, d

′′)B}. (B.50)

Similar to the previous case for a−i+, we also have r(s, a, sa−i+
) = 0, and hence

r(s, a−i−, sa−i−
) + γVk(sa−i−

) = max{γv(k, d′I)BI , γv(k, d
′′)B}. (B.51)

Combine (B.43), (B.47), (B.51), and the synchronous value iteration update (2.1), when
dI > 1 we have

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}

= max{max{γv(k, d′I)BI , γv(k, d− 1)B},max{v(k + 1, dI)BI , γv(k, d
′)B},

max{γv(k, d′′I )BI , γv(k, d
′′)B}}

(i)
= max{v(k + 1, dI)BI , γv(k, d− 1)B} (ii)

= max{v(k + 1, dI)BI , v(k + 1, d)B},

(B.52)

where equality (i) holds because d′I , d
′′
I ≥ dI implies that γv(k, d′I), γv(k, d

′′
I ) ≤ γdI =

v(k + 1, dI) and d′, d′′ > d implies that v(k, d′), v(k, d′′) ≤ v(k, d − 1). Equality (ii) holds
because when dI = k + 1, v(k + 1, dI) = γdI > 0, then if γv(k, d − 1)B > v(k + 1, dI)BI ,
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we know that γv(k, d− 1)B > 0, which implies k ≥ d− 1 (or equivalently k + 1 ≥ d) hence
v(k + 1, d) = γd−1 = γv(k, d− 1).

Similarly, when dI = 1, (B.43), (B.48), (B.51), we have

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}

= max
{
max{γv(k, d′I)BI , γv(k, d− 1)B}, BI ,max{γv(k, d′′I )BI , γv(k, d

′′)B}
}

(iii)
= max{BI , γv(k, d− 1)B} = max{v(k + 1, 1)BI , v(k + 1, d)B},

(B.53)

where equality (iii) holds because d′I , d′′I ≥ 1, Hence, we have verified the induction condition
(B.23) for dI ≤ k + 1, d > 1.

(c) When dI > k + 1. When dI > k + 1, we have ∀a ∈ A, we have d′I = D(sa,SI) > k.
By the definition of v(k, d) in (B.24), we know v(k, d′I) = 0. By the induction assumption
(B.23), we have

Vk(sa) = max{v(k, d′I)BI , v(k, d
′)B} = v(k, d′)B, (B.54)

where d′ = D(sa,ST ). Hence, from the synchronous value iteration (2.1), we have

Vk+1(s) = max
a∈A

{r(s, a, sa) + γVk(sa)}
(i)
= v(k, d′)B = max{v(k + 1, d′I)BI , v(k + 1, d′)B},

(B.55)
where equality (i) holds by Lemma B.1. Hence we conclude the induction condition (B.23)
holds when d > k + 1.

Conclusion. In conclusion, we have verified the induction condition (B.23) for all three
cases: (a) dI = k + 1, d = 1, (b) dI = k + 1, d > 1, (c) dI > k + 1. Hence, we conclude that
the induction condition (B.23) holds for all k < dI + h.

Appendix C. Experimental Details

C.1 Experimental Details of Section 1.1

To obtain the win rate in 1, for each experiment, we first run asynchronous Q learning
for m episodes, where we use the first m-100 episodes for training, and the win rate
from the last 100 episodes for testing. We repeat the previous experiment 10 times re-
port the average win rate of all 1000 games. In addition to the reward design speci-
fied Table 1, we use the following command: python pacman.py under under the folder
./cs188/cs188/p3_reinforcement, with these configurations:

• -p PacmanQAgent, set the training algorithm to standard asynchronous Q learning;

• -x m -n m + 100, set the training and testing episodes, replace m with the number
of episode in Table 1;

• -l mediumGrid, set the layout of the game, we use the mediumGrid layout for our
experiments;

• -g DirectionalGhost, set the strategy of the ghost, we opt the DirectionalGhost,
where the ghost will find the shortest path to the Pacman;
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• -k 1, set the number of ghosts, the default number of ghosts is 2 in the mediumGrid
layout.

Similar phenomenons reported in Table 1 also appear in larger layout with more ghosts.
Also note that in order to obtain a similar win rate, experiments with larger layouts/more
ghosts generally require more training episodes.

C.2 Experimental Details of Section 6

C.2.1 Asynchronous Q-Learning in Section 6

All models for asynchronous q-learning experiments are trained with a learning rate of 0.1,
a discount factor of 0.9, and use an 0.8 ε-greedy exploration strategy during training. Each
state is the entire environment encoded as a string available for MiniGrid (Chevalier-Boisvert
et al., 2018) environments.

C.2.2 Deep RL Hyperparameters in Section 6

Each training session for deep RL algorithms was run using a GeForce RTX 2080 GPU.
Shared parameters are listed in Table 8, and parameters specific to each algorithm is pro-
vided in Table 9. For DQN, like asynchronous Q-learning, we use a 0.8 ε-greedy exploration
strategy.

1 Conv2D(inchannels = 3, outchannels = 16, stride = (2,2))
2 ReLU
3 MaxPool2D(2, 2)
4 Conv2D(inchannels = 16, outchannels = 32, stride = (2,2))
5 ReLU
6 Conv2D(inchannels = 32, outchannels = 64, stride = (2,2))
7 ReLU
8 Linear(embedded size, 64)
9 Tanh
10 Linear(64, number of actions)

Table 7: Network architecture

Parameters Values

Learning Rate 0.001
Network Architecture See Table 7
Observability of Env Fully Observable

Table 8: Parameters
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Parameters DQN PPO A2C
optimizer RMSProp Adam RMSProp

Discount Factor (γ) 0.90 (Maze, 3-Door) 0.90 0.90
0.80 (4-Door)

batch size 128 128 N/A

buffer size 100000 N/A N/A

target net. update interval (steps) 100 N/A N/A

number of actors N/A 10 10

steps per actor before update N/A 128 5

entropy coeff. N/A 0.01 0.01

value loss coeff. N/A 0.5 0.5

GAE discount (λ) N/A 0.95 0.95

max norm of gradient N/A 0.5 0.5

clipping ϵ N/A 0.2 N/A

PPO epochs per update N/A 4 N/A

Table 9: Algorithm Specific Parameters
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