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Abstract

Succinct event description based on multiple documents is critical to news systems
as well as search engines. Different from existing summarization or event tasks, Multi-
document Event Summarization (MES) aims at the query-level event sequence generation,
which has extra constraints on event expression and conciseness. Identifying and sum-
marizing the key event from a set of related articles is a challenging task that has not
been sufficiently studied, mainly because online articles exhibit characteristics of redun-
dancy and sparsity, and a perfect event summarization needs high level information fusion
among diverse sentences and articles. To address these challenges, we propose a two-phase
framework for the MES task, that first performs event semantic graph construction and
dominant event detection via graph-sequence matching, then summarizes the extracted key
event by an event-aware pointer generator. For experiments in the new task, we construct
two large-scale real-world datasets for training and assessment. Extensive evaluations show
that the proposed framework significantly outperforms the related baseline methods, with
the most dominant event of the articles effectively identified and correctly summarized.

1. Introduction

With the information explosion on the web and internet, massive amounts of online articles
are constantly being generated by media providers and individuals, drowning the readers in a
sea of information. Such trend demands search engines and news systems to grasp the main
events from redundant articles and generate more refined event description for guideline
and reading. Automatic event summarization from multiple articles is of great value for
the reading and search experience, offering readers an overview and quick-perception of
trending topics or breaking news. As shown in Figure 1, a news system needs to generate
(a) a real-time trending list, or (b) personalized trending recommendation based on article
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clustering (Topic Detection and Tracking) (Yang et al., 2002) and multi-document event
summarization. Search engines can adopt (c) query suggestion and (d) relative search hint
for users, which is also an extension of concise event summarization.

(a) Realtime trending list (b) Personalized trending list

(c) Query suggestion (d) Relative search

Figure 1: Concise event descriptions have wide range of application scenarios and they are
crucial to news systems and search engines.

Formally, Multi-document Event Summarization (MES) is the process of distilling the
most important information from multiple web-articles to precisely describe the core events.
Different from previous summarization (Radev et al., 2004; Yasunaga et al., 2017a) or event
tasks (Walker et al., 2006; Mitamura et al., 2017), MES is a new event summarization task
with particular constrains in conciseness and event expression. For instance, conventional
multi-document summarization (Barzilay et al., 2002) aims at generating a multi-sentence
summary from a collection of documents, while MES is a higher level abstraction that
targets at a query-level summary of the core event, which means the topic event should be
expressed in a few words (less than 14 Chinese characters in our task). Further, instead
of focusing on specified event arguments extraction, MES is essentially an event sequence
generation task that summarizes the total event in fluent natural language (see examples
in Figure 1).
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However, summarizing the query-level event from multiple redundant articles is not
straightforward. Articles of a cluster often differ in focus or point of view for a topic,
and sometimes contain several sub-events related to the topic event, making it difficult to
extract the most dominant event from an article cluster. Meanwhile, the event elements
that constitute a complete event expression may be located in different sentences or articles,
requiring proper coordination and reorganization of the event elements. Hence, the following
questions lie to be addressed: How to identify the core event from multiple related articles
with complete event elements? How to summarize the extracted event in a fairly concise
and fluent manner?

The encoder-decoder neural network models exhibit strong representation capability in
the generation (Radford et al., 2019) and summarization tasks (Bahdanau et al., 2015; Vou-
giouklis et al., 2020). However, they still meet issues when dealing with multi-document
setting that requires additional redundancy elimination and cross-document relation cap-
turing. Graph-based methods (Glavaš et al., 2014; Li et al., 2016) are feasible approaches
to extract relationships among various sentences or documents and thus could identify the
core event structure, but graphs are built at the cost of syntactic information loss.

In this work, we propose a two-phase framework combined with both graph extraction
and neural summarization to address the particular challenges of the MES task, in which
we first extract the core event and then summarize the event summary. At the first phase,
we adopt a graph-based method to extract the topic event in sentence manner and graph
manner, where the core event semantic graph is first constructed with key sentence selection
and dependency parsing, and then a representative sentence is chosen with a graph-sentence
matching procedure. At the second phase, an event-aware pointer generator (Event-Pg)
is introduced to summarize the extracted event sequence and event semantic graph into
succinct event sequence, which possesses the ability to integrate different event elements of
separate articles and ensure fluency. Specifically, a context-aware event pointer is included
compared with the original pointer generator (See et al., 2017) and the event distribution
can be iteratively updated to better explain the target word given the context of the source
material and inherent semantics in texts, making the learned event pointer points to the
most suitable and expressive event elements.

Although there exist many datasets for text summarization (Over, 2003; Hermann et al.,
2015; Grusky et al., 2018; Fabbri et al., 2019), the query-level summarization based on mul-
tiple articles is a largely unexplored area without any public labeled dataset. To facilitate
evaluation and further research on MES, we have created two large-scale datasets, one
annotated by professional editors, while the other be collected from crawling and search
results.

In a nutshell, our contributions are summarized as follows:

• We propose to address a new and challenging task: multi-document event summariza-
tion (MES), which aims at a query-level event summarization from multiple articles.
We have also constructed two large scale real-world datasets for the training and
evaluation.

• We propose a two-phase framework to address this challenging MES task, in which
we first adopt graph-based event identification and then integrate the event sentence
and event graph with an event-aware pointer generator for sequence generation.
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• Experimental results show that the proposed model significantly outperforms the base-
lines designed for related tasks, demonstrating the validity and superiority of the
proposed model.

2. Related Work

Our work touches several strands of research, including multi-document summarization,
event extraction and headline generation.

2.1 Multi-document Summarization

Existing multi-document summarization methods mainly focus on sentence-level summa-
rization and can be categorized into extractive and abstractive methods. Most extractive
methods are operated over graph-based representations of sentences or passages with edge
weights computed by tf-idf (Erkan et al., 2004), discourse relations (Christensen et al., 2013)
or sentence embeddings (Yasunaga et al., 2017b) and then a specific algorithm is further
adopted for ranking text units for inclusion in the final summary. More recently, some ex-
tractive summarization works also utilize graph convolutional networks for salient sentences
estimation (Kipf et al., 2016) and sentence ordering (Yin et al., 2019). Abstractive models,
especially neural abstractive ones, have achieved promising results on single-document sum-
marization (See et al., 2017; Paulus et al., 2018; Lewis et al., 2019). However, the extension
of sequence-to-sequence architectures to multi-document summarization is less straightfor-
ward due to the lack of sufficient training data and the computational challenge of process-
ing multiple documents. Intuitively, graph-based extractive methods are suitable to identify
relationship of different sentences or documents and extract salient information, while neu-
ral sequence-to-sequence architectures are effective in abstraction and content rewriting.
Hence, abstractive models based on graphs gain much attention (Yasunaga et al., 2017b; Li
et al., 2020). Our model, which also combines a graph-based extractive module and neural
abstractive sequence-to-sequence architecture, is a higher level summarization and focuses
on the core event summarization from multiple documents, which is more challenging.

2.2 Event Extraction

With similar target that focuses on event, the event extraction tasks (e.g., ACE2005 (Walker
et al., 2006) and TAC-KBP2017 (Mitamura et al., 2017)) typically assume that all event
schemata are given, and event components are recognized into the knowledge based struc-
ture, such as event triggers labeling (Bronstein et al., 2015), event nuggets detection
(Reimers et al., 2015) and event arguments extraction (Li et al., 2013). With the in-
troduction of deep neural networks like Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs) and Graph Convolutional Networks (GCNs), event extraction
tasks have made considerable progress in recent years (Nguyen et al., 2016; Zeng et al.,
2016; Mehta et al., 2019). However, to further generate a fluent and complete event se-
quence, it usually requires additional coordination and reorganization among various event
components beyond the above work, which is also a challenging task due to the topic di-
versity and unstructured event description. Differently, the MES task, which is essentially
an event sequence generation task, aims at generating concise event description sequence
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instead of focusing on some specified arguments of the event, and summarize the event in
an unstructured schema from a cluster of articles.

2.3 Headline Generation

Similar to MES, headline generation is also a high level summarization task, which aims
to construct a headline-style abstract describing the salient theme in a single document.
As a specific type of single-document summarization, headline generation has made great
progress by taking advantage of the sequence-to-sequence architecture (Sutskever et al.,
2014; Bahdanau et al., 2015) along with the large dataset English Gigaword (Napoles
et al., 2012). Following the task setting, encoder-decoder models equipped with syntactic
information (Takase et al., 2016), selective gate (Zhou et al., 2017), template (Wang et al.,
2019) and pre-training (Dong et al., 2019; Song et al., 2019) are successively proposed for
better representation and more precise generation. However, existing methods mainly focus
on summarization from a single document (without title) instead of considering various event
elements contained in multiple documents of the same topic, which means they may meet
challenges in the recognition of core event information and further coordination. Besides, a
perfect short event description usually has more constraint in conciseness and event-centric
expression than headlines, and has wider potential applications (Niu et al., 2014; Yang
et al., 2021). For example, “Beirut explosion victim Isaac Oehlers was fatally struck by
glass in his highchair.” is a good headline for a single article, but may be too fragmentary
and redundant for searching or recommendation of a total event topic.

To conclude, MES is essentially different to the above tasks in conciseness, event expres-
sion and article redundancy, in which previous related methods cannot properly address.

3. Methodology

3.1 Task Definition and Model Overview

We treat the multi-document event summarization as a natural language generation task
(Gatt et al., 2018) that automatically abstracts short event description from the input
documents. Given N documents D = {d1, d2, ..., dN}, our goal is to generate the core event
sequence Y = (y1, y2, ..., yM ) with M words.

Our method summarizes the event sequence in two phases: dominant event identification
and neural event sequence summarization. Figure 2 illustrates the overall architecture of
our two-phase framework. At the first phase, we first build an event semantic graph from
the input articles and then adopt graph-level extraction for core event semantic graph Ge

and sentence-level extraction for representative event sentence Sevent. At the second phase,
we further adopt an event-aware pointer generator for event sequence generation, which is
a neural summarization model that incorporates the semantic information of event graph
and the copy mechanism of pointer network.

3.2 Dominant Event Detection

The goal of phase 1 is to extract the most dominant event information from redundant
articles in sequence manner and global manner, respectively. To this end, we propose two
kinds of event detection: sentence-level event detection and graph-level event detection.
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Figure 2: The overall architecture of our two-phase MES framework. At the event iden-
tification phase, input articles are fed into a graph-based extraction network for
sentence-level and graph-level event detection. Then, at the generation phase, the
extracted representative sentence Sevent and event semantic graph Ge are further
summarized in succinct event sequence through the proposed event-aware pointer
generator.

The former targets at the representative sentence of core event, while the latter aims at
extracting the complete event as a core event semantic graph.

3.2.1 Event Semantic Graph Construction

Given a document cluster D, we first do word segmentation and named entity recognition
with off-the-shelf tools such as Stanford Core 1. Then, we further extract topic keywords
kwD of document cluster and article keywords kwdi for each document based on TF-IDF
and NER results. Although there are more sophisticated algorithms that may achieve better
performance for the keyword extraction, we found that TF-IDF with NER basically covers
most of the event elements and name entities, and is more efficient.

Aside from keywords, locating the key event sentences of cluster and reducing redun-
dancy of original long articles is also important for better event detection (Yang et al.,
2018). Note that the titles of articles usually play an important role in expressing the event
but sometimes are misleading like the title party, we select the title along with a core con-
tent sentence of each article as the key event sentence candidates. In particular, the core
content sentence is chosen according to similarity between article keywords kwdi and each

1https://stanfordnlp.github.io/CoreNLP
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sentence sjdi :

sim(kwdi , s
j
di

) =
|kwdi | ∩ |s

j
di
|

|kwdi | ∪ |s
j
di
|
. (1)

Thus, 2N sentences scand = {s1
cand, s

2
cand, ..., s

2N
cand} are selected as candidates for core

event detection. With the candidate sentences, we utilize dependency parsing method
to extract semantic structure of different event elements. Noticing that not all words in
the candidate sentences are needed event elements, we prune each dependency tree. Par-
ticularly, we reserve three important relation edges, including SBV (subject-verb), VOB
(verb-object), IOB (indirect-object) and edges that at least one end node word is in the
topic keywords kwD for graph construction. The weight ŵij of edge edgeij between vertices
vi and vj is the number of occurrences in dependency trees of candidate sentences. There-
fore, an edge between two nodes is defined as edgeij = (tij , ŵij), where tij is the type of
dependency between nodes.

Finally, the core event semantic graph Ge is constructed from the original articles, as
illustrated in Figure 3.

Figure 3: Illustration on the event semantic graph construction.

3.2.2 Representative Event Sentence Selection

Generally, the core event semantic graph can represent the total event in a global manner,
which contains core event elements and the inner semantic relation between them. However,
summarizing the event sequence directly from the semantic graph is not straightforward.
For the event graph, though it can better capture the event relation of different sentences
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and documents, the graph structure usually loses the original grammatical information in
the meantime, which is important to ensure more fluent generation.

Therefore, we also extract the most representative sentence for a neural sequence-to-
sequence model to ensure more fluent generation. We utilize a graph-based extraction
method to select the most representative sentence from candidate sentences according to
the similarity between candidate sentence and core event semantic graph, which considers
both keyword similarity and semantic link similarity. Given the core event semantic graph
Ge and a candidate sentence sicand = {w1, w2, ...wL}, the similarity score is calculated as:

score(sicand) = simkw(sicand, kwD) + λsimlink(sicand, Ge)

=
Nt

L

L∑
j:wj∈kwD

tfidfwj +
λ

N

L∑
j=1

L∑
t=j

ŵjt,
(2)

where simkw(sicand, kwD) indicates the similarity between candidate sentence and topic key-
words, simlink(sicand, Ge) indicates the semantic link similarity between candidate sentence
and event graph, Nt is the number of words contained in both candidate sentence and topic
keywords and λ is a tunable hyper-parameter to leverage keyword similarity and link simi-
larity. Particularly, Nt

L is designed to ensure choosing the most expressive sentence instead
of the longest sentence.

A sentence Sevent with the highest score is chosen as the representative event sentence,
which is regarded as the most similar one with the core event graph.

3.3 Neural Event Sequence Generation

At phase 1, we obtain a representative event sentence Sevent and core event semantic net-
work Ge. At phase 2, our goal is then to further summarize the event description Y from
the extracted sequence event information and graph event information with a neural sum-
marization system.

3.3.1 Basic Seq2Seq Architecture

For neural summarization, we begin with a basic seq2seq framework, which consists of
an encoder and an attention-equipped decoder. We use a two-layer bi-directional LSTM-
RNN encoder and a one-layer uni-directional LSTM-RNN decoder along with the attention
mechanism (Bahdanau et al., 2015).

Formally, the encoder produces sequential hidden states as (
⇀
h1, ...,

→
hN ) and (

←
h1, ...,

←
hN )

in the corresponding positions, and the bi-directional hi = fLSTM (hi−1, wi). Each word wi

in the sequence can be represented as a concatenation of the bi-directional hidden states,

i.e., hi = [
→
hi,
←
hi]. The decoder generates a target summary from a vocabulary distribution

Pvocab(w), which is based on the context vector ct through the following process:

Pvocab(w) = P (yt|y<t, Sevent; θ)

= softmax(W2(W1[dt, ct] + b1) + b2),
(3)

where dt is the hidden state of the decoder and ct is the context vector at time step t. W1,
W2, b1, b2 are trainable parameters.
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The context vector ct is computed by a weighted sum of the hidden representations of
the source text, and the weight is denoted as attention at,i:

ct =
∑N

i=1
at,ihi,

at,i = softmax(vT tanh(Whhi +Wddt + b)).
(4)

The softmax function normalizes the vector of a distribution over the input position, and
v, Wh, Wd, b are trainable parameters.

3.3.2 Event-aware Pointer Generator

Pointer networks use attention as a pointer to select segments of the input as outputs
(Vinyals et al., 2015). As such, a pointer network is a suitable mechanism for extracting
salient event information, while remaining enough flexibility to interface with a seq2seq
model for generating an abstractive summarization (See et al., 2017). Our proposed model
is essentially an upgrade to this configuration that integrates event semantic information
within a unified framework.

Context-aware event attention. The event semantic graph specifies the weight and
direction that each event element associated with query word, and we further calculate
the probability that query word points to. At time step t, when given the last decoded
word yt−1, the probability is defined as p(e|yt−1) = ŵ(yt−1, e)/N and then we have a
distribution over a set of related event elements. Yet, this raises the question of how to
identify a context-appropriate event element for a word from the distributional set of event
element candidates. In other words, linked elements with the highest probability may not
be most suitable for the context. Formally, given a decoded word yt−1, a set of k event
element candidates, Et = e1

t , e
2
t , ...e

k
t , is pointed to by the word yt−1 according to Ge, with

distributional probabilities over the event elements, i.e., P (E|yt−1) = p(e1
t ), p(e

2
t ), ...p(e

k
t ).

The task is to find the most suitable event word ejt to fit the updated context, represented
by the vector ct in Eq. 2, at time step t.

In the case of generating summaries given updated contexts, a weighted update of the
distributional event element candidates needs to be performed. In the model, the updated
weight, denoted as Φj

i , is estimated by a softmax classifier that is jointly conditioned on the
hidden representation of the word hi, the context vector ct, and each of the event element
vectors:

Φi
j = softmax(Wh[hi; ct; e

j
t ]), (5)

where j ∈ [1, k], Wh is a trainable parameter, and ejt is the vector of the jth event element
candidate, which is a representation of the input embedding. Together with the event
association probability from the event semantic graph p(ejt ) and the updated weights based
on the context ejt , an event-aware semantic probability of the jth event element for time
step t, P e

t;j is finally estimated as:

P e
t,j = p(eti) + γΦj

t , (6)

where γ is a tunable hyper-parameter. Theoretically, we will end up with a number of k
relevant event elements for each word Et = {e1

t , ..., e
k
t } with a probability distribution over

the set, which is learned as an event semantic distribution P e
t = {P e

t,1, ..., P
e
t,j , ..., P

e
t,k}.
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Following the basic pointer generator network (See et al., 2017), we combine the baseline
generation distribution and both copy distributions (attention distribution, event distribu-
tion) with a generation probability pgen:

Pfinal(w) = pgenPvocab(w) + (1− pgen)(
∑

i:wi=w

ati +
∑

j:wj=w

P e
t,j),

pgen = σ(W ∗c ct +W ∗d dt +W ∗y yt−1 + bgen),

(7)

where σ is a sigmoid function, Pfinal(w) is the final output distribution of the model and
W ∗c , W ∗d , W ∗y , bgen are parameters to be learned.

To this end, both the extracted representative sentence and event semantic graph infor-
mation are utilized for neural summarization in a context-aware manner.

4. Experiments

4.1 Datasets

For evaluation purpose, since there is no public benchmark dataset for the MES task yet,
we construct a “Topic Multi-document Event Summarization” (TMES) dataset by manual
edition and a large “Search Multi-document Event Summarization” (SMES) dataset from
scratch. All articles of the datasets are collected from WeChat, a widely used mobile social
application in China, where both media organizations and personal users can set up their
official accounts for publishing news and articles.

TMES. Articles in a topic set are selected by two steps. First, the total articles are
aggregated by a clustering procedure (Topic Detection and Tracking(Allan, 2012)), then less
than 10 articles are further selected by professional editors according to the representative
degree and diversity. For the event summary annotation of each article set, two editors are
asked to edit and review the summaries based on the total articles. Specifically, summaries
are first edited by the two editors following some detailed instructions like “core event
definition” and “length limit”. Then editors act as the quality inspector of each other and
conduct revision to avoid low-level errors like typos or grammatical errors. In the end, the
annotation consistency of two annotators is up to 87% (without revision) and the rewritten
summaries will be further discussed for agreement. To ensure the diversity of event topic,
the publication timestamps of the collected articles range from August 2018 to August 2020,
and the event categories include disaster, technology, finance, daily life, etc. Finally, we get
8,289 event clusters with a total of 42,341 articles.

SMES. Noticed that large-scale labeled data are essential for the training of neural
summarization systems, especially for the event sequence generation task in open domain,
we construct another large multi-document event summarization dataset based on search
engine. Due to the laborious workload in writing summaries, we crawl event summaries
from Chinese social platforms and news apps including Weibo, Zhihu, Tencent News, Baidu
and Toutiao. Then, we take the crawled summaries as the queries and get the related event
news articles from a news search engine, WeChat Search. In this way, we generate 53,787
pairs of summary-articles automatically, containing the major events from August 2019 to
August 2021.
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Comparison. Statistics of our datasets 2 are shown in Table 1. To illustrate the dif-
ference with previous sumarization datasets, we have also included two well-known multi-
document summarization datasets: DUC (Over, 2003; Chali et al., 2004) and Multi-News
(Fabbri et al., 2019). As discussed before, the essential difference lies in the summary length,
where our event summary is much more concise and the average length is about four words
compared to over one hundred words of traditional summaries. None of existing summa-
rization datasets can address our MES problem due to such gap. On the other hand, it has
been a long time that datasets are the bottleneck of multi-document summarization with
only one dataset of DUC until the large-scale Multi-News dataset be released, revealing that
large-scale labeled dataset is critical for deep neural model training. For this consideration,
both TMES and SMES contain over 8,000 cluster pairs and the total number of articles of
SMES is even more than 661,477, which is nearly five times of the articles in Multi-News.
With the comparable size to Multi-News, our two large datasets will be beneficial for deep
neural summarization system training and future research.

Dataset # pairs
# total size

(articles)
# average size

(articles cluster)
# words

(average article)
# words

(summary)
# characters

(average article)
# characters
(summary)

TMES 8,289 42,341 5.11 928.52 4.72 1,573.14 9.05
SMES 53,787 661,477 12.29 802.32 5.20 1,348.29 9.97
DUC03+04 320 1,984 6.20 747.74 109.58 - -
Multi-News 44,972 125,417 2.78 756.47 263.66 - -

Table 1: Comparison of our collected event summarization datasets to other multi-
document summarization datasets. For the two new Chinese datasets (TMES,
SMES), we do word segmentation with the Jieba (Sun, 2012) tool for word count-
ing.

(a) Abstractness. (b) Inter Document Similarity.

Figure 4: Corpus metrics across datasets.

Analysis. Following (Dey et al., 2020), we further adopt two corpus metrics for analysis,
Abstractness and Inter Document Similarity (IDS). Abstractness is defined as the percent-
age of non-overlapping higher order n-grams between the reference summary and candidate

2https://drive.google.com/drive/folders/1QX28zDhkhoHziVyOvtYm0GvmcPTAdI99
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documents while IDS is an indicator of the degree of overlap between candidate documents
(higher score indicates more similar distributions). As shown in Figure 4(a), TMES and
SMES are more extractive compared with previous summarization datasets because the
core event elements are mainly extracted from articles for truthfulness and too much novel
words may lead to factual error in event expression. For the Inter Document Similarity,
TMES has a more similar document distribution compared with SMES as depicted in Fig-
ure 4(b) and such distribution difference has an apparent impact on the performance of
multi-document summarization systems that will be discussed in Section 5.

4.2 Baselines

To evaluate the effectiveness of the proposed graph dominant event detection and event-
aware pointer generator, we implement three types of baselines: concat-based methods with
all articles concatenated as input, traditional and neural extract-based methods with ex-
tracted sentence as the input, the ruled-based summarization model based on the extracted
event graph.

• S2S-att-concat / S2S-att-extract: Attention-equipped sequence-to-sequence is
the basic neural network for abstractive summarization that contains a two-layer
BiLSTM encoder and a one-layer LSTM decoder equipped with attention (Nallapati
et al., 2016).

• Ptr-Net-concat/ Ptr-extract: Pointer network directly uses the attention mecha-
nism as a pointer to select tokens from the input as the output (Vinyals et al., 2015).

• Ptr-gen-concat/ Pg-extract: Pointer generator is a hybrid model combing Seq2seq-
att with pointer network (See et al., 2017).

• mBART-concat/ mBART-extract: mBART (Liu et al., 2020) is a sequence-
to-sequence denoising auto-encoder pretrained on large-scale monolingual corpora in
many languages using the BART objective (Lewis et al., 2019) and utilized for various
generation tasks including summarization.

• Trunc.: Truncation-based method is a simple traditional baseline where words are
kept in the original order until the length limit is reached.

• ILP: ILP-based method is an unsupervised method that relies on the preprocessing
(i.e., NER, term weighting) results of input sequences (Clarke et al., 2008), which is
a strong baseline for traditional sentence compression.

• Graph-gen is the graph-based summarization baseline utilizing ILP maximization
and links of core event semantic graph to select salient information and generate
event sequence following some specific templates.

• Event-Pg is our event-aware pointer network that integrates event semantic graph
information for summarization.
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4.3 Parameter Settings

We implement all the mentioned models in Tensorflow except Trunc., ILP and Graph-gen.
For the implementation of our Seq2Seq models (i.e., S2S-att, Ptr-Net, Ptr-gen, Event-Pg),
we adopt two 128-dimensional LSTMs for the bidirectional encoder and one 256-dimensional
LSTM for the decoder. The vocabulary size is set to 50k for both the source text and the
target text. We initialize a 128-dimensional word embedding and other learnable parameters
following a normal distribution. All models are trained on a single Tesla M40 GPU, and
optimized with AdaGrad (batch size = 128). The initial learning rate and the accumulator
value were set to 0.15 and 0.1, respectively. We use gradient clipping with a maximum
gradient norm of 2, but with no regularization. For hyper-parameter settings, we tune
γ = 0.2 and λ = 0.3 for our model. At the test time, our short event summaries are
produced with a decoder whose beam search size is set to 8 and the maximum decoding
step size is set to 15. We randomly select 80% of the data as the training data, and use the
remaining data for development and test (10% for each).

4.4 Automatic Evaluation

Summarization systems are usually evaluated using several variants of the recall-oriented
ROUGE metric (Lin, 2004). ROUGE measures the summary quality by counting the over-
lapping units such as n-grams between the generated summary and reference summaries.
Following the common practice, we consider ROUGE-1 (uni-grams), ROUGE-2 (bi-grams)
and ROUGE-L (longest common subsequence) as our automatic evaluation metrics.

4.5 Human Evaluation

Like related summarization work (Tan et al., 2017; Wang et al., 2018, 2018), we conduct
manual evaluation on the generated short event summary to improve the correctness of
quality evaluation. Owing to the laborious evaluation process (reading the long articles),
we randomly sampled 300 articles-summary pairs from the test set and asked two profes-
sional editors to respectively annotate the quality of the generated short summary. Three
perspectives are considered during the manual evaluation process: 1) Accuracy : Is the core
event of articles correctly extracted? 2) Informativeness: How informative is the event
summary to express the total event? 3) Readability : How fluent, grammatically correct the
event summary is?

In particular, we use a strict criteria for core event detection accuracy, the generated
short event summaries will be assessed as 1 only if it correctly retains the representative
event from the article cluster, otherwise 0. The other two properties are assessed with a
score from 1 (worst) to 5 (best). Particularly, the final scores of generated event summaries
are the average scores of two annotators, with the annotation consistency of 83.8% (label
the same score).

4.6 Evaluation Results

The overall evaluation results are shown in Table 2, where methods are divided into five
groups: 1) end to end methods with concatenation of articles as input; 2) two-phase methods
with the extracted representative event sentence; 3) rule-based method according to our core

1049



Chen, Xu, Liao, Xue, & He

event semantic graph; 4) neural summarization methods with the extracted representative
event sentence as the input; 5) our proposed two-phase event-aware pointer generator.

Method
TMES SMES

RG-1 RG-2 RG-L Accu. Info. Read. RG-1 RG-2 RG-L Accu. Info. Read.

S2S-att-concat 37.43 27.15 36.83 56.34% 3.28 3.91 41.66 36.14 40.18 65.34% 3.51 4.39
Ptr-Net-concat 35.91 26.56 33.87 52.32% 3.03 3.79 39.07 34.33 38.11 65.29% 3.46 3.98
Ptr-gen-concat 38.62 29.93 38.21 58.75% 3.41 3.79 42.49 37.41 41.74 70.29% 3.86 4.21
mBART-concat 40.27 31.16 39.69 56.93% 3.40 3.82 44.02 38.66 43.24 71.02% 3.81 4.30

Trunc. 42.66 33.44 41.09 79.12% 3.66 2.97 49.97 41.01 48.45 83.31% 4.03 3.08
ILP 46.23 35.17 44.98 82.78% 3.99 3.86 51.01 43.03 50.95 86.52% 4.23 3.95

Graph-gen 45.24 33.15 43.61 75.76% 3.86 2.83 47.21 36.31 44.54 88.33% 4.03 2.65

S2S-att-extract 49.37 36.15 47.78 89.34% 4.48 4.53 56.66 42.54 54.31 94.34% 4.64 4.79
Ptr-Net-extract 52.68 39.54 51.55 91.32% 4.51 4.45 58.07 44.42 57.16 94.29% 4.70 4.68
Ptr-gen-extract 53.91 40.44 52.71 92.26% 4.53 4.51 59.28 49.47 58.57 95.71% 4.71 4.83
mBART-extract 54.12 40.55 52.90 92.29% 4.51 4.53 59.79 49.60 58.98 95.69% 4.69 4.82

Event-Pg 54.86 41.91 53.53 92.96% 4.63 4.54 60.04 49.89 59.21 96.15% 4.74 4.80

Table 2: Overall performance evaluation, including ROUGE, average core event identifica-
tion accuracy (Accu.), average informativeness score (Info.) and average readabil-
ity score (Read.). The best results are in bold and the second bests are underlined.

Automatic evaluation. As expected, concatenation-based methods perform worst on
all metrics due to the redundancy and sparsity of long concatenated sequence, making it
extremely difficult to locate the core event information or summarize in concise event sum-
mary. With the extracted representative event sentence in advance, extract-then-summarize
frameworks perform significantly better than end-to-end methods by a clear gap on ROUGE
scores. Even the simplest baseline Trunc. achieves an obvious performance improvement
compared to concat-based ones. ILP, which is acknowledged as a strong traditional sen-
tence compression method, performs much better. Though Graph-gen utilizes the core
event semantic graph and total event information for event summary generation, it cannot
beat sentence-based methods like ILP or S2S-att-extract because summarizing various event
sequences from a graph is not direct and often results in organization error (large gap in RG-
2). Therefore, neural summarization models with the pre-extracted event sentence are the
strongest baselines for MES, where all achieve fairly high ROUGE scores in our experiments.
Particularly, for the pretrained abstractive models like mBART, since event summarization
tasks are more extractive, they can not vastly outperform pointer-based networks as in
other abstractive datasets, and the event information they summarized is limited in the
extracted representative sentence. However, with a graph-Seq2Seq framework, Event-Pg
integrates both the representative sentence and semantic graph for summarization, which
means Event-Pg can retain the strong sequence generation ability of neural Seq2Seq models
and meanwhile utilize the important event elements occurred only in other sentences. In
summary, Event-Pg gains the best performance on all ROUGE metrics.

Manual evaluation. The results on “readability” metric show that all models built on
Seq2Seq architecture can generate more fluent summaries compared to traditional sentence
compression methods and Graph-gen. Particularly, Graph-gen performs worst in “readabil-
ity”, revealing that it is infeasible to generate unstructured event summaries directly from
semantic graph though it contains complete event elements and semantic information. Our
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Event-Pg, which fuses event semantic information and neural summarization, can inherent
semantics in texts and achieve better performance in readability. For the core event iden-
tification accuracy (Accu.), the large gap between concatenation-based and extract-based
methods demonstrates that it is more feasible to summarize the core event sequence in
an extract-then-summarize framework when the sources are multiple articles. With the
extracted event sentence, even the traditional sentence compression methods can achieve
a considerable accuracy on core event detection, which demonstrates effectiveness of our
graph-based event extraction procedure. Lastly, the results on “informative” indicate that
our two-phase Event-Pg can retain more key event information and generate more informa-
tive summaries compared with the baselines. This is because sometimes a complete event
does not lie in a single sentence but lies in several sentences or several articles. With the
inclusion of context-aware event attention, Event-Pg utilizes event elements occurred only
in other sentences or articles and summarizes the event in a global manner.

Considering all the three metrics, our Event-Pg produces more accurate and more in-
formative event summaries, and achieve comparable performance in readability compared
with sequence-to-sequence models, showing the advantage of our two-phase framework and
event-aware pointer generator.

5. Further Discussion and Analysis

In this section, we first make comparison across TMES and SMES datasets and discuss the
reason behind performance deviation. Then we analyze the performance of the dominant
event identification phase and compare Event-Pg with various key sentence extraction and
event identification methods. Lastly, we conduct study on the ability of event extraction
with a public Chinese event detection benchmark.

5.1 Comparison across Datasets

We notice that for both automatic evaluation and manual evaluation, all models (including
ours) perform worse on TMES than on SMES. The deviation of the results is mainly due to
the differences on data characteristics. For TMES, the event summary are edited manually
and written in a more general thinking with the consideration of total article clusters and
summary attraction, which means quite a few event sequences can not be summarized from
a single representative sentence and often requires supplement other key event elements
that are unique in other sentences or articles. In contrast, for SMES, which is collected by
query searching, articles of a cluster are closely related to the given event query and have a
more similar distribution as shown in Figure 4(b), while articles of TMES are additionally
filtered and chosen taking consideration of the diversity and reading experience.

Despite of the data characteristic difference, with the ability of detecting core event in
both sequence and graph manner and utilizing the extracted information with an event-
aware summarization network, our model yields the best performance for nearly all auto-
matic and manual evaluation metrics (except “readability” of SMES). For the sentence that
can express the total event, neural sequence-to-sequence models are good enough for event
summarization and Event-Pg is slightly inferior to them in fluency. However, for the TMES,
which requires more semantic event information beyond representative sentence, Event-Pg
achieves much more performance improvement compared with the baselines, especially in
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core event identification accuracy and informativeness, demonstrating the effectiveness of
the inclusion of context-aware event attention.

5.2 Analysis on Event Identification

Here we focus on the analysis on dominant event identification phase and conduct compar-
ison with various key sentence extraction and event identification methods for subsequent
summarization. Specifically, we implement the following extraction methods: 1) Lead-title:
choose the title of first article as selected sentence; 2) Text-rank (Mihalcea et al., 2004);
3) Event-ext: sentence selection based on event extraction (Yang et al., 2018); 4) Event-
graph: choose representative sentence according to event semantic graph construction and
matching; 5) Event-Pg: utilize both graph information and representative sentence for the
summarization. Except for Event-Pg, other methods all adopt pointer generator as the
summarization model at phase 2 and evaluate on TMES, which is more challenging and
usually contains various sub-events.

The results are shown in Figure 5. Note that the simplest sentence selection method
Lead-title gains decent improvements compared to the well-known Text-rank. The rea-
son behind is that editors usually choose a more attractive article or an overview article
describing the dominant event at the top position, and the titles, except title party, usu-
ally focus on the topic of articles in a concise manner and are reasonable to be chosen as
representative sentence to some extent. However, the methods considering event (Event-
ext) can select a more suitable and expressive event sentence for the later summarization
compared to traditional sentence extraction. Then, considering the semantic links of event
elements, Event-graph gains better performance than Event-ext in ROUGE scores. Lastly,
our Event-Pg, which selects event sentence according to semantic graph and further fuses
both the extracted sequence information and semantic graph information, gains the best
performance among all the event sentence selection baselines. Generally, the results on iden-
tification analysis show that our framework is a more sensible approach to extract dominant
event in both sentence manner and graph manner, ensuring a more representative and more
complete event summary generation at the subsequent phase.

5.3 Study on Event Extraction

To further illustrate the ability of Event-Pg on core event element location, we conduct ad-
ditional event assessment with a public Chinese event detection benchmark called ACE2005
(Walker et al., 2006), where the golden event mentions of each sentence are marked. Take
the following sentence as an example “Earlier documents in the case have included em-
barrassing details about perks Welch received as part of his retirement package from GE.”,
“retirement”, “Welch” and “GE” are marked as “trigger”, “Individual” and “Organization”
respectively as the golden event mentions. Intuitively, the performance in core event ele-
ment detection is closely associated with how many golden event mentions are contained
in the generated event summary. Therefore, we quantify the assessment criteria as Event
Element Extraction Score EEES(Y ) = 10 ∗ Nc∗Nc

Le∗Ne
, where Nc is the number of golden event

words contained in the generated summary (counted by string matching), Ne is the total
number of golden event mentions, Le is the length of the generated summary. The results
are shown in Table 3, revealing that the event summaries generated by Event-Pg contains
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Figure 5: Rouge scores of event identification methods.

more event mentions and acquires the best ability in core event mentions retention. The
difference between Event-Pg and Ptr-gen/mBART shows that the inclusion of event seman-
tic information helps the models focus more on the event mentions and thereby generates
more informative description sequence expressing the complete event.

Model average Le average Nc EEES

Trunc. 4.00 1.39 1.07

ILP 4.18 1.93 1.97

S2S-att 4.89 2.32 2.44

mBART 4.52 2.59 3.07

Ptr-gen 4.63 2.65 3.36

Event-Pg 4.59 2.86 3.95

Table 3: Comparison on the event assessment.

6. Conclusion

In this work, we propose to address a new and challenging task called multi-document
event summarization (MES), which aims at the query-level event sequence generation from
multiple related articles. To deal with this task, we propose a two-phase framework, in which
we first construct event semantic graph and adopt graph-sequence matching for the graph-
level and sentence-level core event identification. Then, we adopt an event-aware pointer
generator to summarize the extracted representative event sentence and core event semantic
graph, which both utilize the sequence syntactic information and event graph semantic
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link information. For the purpose of training and assessment, we construct two datasets
suitable for the MES task. Extensive experimental results demonstrate the effectiveness of
the proposed method compared with the competitive baselines designed for related tasks.

Though pointer-based models are feasible in integrating semantic event graph informa-
tion and gain better performance over pretrained models like BART, pretrained abstractive
methods have been proved to outperform pointer-based models in the generation phase. In
future work, we will try to explore the pretrained summarization models based on event
graph to better capture the unique event elements of different articles.
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