
Journal of Artificial Intelligence Research 74 (2022) 851-886 Submitted 08/2021; published 06/2022

On the Tractability of SHAP Explanations

Guy Van den Broeck guyvdb@cs.ucla.edu
University of California
404 Westwood Plaza, Los Angeles, CA 90095, USA

Anton Lykov alykov@cs.washington.edu

Maximilian Schleich schleich@cs.washington.edu

Dan Suciu suciu@cs.washington.edu

University of Washington

185 E Stevens Way NE, Seattle, WA 98195, USA

Abstract

Shap explanations are a popular feature-attribution mechanism for explainable AI.
They use game-theoretic notions to measure the influence of individual features on the
prediction of a machine learning model. Despite a lot of recent interest from both academia
and industry, it is not known whether Shap explanations of common machine learning
models can be computed efficiently. In this paper, we establish the complexity of computing
the Shap explanation in three important settings. First, we consider fully-factorized data
distributions, and show that the complexity of computing the Shap explanation is the same
as the complexity of computing the expected value of the model. This fully-factorized
setting is often used to simplify the Shap computation, yet our results show that the
computation can be intractable for commonly used models such as logistic regression. Going
beyond fully-factorized distributions, we show that computing Shap explanations is already
intractable for a very simple setting: computing Shap explanations of trivial classifiers over
naive Bayes distributions. Finally, we show that even computing Shap over the empirical
distribution is #P-hard.

1. Introduction

Machine learning is increasingly applied in high stakes decision making. As a consequence,
there is growing demand for the ability to explain the prediction of machine learning models.
One popular explanation technique is to compute feature-attribution scores, in particular
using the Shapley values from cooperative game theory (Roth, 1988) as a principled aggre-
gation measure to determine the influence of individual features on the prediction of the
collective model. Shapley value based explanations have several desirable properties (Datta,
Sen, and Zick, 2016), which is why they have attracted a lot of interest in academia as well
as industry in recent years (see e.g., Gade et al. (2019)).

Štrumbelj and Kononenko (2014) show that Shapley values can be used to explain
arbitrary machine learning models. Datta, Sen, and Zick (2016) use Shapley-value-based
explanations as part of a broader framework for algorithmic transparency. Lundberg and
Lee (2017) use Shapley values in a framework that unifies various explanation techniques,
and they coined the term Shap explanation. They show that the Shap explanation is
effective in explaining predictions in the medical domain; see Lundberg et al. (2020). More
recently there has been a lot of work on the tradeoffs of variants of the original Shap

©2022 AI Access Foundation. All rights reserved.

Van den Broeck, Lykov, Schleich, & Suciu

explanations, e.g., Sundararajan and Najmi (2020), Kumar et al. (2020), Janzing, Minorics,
and Bloebaum (2020), Merrick and Taly (2020), and Aas, Jullum, and Løland (2019).

Despite all of this interest, there is considerable confusion about the tractability of
computing Shap explanations. The Shap explanations determine the influence of a given
feature by systematically computing the expected value of the model given a subsets of the
features. As a consequence, the complexity of computing Shap explanations depends on
the predictive model as well as assumptions on the underlying data distribution. Lundberg
et al. (2020) describe a polynomial-time algorithm for computing the Shap explanation over
decision trees, but online discussions have pointed out that this algorithm is not correct as
stated. We present a concrete example of this shortcoming in Section 2.3. In contrast, for
fully-factorized distributions, Bertossi et al. (2020) prove that there are models for which
computing the Shap explanation is #P-hard. A contemporaneous paper by Arenas et al.
(2020) shows that computing the Shap explanation for tractable logical circuits over uniform
and fully factorized binary data distributions is tractable. In general, the complexity of the
Shap explanation is open.

In this paper we consider the original formulation of the Shap explanation by Lund-
berg and Lee (2017) and analyze its computational complexity under the following data
distributions and model classes:

1. First, we consider fully-factorized distributions, which are the simplest possible data
distribution. Fully-factorized distributions capture the assumption that the model’s
features are independent, which is a commonly used assumption to simplify the com-
putation of the Shap explanations, see for example Lundberg and Lee (2017).

For fully-factorized distributions and any prediction model, we show that the complex-
ity of computing the Shap explanation is the same as the complexity of computing
the expected value of the model.

It follows that there are classes of models for which the computation is tractable (e.g.,
linear regression, decision trees, tractable circuits) while for other models, including
commonly used ones such as logistic regression and neural nets with sigmoid activation
functions, it is #P-hard.

2. Going beyond fully-factorized distributions, we show that computing Shap explana-
tion becomes intractable already for the simplest probabilistic model that does not
assume feature independence: naive Bayes. As a consequence, the complexity of
computing Shap explanations on such data distributions is also intractable for many
classes of models, including linear and logistic regression.

3. Finally we consider the empirical distribution, and prove that computing Shap ex-
planations is #P-hard for this class of distributions. This result implies that the
algorithm by Lundberg et al. (2020) cannot be fixed to compute the exact Shap
explanations over decision trees in polynomial time.

2. Background and Problem Statement

Suppose our data is described by n indexed features X = {X1, . . . , Xn}. Each feature
variable X takes a value from a finite domain dom(X). A data instance x = (x1, . . . , xn)

852

On the Tractability of SHAP Explanations

consists of values x ∈ dom(X) for every feature X. This instance space is denoted x ∈ X =
dom(X1)×· · ·×dom(Xn). We are also given a learned function F : X → R that computes a
prediction F (x) on each instance x. Throughout this paper we assume that the prediction
F (x) can be computed in polynomial time in n.

For a particular instance of prediction F (x), the goal of local explanations is to clarify
why the function F gave its prediction on instance x, usually by attributing credit to the
features. We will focus on local explanation that are inspired by game-theoretic Shapley
values (Datta, Sen, and Zick, 2016; Lundberg and Lee, 2017). Specifically, we will work
with the Shap explanations as defined by Lundberg and Lee (2017).

2.1 Shap Explanations

To produce Shap explanations, one needs an additional ingredient: a probability distribu-
tion Pr(X) over the features, which we call the data distribution. We will use this distribu-
tion to reason about partial instances. Concretely, for a set of indices S ⊆ [n] = {1, . . . , n},
we let xS denote the restriction of complete instance x to those features XS with indices in
S. Abusing notation, we will also use xS to denote the probabilistic event XS = xS .

Under this data distribution, it now becomes possible to ask for the expected value of the
predictive function F . Clearly, for a complete data instance x we have that E[F |x] = F (x),
as there is no uncertainty about the features. However, for a partial instance xS , which
does not assign values to the features outside of XS , we appeal to the data distribution Pr
to compute the expectation of function F as EPr[F |xS] =

∑
x∈X F (x) Pr(x|xS).

The Shap explanation framework draws from Shapley values in cooperative game the-
ory. Given a particular instance x, it considers features X to be players in a coalition
game: the game of making a prediction for x. Shap explanations are defined in terms
of a set function vF,x,Pr : 2X → R. Its purpose is to evaluate the “value” of each coali-
tion of players/features XS ⊆ X in making the prediction F (x) under data distribution
Pr. Concretely, following Lundberg and Lee (2017), this value function is the conditional
expectation of function F :

vF,x,Pr(XS)
def
= EPr[F |xS]. (1)

We will elide F , x, and Pr when they are clear from context.
Our goal, however, is to assign credit to individual features. In the context of a coalition

XS , the contribution of an individual feature X /∈ XS is given by

c(X,XS)
def
= v(XS ∪ {X})− v(XS). (2)

where each term is implicitly w.r.t. the same F , x, and Pr.
Finally, the Shap explanation computes a score for each feature X ∈ X averaged over

all possible contexts, and thus measures the influence feature X has on the outcome. Let
π be a permutation on the set of features X, i.e., π fixes a total order on all features. Let
π<X be the set of features that come before X in the order π. The Shap explanations are
then defined as computing the following scores.

Definition 1 (Shap Score). Fix an entity x, a predictive function F , and a data distribution
Pr. The Shap explanation of a feature X is the contribution of X given the features π<X ,

853

Van den Broeck, Lykov, Schleich, & Suciu

averaged over all permutations π:

Shap(X)
def
=

1

n!

∑
π

c(X,π<X). (3)

We mention two simple properties of the Shap explanations here; for more discussion
see Datta, Sen, and Zick (2016) and Lundberg et al. (2020). First, for the linear combination
of functions G(.) =

∑
k λkFk(.), we have that

ShapG (X) =
∑
k

λkShapFk
(X). (4)

Second, the sum of the Shap explanation of all features is related to the expected value of
function F : ∑

i

ShapF (Xi) = F (x)−E[F]. (5)

2.2 Computational Problems

This paper studies the complexity of computing Shap(X); a task we formally define next.
We write F for a class of functions. We also write PRn for a class of data distributions over n
features, and let PR =

⋃
n PRn. We assume that all parameters are rationals. Because Shap

explanations are for an arbitrary fixed instance x, we will simplify the notation throughout
this paper by assuming it to be the instance e = (1, 1, . . . , 1), and that each domain contains
the value 1, which is without loss of generality.

Definition 2 (Shap Computational Problems). For each function class F and distribution
class PR, consider the following computational problems.

– The functional Shap problem F-SHAP(F, PR): given a data distribution Pr ∈ PR and a
function F ∈ F, compute Shap(X1), . . . ,Shap(Xn).

– The decision Shap problem D-SHAP(F, PR): given a data distribution Pr ∈ PR, a
function F ∈ F, a feature X ∈ X, and a threshold t ∈ R, decide if Shap(X) > t.

We may also fix function F , and consider the problems F-SHAP({F}, PR) or D-SHAP({F}, PR),
where the only input is data distribution Pr ∈ PR.

To establish the complexities of these problems, we use standard notions of reductions.
A polynomial time reduction from a problem A to a problem B, denoted by A ≤P B, and
also called a Cook reduction, is a polynomial-time algorithm for the problem A with access
to an oracle for the problem B. We write A ≡P B when both A ≤P B and B ≤P A.

In the remainder of this paper, we study the computational complexity of these problems
for natural hypothesis classes F that are popular in machine learning, and common classes
of data distributions PR, including those most often used to compute Shap explanations.

854

On the Tractability of SHAP Explanations

Algorithm 1 Algorithm to compute value function v from Lundberg, Erion, and Lee (2018)

procedure EXPVALUE(x, S, root = {left,right,feature,threshold,value})
procedure G(n)

if n is a leaf then
return n.value

else
if n.feature ⊆ S then

return if x[n.feature] ≤ n.threshold then G(n.left) else G(n.right)
else
return (G(n.left) · count(n.left) +G(n.right) · count(n.right))/count(n)

return G(root)

2.3 Discussion on the TreeSHAP Algorithm

Lundberg, Erion, and Lee (2018) propose TreeSHAP, a variant of Shap explanations for
tree-based machine learning models such as decision trees, random forests and gradient
boosted trees. The authors claim that, for the case when both the model and probabil-
ity distribution1 are defined by a tree-based model, the algorithm can compute the exact
Shap explanations in polynomial time. However, it has been pointed out in Github discus-
sions2 that the TreeSHAP algorithm does not compute the Shap explanation as defined in
Section 2.1. In this section, we provide a concrete example of this shortcoming.

The main shortcoming of the TreeSHAP algorithm is captured by Algorithm 1. The
authors claim that Algorithm 1 computes the conditional expectation E[F | xS], for a given
set of features S and tree-based model F . We first describe the algorithm and then show
by example that this algorithm does not accurately compute the conditional expectation.

Algorithm 1 takes as input a feature vector x, a set of features S, and the root node for
a binary tree that represents the tree-based model. Each internal node n defines a binary
decision between a feature and a constant threshold, and has left and right pointers to
the left and right children of n. Leaf nodes define a value which represents the prediction of
the model. We use count(n) as an auxiliary function that returns the count of the number
of data samples that fall in the sub-tree that is rooted by node n.

The algorithm proceeds recursively in a top-down traversal of the tree. For inner nodes,
the algorithm follows the decision path for x if the split feature is in S, and takes the
weighted average of both branches if the split feature is not in S. For leaf nodes, it returns
the value of the node. The following simple example shows that the value returned by
Algorithm 1 does not represent the conditional expectation E[F | xS].

Example 1. We consider the following dataset and decision tree model. The dataset
has two binary variables X1 and X2, and each instance (x1, x2) is weighted by the occur-

1. Lundberg, Erion, and Lee (2018) compute the probability distribution using tree-based models recursively
as the weighted average of the frequencies for the output variable are returned by the left and right
subtrees. The weight is given by the number of data samples that fall into the respective subtree.

2. See, for instance, https://github.com/christophM/interpretable-ml-book/issues/142 (accessed on
August 20, 2021).

855

Van den Broeck, Lykov, Schleich, & Suciu

rence count (i.e., the instance (0,0) occurs twice in the dataset). We want to compute
E[F (X1, X2)|X2 = 0], where F (X1, X2) is the outcome of the decision tree.

X1 X2 #

0 0 2
0 1 1
1 0 1
1 1 2

X1

X2 X2

0 1

F (0, 0) F (0, 1) F (1, 0)F (1, 1)

0 1 0 1

The correct value is:

E[F (X1, X2) | X2 = 0] = 2/3 · F (0, 0) + 1/3 · F (1, 0)

This is because there are three items with X2 = 0, and their probabilities are 2/3 and 1/3.
Algorithm 1, however, returns:

G(1) = 1/2 · F (0, 0) + 1/2 · F (1, 0),

and thus does not compute E[F (X1, X2) | X2 = 0].

The algorithm does not accurately compute the conditional expectation E[F | xS], be-
cause it does not normalize the expectation by the probability of the condition. Without
this normalization, Lundberg, Erion, and Lee (2018) are able to compute all expectations
required by Shap in one pass over the tree-based model. When we consider the normal-
ization, however, the expectations depend on the values of x and it is non-obvious if Shap
can still be computed efficiently. We address this question in the next sections.

3. Shap over Fully-Factorized Distributions

We start our study of the complexity of Shap by considering the simplest probability
distribution: a fully-factorized distribution, where all features are independent.

There are both practical and computational reasons why it makes sense to assume a
fully-factorized data distribution when computing Shap explanations. First, functions F
are often the product of a supervised learning algorithm that does not have access to a
generative model of the data – it is purely discriminative. Hence, it is convenient to make
the practical assumption that the data distribution is fully factorized, and therefore easy to
estimate. Second, fully-factorized distributions are highly tractable; for example they make
it easy to compute expectations of linear regression functions (Khosravi et al., 2019b) and
other hard inference tasks (Vergari et al., 2020).

Lundberg and Lee (2017) indeed observe that computing the Shap-explanation on an
arbitrary data distribution is challenging and consider using fully-factorized distributions
(Sec. 4, Eq. 11). Other prior work on computing explanations also use fully-factorized
distributions of features, e.g., Datta, Sen, and Zick (2016); Štrumbelj and Kononenko (2014).
As we will show, the Shap explanation can be computed efficiently for several popular
classifiers when the distribution is fully factorized. Yet, such simple data distributions are
not a guarantee for tractability: computing Shap scores will be intractable for some other
common classifiers.

856

On the Tractability of SHAP Explanations

3.1 Equivalence to Computing Expectations

Before studying various function classes, we prove a key result that connects the complexity
of Shap explanations to the complexity of computing expectations.

Let INDn be the class of fully-factorized probability distributions over n discrete and
independent random variables X1, . . . , Xn. That is, for every instance (x1, . . . , xn) ∈ X , we

have that Pr(X1 = x1, . . . , Xn = xn) =
∏

i Pr(Xi = xi). Let IND
def
=

⋃
n≥0 INDn. We show

that for every function class F, the complexity of F-SHAP(F, IND) is the same as that of the
fully-factorized expectation problem.

Definition 3 (Fully-Factorized Expectation Problem). Let F be a class of real-valued func-
tions with discrete inputs. The fully-factorized expectation problem for F, denoted E(F), is
the following: given a function F ∈ F and a probability distribution Pr ∈ IND, compute
EPr(F).

We know from Equation (5) that E[F] = F (x) −
∑

i=1,n ShapF (Xi), and thus for any

function F over n features E({F}) ≤P F-SHAP({F}, INDn). In this section we prove that
the converse holds too:

Theorem 2. For any function F : X → R, we have that F-SHAP({F}, INDn) ≡P E({F}).

In other words, for any function F , the complexity of computing the Shap scores is
the same as the complexity of computing the expected value E[F] under a fully-factorized
data distribution. One direction of the proof is immediate: E({F}) ≤P F-SHAP({F}, INDn)
because, if we are given an oracle to compute ShapF (Xi) for every feature Xi, then we
can obtain E[F] from Equation (5) (recall that we assumed that F (x) is computable in
polynomial time). The hard part of the proof is the opposite direction: we will show
in Sec. 3.2 how to compute ShapF (Xi) given an oracle for computing E[F]. Theorem 2
immediately extends to classes of functions F, and to any number of variables, and therefore
implies that F-SHAP(F, IND) ≡P E(F).

Sections 3.3 and 3.4 will discuss the consequences of this result, by delineating which
function classes support tractable Shap explanations, and which do not. The next section
is devoted to proving our main technical result.

3.2 Proof of Theorem 2

We start with the special case when all features X are binary: dom(X) = {0, 1}. We denote
by INDBn the class of fully-factorized distributions over binary domains.

Theorem 3. For any function F : {0, 1}n → R, we have that F-SHAP({F}, INDBn) ≡P

E({F}).

Proof. We prove only F-SHAP(F, INDBn) ≤P E({F}); the opposite direction follows imme-
diately from Equation (5). We will assume w.l.o.g. that F has n + 1 binary features
X′ = {X0} ∪ X and show how to compute ShapF (X0) using repeated calls to an oracle
for computing E[F], i.e., the expectation of the same function F , but over fully-factorized
distributions with different probabilities. The probability distribution Pr is given to us by

n + 1 rational numbers, pi
def
= Pr(Xi =1), i = 0, n; obviously, Pr(Xi =0) = 1 − pi. Recall

857

Van den Broeck, Lykov, Schleich, & Suciu

that the instance whose outcome we want to explain is e = (1, . . . , 1). Recall that for any
set S ⊆ [n] we write eS for the event

∧
i∈S(Xi = 1). Then, we have that

Shap(X0) =
∑
k=0,n

k!(n− k)!

(n+ 1)!
Dk, where (6)

Dk
def
=

∑
S⊆[n]:|S|=k

(
E
[
F |eS∪{0}

]
−E[F |eS]

)
.

This follows from Equation (3) by the following argument. Obviously, quantity n! becomes
(n+1)!. If |S| = k, then there are exactly k!(n−k)! permutations π that place all elements
in S before X0, and all elements not in S after X0. Finally, the expression E

[
F |eS∪{0}

]
−

E[F |eS] is precisely the contribution c(X0,XS) of the featureX0 in the context S, as defined
by Equation (2).

Let F0
def
= F [X0 := 0] and F1

def
= F [X0 := 1] (both are functions in n binary features,

X = {X1, . . . , Xn}). Then the contribution of feature 0 becomes:

E
[
F
∣∣eS∪{0}] = E[F1|eS]
E[F |eS] = E[F0|eS] · (1− p0) +E[F1|eS] · p0

and therefore Dk is given by:

Dk = (1− p0)
∑

S⊆[n]:|S|=k

(E[F1|eS]−E[F0|eS])

Recall that we defined vG,e,Pr(XS) = E[G|eS] in Equation (1). Abusing notation, we
write vG,k for the sum of these quantities over all sets S of cardinality k:

vG,k
def
=

∑
S⊆[n],|S|=k

E[G|eS]. (7)

In summary so far, we have expressed Shap(X0) in Equation (6), where Dk is given by:

Dk = (1− p0)(vF1,k − vF0,k)

To compute Shap(X0), it suffices to compute vG,k where k = 0, n and G is one of F0 or F1.
We will prove the following claim.

Claim 1. Let G be a function over n binary variables. Then the n+1 quantities vG,0 until
vG,n can be computed in polynomial time, using n+ 1 calls to an oracle for E({G}).

Note that an oracle for E({F}) is also an oracle for both E({F0}) and E({F1}), by
simply setting Pr(X0 = 1) = 0 or Pr(X0 = 1) = 1 respectively. Therefore, Claim 1 proves
Theorem 3, by applying it once to F0 and once to F1 in order to derive all the quantities vF0,k

and vF1,k, thereby computing Dk, and finally computing ShapF (X0) using Equation (6).
It remains to prove Claim 1.

Fix a function G over n binary variables and let vk = vG,k. Let pj = Pr(Xj = 1), for
j = 1, n, define the distribution over which we need to compute v0, . . . , vn. We will prove
the following additional claim.

858

On the Tractability of SHAP Explanations

Claim 2. Given any real number z > 0, consider the distribution Prz(Xj) = p′j
def
=

pj+z
1+z ,

for j = 1, n. Let Ez[G] denote E[G] under distribution Prz. We then have that∑
k=0,n

zk · vk =(1 + z)n ·Ez[G]. (8)

Assuming Claim 2 holds, we prove Claim 1. The LHS of Equation (8) is a polynomial in
z with coefficients vk, while the RHS gives us an oracle for computing the value of this poly-
nomial for any input z > 0. Using this oracle, we need to compute the coefficients vk of the
polynomial. This can be done in many ways, we briefly describe here one possibility. Choose
any n+1 distinct values for z, use the oracle to compute the quantities Ez0 [G], . . . ,Ezn [G],
and form a system of n+1 linear equations (8) with unknowns v0, . . . , vn. Next, observe that
its matrix is a non-singular Vandermonde matrix, hence the system has a unique solution
which can be computed in polynomial time. It remains to prove Claim 2.

Because of independence, the probability of instance x ∈ {0, 1}n is Pr(x) =
∏

i:xi=1 pi ·∏
i:xi=0(1−pi), where xi looks up the value of feature Xi in instance x. Similarly, Prz(x) =∏
i:xi=1 p

′
i ·

∏
i:xi=0(1− p′i). Using direct calculations we derive:

Pr(x)
∏

i:xi=1

(
1 +

z

pi

)
= (1 + z)n · Prz(x) (9)

Separately we also derive the following identity, using the fact that Pr(eS) =
∏

i∈S pi by
independence:

E[G|eS] =
1∏

i∈S pi

∑
x:xS=eS

G(x) · Pr(x) (10)

We are now in a position to prove Claim 2:∑
k=0,n

zk · vk =
∑
k=0,n

zk
∑

S⊆[n]:|S|=k

E[G|eS]

=
∑
S⊆[n]

z|S| ·E[G|eS]

=
∑
S⊆[n]

z|S|∏
i∈S pi

∑
x:xS=eS

G(x) · Pr(x)

The last line follows from Equation (10). Next, we simply exchange the summations
∑

S

and
∑

x, after which we apply the identity
∑

S⊆A

∏
i∈S ui =

∏
i∈A(1 + ui).

(continuing)

=
∑

x∈{0,1}n
G(x) · Pr(x)

∑
S:xS=eS

z|S|∏
i∈S pi

=
∑

x∈{0,1}n
G(x) · Pr(x)

∏
i:xi=1

(
1 +

z

pi

)
= (1 + z)n

∑
x∈{0,1}n

G(x) · Prz(x) = (1 + z)n ·Ez[G].

859

Van den Broeck, Lykov, Schleich, & Suciu

The final line uses Equation (9). This completes the proof of Claim 2 as well as Theorem 3.

Next, we generalize this result from binary features to arbitrary discrete features. Fix

a function with n inputs, F : X (
def
=

∏
i dom(Xi)) → R, where each domain is an arbitrary

finite set, dom(Xi) = {1, 2, . . . ,mi}; we assume w.l.o.g. that mi > 1. A fully factorized
probability space Pr ∈ INDn is defined by numbers pij ∈ [0, 1], i = 1, n, j = 1,mi, such
that, for all i,

∑
j pij = 1. Given F and Pr over the domain

∏
i dom(Xi), we define their

projections, Fπ,Prπ over the binary domain {0, 1}n as follows. For any instance x ∈ {0, 1}n,
let T (x) denote the event asserting that Xj = 1 iff xj = 1. Formally,

T (x)
def
=

∧
j:xj=1

(Xj=1) ∧
∧

j:xj=0

(Xj ̸=1). (11)

Then, the projections are defined as follows: ∀x ∈ {0, 1}n,

Prπ(x)
def
=Pr(T (x)) Fπ(x)

def
=E[F | T (x)] (12)

Notice that Fπ depends both on F and on the probability distribution Pr. Intuitively, the
projections only distinguishes between Xj = 1 and Xj ̸= 1, for example:

Fπ(1, 0, 0) =E[F |(X1 = 1, X2 ̸= 1, X3 ̸= 1)]

Prπ(1, 0, 0) =Pr(X1 = 1, X2 ̸= 1, X3 ̸= 1)

Proposition 4. Let F : X → R be a function with n input features, and Pr ∈ INDn
a fully factorized distribution over X . Then the following hold: (1) For any feature Xj,
ShapF,Pr(Xj) = ShapFπ ,Prπ(Xj); in particular, E({F}) ≤P E({Fπ}). And (2) E({Fπ}) ≤P

E({F}).

Item (1) states that the Shap-score of F computed over the probability space Pr is the
same as that of its projection Fπ (which depends on Pr) over the projected probability space
Prπ. Item (2) says that, for any probability space over {0, 1}n (not necessarily Prπ), we can
compute E[Fπ] in polynomial time given access to an oracle for computing E[F]. Before
we prove the proposition, we show how it to use it to complete the proof of Theorem 2,
by showing that F-SHAP({F}, INDn) ≤P E({F}). We are given a function F over domain
X , and have access to an oracle for computing E[F] over any fully factorized probability
distribution on X . Given probability space Pr ∈ INDn, our goal is to compute ShapF,Pr(Xj).
By item (1) of Proposition 4 it suffices to compute ShapFπ ,Prπ(Xj). By Theorem 3, we can
compute the latter given access to an oracle for computing E[Fπ], over an arbitrary fully
factorized probability distribution on {0, 1}n. Finally, by item (2) of the proposition, we
can compute E[Fπ] given the oracle for computing E[F].

In the rest of the section we prove Proposition 4.

Proof. We start with item (1). Recall that dom(Xi) = {1, 2, 3, . . . ,mi}. We denote by
pi1, pi2, . . . , pimi their probabilities, thus

∑
j=1,mi

pij = 1. By definition, the projected

distribution is: Prπ(Xi = 1)
def
= pi1, and Prπ(Xi = 0) = 1 − pi1. We denote by Eπ be the

corresponding expectation. Our goal is to prove ShapF,Pr(Xj) = ShapFπ ,Prπ(Xj).

860

On the Tractability of SHAP Explanations

Let eS again denote the event
∧

i∈S(Xi = 1). Note that, by construction, for any set
S, Pr(eS) = Prπ(eS). Given the definition of T (x) in Equation (11), for any instance
x ∈ {0, 1}n,

Pr(T (x)) =
∏

i:xi=1

pi1 ·
∏

i:xi=0

(pi2 + pi3 + · · ·) = Prπ(x).

There are 2n disjoint events T (x), which partition the space X . Therefore, for every set S:

E[F ∧ eS] =
∑

x:∀i∈S,xi=1

E[F |T (x)] Pr(T (x))

=
∑

x:∀i∈S,xi=1

Fπ(x) Prπ(x)

= Eπ[Fπ ∧ eS]

This implies that E[F |eS] = Eπ[Fπ|eS] for any set S, and ShapF,Pr(Xj) = ShapFπ ,Prπ(Xj)
for all j follows from Equation (6).

We now prove item (2). As before, we are given F,Pr over the domain X , which in
turn define Prπ and Fπ in Equations (12) and (12). In addition, we are also given an oracle
for computing E′[F] over an arbitrary distribution Pr′. We need to compute E[Fπ], over
some arbitrary distribution on {0, 1}n, denote it by Pr′π (not to be confused with Prπ). To
compute E[Fπ], we will construct a distribution Pr′ over X , use the oracle to compute the
expectation E′[F] over Pr′, then show to use this answer to compute E[Fπ].

To define Pr′, we need some notations. Recall that pij denotes the probability Pr(Xi =

j). Denote qi
def
= Pr′π(Xi=1), thus Pr′π(Xi=0) = 1− qi, and further denote:

wi
def
=

1− qi
qi

Z
def
=

∏
i=1,n

qi W
def
=

∏
i=1,n

1 +
∑

j=2,mi

pijwi

1− pi1


With these notations, we define Pr′(Xi = j)

def
= p′ij , where:

p′i1
def
=

1

W
i =1, n

p′ij
def
=

pijwi

W (1− pi1)
i =1, n; j = 2,mi

One can check that the numbers p′ij indeed define a probability space on X , in other
words p′ij ∈ [0, 1] and, for all i = 1, n:

∑
j=1,mj

p′ij = 1. We denote by Pr′ the probability

space that they define, and denote by E′[F] the expectation of F in this space. We claim:

Claim 3. E[Fπ] = Z ·W ·E′[F]

The claim immediately proves item (2) of Proposition 4: to compute E[Fπ] over the
probability distribution Pr′π, we compute the distribution Pr′ and invoke the oracle to
compute E′[F], then multiply with the quantities Z and W , both of which are computable
in polynomial time. It remains to prove the claim.

We start with some observations and notations. We denote an outcome in X =∏
i=1,n dom(Xi) as τ , and view it as either a vector (τ1, τ2, . . .) or a function with domain

861

Van den Broeck, Lykov, Schleich, & Suciu

{1, 2, . . . , n}, where τ(i) ∈ dom(Xi). Then, the expectation of some function G : X → R
can be written as E[G] =

∑
τ∈X G(τ)Pr(τ) =

∑
τ∈X G(τ)

∏
i piτi . Furthermore, τ−1(1)

denotes the set {i | τ(i) = 1}. We these notations, we compute the projection Fπ, defined
Equation (12), explicitly in terms of the probabilities pij . For x ∈ {0, 1}n:

Fπ[x] = E[F |T (x)] = E[F · T (x)]
Pr(T (x))

=

∑
τ∈X :x−1(1)=τ−1(1) F (τ) ·

∏
i piτi∏

i:xi=1 pi1 ·
∏

i:xi ̸=1(1− pi1)

=
∑

τ∈X :x−1(1)=τ−1(1)

F (τ) ·
∏

i:τi ̸=1

piτi
1− pi1

.

We now prove the claim by applying directly the definition of E[Fπ]:

E[Fπ] =
∑

θ∈{0,1}n
Fπ(θ)

∏
i:θi=1

qi
∏

i:θi=0

(1− qi) = Z ·
∑

θ∈{0,1}n
Fπ(θ)

∏
i:θi=0

wi

=Z ·
∑

θ∈{0,1}n

 ∑
τ∈X :θ−1(1)=τ−1(1)

F (τ)
∏

i:τi ̸=1

piτi
1− pi1

 ∏
i:θi=0

wi

=Z ·
∑
τ∈X

F (τ)
∏

i:τi ̸=1

piτiwi

1− pi1
= Z ·W ·

∑
τ∈X

F (τ)
∏
i

p′iτi = Z ·W ·E′[F]

We explain the transition from line 2 to line 3. In the summation in line 2, the assignment
θ ∈ {0, 1}n is used in two places: to restrict the range of τ ∈ X in the second sum, and in
the condition θi = 0. The condition θ−1(1) = τ−1(1) says θi = 1 iff τi = 1 and therefore
θi = 0 iff τi ̸= 1. Thus, we can replace the condition θi = 0 with τi ̸= 1. Furthermore, the
assignment τ ∈ X uniquely defines θ, hence θ can be dropped from the summation. In line
3 we simply used the definition of p′ij introduced earlier. This completes the proof of the
claim, and of Proposition 4.

3.3 Tractable Function Classes

Given the polynomial-time equivalence between computing Shap explanations and com-
puting expectations under fully-factorized distributions, a natural next question is: which
real-world hypothesis classes in machine learning support efficient computation of Shap
scores?

Corollary 5. For the following function classes F, computing Shap scores F-SHAP(F, IND)
is in polynomial time in the size of the representations of function F ∈ F and fully-factorized
distribution Pr ∈ IND.

1. Linear regression models

2. Decision and regression trees

3. Random forests or additive tree ensembles

4. Factorization machines, regression circuits

862

On the Tractability of SHAP Explanations

5. Boolean functions in d-DNNF, binary decision diagrams

6. Bounded-treewidth Boolean functions in CNF

These are all consequences of Theorem 2, and the fact that computing fully-factorized
expectations E(F) for these function classes F is in polynomial time. Concretely, we have
the following observations about fully-factorized expectations:

1. Expectations of linear regression functions are efficiently computed by mean imputa-
tion (Khosravi et al., 2019b). The tractability of Shap on linear regression models is
well known. In fact, Štrumbelj and Kononenko (2014) provide a closed-form formula
for this case.

2. Paths from root to leaf in a decision or regression tree are mutually exclusive. Their
expected value is therefore the sum of expected values of each path, which are tractable
to compute within IND; see Khosravi et al. (2020).

3. Additive mixtures of trees, as obtained through bagging or boosting, are tractable,
by the linearity of expectation.

4. Factorization machines extend linear regression models with feature interaction terms
and factorize the parameters of the higher-order terms (Rendle, 2010). Their expecta-
tions remain easy to compute. Regression circuits are a graph-based generalization of
linear regression. Khosravi et al. (2019a) provide an algorithm to efficiently take their
expectation w.r.t. a probabilistic circuit distribution, which is trivial to construct for
the fully-factorized case.

The remaining tractable cases are Boolean functions. Computing fully-factorized expec-
tations of Boolean functions is widely known as the weighted model counting task (WMC)
(Sang, Beame, and Kautz, 2005; Chavira and Darwiche, 2008). WMC has been extensively
studied both in the theory and the AI communities, and the precise complexity of E(F) is
known for many families of Boolean functions F. These results immediately carry over to
the F-SHAP(F, IND) problem through Theorem 2:

5. Expectations can be computed in time linear in the size of various circuit representa-
tions, called d-DNNF, which includes binary decision diagrams (OBDD, FBDD) and
SDDs (Bryant, 1986; Darwiche and Marquis, 2002).3

6. Bounded-treewidth CNFs are efficiently compiled into OBDD circuits (Ferrara, Pan,
and Vardi, 2005), and thus enjoy tractable expectations.

To conclude this section, the reader may wonder about the algorithmic complexity of
solving F-SHAP(F, IND) with an oracle for E(F) under the reduction in Section 3.2. Briefly, we
require a linear number of calls to the oracle, as well as time in O(n3) for solving a system
of linear equations. Hence, for those classes, such as d-DNNF circuits, where expectations
are linear in the size of the (circuit) representation of F , computing F-SHAP(F, IND) is also
linear in the representation size and polynomial in n.

3. In contemporaneous work, Arenas et al. (2020) also show that the Shap explanation is tractable for
d-DNNFs, but for the more restricted class of uniform data distributions.

863

Van den Broeck, Lykov, Schleich, & Suciu

3.4 Intractable Function Classes

The polynomial-time equivalence of Theorem 2 also implies that computing Shap scores
must be intractable whenever computing fully-factorized expectations is intractable. This
section reviews some of those function classes F, including some for which the computational
hardness of E(F) is well known. We begin, however, with a more surprising result.

Logistic regression is one of the simplest and most widely used machine learning models,
yet it is conspicuously absent from Corollary 5. We prove that computing the expectation
of a logistic regression model is #P-hard, even under a uniform data distribution, which is
of independent interest.

A logistic regression model is a parameterized function F (x)
def
= σ(w · x), where w =

(w0, w1, . . . , wn) is a vector of weights, σ(z) = 1/(1 + e−z) is the logistic function, x
def
=

(1, x1, x2, . . . , xn), and w · x def
=

∑
i=0,nwixi is the dot product. Note that we define the

logistic regression function to output probabilities, not data labels. Let LOGITn denote the
class of logistic regression functions with n variables, and LOGIT =

⋃
n LOGITn. We prove

the following:

Theorem 6. Computing the expectation of a logistic regression model w.r.t. a uniform data
distribution is #P-hard.

Proof. The proof is by reduction from counting solutions to the number partitioning prob-
lem. The number partitioning problem, NUMPAR, is the following: given n natural numbers
k1, . . . , kn, decide whether there exists a subset S ⊆ [n] that partitions the numbers into
two sets with equal sums:

∑
i∈S ki =

∑
i ̸∈S ki. NUMPAR is known to be NP-complete. The

corresponding counting problem, in notation #NUMPAR, asks for the number of sets S such
that

∑
i∈S ki =

∑
i ̸∈S ki, and is #P-hard.

We show that we can solve the #NUMPAR problem using an oracle for EU[F], where F
is a logistic regression function and U is the uniform probability distribution. This implies
that computing the expectation of a logistic regression function is #P-hard.

Fix an instance of NUMPAR, k1, . . . , kn, and assume w.l.o.g. that the sum of the numbers
ki is even,

∑
i ki = 2c for some natural number c. Let

P
def
={S | S ⊆ [n],

∑
i∈S

ki = c} (13)

For each set S ⊆ [n], denote by S̄ its complement. Obviously, S ∈ P iff S̄ ∈ P , therefore
|P | is an even number.

We next describe an algorithm that computes |P | using an oracle for EU[F], where F
is a logistic regression function and U is the uniform probability distribution. Let m be a
natural number large enough, to be chosen later, and define the following weights:

w0
def
= − m

2
−mc wi

def
=mki ∀i = 1, n

Let w = (w1, . . . , wn), then F (x1, . . . , xn)
def
= σ(w0 + w · x) is the logistic regression

function defined by the weights w0, . . . , wn.

864

On the Tractability of SHAP Explanations

Claim 4. Let ε
def
= 1/2n+3. If m satisfies both 2σ(−m/2) ≤ ε and 1− σ(m/2) ≤ ε, then:

|P | =
⌈
2n − 2n+1E[F]

1− ε

⌉
The claim immediately proves the theorem: in order to solve the #NUMPAR problem,

compute E[F] and then use the formula above to derive |P |. To prove the claim, for each
set S ⊆ [n] denote by:

weight(S)
def
= − m

2
−mc+m(

∑
i∈S

ki)

Let U denote the uniform probability distribution over the domain {0, 1}n. Then,

EU[F] =
1

2n

∑
x

σ(w0 +w · x)

=
1

2n

∑
x

σ(−m

2
−mc+m(

∑
i∈[n]

kixi))

=
1

2n

∑
x

σ(−m

2
−mc+m(

∑
i:xi=1

ki))

=
1

2n

∑
S⊆[n]

σ(weight(S))

=
1

2n+1

∑
S⊆[n]

(σ(weight(S)) + σ(weight(S̄)))

If S is a solution to the number partitioning problem (S ∈ P), then:

σ(weight(S)) + σ(weight(S̄)) = 2σ(−m/2)

Otherwise, one of weight(S), weight(S̄) is ≥ m/2 and the other is ≤ −3m/2 and therefore:

σ(m/2) ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + σ(−3m/2)

Since ε = 1/2n+3, and m satisfies both 2σ(−m/2) ≤ ε and 1− σ(m/2) ≤ ε, we have:

S ∈ P : 0 ≤ σ(weight(S)) + σ(weight(S̄)) ≤ ε

S ̸∈ P : 1− ε ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + ε

This implies:

2n − |P |
2n+1

(1− ε) ≤ E[F] ≤ |P |
2n+1

ε+
2n − |P |
2n+1

(1 + ε)

|P | ≥2n − 2n+1E[F]

1− ε

|P | ≤2n(1 + ε)− 2n+1E[F]

Thus, we have a lower and an upper bound for |P |. Since E[F] ≤ 1, the difference between
the two bounds is < 1 and there exists at most one integer number between them, hence
|P | is equal to the ceiling of the lower bound (and also to the floor of the upper bound),
proving the claim.

865

Van den Broeck, Lykov, Schleich, & Suciu

Because the uniform distribution is contained in IND, and following Theorem 2, we
immediately obtain:

Corollary 7. The computational problems E(LOGIT) and F-SHAP(LOGIT, IND) are both #P-
hard.

We are now ready to list general function classes for which computing the Shap expla-
nation is #P-hard.

Corollary 8. For the following function classes F, computing Shap scores F-SHAP(F, IND) is
#P-hard in the size of the representations of function F ∈ F and fully-factorized distribution
Pr ∈ IND.

1. Logistic regression models (Corollary 7)

2. Neural networks with sigmoid activation functions

3. Naive Bayes classifiers, logistic circuits

4. Boolean functions in CNF or DNF

Our intractability results stem from these observations:

2. Each neuron is a logistic regression model, and therefore this class subsumes LOGIT.

3. The conditional distribution used by a naive Bayes classifier is known to be equiv-
alent to a logistic regression model (Ng and Jordan, 2002). Logistic circuits are a
graph-based classification model that subsumes logistic regression (Liang and Van den
Broeck, 2019).

4. For general CNFs and DNFs, weighted model counting, and therefore E(F) is #P-
hard. This is true even for very restricted classes, such as monotone 2CNF and 2DNF
functions, and Horn clause logic (Wei and Selman, 2005).

4. Beyond Fully-Factorized Distributions

Features in real-world data distributions are not independent. In order to capture more
realistic assumptions about the data when computing Shap scores, one needs a more in-
tricate probabilistic model. In this section we prove that the complexity of computing the
Shap-explanation quickly becomes intractable, even over the simplest probabilistic models,
namely naive Bayes models. To make computing the Shap-explanation as easy as possible,
we will assume that the function F simply outputs the value of one feature. We show
that even in this case, even for function classes that are tractable under fully-factorized
distributions, computing Shap explanations becomes computationally hard.

Let NBNn denote the family of naive Bayes networks over n+1 variablesX = {X0, . . . , Xn}
with binary domains, where X0 is a parent of all features:

Pr(X) = Pr(X0) ·
∏
i=1,n

Pr(Xi|X0).

As usual, the class NBN
def
=

⋃
n≥0 NBNn. We write X0 for the function F that returns the

value of feature X0; that is, F (x) = x0. We prove the following.

866

On the Tractability of SHAP Explanations

Theorem 9. The decision problem D-SHAP({X0}, NBN) is NP-hard.

Proof. We use a reduction from the number partitioning problem, similar to the proof of
Corollary 7. We note that the subset sum problem was also used to prove related hardness
results, e.g., for proving hardness of the Shapely value in network games Elkind et al. (2008).

As before we assume w.l.o.g. that the sum of the numbers ki is even,
∑

i ki = 2c for
some natural number c. Let m be a large natural number to be defined later. We reduce the
NUMPAR problem to the D-SHAP({X0}, NBN) problem. The Naive Bayes network NBN consists
of n + 1 binary random variables X0, . . . , Xn. Let Xi, X̄i denote the events Xi = 1 and
respectively Xi = 0. We define the following probabilities of the NBN:

Pr(X0)

Pr(X̄0)
=e−

m
2
−mc Pr(Xi|X0)

Pr(Xi|X̄0)
=emki

The probabilities Pr(X̄0) and Pr(Xi|X̄0) can be chosen arbitrarily (with the obvious con-

straints Pr(X̄0) ≤ e
m
2
+mc and Pr(Xi|X̄0) ≤ e−mki). As required, our classifier is F (X0, . . . , Xn)

def
=

X0. Let ak
def
= k!(n−k)!

(n+1)! and let ε > 0 be any number such that ε ≤ ak for all k = 0, 1, . . . , n.
We prove:

Claim 5. Let ε be the value defined above. If m satisfies both 2σ(−m/2) ≤ ε and 1 −
σ(m/2) ≤ ε, then NUMPAR has a solution iff ShapF (X0) ≥ 1/2(1 + ε).

The claim implies Theorem 9. To prove the claim, we express the Shap explanation
using Eq. (6). Let XS denote the event

∧
i∈S(Xi = 1). Then, we can write the Shap

explanation as:

ShapF (X0) =
∑
S⊆[n]

a|S|
(
E[F | XS∪{0}]−E[F | XS]

)
Obviously, E[X0 | XS∪{0}] = 1. In addition, we have

∑
S⊆[n] a|S| = 1, because there are(

n
k

)
sets of size k, hence

∑
S⊆[n] a|S| =

∑
k=0,n

(
n
k

)
· k!(n−k)!

(n+1)! = 1. Therefore ShapF (X0) =
1−D, where:

D
def
=

∑
S⊆[n]

a|S| ·E[X0 | XS] (14)

To compute D, we expand:

E[X0|XS] = Pr(X0|XS) =
Pr(X0,XS)

Pr(XS)

=

∏
i∈S Pr(Xi|X0)Pr(X0)∏

i∈S Pr(Xi|X0)Pr(X0) +
∏

i∈S Pr(Xi|X̄0)Pr(X̄0)

=
1

1 + Pr(X̄0)/Pr(X0) ·
∏

i∈S(Pr(Xi|X̄0)/Pr(Xi|X0))

= σ(weight(S))

867

Van den Broeck, Lykov, Schleich, & Suciu

where:

σ(x)
def
=

1

1 + e−x
weight(S)

def
= − m

2
−mc+m(

∑
i∈S

ki)

We compute D in Eq. (14) by grouping each set S with its complement S̄
def
= [n]− S:

D =
1

2

∑
S⊆[n]

a|S|
(
σ(weight(S)) + σ(weight(S̄))

)
(15)

If S is a solution to the number partitioning problem, then:

σ(weight(S)) + σ(weight(S̄)) = 2σ(−m/2)

Otherwise, one of weight(S), weight(S̄) is ≥ m/2 and the other is ≤ −3m/2 and therefore:

σ(m/2) ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + σ(−3m/2)

As in the proof of Theorem 6, we obtain:

S ∈ P : 0 ≤ σ(weight(S)) + σ(weight(S̄)) ≤ ε

S ̸∈ P : 1− ε ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + ε

Therefore, using the fact that
∑

S⊆[n] a|S| = 1, we derive these bounds for the expres-
sion (15) for D:

• If the number partitioning problem has no solution, then D ≥ 1/2(1 − ε), and
ShapF (X0) ≤ 1/2(1 + ε).

• Otherwise, let S be any solution to the NUMPAR problem, and k = |S|, then:

D ≤
(
1

2
(1 + ε)− ak(1 + ε)

)
+ akε

≤1

2
−
(
ak −

ε

2

)
<

1

2
− ε

2

and therefore ShapF (X0) > 1/2(1 + ε).

This result is in sharp contrast with the complexity of the Shap score over fully-
factorized distributions in Section 3. There, the complexity was dictated by the choice
of function class F. Here, the function is as simple as possible, yet computing Shap is hard.
This ruins any hope of achieving tractability by restricting the function, and this motivates
us to restrict the probability distribution in the next section. This result is also surprising
because it is efficient to compute marginal probabilities (such as the expectation of X0) and
conditional probabilities in naive Bayes distributions.

Theorem 9 immediately extends to a large class of probability distributions and func-
tions. We say that F depends only on Xi if there exist two constants c0 ̸= c1 such that
F (x) = c0 when xi = 0 and F (x) = c1 when xi = 1. In other words, F ignores all variables
other than Xi, and does depend on Xi. We then have the following.

868

On the Tractability of SHAP Explanations

Corollary 10. The problem D-SHAP(F, PR) is NP-hard, when PR is any of the following
classes of distributions:

1. Naive Bayes, bounded-treewidth Bayesian networks

2. Bayesian networks Markov networks, Factor graphs

3. Decomposable probabilistic circuits

and when F is any class that contains some function F that depends only on X0, including
the class of linear regression models and all the classes listed in Corollaries 5 and 8.

This corollary follows from two simple observations.First, each of the classes of probabil-
ity distributions listed in the corollary can represent a naive Bayes network over binary vari-
ablesX. For example, a Markov network will consists of n factors f1(X0, X1), f2(X0, X2), . . . ,
fn(X0, Xn); similar arguments prove that all the other classes can represent naive Bayes,
including tractable probabilistic circuits such as sum-product networks (Vergari et al., 2020).

Second, for each function that depends only on X0, there exist two distinct constants
c0 ̸= c1 ∈ R such that F (x) = c0 when x0 = 0 and F (x) = c1 when x0 = 1. For
example, if we consider the class of logistic regression functions F (x) = σ(

∑
iwixi), then

we choose the weights w0 = 1, w1 = . . . = wn = 0 and we obtain F (x) = 1/2 when
x0 = 0 and F (x) = 1/(1 + e−1) when x0 = 1. Then, over the binary domain {0, 1} the
function is equivalent to F (x) = (c1 − c0)x0 + c0, and, therefore, by the linearity of the
Shap explanation (Equation (4)) we have ShapF (X0) = (c1 − c0) · ShapX0(X0) (because
the Shap explanation of a constant function c0 is 0) for which, by Theorem 9, the decision
problem is NP-hard.

We end this section by proving that Theorem 9 continues to hold even if the prediction
function F is the value of some leaf node of a (bounded treewidth) Bayesian Network. In
other words, the hardness of the Shap explanation is not tied to the function returning the
root of the network, and applies to more general functions.

Corollary 11. The Shap decision problem for Bayesian networks with latent variables is
NP-hard, even if the function F returns a single leaf variable of the network.

Proof. (Sketch) We use a reduction from the NUMPAR problem, as in the proof of Theorem 9.
We start by constructing the NBN with variables X0, X1, . . . , Xn (as for Theorem 9), then
add two more variables Xn+1, Xn+2, and edges X0 → Xn+1 → Xn+2, and define the random
variables Xn+1, Xn+2 to be identical to X0, i.e. X0 = Xn+1 = Xn+2. The prediction
function is F = Xn+2, i.e. it returns the feature Xn+2, and the variables X0, Xn+1 are
latent. Thus, the new BN is identical to the NBN, and, since both models have exactly the
same number of non-latent variables, the Shap-explanation is the same.

5. Shap on Empirical Distributions

In supervised learning one does not require a generative model of the data, instead, the
model is trained on some concrete data set: the training data. When some probabilistic
model is needed, then the training data itself is conveniently used as a probability model,
called the empirical distribution. This distribution captures dependencies between features,

869

Van den Broeck, Lykov, Schleich, & Suciu

while its set of possible worlds is limited to those in the data set. For example, the intent of
the KernelSHAP algorithm by Lundberg and Lee (2017) is to compute the Shap explanation
on the empirical distribution. In another example, Aas, Jullum, and Løland (2019) extend
KernelSHAP to work with dependent features, by estimating the conditional probabilities
from the empirical distribution.

Compared to the data distributions considered in the previous sections, the empirical
distribution has one key advantage: it has many fewer possible worlds with positive prob-
ability – this suggests increased tractability. Unfortunately, in this section, we prove that
computing the Shap explanation over the empirical distribution is #P-hard in general.

To simplify the presentation, this section assumes that all features are binary: dom(Xj) =
{0, 1}. The probability distribution is given by a 0/1-matrix d = (xij)i∈[m],j∈[n], where each
row (xi1, . . . , xin) is an outcome with probability 1/m. One can think of d as a dataset
with n features and m data instances, where each row (xi1, . . . , xin) is one data instance.
Repeated rows are possible: if a row occurs k times, then its probability is k/m. We de-
note by X the class of empirical distributions. The predictive function can be any function
F : {0, 1}n → R. As our data distribution is no longer strictly positive, we adopt the
standard convention that E[F |XS = 1] = 0 when Pr(XS = 1) = 0.

Recall from Section 2.2 that, by convention, we compute the Shap-explanation w.r.t.
instance e = (1, 1, . . . , 1), which is without loss of generality. Somewhat surprisingly, the
complexity of computing the Shap-explanation of a function F over the empirical distribu-
tion given by a matrix d is related to the problem of computing the expectation of a certain
CNF formula associated to d.

Definition 4. The positive, partitioned 2CNF formula, PP2CNF, associated to a matrix
d ∈ {0, 1}m×n is:

Φd
def
=

∧
(i,j):xij=0

(Ui ∨ Vj).

Thus, a PP2CNF formula is over m + n variables U1, . . . , Um, V1, . . . , Vn, and has only
positive clauses. The matrix d dictates which clauses are present. A quasy-symmetric
probability distribution is a fully factorized distribution over the m+ n variables for which
there exists two numbers p, q ∈ [0, 1] such that for every i = 1,m, Pr(Ui = 1) = p or
Pr(Ui = 1) = 1, and for every j = 1, n, Pr(Vj = 1) = q or Pr(Vj = 1). In other words, all
variables U1, . . . , Um have the same probability p, or have probability 1, and similarly for the
variables V1, . . . , Vn. We denote by EQS(PP2CNF) the expectation computation problem for
PP2CNF over quasi-symmetric probability distributions. EQS(PP2CNF) is #P-hard, because
computing E[Φd] under the uniform distribution (i.e. Pr(U1 = 1) = · · · = Pr(Vn = 1) =
1/2) is #P-hard Provan and Ball (1983). We prove:

Theorem 12. Let X be the class of empirical distributions, and F be any class of function
such that, for each i, it includes some function that depends only on Xi. Then, we have
that F-SHAP(F, X) ≡P EQS(PP2CNF).

As a consequence, the problem F-SHAP(F, X) is #P-hard in the size of the empirical
distribution.

870

On the Tractability of SHAP Explanations

The theorem is surprising, because the set of possible outcomes of an empirical dis-
tribution is small. This is unlike all the distributions discussed earlier, for example those
mentioned in Corollary 10, which have 2n possible outcomes, where n is the number of
features. In particular, given an empirical distribution d, one can compute the expectation
E[F] in polynomial time for any function F , by doing just one iteration over the data. Yet,
computing the Shap explanation of F is #P-hard.

Theorem 12 implies hardness of Shap explanations on the empirical distribution for a
large class of functions.

Corollary 13. The problem F-SHAP(F, X) is #P-hard, when X is the class of empirical dis-
tributions, and F is any class such that for each feature Xi, the class contains some function
that depends only on Xi. This includes all the function classes listed in Corollaries 5 and
8.

For instance, any class of Boolean function that contains the n single-variable functions

F
def
= Xi, for i = 1, n, fall under this corollary. Section 4 showed an example of how the

class of logistic regression functions fall under this corollary as well.

The proof of Theorem 12 follows from the following technical lemma, which is of inde-
pendent interest:

Lemma 14. We have that:

1. For every matrix d, F-SHAP(F,d) ≤P EQS({Φd}).

2. EQS(PP2CNF) ≤P F-SHAP(F, X).

The proof of the Lemma is given in Sections 5.1 and 5.2. The first item says that
we can compute the Shap-explanation in polynomial time using an oracle for computing
E[Φd] over quasi-symmetric distributions. The oracle is called only on the PP2CNF Φd

associated to the data d, but may perform repeated calls, with different probabilities of the
Boolean variables. This is somewhat surprising because the Shap explanation is over an
empirical distribution, while E[Φd] is taken over a fully-factorized distribution; there is no
connection between these two distributions. This item immediately implies F-SHAP(F, X) ≤P

EQS(PP2CNF), where X is the class of empirical distributions d, since the formula Φd is in
the class PP2CNF.

The second item says that a weak form of converse also holds. It states that we can
compute in polynomial time the expectation E[Φ] over a quasi-symmetric probability dis-
tributions by using an oracle for computing Shap explanations, over several matrices d,
but not necessarily restricted to the matrix associated to Φ. Together, the two items of the
lemma prove Theorem 12.

We end this section with a comment on the TreeSHAP algorithm in Lundberg et al.
(2020), which is computed over a distribution defined by a tree-based model. Our result
implies that the problem that TreeSHAP tries to solve is #P-hard. This follows immediately
by observing that every empirical distribution d can be represented by a binary tree of size
polynomial in the size of d. The tree examines the attributes in the order X1, X2, . . . , Xn,
and each decision node for Xi has two branches: Xi = 0 and Xi = 1. A branch that
does not exists in the matrix d will end in a leaf with label 0. A complete branch that

871

Van den Broeck, Lykov, Schleich, & Suciu

corresponds to a row xi1, xi2, . . . , xin in d ends in a leaf with label 1/m (or k/m if that row
occurs k times in d). The size of this tree is no larger than twice the size of the matrix
(because of the extra dead end branches). This concludes our study of Shap explanations
on the empirical distribution.

5.1 Proof of Lemma 14 (1)

Fix a PP2CNF Φ =
∧
(Ui ∨ Vj). A symmetric probability space is defined by two numbers

p, q ∈ [0, 1] and consists of the fully-factorized distribution where Pr(U1) = Pr(U2) = · · · = p
and Pr(V1) = Pr(V2) = · · · = q. A quasi-symmetric probability space consists of two sets of
indices I, J and two numbers p, q such that:

Pr(Ui) =

{
p when i ̸∈ I

1 when i ∈ I
Pr(Vj) =

{
q when j ̸∈ J

1 when j ∈ J

In this and the following section we prove Lemma 14: computing the Shap-explanation
over an empirical distribution is polynomial time equivalent to computing the expectation
of PP2CNF formulas over a (quasi)-symmetric distribution. Provan and Ball (1983) proved
that computing the expectation of a PP2CNF over uniform distributions is #P-hard in
general. Since uniform distribution are symmetric (namely p = q = 1/2) it follows that
computing Shap-explanations is #P-hard in general.

In this section we prove item (1) of Lemma 14. Fix a 0/1-matrix x defining an empirical
distribution, and let F be a real-valued prediction function over these features. Let Φx be
the PP2CNF associated to x (see Definition 4). Will assume w.l.o.g. that x has n + 1
features (columns), denoted X0, X1, . . . , Xn. The prediction function F is any function
F : {0, 1}n+1 → R. We prove:

Proposition 15. One can compute ShapF (X0) in polynomial time using an oracle for
computing E[Φx] over quasi-symmetric distributions.

Denote by yi
def
= F (xi0, xi1, . . . , xin), i = 1,m the value of F on the i’th row of the matrix

x. Since the only possible outcomes of the probability space are the m rows of the matrix,

the quantity ShapF (X0) depends only on the vector y
def
= (y1, . . . , ym). Furthermore, by

the linearity of the Shap explanation (Eq. (4)), it suffices to compute the Shap explanation
in the case when y has a single value = 1 and all others are = 0. By permuting the rows of
the matrix, we will assume w.l.o.g. that y1 = 1, and y2 = y3 = · · · = ym = 0. In summary,
denoting F1 the function that is 1 on the first row of the matrix x and is 0 on all other
rows, our task is to compute ShapF1(X0).

For that we use the following expression for Shap (see also Sec. 3):

ShapF1(X0) =
∑
k=0,n

k!(n− k)!

(n+ 1)!

(
∑

S⊆[n]:|S|=k

(
E[F1|XS∪{0} = 1]−E[F1|XS = 1]

))
(16)

872

On the Tractability of SHAP Explanations

We will only show how to compute the quantity

vF1,k =
∑

S⊆[n]:|S|=k

E[F1|XS = 1] (17)

using an oracle to E[Φx], because the quantity
∑

S:|S|=k E[F1|XS∪{0} = 1] is computed
similarly, by restricting the matrix x to the rows i where xi0 = 1. The PP2CNF Φ associated

to this restricted matrix is obtained from Φx as follows. Let I
def
= {i | xi0 = 1} be the set

of rows of the matrix where the feature X0 is 1. Then, we need to remove all clauses of
the form (Ui ∨ Vj) for i ∈ I. This is equivalent to setting Ui := 1 in Φx. Therefore, we can
compute the expectation of the restricted Φ by using our oracle for E[Φx], and running it

over the probability space where we define Pr(Ui)
def
= 1 for all i ∈ I. Hence, it suffices to

show only how to compute the expression (17). Notice that the quantity vF1,k is the same
as what we defined earlier in Eq. (7).

Column X0 of the matrix is not used in expression (17), because the set S ranges over
subsets of [n]. Hence w.l.o.g. we can drop feature X0 and denote by x (with some abuse)
the matrix that only has the features X1, . . . , Xn. In other words, x ∈ {0, 1}m×n. The
PP2CNF formula for the modified matrix is obtained from Φx by setting V0 := 1, hence we
can compute its expectation by using our oracle for E[Φx].

We introduce the following quantities associated to the matrix x ∈ {0, 1}m×n:

• For all S ⊆ [n], ℓ ≤ m, k ≤ n, we define:

g(S)
def
={i | ∀j ∈ S, xij = 1} (18)

aℓk
def
= |{S | |S| = k, |g(S)| = ℓ}| (19)

• We define the sequence vk, k = 0, 1, . . . , n:

vk
def
=

∑
l=1,m

aℓk
ℓ

(20)

• We define the value V :

V
def
=

∑
k=0,n

k!(n− k)!

(n+ 1)!
vk (21)

We prove that, under a certain condition, the value vk in Eq. (20) is equal to Eq. (17);
this justifies the notation vk, since it turns out to be the same as vF1,k from Eq. (7).

Definition 5. Call the matrix x “good” if ∀i, j, x1j ≥ xij .

In other words, the matrix is “good” if the first row dominates all others. In general
the matrix x need not be “good”, however we can make it “good” by removing all columns

where row 1 has a value 0. More precisely, let J (1) def
= {j | x1j = 1} denote the non-zero

873

Van den Broeck, Lykov, Schleich, & Suciu

positions of the first row, and let x(1) denote the sub-matrix of x consisting of the columns
J (1). Obviously, x(1) is “good”, because its first row is (1, 1, . . . , 1). The following hold:

If S ⊆ J (1) : Ex[F1|XS = 1] =Ex(1) [F1|XS = 1]

If S ̸⊆ J (1) : Ex[F1|XS = 1] =0

(When S ̸⊆ J (1) then the quantity Ex(1) [F1|XS = 1] is undefined). Therefore:∑
S⊆[n]:|S|=k

Ex[F1|XS = 1] =
∑

S⊆J(1):|S|=k

Ex(1) [F1|XS = 1]

It follows that, in order to compute the values in Eq. (17), we can consider the matrix
x(1) instead of x; its associated PP2CNF is obtained from Φx by setting Vj := 1 for all
j ∈ [m]−J (1), hence we can compute its expectation over a quasi-symmetric space by using
our oracle for computing E[Φx] over quasi-symmetric spaces. To simplify the notation, we
will still use the name x for the matrix instead of x(1), and assume w.l.o.g. that the first
row of the matrix x is (1, 1, . . . , 1).

We prove that, when x is “good”, then vk is indeed the quantity Eq. (17) that we want
to compute. This holds for any “good” matrix, not just matrices with (1, 1, . . . , 1) in the
first row, and we need this more general result later in Sec. 5.2.

Claim 6. If the matrix x is “good”, then, for any k = 0, n:

vk =
∑

S:|S|=k

E[F1|XS = 1]

Proof. Recall that J (1) def
= {j | x1j = 1}. Let S ⊆ [n] be any set of columns. We consider

two cases, depending on whether S is a subset of J (1) or not:

S ⊆J (1) : |g(S)| >0 E[F1|XS = 1] =
1

|g(S)|
S ̸⊆J (1) : |g(S)| =0 E[F1|XS = 1] =0

Therefore: ∑
S⊆[n]:|S|=k

E[F1|XS = 1] =
∑

S⊆J(1):|S|=k

E[F1|XS = 1]

=
∑

S⊆J(1):|S|=k

1

|g(S)|
=

∑
S:|S|=k,|g(S)|>0

1

|g(S)|
=

∑
ℓ>0

aℓk
ℓ

At this point we introduce two polynomials, P and Q.

874

On the Tractability of SHAP Explanations

Definition 6. Fix an m×n matrix x with 0, 1-entries. The polynomials P (u, v) and Q(u, v)
in real variables u, v associated to the matrix x are the following:

P (u, v)
def
=

∑
S⊆[n]

u|g(S)|v|S|

Q(u, v)
def
=

∑
T ⊆ [m], S ⊆ [n] :

∀(i, j) ∈ T × S : xij = 1

u|T |v|S|

The polynomials are defined by summing over exponentially many sets S ⊆ [n], or pairs
of sets S ⊆ [n], T ⊆ [m]. In the definition of P , we use the function g(S) associated to
the matrix x, see Eq. (18). In the definition of Q(u, v) we sum only those pairs T, S where
∀i ∈ T , ∀j ∈ S, xij = 1. While their definition involves exponentially many terms, these
polynomials have only (m + 1)(n + 1) terms, because the degrees of the variables u, v are
m and n respectively. We claim that these terms are as follows:

Claim 7. The following identities hold:

P (u, v) =
∑

ℓ=0,m;k=0,n

aℓku
ℓvk

Q(u, v) =P (1 + u, v)

Proof. The identity for P (u, v) follows immediately from the definition of aℓk. We prove the
identity for Q. From the definition of g(S) in Eq. (18) we derive the following equivalence:

(∀i ∈ T, ∀j ∈ S : xij = 1) ⇔ T ⊆ g(S)

Which implies:

Q(u, v) =
∑

S⊆[n],T⊆g(S)

u|T |v|S|

and the claim follows from
∑

T⊆g(S) u
|T | = (1 + u)|g(S)|.

Thus, in order to compute the quantities vk for k = 0, 1, . . . , n it suffices to compute the
coefficients aℓk of the polynomial P (u, v), and, for that, it suffices to compute the coeffi-
cients of the polynomial Q(u, v). For that, we establish the following important connection
between E[Φx] and the polynomial Q(u, v). Fix u, v > 0 any two positive real values, and

let p
def
= 1/(1 + u), q

def
= 1/(1 + v); notice that p, q ∈ (0, 1). Consider the probability space

over independent Boolean variables U1, . . . , Um, V1, . . . , Vn where ∀i ∈ [m], Pr(Ui) = p, and
∀j ∈ [n], Pr(Vj) = q. Then:

Claim 8. Given the notations above, the following identity holds:

E[Φx] =
1

(1 + u)m(1 + v)n
Q(u, v) (22)

875

Van den Broeck, Lykov, Schleich, & Suciu

Proof. A truth assignment for Φx consists of two assignments, θ ∈ {0, 1}m for the variables

Ui, and τ ∈ {0, 1}n for the variables Vj . Defining T
def
= {i | θ(Ui) = 0} and S

def
= {j |

τ(Vj) = 0}, we observe that Φx[θ, τ] = true iff ∀i ∈ T, ∀j ∈ S, xij = 1, and therefore:

Pr(Φx) =
∑

θ,τ :Φ[θ,τ]=1

Pr(θ)Pr(τ)

=
∑

T ⊆ [m], S ⊆ [n]
∀(i, j) ∈ T × S : xij = 1

pm−|T |(1− p)|T |qn−|S|(1− q)|S|

= pmqnQ((1− p)/p, (1− q)/q)

Finally, to prove Lemma 14 (1), it suffices to show how to use an oracle for E[Φx] to
compute the coefficients of the polynomial Q(u, v). We denote by bℓk these coefficients, in
other words:

Q(u, v) =
∑

ℓ=0,m;k=0,n

bℓku
ℓvk (23)

To compute the coefficients bℓk, we proceed as follows. Choose m + 1 distinct values
u0, u1, . . . , um > 0, and choose n + 1 distinct values v0, v1, . . . , vn > 0, and for all i = 0,m
and j = 0, n, use the oracle for E[Φx] to compute Q(ui, vj) as per identity (22). This
leads to a system of (m+ 1)(n+ 1) equations whose unknowns are the coefficients bℓk (see
Eq. (23)) and whose coefficients are uℓiv

k
j . The matrix A of this system of equations is an

[(m+1)(n+1)]× [(m+1)(n+1)] matrix, whose rows are indexed by pairs (i, j), and whose
columns are indexed by pairs (ℓ, k):

A(ij),(ℓk) =uℓiv
k
j

We prove that this matrix is non-singular, and for that we observe that it is the Kronecker
product of two Vandermonde matrices. Recall that the t× t Vandermonde matrix defined
by t numbers z1, . . . , zt is:

V (z1, . . . , zt) =


1 1 . . . 1
z1 z2 . . . zt
z21 z22 . . . z2t

. . .

zt−1
1 zt−1

2 . . . zt−1
t


It is known that det(V (z1, . . . , zt)) =

∏
1≤i<j≤t(zj−zi) and this is ̸= 0 iff the values z1, . . . , zt

are distinct. We observe that the matrix A is the Kronecker product of two Vandermonde
matrices:

A =V (u0, u1, . . . , um)⊗ V (v0, v1, . . . , vn)

Since we have chosen u0, . . . , um to be distinct, and similarly for v0, . . . , vn, it follows that
both Vandermonde matrices are non-singular, hence det(A) ̸= 0. Thus, we can solve this

linear system of equations in time O
(
((m+ 1)(n+ 1))3

)
, and compute all coefficients bℓk.

876

On the Tractability of SHAP Explanations

Putting It Together We prove now Proposition 15. We are given a 0/1 matrix x with
n+ 1 features X0, . . . , Xn and m rows. To compute ShapF (X0) we proceed as follows:

1. For each i = 1,m, compute ShapFi(X0), where Fi is the function defined as = 1 on
row i of the matrix, and = 0 on all other rows of the matrix. Return ShapF (X0) =∑

i=1,m yiShapFi(X0), where yi
def
= F (xi0, xi1, . . . , xin) is the value of F on the i’th

row of the matrix.

2. To compute ShapFi(X0), switch rows 1 and i of the matrix, and compute ShapF1(X0)
on the modified matrix.

3. To compute ShapF1(X0), compute both sums in Eq. (16).

4. To compute
∑

S⊆[n]:|S|=k E[F1|XS = 1], perform steps (5) to (8) below.

5. Let J (1) = {j | j ∈ [n], x1j = 1}; notice that 0 ̸∈ J (1). Let n(1) = |J (1)|. Let Φ′ denote
the PP2CNF obtained from Φx by setting Vj := 1 for all j ̸∈ J (1). Thus, Φ′ has
m+ n(1) variables: Ui for i ∈ [m], and Vj for j ∈ J (1).

6. Choose distinct values u0, u1, . . . , um ∈ (0, 1) and distinct values v0, v1, . . . , vn(1) ∈
(0, 1). For each fixed combination uα, vβ, compute Q(uα, vβ) = (1 + uα)

m(1 +

vβ)
n(1)

E[Φ′] (see Claim 8). The value E[Φ′] over the probability space where, for
all i, j: Pr(Ui) = uα, Pr(Vj) = vβ: this can be done by computing E[Φx] over a
quasi-symmetric space.

7. Using the (m+1)(n(1)+1) results from the previous step, form a system of Equations
where the unknowns are the coefficients bℓk, ℓ = 0,m, k = 0, n(1), of the polynomial
Q(u, v), see (23). Solve for the coefficients bℓk.

8. Compute the coefficients aℓk of the polynomial P (u, v) = Q(u − 1, v), see Claim 7,
then compute vk =

∑
ℓ aℓk/ℓ. By Claim 6, vk =

∑
S:|S|=k E[F1|XS = 1], completing

Step (4).

9. To compute
∑

S⊆[n]:|S|=k E[F1|XS∪{0} = 1], first set Ui := 0 for all rows i where
xi0 = 0, then repeat steps (5) to (8).

10. This completes Step (3), and we obtain ShapF1(X0).

5.2 Proof of Lemma 14 (2)

Here we prove item (2) of Lemma 14: one can compute E[Φ] over a quasi-symmetric prob-
ability space in polynomial time, given an oracle for Shap on empirical distributions. If
the probability space sets Pr(Ui) = 1 for some variable, then we can simply replace Φ with
Φ[Ui := 1], and similarly if Pr(Vj) = 1. Hence, w.l.o.g., we can assume that the probability
space is symmetric.

More precisely, we fix a PP2CNF formula Φ =
∧
(Ui ∨ Vj), and let p = Pr(U1) = · · · =

Pr(Um) and q = Pr(V1) = · · · = Pr(Vn) define a symmetric probability space. Our task
is to compute E[Φ] over this space, given an oracle for computing Shap-explanations on

877

Van den Broeck, Lykov, Schleich, & Suciu

empirical distributions. Throughout this section we will use the notations introduced in
Sec. 5.1.

Let x the matrix associated to Φ: xij = 0 iff Φ contains a clause Ui ∨ Vj . We describe
our algorithm for computing E(Φ) in three steps.

Step 1: E[Φ] ≤P (v0, v1, . . . , vk). More precisely:, we claim that we can compute Pr(Φ)
using an oracle for computing the quantities v0, v1, . . . , vn defined in Eq. (20). We have
seen in Eq. (22) that E[Φ] = 1

(1+u)m(1+v)nQ(u, v) where u = (1 − p)/p and v = (1 − q)/q.

From Claim 7 we know that Q(u, v) = P (1 + u, v), and the coefficients of P (u, v) are the
quantities aℓk defined in Eq. (19). To complete Step 1, we will describe a polynomial time
algorithm that computes the quantities aℓk associated to our matrix x, with access to an
oracle for computing the quantities v0, . . . , vk associated to any matrix x′.

Starting from the matrix x, constructm+1 new matrices, denoted by x(1),x(2), . . . ,x(m+1),
where, for each Γ = 1,m+1, x(Γ) consists of the matrix x extended with Γ rows consisting
of (1, 1, . . . , 1). That is, the matrix x(Γ) has Γ + m rows, the first Γ rows are (1, . . . , 1),
and the remaining m rows are those in x. We run our oracle to compute the quantities vk
on each matrix x(Γ). We continue to use the notations g(S), aℓk, vk introduced in Equa-
tions (18), (19), (20) for the matrix x, and add the superscript (Γ) for the same quantities
associated to the matrix x(Γ). We observe:

g(Γ) =g(S) ∪ {the Γ new rows}

a
(Γ)
ℓ+Γ,k =aℓk

and therefore:

v
(1)
k =

1

1
a0k +

1

2
a1k + · · ·+ 1

m+ 1
amk

v
(2)
k =

1

2
a0k +

1

3
a1k + · · ·+ 1

m+ 2
amk

· · ·

v
(m+1)
k =

1

m+ 2
a0k +

1

m+ 3
a1k + · · ·+ 1

2m+ 2
amk

By solving this system of equations, we compute the quantities aℓk for ℓ = 0,m. The matrix
of this system is a special case of Cauchy’s double alternant determinant:

det

[
1

xi + yj

]
=

∏
1≤i<j≤n(xi − xj)(yi − yj)∏

i,j(xi + yj)

where xi = i and yj = j − 1, and therefore the matrix of the system is non-singular.

We observe that all matrices x(1), . . . ,x(m+1) are “good” (see Definition 5), because
their first row is (1, . . . , 1).

Step 2: Let x be a “good” matrix (Definition 5). Then: (v0, v1, . . . , vn) ≤P V (V
defined in Eq. (21)). In other words, given a matrix x, we claim that we can compute the
quantities v0, v1, . . . , vn associated to x by Eq. (20) in polynomial time, given access to an
oracle for computing the quantity V associated to any matrix x′. The algorithm proceeds

878

On the Tractability of SHAP Explanations

as follows. For each ∆ = 0, 1, . . . , n, construct a new m× (2n) matrix x(∆) by extending x
with ∆ new columns set to 1 and n−∆ new columns set to 0. Thus, x(∆) is:


x11 x12 . . . x1n 1 1 . . . 1 0 . . . 0
x21 x22 . . . x2n 1 1 . . . 1 0 . . . 0

. . .
xm1 xm2 . . . xmn 1 1 . . . 1 0 . . . 0



Notice that x(∆) is “good”, for any ∆. We run the oracle on each matrix x(∆) to compute the
quantity V (∆). We start by observing the following relationships between the parameters
of the matrix x and those of the matrix x(∆):

g(∆)(S) =g(∆ ∩ [n])

a
(∆)
ℓp =

∑
k=0,min(p,n)

(
∆

p− k

)
aℓk

v(∆)
p =

∑
k=0,min(p,n)

(
∆

p− k

)
vk

Notice that, when p > n + ∆, then v
(∆)
p = 0. We use the oracle to compute the quantity

V (∆), which is:

V (∆) =
∑

p=0,2n

p!(2n− p)!

(2n+ 1)!
v(∆)
p

=
1

2n+ 1

∑
p=0,n+∆

1(
2n
p

)v∆p
=

1

2n+ 1

∑
p=0,n+∆

∑
k=0,min(p,n)

(
∆

p−k

)(
2n
p

) vk

=
1

2n+ 1

∑
k=0,n

∑
p=k,k+∆

(
∆

p−k

)(
2n
p

) vk

=
1

2n+ 1

∑
k=0,n

 ∑
q=0,∆

(
∆
q

)(
2n
k+q

)
 vk

def
=

1

2n+ 1

∑
k=0,n

A∆,k · vk

Thus, after running the oracle on all matrices x(0), . . . ,x(n), we obtain a system of n + 1
equations with n + 1 unknowns v0, v1, . . . , vn. It remains to prove that system’s matrix,

879

Van den Broeck, Lykov, Schleich, & Suciu

A∆,k, is non-singular matrix. Let us denote following matrices by:

A∆,k
def
=

∑
q=0,∆

(
∆
q

)(
2n
k+q

) ∆ = 0, n; k = 0, n;

B∆,q
def
=

(
∆

q

)
∆ = 0, n; q = 0, n;

Cq,k
def
=

1(
2n
k+q

) q = 0, n; k = 0, n;

It is immediate to verify that A = B · C, so it suffices to prove det(B) ̸= 0, det(C) ̸= 0.

We start with B, and for that consider the Vandermonde matrix X
def
= V (x0, x1, . . . , xn),

Xqt
def
= xqt . Denoting Y

def
= B ·X, we have that

Y∆t =
∑
q=0,n

B∆,qXq,t =
∑
q=0,n

(
∆

q

)
xqt = (1 + xt)

∆

is also a Vandermonde matrix Y = V (1+x0, 1+x1, . . . , 1+xn). We have det(Y) ̸= 0 when
x0, x1, . . . , xn are distinct, proving that det(B) ̸= 0.

Finally, we prove det(C) ̸= 0. For that, we prove a slightly more general result. For any
N ≥ 2n, denote by C(n,N) the following (n+ 1)× (n+ 1) matrix:

C(n,N) def
=


1

(N0)
1

(N1)
. . . 1

(Nn)
1

(N1)
1

(N2)
. . . 1

(N
n+1)

. . .
1

(Nn)
1

(N
n+1)

. . . 1

(N
2n)


We will prove that det(C(n,N)) ̸= 0; our claim follows from the special case N = 2n. For
the base case, n = 0, det(C(0,N)) = 1 because C(0,N) is a 1 × 1 matrix equal to 1/

(
N
0

)
,

hence det(C(0,N)) = 1. To show the induction step, we will perform elementary column
operations (which preserve the determinant) to make the last row of the resulting matrix
consist of zeros, except for the last entry.

Consider an arbitrary row i, and two adjacent columns j, j + 1 in that row:

. . . 1

(N
i+j)

1

(N
i+j+1)

. . .

We use the fact that
(
N
i+j

)
=

(
N

i+j+1

) i+j+1
N−i−j and rewrite the two adjacent elements as:

. . .

(
1

(N
i+j+1)

× N−i−j
i+j+1

)
1

(N
i+j+1)

. . .

Now, for each j = 0, 1, 2, ..., n − 1, we subtract column j + 1, multiplied by N−(n+j)
(n+j)+1 , from

column j. The last row becomes 0, 0, . . . , 0, 1

(N
2n)

, which means that det(C(n,N)) is equal to

1

(N
2n)

times the upper left (n× n) minor.

880

On the Tractability of SHAP Explanations

Now, we check what happens with element at (i, j). After subtraction, it becomes

1(
N

i+j+1

) ×
(
N − (i+ j)

(i+ j) + 1
− N − (n+ j)

(n+ j) + 1

)
This expression can be rewritten as:

1(
N

(i+j)+1

) ×
(
N − (i+ j)

(i+ j) + 1
− N − (n+ j)

(n+ j) + 1

)
=

(N − i− j − 1)!(i+ j + 1)!

N !

(N + 1)(n− i)

(i+ j + 1)(n+ j + 1)

=
(N − i− j − 1)!(i+ j)!

(N − 1)!N

(N + 1)(n− i)

(n+ j + 1)

=
1(

N−1
(i+j)

) (N + 1)(n− i)

N(n+ j + 1)

Note that this expression holds with the whole (n× n) upper-left minor of C(n,N): the
element in the lower-right corner of the matrix remains 1/

(
N
2n

)
. Observe that the (i, j)-th

entry of this minor is precisely the (i, j)-entry of C(n−1,N−1), multiplied by (N+1)(n−i)
N(n+j+1) . Here

N+1
N is a global constant, n − i is the same constant in the entire row i, and 1

n+j+1 is the

same constant in the entire column j. We factor out the global constant N+1
N , factor out

n− i from each row i, and factor out 1
n+j+1 from each column j, and obtain the following

recurrence:

det(C(n,N)) =
1(
N
2n

) (N + 1

N

)n

×
∏n−1

i=0 (n− i)∏n−1
j=0 (n+ j + 1)

× det(C(n−1,N−1))

It follows by induction on n that det(C(n,N)) ̸= 0.

Step 3: Let x be a “good” matrix (Definition 5). Then V ≤P Shap. More precisely, we
claim that we can compute the quantity V associated to a matrix x as defined in Eq. (21)
in polynomial time, by using an oracle for computing ShapF1(Xj) over any matrix x′.

We modify the matrix x as follows. We add a new attribute X0 whose value is 1 only
in the first row, and let F1 = X0 denote the function that returns the value of feature X0.
We show here the new matrix x′, augmented with the values of the function F1:

X0 X1 X2 . . . Xn F1

1 x11 x12 . . . x1n 1
0 x21 x22 . . . x2n 0

.
0 xm1 xm2 . . . xmn 0


We run our oracle to compute ShapF1(X0) over the matrix x′. The value ShapF1(X0) is
given by Eq. (16), but notice that the matrix x′ has n+ 1 columns, while Eq. (16) is given

881

Van den Broeck, Lykov, Schleich, & Suciu

for a matrix with n columns. Therefore, since E[F1|XS∪{0}] = 1 for any set S, we have:

ShapF1(X0) =1−
∑
k=0,n

k!(n− k)!

(n+ 1)!
E[F1|XS = 1]

Since x is “good”, so is the new matrix x′ and, by Claim 6, for any k = 0, n∑
S:|S|=k

E[F1|XS = 1] =vk

This implies that we can use the value ShapF1(X0) returned by the oracle to compute the
quantity: ∑

k=0,n

k!(n− k)!

(n+ 1)!
E[F1|XS = 1] =

∑
k=0,n

k!(n− k)!

(n+ 1)!
vk = V

which completes Step 3

Putting It Together Given a PP2CNF formula Φ =
∧
(Ui ∨ Vj), and two probability

values p = Pr(U1) = · · · = Pr(Um) and q = Pr(V1) = · · · = Pr(Vn), to compute E[Φ] we
proceed as follows:

• Construct the 0,1-matrix associated to Φ, denote it x.

• Construct m + 1 matrices x(Γ), Γ = 1,m + 1, by adding Γ rows (1, 1, . . . , 1) at the
beginning of the matrix.

• For each matrix x(Γ), construct n+1 matrices x(Γ,∆), ∆ = 0, n, by adding n columns,
of which the first ∆ columns are 1, the others are 0.

• For each x(Γ,∆), construct one new matrix (x(Γ,∆))′ by adding a column (1, 0, 0, . . . , 0).
Call this new column X0.

• Use the oracle to compute ShapF1(X0). From here, compute the value V (Γ,∆) associ-
ated with the matrix x(Γ,∆).

• Using the values V (Γ,0), V (Γ,1), . . . , V (Γ,n), compute the values v
(Γ)
0 , v

(Γ)
1 , . . . , v

(Γ)
n asso-

ciated to the matrix x(Γ).

• For each k = 0, n, use the values v
(1)
k , v

(2)
k , . . . , v

(m+1)
k to compute the coefficients

a0k, a1k, . . . , amk associated to the matrix x.

• At this point we have all coefficients aℓk of the polynomial P (u, v).

• Compute the coefficients bℓk of the polynomial Q(u, v) = P (1 + u, v).

• Finally, return E[Φ] = pmqn

(1−p)m(1−q)nQ(1−p
p , 1−q

q).

This concludes the entire proof of Lemma 14.

882

On the Tractability of SHAP Explanations

6. Perspectives and Conclusions

We establish the complexity of computing the Shap explanation in three important set-
tings. First, we consider fully-factorized data distributions and show that for any prediction
model, the complexity of computing the Shap explanation is the same as the complexity
of computing the expected value of the model. It follows that there are commonly used
models, such as logistic regression, for which computing Shap explanations is intractable.
Going beyond fully-factorized distributions, we show that computing Shap explanations is
also intractable for simple functions and simple distributions – naive Bayes and empirical
distributions.

The recent literature on Shap explanations predominantly studies tradeoffs of variants
of the original Shap formulation, and relies on approximation algorithms to compute the
explanations. These approximation algorithms, however, tend to make simplifying assump-
tions which can lead to counter-intuitive explanations, see e.g., Slack et al. (2020). We
believe that more focus should be given to the computational complexity of Shap explana-
tions. In particular, which classes of machine learning models can be explained efficiently
using the Shap scores? Our results show that, under the assumption of fully-factorized data
distributions, there are classes of models for which the Shap explanations can be computed
in polynomial time. In future work, we plan to explore if there are classes of models for
which the complexity of the Shap explanations is tractable under more complex data dis-
tributions, such as the ones defined by tractable probabilistic circuits Vergari et al. (2020)
or tractable symmetric probability spaces (Van den Broeck, Meert, and Darwiche, 2014;
Beame et al., 2015).

Acknowledgements

This work is partially supported by NSF grants IIS-1907997, IIS-1954222 IIS-1943641, IIS-
1956441, CCF-1837129, DARPA grant N66001-17-2-4032, a Sloan Fellowship, and gifts by
Intel and Facebook research. Schleich is supported by a RelationalAI fellowship. The au-
thors would like to thank YooJung Choi for valuable discussions on the proof of Theorem 6.

References

Aas, K.; Jullum, M.; and Løland, A. 2019. Explaining individual predictions when fea-
tures are dependent: More accurate approximations to Shapley values. arXiv preprint
arXiv:1903.10464 .

Arenas, M.; Barceló, P.; Bertossi, L.; and Monet, M. 2020. The Tractability of SHAP-
Score-Based Explanations over Deterministic and Decomposable Boolean Circuits. arXiv
preprint arXiv:2007.14045 .

Beame, P.; Van den Broeck, G.; Gribkoff, E.; and Suciu, D. 2015. Symmetric Weighted
First-Order Model Counting. In Proceedings of the 34th ACM Symposium on Principles
of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4,
2015, 313–328.

883

Van den Broeck, Lykov, Schleich, & Suciu

Bertossi, L.; Li, J.; Schleich, M.; Suciu, D.; and Vagena, Z. 2020. Causality-Based Explana-
tion of Classification Outcomes. In Proceedings of the Fourth International Workshop on
Data Management for End-to-End Machine Learning, DEEM’20. New York, NY, USA:
Association for Computing Machinery.

Bryant, R. E. 1986. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on 100(8): 677–691.

Chavira, M.; and Darwiche, A. 2008. On probabilistic inference by weighted model counting.
Artificial Intelligence 172(6-7): 772–799.

Darwiche, A.; and Marquis, P. 2002. A knowledge compilation map. Journal of Artificial
Intelligence Research 17: 229–264.

Datta, A.; Sen, S.; and Zick, Y. 2016. Algorithmic Transparency via Quantitative Input
Influence: Theory and Experiments with Learning Systems. In IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, 598–617.

Elkind, E.; Goldberg, L. A.; Goldberg, P. W.; and Wooldridge, M. J. 2008. A tractable
and expressive class of marginal contribution nets and its applications. In 7th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Estoril, Portugal, May 12-16, 2008, Volume 2, 1007–1014.

Ferrara, A.; Pan, G.; and Vardi, M. Y. 2005. Treewidth in verification: Local vs. global. In
International Conference on Logic for Programming Artificial Intelligence and Reasoning,
489–503. Springer.

Gade, K.; Geyik, S. C.; Kenthapadi, K.; Mithal, V.; and Taly, A. 2019. Explainable
AI in Industry. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19, 3203–3204. New York, NY, USA:
Association for Computing Machinery.

Janzing, D.; Minorics, L.; and Bloebaum, P. 2020. Feature relevance quantification in ex-
plainable AI: A causal problem. volume 108 of Proceedings of Machine Learning Research,
2907–2916. PMLR.

Khosravi, P.; Choi, Y.; Liang, Y.; Vergari, A.; and Van den Broeck, G. 2019a. On Tractable
Computation of Expected Predictions. In Advances in Neural Information Processing
Systems 32 (NeurIPS).

Khosravi, P.; Liang, Y.; Choi, Y.; and den Broeck, G. V. 2019b. What to Expect of
Classifiers? Reasoning about Logistic Regression with Missing Features. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, 2716–2724.

Khosravi, P.; Vergari, A.; Choi, Y.; Liang, Y.; and Van den Broeck, G. 2020. Handling
Missing Data in Decision Trees: A Probabilistic Approach. In The Art of Learning with
Missing Values Workshop at ICML (Artemiss).

884

On the Tractability of SHAP Explanations

Kumar, I. E.; Venkatasubramanian, S.; Scheidegger, C.; and Friedler, S. 2020. Problems
with Shapley-value-based explanations as feature importance measures. In Proceedings
of the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 119,
2020.

Liang, Y.; and Van den Broeck, G. 2019. Learning Logistic Circuits. In Proceedings of the
33rd Conference on Artificial Intelligence (AAAI).

Lundberg, S. M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J. M.; Nair, B.; Katz, R.;
Himmelfarb, J.; Bansal, N.; and Lee, S. 2020. From Local Explanations to Global Un-
derstanding with Explainable AI for Trees. Nature Machine Intelligence 2: 56–67.

Lundberg, S. M.; Erion, G. G.; and Lee, S.-I. 2018. Consistent individualized feature
attribution for tree ensembles. arXiv preprint arXiv:1802.03888 .

Lundberg, S. M.; and Lee, S. 2017. A Unified Approach to Interpreting Model Predictions.
In Advances in neural information processing systems (NIPS), 4765–4774.

Merrick, L.; and Taly, A. 2020. The Explanation Game: Explaining Machine Learning
Models Using Shapley Values. In International Cross-Domain Conference for Machine
Learning and Knowledge Extraction, 17–38. Springer.

Ng, A. Y.; and Jordan, M. I. 2002. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In Advances in neural information processing
systems, 841–848.

Provan, J. S.; and Ball, M. O. 1983. The Complexity of Counting Cuts and of Computing
the Probability that a Graph is Connected. SIAM J. Comput. 12(4): 777–788.

Rendle, S. 2010. Factorization machines. In 2010 IEEE International Conference on Data
Mining, 995–1000. IEEE.

Roth, A. e. 1988. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge
Univ. Press.

Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing Bayesian inference by weighted
model counting. In AAAI, volume 5, 475–481.

Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; and Lakkaraju, H. 2020. Fooling LIME and SHAP:
Adversarial Attacks on Post hoc Explanation Methods. In AAAI/ACM Conference on
AI, Ethics, and Society (AIES).

Štrumbelj, E.; and Kononenko, I. 2014. Explaining prediction models and individual pre-
dictions with feature contributions. Knowledge and information systems 41(3): 647–665.

Sundararajan, M.; and Najmi, A. 2020. The many Shapley values for model explanation. In
Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria,
PMLR 119, 2020.

885

Van den Broeck, Lykov, Schleich, & Suciu

Van den Broeck, G.; Meert, W.; and Darwiche, A. 2014. Skolemization for Weighted
First-Order Model Counting. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July
20-24, 2014.

Vergari, A.; Choi, Y.; Peharz, R.; and Van den Broeck, G. 2020. Probabilistic Circuits:
Representations, Inference, Learning and Applications. AAAI Tutorial.

Wei, W.; and Selman, B. 2005. A new approach to model counting. In International
Conference on Theory and Applications of Satisfiability Testing, 324–339. Springer.

886

