
Journal of Artificial Intelligence Research 74 (2022) 1225-1267 Submitted 06/2021; published 07/2022

Learning Bayesian Networks Under Sparsity Constraints:
A Parameterized Complexity Analysis

Niels Grüttemeier niegru@informatik.uni-marburg.de

Christian Komusiewicz komusiewicz@informatik.uni-marburg.de

Hans-Meerwein-Straße 6

35032 Marburg, Germany

Abstract

We study the problem of learning the structure of an optimal Bayesian network when
additional constraints are posed on the network or on its moralized graph. More precisely,
we consider the constraint that the network or its moralized graph are close, in terms of
vertex or edge deletions, to a sparse graph class Π. For example, we show that learning
an optimal network whose moralized graph has vertex deletion distance at most k from a
graph with maximum degree 1 can be computed in polynomial time when k is constant.
This extends previous work that gave an algorithm with such a running time for the vertex
deletion distance to edgeless graphs. We then show that further extensions or improvements
are presumably impossible. For example, we show that learning optimal networks where the
network or its moralized graph have maximum degree 2 or connected components of size at
most c, c ≥ 3, is NP-hard. Finally, we show that learning an optimal network with at most k
edges in the moralized graph presumably has no f(k) · |I|O(1)-time algorithm and that, in
contrast, an optimal network with at most k arcs can be computed in 2O(k) · |I|O(1) time
where |I| is the total input size.

1. Introduction

Bayesian networks are graphical models for probability distributions in which the presence
of statistical dependencies between a set of random variables are represented via a directed
acyclic graph (DAG) D = (N,A) over a set N of n random variables (Darwiche, 2009).
An arc from a vertex u to a vertex v in a Bayesian network means that the distribution
of v might depend on the value of u, while the absence of an arc means that u and v are
conditionally independent given some set of variables. Once we have obtained a Bayesian
network, one may infer the distribution of some random variables given the values of other
random variables.

First, however, one needs to learn the network from observed data. An important step
herein is to learn the structure of the network, that is, the arc set of the corresponding
DAG. This problem is known as Bayesian Network Structure Learning (BNSL).
In BNSL, one is given for each network vertex v and each set of possible parents of v a
parent score and the goal is to learn an acyclic network with a maximal sum of parent
scores. To represent the observed data as closely as possible, it may seem appropriate to
learn a tournament, that is, a DAG in which every pair of vertices u and v is connected
either by the arc (u, v) or by the arc (v, u). There are, however, several reasons why learning
a tournament-like DAG should be avoided (For a detailed discussion we refer to the book
by Darwiche (2009)): First, such a network gives no information about which variables are

©2022 AI Access Foundation. All rights reserved.

Grüttemeier & Komusiewicz

conditionally independent. Second, including too many dependencies in the model makes
the model vulnerable to overfitting. Finally, the problem of inferring distributions on a
given Bayesian network is intractable when the DAG is tournament-like. More precisely,
the inference problem on Bayesian networks is NP-hard (Cooper, 1990). When the network
is tree-like, however, efficient inference algorithms are possible: If the moralized graph has
small treewidth, the inference task can be solved more efficiently (Darwiche, 2009); the
moralized graph of a network D is the undirected graph on the same vertex set that is
obtained by adding an edge between each pair of vertices that is adjacent or has a common
child in D.

Motivated by these reasons for avoiding tournament-like networks and instead aiming
for tree-like networks, it has been proposed to learn optimal networks under structural con-
straints that guarantee that the network or its moralized graph is tree-like (Elidan & Gould,
2008; Korhonen & Parviainen, 2013, 2015; Chow & Liu, 1968; Dasgupta, 1999; Gaspers,
Koivisto, Liedloff, Ordyniak, & Szeider, 2015). We continue this line of research, focusing on
exact algorithms with worst-case running time guarantees. In other words, we want to find
out for which structural constraints there are fast algorithms for learning optimal Bayesian
networks under these constraints and for which constraints this is presumably impossible.

Known Results. The problem of learning a Bayesian network without structural con-
straints, which we call Vanilla-BNSL, is NP-hard (Chickering, 1995) and can be solved
in 2nnO(1) time by dynamic programming over all subsets of N (Ott & Miyano, 2003;
Silander & Myllymäki, 2006).

When the network is restricted to be a branching, that is, a directed tree in which every
vertex has indegree at most one, then an optimal network can be computed in polynomial
time (Chow & Liu, 1968; Gaspers et al., 2015). Note that learning a more restricted Bayesian
network is not necessarily easier: While learning a branching is solvable in polynomial time,
the problem becomes NP-hard if we aim to learn a directed path (Meek, 2001).

On the negative side, BNSL where the moralized graph of the network is restricted to
have treewidth at most ω is NP-hard for every fixed ω ≥ 2 and can be solved in 3nnω+O(1)

time (Korhonen & Parviainen, 2013). Finally, Korhonen and Parviainen (2015) considered
a structural constraint that restricts the treewidth of the moralized graph by restricting
the size of its vertex cover. A vertex cover in a graph G is a vertex set S such that every
edge of G has at least one endpoint in S. Korhonen and Parviainen (2015) showed that
BNSL where the moralized graph is restricted to have a vertex cover of size at most k can
be solved in 4k · n2k+O(1) time. Since having a bounded vertex cover—we refer to graphs
with this property as bounded-vc graphs—implies that the graph has bounded treewidth,
the networks that are learned by BNSL with bounded-vc moralized graphs allow for fast
inference algorithms. An algorithm with running time f(k)·|I|O(1) is unlikely for this BNSL
variant, since it is W[1]-hard with respect to the parameter k (Korhonen & Parviainen,
2015). Here, |I| denotes the total input size. In other words, it seems necessary that the
degree of the running time polynomial depends on k.

Our Results. Extending previous work, we provide an almost complete picture of the
parameterized and classical complexity of BNSL with respect to several constraints that
guarantee tree-like networks or moralized graphs. Since the constraints are formulated in
terms of undirected graphs, we will refer to the undirected underlying graph of a network

1226

Learning Bayesian Networks Under Sparsity Constraints

Table 1: An overview of the parameterized complexity of constrained BNSL problems for
an input parameter k that upper-bounds structural parameters in the resulting
skeleton or moralized graph. The dissociation number is the minimum size of a
vertex set S, such that after removing S, the maximum degree is one. The distance
to degree 2 is the minimum size of a vertex set S, such that after removing S,
the maximum degree is 2. The c-component order connectivity (c-COC) is the
minimum size of a vertex set S, such that after removing S, every connected
component has order at most c.

Bounded by k Skeleton Moralized Graph

Treewidth NP-h for k = 1 NP-h for k = 2
(Dasgupta, 1999) (Korhonen & Parviainen, 2013)

Vertex cover number XP (Thm 6) XP (Korhonen & Parviainen, 2015)
W[2]-h (Thm 7) W[2]-h (Cor 8)

Dissociation number W[2]-h (Thm 7) XP (Thm 17)
W[2]-h (Cor 8)

Distance to degree 2 NP-h for k = 0 (Thm 19) NP-h for k = 0 (Thm 19)

c-COC for c ≥ 3 NP-h for k = 0 (Thm 20) NP-h for k = 0 (Thm 20)

Number of edges FPT (Cor 27) XP (Prop 28)

no kO(1) kernel (Cor 33) W[1]-h (Thm 29)

Feedback edge set NP-h for k = 0 W[1]-h (Thm 31)
(Dasgupta, 1999)

as its skeleton. An overview of our results and previous results for the considered problems
is given in Table 1.

The results for BNSL with bounded-vc moralized graphs (Korhonen & Parviainen, 2015)
form the starting point for our work. We show that BNSL with bounded-vc skeletons can be
solved in polynomial time when the vertex cover size bound k is a constant. Moreover, we
show that, as for bounded-vc moralized graphs, an algorithm with running time f(k)·|I|O(1)

is unlikely since BNSL with bounded-vc skeletons is W[2]-hard.

After complementing the results for BNSL with bounded-vc moralized graphs by results
for its skeleton counter part, we consider further, related structural constraints. To this end,
we take the following alternative view of vertex covers: A graph has a vertex cover of size k
if and only if it can be transformed into an edgeless graph by k vertex deletions. Thus,
in BNSL with bounded-vc moralized graphs we learn a network whose moralized graph is
close, in terms of the number of vertex deletions, to a sparse graph class. We investigate
whether there are further positive examples for such constrained network learning problems.

First, we consider the constraint that the skeleton or the moralized graph can be trans-
formed into a graph with maximum degree 1 by at most k vertex deletions. This property is

1227

Grüttemeier & Komusiewicz

also known as having dissociation number at most k and we refer to graphs with this prop-
erty as bounded-diss-number graphs in the following. We show that under this constraint,
BNSL with bounded-diss-number moralized graphs can be solved in n3k ·kO(k) · |I|O(1) time
and thus in polynomial time for every constant value of k. This extends the result for BNSL
with bounded-vc moralized graphs in the following sense: the value of k can be arbitrarily
smaller than the vertex cover number of the resulting network and thus for fixed k our
algorithm can learn an optimal network for a larger class of graphs than the algorithm for
BNSL with bounded-vc moralized graphs. Observe that moralized graphs with bounded
dissociation number still have bounded treewidth and thus inference on the learned net-
works will still be solvable efficiently. On the negative side, we show that an algorithm with
running time f(k) · |I|O(1) is unlikely since the problem is W[2]-hard. The latter hardness
result also holds for BNSL with bounded-diss-number skeletons; we did not obtain a positive
result for this case, however.

We then consider two further constraints that are related to the dissociation number:
We show that learning an optimal network whose skeleton or moralized graph has maximum
degree 2 is NP-hard and that learning an optimal network in which every component of
the skeleton or the moralized graph has at most c vertices, c ≥ 3, is NP-hard. The latter
constraint is related to the dissociation number since in a graph with maximum degree 1
every connected component has at most two vertices.

Next, we consider constraints that are formulated in terms of edge sets of the skeleton
or the moralized graph. We show that optimal networks with at most k arcs can be found
in time 2O(k) · |I|O(1). In contrast, when we aim to compute an optimal network whose
moralized graph has at most k edges, an f(k) · |I|O(1)-time algorithm is unlikely. Thus,
putting structural constraints on the moralized graph may make the problem much harder
than putting similar structural constraints on the skeleton.

Furthermore, we consider the case where the edge deletion distance to trees is measured,
in other words, the case where the skeleton or the moralized graph have a feedback edge set
of size at most k. BNSL with tree skeletons is known as Polytree Learning. Thus, the
learning problem for skeletons with feedback edge sets of size at most k is NP-hard even
for k = 0 (Dasgupta, 1999). For BNSL with moralized graphs with feedback edge sets of
size at most k, we obtain the first hardness result: we show that an algorithm with running
time f(k) · |I|O(1) is unlikely, since the problem is W[1]-hard; an algorithm with running
time nf(k) is however still possible.

Finally, we obtain a further hardness result for Vanilla-BNSL: Under standard as-
sumptions in complexity theory, it is impossible that we can transform a given instance of
Vanilla-BNSL in polynomial time to an equivalent one of size nO(1). Thus, it is sometimes
necessary to keep an exponential number of parent scores to compute an optimal network.

Altogether, our results reveal that the difficulty of the learning problem may differ de-
pending on whether we put the constraints on the skeleton or the moralized graph. More-
over, more general networks than those with bounded-vc moralized graphs can be computed
efficiently. The room for generalization seems, however, very limited as even learning net-
works with constant degree or constant component size is NP-hard.

1228

Learning Bayesian Networks Under Sparsity Constraints

2. Preliminaries

In this section, we give an overview of the central definitions and concepts that we use in
this paper.

2.1 Notation

A directed graph D = (N,A) consists of a vertex set N and an arc set A ⊆ N × N .
Let D = (N,A) be a directed graph. If D does not contain directed cycles, then D is a
directed acyclic graph (DAG). An arc (u, v) ∈ A is called incoming arc into v and outgoing
arc from u. Given a vertex v, the number of incoming arcs into v is called in-degree of v, and
the number of outgoing arcs from v is the out-degree of v. A vertex without incoming arcs
is a source. A vertex without outgoing arcs is a sink. The set PAv := {u ∈ N | (u, v) ∈ A}
is called parent set of v. The vertices in PAv are called parents of v and for every u ∈ PAv ,
the vertex v is called child of u. We call v1 an ancestor of v` and v` a descendant of v1 if
there is a directed path (v1, v2, . . . , v`) in D.

An undirected graph G = (V,E) consists of a vertex set V and an edge set E ⊆
{{u, v} | u, v ∈ V }. For a vertex v ∈ V , we write NG(v) := {u | {u, v} ∈ E} to denote
the neighborhood of v in G. The degree of a vertex v is denoted by degG(v) := |NG(v)|.
For V1, V2 ⊆ V , we write EG(V1, V2) := {{v1, v2} ∈ E | v1 ∈ V1, v2 ∈ V2} for the set of edges
between V1 and V2. Moreover we set EG(K) := EG(K,K). Given an edge set E′ ⊆ E, we
let G \E′ denote the graph we obtain after deleting the edges of E′ from G. Given a vertex
set V ′ ⊆ V , we let G− V ′ denote the graph we obtain after deleting the vertices in V ′ and
their incident edges from G. A set T ⊆ E is called feedback edge set if G \ T contains no
cycles. The size of a smallest possible feedback edge set for G is the feedback edge number
of G. A set S ⊆ V is called dissociation set if G− S has maximum degree 1. The size of a
smallest possible dissociation set for G is the dissociation number of G.

A graph class Π is a set of undirected graphs. For a graph class Π and k ∈ N, let Π+kv :=
{G = (V,E) | ∃V ′ ⊆ V : (|V ′| ≤ k ∧ G − V ′ ∈ Π)} denote the class of graphs that can be
transformed into a graph in Π by performing at most k vertex deletions. Analogously, we
define Π + ke := {G = (V,E) | ∃E′ ⊆ E : (|E′| ≤ k ∧ G \ E′ ∈ Π)} as the class of graphs
that can be transformed into a graph in Π by performing at most k edge deletions. We call
Π monotone if Π is closed under edge- and vertex deletions. Note that Π being monotone
implies that for every k ∈ N0, the graph classes Π + kv and Π + ke are monotone.

2.2 Bayesian Network Structure Learning

Problem Definitions. Given a vertex set N , we call a family F = {fv : 2N\{v} → N0 |
v ∈ N} a family of local scores for N . Intuitively, for a vertex v ∈ N and some P ∈ 2N\{v},
the value fv(P) ∈ N0 represents the score we obtain if we choose exactly the vertices of P
as parents for v. Given a vertex set N , local scores F , and some integer t ∈ N0, an
arc set A ⊆ N × N is called (N,F , t)-valid if (N,A) is a DAG and

∑
v∈N fv(P

A
v) ≥ t.

In Bayesian Network Structure Learning (Vanilla-BNSL), the input is a vertex
set N , local scores F , and an integer t. The question is, whether there exists an (N,F , t)-
valid arc set.

1229

Grüttemeier & Komusiewicz

In this work, we study Vanilla-BNSL under additional sparsity constraints. These
sparsity constraints are posed on the skeleton and the moralized graph (Elidan & Gould,
2008) of the network. Let D := (N,A) be a DAG. The skeleton of D is the undirected
graph S(D) := (N,E), with E := {{u, v} | (u, v) ∈ A}. The moralized graph of D is the
undirected graph M(D) := (N,E1 ∪ E2) where the edge set is defined by E1 := {{u, v} |
(u, v) ∈ A} and E2 := {{u, v} | u and v have a common child in D}. The edges in E2 are
called moral edges. Given a DAG (N,A) we write S(N,A) := S((N,A)) and M(N,A) :=
M((N,A)) for sake of readability. The problems are defined as follows.

(Π + v)-Skeleton Bayesian Network Structure Learning ((Π + v)-
Skeleton BNSL)
Input: A set of vertices N , local scores F = {fv | v ∈ N}, and two inte-
gers t, k ∈ N0.
Question: Is there an (N,F , t)-valid arc set A ⊆ N × N such that S(N,A) ∈
Π + kv?

(Π + v)-Moral Bayesian Network Structure Learning ((Π + v)-Moral
BNSL)
Input: A set of vertices N , local scores F = {fv | v ∈ N}, and two integers t, k ∈
N0.
Question: Is there an (N,F , t)-valid arc set A ⊆ N × N such that M(N,A) ∈
Π + kv?

Furthermore, we define the problems (Π + e)-Skeleton-BNSL and (Π + e)-Moral-
BNSL on the same input and we ask if there exists an (N,F , t)-valid arc set A such
that S(N,A) ∈ Π+ke orM(N,A) ∈ Π+ke, respectively. Given a graph class Π, we refer to
all problems described above as constrained BNSL problems for Π. For a constrained BNSL
problem we refer to the constraint on S or M as sparsity constraint. Given an instance I
of a constrained BNSL problem for some Π, we call the requested arc set A a solution of I.
Note that, if Π is monotone and k = n, then the sparsity constraints S(N,A) ∈ Π + kv
and M(N,A) ∈ Π + kv always hold, since the empty graph belongs to Π. Moreover,
if Π is monotone and contains infinitely many graphs and k = n2, then the sparsity con-
straints S(N,A) ∈ Π+ke andM(N,A) ∈ Π+ke always hold, since the edgeless graph on n
vertices belongs to Π for every n. Hence, all problems considered in this work are generaliza-
tions of Vanilla-BNSL and thus NP-hard for every monotone and infinite Π. For formal
reasons, the problems are stated as decision problems. However, the algorithms presented
in this work solve the corresponding optimization problem within the same running time.

Input Representation. Throughout this work, we let n := |N | denote the number of
vertices given in an instance I = (N,F , t, k) of a constrained BNSL problem. Furthermore,
we assume that for N = {v1, . . . , vn}, the local scores F are given as a two-dimensional
array F := [Q1, Q2, . . . , Qn], where each Qi is an array containing all triples (fvi(P), |P |, P)
where fvi(P) > 0 or P = ∅. Note that the triple (fvi(P), |P |, P) of a non-empty parent
set P is only part of the input if its local score fvi(P) is not 0. This input representation is
known as non-zero representation (Ordyniak & Szeider, 2013). The size |F| is then defined
as the number of bits we need to store this two-dimensional array. As the size of I we
define |I| := n+ |F|+ log(t) + log(k).

1230

Learning Bayesian Networks Under Sparsity Constraints

Basic Observations. Let I be a yes-instance of a constrained BNSL problem. We call
a solution A for I nice if fv(P

A
v) ≤ fv(∅) implies PAv = ∅. In this work, we consider

constrained BNSL problems for some monotone graph classes Π. We next show that in
these cases every yes-instance has a nice solution A.

Proposition 1 Let Π be a monotone graph property, and let (N,F , t, k) be a yes-instance
of a constrained BNSL problem for Π. Then, there exists a nice solution A for (N,F , t, k).

Proof Let A be a solution for I := (N,F , t, k) such that there exist vertices v1, . . . , v` ∈
N with PAvi 6= ∅ and fvi(P

A
vi) ≤ fvi(∅). We then set A′ := A \ {(u, vi) | u ∈ N, i ∈

{1, . . . , `}}. Observe that PA
′

vi = ∅ for all i ∈ {1, . . . , `}. Moreover, fv(P
A′
v) ≥ fv(P

A
v)

for every v ∈ N and (N,A′) is a DAG. Therefore, A′ is (N,F , t)-valid. Finally, since Π is
monotone and S(N,A) (orM(N,A), respectively) satisfies the sparsity constraint, S(N,A′)
(or M(N,A′), respectively) also satisfies the sparsity constraint. 2

Observe that an instance I := (N,F , t, k) of a constrained BNSL problem for some
monotone Π is a trivial yes-instance if

∑
v∈N fv(∅) ≥ t, since the empty arc set is a solution

of I. Throughout this work, we assume that for a non-trivial instance of a constrained
BNSL problem it holds that fv(∅) = 0 for every v ∈ N . With the next proposition we
assure that every instance can be preprocessed in O(|F|) time into an instance that satisfies
our assumption.

Proposition 2 Let Π be a graph class, and let I := (N,F , t, k) be an instance of a con-
strained BNSL problem for Π where t ≥

∑
v∈N fv(∅). Then, there exist F ′ := {f ′v | v ∈ N}

with f ′v(∅) = 0 for every v ∈ N and t′ ∈ N0, such that an arc set A is a nice solution for I
if and only if A is a nice solution for I ′ := (N,F ′, t′, k). Furthermore, I ′ can be computed
in O(|F|) time.

Proof Let v ∈ N . We define the new local scores f ′v by setting f ′v(P) := fv(P) − fv(∅),
if fv(P) ≥ fv(∅), and f ′v(P) := 0 otherwise. Note that f ′v(∅) = 0 for all v ∈ N . Furthermore,
we set t′ := t−

∑
v∈N fv(∅). Obviously, F ′ and t′ can be computed in O(|F|) time by iterat-

ing over the two-dimensional array representing F . Moreover, t′ ≥ 0 since t ≥
∑

v∈N fv(∅).
We next show that A ⊆ N × N is a nice solution for I if and only if A is a nice solution
for I ′.

(⇒) Let A be a nice solution for I. Obviously, (N,A) is a DAG and the sparsity
constraint is satisfied. Furthermore, we have∑

v∈N
f ′v(P

A
v) ≥

∑
v∈N

(fv(P
A
v)− fv(∅))

≥ t−
∑
v∈N

fv(∅) = t′.

It remains to show that A is nice for I ′. To this end, let f ′v(P
A
v) ≤ f ′v(∅). We con-

clude f ′v(P
A
v) = 0 and therefore fv(P

A
v) ≤ fv(∅). Since A is nice for I, we conclude PAv = ∅.

Hence, A is a nice solution for I ′.
(⇐) Conversely, let A be nice for I ′. We show that A is a nice solution for I. Obvi-

ously (N,A) is a DAG and the sparsity constraint is satisfied. Hence, it remains to show
that

∑
v∈N fv(P

A
v) ≥ t and that A is nice for I.

1231

Grüttemeier & Komusiewicz

To this end, we first show that for every v ∈ N it holds that f ′v(P
A
v) = fv(P

A
v)− fv(∅).

Assume towards a contradiction that there exists some v ∈ N such that f ′v(P
A
v) 6= fv(P

A
v)−

fv(∅). It then follows by the definition of F ′, that fv(P
A
v) < fv(∅) and that f ′v(P

A
v) = 0.

Note that f ′v(P
A
v) = 0 implies f ′v(P

A
v) ≤ f ′v(∅) and therefore PAv = ∅ since A is nice for I ′.

This contradicts the fact that fv(P
A
v) < fv(∅).

Since f ′v(P
A
v) = fv(P

A
v)− fv(∅) for every v ∈ N the sum of the local scores is∑

v∈N
fv(P

A
v) =

∑
n∈N

(f ′v(P
A
v) + fv(∅))

≥ t′ +
∑
n∈N

fv(∅) = t.

To show that A is nice for I, let fv(P
A
v) ≤ fv(∅). By the construction of F , this implies

that f ′v(P
A
v) = 0 and therefore f ′v(P

A
v) = f ′v(∅). Since A is nice for I ′ we conclude PAv = ∅.

Hence, A is a nice solution for I. 2

Potential Parent Sets. Given an instance I := (N,F , t, k) and some v ∈ N , we denote
the potential parent sets of v by PF (v) := {P ⊆ N \{v} : fv(P) > 0}∪{∅}, which are exactly
the parent sets stored in F . If Π is monotone, we can assume by Proposition 1 that in a
solution A of I, every vertex v has a parent set PAv ∈ PF (v). An important measurement
for the running times of our algorithms is the maximum number of potential parent sets δF
which is formally defined by δF := maxv∈N |PF (v)| (Ordyniak & Szeider, 2013). Given a
vertex v ∈ N , we can iterate over all potential parent sets of v and the vertices in these sets
in O(δF · n) time.

Another tool for designing algorithms for BNSL problems is the directed superstruc-
ture (Ordyniak & Szeider, 2013). Let N be a vertex set with local scores F . The directed
superstructure of N and F is the directed graph S ~F = (N,AF) with AF = {(u, v) | ∃P ∈
PF (v) : u ∈ P}. Intuitively, there exists an arc (u, v) ∈ AF if and only if u is a potential
parent of v. Given N and F , the directed superstructure S ~F can be constructed in linear
time. Throughout this work we let m := |AF | denote the number of arcs in the directed
superstructure. Note that m < n2.

2.3 Parameterized Complexity

In parameterized complexity (Cygan et al., 2015) one measures the running time of algo-
rithms depending on the total input size and a problem parameter. A parameterized problem
is a language L ⊆ Σ×N0 over a finite alphapet Σ. For an instance (I, k) of L we call k the
parameter. A parameterized problem L has an XP-time algorithm if for every instance (I, k)
it can be decided in O(|I|f(k)) time for a computable function f whether (I, k) ∈ L. That
is, the problem is solvable in polynomial time when the parameter is constant. A parame-
terized problem L is called fixed-parameter tractable (FPT) if for every instance (I, k) it can
be decided in f(k) · |I|O(1) time for a computable function f whether (I, k) ∈ L. A problem
kernelization for a parameterized problem L is a polynomial-time preprocessing. Given an
instance (I, k) of L, a problem kernelization computes an equivalent instance (I ′, k′) of L
in polynomial time such that |I ′| + k′ ≤ g(k) for some computable function g. If g is a
polynomial, then L admits a polynomial kernel. Some fixed-parameter tractable problems
are known to not admit a polynomial kernel unless NP ⊆ coNP/poly.

1232

Learning Bayesian Networks Under Sparsity Constraints

A parameterized reduction maps an instance (I, k) of some parameterized problem L in
FPT time to an equivalent instance (I ′, k′) of a parameterized problem L′ such that k′ ≤
f(k) for some computable funktion f . If the reduction runs in |I|O(1) time and f is a poly-
nomial, then the parameterized reduction is called polynomial parameter transformation.
If there exists a parameterized reduction from a W[i]-hard parameterized problem L to a
parameterized problem L′, then L′ is also W[i]-hard for i ∈ N. If a problem is W[i]-hard,
then it is assumed to be fixed-parameter intractable. If there exists a polynomial parame-
ter transformation from a parameterized problem L to a parameterized problem L′ and L
does not admit a polynomial kernel unless NP ⊆ coNP/poly, then L′ does not admit a
polynomial kernel unless NP ⊆ coNP/poly (Bodlaender, Thomassé, & Yeo, 2011).

3. BNSL with Bounded Vertex Cover Number

We first study the task of learning Bayesian network structures with a bounded vertex cover
number. In the framework of constrained BNSL problems, these are the problems (Π0 +v)-
Skeleton BNSL and (Π0 + v)-Moral BNSL, where Π0 is the class of edgeless graphs.
Note that Π0 is monotone. Korhonen and Parviainen (Korhonen & Parviainen, 2015)
analyzed the parameterized complexity of (Π0 + v)-Moral BNSL for parameter k. In
their work, they provided an XP-time algorithm and proved W[1]-hardness. We adapt their
approach to obtain an XP-time algorithm for (Π0 + v)-Skeleton BNSL. Furthermore, we
show a slightly stronger hardness result for both problems.

3.1 An XP-time Algorithm for Skeletons with Small Vertex Cover

The XP-time algorithm for (Π0+v)-Skeleton BNSL follows the basic idea of the XP-time
algorithm for (Π0 + v)-Moral BNSL (Korhonen & Parviainen, 2015): First, iterate over
every possible choice of the vertex cover S and then split the arc set into two parts which
are the arcs between S and the parents of S and the arcs between S and the children of S.
These two arc sets can be learned and combined independently.

However, we would like to point out that our algorithm for learning a network with
bounded vertex cover number in the skeleton differs from the moralized version in one
technical point. In the moralized graph, every vertex of a vertex cover S has at most one
parent outside S. For (Π0 +v)-Moral BNSL this can be exploited to find the arcs between
the vertices of S and their parents. However, this does not hold for the skeleton: Consider
a star where all the arcs are directed towards a center. In this case, the central vertex forms
a minimum vertex cover but the vertex has many parents. In the moralized graph, such
star becomes a clique and the vertex cover number is large. To overcome this issue, we split
the resulting network into three disjoint arc sets: The incoming arcs of vertices of S, the
incoming arcs of parents Q of vertices of S, and the incoming arcs of the remaining vertices.

In summary, the intuitive idea behind the algorithm is to find the vertex cover S and all
parent sets of vertices in S via bruteforce. For each choice, we compute two further arc sets
and combine them all to a solution of (Π0 + v)-Skeleton BNSL. To find the incoming
arcs of parents of S, we adapt a dynamic programming algorithm for Vanilla-BNSL (Ott
& Miyano, 2003; Silander & Myllymäki, 2006). With the next two lemmas, we formalize
how our solution is built from disjoint arc sets.

1233

Grüttemeier & Komusiewicz

Lemma 3 Let (N,F , t, k) be an instance of (Π0 + v)-Skeleton BNSL, and let S and Q
be disjoint subsets of N . Furthermore, let there be arc sets B1 ⊆ (Q∪ S)× S, B2 ⊆ S ×Q,
and B3 ⊆ S × (N \ (S ∪Q)). If D′ := (S ∪Q,B1 ∪B2) is a DAG where S is a vertex cover
of S(D′), then

a) D := (N,A) with A := B1 ∪B2 ∪B3 is a DAG,

b) S is a vertex cover of S(D), and

c)
∑

v∈N fv(P
A
v) =

∑
v∈S fv(P

B1
v) +

∑
v∈Q fv(P

B2
v) +

∑
v∈N\(S∪Q) fv(P

B3
v).

Proof Consider Statement a). Observe that if (v, w) ∈ B3, then w is a sink in D. Together
with the fact that D′ is a DAG, this implies that D is a DAG. Moreover, Statement b)
holds, since every arc in A has at least one endpoint in S. For Statement c), observe
that S, Q, and (N \ (S ∪ Q)) form a partition of N , and thus, every v ∈ N has incoming
arcs from either B1, B2, or B3. 2

Lemma 4 Let D := (N,A) be a DAG such that S ⊆ N is a vertex cover in S(D). Then,
there exists a set Q ⊆ N \ S and arc sets B1 ⊆ (Q ∪ S) × S, B2 ⊆ S × Q, and B3 ⊆
S× (N \ (S ∪Q)) that form a partition of A. Moreover, every vertex in Q has a child in S.

Proof We set Q := {v ∈ N \ S | v has a child in S}. Then, every vertex in Q has a child
in S by definition. Furthermore, we set B1 := ((Q ∪ S) × S) ∩ A, B2 := (S × Q) ∩ A,
and B3 := (S × (N \ (S ∪Q))) ∩A.

Obviously, B1 ∪ B2 ∪ B3 ⊆ A, and the sets are pairwise disjoint, since S, Q, and N \
(S ∪ Q) are disjoint subsets of N . It remains to show that B1 ∪ B2 ∪ B3 ⊇ A. To this
end, let (v, w) ∈ A. If w ∈ S, then v has a child in S. Consequently, v ∈ S ∪ Q and
therefore, (v, w) ∈ B1. Otherwise, if w 6∈ S, then v ∈ S, since S is a vertex cover of S(D).
Therefore, (v, w) ∈ B2 ∪B3. 2

Intuitively, the algorithm works as follows: We iterate over all possible choices of S, Q,
and B1. Then, for each such choice, we compute B2 and B3 that maximize the sum of local
scores for A := B1 ∪B2 ∪B3. In the following, we describe how to compute B2 when S, Q,
and B1 are given. This step is the main difference between this algorithm and the XP-time
algorithm for (Π0 + v)-Moral BNSL (Korhonen & Parviainen, 2015).

Proposition 5 Let I := (N,F , t, k) be an instance of (Π0 + v)-Skeleton BNSL, and
let S and Q be disjoint subsets of N . Furthermore, let B1 ⊆ (Q∪S)×S be an arc set such
that (Q∪S,B1) is a DAG and every w ∈ Q has a child in S. Then, we can compute an arc
set B2 that maximizes

∑
v∈Q fv(P

B2
v) among all arc sets where (Q ∪ S,B1 ∪B2) is a DAG

and B2 ⊆ S ×Q in 2|S| · |I|O(1) time.

Proof We describe a dynamic programming algorithm.
Intuition. Before we present the algorithm, we provide some intuition. Given a sub-

set S′ ⊆ S and the set Q′ ⊆ Q containing parents of vertices in S, we want to compute an
arc-set B ⊆ S′ ×Q′ such that the sum of local scores for the arc-set B1 ∪B is maximized.
This is done by recursively choosing a vertex v ∈ S′ that is a sink in the resulting DAG and
letting all w ∈ Q′ whose only child is v choose their best possible parent set in S′ \ {v}.

1234

Learning Bayesian Networks Under Sparsity Constraints

Algorithm. To describe the algorithm, we introduce some notation. Given some w ∈ Q,
we let CB1

w denote the set of children of w in (S ∪Q,B1). Note that CB1
w ⊆ S for all w ∈ Q.

Given a subset S′ ⊆ S, we let Q(S′) := Q∩(
⋃
v∈S′ P

B1
v) denote the set of parents of vertices

in S′ that belong to Q, and D(S′) denote the DAG with vertex set S′ ∪ Q(S′) and arc
set B1 ∩ ((S′ ∪Q(S′))× S′). Furthermore, given S′ ⊆ S and v ∈ S′, we let

X(S′, v) := {w ∈ Q(S′) | CB1
w ∩ S′ = {v}}

denote the vertices of Q(S′) whose only child in S′ is v. Finally, given S′ ⊆ S and w ∈ Q, we
define f̂w(S′) := maxS′′⊆S′ fw(S′′) as the best possible score for a parent set of w containing

only vertices from S′. The values f̂w(S′) for all S′ ⊆ S and w ∈ Q can be computed in
overall 2|S| · |I|O(1) time (Ott & Miyano, 2003).

The dynamic programming table T has entries of the type T [S′] where S′ ⊆ S. Each
entry stores the score of the best possible arc set B ⊆ S′×Q(S′) such that (S ∪Q,B1 ∪B)
is a DAG. For one-element sets {v} ⊆ S, we set T [{v}] :=

∑
w∈PB1

v
fw(∅). Note that, due to

Proposition 2 we may assume that T [{v}] = 0. The recurrence to compute an entry for S′

with |S′| > 1 is

T [S′] := max
v∈S′

v is a sink in D(S′)

T [S′ \ {v}] +
∑

w∈X(S′,v)

f̂w(S′ \ {v})

 .

The score of the best possible arc set B2 ⊆ S ×Q such that (S ∪Q,B1 ∪B2) is a DAG
can be computed by evaluating T [S]. The corresponding arc set can be found via traceback.
The correctness proof is straightforward and thus omitted.

Running Time. Recall that all values f̂w(S′) with S′ ⊆ S and w ∈ Q can be computed
in 2|S| · |I|O(1) time. The dynamic programming table has 2|S| entries and each entry can
be computed in |I|O(1) time. Thus, the overall running time is 2|S| · |I|O(1) as claimed. 2

We now present the XP-time algorithm for (Π0 + v)-Skeleton BNSL. This algorithm
uses the algorithm behind Proposition 5 as a subroutine.

Theorem 6 (Π0 + v)-Skeleton BNSL can be solved in (nδF)k · 2k · |I|O(1) time.

Proof Algorithm. Let I := (N,F , t, k) be an instance of (Π0 + v)-Skeleton BNSL. The
following algorithm decides whether I is a yes-instance or a no-instance: First, iterate over
every possible choice of a vertex set S with |S| ≤ k forming the vertex cover of the skeleton
of the resulting network. For each choice of S iterate over every choice of potential parent
sets for the vertices of S. Let B1 be the corresponding arc set, and let Q be the set of
parents of S in (N,B1). For each choice of S and B1, do the following:

• Use the algorithm behind Proposition 5 to compute an arc set B2 ⊆ S × Q that
maximizes

∑
v∈Q fv(P

B2
v) among all arc sets where (Q ∪ S,B1 ∪B2) is a DAG.

• For every v ∈ N \(S∪Q), compute a potential parent set that maximizes fv(P) among
all potential parent sets with P ⊆ S. Let B3 ⊆ S × (N \ (S ∪Q)) be the resulting arc
set.

1235

Grüttemeier & Komusiewicz

• If
∑

v∈S fv(P
B1
v) +

∑
v∈Q fv(P

B2
v) +

∑
v∈N\(S∪Q) fv(P

B3
v) ≥ t, then return yes.

If for none of the choices of S and B1 the answer yes was returned, then return no.

Running Time. First, we discuss the running time of the algorithm. Since |S| ≤ k, there
are O(nk) choices for S and O(δF

k) choices for B1. For each such choice, the algorithm
behind Proposition 5 can be applied in 2k · |I|O(1) time and the choice of the parent sets
of vertices in N \ (S ∪ Q) can be done in |I|O(1) time. This gives an overall running time
of (nδF)k · 2k · |I|O(1) as claimed.

Correctness. Second, we show that the algorithm returns yes if and only if I is a
yes-instance.

(⇒) Suppose the algorithm returns yes. Then, there exist disjoint subsets S and Q
of N , with |S| ≤ k and arc sets B1 ⊆ (S ∪Q)× S, B2 ⊆ S ×Q, and B3 ⊆ S ×N \ (S ∪Q)
such that (Q∪S,B1∪B2) is a DAG. Due to Lemma 3, D := (N,A) with A := B1∪B2∪B3

is a DAG and S is a vertex cover of S(D). Moreover,
∑

v∈N fv(P
A
v) ≥ t and therefore, I is

a yes-instance.

(⇐) Let I be a yes-instance. Then, there exists an (N,F , t)-valid arc set A such that the
skeleton of D := (N,A) has a vertex cover S of size at most k. By Lemma 4, there exists a
set Q ⊆ N \S and arc sets B1 ⊆ (S∪Q)×S, B2 ⊆ S×Q, and B3 ⊆ S×N \(S∪Q) that form
a partition of A. Since the algorithm iterates over all choices of S and B1 with |S| ≤ k, it
considers S and B1 at some point. For this choice of S and B1 the algorithm then computes
an arc set B′2 ⊆ S ×Q with ∑

v∈Q
fv(P

B′2
v) ≥

∑
v∈Q

fv(P
B2
v)

and an arc set B′3 ⊆ S ×N \ (S ∪Q) with∑
v∈N\(S∪Q)

fv(P
B′3
v) ≥

∑
v∈N\(S∪Q)

fv(P
B3
v).

Then, since the sum of the local scores under A is at least t, the algorithm returns yes. 2

3.2 W[2]-hardness for Skeletons with Small Vertex Cover

We complement the XP-time algorithm from the previous subsection by proving W[2]-
hardness of (Π0 + v)-Skeleton BNSL. Thus, (Π0 + v)-Skeleton BNSL is not FPT
for parameter k unless W[2] = FPT. We show that the hardness also holds for the task
of learning a Bayesian network where the skeleton has a a bounded dissociation number.
Formally, this is (Π1 + v)-Skeleton BNSL, with Π1 := {G | G has maximum degree 1}.
Observe that Π1 is monotone.

Theorem 7 Let Π ∈ {Π0,Π1}. Then, (Π + v)-Skeleton BNSL is W[2]-hard for k even
when the directed superstructure is a DAG, the maximum parent set size is 1, and every
local score is either 1 or 0.

Proof We give a parameterized reduction from Set Cover. In Set Cover, one is given
a universe U , a family X of subsets of U , and an integer `. The question is, whether there

1236

Learning Bayesian Networks Under Sparsity Constraints

exists a a subfamily X ′ ⊆ X with |X ′| ≤ ` that covers U . That is, every u ∈ U is contained
in some set of X ′. Set Cover is W[2]-hard when parameterized by ` (Cygan et al., 2015).
We first describe a parameterized reduction from Set Cover to (Π0+v)-Skeleton BNSL
and afterwards, we describe how this construction can be modified to obtain W[2]-hardness
for (Π1 + v)-Skeleton BNSL.

Construction. Let (U,X , `) be an instance of Set Cover. We describe how to construct
an equivalent instance I := (N,F , t, k) with k = `. First, we set N := U ∪ {vX | X ∈ X}.
Next, we define the local scores F . All local scores are either 1 or 0. For every u ∈ U we
set fu(P) = 1 if and only if P = {vX} for some X ∈ X that contains u. Furthermore, for
every v ∈ {vX | X ∈ X}, we set fv(P) = 0 for every P . To finish the construction, we
set k := ` and t := |U |.

Observe that for every arc (u, v) of the directed superstructure, we have u ∈ U and v ∈
{vX | X ∈ X}. Consequently, the super structure is a DAG. Furthermore, by the construc-
tion of F , the maximum parent set size is 1.

Intuition. Before we show the correctness, we provide some intuition. To obtain a score
of t = |U |, every vertex in U has to choose one parent vertex. The chosen parent vertices
correspond to the subfamily X ′ ⊆ X that covers U . The vertex cover constraint on the
network ensures that X ′ has size at most k.

Correctness. We show that (U,X , `) is a yes-instance of Set Cover if and only if I is
a yes-instance of (Π0 + v)-Skeleton BNSL.

(⇒) Let X ′ ⊆ X be a subfamily of size at most k that covers U . Then, for every u ∈ U ,
there exists some set Xu ∈ X ′ that contains u. We define A := {(vXu , u) | u ∈ U} and show
that A is a solution of I.

Consider the skeleton S(N,A). Each connected component of S(N,A) is either an
isolated vertex or a star consisting of a central vertex from {vX | X ∈ X ′} and leaf vertices
from U . Thus, (N,A) is a DAG and {vX | X ∈ X ′} is a vertex cover of the skeleton.
Thus, S(N,A) ∈ Π0 + kv, since |X ′| ≤ k. Moreover, observe that fu(PAu) = 1 for every u ∈
U . Therefore, A is (N,F , t)-valid.

(⇐) Conversely, let A be an (N,F , t)-valid arc set such that S(N,A) has a vertex cover
of size at most k. Then, since t = |U |, we have fu(PAu) = 1 for every u ∈ U . Thus, for
every u ∈ U we have PAu = {vX} for some X ∈ X containing u. We define X ′ := {X ∈ X |
PAu = {vX} for some u ∈ U}.

We first show that X ′ covers U . Let u ∈ U . Then, PAu = {vX} for some X containing u
and thereforeX ∈ X ′. Thus, X ′ covers U . It remains to show that |X ′| ≤ k. Assume towards
a contradiction that |X ′| > k. Then, there exist pairwise distinct vertices u1, . . . , uk+1 in U
and v1, . . . , vk+1 in {vX | X ∈ X ′} such that (vi, ui) ∈ A for i ∈ {1, . . . , k + 1}. Then,
the edges {vi, vi} form a matching of size k + 1 in S(N,A). This contradicts the fact
that S(N,A) has a vertex cover of size at most k.

BNSL with bounded Dissociation Number. We now explain how to modify the con-
struction described above, to obtain W[2]-hardness for (Π1 + v)-Skeleton BNSL when
parameterized by k.

In the construction, we set N := U ∪ {vX | X ∈ X} ∪ {wX | X ∈ X}. As in the
construction described above, for u ∈ U we set fu(P) := 1 if and only if P = {vX} for
some X ∈ X containing u, and for v ∈ {vX | X ∈ X} we set fv(P) := 0 for every P .

1237

Grüttemeier & Komusiewicz

Additionally, for every wX , we set fwX (P) := 1 if and only if P = {vX}. Furthermore, we
set k := ` and t := |U |+ |X |

(⇒) Let X ′ ⊆ X be a subfamily with |X ′| ≤ k that covers U . We set A := {(vXu , u) |
u ∈ U} ∪ {(vX , wX) | X ∈ X}. Then, (N,A) is a DAG and the sum of the local scores is t.
Furthermore, the connected components of S(N,A) are isolated edges or disjoint stars with
central vertex in {vX | X ∈ X ′}. Then, |X ′| ≤ k implies S(N,A) ∈ Π1 + kv.

(⇐) Let A be a solution of I. Again, we define X ′ := {X ∈ X | PAu = {vX} for some u ∈
U}, which covers U by the same arguments as above. Note that the skeleton of (N,A)
contains an edge {vX , wX} for every X ∈ X , since the sum of local scores under A is at
least t. Then, assuming |X ′| > k implies that there exist k+1 vertex disjoint sets {u, vX , wX}
where vX is adjacent with u and wX in S(N,A). This contradicts the fact that S(N,A)
has a dissociation set of size at most k. 2

Observe that for a DAG D := (N,A) where each vertex has at most one parent, the
skeleton S(D) and the moralized graph M(D) are the same. Thus, Theorem 7 also im-
plies W[2]-hardness if the sparsity constraints are posed on the moralized graph. Note that
a W[1]-hardness for (Π0 +v)-Moral BNSL when parameterized by k has been shown (Ko-
rhonen & Parviainen, 2015). We now obtain a slightly stronger hardness result with an
additional restriction on the maximum parent set size.

Corollary 8 Let Π ∈ {Π0,Π1}. Then, (Π + v)-Moral BNSL is W[2]-hard for k even
when the directed superstructure is a DAG, the maximum parent set size is 1, and every
local score is either 1 or 0.

By Corollary 8 it is presumably not possible that (Π1 + v)-Moral BNSL is FPT for k.

Consider networks where the maximum parent set size is 1. These networks are also
known as branchings. Learning a branching without further restrictions can be done in poly-
nomial time (Chow & Liu, 1968; Gaspers et al., 2015). Due to Theorem 7 and Corollary 8,
there is presumably no such polynomial-time algorithm if we add a sparsity constraint on
the vertex cover size. Thus, the task to learn a branching is an example where it is harder
to learn a more restricted network.

4. BNSL with Bounded Dissociation Number

In this section we provide an algorithm for (Π1 + v)-Moral BNSL, that is, for Bayesian
network learning where the moralized graph has dissociation number at most k. By the
results above, an FPT algorithm for k is unlikely. We show that it can be solved in XP-
time when parameterized by k. As detailed in the introduction, this shows that we can
find optimal networks for a class of moral graphs that is larger than the ones with bounded
vertex cover number, while maintaining the highly desirable property that the treewidth is
bounded. In fact, graphs with dissociation number at most k have treewidth at most k+ 1
and thus the inference task can be preformed efficiently if k is small (Darwiche, 2009).

Before we describe the main idea of the algorithm, we provide the following simple
observation about Bayesian networks whose moralized graph has a bounded dissociation
number.

1238

Learning Bayesian Networks Under Sparsity Constraints

Proposition 9 Let D = (N,A) be a DAG and S ⊆ N be a dissociation set of M(D).
Then, at most 2|S| vertices in N \ S have descendants in S.

Proof Let v ∈ S. We call a vertex w ∈ N \ S is an external ancestor of v if there exists a
path (w,w1, . . . , w`, v) in D such that wi ∈ N \S for all i ∈ {1, . . . , `}. We show that every
vertex in S has at most two external ancestors.

First, assume that v has three distinct parents w1, w2, and w3 outside S. Then, there
are moral edges {w1, w2}, {w2, w3}, and {w3, w1} forming a triangle outside S in M(D).
This contradicts the fact that S is a dissociation set of M(D). Hence, every v ∈ S has at
most two parents outside S. Next, consider the following cases.

Case 1: |PAv \S| = 0. Then, v has no external ancestors and nothing more needs to be
shown.

Case 2: |PAv \ S| = 1. Then, let PAv \ S = {w}. Since S is a dissociation set of M(D)
it holds that degM(D)−S(w) ≤ 1. Hence, w has at most one parent w′ outside S. Moreover,
since degM(D)−S(w′) ≤ 1, the vertex w′ has no parent in N \ S. Therefore, v has at most
two external ancestors.

Case 3: |PAv \ S| = 2. Then, let PAv \ S = {w1, w2}. Note that {w1, w2} is a moral
edge in M(D). Then, since degM(D)−S(w1) ≤ 1 and degM(D)−S(w2) ≤ 1, the vertices w1

and w2 do not have parents in N \ S. Therefore, v has exactly two external ancestors. 2

The main idea of the algorithm for (Π1 + v)-Moral BNSL presented in this work
is closely related to XP-algorithms for (Π0 + v)-Moral BNSL (Korhonen & Parviainen,
2015) and (Π0 + v)-Skeleton BNSL (Theorem 6): If we know which vertices form the
dissociation set S and the set Q of vertices that are the ancestors of S, the arcs of the
network can be found efficiently. Roughly speaking, the steps of the algorithm are to
iterate over every possible choice of S and Q and then find the arc set of the resulting
network respecting this choice. Finding the arc set can then be done in two steps: First,
we find all the arcs between the vertices of S ∪ Q and afterwards, we find the remaining
arcs of the network. Even though the basic idea of the algorithm is similar to algorithms
for BNSL with bounded vertex cover number, several obstacles occur when considering Π1

instead of Π0.

First, the arcs between S ∪Q and the remaining arcs of the DAG cannot be computed
independently, since there might be arcs between vertices of Q and N \ (Q ∪ S). See
Figure 1 for an example of a DAG D whose moralized graph has a dissociation set S. We
overcome this obstacle by partitioning Q into two sets Q0 and Q1 and by considering arc
sets AQ ⊆ (S ∪Q)× (S ∪Q) that respect a specific constraint regarding this partition.

Second, the vertices in N \ (S ∪ Q) cannot choose their parent sets greedily from S,
since they may also choose one parent from N \ S. Thus, we need a new technique to find
this part of the network. To overcome this obstacle, we define the problem Basement
Learning and show that it can be solved in polynomial time.

This section is organized as follows: In Section 4.1, we introduce the terms of attic arc
sets and basement arc sets which form the parts of the arc set that we later combine to a
solution. In Sections 4.2, we describe how to find the attic arc set and in Section 4.3, we
describe how to find the basement arc set. Finally, in Section 4.4, we combine the previous
results and describe how to solve (Π1 + v)-Moral BNSL in XP-time.

1239

Grüttemeier & Komusiewicz

Q
Q0 Q1

S

R

Figure 1: A DAG D whose moralized graph has a dissociation set S. The arc set of D is decomposed
into an attic arc set AQ and a basement arc set AR. The thin arrows correspond to the
arcs of AQ and the thick arrows correspond to the arcs of AR. The dotted edges are the
moral edges.

We end this section by showing another hardness result for (Π1 + v)-Moral BNSL.
Note that due to Corollary 8 it is unlikely that (Π1 + v)-Moral BNSL is FPT for k. In
Section 4.5 we show that even for parameterization by k + t+ δF + p, where p denotes the
maximum parent set size, it is unlikely to obtain an FPT algorithm for (Π1 + v)-Moral
BNSL.

4.1 Attic Arc Sets and Basement Arc Sets

In this subsection we formally define attic arc sets and basement arc sets. As mentioned
above, these are the two parts of the resulting network that our algorithm finds when the
vertices of the dissociation set and their ancestor vertices are known. The intuitive idea
behind the names attic arc set and basement arc set is that the dissociation set S forms the
center of the network, the arcs between S and the ancestors of S form the upper part of
the network (attic) and the remaining arcs from the lower part (basement) of the network.
Figure 1 shows a DAG D where the arcs are decomposed into an attic arc set and a basement
arc set.

Throughout this section, we let S denote the set of the vertices that form the dissociation
set and we let Q denote the set of their ancestors outside S. Furthermore, we assume that Q
is partitioned into two sets Q0 and Q1. Intuitively, in the moralized graph of the resulting
network, the vertices in Q0 have no neighbors in Q and the vertices in Q1 may have one
neighbor in Q.

Definition 10 Let N be a vertex set and let S, Q0, and Q1 be disjoint subsets of N . An
arc set AQ is called attic arc set of S, Q0, and Q1, if

a) DQ := (S ∪Q0 ∪Q1, AQ) is a DAG,

b) in the moralized graph M(DQ), no vertex of Q0 has neighbors outside S, and every
vertex of Q1 has at most one neighbor outside S.

If S, Q0, and Q1 are clear from the context we may refer to AQ as attic arc set. Through-
out this section we use the following notation as a shorthand for some vertex sets: Given a

1240

Learning Bayesian Networks Under Sparsity Constraints

vertex set N and disjoint subsets S, Q0, and Q1 of N , we let

Q := Q0 ∪Q1, and we let

R := N \ (S ∪Q) denote the remaining vertices of N.

We next define basement arc sets.

Definition 11 Let N be a vertex set and let S, Q0, and Q1 be disjoint subsets of N . An
arc set AR ⊆ (S ∪Q0 ∪R)×R is called basement arc set for S, Q0, and Q1 if AR contains
no self-loops and every w ∈ Q0 ∪R has at most one incident arc in AR ∩ ((R ∪Q0)×R).

If S, Q0, and Q1 are clear from the context we may refer to AR as basement arc set. The
idea is that basement arc sets and attic arc sets can be combined to a solution of (Π1 + v)-
Moral BNSL and that a solution can be splitted into an attic arc set and a basement
arc set. With the next two lemmas, we formalize this idea. First, an attic arc set and a
basement arc set can be combined to a DAG where S is a dissociation set of the moralized
graph.

Lemma 12 Let N be a vertex set and let S, Q0 and Q1 be disjoint subsets of N . Further-
more, let AQ be an attic arc set, and let AR be a basement arc set. It then holds that

1. D := (N,AQ ∪AR) is a DAG, and

2. S is a dissociation set of M(D).

Proof We first show that D is a DAG. Assume towards a contradiction that there is a
directed cycle in D. Since AQ is an attic arc set we conclude from Definition 10 a) that
there is no directed cycle in (N,AQ). Hence, the cycle contains an edge (v, w) ∈ AR. Note
that w ∈ R and there exists an outgoing edge (w,w′) ∈ AQ ∪ AR that is also part of the
cycle. Since no edge in AQ is incident with vertices of R we conclude (w,w′) ∈ AR and
therefore w′ ∈ R. Note that w′ 6= w, since AR contains no self-loops. Since (w,w′) is part
of the directed cycle, there exists an edge (w′, w′′) ∈ AR with w′′ ∈ R. Then, w′ is incident
with two arcs in AR ∩ ((R ∪ Q0) × R) which is a contradiction to the fact that AR is a
basement arc set. Consequently, there is no directed cycle in D.

It remains to show that S is a dissociation set of M(D). That is, we show that every
vertex v has degree at most 1 in G :=M(D)− S.

If v ∈ Q1, then v has degree at most one inM(DQ)− S. Since no arc in AR is incident
with v, we conclude degG(v) = 1.

Otherwise, v ∈ Q0∪R. Then, there is no arc in AQ connecting v with a vertex in N \S.
Moreover, by Definition 11, there is at most one arc in AR ∩ ((R∪Q0)×R) that is incident
with v. To prove degG(v) ≤ 1 it remains to show that there is no moral edge of M(D)
connecting v with some other vertex in N \ S. Assume towards a contradiction that there
exists some v′ ∈ N \ S such that v and v′ have a common child w.

If w ∈ S ∪Q, then v ∈ Q0 and v′ ∈ Q. Consequently, {v, v′} is a moral edge in M(DQ)
which contradicts the fact that vertices in Q0 have degree 0 in M(DQ) − S. Hence, we
conclude w ∈ R and therefore (v, w), (v′, w) ∈ AR. Then, w has two incident arcs in AR ∩
((R∪Q0)×R) which contradicts the fact that AR is a basement arc set. Hence, degG(v) ≤ 1.
2

1241

Grüttemeier & Komusiewicz

Next, we show that conversely, the arc set of every DAG whose moralized graph has a
dissociation set S can be partitioned into the an attic arc set and a basement arc set for
some Q0 and Q1.

Lemma 13 Let D = (N,A) be a DAG and let S ⊆ N be a dissociation set of M(D). Fur-
thermore, let Q := {v ∈ N \S | v has at least one descendant in S} and let Q be partitioned
into

Q0 := {v ∈ Q | v has degree 0 in M(S ∪Q,AQ)− S}, and

Q1 := Q \Q0.

Then, AQ := ((S ∪Q)× (S ∪Q)) ∩A is an attic arc set and A \AQ is a basement arc set.
Moreover, |Q| ≤ 2|S|.

Proof Note that Proposition 9 implies |Q| ≤ 2|S|. We first show that Properties a) and b)
from Definition 10 hold for AQ. Since D = (N,A) is a DAG, S ∪ Q ⊆ N , and AQ ⊆ A,
it clearly holds that DQ is a DAG and therefore Property a) holds. Consider Property b).
By the definition of Q0, no vertex in Q0 has neighbors in Q. Furthermore, since S is a
dissociation set of M(D), every vertex in Q1 has at most one neighbor in Q.

It remains to show that A\AQ is a basement arc set. To this end, we first show A\AQ ⊆
(S∪Q0∪R)×R. Assume towards a contradiction that A\AQ 6⊆ (S∪Q0∪R)×R. Consider
the following cases.

Case 1: There exists an arc (v, w) ∈ A \ AQ with w 6∈ R. Then, w ∈ S ∪ Q and
therefore, v is an ancestor of S. Hence, (v, w) ∈ AQ which contradicts the choice of (v, w).

Case 2: There exists an arc (v, w) ∈ A \ AQ with v ∈ Q1. From the previous case we
know w ∈ R. Since v has degree 1 in M(N,AQ) − S and an incident arc to some vertex
in R we conclude degM(D)−S(v) ≥ 2 which contradicts the fact that S is a dissociation set
of M(D). Since Cases 1 and 2 are contradictory, we have A \AQ ⊆ (S ∪Q0 ∪R)×R.

Finally, we show that Definition 11 holds for A \ AQ. Since D is a DAG we conclude
that A \ AQ contains no self-loops. Moreover, since S is a dissociation set of M(D) we
conclude that every w ∈ (Q0∪R) has at most one incident edge in (A\AQ)∩((R∪Q0)×R).
2

In general, if we consider a union A1 ∪ A2 of two disjoint arc-sets, one vertex v may
have incoming arcs from A1 and A2. Thus, for the local scores we may have fv(P

A1
v) 6=

fv(P
A1∪A2
v). Given an attic arc set AQ and a basement arc set AR, all arcs in AR have

endpoints in R and all arcs in AQ have endpoints in Q∪S. Since Q∪S and R are disjoint,
for every vertex v either all incoming arcs are in AQ or in AR. Thus, the local scores
under AQ ∪AR can be decomposed as follows.

Lemma 14 Let (N,F , t, k) be an instance of (Π1+v)-Moral BNSL and let S, Q0, and Q1

be disjoint subsets of N . Furthermore, let AQ be an attic arc set and let AR be a basement
arc set. Then, score of A := AQ ∪AR under F is∑

v∈N
fv(P

A
v) =

∑
v∈S∪Q

fv(P
AQ
v) +

∑
v∈R

fv(P
AR
v).

1242

Learning Bayesian Networks Under Sparsity Constraints

4.2 Finding the Attic Arc Set

Recall that the intuitive idea of the XP-time algorithm is to iterate over all possible vertices
that may form the dissociation set and their possible ancestors. Then, for each choice we
find an attic arc set and a basement arc set. In this subsection, we present an algorithm to
efficiently compute the attic arc set when S, Q0, and Q1 are given.

Let I := (N,F , t, k) be an instance of (Π1 + v)-Moral BNSL and let S, Q0, and Q1

be disjoint subsets of N . An attic arc set AQ is called optimal, if
∑

v∈S∪Q0∪Q1
fv(P

AQ
v) is

maximal among all attic arc sets for S, Q0, and Q1.

Let λ := |S ∪ Q0 ∪ Q1|. Observe that, by iterating over every possible set of arcs
between the vertices in S∪Q0∪Q1, one can enumerate all possible AQ in 2O(λ2) ·|I|O(1) time.
Alternatively, by iterating over all possible parent sets of the vertices of S∪Q0∪Q1, one can
enumerate all possible AQ in δF

λ · |I|O(1) time. However, this might be expensive, since δF
can be exponentially large in the number of vertices. We show that an optimal attic arc set
can be computed in λO(λ) · |I|O(1) time. The intuitive idea of this algorithm is to find the
connected vertex pairs in Q1 via brute force and use an algorithm for Vanilla-BNSL as a
subroutine to find the arcs of AQ.

Proposition 15 Let I := (N,F , t, k) be an instance of (Π1 +v)-Moral BNSL, and let S,
Q0, and Q1 be disjoint subsets of N . An optimal attic arc set for S, Q0, and Q1 can be
computed in λO(λ) · |I|O(1) time, where λ := |S ∪Q0 ∪Q1|.

Proof Throughout this proof, let Q := Q0 ∪ Q1 and N ′ := S ∪ Q. Consider Q1. An
auxiliary graph H is defined as an undirected graph with vertex set Q1, such that each

connected component of H has size at most 2. Note that there are
(
λ2

λ

)
∈ λO(λ) many

auxiliary graphs, since |Q1| ≤ λ.

Let H be a fixed auxiliary graph. For two vertices w1 ∈ Q1 and w2 ∈ Q1 we write w1 ∼H
w2 if they belong to the same connected component of H. In the following, we define a
family FH of local scores for N ′. To this end, we introduce the term of feasible parent sets
regarding H: First, let v ∈ Q0. A set P ⊆ N ′ \ {v} is called feasible for v if P ⊆ S. Second,
let v ∈ Q1. A set P ⊆ N ′ \ {v} is feasible for v if P ∩ Q ⊆ {w} where w ∼H v. Finally,
let v ∈ S. A set P ⊆ N ′ \ {v} is feasible for v, if |P ∩ Q| ≤ 1, or P ∩ Q = {w1, w2} for
some w1, w2 ∈ Q1 with w1 ∼H w2. We then define FH by

fHv (P) :=

{
fv(P) if P is feasible for v, or

0 otherwise.

Note that for every vertex v ∈ N ′, every potential parent set P ∈ PFH (v) is feasible
for v by the definition of FH .

Algorithm. The algorithm to compute an optimal arc set for S, Q0, and Q1 can be
described as follows: Iterate over all auxiliary graphs H. For every choice of H compute
an arc set AH ⊆ N ′ × N ′ that maximizes

∑
v∈N ′ f

H
v (PAH

v). Return an arc set A ∈ {AH |
H is an auxiliary graph} that maximizes

∑
v∈N ′ fv(P

A
v).

Running time. We first consider the running time of the algorithm. As mentioned
above, we can iterate over all auxiliary graphs in λO(λ) time. For every auxiliary graph, we
compute the arc set AH . This can be done by solving Vanilla-BNSL for the vertex set N ′

1243

Grüttemeier & Komusiewicz

and local scores FH . This can be done in 2λ · |I|O(1) time (Ott & Miyano, 2003; Silander
& Myllymäki, 2006). Thus, the overall running time of the algorithm is λO(λ) · |I|O(1).

Correctness. It remains to show that the algorithm is correct. That is, the returned arc
set A is an optimal attic arc set for S, Q0, and Q1. Note that A = AH for some auxiliary
graph H. Therefore, A is a solution of an instance of Vanilla-BNSL with vertex set N ′

and local scores FH . By Proposition 1, we may assume that A is nice and therefore, for
every v ∈ N ′ the parent set PAv is feasible for v regarding H. Consequently, fHv (PAv) =
fv(P

A
v) for every v ∈ N .

We first show that A is an attic arc set for S, Q0, and Q1. That is, we show that Prop-
erties a) and b) from Definition 10 hold. Since A is a solution of a Vanilla-BNSL instance
with vertex set N ′, the graph (N ′, A) is a DAG. Thus, Property a) from Definition 10 holds.
We next check Property b). First, consider v ∈ Q0 and assume towards a contradiction v has
a neighbor w 6∈ S inM(N ′, A). If (v, w) ∈ A or (w, v) ∈ A, either v or w has a non-feasible
parent set regarding H. A contradiction. Otherwise, if {v, w} is a moral edge, then there
exists a vertex u ∈ N ′ with {v, w} ∈ PAu . Then, PAu is not feasible for u regarding H. A
contradiction. Second, consider v ∈ Q1. Then, due to the definition of feasible parent sets,
outside S, v can only be adjacent to a vertex w ∈ Q \ {v} if v ∼H w. Since the connected
components in H have size at most 2, v has at most one neighbor outside S in M(N ′, A).
Therefore, Property b) from Definition 10 holds. Thus, A is an attic arc set.

We next show that A is optimal. That is, we show that
∑

S∪Q fv(P
A
v) is maximal

among all attic arc sets for Q0, Q1, and S. To this end, let A′ 6= A be another attic arc
set. Consider M(N ′, A′). Since every vertex in Q1 has at most one neighbor outside S
inM(N ′, A′), the graph H ′ :=M(N ′, A′)[Q1] has connected components of size at most 2.
Consequently, H ′ is an auxiliary graph. To show that

∑
S∪Q fv(P

A′
v) ≤

∑
S∪Q fv(P

A
v) we

use the following claim.

Claim 1 For every n ∈ N ′, the parent set PA
′

v is feasible for v regarding the auxiliary
graph H ′.

Proof We consider the following cases.
Case 1: v ∈ Q0. Then, v has no neighbors outside S in M(N ′, A′). Thus, v has only

incoming arcs from S. Therefore, PA
′

v is feasible for v.
Case 2: v ∈ Q1. Then, v has at most one neighbor w outside S inM(N ′, A′). Observe

that w ∼H′ v by the definition of H ′. Therefore, PA
′

v is feasible for v.
Case 3: v ∈ S. Then, if |PA′v ∩Q| ≤ 1, PA

′
v is feasible for v. Furthermore, if |PA′v ∩Q| ≥ 3,

the vertices in PA
′

v ∩Q have degree at least 2 outside S inM(N ′, A′) contradicting the fact
that A′ is an attic arc set. Thus, it remains to consider the case where |PA′v ∩ Q| = 2.
Let PA

′
v ∩ Q = {w1, w2}. Then, w1 and w2 are connected by a moral edge in M(N ′, A′)

implying w1 ∼H′ w2. Thus, PA
′

v is feasible for v. 3

Since every v ∈ N ′ has a feasible parent set under A′ regarding H ′, we have fH
′

v (PA
′

v) =
fv(P

A′
v). Since the score of A under FH is at least as big as the score of the best possible

DAG under FH′ , we conclude∑
S∪Q

fv(P
A′
v) =

∑
S∪Q

fH
′

v (PA
′

v) ≤
∑
S∪Q

fHv (PAv) =
∑
S∪Q

fv(P
A
v).

2

1244

Learning Bayesian Networks Under Sparsity Constraints

4.3 Finding the Basement Arc Set

We now show that we can compute a basement with maximal score in polynomial time
if S, Q0, and Q1 are given. More precisely, we solve the following problem.

Basement Learning
Input: A set of vertices N , disjoint subsets S, Q0, Q1 of N , local scores F = {fv |
v ∈ N}, and an integer t.
Question: Is there a basement arc set AR for S, Q0, and Q1

with
∑

v∈N\(S∪Q0∪Q1) fv(P
AR
v) ≥ t?

Proposition 16 Basement Learning can be solved in O(n3δF) time.

Proof We give a polynomial-time reduction to Maximum Weight Matching. In Max-
imum Weight Matching one is given a graph G = (V,E), edge-weights ω : E → N,
and ` ∈ N and the question is if there exists a set M ⊆ E of pairwise non-incident edges
such that

∑
e∈M ω(e) ≥ `.

Construction: Let I := (N,S,Q0, Q1,F , t) be an instance of Basement Learning.
Throughout this proof let Q := Q0 ∪ Q1, and let R := N \ (S ∪ Q). We construct an
equivalent instance (G,ω, `) of Maximum Weight Matching. We first define G := (V,E)
with V := Q0 ∪R ∪R′, where R′ := {v′ | v ∈ R}, and E := X ∪ Y ∪ Z, where

X := {{v, w} | v, w ∈ R, v 6= w},
Y := {{v, w} | v ∈ R,w ∈ Q0}, and

Z := {{v, v′} | v ∈ R}.

Next, we define edge-weights ω : E → N: For e = {v, v′} ∈ Z, we set

ω(e) := max
S′⊆S

fv(S
′).

Furthermore, for e = {v, w} ∈ Y with v ∈ R and w ∈ Q0, we set

ω(e) := max
S′⊆S

fv(S
′ ∪ {w}).

Finally, for e = {v, w} ∈ X, we set ω(e) := max(ϕ(v, w), ϕ(w, v)), where

ϕ(u1, u2) := max
S′⊆S

fu1(S′ ∪ {u2}) + max
S′⊆S

fu2(S′).

To complete the construction of (G,ω, `), we set ` := t.

Intuition: Before we prove the correctness of the reduction we provide some intuition.
A maximum-weight matching M in G corresponds to the parent sets of vertices in R and
therefore to arcs in a solution AR of I. More precisely, an edge {v, v′} ∈ Z with v ∈
R corresponds to a parent set of v that contains only vertices from S. Moreover, an
edge {v, w} ∈ Y with v ∈ R corresponds to a parent set of v that contains w ∈ Q0 and
vertices from S. Finally, an edge {v, w} ∈ X means that either v ∈ PAR

w or w ∈ PAR
v . An

example of the construction is shown in Figure 2.

1245

Grüttemeier & Komusiewicz

Q0

R

S

v1 v2 v3 v4

Q0

R

R′

Figure 2: An example of the construction from the proof of Proposition 16. The left side
shows the vertex sets Q0, S, and R of an instance of Basement Learning
together with an optimal basement arc set. The right side shows the edges of the
corresponding instance of Weighted Matching where the edges of a solution
are labeled with colors blue, red, and green. The blue edge corresponds to the
parent set of v1, the red edge corresponds to the parent set of v2, and the green
edge corresponds to the parent sets of v3 and v4.

Correctness: We now prove the correctness of the reduction, that is, we show that I is a
yes-instance of Basement Learning if and only if (G,ω, `) is a yes-instance of Maximum
Weight Matching.

(⇒) Let AR be a basement arc set of S, Q0, and Q1 with
∑

v∈R fv(P
AR
v) ≥ t. We define

a matching M with
∑

e∈M ω(e) ≥ t. To this end, we describe which edges of X, Y , and Z
we add to M by defining sets MX , MY , and MZ and set M := MX ∪MY ∪MZ .

First, for every pair v, w ∈ R with v ∈ PAR
w or w ∈ PAR

v , we add {v, w} ∈ X to MX .
Second, for every pair v, w with v ∈ R, w ∈ Q0, and w ∈ PAR

v , we add {v, w} to MY . Third,
for every v ∈ R that is not incident with one of the edges in MX∪MY , we add {v, v′} to MZ .
Obviously, MX , MY , and MZ are pairwise disjoint.

We first show that M is a matching by proving that there is no pair of distinct edges
in M that share an endpoint. Consider the following cases.

Case 1: e1, e2 ∈MZ . Then, if e1, e2 share one endpoint v ∈ R or v′ ∈ R′ it follows by the
definition ofMZ that e1 = e2 = {v, v′} and, therefore, there are no distinct edges e1, e2 ∈MZ

that share exactly one endpoint.

Case 2: e1, e2 ∈ MX ∪MY . Then, assume towards a contradiction that e1 = {u, v}
and e2 = {v, w} have a common endpoint v. Now, {u, v} ∈ MX ∪MY implies (u, v) ∈ AR
or (v, u) ∈ AR. Moreover {v, w} ∈MX ∪MY implies (w, v) ∈ AR or (v, w) ∈ AR. Then, v ∈
R∪Q0 is incident with two arcs in AR ∩ ((R∪Q0)×R) which contradicts the fact that AR
is a basement arc set.

Case 3: e1 ∈MX ∪MY , e2 ∈MZ . Then, e1 and e2 can only have a common endpoint
in R which is not possible by the definition of MZ .

We conclude by the above that M is a matching. It remains to show that
∑

e∈M ω(e) ≥
t. Observe that every v ∈ R is incident with some edge in M . Conversely, every edge
in MY ∪MZ has exactly one endpoint in R, and every edge in MX has both endpoints

1246

Learning Bayesian Networks Under Sparsity Constraints

in R. Given an edge e ∈ MY ∪ MZ , we let π(e) denote its unique endpoint in R. By
the construction of MX and the fact that AR is a basement arc set we know that for
every {v, w} ∈MX it holds that either (v, w) ∈ AR or (w, v) ∈ AR. We let π1(e) and π2(e)
denote the endpoints of e = {v, w} such that (π2(e), π1(e)) ∈ AR. Since every v ∈ R is
incident with some edge in M and M is a matching, the following sets form a partition
of R.

R1 := {π1(e) | e ∈MX}, R2 := {π2(e) | e ∈MX},
R3 := {π(e) | e ∈MY }, R4 := {π(e) | e ∈MZ}.

Observe that by the definitions of MX ,MY , and MZ it holds that all v ∈ R2 ∪R4 have
a parent set S′ under AR, where S′ ⊆ S. Moreover, all π(e) ∈ R3 have parent set PAR

π(e) =

S′ ∪ (e \ {π(e)}) with S′ ⊆ S, and all π1(e) ∈ R1 have parent sets PAR

π1(e) = S′ ∪ {π2(e)}
with S′ ⊆ S. For the weight of M it then holds that∑

e∈MX

ω(e) +
∑
e∈MY

ω(e) +
∑
e∈MZ

ω(e)

≥
∑
e∈MX

max
S′⊆S

fπ1(e)(S
′ ∪ {π2(e)}) +

∑
e∈MX

max
S′⊆S

fπ2(e)(S
′)

+
∑
e∈MY

max
S′⊆S

fπ(e)(S
′ ∪ (e \ {π(e)})) +

∑
e∈MZ

max
S′⊆S

fπ(e)(S
′)

≥
∑

v∈R1∪R2∪R3∪R4

fv(P
AR
v) ≥ t,

and therefore
∑

e∈M ω(e) ≥ t.
(⇐) Conversely, let M ⊆ E be a matching of G with

∑
e∈M ω(e) ≥ t. Note that in G,

every edge e ∈ E has at least one endpoint in R and consequently every e ∈M has at least
one endpoint in R. Moreover, without loss of generality we can assume that every vertex
of R is incident with an edge of M : If a vertex v ∈ R is not incident with an edge of M , we
replace M by M ′ := M ∪ {{v, v′}}. Then,

∑
e∈M ′ ω(e) ≥ t + ω({v, v′}) ≥ t and M ′ is still

a matching since degG(v′) = 1.

We define a set AR ⊆ (S ∪Q0 ∪R)×R and show that
∑

v∈R fv(P
AR
v) ≥ t and that AR

is a basement arc set. To this end, we define a parent set with vertices in S ∪ Q0 ∪ R
for every v ∈ R. First, if v is incident with an edge {v, v′} ∈ M ∩ Z, we set PAR

v :=
argmaxS′⊆S fv(S

′). Second, if v is incident with an edge {v, w} ∈ M ∩ Y , then w ∈ Q0

and we set PAR
v := {w} ∪ argmaxS′⊆S fv(S

′ ∪ {w}). Third, it remains to define the parent
sets of vertices in R that are endpoints of some edge in M ∩ X. Let {v, w} ∈ M ∩ X,
where ϕ(v, w) ≥ ϕ(w, v). We then set PAR

v := {w} ∪ argmaxS′⊆S fv(S
′ ∪ {w}) and we

set PAR
w := argmaxS′⊆S fw(S′).

We first show that AR is a basement arc set. Obviously, AR does not contain self-loops
and no v ∈ R has a parent in Q1. It remains to show that every vertex in Q0 ∪ R has
at most one incident arc in AR ∩ ((R ∪ Q0) × R). Let v ∈ Q0 ∪ R. Assume towards a
contradiction that v is incident with two distinct arcs in AR ∩ ((R ∪Q0)×R). Then, there
exists a vertex w1 ∈ Q0 ∪ R with (v, w1) ∈ AR or (w1, v) ∈ AR. Moreover, there exists a
vertex w2 ∈ (Q0 ∪ R) \ {w1} with (w2, v) ∈ AR or (v, w2) ∈ AR. Then, by the definition

1247

Grüttemeier & Komusiewicz

of AR we conclude {v, w1}, {v, w2} ∈M which contradicts the fact that no two edges in M
share one endpoint. We conclude that AR is a basement arc set.

It remains to show that
∑

v∈R fv(P
AR
v) ≥ t. To this end consider the following.

Claim 2

a) If {v, w} ∈M ∩ (Y ∪ Z) with v ∈ R, then ω({v, w}) = fv(P
AR
v).

b) If {v, w} ∈M ∩X, then ω({v, w}) = fv(P
AR
v) + fw(PAR

w).

Proof a) If {v, w} ∈M ∩ Z, then w = v′ and by the definition of AR we have fv(P
AR
v) =

maxS′⊆S fv(S
′) = ω({v, v′}). Otherwise, if {v, w} ∈ M ∩ Y , then w ∈ Q0 and analo-

gously fv(P
AR
v) = maxS′⊆S fv(S

′ ∪ {w}) = ω({v, w}).
b) If {v, w} ∈M ∩X, then v, w ∈ R. We only consider the case ϕ(v, w) ≥ ϕ(w, v), since

the other case is analogue. It then follows from the definition of AR, that

fv(P
AR
v) + fw(PAR

w)

= max
S′⊆S

fv(S
′ ∪ {w}) + max

S′⊆S
fw(S′)

= max(ϕ(v, w), ϕ(w, v)) = ω({v, w}).

3

Now, let R̃ ⊆ R be the set of vertices in R that are incident with an edge in M ∩X. We
conclude by Claim 2 and the assumption that every v ∈ R is incident with an edge in M
that ∑

v∈R
fv(P

AR
v) =

∑
v∈R\R̃

fv(P
AR
v) +

∑
v∈R̃

fv(P
AR
v)

=
∑

e∈M∩(Y ∪Z)

ω(e) +
∑

e∈M∩X
ω(e)

=
∑
e∈M

ω(e) ≥ t,

which completes the correctness proof.
Running Time. The constructed instance of Maximum Weight Matching con-

tains O(n) vertices and O(n2) edges. For each edge e, the edge weight ω(e) can be computed
in O(nδF) time. Hence, we can compute the described instance of Maximum Weight
Matching from an instance of Basement Learning in O(n3δF) time. Together with the
fact that Maximum Weight Matching can be solved in O(

√
|V | · |E|) time (Micali &

Vazirani, 1980), we conclude that Basement Learning can be solved in O(n3δF) time. 2

4.4 An XP-time Algorithm for (Π1 + v)-Moral BNSL

We now combine the previous results of this section to obtain an XP-time algorithm for (Π1+
v)-Moral BNSL. Recall that the intuitive idea of the algorithm is to find the dissociation
set S and the ancestors Q = Q0 ∪Q1 of S via brute force. Then, for every choice of S, Q0,
and Q1 we find an attic arc set and a basement arc set and combine these arc sets to a
solution of (Π1 + v)-Moral BNSL.

1248

Learning Bayesian Networks Under Sparsity Constraints

Theorem 17 (Π1 + v)-Moral BNSL can be solved in n3k · kO(k) · |I|O(1) time.

Proof Algorithm. Let I = (N,F , t, k) be an instance of (Π1 + v)-Moral BNSL. The
following algorithm decides whether I is a yes-instance or a no-instance: First, iterate over
all possible choices of S, Q0, and Q1 where |S| ≤ k and |Q0 ∪ Q1| ≤ 2k. For each such
choice do the following:

• Compute an optimal attic arc set AQ using the algorithm behind Proposition 15.

• Let t′ := t −
∑

v∈S∪Q fv(P
AQ
v) and check if (N,S,Q0, Q1,F , t′) is a yes-instance

of Basement Learning. If this is the case, return yes.

If for none of the choices of S, Q0, and Q1 the answer yes was returned, then return no.

Running Time. First, we discuss the running time of the algorithm: Since |S| ≤ k
and |Q0 ∪Q1| ≤ 2k, there are at most

(
n
k

)
·
(
n−k
2k

)
∈ O(n3k) choices for S and Q := Q0 ∪Q1.

For each such choice we can compute all 4k possible partitions of Q into two sets. Hence,
we can iterate over all possible choices for S, Q0 and Q1 in O(n3k · 4k) time. Afterwards,
for each such choice we apply the algorithm behind Proposition 15 in kO(k) · |I|O(1) time,
and the algorithm behind Proposition 16 in O(n3δF) time. This gives an overall running
time of n3k · kO(k) · |I|O(1) as claimed.

Correctness. Second, we show the correctness of the algorithm by proving that the
algorithm returns yes if and only if I is a yes-instance of (Π1 + v)-Moral BNSL.

(⇒) Let the algorithm return yes for I. Then, there exist disjoint sets S, Q0, and Q1

with |S| ≤ k, an attic arc set AQ, and a basement arc set AR such that
∑

v∈S∪Q fv(P
AQ
v) +∑

v∈R fv(P
AR
v) ≥ t. Then, by Lemma 12, the graph (N,AQ∪AR) is a DAG whose moralized

graph has dissociation set S and by Lemma 14 its score is the sum of the local scores for AR
and AQ. Hence, I is a yes-instance.

(⇐) Conversely, let (N,F , t, k) be a yes-instance. Then, there is an (N,F , t)-valid
DAG D = (N,A) whose moralized graph has a dissociation set S of size at most k. Then,
by Lemma 13, there exist disjoint sets Q0, Q1, an attic arc set AQ and a basement arc set AR
such that AR ∪ AQ = A. Furthermore, |Q0 ∪ Q1| ≤ 2k. Since the algorithm iterates over
all possible choices for S, Q0, and Q1 with |S| ≤ k and |Q0 ∪Q1| ≤ 2k, it considers S, Q0,
and Q1 at some point. Since A is (N,F , t)-valid, the arc set AR satisfies

∑
v∈R fv(P

AR
v) ≥

t−
∑

v∈S∪Q fv(P
AQ
v). Hence, the algorithm returns yes. 2

The running time stated in Theorem 17 contains a factor of kO(k). Let us remark that
the constant in the exponent hidden by the O-notation is not too high: The constant relies
on the running time of the algorithm behind Proposition 15 where we iterate over the

possible auxiliary graphs. Since |Q1| ≤ 2k, the number of iterations is O(
((2k)2

2k

)
). Thus,

the hidden constant is 4. While it seems possible that this can be improved, it would be
more interesting to determine whether the factor of kO(k) can be replaced by 2O(k).

4.5 (Π1 + v)-Moral BNSL Parameterized by k + t

In this section, we show another hardness result for (Π1 + v)-Moral BNSL. Due to Corol-
lary 8, the problem is presumably not FPT for parameter k even if the maximum parent set

1249

Grüttemeier & Komusiewicz

size is 1. Observe that this implies that even a parameterization by k + p, where p denotes
the maximum parent set size, is unlikely to lead to an FPT algorithm. In the next theorem,
we prove W[1]-hardness for k + t, even if p = 3 and δF = 2 implying that not even for the
sum k + t + δF + p there is an FPT algorithm unless W[1] = FPT. The proof is closely
related to the W[1]-hardness proof for (Π0 + v)-Moral BNSL (Korhonen & Parviainen,
2015). We provide it here for sake of completeness.

Theorem 18 (Π1 + v)-Moral BNSL is W[1]-hard for k + t, even when the directed su-
perstructure S ~F is a DAG, the maximum parent set size is 3, δF = 2, and every local score
is either 1 or 0.

Proof We give a parameterized reduction from Clique. In Clique we are given an
undirected graph G = (V,E) and an integer ` and the question is if there exists a subset K ⊆
V of size ` such that the vertices in K are pairwise adjacent in G. Clique is W[1]-hard
if parameterized by ` (Downey & Fellows, 1995). Let (G = (V,E), `) be an instance of
Clique. We describe how to construct an equivalent instance of (Π1 + v)-Moral BNSL
where k + t ∈ O(`2).

Construction. We first define the vertex set N by N := V ∪ (E × {1}) ∪ (E × {2}). We
write ei := (e, i) for the elements in E × {i}, i ∈ {1, 2}. Next, we define the local scores F .
For every edge e = {u, v} ∈ E we set fe1({e2, u, v}) := 1. All other local scores are set to 0.
Finally, we set t :=

(
`
2

)
and k := `. Note that k + t ∈ O(`2) and that the maximum parent

set size is 3. Moreover, in the directed superstructure S ~F , the vertices in E × {1} are the
only vertices that have incoming arcs, and all vertices in E × {1} are sinks. Hence, S ~F is a
DAG.

Correctness. We next show that there is a clique of size k in G if and only if there exists
an (N,F , t)-valid arc set A such that M(N,A) has a dissociation set of size at most k.

(⇒) Let K be a clique of size ` in G. We then define A := {(e2, e1), (u, e1), (v, e1) | e =
{u, v} with u, v ∈ K}. We prove that A is (N,F , t)-valid and M(D) for D := (N,A) has a
dissociation set of size at most k.

From the fact that S ~F is a DAG, we conclude that D is a DAG. Moreover, since the
vertices of K are pairwise adjacent in G, it follows by the construction of F that fe1(PAe1) = 1

for all e ∈ EG(K). Since |K| = ` we conclude
∑

v∈N fv(P
A
v) =

(
`
2

)
= t. Hence, A is (N,F , t)-

valid.

Finally, we show that K is a dissociation set of size k in M(D). Observe that the
vertices e1 ∈ N with e ∈ EG(K) are the only vertices that have a non-empty parent set
in D. Hence, the moralized graph is M(D) = (N,EM), where

EM =
⋃

e:={u,v}∈EG(K)

{{w1, w2} | w1, w2 ∈ {u, v, e1, e2}}.

It follows that M(D)−K = (N \K,E′M) with

E′M =
⋃

e∈EG(K)

{{e1, e2}}.

Therefore, the maximum degree in M(D)−K is at most 1.

1250

Learning Bayesian Networks Under Sparsity Constraints

(⇐) Conversely, let A be an (N,F , t)-valid arc set such that the moralized graphM(D),
where D := (N,A), has a dissociation set S of size at most k. We prove that there is a
clique of size k in G.

Since A is (N,F , t)-valid, we know that
∑

v∈N fv(P
A
v) ≥

(
k
2

)
. Together with the defi-

nition of F it follows that there are at least
(
k
2

)
vertices e1 ∈ N such that PAe1 = {e2, u, v}

with {u, v} = e. Let X ⊆ N be the set of these vertices e1. Note that |X| ≥
(
k
2

)
and recall

that for every e1 ∈ X it holds that e is an edge of G.

For every e1 ∈ X with e = {u, v} the set {e1, e2, u, v} is a clique of size 4 in M(D).
Since S is a dissociation set inM(D), at least two vertices from each set {e1, e2, u, v} belong
to S. We may assume that these vertices are u and v by a simple exchange argument.

Now, consider S∩V . Since for every e1 ∈ X with e = {u, v} the vertices u and v belong
to S, we conclude that |EG(S ∩ V)| ≥

(
k
2

)
. Together with the fact that |S| ≤ k, it follows

that S ∩ V is a set of k vertices with at least
(
k
2

)
edges between them. Therefore, S ∩ V is

a clique of size k in G. 2

5. Constrained BNSL for Related Graph Classes

In this section we outline the limits of learning Bayesian networks under a sparsity con-
straints that are related to a bounded vertex cover number and a bounded dissociation
number. Recall that a bound on the vertex cover number or the dissociation number auto-
matically implies a bound on the treewidth, and that for efficient inference it is desirable
to have a small treewidth in the moralized graph (Darwiche, 2009). Thus, it is well moti-
vated to study constrained BNSL problems regarding graph classes that give a bound on
the treewidth that lies between the treewidth and the dissociation number.

In terms of graph-classes, the bound on the vertex cover number is formalized as the
graph class Π0 + kv and the bound on the dissociation number is formalized as the graph
class Π1 + kv. Recall that Π0 is the class of edgeless graphs. Equivalently, Π0 is the class
of graphs with maximum degree 0, or the graphs with maximum connected component size
1. Analogously, Π1 is the class of graphs with maximum degree 1, or the class of graphs
with maximum connected component size 2. In this secction, we consider two superclasses
of Π1 and show that XP-time algorithms for constrained BNSL problems regarding these
superclasses are presumably not possible.

Let Π2 be the class of graphs that have maximum degree 2, and let ΠCOC
c be the class

of graphs where each connected component has size at most c for a fixed integer c ≥ 3.
These graph classes are superclasses of Π1, that is Π1 ⊆ Π2 and Π1 ⊆ ΠCOC

c . Consequently,
if a graph G belongs to the graph class Π1 + kv for some k ∈ N0, then there exist k′ ≤ k
and k′′ ≤ k such that G ∈ Π2 + k′v and G ∈ ΠCOC

c + k′′v. Moreover, observe that the
treewidth of G is not bigger than min(k′, k′′) +O(1).

With the next two theorems we show that there is little hope that (Π + v)-Skeleton
BNSL or (Π + v)- Moral BNSL with Π ∈ {Π2,Π

COC
3 } has an XP-time algorithm when

parameterized by k. To prove the first result we use a reduction from Hamiltonian Path.
This construction was already used to show that BNSL is NP-hard if one adds the restriction
that the resulting network must be a directed path (Meek, 2001). In the following we show
that it also works for (Π2 + v)-Skeleton BNSL and (Π2 + v)-Moral BNSL.

1251

Grüttemeier & Komusiewicz

Theorem 19 (Π2 + v)-Skeleton BNSL and (Π2 + v)-Moral BNSL are NP-hard even
if k = 0 and the maximum parent set size is 1.

Proof We give a polynomial-time reduction from the NP-hard Hamiltonian Path prob-
lem to (Π2 + v)-Skeleton BNSL. Afterwards we show that the reduction is also correct
for (Π2 + v)-Moral BNSL. In Hamiltonian Path one is given an undirected graph G
and the question is whether there exists a Hamiltonian path, that is, a path which contains
every vertex of G exactly once.

Construction. Let G = (V,E) be an instance of Hamiltonian Path with n vertices.
We describe how to construct an equivalent instance of (Π2 + v)-BNSL where k = 0. We
first set N := V . Next, for every v ∈ N we set fv({w}) = 1 if w ∈ NG(v) and fv(P) = 0
for every other P ⊆ N \ {v}. Finally, we set t := n− 1 and k := 0.

Correctness. We next show that G is a yes-instance of Hamiltonian Path if and only
if (N,F , t, 0) is a yes-instance of (Π2 + v)-Skeleton BNSL.

(⇒) Let P = (v1, v2, . . . , vn) be a Hamiltonian path in G. We set A := {(vi, vi+1) | i ∈
{1, . . . , n − 1}} and show that A is (N,F , t)-valid and that S(N,A) has maximum degree
2.

Since P is a Hamiltonian path, no vertex appears twice on P . Hence, (N,A) does not
contain directed cycles. Moreover, it holds that vi ∈ NG(vi−1) for every i ∈ {2, . . . , n}
and therefore

∑
v∈N fv(P

A
v) = n − 1 = t. Hence, A is (N,F , t)-valid. Moreover, observe

that S(N,A) = (N, {{vi, vi+1} | i ∈ {1, . . . , n− 1}) and this, S(N,A) has maximum degree
2.

(⇐) Conversely, let A be an (N,F , t)-valid arc set such that S(D) has maximum degree
at most 2, where D := (N,A). Since t = n − 1 and every local score is either 1 or 0 we
conclude that fv(P

A
v) = 1 for at least n−1 vertices. Then, there are at least n−1 arcs in A,

and thus there are at least n− 1 edges in S(D). Furthermore, we may assume that in D no
vertex v has a non-empty parent set with score fv(P

A
v) = 0 since otherwise we may replace

it with ∅. This implies that no vertex has more than one parent in D. Consequently, S(D)
is acyclic.

Since S(D) is acyclic, the maximum degree is 2, and there are at least n − 1 edges,
there is a Hamiltonian path P := (v1, . . . , vn) in S(D). We show that P is a Hamiltonian
path in G. Let vi, vi+1 be two consecutive vertices on P . Then, either (vi, vi+1) ∈ A
or (vi+1, vi) ∈ A. By the construction of F we have vi ∈ NG(vi+1) and thus, {vi, vi+1} ∈ E.
Therefore, P is a Hamiltonian path in G.

Moralized Graph. We next argue why the construction described above is also a correct
reduction from Hamiltonian Path to (Π2 + v)-Moral BNSL.

For the forward direction, let P be a Hamiltonian path in G and let the arc set A be
defined as above. Since every vertex has at most one incoming arc from A, the moralized
graphM(N,A) has no moral edges and thereforeM(N,A) and S(N,A) have the same set
of edges. Thus, M(N,A) has maximum degree 2.

For the backwards direction, let A be an (N,F , t)-valid arc set such that the moralized
graphM(N,A) has maximum degree at most 2. Since the edge set of the skeleton of (N,A)
is a subset of the edge set of M(N,A), we conclude that S(N,A) has maximum degree at
most 2. Then, by the above argumentation, there exists a Hamiltonian path in G. 2

1252

Learning Bayesian Networks Under Sparsity Constraints

Theorem 20 Let c ≥ 3. Then, (ΠCOC
c + v)-Skeleton BNSL and (ΠCOC

c + v)-Moral
BNSL are NP-hard even if k = 0.

Proof We give a polynomial-time reduction from the NP-hard problem c-Clique Cover
(Kirkpatrick & Hell, 1983) to (ΠCOC

c + v)-Skeleton BNSL. Afterwards, we show that the
reduction is also correct for (ΠCOC

c + v)-Moral BNSL. In c-Clique Cover one is given
an undirected graph G = (V,E) and the question is whether there exists a packing P of
vertex-disjoint cliques of size c such that every vertex of G belongs to one clique of the
packing. We represent the packing of cliques P := {Ki

c | i ∈ {1, . . . ,
|V |
c }} as a partition

of V , where every Ki
c is a clique of size c.

Construction. Let G = (V,E) be an instance of c-Clique Cover with n vertices.
We describe how to construct an equivalent instance of (ΠCOC

c + v)-Skeleton BNSL
where k = 0. We first set N := V . Next, for every v ∈ N we set fv(P) = 1 if G[P] is
a Kc−1 and P ⊆ NG(v). Otherwise, we set fv(P) = 0. Note that F can be computed in
polynomial time since c is a constant. Finally, we set t := n

c and k := 0.

Correctness. We next show that G is a yes-instance of c-Clique Cover if and only
if (N,F , t, 0) is a yes-instance of (ΠCOC

c + v)-Skeleton BNSL.

(⇒) Let P = {Ki
c | i ∈ {1, . . . , nc }} be a packing of vertex-disjoint cliques of size c

that cover G. For each i, let vi be one vertex of Ki
c. We set A :=

⋃
i∈{1,...,n

c
}{(u, vi) | u ∈

Ki
c \ {vi}}. Then, D := (N,A) is a union of disjoint stars, where the arcs of each star

point to the center vi. Therefore, D is a DAG and every connected component of S(D) has
order c. Therefore, S(D) ∈ ΠCOC

c . Finally, observe that fvi(P
A
vi) = 1 for each vertex vi by

the definition of F . Consequently,
∑

v∈N fv(P
A
v) ≥ n

c = t.

(⇐) Conversely, let A be an (N,F , t)-valid arc set such that every connected component
of S(N,A) has order at most c. Since t = n

c and the local scores are either 0 or 1, there
are pairwise distinct vertices v1, . . . , vn

c
with fv(P

A
vi) = 1 for every i ∈ {1, . . . , nc }. We

define P := {Ki := {vi} ∪ PAvi | i ∈ {1, . . . ,
n
c } and show that P is a packing of vertex

disjoint size c cliques that cover G.

By the definition of F , each PAvi is a clique of size c − 1 that is completely contained
in NG(vi). Thus, every Ki ∈ P is a size-c clique in G. Next, assume towards a contradiction
that there are distinct indices i and j with Ki ∩ Kj 6= ∅. Then, since vi 6= vj it follows
that Ki ∪Kj is a connected component of size bigger than c inM(N,A). This contradicts
the choice of A.

Moralized Graph. We next argue why the construction described above is also a correct
reduction from c-Clique Cover to (ΠCOC

3 +v)-Moral BNSL.

(⇒) Let P be a packing of vertex disjoint size-c cliques that cover G, and let A be
defined as above. Then, (N,A) is a disjoint union of stars that point to the center of vi.
Thus, M(N,A) is a disjoint union of cliques of size c. Consequently M(N,A) ∈ ΠCOC

c .

(⇐) Let A be an (N,F , t)-valid arc set such that every connected component ofM(N,A)
has order at most c. Since the edge set of the skeleton of (N,A) is a subset of the edge set
of the moralized graph, we conclude that S(N,A) ∈ ΠCOC

c . Then, by the above argumen-
tation, G is a yes-instance of c-Clique Cover. 2

Note that, given a graph class Π, we have Π = Π + 0v = Π + 0e. Thus, Theorems 19
and 20 imply the following.

1253

Grüttemeier & Komusiewicz

Corollary 21 Let Π ∈ {Π2}∪{ΠCOC
c | c ≥ 3}. Then, (Π + e)-Skeleton BNSL and (Π +

e)-Moral BNSL are NP-hard even if k = 0.

6. BNSL with Bounded Number of Edges

In this section we study BNSL, where we aim to learn a network such that the skeleton
or the moralized graph have a bounded number of edges. Formally, we study (Π0 + e)-
Skeleton BNSL and (Π0 + e)-Moral BNSL, where Π0 is the class of edgeless graphs.
Clearly, Π0 is monotone.

We first consider (Π0 +e)-Skeleton BNSL in Subsection 6.1. We show that it is fixed-
parameter tractable when parameterized by k. Afterwards we consider (Π0 + e)-Moral
BNSL in Subsection 6.2. We observe that it has an XP-time algorithm when parameterized
by k and it is W[1]-hard for parameterization by k + t. Thus, putting the constraint of a
bounded number of edges on the moralized graph makes the learning problem harder than
putting a similar constraint on the skeleton.

6.1 (Π0 + e)-Skeleton BNSL

In this subsection we consider a version of Bayesian Network Structure Learn-
ing where we want to learn a Bayesian network with a bounded number of arcs or—
equivalently—a bounded umber of edges in the skeleton. Formally, this is the constrained
BNSL problem (Π0 + e)-Skeleton BNSL, where Π0 is the class of edgeless graphs.

A Polynomial-Time Algorithm when the Directed Superstructure is Acyclic.
We first show that (Π0 + e)-Skeleton BNSL becomes polynomial-time solvable if the
directed superstructure is a DAG. The algorithm uses dynamic programming over a topo-
logical ordering of S ~F . That is, an ordering (v1, . . . , vn) of the vertices of N such that for
every arc (vi, vj) of S ~F it holds that i < j.

Proposition 22 (Π0+e)-Skeleton BNSL can be solved in O(δF ·k ·n) time if the directed
superstructure is a DAG.

Proof Let N := {1, . . . , n}, and let (N,F , t, k) be an instance of (Π0 + e)-Skeleton
BNSL such that S ~F is a DAG. Without loss of generality, let (n, n − 1, . . . , 2, 1) be a
topological ordering of SF . Hence, for every arc (a, b) of S ~F it holds that a > b.

The dynamic programming table T has entries of the type T [i, j] for all i ∈ {0, 1, . . . , n}
and j ∈ {0, 1, . . . , k}. Each entry stores the maximum sum of local scores of the ver-
tices (i, . . . , 1) of the topological ordering that can be obtained by an arc set A of size at
most j. For i = 0, we set T [0, j] = 0 for all j ∈ {0, . . . , k}. The recurrence to compute an
entry for i > 0 is

T [i, j] = max
P∈PF (i),|P |≤j

(fi(P) + T [i− 1, j − |P |]),

and the result can then be computed by checking if T [n, k] ≥ t. The corresponding network
can be found by traceback. The correctness proof is straightforward and thus omitted. The
size of T is O(n · k) and each entry T [i, j] can be computed in O(δF) time by iterating over
the at most δF triples (fi(P), |P |, P) in F for the vertex i. Therefore, (Π0 + e)-Skeleton
BNSL can be solved in O(δF · k · n) time if S ~F is a DAG. 2

1254

Learning Bayesian Networks Under Sparsity Constraints

A Randomized FPT Algorithm. The dynamic programming algorithm behind Propo-
sition 22 can be adapted to obtain an FPT algorithm for (Π0 + e)-Skeleton BNSL when
parameterized by the number of arcs k. The algorithm is based on color coding (Alon,
Yuster, & Zwick, 1995): In a Bayesian network with at most k arcs, there are at most 2k
vertices which are endpoints of such arcs. The idea of color coding is to randomly color the
vertices of N with 2k colors and find a solution A where all vertices that are incident with
arcs of A are colored with pairwise distinct colors.

To describe the color coding algorithm, we introduce some notation. Let N be a set of
vertices. A function χ : N → {1, . . . , 2k} is called a coloring (of N with 2k colors). Given
a color c ∈ {1, . . . , 2k}, we call χ−1(c) := {v ∈ N | χ(v) = c} the color class of c. For
a subset N ′ ⊆ N , we let χ(N ′) := {χ(v) | v ∈ N ′}, and for a subset C ⊆ {1, . . . , 2k} we
let χ−1(C) :=

⋃
c∈C χ

−1(c). The following definition is important for our algorithm.

Definition 23 Let N be a set of vertices and let χ : N → {1, . . . , 2k} be a coloring of N .
An arc set A ⊆ N ×N is called color-loyal for χ if for every color class χ−1(c) it holds that

a) there is no (v, w) ∈ A with v, w ∈ χ−1(c), and

b) there exists an ordering (c1, . . . , c2k) of the colors 1, . . . , 2k such that every (v, w) ∈ A
satisfies v ∈ χ−1(ci) and w ∈ χ−1(cj) for some i < j.

Consider the following auxiliary problem.

Colored (Π0 + e)-Skeleton BNSL
Input: A set of vertices N , local scores F = {fv | v ∈ N}, two integers t, k ∈ N,
and a coloring χ : N → {1, . . . , 2k}.
Question: Is there an (N,F , t)-valid arc set A ⊆ N ×N that is color-loyal for χ
and |A| ≤ k?

Recall that the intuitive idea behind the color coding algorithm is to randomly color
the vertices of N with 2k colors and find a solution A satisfying a constraint regarding the
random coloring. Colored (Π0 + e)-Skeleton BNSL is the problem that we solve after
we randomly choose the coloring. The correspondence between (Π0 + e)-Skeleton BNSL
and its colored version is stated in the following proposition.

Proposition 24 Let I = (N,F , t, k) be an instance of (Π0 + e)-Skeleton BNSL. If I
is a yes-instance of (Π0 + e)-Skeleton BNSL, then there exist at least (2k)!(2k)(n−2k)

colorings χ : N → {1, 2, . . . , 2k} such that (N,F , t, k, χ) is a yes-instance of Colored
(Π0 + e)-Skeleton BNSL.

Proof Let I be a yes-instance of (Π0 + e)-Skeleton BNSL. Then, there is an (N,F , t)-
valid arc set A with |A| ≤ k. Observe that |A| ≤ k implies that there are at most 2k vertices
of N that are endpoints of arcs in A.

We define a set X of colorings of N , such that χ ∈ X if χ assigns all vertices incident with
arcs of A to pairwise distinct colors. Since at most 2k vertices are endpoints of arcs in A,
we conclude that |X| ≥ (2k)!(2k)(n−2k). Let I ′ := (N,F , t, k, χ) be an instance of Colored
(Π0 + e)-Skeleton BNSL for some arbitrary χ ∈ X. We show that A is a solution of I ′.
Note that A is (N,F , t)-valid, so it remains to show that A is color-loyal for χ.

1255

Grüttemeier & Komusiewicz

Since all endpoints of arcs in A have pairwise distinct colors under χ, at most one vertex
in each color class χ−1(c) has a non-empty parent set. Let D′ := (N ′, A) be the subgraph we
obtain when removing all isolated vertices from (N,A). Then, D′ has at most 2k vertices.
Consider a topological ordering τ := (v1, . . . , v|N ′|) of the DAG D′. Since the vertices
of N ′ belong to pairwise different color classes, there exists a color sequence (c1, . . . , c2k)
where vi ∈ χ−1(ci) for all i ∈ {1, . . . , |N ′|}. Let (v, w) ∈ A. Since τ is a topological ordering
of D′ we have v ∈ χ−1(ci) and w ∈ χ−1(cj) for some i < j Thus, A is color loyal for χ.
Consequently, I ′ is a yes-instance of Colored (Π0 + e)-Skeleton BNSL. 2

We next show that Colored (Π0 + e)-Skeleton BNSL parameterized by k is fixed-
parameter tractable.

Proposition 25 Colored (Π0+e)-Skeleton BNSL can be solved in O(4kk2n2δF) time.

Proof Let I = (N,F , t, k, χ) be an instance of Colored (Π0 + e)-Skeleton BNSL
with fv(∅) = 0 for every v ∈ N and let C := {1, 2, . . . , 2k} denote the set of colors. By
Proposition 2, every instance of a constrained BNSL problem can be transformed into such
an instance in O(|F|) = O(n2 · δF) time.

We fill a dynamic programming table T with entries of type T [C ′, k′] where C ′ ⊆ C
and k′ ∈ {0, 1, . . . , k}. Every entry stores the maximum value of

∑
v∈χ−1(C′) fv(P

A
v) over

all possible DAGs D = (N,A), where A ⊆ χ−1(C ′) × χ−1(C ′) is color-loyal for χ and
contains at most k′ arcs. We set T [{c}, k′] :=

∑
w∈χ−1(c) fw(∅) = 0 for every c ∈ C and k′ ∈

{0, 1, . . . , 2k}. The recurrence to compute the entry for C ′ ⊆ C with |C ′| > 1 is

T [C ′, k′] = max
c∈C′

max
v∈χ−1(c)

max
P∈PF (v)
|P |≤k′

χ(P)⊆C′\{c}

T [C ′ \ {c}, k′ − |P |] + fv(P) +
∑

w∈χ−1(c)\{v}

fw(∅).

The result can be computed by checking if T [C, k] ≥ t. Note that the corresponding network
can be found via traceback. The correctness proof is straightforward and thus omitted. We
next consider the running time. The size of T is O(22k ·k). Note that

∑
w∈χ−1(c)\{v} fw(∅) =

0 since we applied the preprocessing from Proposition 2. Therefore, each entry can be com-
puted in O(2k·n2 ·δF) time by iterating over all 2k possible colors c, all O(n) vertices v in the
corresponding color class, and all O(δFn) vertices in possible parent sets of v. Altogether,
Colored (Π0 + e)-Skeleton BNSL can be solved in O(4kk2n2δF) time. 2

Propositions 24 and 25 give the following.

Theorem 26 There exists a randomized algorithm for (Π0 + e)-Skeleton BNSL that, in
O((2e)2k · k2n2δF) time returns no, if given a no-instance and returns yes with probability
at least 1− 1

e , if given a yes-instance.

Proof Algorithm. We describe the randomized algorithm applied on an instance I =
(N,F , t, k). Repeat the following two steps e2k times independently:

1. Color every vertex of N independently with one color from the set {1, . . . , 2k} with
uniform probability. Let χ : N → {1, . . . , 2k} be the resulting coloring.

1256

Learning Bayesian Networks Under Sparsity Constraints

2. Apply the algorithm behind Proposition 25 to decide if (N,F , t, k, χ) is a yes-instance
of Colored (Π0 + e)-Skeleton BNSL. If this is the case, then return yes.

If for none of the e2k applications the answer yes was returned in Step 2, then return no.
Running Time. We first consider the running time of the algorithm. By Proposition 25,

one application of the algorithm described above can be performed in O(22k ·k2n2δF) time.
Thus, the overall running time of the algorithm is O((2e)2k · k2n2δF) as claimed.

Error Probability. We next consider the error probability of the algorithm. Given a
no-instance, there exists no (N,F , t)-valid arc set A with |A| ≤ k and therefore the answer
no is always returned in Step 2. Conversely, given a yes-instance I, we conclude from
Proposition 24 that there exist at least (2k)!(2k)(n−2k) colorings χ such that (N,F , t, k, χ)
is a yes-instance of Colored (Π0 + e)-Skeleton BNSL. As explained in the textbook by
Cygan et al. (2015), the probability of randomly choosing such a coloring χ is at least

(2k)!(2k)(n−2k)

(2k)n
≥ e−2k.

Since we repeat the algorithm independently e2k times, the probability that no is returned
is at most

(1− e−2k)e
2k ≤ (e−e

−2k
)e

2k
=

1

e
,

where the first inequality relies on the inequality 1 + x ≤ ex. Consequently, our algorithm
returns yes with probability at least 1− 1

e . 2

The randomized algorithm from Theorem 26 can be derandomized with standard tech-
niques (Naor, Schulman, & Srinivasan, 1995; Cygan et al., 2015).

Corollary 27 (Π0 + e)-Skeleton BNSL can be solved in (2e)2k · kO(log(k)) · |I|O(1) time.

Bounding the number of arcs appears to be not so relevant for practical use. However,
the algorithm might be useful as a heuristic upper bound: If we want to add a restricted
number of dependencies to a given Bayesian network, the result of (Π0 + e)-Skeleton
BNSL gives an upper bound for the profit we can expect from that modification.

6.2 (Π0 + e)-Moral BNSL

We now study a version of BNSL, where we aim to learn a network whose moralized graph
has a bounded number of edges. Formally, this is the constrained BNSL problem (Π0 + e)-
Moral BNSL, where Π0 is the class of edgeless graphs.

Note that, given some k ∈ N, a DAG D = (N,A) with M(D) ∈ (Π0 + ke) is a DAG
whose moralized graph contains at most k edges. Observe that there is a simple XP-time
algorithm that solves (Π0+e)-Moral BNSL when parameterized by k: Let I = (N,F , t, k)
be an instance of (Π0 + e)-Moral BNSL. If (N,A) is a Bayesian network whose moralized
graph has k or less edges, then |A| ≤ k. We can find A by iterating over all O(n2k) possible
arc sets A with |A| ≤ k. If we consider the directed superstructure S ~F = (N,AF) we can
instead iterate over all possible subsets A′ ⊆ AF with |A′| ≤ k. Afterwards, we check if A′

is (N,F , t)-valid and if M(N,A′) ∈ Π0 + ke. This implies the following.

1257

Grüttemeier & Komusiewicz

Proposition 28 (Π0 + e)-BNSL can be solved in mk · |I|O(1) time.

To put this simple XP-time algorithm into context, we show that (Π0 + e)-BNSL is W[1]-
hard when parameterized by t + k. Hence, there is little hope to solve (Π0 + e)-BNSL in
time g(t+ k) · |I|O(1) for any computable function k.

Theorem 29 (Π0 + e)-Moral BNSL is W[1]-hard when parameterized by t + k, even
when S ~F is a DAG, the maximum parent set size is 3, and every local score is either 1 or
0.

Proof We prove W[1]-hardness by giving a parameterized reduction from the following
problem.

Multicolored Clique
Input: A properly `-colored undirected graph G = (V,E) with color
classes C1, . . . , C` ⊆ V .
Question: Is there a clique containing one vertex from each color class in G?

Multicolored Clique is W[1]-hard when parameterized by ` (Pietrzak, 2003; Fellows,
Hermelin, Rosamond, & Vialette, 2009).

Construction. Let G = (V,E) be a properly `-colored undirected graph with color classes
C1, . . . , C`. We describe how to construct an equivalent instance I = (N,F , t, k) of (Π0 +e)-
Moral BNSL from G. First, we define the vertex set N . Every vertex v ∈ V becomes a
vertex in N and for every pair {Ci, Cj} (i 6= j) of color classes we add a vertex w{i,j} to N .
Let W be the set of all such vertices w{i,j}. Moreover, we add a vertex x to N which we
will call the central vertex for the rest of the proof.

Second, we define the local scores F . For every vertex u ∈ V ∪ {x} and every P ⊆
N \ {u}, we set fu(P) := 0. It remains to define the local scores for the vertices in W .
Let i, j ∈ {1, . . . , `} with i 6= j. We set fw{i,j}({u, v, x}) := 1 if there is an edge {u, v} ∈ E
connecting a vertex u ∈ Ci and v ∈ Cj . For all other sets P , we set fw{i,j}(P) := 0. Observe
that the value of the local scores is either 0 or 1 and that there are exactly |E| values
with fv(P) = 1.

Finally, we set t :=
(
`
2

)
and k := 4

(
`
2

)
+ `. Note that t+ k ∈ O(`2).

Observe that the maximum parent set size is 3 and the directed superstructure S ~F is a
DAG since every vertex in V ∪ {x} has in-degree 0 in S ~F and every vertex in W is a sink
in S ~F . Figure 3 shows an example of the construction.

Intuition. Before we show the correctness of the reduction, we start with some intuition.
To obtain score t =

(
`
2

)
, every vertex in W must choose a parent set with score 1. Hence,

every w{i,j} chooses a parent set {u, v, x} with u ∈ Ci and v ∈ Cj . This choice represents
the choice of an edge {u, v} ∈ E between the vertices u and v of a multicolored clique
in G. Considering the moralized graph of the resulting Bayesian network, the bound of
the number of edges gives a bound of the number of moral edges that are incident with
the central vertex x. This guarantees that the chosen edges form a multicolored clique in
the following sense: If the parent sets of vertices in W do not correspond to the edges of a
multicolored clique in G, then the moralized graph has more than k = 4

(
`
2

)
+ ` edges.

Correctness. We show that G is a yes-instance of Multicolored Clique if and only
if (N,F , t, k) is a yes-instance of (Π0 + e)-Moral BNSL.

1258

Learning Bayesian Networks Under Sparsity Constraints

x

w{1,3} w{2,3}

w{1,2}

C3

C1 C2

v1

v2

v3

Figure 3: An example of the construction given in the proof of Theorem 29. The original instance
contains a multicolored clique on the vertices v1 ∈ C1, v2 ∈ C2, and v3 ∈ C3. The
directed edges represent the arcs of a DAG with score 3 such that the moralized graph
contains 15 edges. The dotted edges correspond to the moralized edges.

(⇒) Let S := {v1, . . . , v`} with vi ∈ Ci be a multicolored clique in G. We define the arc
set A := {(vi, w{i,j}), (vj , w{i,j}), (x,w{i,j}) | w{i,j} ∈W}. We show that A is (N,F , t)-valid
and that there are at most k edges in M(N,A).

Since the vertices of S are pairwise adjacent in G, it holds that fw{i,j}(P
A
w{i,j}

) = 1 for

every w{i,j} ∈ W and therefore
∑

v∈N fv(P
A
v) =

(
`
2

)
= t. Moreover, since S ~F is a DAG, we

conclude that (N,A) is a DAG. Hence, A is (N,F , t)-valid.

It remains to check that there are at most k = 4 ·
(
`
2

)
+ ` edges in M(N,A). First,

we consider the number of arcs in (N,A). Since every vertex in W has three parents
in (N,A), we conclude |A| = 3 ·

(
`
2

)
. Next, we consider the moral edges in M(N,A).

Let a, b ∈ N be two vertices that have a common child in (N,A). Observe that all vertices
in V \ S ∪ W have out-degree 0 in (N,A). We conclude a, b ∈ S ∪ {x}. Then, there
are at most |{{a, b} | a ∈ S, b ∈ S ∪ {x}}| =

(
`
2

)
+ ` moral edges. Hence, there are at

most k = 4 ·
(
`
2

)
+ ` edges in M(N,A).

(⇐) Conversely, let A ⊆ N×N be an (N,F , t)-valid arc set such thatM(N,A) contains
at most k = 4

(
`
2

)
+ ` edges. We show that there exists a multicolored clique S in G.

Since A is (N,F , t)-valid, we know that
∑

v∈N fv(P
A
v) =

(
`
2

)
and thus fw{i,j}(P

A
w{i,j}

) = 1

for every w{i,j} ∈W . By the construction of F this implies |PAw{i,j} | = 3 for every w{i,j} ∈W .

We conclude |A| = 3
(
`
2

)
. Hence, there are at most

(
`
2

)
+ ` moral edges in M(N,A).

Before we define the multicolored clique S, we take a closer look at the moral edges
that are incident with vertices of the color classes C1, . . . , C`. Let Ci and Cj be distinct
color classes. Then, since PAw{i,j} contains one vertex from Ci and one vertex from Cj , there

exists a moral edge between the vertices of Ci and Cj . Hence, there are at least
(
`
2

)
moral

edges between the color classes of C1, . . . , C`. Now, since the overall number of moral edges
in M(N,A) is at most

(
`
2

)
+ `, we may conclude that there are at most ` moral edges that

1259

Grüttemeier & Komusiewicz

are incident with the central vertex x. We use the following claim to define a multicolored
clique S in G.

Claim 3 For every color class Ci it holds that |EM(N,A)(Ci, {x})| = 1.

Proof Let Ci be a color class. Note that there is no arc in A connecting x with some
vertices in Ci. So, EM(N,A)(Ci, {x}) contains only moral edges. For every j ∈ {1, . . . , `}
with j 6= i, the vertex w{i,j} has a parent set PAw{i,j} containing some v ∈ Ci, u ∈ Cj
and x. Then, there exist moral edges {u, v}, {v, x}, and {u, x}. Therefore, every color class
contains a vertex that is adjacent to x by a moral edge. Since there are at most ` moral
edges incident with x, we conclude |EM(N,A)(Ci, {x})| = 1. 3

We define S := {v1, v2, . . . , v`}, where (vi, x) is the unique element of EM(N,A)(Ci, {x}).
Observe that this implies PAw{i,j} = {vi, vj , x} for all vi, vj ∈ S with i 6= j. We show that S is
a multicolored clique in G. Obviously, the vertices of S are elements of distinct color classes.
Thus, it remains to show that the vertices in S are pairwise adjacent in G. Let vi, vj ∈ S
with i 6= j. Then, PAw{i,j} = {vi, vj , x} and since fw{i,j}(P

A
w{i,j}

) = 1 it follows from the

construction of F that there is an edge {vi, vj} ∈ E. Hence, S is a multicolored clique in G.
2

7. BNSL with Bounded Feedback Edge Set

In this section, we provide a first step into the study of the parameterized complexity of
learning a Bayesian network whose moralized graph has a feedback edge set of bounded
size. Formally, this is the constrained BNSL problem (ΠF +e)-Moral BNSL, where ΠF is
the class of forest, which are undirected acyclic graphs. Recall that for efficient inference it
is desirable to have a small treewidth in the moralized graph (Darwiche, 2009). As all other
parameters considered in this work, the size of a feedback edge set is a upper bound for the
treewidth. Thus, learning a network where the moralized graph has a bounded feedback
edge set is motivated from a practical point of view.

Before we consider (ΠF + e)-Moral BNSL, we briefly discuss (ΠF + e)-Skeleton
BNSL. When k = 0, this is the problem of learning a Bayesian network with an acyclic
skeleton, also known as polytree. Finding an optimal polytree is NP-hard even on instances
with maximum parent set size 2 (Dasgupta, 1999). Consequently, (ΠF + e)-Skeleton
BNSL is NP-hard even if k = 0 is fixed. In contrast, the case k = 0 can be solved efficiently
if we consider the moralized graph instead of the skeleton. This can be seen as follows.
Let D := (N,A) be a DAG such that M(D) is acyclic. Then, each v ∈ N has at most one
parent in D, since otherwise M(D) contains a triangle. Thus, D := (N,A) is a branching.
Consequently, (ΠF + e)-Moral BNSL with k = 0 can be solved by computing an optimal
branching which can be done in polynomial time (Chow & Liu, 1968; Gaspers et al., 2015).

Proposition 30 (ΠF + e)-Moral BNSL can be solved in polynomial time when limited
to instances with k = 0.

This positive result makes it interesting to study the parameterized complexity of (ΠF +
e)-Moral BNSL when parameterized by k. In the following, we provide a first step into

1260

Learning Bayesian Networks Under Sparsity Constraints

this parameterized complexity analysis and show that (ΠF +e)-Moral BNSL is W[1]-hard
when parameterized by k. Thus, (ΠF + e)-Moral BNSL can presumably not be solved
in g(k) · |I|O(1) time for a computable function g. However, an XP-time algorithm might
still be possible.

Theorem 31 (ΠF + e)-Moral BNSL is W[1]-hard when parameterized by k, even when
restricted to instances where S ~F is a DAG and the maximum parent set size is 4.

Proof We give a parameterized reduction from (Π0 + e)-Moral BNSL parameterized by
the number of edges k which is W[1]-hard even on instances where the directed superstruc-
ture is a DAG and the maximum parent set size is 3 due to Theorem 29.

Construction. Let I := (N,F , t, k) be such an instance of (Π0 + e)-Moral BNSL. We
describe how to construct an equivalent instance I ′ := (N ′,F ′, t′, k′) of (ΠF + e)-Moral
BNSL where k′ = k. The vertex set is N ′ := N ∪ {x} for some x 6∈ N .

We define the vertex set by N ′ := N ∪{x} for some x 6∈ N . To define the local scores F ′,
we set `+ := 1+

∑
v∈N maxP⊆N\{v} fv(P). For every v ∈ N we set f ′v(P) = fv(P \{x})+`+

if x ∈ P and P \ {x} ∈ PF (v). In all other cases, we set f ′v(P) = 0. For the vertex x, we
set f ′x(P) = 0 for every P . Finally, we set t′ := t+ n · `+.

We can obviously compute I ′ from I in polynomial time. Since I is an instance where S ~F
is a DAG and the maximum parent set size is 3, we conclude that the maximum parent set
size of I ′ is 4 and that S ~F ′ is a DAG.

Intuition. Before we prove the correctness of the reduction we provide some intuition.
To obtain an (N ′,F ′, t′)-valid arc set A′, the vertex x must be a parent of every vertex
of N . Hence, for every v ∈ N , there exists an edge {x, v} in M(N ′, A′). The idea is
thatM(N ′, A′) can be transformed into an acyclic graph by deleting all edges between the
vertices of N .

Correctness. We now prove that I is a yes-instance of (Π0 + e)-Moral BNSL if and
only if I ′ is a yes-instance of (ΠF + e)-Moral BNSL.

(⇒) Let A ⊆ N × N be an (N,F , t)-valid arc set such that M(D) for D := (N,A)
contains at most k edges. We then define A′ := A∪ {(x, v) | v ∈ N} and let D′ := (N ′, A′).
We show that A′ is (N ′,F ′, t′)-valid and M(D′) has a feedback edge set of size at most k.

We first show that A′ is (N ′,F ′, t′)-valid. Since S ~F ′ is a DAG we conclude that D is

a DAG. Moreover, PA
′

v = PAv ∪ {x} for every v ∈ N and therefore∑
v∈N ′

f ′v(P
A′
v) =

∑
v∈N

(fv(P
A
v) + `+)

≥ t+ n · `+ = t′.

Consequently, D′ is (N ′,F ′, t′)-valid. It remains to show that M(D′) has a feedback edge
set of size at most k. To this end, consider the following claim.

Claim 4 Let v, w ∈ N . Then, {v, w} is a moral edge in M(D) if and only if {v, w} is a
moral edge in M(D′).

Proof Let {v, w} be a moral edge in M(D). Then, there exists a vertex u ∈ N such
that (v, u), (w, u) ∈ A. Since A ⊆ A′ we conclude that {v, w} is a moral edge in M(D′).

1261

Grüttemeier & Komusiewicz

Conversely, let {v, w} be a moral edge inM(D′). Then, v and w have a common child u
in D′. Since x has no incoming arcs, we conclude u ∈ N and therefore (v, u), (w, u) ∈ A.
Hence, {v, w} is a moral edge in M(D). 3

Claim 4 together with the fact that (N×N)∩A′ = A implies that v, w ∈ N are adjacent
inM(D) if and only if they are adjacent inM(D′). Hence, if we delete every edge ofM(D)
from M(D′) we obtain the graph G := (N ′, {{x, v} | v ∈ N}) which is acyclic. Since there
are at most k edges in M(D) we conclude that there exists a feedback edge set of size at
most k for M(D′).

(⇐) Conversely, let A′ be an (N ′,F ′, t′)-valid arc set such thatM(D′) for D′ := (N ′, A′)
has a feedback edge set of size at most k. Observe that x ∈ PA′v for every v ∈ N : If there
exists a vertex w ∈ N with x 6∈ PA′w , then f ′w(PA

′
w) = 0 and therefore the sum of the local

scores is smaller than n · `+. This contradicts the fact that A′ is (N ′,F ′, t′)-valid. We
define A := (N ×N) ∩A′. Note that PAv = PA

′
v \ {x} for every v ∈ N .

We first show that D := (N,A) is (N,F , t)-valid. Obviously, D is a DAG since S ~F is a
DAG. Moreover, it holds that∑

v∈N
fv(P

A
v) =

∑
v∈N

fv(P
A′
v \ {x})

≥ t′ − n · `+ = t.

Consequently, D is (N,F , t)-valid.

Next, assume towards a contradiction that there are more than k edges in M(D).
Since A ⊆ A′, this implies that inM(D′) there are more than k edges between the vertices
of N . Furthermore, since x ∈ PA′v for every v ∈ N we conclude that every vertex in N is
adjacent to x in M(D′). Hence, M(D′) consists of n + 1 vertices and at least n + k + 1
edges which contradicts the fact that M(D′) has a feedback edge set of size at most k. 2

8. On Problem Kernelization

In this section we prove a new hardness result for Vanilla-BNSL: We show that under
the standard assumtion NP 6⊆ coNP/poly, Vanilla-BNSL does not admit a polynomial
problem kernel when parameterized by the number of vertices. That is, it is presumably im-
possible to transform an instance of Vanilla-BNSL in polynomial time into an equivalent
instance of size |I| = nO(1). Thus, it is sometimes necessary to keep an exponential number
of parent scores to compute an optimal network. The kernel lower bound even holds for
instances where all local scores are either 0 or 1. Thus, the kernel lower bound is not based
on the fact that large local scores might be incompressible.

We then use the kernel lower bound for Vanilla-BNSL to complement the FPT result
from Corollary 27 and show that there is little hope that (Π0 +e)-Skeleton BNSL admits
a polynomial problem kernel.

Theorem 32 Vanilla-BNSL parameterized by n+ t does not admit a polynomial kernel
unless NP ⊆ coNP/poly even when restricted to instances where all local scores are either
0 or 1.

1262

Learning Bayesian Networks Under Sparsity Constraints

Proof We prove the theorem by giving a polynomial parameter transformation from the
following problem.

Multicolored Independent Set
Input: A properly `-colored undirected graph G = (V,E) with color
classes C1, . . . , C` ⊆ V .
Question: Is there an independent set containing one vertex from each color in
G?

Multicolored Independent Set does not admit a polynomial kernel when parameter-
ized by |C1 ∪ · · · ∪ C`−1| unless NP ⊆ coNP/poly (Grüttemeier & Komusiewicz, 2020).

Construction. Let G = (V,E) be an instance of Multicolored Independent Set
with the color classes C1, . . . , C`. We describe how to construct an equivalent instance
(N,F , t) of Vanilla-BNSL. First, set N := C1 ∪ C2 ∪ · · · ∪ C`−1 ∪ {x} for some x 6∈ V .
Second, we define the local scores F as follows: Let i ∈ {1, . . . , ` − 1}. For v ∈ Ci we
set fv(P) = 1 if P = (Ci \{v})∪ (NG(v)\C`)∪{x}. Otherwise, we set fv(P) = 0. For x, we
set fx(P) = 1 if there exists some w ∈ C` with NG(w) = P . Otherwise we set fx(P) = 0.
Finally, we set t := `.

Observe that the value of the local scores is either 1 or 0, and that there are exactly |V |
values where fv(P) = 1. Hence, |F| ∈ O(|V |). We can obviously compute (N,F , t) in poly-
nomial time from G. Furthermore, recall that |N | = |C1∪· · ·∪C`−1|+1 and therefore, n+ t
is polynomially bounded in |C1 ∪ · · · ∪ C`−1|.

Intuition: Before we show the correctness of the polynomial parameter transformation,
we start with some intuition. To reach the score t = `, exactly one vertex per color
class C1, . . . , C`−1 and the vertex x must learn a parent set with score 1. The vertices
from C1, . . . , C`−1 and the choice of the parent set of x then correspond to a multicolored
set in G. The condition that the resulting directed graph must be a DAG guarantees that
the chosen vertices form an independent set.

Correctness. (⇒) Let S = {v1, . . . , v`} be a multicolored independent set in G with vi ∈
Ci for all i ∈ {1, . . . , `}. We define the arc set A by defining the parent sets of all vertices
in N : For all v ∈ N \ {v1, . . . , v`−1} we set PAv := ∅. Next, for vi ∈ {v1, . . . , v`−1} we
set PAvi := (Ci\{vi})∪(NG(vi)\C`)∪{x}. Finally, we set PAx = NG(v`). We now prove that A
is (N,F , t)-valid. By definition of F it holds that fv(P

A
v) = 1 for every v ∈ {v1, . . . , v`−1, x}.

Hence,
∑

c∈N fv(P
A
v) = t.

It remains to show that D := (N,A) is a DAG. If D contains a directed cycle, all vertices
on the directed cycle have incoming and outgoing arcs. Observe that v1, . . . , v`−1, and x
are the only vertices with incoming arcs.

We first prove that every v ∈ {v1, . . . , v`−1} is a sink in D. Assume towards a contradic-
tion that there is some v ∈ {v1, . . . , v`−1} that has an outgoing arc (v, w) ∈ A. Without loss
of generality, let v = v1. Since v1 6∈ PAv1 and only the vertices v1, v2, . . . , v`−1, x have parents
under A, we conclude w ∈ {v2, . . . , v`−1, x}. If w ∈ {v2, . . . , v`−1}, then v ∈ PAw and there-
fore v ∈ NG(w). Otherwise, if w = x, then v ∈ PAx and therefore v ∈ NG(v`). Both cases
contradict the fact that S is an independent set in G and therefore every v ∈ {v1, . . . , v`−1}
is a sink in D.

We conclude that x is the only vertex that might have incoming and outgoing arcs in D.
Hence, x is the only vertex that might be part of a directed cycle. Since x 6∈ PAx we conclude
that there is no cycle in D and therefore D is a DAG.

1263

Grüttemeier & Komusiewicz

(⇐) Let A be an (N,F , t)-valid arc set. We show that there exists a multicolored
independent set S in G. To this end, consider the following claim.

Claim 5

a) There are at least ` vertices v ∈ N with fv(P
A
v) = 1.

b) For every Ci with i ∈ {1, . . . , ` − 1} there is at most one vertex vi ∈ Ci with
fvi(P

A
vi) = 1.

Proof We first show statement a). Since A is (N,F , t)-valid we know that
∑

v∈V fv(P
A
v) ≥

t = `. Since every local score is either 0 or 1, statement a) follows.
We next show statement b). Note that (N,A) is a DAG since A is (N,F , t)-valid.

Let i ∈ {1, . . . , ` − 1}. Assume towards a contradiction that there are distinct u, v ∈ Ci
with fu(PAu) = fv(P

A
v) = 1. Then, by the construction of F we conclude Ci \{u} ⊆ PAu and

Ci \ {v} ⊆ PAv . Hence (u, v), (v, u) ∈ A which contradicts the fact that (N,A) is a DAG.
Consequently, statement b) holds. 3

From Claim 5 a) and b) we conclude that for each Ci with i ∈ {1, . . . , ` − 1} there is
exactly one vi ∈ Ci with fvi(P

A
vi) = 1 and that fx(PAx) = 1. Moreover, fx(PAx) = 1 implies

that there exists a vertex v` ∈ C` with NG(v`) = PAx . We define S := {v1, . . . , v`−1, v`} and
show that S is a multicolored independent set in G.

Obviously, the vertices of S are from pairwise distinct color classes. Thus, it remains
to show that no two vertices in S are adjacent in G. Assume towards a contradiction that
there exist v, w ∈ S such that {v, w} ∈ E. Without loss of generality, let v = v1. Consider
the following cases.

Case 1: w ∈ {v2, . . . , v`−1}. Then, {v, w} ∈ E implies w ∈ NG(v) \ C` and v ∈
NG(w)\C`. Together with the fact that fv(P

A
v) = fw(PAw) = 1 we conclude (v, w), (w, v) ∈ A

which contradicts the fact that (N,A) is a DAG.
Case 2: w = v`. Then, {v, w} ∈ E implies v ∈ NG(w) and therefore v ∈ PAx . More-

over fv(P
A
v) = 1 implies x ∈ PAv . Hence, (v, w), (w, v) ∈ A contradicting the fact that (N,A)

is a DAG.
We conclude that no two vertices of S are adjacent in G and therefore, S is a multicolored

independent set in G. 2.

We may also use Theorem 32 to complement the FPT result for (Π0 + e)-Skeleton
BNSL by a kernel lower-bound. More generally, we show that all four constrained BNSL
problems for any monotone and infinite graph class Π have no polynomial kernel when
parameterized by k + t unless NP ⊆ coNP/poly.

Let Π be a monotone graph class that contains infinitely many graphs and we consider
the constrained BNSL problem (Π + e)-Skeleton BNSL. We now observe that there is a
simple polynomial parameter transformation from Vanilla-BNSL parameterized by n+ t
to (Π + e)-Skeleton BNSL parameterized by k + t: Let I := (N,F , t) be an instance of
Vanilla-BNSL. We then set k := n2 and construct an instance I ′ := (N,F , t, k) of (Π+e)-
Skeleton BNSL. Since k = n2, we have S(N,A) ∈ Π + ke for every possible A ⊆ N ×N .
Thus, I ′ is a yes-instance of (Π+e)-Skeleton BNSL if and only if there exists an (N,F , t)-
valid arc set A ⊆ N ×N . Consequently, I ′ is a yes-instance of (Π + e)-Skeleton BNSL

1264

Learning Bayesian Networks Under Sparsity Constraints

if and only if I is a yes-instance of Vanilla-BNSL. Since k + t = n2 + t, the construction
described above is a polynomial parameter transformation.

It is easy to see that the same construction also provides a polynomial parameter trans-
formation from Vanilla-BNSL to the other constrained BNSL problems for Π. Together
with the kernel lower-bound from Theorem 32, this implies the following.

Corollary 33 Let Π be a monotone graph class that contains infinitely many graphs. Then,
all four constrained BNSL problems for Π parameterized by k+ t do not admit a polynomial
kernel unless NP ⊆ coNP/poly.

9. Conclusion

We have outlined the tractability borderline of Bayesian Network Structure Learn-
ing with respect to several structural constraints on the learned network or on its moralized
graph. In particular, we have shown that putting structural sparsity constraints on the
moralized graph may make the problem harder than putting similar constraints on the net-
work. This is somewhat counterintuitive since the moralized graph is a supergraph of the
underlying undirected graph of the network. It seems interesting to investigate this issue
further, that is, to find other structural constraints such that putting these constraints on
the network leads to an easier problem than putting them on the moralized graph.

The two most important concrete questions left open by our work are the following.
First, can we compute an optimal network where the skeleton has dissociation number at
most k in polynomial time for constant k? Second, can we compute an optimal network
whose moralized graph has a feedback edge set of size at most k in polynomial time for
constant k?

Another important direction for future work is to study how well the algorithms for (Π0+
v)-Skeleton-BNSL (Theorem 6) and (Π1 + v)-Moral-BNSL (Theorem 17) perform on
benchmark data sets. This way, one can extend the work of Korhonen and Parviainen (2015)
who experimentally evaluated the performance of a similar algorithm for (Π0 + v)-Moral
BNSL.

As a final remark, the algorithm for learning a Bayesian network with a bounded number
of arcs (Theorem 26) seems to have no direct practical applications. It may, however, be
useful as subroutines in a branch-and-bound scenario where one may aim to compute upper
or lower bounds on the score that can be achieved by adding k arcs to a network that
is currently considered in the search. Thus, it would be interesting to explore variants of
Bayesian Network Structure Learning where the input contains a partial network
and the aim is to extend it. Do the positive results for Bayesian Network Structure
Learning also hold for this more general problem?

Acknowledgments

We would like to thank the reviewers of Journal of Artificial Intelligence Research for
their helpful comments. Furthermore, we would like to thank our colleague Nils Morawietz
(Philipps-Universität Marburg) for his helpful discussions that led to the proof of Theo-
rem 7. A preliminary version of this work appeared in Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, (IJCAI ’20), pages 4245–4251.

1265

Grüttemeier & Komusiewicz

The full version contains all missing proofs, new results for BNSL with constraints on the
skeleton, and an improved algorithm for (Π1 +v)-Moral BNSL leading to a slightly better
running time.

References

Alon, N., Yuster, R., & Zwick, U. (1995). Color-coding. Journal of the ACM, 42 (4), 844–
856.

Bodlaender, H. L., Thomassé, S., & Yeo, A. (2011). Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci., 412 (35), 4570–4578.

Chickering, D. M. (1995). Learning Bayesian networks is NP-complete. In Proceedings
of the Fifth International Conference on Artificial Intelligence and Statistics, (AIS-
TATS’95), pp. 121–130. Springer.

Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14 (3), 462–467.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42 (2-3), 393–405.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge Univer-
sity Press.

Dasgupta, S. (1999). Learning polytrees. In Proceedings of the 15th Conference on Uncer-
tainty in Artificial Intelligence (UAI ’99), pp. 134–141. Morgan Kaufmann.

Downey, R. G., & Fellows, M. R. (1995). Parameterized computational feasibility. In Feasible
mathematics II, pp. 219–244. Springer.

Elidan, G., & Gould, S. (2008). Learning bounded treewidth Bayesian networks. In Pro-
ceedings of the Twenty-Second Annual Conference on Neural Information Processing
Systems, (NIPS’08), pp. 417–424. Curran Associates, Inc.

Fellows, M. R., Hermelin, D., Rosamond, F. A., & Vialette, S. (2009). On the parameter-
ized complexity of multiple-interval graph problems. Theoretical Computer Science,
410 (1), 53–61.

Gaspers, S., Koivisto, M., Liedloff, M., Ordyniak, S., & Szeider, S. (2015). On finding
optimal polytrees. Theoretical Computer Science, 592, 49–58.

Grüttemeier, N., & Komusiewicz, C. (2020). On the relation of strong triadic closure and
cluster deletion. Algorithmica, 82 (4), 853–880.

Kirkpatrick, D. G., & Hell, P. (1983). On the complexity of general graph factor problems.
SIAM J. Comput., 12 (3), 601–609.

Korhonen, J. H., & Parviainen, P. (2013). Exact learning of bounded tree-width Bayesian
networks. In Proceedings of the Sixteenth International Conference on Artificial In-
telligence and Statistics, (AISTATS’13), pp. 370–378. JMLR.org.

1266

Learning Bayesian Networks Under Sparsity Constraints

Korhonen, J. H., & Parviainen, P. (2015). Tractable Bayesian network structure learning
with bounded vertex cover number. In Proceedings of the Twenty-Eighth Annual
Conference on Neural Information Processing Systems, (NIPS’15), pp. 622–630. MIT
Press.

Meek, C. (2001). Finding a path is harder than finding a tree. Journal of Artificial Intelli-
gence Research, 15, 383–389.

Micali, S., & Vazirani, V. V. (1980). An O(
√
|V ||E|) Algorithm for finding maximum

matching in general graphs. In Proceedings of the Twenty-First Annual Symposium
on Foundations of Computer Science, (FOCS’80), pp. 17–27. IEEE Computer Society.

Naor, M., Schulman, L. J., & Srinivasan, A. (1995). Splitters and near-optimal deran-
domization. In Proceedings of the Thirty-Sixth Annual Symposium on Foundations of
Computer Science, (FOCS’95), pp. 182–191. IEEE Computer Society.

Ordyniak, S., & Szeider, S. (2013). Parameterized complexity results for exact Bayesian
network structure learning. Journal of Artificial Intelligence Research, 46, 263–302.

Ott, S., & Miyano, S. (2003). Finding optimal gene networks using biological constraints.
Genome Informatics, 14, 124–133.

Pietrzak, K. (2003). On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. Journal of Computer
and System Sciences, 67 (4), 757–771.

Silander, T., & Myllymäki, P. (2006). A simple approach for finding the globally opti-
mal Bayesian network structure. In Proceedings of the Twenty-Second Conference in
Uncertainty in Artificial Intelligence (UAI’06). AUAI Press.

1267

