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Abstract

We study the pairwise and mutual independence testing problem for multivariate func-
tional data. Using a basis representation of functional data, we reduce this problem to
testing the independence of multivariate data, which may be high-dimensional. For pair-
wise independence, we apply tests based on distance and Hilbert-Schmidt covariances as
well as their marginal versions, which aggregate these covariances for coordinates of ran-
dom processes. In the case of mutual independence, we study asymmetric and symmetric
aggregating measures of pairwise dependence. A theoretical justification of the test proce-
dures is established. In extensive simulation studies and examples based on a real economic
data set, we investigate and compare the performance of the tests in terms of size control
and power. An important finding is that tests based on distance and Hilbert-Schmidt co-
variances are usually more powerful than their marginal versions under linear dependence,
while the reverse is true under non-linear dependence.

1. Introduction

One of the fundamental problems in statistics is testing of independence between a number
of random variables of different types. There are many applications of this problem; for
example, independent component analysis (Matteson & Tsay, 2017), graphical models (Gan
et al., 2019; Li & McCormick, 2019), variable selection (Li et al., 2012; Shao & Zhang, 2014)
and many practical problems (Hua & Ghosh, 2015; Kong et al., 2012).

Pairwise independence concerns the independence of only two variables, while mutual
independence applies to two or more variables. Of course, the latter implies the former, but
the reverse is generally not true. Naturally, pairwise independence is more often considered
in the literature. For univariate data, tests based on Pearson’s coefficient of correlation
(Pearson, 1895) and its nonparametric counterparts, such as Kendall’s tau (Kendall, 1938)
and Spearman’s rho (Spearman, 1904) coefficients, are the classical tests. A more recent test
procedure is that of Bergsma and Dassios (2014), who extended Kendall’s tau test. Since
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for testing independence of functional data we use independence tests for multivariate data,
we focus on this case. In the low-dimensional context there are plentiful methods (see, for
example, Gretton et al., 2008; Székely et al., 2007; Taskinen et al., 2003, and the references
therein). On the other hand, the high-dimensional scenario is more rarely considered in the
literature (see e.g., Pan et al., 2014; Székely & Rizzo, 2013; Yang & Pan, 2015; Zhu et al.,
2020). Mutual independence is also less frequently investigated. For this problem, Leung
and Drton (2018), Yao et al. (2018) and Jin and Matteson (2018) proposed methods based
on aggregating pairwise dependence measures.

In this paper, we extend the independence tests based on distance covariance and
Hilbert-Schmidt covariance introduced by Székely et al. (2007) and Gretton et al. (2008)
respectively, to multivariate functional data. Székely and Rizzo (2013) extended the dis-
tance covariance based test to the high-dimensional setting. These covariances are the
dependence metrics that target linear dependence as well as non-linear and non-monotone
dependence. They are applicable, in principle, applicable in the high-dimensional context.
However, recently Zhu et al. (2020) showed that the tests based on the distance and Hilbert-
Schmid covariances can capture only linear dependence in the high-dimensional scenario.
Fortunately, they also proposed tests based on aggregation of marginal sample covariances
which capture pairwise non-linear dependence. Thus, these tests overcome the drawback of
the tests based on both covariances. More details about them are presented in Section 3.

1.1 Multivariate Functional Data

Multivariate data are often repeatedly observed at different time or space points. For
simplicity, we will write time points or design time points, regardless of what they refer
to. In classical analysis, the final data are called doubly multivariate data. However,
great advances in computational and analytical techniques result in large numbers of design
time points, which implies that the performance of methods for such data will decrease.
Fortunately, such data can also be treated in a more convenient way in many applications.
Namely, they can be seen as realizations of some random processes at given time points.
Then a single observation is a vector of functions, curves or surfaces representing random
processes. Such data are called functional data, and their analysis is referred to as the
functional data analysis (FDA), which is a relatively new branch of statistics.

Functional data appear naturally in applications in fields such as life sciences, chemo-
metrics, environmental science, economics and engineering. Some examples are as follows:
temperature or precipitation in a given location over 10 years, share index variation over
one hour, knee flexion angle over a complete gait cycle, socio-economic conditions in given
countries over a few years (see Section 7). A good review of the main FDA methods – for
example, classification, cluster analysis, hypothesis testing, principal component analysis,
regression analysis – as well as their applications can be found in the following books: Fer-
raty and Vieu (2006), Horváth and Kokoszka (2012), Ramsay and Silverman (2002, 2005),
and Zhang (2013).

Functional data and their analysis have several desirable properties that distinguish
them from their classical counterparts. First of all, the curse of dimensionality is avoided
in the functional data framework, since there may be any number of time points at which
observations are measured, and this usually has only a minor effect on the results of analysis.
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Secondly, the design time points do not have to be equally spaced in a given interval, which
means that missing values for functional observations are not a problem in general. Finally,
the values observed at different time points for a single subject may be dependent. These
properties follow from the fact that in FDA a single observation is treated as a whole
function or curve.

1.2 Testing Independence of Functional Data

In this paper, we consider the problem of independence testing for multivariate functional
data. To deal effectively with this problem, we use a basis representation of functional data,
which can be seen as a dimensionality reduction method of infinite-dimensional functional
data; each multivariate functional observation can be represented by a random vector,
perhaps of high dimension. To test independence of functional data, we apply independence
tests for multivariate data obtained from the basis representation. The FDA methods based
on the basis representation are simple, but also powerful (see Aguilera et al., 2021; Górecki
et al., 2016, 2020; Horváth & Kokoszka, 2012; Krzyśko & Waszak, 2013; Lin et al., 2021;
Ramsay & Silverman, 2005, among many other contributions).

The tests described above were first considered by Górecki et al. (2016, 2020), who used
the tests based on distance covariance and Hilbert-Schmidt covariance. Górecki et al. (2020)
also showed that functional versions of independence tests perform better than the direct
application of multivariate methods to raw functional data, when the dependence is non-
linear, while the raw and functional approaches give similar results in the case of linear
dependence. We obtained similar results for raw and functional marginal covariances-based
tests, which is presented in the Appendix A. Thus, we continue their work and extend
their methods and results in several directions. First, they used biased estimators for the
covariances, which has some effect on their performance. We extend these tests to those
using unbiased estimators for the covariances, which results in better test procedures. Next,
we also consider the t-tests based on both covariances, which for pairwise independence
testing, have similar properties to permutation tests, but are much less computationally
intensive. Nevertheless, the most important aspect of the present work is that we also
apply the tests proposed by Zhu et al. (2020) based on aggregation of marginal sample
covariances. Why is this so important? The reason is very simple. The drawback of the
standard covariance-based tests seems to apply not only to multivariate data, but also to
multivariate functional data. Fortunately, the tests based on aggregation of marginal sample
covariances are still free of this drawback and can effectively detect non-linear dependence.
We show this in intensive simulation studies, and illustrate it using an example with a
pillar data set containing economic variables describing European countries in the period
2008-2015. Note that our simulations are much more elaborate than those of Górecki et
al. (2016, 2020). The above results are true for pairwise independence, but we also show
that most of them still hold for mutual independence, after applying the methods of Jin
and Matteson (2018) to the functional data framework. We also establish a theoretical
justification of all proposed tests.

To sum up, the extensions of the results of previous papers and the differences between
them and the present work are as follows:
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� Górecki et al. (2016, 2020): There were considered the permutation tests based on the
distance and Hilbert-Schmidt covariances for pairwise independence only. In contrast,
we: (1) consider the t-tests which seem to have the same good properties as the per-
mutation tests, while being less time consuming; (2) investigate marginal covariance-
based tests, which are better than classical covariances in identifying non-linear de-
pendence; (3) show that the classical covariances may fail in detecting non-linear
dependence of functional data; (4) extend the pairwise independence test procedures
to mutual independence ones; (5) show the theoretical justification of applying tests
for random vectors to functional data; (6) conduct much more extensive simulation
studies, which consider simulation data generated for example based on: basis repre-
sentation of functional data, different stochastic processes (Wiener process, Ornstein-
Uhlenbeck process, the Brownian bridge process), dependent functional coordinates.

� Zhu et al. (2020): They considered the classical and marginal versions of the co-
variances in the independence testing problem for multivariate data. We extend their
results from multivariate vector data to multivariate functional data, as follows: First,
we reduce the dimension of the functional data using their basis representation which
projects the functional observations onto multivariate ones. To such representation
of functional data, we apply the covariance-based independence tests. Such a method
is generally more powerful than simply applying multivariate methods to raw func-
tional data, which we also show. Moreover, we present how to use their marginal
covariances in testing mutual independence, instead of just pairwise independence.
We also establish that the properties of covariance-based tests transfer to the func-
tional data framework and mutual independence testing. These all are theoretically
and empirically justified.

� Jin and Matteson (2018): They showed how to aggregate the distance covariance to
test the mutual independence for multivariate data. We present that their method-
ology is also applicable for functional data. We also show that one can use the other
pairwise independence measures instead of the distance covariance. Moreover, we es-
tablish that the mentioned above good or bad properties of the covariance-based tests
transfer to the mutual independence testing.

The remainder of the paper is organized as follows: Section 2 describes functional data
and the statistical hypotheses in a formal way, and presents the tests based on the basis
representation of functional data. In Sections 3 and 5 respectively, the pairwise and mutual
independence testing methods are described, while Section 4 contains the theoretical justifi-
cation of the test procedures. Section 6 contains a description of the numerical experiments
conducted and discussion of their results. In Section 7, illustrative real data examples are
given, while Section 8 concludes the paper.

2. Functional Data and Statistical Hypotheses

From a theoretical standpoint, we suppose that the multivariate functional data are random
processes in a certain Hilbert space. Let Lp2(I), where I = [a, b], a, b ∈ R and a < b,
be the Hilbert space of p-dimensional vectors of square integrable functions defined on
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the interval I. Assume that X1, . . . ,Xk are k random processes belonging to the spaces
Lp12 (I1), . . . , Lpk2 (Ik) respectively, where Ii = [ai, bi], ai, bi ∈ R and ai < bi, i = 1, . . . , k. We
would like to test the independence of X1, . . . ,Xk, i.e.,

H0 : X1, . . . ,Xk are mutually independent, H1 : ¬H0. (1)

To solve this problem, we equivalently express the null hypothesis in the finite dimensional
space. For this purpose, we reduce the dimension of the functional data by using their basis
representation. Note that we reduce the dimension of functional data treated as elements of
an infinite-dimensional Hilbert space, not the dimensions p1, . . . , pk of multivariate processes
X1, . . . ,Xk.

For i = 1, . . . , k, let Xi = (Xi1, . . . , Xipi)
> and let {φijl}∞l=1 be a basis in L1

2(Ii), j =
1, . . . , pi. Then each component of process Xi can be represented as a linear combination
of an infinite number of basis functions, i.e.,

Xij(ti) =
∞∑
l=1

αijlφijl(ti), (2)

where the coefficients αijl are random variables. Since the basis functions are fixed, the coef-
ficients αijl are responsible for the randomness of the processes Xi. Thus, the independence
of the random processes X1, . . . ,Xk is equivalent to the independence of

((α11l)
∞
l=1, . . . , (α1p1l)

∞
l=1) , . . . , ((αk1l)

∞
l=1, . . . , (αkpkl)

∞
l=1) .

This equivalence is independent of the basis since it is fixed. Similar arguments have been
used in other statistical problems for functional data as, for example, the analysis of variance
considered in Lin et al. (2021).

However, representation (2) cannot be applied in practice. For any practical analysis,
it must be truncated to a finite sum:

Xij(ti) ≈
Bij∑
l=1

αijlφijl(ti), i = 1, . . . , k, j = 1, . . . , pi, ti ∈ Ii.

The quality of the above representation depends of the choice of the basis functions φijl and
their number Bij . For specific functions, we want to select basis functions in such a way
that a relatively small number of them is needed to achieve a good approximation. This is
often possible for functions with some specific properties, like smoothness or periodicity, but
in general, we may need large Bij . This motivates the theoretical justification in Section 4.
For estimation of the coefficients αijl, the least squares method and the roughness penalty
approach are usually applied. The choice of basis may affect the test procedure proposed
below due to the quality of approximation, which is a combined effect of the choice of the
basis and the number of coefficients, Bij , as reported in the simulation studies (see the last
paragraph of Section 6.3).

We use throughout the following matrix notation, which is the basis representation of
the process Xi:

Xi(ti) ≈ Φi(ti)αi, (3)
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where

Φi(ti) = diag(φ>i1(ti), . . . ,φ
>
ipi(ti)),

φij(ti) = (φij1(ti), . . . , φijBij (ti))
>,

αi = (αi11, . . . , αi1Bi1 , . . . , αipi1, . . . , αipiBipi
)> ∈ RBi ,

Bi = Bi1 + · · ·+Bipi , ti ∈ Ii, i = 1, . . . , k and j = 1, . . . , pi. Of course, the matrices Φi(ti)
are fixed, while the vectors αi are random.

Taking account of the basis representation (3), we can conclude that the hypothe-
ses in (1) corresponding to the independence and dependence of the random processes
X1, . . . ,Xk can be practically verified by testing the following hypotheses:

Hv
0 : α1, . . . ,αk are mutually independent, Hv

1 : ¬Hv
0 (4)

corresponding to the independence and dependence respectively of the random vectors
α1, . . . ,αk. The testing problem (1) is not equivalent to the testing problem (4). One
can only say that the rejection of Hv

0 in (4) implies the rejection of H0 in (1). This is
common to all functional tests that use expansions (see, for example, Lin et al., 2021).
Nevertheless, to verify (1), we can use methods for testing (4). This task should be ap-
proached carefully, since the dimensions B1, . . . , Bk of the vectors α1, . . . ,αk can be quite
large, often larger than the number of observations in a sample. For this reason, in the
following sections, we consider methods which can be used in a broad range of cases, in
particular in cases of high dimensions.

Of course, for estimation and inference, we need to have a sample. Assume that
Xi1, . . . ,Xin are independent realizations of random processes Xi for i = 1, . . . , k and
n ∈ N, n > 3. Let Xij(ti) ≈ Φi(ti)αij , i = 1, . . . , k, j = 1, . . . , n, ti ∈ Ii be the basis
representations (3) of the observations and

αij = (αi11j , . . . , αi1Bi1j , . . . , αipi1j , . . . , αipiBipi
j)
> ∈ RBi .

Since our considerations are based throughout on the vectors of coefficients αij , we use the
following notation:

� Ai = (αi1, . . . ,αin)> – the n×Bi random sample matrix,

� Ail = (α∗il1, . . . , α
∗
iln)> – the n×1 random component-wise sample, where l = 1, . . . , Bi

and αij = (α∗i1j , . . . , α
∗
iBij

)>.

3. Testing Pairwise Independence

In this section, we consider eight test procedures for pairwise independence with k = 2
random processes X1 and X2. The tests are based on the distance and Hilbert-Schmidt
covariances, as well as their marginal versions.

3.1 Distance Covariance and Its Marginal Version

To test the hypotheses given in (4), the distance covariance introduced by Székely et
al. (2007) may be used. This is a measure of dependence between two random vectors
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of arbitrary dimensions, defined as

dCov2(α1,α2) =

∫
RB1+B2

‖ϕα1,α2(t, s)− ϕα1(t)ϕα2(s)‖2

cB1cB2‖t‖1+B1‖s‖1+B2
dtds,

where ϕα1,α2 is the joint characteristic function of (α>1 ,α
>
2 )>, ϕα1 and ϕα2 are the char-

acteristic functions of α1 and α2 respectively, ‖ · ‖ is the complex Euclidean norm and
cb = π(1+b)/2/Γ((1 + b)/2). The above definition supports the interpretation of distance
covariance, while for estimation, the following alternative form is more useful (Székely &
Rizzo, 2009). Let (α′1,α

′
2) and (α′′1,α

′′
2) be independent copies of (α1,α2). Then

dCov2(α1,α2) =E‖α1 −α′1‖‖α2 −α′2‖
+ E‖α1 −α′1‖E‖α2 −α′2‖
− 2E‖α1 −α′1‖‖α2 −α′′2‖.

Since dCov2(α1,α2) = 0 is equivalent to independence of α1 and α2, a permutation test
with test statistic being an estimator for dCov2(α1,α2) is proposed for verifying the depen-
dence between α1 and α2, including non-linear and non-monotonic dependences. (For an
explanation of the permutation method, see Section 5.) This test for (1) was considered by
Górecki et al. (2016) with a biased estimator for dCov2(α1,α2). Here we consider an unbi-
ased estimator, described below, which results in a better test procedure (data not shown).
The unbiased estimator for dCov2(α1,α2) is called the U-centering-based unbiased sample
distance covariance and was defined by Székely and Rizzo (2014) as follows:

dCov2
n(A1,A2) = (Ã · B̃) =

1

n(n− 3)

∑
p 6=q

ãpq b̃pq,

where Ã = (ãpq)
n
p,q=1 and B̃ = (̃bpq)

n
p,q=1 are the U-centered versions of A = (apq)

n
p,q=1 and

B = (bpq)
n
p,q=1 respectively, i.e.,

ãpq =apq −
1

n− 2

n∑
s=1

aps −
1

n− 2

n∑
r=1

arq +
1

(n− 1)(n− 2)

n∑
r=1

n∑
s=1

ars

for p 6= q and 0 otherwise, and apq = ‖α1p −α1q‖, bpq = ‖α2p −α2q‖.
To test (4), the distance correlation-based t-test proposed by Székely and Rizzo (2013)

can also be used. They showed that, under suitable assumptions, the following test statistic

TdCov(A1,A2) =

√
v − 1dCor2

n(A1,A2)√
1− (dCor2

n(A1,A2))2

has tv−1-distribution with v − 1 degrees of freedom asymptotically, where v = n(n − 3)/2
and

dCor2
n(A1,A2) =

dCov2
n(A1,A2)√

dCov2
n(A1,A1)dCov2

n(A2,A2)

is the sample distance correlation. Then the corresponding critical region and p-value are
{TdCov(A1,A2) ≥ tv−1,α} and P (tv−1 ≥ TdCov(A1,A2)) respectively, where tv−1,α is the
upper 100α percentile of the tv−1-distribution.
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The tests based on the distance covariance should be applicable to arbitrary positive in-
tegers B1 and B2, including high-dimensional scenarios. However, recently Zhu et al. (2020)
showed that this may not be the case for the sample distance covariance-based tests. Namely,
they proved that the sample distance covariance between two random vectors can be ap-
proximated by the sum of squared componentwise sample cross-covariances, which indicates
that the test based on this estimator can only capture linear dependence in high dimension.
Moreover, they also showed that the distance correlation-based t-test has trivial limiting
power when the two random vectors are non-linearly dependent but uncorrelated componen-
twise. To overcome such problems, Zhu et al. (2020) proposed tests based on the following
aggregation of marginal sample distance covariances:

mdCov2
n(A1,A2) =

√(
n

2

) B1∑
p=1

B2∑
q=1

dCov2
n(A1p,A2q).

The first test is the permutation test with mdCov2
n(A1,A2) as the test statistic. The second

test procedure is the t-test based on

TmdCov(A1,A2) =

√
v − 1mdCor2

n(A1,A2)√
1− (mdCor2

n(A1,A2))2

having the same asymptotic distribution as TdCov(A1,A2), where mdCor2
n(A1,A2) is de-

fined analogously to dCor2
n(A1,A2). In contrast to the sample covariance-based tests, which

test independence by treating all components of a vector jointly as a whole, the marginal
sample distance covariance-based tests capture pairwise low-dimensional non-linear depen-
dence. This implies that the latter tests can detect non-linear dependence in high dimen-
sions, while the former may not have this property. This was demonstrated in the simulation
studies of Zhu et al. (2020) for vector data, and in those of Section 6 below for functional
data. Similar findings apply to Hilbert-Schmidt covariance, which we discuss in the next
section.

3.2 Hilbert-Schmidt Covariance and Its Marginal Version

Now we consider the Hilbert-Schmidt covariance proposed by Gretton et al. (2005, 2008),
which is a generalization of the distance covariance. Hilbert-Schmidt covariance can be
defined similarly to the distance covariance with kernel values instead of Euclidean distance,
i.e.,

hCov2(α1,α2) =EK(α1,α
′
1)L(α2,α

′
2)

+ EK(α1,α
′
1)EL(α2,α

′
2)

− 2EK(α1,α
′
1)L(α2,α

′′
2),

where K and L are selected kernels. When these kernels are universal (e.g., Gaussian and
Laplacian kernels; see Section 6) and defined on compact domains, hCov2(α1,α2) = 0
if and only if α1 and α2 are independent (Gretton et al., 2005, Theorem 4). Thus, the
permutation test based on a biased estimator for hCov2(α1,α2) was considered by Górecki
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et al. (2020) for testing (1). The natural unbiased sample Hilbert-Schmidt covariance is
defined as follows:

hCov2
n(A1,A2) = (K̃ · L̃) =

1

n(n− 3)

∑
p 6=q

k̃pq l̃pq,

where K̃ = (k̃pq)
n
p,q=1 and L̃ = (l̃pq)

n
p,q=1 are the U-centered versions of K = (kpq)

n
p,q=1 and

L = (lpq)
n
p,q=1 respectively, where kpq = lpq = 0 for p = q and otherwise kpq = K(α1p,α1q),

lpq = L(α2p,α2q).
Zhu et al. (2020) extended the TdCov(A1,A2) test to the t-test based on the Hilbert-

Schmidt covariance with test statistic

ThCov(A1,A2) =

√
v − 1hCor2

n(A1,A2)√
1− (hCor2

n(A1,A2))2
.

Moreover, they established that the hCov2
n(A1,A2) and ThCov(A1,A2) tests have the same

drawbacks as the tests based on distance covariance (see Section 3.1). For this reason, Zhu
et al. (2020) also proposed a permutation test based on the marginally aggregated sample
Hilbert-Schmidt covariances

mhCov2
n(A1,A2) =

√(
n

2

) B1∑
p=1

B2∑
q=1

hCov2
n(A1p,A2q)

and the t-test based on

TmhCov(A1,A2) =

√
v − 1mhCor2

n(A1,A2)√
1− (mhCor2

n(A1,A2))2
.

To sum up, for testing (1) with k = 2, we have eight tests:

� four permutation tests based on dCov2
n, mdCov2

n, hCov2
n, mhCov2

n,

� four t-tests based on TdCov, TmdCov, ThCov, TmhCov.

For simplicity, in the following, we will refer to the tests based on standard distance and
Hilbert-Schmidt covariances as the joint distance and Hilbert-Schmidt covariances-based
tests, or even more simply as joint covariances-based tests if applicable. Similarly, the tests
based on marginally aggregated covariances will be refered to as marginal covariances-based
tests.

Note that in this section, we applied these multivariate tests to vectors of coefficients of
the basis representation. However, it is possible to define appropriate functional objects, for
example characteristic functions or kernels, to obtain general functional distance covariance,
functional Hilbert-Schmidt covariance, etc. For the former, this was done by Górecki et
al. (2016, 2020), but for practical application, they finally also used the basis representation,
which greatly simplifies work with general objects. Here we extend their practical solution.
Moreover, in the next sections, we present a theoretical justification of the test procedures,
and we consider the case k ≥ 2, which is a further extension of the results of Górecki et
al. (2016, 2020) and of Zhu et al. (2020), who investigated the case of two processes only.
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4. Theoretical Justification of the Test Procedures

All procedures considered in this paper are theoretically justified under weak assumptions
by the application of the general results established by Zhu et al. (2020), chiefly by the
results in their Appendix A.2 dedicated to studentized test statistics in the High Dimension
Medium Sample Size, HDMSS, framework and the unified approach they develop. The
differences will be highlighted in the following, after suitable notation has been introduced.
Basically, the setting we consider in this paper is more complex because we consider several
samples and the objects in each sample are expansion coefficients. In the most general
justification, we would thus need to work with four-dimensional tensors, and the idea might
be lost in the manipulations of coefficients with four integer subscripts. To focus on the
essence of the justification, we therefore first consider the case of k = 2 and change the
notation slightly to make the exposition of the theory easier to follow. In Remark 1, we
comment on the assumptions needed in the general case.

We thus consider two populations of functions

(X1, . . . , Xp)
>, (Y1, . . . , Yq)

> (5)

that satisfy the following assumption

Assumption 1 Each component Xi, i = 1, . . . , p, is a square integrable (i.e., E‖Xi‖2 <∞)
random function in L2(IX) and each Yj, j = 1, . . . , q, is a random function in L2(IY )
satisfying analogous assumptions.

The common domain IX could be replaced by different domain IXi , i = 1, . . . , p, be-
cause we ultimately work with expansion coefficients. The same comment applies to the
functions Yi.

Let {φl}∞l=1 be a complete orthonormal system in L2(IX), and {ψl}∞l=1 such a system in
L2(IY ). Under Assumption 1, the following infinite expansions exist:

Xi =
∞∑
l=1

αilφl, i = 1, . . . , p, Yj =
∞∑
l=1

βilψl, j = 1, . . . , q.

Suppose we observe iid realizations

(Xt1, . . . , Xtp)
>, (Yt1, . . . , Ytq)

>, t = 1, . . . , n.

The tests are based on approximations

Xti ≈
BX,i∑
l=1

αtilφl, Ytj ≈
BY,j∑
l=1

βtjlψl, t = 1, . . . , n.

As we already noticed in Section 2, if the truncation levels BX,i and BY,j are treated as fixed
numbers, the testing problem (1) is not equivalent to the testing problem (4). However,
asymptotic equivalence can be ensured if we let the truncation levels BX,i and BY,j increase
to infinity with the sample size n. To formulate a suitable assumption, we need to introduce
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some notation. The functional object (X1, . . . , Xp)
> is approximately represented by the

vector

A = (α11, . . . , α1BX,1
, . . . , αp1, . . . αpBX,p

)> (6)

whose length is

P =

p∑
i=1

BX,i.

Similarly, the object (Y1, . . . , Yq)
> is represented by the vector

B = (β11, . . . , β1BY,1
, . . . , βq1, . . . βqBY,q

)>

whose length is

Q =

q∑
j=1

BY,j .

Assumption 2 The sample size n tends to infinity and, as n→∞,

min(BX,1, . . . , BX,p)→∞ and min(BY,1, . . . , BY,q)→∞.

Assumption 2 clearly implies the HDMSS condition of Zhu et al. (2020), i.e., n∧P ∧Q→∞.
Consider the n× P matrix

An =


α111 · · · α11BX,1

· · · α1p1 · · · α1pBX,p

α211 · · · α21BX,1
· · · α2p1 · · · α2pBX,p

...
...

...
...

...
...

...
αn11 · · · αn1BX,1

· · · αnp1 · · · αnpBX,p

 ,

and an analogously defined n×Q matrix Bn. The difference between the functional setting
of this paper and the setting of Zhu et al. (2020) is that we use the matrices An and Bn of
coefficients rather than the matrices of observations.

We now formulate our test procedures within the unified framework of Zhu et al. (2020)
that covers all tests statistics we consider. Suppose K(·, ·) and L(·, ·) are bounded bivariate
kernels. The Gaussian and Laplacian kernels studied in the next section are clearly bounded
by 1. Since the kernels are bounded, the following random variables are well-defined. For
i = 1, . . . , p and l(i) = 1, . . . , BX,i, set

Kst(i, l(i)) = K(αs,i,l(i), αt,i,l(i))

− E[K(αs,i,l(i), αt,i,l(i))|αs,i,l(i)]
− E[K(αs,i,l(i), αt,i,l(i))|αt,i,l(i)]
+ E[K(αs,i,l(i), αt,i,l(i))], s, t = 1, . . . , n,

and define Lst(j, l(j)), j = 1, . . . , q, l(j) = 1, . . . , BY,j analogously.
Next we construct P matrices

K(i, l(i)) = (Kst(i, l(i)))
n
s,t=1 , i = 1, . . . , p, l(i) = 1, . . . , BX,i
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and Q matrices

L(j, l(j)) = (Lst(j, l(j)))
n
s,t=1 , j = 1, . . . , q, l(j) = 1, . . . , BY,j .

Suppose G = (gst)
n
s,t=1 and H = (hst)

n
s,t=1 are n× n matrices. Set

g̃st = gst −
1

n− 2

n∑
v=1

gsv −
1

n− 2

n∑
u=1

gut +
1

(n− 1)(n− 2)

n∑
u,v=1

guv, if s 6= t,

and g̃st = 0 if s = t. Define the entries h̃st analogously, and consider

(G̃ · H̃) :=
1

n(n− 3)

n∑
s,t=1

g̃sth̃st.

Now we can define the unified covariance distance

uCov2
n(An,Bn) =

1√
PQ

p∑
i=1

BX,i∑
l(i)=1

q∑
j=1

BY,j∑
l(j)=1

(K̃(i, l(i)) · L̃(j, l(j))).

To ensure the asymptotic validity of the test procedures, we must reformulate Assump-
tion D5 in Zhu et al. (2020) within our functional context. To do it, we need to introduce
more notation. Consider the following quantities

U(As,At) :=
1√
P

p∑
i=1

BX,i∑
l(i)=1

Kst(i, l(i)), V (Bs,Bt) :=
1√
Q

q∑
j=1

BY,j∑
l(j)=1

Lst(j, l(j)),

where As and At are the sth and tth rows of the matrix An corresponding to the sth
and tth observations, respectively, in the sample for (X1, . . . , Xp)

>; Bs are Bt are defined
analoguously.

Assumption 3 Denoting with “prime”, ′, independent copies of the vector A given by (6),
we assume that

1√
n

E[U4(A,A′)]

(E[U2(A,A′)])2 → 0 (7)

and
E[U(A,A′)U(A′,A′′)U(A′′,A′′′)U(A′′′,A)]

(E[U2(A,A′)])2 → 0. (8)

We impose analogous conditions on V (·, ·).

Just as in the case of directly observable vectors considered in Zhu et al. (2020), As-
sumption 3 does not have a clear, intuitive interpretation. It is needed to apply a martingale
central limit theorem. Conditions (7) and (8) are abstract, technical assumptions needed to
control the growth of the fourth moments of the partial sums in the definition of U(As, As)
relative to the second moments. To a rough approximation, one can say that the kurtosis
of the partial sums must be controlled to ensure a normal limit.

1366



Independence Tests for Multivariate Functional Data

To lighten the notation, set

U(An,Bn) = uCov2
n(An,Bn), C(An,Bn) =

U(An,Bn)√
U(An,An)U(Bn,Bn)

and define the test statistic

Tn = κn
C(An,Bn)√

1− C2(An,Bn)
, κn =

√
n(n− 3)

2
− 1. (9)

As in Section A.2 of Zhu et al. (2020), the following theorem provides an asymptotic
justification for all tests considered in this paper. Its proof follows by direct verification
that the assumptions we formulated imply the assumptions of Proposition A.2.1 established
by Zhu et al. (2020). (Recall that we assume throughput that the realizations indexed by
t = 1, . . . , n are iid.)

Theorem 1 If Assumptions 1, 2 and 3 hold, and the functional objects (X1, . . . , Xp)
> and

(Y1, . . . , Yq)
> are independent, then Tn

d→ N(0, 1).

Remark 1 Observe that in Assumptions 1, 2 and 3 conditions are imposed on each of the
two groups separately. Under independence there is no connection between the two groups.
In the case of k samples, not necessarily k = 2, Assumptions 1, 2 and 3 must be replaced
by analogous assumptions specifying conditions on the functions, and objects derived from
them, in each group separately.

5. Testing Mutual Independence

In this section, we extend the results of Section 3 for pairwise processes (k = 2) to the case
of k ≥ 2 processes, i.e., mutual independence. For this purpose, we apply the asymmetric
and symmetric measures of mutual dependence given by Jin and Matteson (2018), which
capture mutual dependence by aggregating pairwise dependence. They also considered
other methods, but these two had the best finite sample performance, hence we omit the
others.

Let us introduce the following notation. The subset of the vectors α1, . . . ,αk to the
right of αi is defined as

αi+ =
(
α>i+1, . . . ,α

>
k

)>
∈ RBi+1+···+Bk

for i = 1, . . . , k − 1. On the other hand, the subset of the vectors α1, . . . ,αk that excludes
αi only is defined as:

α−i =
(
α>1 , . . . ,α

>
i−1,α

>
i+1, . . . ,α

>
k

)>
∈ RB1+···+Bi−1+Bi+1+···+Bk
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for i = 1, . . . , k. Using this notation, Jin and Matteson (2018) proposed the following
asymmetric and symmetric measures of mutual dependence of vectors α1, . . . ,αk:

R(α1, . . . ,αk) =
1

k − 1

k−1∑
i=1

V 2(αi,αi+),

S(α1, . . . ,αk) =
1

k

k∑
i=1

V 2(αi,α−i),

where V 2 is a dependence measure for two vectors. They also proved that if V 2(α,β) = 0 is
equivalent to independence of α and β, then (under mild conditions) R(α1, . . . ,αk) = 0 or
S(α1, . . . ,αk) = 0 if and only if Hv

0 in (4) holds. Moreover, under Hv
1 in (4), R(α1, . . . ,αk)

and S(α1, . . . ,αk) are strictly positive. Thus, we can reject the null hypothesis in (4) for
large values of the following estimators for R(α1, . . . ,αk) and S(α1, . . . ,αk):

Rn(A1, . . . ,Ak) =
1

k − 1

k−1∑
i=1

V 2
n (Ai,Ai+),

Sn(A1, . . . ,Ak) =
1

k

k∑
i=1

V 2
n (Ai,A−i),

where V 2
n is an estimator for V 2, Ai+ = (Ai+1, . . . ,Ak) is the sample corresponding to αi+ ,

and A−i = (A1, . . . ,Ai−1,Ai+1, . . . ,Ak) corresponds to α−i. Since the asymptotic null
distributions of Rn and Sn are complicated, the permutation method is used to approximate
the null distributions of these test statistics. In this method, the permuted sample of the
pooled sample

α11, . . . ,α1n,α21, . . . ,α2n, . . . ,αk1, . . . ,αkn

is as follows

α11, . . . ,α1n,α2π1(1), . . . ,α2π1(n), . . . ,αkπk−1(1), . . . ,αkπk−1(n),

where the permutations π1, . . . , πk−1 are uniformly chosen from the symmetric group Sn,
i.e., the set of all n! permutations of (1, . . . , n). Then the p-value for the permutation test
is equal to the proportion of times that the test statistic based on the permuted samples
is greater than that based on the original sample. In general, it is not possible to use all
permuted samples in practical implementation, and so a large number of them is applied.

As V 2
n , Jin and Matteson (2018) used the sample distance covariance dCov2

n. However,
the remaining test statistics of Section 3 can also be considered. Of course, dCov2

n, TdCov,
hCov2

n and ThCov seem to be preferred as they are consistent with the theoretical results
of Jin and Matteson (2018), i.e., the quantities, which they estimate vanish if and only if
the random vectors are independent. Nevertheless, as we will show in simulation studies in
the next section, the Rn and Sn tests based on these four test statistics seem to have the
same drawbacks as the joint covariances-based tests for two processes described in Section 3.
Fortunately, we will also establish that the Rn and Sn tests using mdCov2

n, TmdCov, mhCov
2
n

and TmhCov overcome these drawbacks, similarly as in the case k = 2.
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6. Simulation Studies

In this section, we study the finite sample performance of the tests considered in Sections 3
and 5 in terms of size control and power. The empirical size of a test should be close to
the significance level, which we set at α = 5%. Then the test maintain the type I error
level accurately. On the other hand, the larger the power of the test, the better it is. The
empirical sizes and powers of the tests were estimated as the proportions of rejections of the
null hypothesis on the basis of 500 simulation replications, when the data were generated
under the null and alternative hypothesis respectively. All numerical experiments in this
paper were performed in the R program (R Core Team, 2020). The code is available from
the authors upon request.

6.1 Test Procedures

For pairwise independence (k = 2), we considered 12 tests:

� four tests based on distance covariance: dCov2
n, mdCov2

n, TdCov, TmdCov,

� eight tests based on Hilbert-Schmidt covariance: hCov2
n, mhCov2

n, ThCov, TmhCov with

– Gaussian kernel K(x,y) = exp(−‖x− y‖2/(2γ2)),

– Laplacian kernel K(x,y) = exp(−‖x− y‖/γ).

For mutual independence with k = 3, we had 24 tests, which were the above tests combined
with the R and S methods described in Section 5. We used the same kernel (Gaussian or
Laplacian) for all samples, but the bandwidth parameter γ was taken separately for each
sample as the median distance between points in a sample, i.e., γi = median{‖αip −αiq‖ :
p, q = 1, . . . , n; p 6= q} (Gretton et al., 2009). Following Zhu et al. (2020), we set 200
permuted samples to estimate the p-values of permutation tests based on the test statistics
dCov2

n, mdCov2
n, hCov2

n, mhCov2
n, Rn and Sn. For k = 2, the TdCov, TmdCov, ThCov and

TmhCov tests were implemented using the t-distribution approach.

6.2 Simulation Experiments

We generated functional data in the following three models. In Model 1 below, we used the
B-spline basis as the basis representation of the functional data, since the Fourier basis was
applied to generate simulation data. On the other hand, in Models 2 and 3, we considered
both Fourier and B-spline bases. For simplicity, all numbers of basis functions Bij were
set equal to five. The coefficients of the basis representation were estimated by the least
squares method.

Model 1 We considered pairwise independence (k = 2). We generated n = 20 obser-
vations with dimensions p∗ = p1 = p2 ∈ {3, 6} using the basis representation (3). Namely,
the functional data were generated by their values in an equally spaced grid of 50 points
t11 = t21 = 0, . . . , t1,50 = t2,50 = 1 in I1 = I2 = [0, 1] in the following way:[

X1j(t1u)
X2j(t2u)

]
=

[
Φ1(t1u) 0

0 Φ2(t2u)

] [
α1j

α2j

]
+ εju,
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where j = 1, . . . , n, u = 1, . . . , 50, the matrices Φl were as in (3) and contained the
Fourier basis functions only, (α>1j ,α

>
2j)
> are 10p∗-dimensional random vectors, and ε>ju =

(εju,1, . . . , εju,2p∗) were the measurement errors such that εju,v ∼ N(0, 0.025ajv) were inde-
pendent and ajv was the range of the v-th row of the following matrix:[

Φ1(t11)α1j . . . Φ1(t1,50)α1j

Φ2(t21)α2j . . . Φ2(t2,50)α2j

]
.

The random vectors (α>1j ,α
>
2j)
> were generated in the following three settings, which were

identical or similar to those considered by Zhu et al. (2020) in their experiments for multi-
variate data:
Setting 1 We generated i.i.d. samples α1j and α2j for j = 1, . . . , n under the null hypothesis
in the following three cases:

(i) αij ∼ N5p∗(05p∗ , Ip∗) for i = 1, 2,

(ii) α1j ∼ AR0.5(1) and α2j ∼ AR−0.5(1), where ARρ(1) denotes the Gaussian autore-
gressive model of order 1 with parameter ρ,

(iii) αij ∼ N5p∗(05p∗ ,Σ5p∗) for i = 1, 2, where Σa = (0.7|p−q|)ap,q=1.

Setting 2 We generated i.i.d. samplesα1j = (α1j,1, . . . , α1j,5p∗)> andα2j = (α2j,1, . . . , α2j,5p∗)>

for j = 1, . . . , n under the alternative hypothesis in the following four cases:

(i) α1j ∼ N5p∗(05p∗ , I5p∗) and α2j,v = α2
1j,v for v = 1, . . . , 5p∗,

(ii) α1j ∼ N5p∗(05p∗ ,Σ5p∗) and α2j,v = α2
1j,v for v = 1, . . . , 5p∗, Σa = (0.7|p−q|)ap,q=1,

(iii) α1j ∼ N5p∗(05p∗ , I5p∗) and α2j,v = log |α1j,v| for v = 1, . . . , 5p∗,

(iv) α1j ∼ N5p∗(05p∗ , I5p∗) and α2j,v = α1j,v/2 + Zj,v for v = 1, . . . , 5p∗, where Zj,v ∼
N(0, 0.7) were independent.

Setting 3 We generated i.i.d. samplesα1j = (α1j,1, . . . , α1j,5p∗)> andα2j = (α2j,1, . . . , α2j,5p∗)>

for j = 1, . . . , n under the alternative hypothesis in the following four cases:

(i) α1j,1, . . . , α1j,5p∗ were i.i.d. of uniform distribution U(−1, 1) and α2j,v = α2
1j,v for

v = 1, . . . , 5p∗,

(ii) α1j,1, . . . , α1j,5p∗ were i.i.d. of uniform distribution U(0, 1) and α2j,v = 4α3
1j,v −

3.6α1j,v + 0.8 for v = 1, . . . , 5p∗,

(iii) α1j,v = sin(z1j,v) and α2j,v = cos(z1j,v) for v = 1, . . . , 5p∗, where z1j,1, . . . , z1j,5p∗ were
i.i.d. of uniform distribution U(0, 2π),

(iv) α1j,1, . . . , α1j,5p∗ were i.i.d. of uniform distribution U(−1, 1) and α2j,v = α1j,v/2+Zj,v
for v = 1, . . . , 5p∗, where Zj,v ∼ N(0, 0.5) were independent.
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Model 2 Here, we considered pairwise independence (k = 2) as in Model 1, but we
generated n = 20 observations with dimensions p1 = p2 = 3 using well-known stochastic
processes instead of direct use of the basis representation.

We considered the Wiener process, the Ornstein-Uhlenbeck process and the Brownian
bridge separately. We set I1 = I2 = [0, 1] and m = 25 as the number of equally spaced
design time points in [0, 1] at which the discrete functional data for the processes considered
were observed. The Wiener process and the Ornstein-Uhlenbeck process were observed in
points t1 = 0, . . . , tm+1 = 1, but the final observations used were those for the m points
t2, . . . , tm+1, because we removed the first zero value of these processes for t1. The Brownian
bridge was observed at the points t1 = 0, . . . , tm+2 = 1. However, the final observations
used were those for the m points t2, . . . , tm+1, as we removed the first and the last zero
value of the Brownian bridge for t1 and tm+2.

Let Z denote a stochastic process chosen from the Wiener process, the Ornstein-Uhlenbeck
process and the Brownian bridge. Then the coordinates of each observation in the first sam-
ple X11 = (X111, X112, X113)>, . . . ,X1n = (X1n1, X1n2, X1n3)> were independent realiza-
tions of the process Z. Of course, for each observation such realizations were generated inde-
pendently. The second sample X21 = (X211, X212, X213)>, . . . ,X2n = (X2n1, X2n2, X2n3)>

was generated in each of the following four cases (j = 1, . . . , n; v = 1, 2, 3):

(i) The observations were obtained in the same way as for the first sample but indepen-
dently;

(ii) X2jv = X2
1jv;

(iii) X2jv = log |X1jv|;

(iv) X2jv = X1jv/2 + Yjv, where Yjv is the process of i.i.d. variables of distribution
N(0, 1.2).

In case (i) the null hypothesis held, while in the remaining cases the alternative hypothesis
held.

In the above method of data generation, the variables of multivariate functional data
were independent. Thus we call this the independent setting. Additionally, we considered
the following dependent setting. Let Y1j ∼ N9(09,Σ), j = 1, . . . , n be independent random
vectors, where Σ = σ

(
(1− ρ)I9 + ρ191

>
9

)
with σ = 0.01 and ρ = 0.1. Then the dependent

coordinates of the multivariate functional data of the first sample were generated as X1j(t)+
Φ(t)Y1j , where X1j were observations obtained in the independent setting, t ∈ [0, 1], and
the 3× 9 matrix Φ was as in Section 2 and contained three Fourier basis functions for each
variable. In case (i), the second sample was generated in the same way.

Model 3 We considered mutual independence with k = 3 groups of multivariate func-
tional data. We generated three samples with n = 30 observations each and equal dimen-
sions p1 = p2 = p3 = 3. The first and second (respectively the third) samples were obtained
in the same way as the first (respectively the second) sample in Model 2. Naturally, the
first two samples in this model were generated independently of each other. Similarly to
Model 2, the null hypothesis held in case (i), while it did not hold in the other cases, since
then the first and third processes were dependent.
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Figure 1: Box-and-whisker plots for empirical sizes (as percentages) of all tests obtained
in Models 1–3. The solid, dashed and dotted horizontal lines represent the sig-
nificance level 5% and the 95% and 99% binomial proportion confidence inter-
vals [3.1%, 6.9%] and [2.5%, 7.5%] respectively. The two vertical lines divide the
tests into three groups: on the left, tests based on distance covariance; in the
middle, tests based on Hilbert-Schmidt covariance with Gaussian kernel (hCovG,
mhCovG, TGhCov, T

G
mhCov); on the right, tests based on Hilbert-Schmidt covariance

with Laplacian kernel (hCovL, mhCovL, TLhCov, T
L
mhCov).

6.3 Simulation Results

To save space, the simulation results for Models 1–3 are summarized by box-and-whisker
and “line” plots in Figures 1–5 to illustrate the main findings of the simulation. The exact
simulation results are available from the authors upon request.

In Figure 1, we can observe that all tests maintain the type I error level quite well.
Their empirical sizes belong to the binomial proportion 95% and 99% confidence intervals
[3.1%, 6.9%] and [2.5%, 7.5%] respectively (Duchesne & Francq, 2015) in almost all cases,
as they should. There are only a few exceptions, mainly for the t-tests based on the
joint distance and Hilbert-Schmidt covariances. This follows from the asymptotic character
of these tests, i.e., they use a critical value based on the asymptotic distribution of test
statistics. Moreover, this indicates that the t-tests are at least slightly more liberal than the
permutation tests. It also seems that the tests based on marginally aggregated covariances
control the type I error level at least slightly better then the tests based on joint distance
and Hilbert-Schmidt covariances.

Figures 2 and 3 present a power comparison between joint and marginal versions of the
distance and Hilbert-Schmidt covariances-based tests. We can observe that their perfor-
mance depends on the character of dependence. For detecting non-linear dependence, the
tests based on marginally aggregated covariances are better in terms of power than their
joint counterparts. On the other hand, the reverse is usually true when the observations are
linearly dependent. This is especially evident for Hilbert-Schmidt covariance-based tests,
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Figure 2: Box-and-whisker and “line” plots for empirical powers (as percentages) of all tests
obtained in the case of non-linear dependence, i.e., Model 1, settings 2–3, cases
(i)–(iii); Models 2–3 in cases (ii)–(iii). The two vertical lines divide the tests into
three groups: on the left, tests based on distance covariance; in the middle, tests
based on Hilbert-Schmidt covariance with Gaussian kernel (hCovG, mhCovG,
TGhCov, T

G
mhCov); on the right, tests based on Hilbert-Schmidt covariance with

Laplacian kernel (hCovL, mhCovL, TLhCov, T
L
mhCov).

while for distance covariance-based tests, this holds to a much lesser extent. These results
are consistent with those of Zhu et al. (2020) for multivariate data. Namely, they indicate
that the joint covariance-based tests can capture linear dependence of multivariate func-
tional data very well, but are much less powerful, or even fail, when detection of non-linear
dependence is required. This can be explained by the fact that these tests use the basis
representation of functional data, which reduces them to possibly high-dimensional multi-
variate data. On the other hand, the marginal versions of the tests better capture non-linear
dependence, but may be worse at detecting linear dependence.

Under non-linear dependence, the distance covariance-based tests are less powerful than
the Hilbert-Schmidt covariance-based tests with Gaussian kernel, which is overcome by
using these tests with the Laplacian kernel. For linear dependence, the reverse is true
for marginally aggregated covariance-based tests, while the power of all joint covariance-
based tests is much more stable. The permutation tests and the corresponding t-tests are
comparable in terms of power, but the latter are often slightly more powerful than the
former, which may be explained by the slightly liberal character of the t-tests.

In Figures 4-5, the results for k = 3 groups are presented. Thus, we compare the Rn and
Sn methods considered in Section 5. These two methods seem to perform very similarly, but
there are some differences, which we will now indicate. The Sn tests using the marginally

1373
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Figure 3: Same as Figure 2 but for linear dependence, i.e., case (iv) in Model 1 with settings
2–3 and in Models 2–3.

aggregated covariances are usually at least slightly more powerful then the Rn tests. Under
non-linear dependence, the reverse holds for joint covariances, except for the hCov2

n tests.
Nevertheless, it seems that both the Rn and Sn methods capture the mutual dependence by
combining the pairwise dependence measure. We can also observe that the above findings
about the behaviour of joint and marginal versions of tests for pairwise dependence also
hold true for the Rn and Sn tests; in particular, this extends the results of Zhu et al. (2020).
Moreover, the use of a pairwise dependence measure in the Rn and Sn methods which does
not have to be equal to zero if and only if the processes are independent (e.g., mdCov2) is
also reasonable and results in powerful test procedures.

All of the above observations hold true for both Fourier- and B-spline-based tests. How-
ever, we can observe that the tests using a Fourier basis are more powerful than the B-
spline-based tests (data not shown). This can perhaps be explained by the construction
of the data (i.e., the Fourier basis is used in this construction) and the number of basis
functions in the basis representation was set to five for both bases.

7. Real Data Example

For illustrative purposes, we re-analyse the pillar data set using the tests under consider-
ation. This data set was investigated in Górecki et al. (2020) using functional canonical
correlation analysis and and independent test based on Hilbert-Schmidt covariance with
biased estimator.
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Figure 4: Box-and-whisker and “line” plots for empirical powers (as percentages) of Rn
and Sn tests obtained in the case of non-linear dependence, i.e., Model 3 in cases
(ii)–(iii). The two vertical lines divide the tests into three groups: on the left,
tests based on distance covariance; in the middle, tests based on Hilbert-Schmidt
covariance with Gaussian kernel (hCovGR, hCovGS , mhCovGR, mhCovGS , TGRhCov,
TGShCov, T

GR
mhCov, T

GS
mhCov); on the right, tests based on Hilbert-Schmidt covariance

with Laplacian kernel (hCovLR, hCovLS , mhCovLR, mhCovLS , TLRhCov, T
LS
hCov,

TLRmhCov, T
LS
mhCov).

7.1 Pillar Data Set

In the pillar data set, we have twelve pillars, which are groups of variables describing 38
European countries in the period 2008-2015. The data set was constructed based on the
annual reports of the World Economic Forum (WEF) (http://www.weforum.org). The
countries are listed in Table 3 of Górecki et al. (2020). The pillars are as follows: 1 –
institutions (17), 2 – infrastructure (6), 3 – macroeconomic environment (2), 4 – health and
primary education (7), 5 – higher education and training (6), 6 – goods market efficiency
(10), 7 – labor market efficiency (6), 8 – financial market development (5), 9 – technological
readiness (4), 10 – market size (4), 11 – business sophistication (9), 12 – innovation (5).
The numbers in parentheses are the number of variables of each pillar, which are listed in
Table 2 of Górecki et al. (2016). These variables describe various socio-economic conditions
or spheres for individual states.

Note that the pillar data are doubly multivariate data, since all variables of all pillars are
measured repeatedly in time, i.e., for 2008/2009, 2009/2010, . . . , 2014/2015. This indicates
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Figure 5: Same as Figure 4 but for linear dependence, i.e., Model 3 in case (iv).

that we can treat them as multivariate functional data measured at seven time points.
Namely, each pillar is represented as a multivariate random process with the appropriate
number of variables (e.g., pillar 1 has 17 functional coordinates), which are observed at
t1 = 0.5, . . . , t7 = 6.5, belonging to the interval [0.5, 6.5]. Thus, we have n = 38 functional
observations characterized by twelve random processes Xi ∈ Lpi2 ([0.5, 6.5]), i = 1, . . . , 12,
with p1 = 17, p2 = 6, . . . , p12 = 5.

7.2 Results of Testing of Independence of Pillars

It is of interest to test the independence of particular pillars. For this purpose, the tests
considered in Section 6 were applied. For the basis representation we used five Fourier basis
functions, since the number of design time points is small. Nevertheless, for most pillars,
the number of variables in the basis representation is quite large and even greater than the
number of observations; for instance, for the first pillar, we have 17 · 5 = 97 variables. The
p-values of the permutation tests were estimated based on 1000 permuted samples.

First, we consider pairwise independence (k = 2) between all pairs of pillars. The
resulting p-values are presented in Tables 1-3. All tests detect the dependence of most pairs
of pillars. For example, the p-values of all tests for pillars 1 and 4 are always equal to zero,
indicating their dependence. However, there are some pairs of pillars for which the tests
have very different p-values. This applies mainly to comparisons of pillars 2 and 10 with
other pillars. These two pillars are dependent on each other, but the distance covariance-
based tests indicate that each of them is independent of some other pillars. On the other
hand, the Hilbert-Schmidt covariance-based tests give a lower number of such independent
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dCov2n (ltm) 1 2 3 4 5 6 7 8 9 10 11 12
mdCov2n (utm) 1 4.8 1.1 0.0 0.0 0.0 0.0 0.0 0.0 22.9 0.0 0.0

2 5.4 1.8 17.2 2.8 3.4 5.3 22.5 18.4 0.0 0.6 0.7
3 2.6 1.4 0.0 1.4 0.6 0.1 1.1 11.1 7.4 0.1 0.4
4 0.0 35.9 0.0 0.0 0.0 0.0 0.0 0.0 65.6 0.0 0.0
5 0.0 2.7 3.0 0.0 0.0 0.0 0.0 0.0 11.2 0.0 0.0
6 0.0 3.2 3.0 0.0 0.0 0.0 0.0 0.0 10.2 0.0 0.0
7 0.0 5.8 0.2 0.0 0.0 0.0 0.0 0.0 22.7 0.0 0.0
8 0.0 18.4 12.5 0.0 0.0 0.0 0.0 0.0 37.3 0.0 0.0
9 0.0 22.1 28.4 0.0 0.0 0.0 0.0 0.0 61.5 0.0 0.0
10 24.9 0.0 5.4 74.2 8.0 7.6 23.2 29.3 59.7 3.0 4.2
11 0.0 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0
12 0.0 0.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0

TdCov (ltm) 1 2 3 4 5 6 7 8 9 10 11 12
TmdCov (utm) 1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.7 0.0 0.0

2 4.2 0.0 26.0 0.6 0.6 3.2 25.9 25.2 0.0 0.0 0.0
3 0.3 0.0 0.0 0.0 0.0 0.0 0.1 10.1 3.4 0.0 0.0
4 0.0 47.6 0.0 0.0 0.0 0.0 0.0 0.0 68.5 0.0 0.0
5 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.0
6 0.0 0.4 0.7 0.0 0.0 0.0 0.0 0.0 11.0 0.0 0.0
7 0.0 4.4 0.0 0.0 0.0 0.0 0.0 0.0 28.9 0.0 0.0
8 0.0 22.6 14.7 0.0 0.0 0.0 0.0 0.0 47.1 0.0 0.0
9 0.0 31.5 39.6 0.0 0.0 0.0 0.0 0.0 68.7 0.0 0.0
10 36.6 0.0 1.7 74.0 9.2 6.3 28.7 38.4 67.9 0.4 2.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
12 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0

Table 1: P-values (as percentages) of the dCov2
n, mdCov2

n, TdCov and TmdCov tests for pair-
wise independence for the pillar data set (ltm - lower triangular of matrix, utm -
upper triangular of matrix)

instances. Finally, the mhCov2
n and TmhCov tests, which seem to be the most powerful for

the pillars data set (as explained below), suggest the independence of pillars 8 and 10 only
(at significance level of 5%).

It seems that the above remarks are consistent with the simulation results for the case of
non-linear dependence. We explain this as follows. First of all, the p-values of the tests based
on marginally aggregated covariances are usually smaller than those of the corresponding
joint covariances-based tests. Moreover, in some cases, the decisions suggested by the joint
and marginal versions of the tests are different; for instance, the mhCov2

n and TmhCov tests
reject the independence of pillars 9 and 10, while the hCov2

n and ThCov tests do not. All
this confirms that the marginally aggregated covariances-based tests have better ability to
detect non-linear dependence than the joint covariance tests. Furthermore, the p-values of
the distance covariance-based tests are greater than those of the Hilbert-Schmidt covariance-
based tests with Gaussian kernel, which are greater than the p-values of the latter tests
using the Laplacian kernel. This is consistent with the increase in the power of these tests
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hCov2n (ltm) 1 2 3 4 5 6 7 8 9 10 11 12
mhCov2n (utm) 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
3 0.4 0.5 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0
4 0.0 1.1 0.0 0.0 0.0 0.0 0.6 0.0 1.2 0.0 0.0
5 0.0 0.2 1.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
6 0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
7 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0
8 0.0 4.0 8.4 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0
9 0.0 10.4 17.1 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0
10 15.1 0.0 3.7 6.8 3.5 1.1 2.7 13.9 35.0 0.1 0.1
11 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
12 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

ThCov (ltm) 1 2 3 4 5 6 7 8 9 10 11 12
TmhCov (utm) 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
8 0.0 2.4 6.1 0.0 0.0 0.0 0.0 0.0 9.8 0.0 0.0
9 0.0 12.6 18.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
10 13.3 0.0 2.1 5.7 0.8 0.1 0.5 16.1 42.6 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: P-values (as percentages) of the hCov2
n, mhCov2

n, ThCov and TmhCov tests with
Gaussian kernel for pairwise independence for the pillar data set (ltm - lower
triangular of matrix, utm - upper triangular of matrix)

observed in simulations for non-linear dependence. Finally, the behaviour of permutation
tests and corresponding t-tests is similar, but the latter usually have smaller p-values than
the former. This can be explained by the slightly more powerful character of the t-tests in
comparison with the permutation tests.

Now, we consider testing of mutual dependence with k = 3, for all triples of pillars. To
save space, the p-values of all tests for all 220 triples of pillars are not shown, but available
from the authors upon request. Unfortunately, they are not easy to follow, even though
in 99 cases the p-values of all tests are equal to zero. Thus, we summarize the results in
Table 4, where for each test, the proportions of rejections of the null hypothesis for all tests
are presented. These indicate that most of the null hypotheses of independence are rejected,
and some of the tests reject all of them. The triples of pillars which were found independent
mainly contain the pillars 2 or 10, similarly as for pairwise independence. Moreover, these
proportions, as well as closer analysis of the p-values, indicate that the comments made
in the above paragraph also hold true in the mutual independence case. Finally, we can
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hCov2n (ltm) 1 2 3 4 5 6 7 8 9 10 11 12
mhCov2n (utm) 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0

2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
3 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.3 0.0 0.0 0.0 0.0 0.6 0.0 0.8 0.0 0.0
5 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
7 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 2.6 4.3 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0
9 0.0 6.2 28.2 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0
10 7.1 0.0 3.0 4.0 2.2 0.2 2.1 14.3 31.7 0.0 0.2
11 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
12 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0

ThCov (ltm) 1 2 3 4 5 6 7 8 9 10 11 12
TmhCov (utm) 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 1.1 1.6 0.0 0.0 0.0 0.0 0.0 8.8 0.0 0.0
9 0.0 5.4 33.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 3.2 0.0 1.2 1.4 0.3 0.0 0.6 16.2 39.1 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: P-values (as percentages) of the hCov2
n, mhCov2

n, ThCov and TmhCov tests with
Laplacian kernel for pairwise independence for the pillar data set (ltm - lower
triangular of matrix, utm - upper triangular of matrix)

observe that the Rn and Sn methods perform fairly well. They also behave very similarly
to each other. The only exceptions to this are the methods based on the TdCov and TmdCov
tests, where the Rn tests reject the hypothesis of mutual independence more often than the
Sn tests.

8. Conclusions

We have considered both pairwise and mutual independence testing problems for multivari-
ate functional data. For these problems, we proposed tests based on the basis representation
of functional data, which apply the independence tests for multivariate data obtained in
this representation. We focused on tests based on the commonly used distance and Hilbert-
Schmidt covariances, and their marginal versions as recently proposed in the literature.
The theoretical justification of the test procedures was established. Moreover, in intensive
simulation studies and real data examples, the obtained tests were compared in terms of
maintenance of the type I error level and power. Most of them control the type I error
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M dCov mdCov TdCov TmdCov

R 73.6 75.5 82.3 82.3
S 74.5 75.5 76.4 76.4

Gaussian kernel
M hCov mhCov ThCov TmhCov

R 93.6 100.0 95.9 100.0
S 92.3 100.0 93.2 100.0

Laplacian kernel
M hCov mhCov ThCov TmhCov

R 97.3 100.0 97.3 100.0
S 96.8 100.0 97.7 100.0

Table 4: Proportions (as percentages) of rejections of the null hypothesis in all tests for
mutual independence with k = 3, for all triples of pillars

level very well, but the power comparison is more complex. The numerical experiments
indicate that the drawbacks of the distance and Hilbert-Schmidt covariances-based tests, as
well as those of their marginal versions, seem to hold also for functional data. In particu-
lar, we observed that the distance and Hilbert-Schmidt covariances-based tests are usually
more (respectively less) powerful than their marginal versions under linear (respectively
non-linear) dependence. Moreover, in general, the distance covariance-based tests are more
powerful than the Hilbert-Schmidt covariance-based tests under linear dependence, while
the reverse is true under non-linear dependence. These findings, among others, show that
no one test is uniformly superior to the others. Thus, constructing a test procedure, which
can successfully detect both linear and non-linear dependence in high-dimensional data or
multivariate functional data seems to be an interesting direction for future research.
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Appendix A. Comparison of Raw and Functional Marginal Approaches

As we noticed in Section 1.2, the functional versions of independence tests usually perform
better than the direct application of multivariate methods to raw functional data. This was
shown by Górecki et al. (2020) for the joint covariances-based tests. In this appendix, we
briefly present that this seems to hold also for marginal covariances-based tests, what was
suggested by one of the reviewers. Namely, we conducted the simulation studies in Model 1
with p∗ = 3 for all marginal covariances-based tests in two versions: raw and functional.
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The raw marginal covariances-based tests were constructed as follows: Let Dij , i = 1, 2,
j = 1, 2, 3, be matrices of dimension 20 × 50 (n = 20, the number of design time points is
equal to 50), which represent the raw functional observations of the three variables of the
two random processes. For each process, these raw data were combined into the 20 × 150
matrix Di = (Di1 Di2 Di3), i = 1, 2. The matrices D1 and D2 correspond to two samples of
multivariate data. Then, to such data, the marginal covariances-based tests were applied.

As a result of these simulation studies, we obtained the empirical sizes and powers
of the raw and functional marginal covariances-based tests. In terms of control of the
type I error level, there are no significant differences and the raw and functional marginal
covariances-based test procedures perform equally well. However, the power performance
is more interesting. The empirical powers of all tests are summarized by box-and-whisker
plots in Figure 6. We can easily observe that the findings are similar to those for the
joint covariances-based tests as was studied by Górecki et al. (2020) (see Section 1.2).
Namely, for the non-linear dependence, the functional marginal covariances-based tests
usually outperform their raw versions. This is especially seen for the test procedures based
on the Hilbert-Schmidt covariance. On the other hand, in the case of linear dependence, the
raw and functional marginal covariances-based tests perform very similarly, but the former
seems to be slightly more powerful than the latter. To sum up, the functional versions of
the tests generally seem to be better than direct application of the multivariate methods to
the raw functional data.
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