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Abstract
SUNNY is an Algorithm Selection (AS) technique originally tailored for Constraint

Programming (CP). SUNNY is based on the k-nearest neighbors algorithm and enables
one to schedule, from a portfolio of solvers, a subset of solvers to be run on a given CP
problem. This approach has proved to be effective for CP problems.

In 2015, the ASlib benchmarks were released for comparing AS systems coming from
disparate fields (e.g., ASP, QBF, and SAT) and SUNNY was extended to deal with generic
AS problems. This led to the development of sunny-as, a prototypical algorithm selector
based on SUNNY for ASlib scenarios. A major improvement of sunny-as, called sunny-as2,
was then submitted to the Open Algorithm Selection Challenge (OASC) in 2017, where it
turned out to be the best approach for the runtime minimization of decision problems.

In this work we present the technical advancements of sunny-as2, by detailing through
several empirical evaluations and by providing new insights. Its current version, built on
the top of the preliminary version submitted to OASC, is able to outperform sunny-as and
other state-of-the-art AS methods, including those who did not attend the challenge.

1. Introduction

Solving combinatorial problems is hard and, especially for NP-hard problems, there is not a
dominant algorithm for each class of problems. A natural way to face the disparate nature
of combinatorial problems and obtain a globally better solver is to use a portfolio of different
algorithms (or solvers) to be selected on different problem instances. The task of identifying
suitable algorithm(s) for specific instances of a problem is known as per-instance Algorithm
Selection (AS). By using AS, portfolio solvers are able to outperform state-of-the-art single
solvers in many fields such as Propositional Satisfiability (SAT), Constraint Programming
(CP), Answer Set Programming (ASP), Quantified Boolean Formula (QBF).

A significant number of domain-specific AS strategies have been studied. However,
it is hard if not impossible to judge which of them is the best strategy in general. To
address this problem, the Algorithm Selection library (ASlib) (Bischl et al., 2016) has been
proposed. ASlib consists of scenarios collected from a broad range of domains, aiming to
give a cross-the-board performance comparison of different AS techniques, with the scope
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of comparing various AS techniques on the same ground. Based on the ASlib benchmarks,
rigorous validations and AS competitions have been recently held.

In this paper, we focus on the SUNNY portfolio approach (Amadini, Gabbrielli, &
Mauro, 2015a, 2014), originally developed to solve Constraint Satisfaction Problems (CSPs).
SUNNY is based on the k-nearest neighbors (k-NN) algorithm. Given a previously unseen
problem instance P , it first extracts its feature vector FP , i.e., a collection of numerical
attributes characterizing P , and then finds the k training instances “most similar” to FP
according to the Euclidean distance. Afterwards, SUNNY selects the best solvers for these
k instances, and assign a time slot proportional to the number of solved instances to the
selected solvers. Finally, the selected solvers are sorted by average solving time and then
executed on P .

Initially designed for CSPs, SUNNY has then been customized to solve Constraint Op-
timization Problems (COPs) and to enable the parallel execution of its solvers. The re-
sulting portfolio solver, called sunny-cp (Amadini, Gabbrielli, & Mauro, 2015a), won the
gold medal in the Open Track of the Minizinc Challenge (Stuckey, Feydy, Schutt, Tack,
& Fischer, 2014)—the yearly international competition for CP solvers—in 2015, 2016, and
2017 (Amadini, Gabbrielli, & Mauro, 2018).

In 2015, SUNNY was extended to deal with general AS scenarios—for which CP prob-
lems are a particular case (Amadini, Biselli, Gabbrielli, Liu, & Mauro, 2015b). The resulting
tool, called sunny-as, natively handled ASlib scenarios and was submitted to the 2015 ICON
Challenge on Algorithm Selection (Kotthoff, Hurley, & O’Sullivan, 2017) to be compared
with other AS systems. Unfortunately, the outcome was not satisfactory: only a few com-
petitive results were achieved by sunny-as, that turned out to be particularly weak on SAT
scenarios. We therefore decided to improve the performance of sunny-as by following two
main paths: (i) feature selection, and (ii) neighborhood size configuration.

Feature selection (FS) is a well-known process that consists of removing redundant and
potentially harmful features from feature vectors. It is well established that a good feature
selection can lead to significant performance gains. In the 2015 ICON challenge, one version
of sunny-as used a simple filter method based on information gain that, however, did not
bring any benefit. This is not surprising, because filter methods are efficient but agnostic of
the specific predictive task to be performed—they work as a pre-processing step regardless
of the chosen predictor. Hence we decided to move to wrapper methods, which are more
computationally expensive—they use the prediction system of interest to assess the selected
features—but typically more accurate.

The neighborhood size configuration (shortly, k-configuration) consists in choosing an
optimal k-value for the k-nearest neighbors algorithm on which SUNNY relies. sunny-as did
not use any k-configuration in the 2015 ICON challenge, and this definitely penalized its
performance. For example, Lindauer, Bergdoll, and Hutter (2016) pointed up that SUNNY
can be significantly boosted by training and tuning its k-value.

The new insights on feature selection and k-configuration led to development of sunny-
as2, an extension of sunny-as that enables the SUNNY algorithm to learn both the supposed
best features and the neighborhood size. We are not aware of other AS approaches selecting
features and neighborhood size in the way sunny-as2 does it. Moreover, sunny-as2 exploits
a polynomial-time greedy version of SUNNY making the training phase more efficient—the
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worst-case time complexity of the original SUNNY is indeed exponential in the size of the
portfolio.

In 2017, a preliminary version of sunny-as2 was submitted to the Open Algorithm Se-
lection Challenge (OASC), a revised edition of the 2015 ICON challenge. Thanks to the
new enhancements, sunny-as2 achieved much better results (Lindauer, van Rijn, & Kotthoff,
2019): it reached the overall third position and, in particular, it was the approach achieving
the best runtime minimization for satisfaction problems (i.e., the goal for which SUNNY was
originally designed). Later on, as we shall see, the OASC version of sunny-as2 was further
improved. In particular, we tuned the configuration of its parameters (e.g., cross-validation
mode, size of the training set, etc.) after conducting a comprehensive set of experiments
over the OASC scenarios.

In this work, we detail the technical improvements of sunny-as2 by showing their impact
on different scenarios of the ASlib. The original contributions of this paper include:

• the description of sunny-as2 and its variants, i.e., sunny-as2-f, sunny-as2-k and sunny-
as2-fk—performing respectively feature selection, k-configuration and both;1

• extensive and detailed empirical evaluations showing how the performance of sunny-as2
can vary across different scenarios, and motivating the default settings of sunny-as2
parameters;

• an original and in-depth study of the SUNNY algorithm, including insights on the
instances unsolved by sunny-as2 and the use of a greedy approach as a surrogate of the
original SUNNY approach;

• an empirical comparison of sunny-as2 against different state-of-the-art algorithm se-
lectors, showing a promising and robust performance of sunny-as2 across different
scenarios and performance metrics.

We performed a considerable number of experiments to understand the impact of the
new technical improvements. Among the lessons we learned, we mention that:

• feature selection and k-configuration are quite effective for SUNNY, and perform better
when integrated ;

• the greedy approach enables a training methodology which is faster and more effective
w.r.t. a training performed with the original SUNNY approach;

• the “similarity assumption” on which the k-NN algorithm used by SUNNY relies,
stating that similar instances have similar performance, is weak if not wrong;

• the effectiveness of an algorithm selector is strongly coupled to the evaluation metric
used to measure its performance. Nonetheless, sunny-as2 appears to more robust than
other approaches when changing the performance metric.

1. Despite the good results in the OASC, a paper describing sunny-as2 was never published before.
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The performance of sunny-as2 naturally varies according to the peculiarities of the given
scenario and the chosen performance metric. We noticed that sunny-as2 performs consis-
tently well on scenarios having a reasonable amount of instances and where the theoretical
speedup of a portfolio approach, w.r.t the best solver of the scenario, is not minimal.

We also noticed that a limited amount of training instances is enough to reach a good
prediction performance and that the nested cross-validation leads to more robust results. In
addition, the results of our experiments corroborate some previous findings, e.g., that it is
possible to reach the best performance by considering only a small neighborhood size and a
small number of features.

Paper structure. In Sect. 2 we review the literature on Algorithm Selection. In Sect. 3
we give background notions before describing sunny-as2 in Sect. 4. Sect. 5 describes the
experiments over different configurations of sunny-as2, while Sect. 6 provides more insights
on the SUNNY algorithm, including a comparison with other AS approaches. We draw
concluding remarks in Sect. 7, while the Appendix contains additional experiments and
information for the interested reader.

2. Related Work

Algorithm Selection (AS) aims at identifying on a per-instance basis the relevant algorithm,
or set of algorithms, to run in order to enhance the problem-solving performance. This
concept finds wide application in decision problems as well as in optimization problems,
although most of the AS systems have been developed for decision problems — in particular
for SAT/CSP problems. However, given the generality and flexibility of the AS framework,
AS approaches have also been used in other domains such as combinatorial optimization,
planning, scheduling, and so on. In the following, we provide an overview of the most
known and successful AS approaches we are aware of. For further insights about AS and
related problems, we refer the interested reader to the comprehensive surveys in Kerschke,
Hoos, Neumann, and Trautmann (2019); Kotthoff (2016); Amadini, Gabbrielli, and Mauro
(2015c); Smith-Miles (2008).

About a decade ago, AS began to attract the attention of the SAT community and
portfolio-based techniques started their spread. In particular, suitable tracks were added to
the SAT competition to evaluate the performance of portfolio solvers. SATzilla (Xu, Hutter,
Hoos, & Leyton-Brown, 2008, 2012) was one of the first SAT portfolio solvers. Its first
version (Xu et al., 2008) used a ridge regression method to predict the effectiveness (i.e., the
runtime or a performance score) of a SAT solver on unforeseen SAT instances. This version
won several gold medals in the 2007 and 2009 SAT competitions.

In 2012, a new version of SATzilla was introduced (Xu et al., 2012). This implementa-
tion improved the previous version with a weighted random forest approach provided with a
cost-sensitive loss function for punishing misclassification in direct proportion to their per-
formance impact. These improvements allowed SATzilla to outperform the previous version
and to win the SAT Challenge in 2012.

Another well-known AS approach for SAT problems is 3S (Kadioglu, Malitsky, Sabhar-
wal, Samulowitz, & Sellmann, 2011). Like SUNNY, the 3S selector relies on k-NN under
the assumption that performances of different solvers are similar for instances with similar
features. 3S combines AS and algorithm scheduling, in static and dynamic ways. In partic-
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ular, it first executes in the first 10% of its time budget short runs of solvers according to a
fixed schedule computed offline. Then, at run time, a designated solver is selected via k-NN
and executed for the remaining time. 3S was the best-performing dynamic portfolio at the
International SAT Competition 2011.

3S was inspired by ISAC (Kadioglu, Malitsky, Sellmann, & Tierney, 2010), a method
for instance-specific algorithm configuration based on g-means clustering (Hamerly & Elkan,
2003) and k-NN. The goal of ISAC is to produce a suitable parameter setting for a new input
instance, given a set of training samples. ISAC can also be used as an algorithm selector: in
the work by Malitsky and Sellmann (2012), three different ways of using ISAC to generate
SAT portfolio solvers are presented (pure solver portfolio, optimized solver portfolio, and
instance-specific meta-solver configuration).

Another approach based on k-NN is SNNAP (Collautti, Malitsky, Mehta, & O’Sullivan,
2013), which first predicts the performance of each algorithm with regression models and
then uses this information for a k-NN approach in the predicted performance space. As
for 3S, SNNAP was inspired by the ISAC approach. In particular, it augmented ISAC by
taking into account the past performance of solvers as part of the feature vector.

CSHC (Malitsky, Sabharwal, Samulowitz, & Sellmann, 2013) is a clustering-based ap-
proach also inspired by ISAC and 3S. In particular, CHSC combines 3S’s static scheduler
with an algorithm selector based on cost sensitive hierarchical clustering which creates a
multi-class classification model. CSHC won the gold medal in the 2013 SAT competition.

From the algorithm selection point of view, the only difference between selecting CSP
solvers or SAT solvers is the nature of the underlying problems, which is in turn reflected
into different (yet similar) types of features. Besides this, the goal is the same: minimizing
the (penalized) average runtime. Hence, SAT portfolio approaches can be quite straightfor-
wardly adapted to CSP portfolio approaches (and vice versa). An empirical evaluation of
different AS approaches for solving CSPs (including adapted SAT portfolios and off-the-shelf
machine learning approaches) is provided in Amadini, Gabbrielli, and Mauro (2013).

As mentioned in Sect. 1, SUNNY was originally designed to solve CSPs. Empirical
comparisons between SUNNY and ISAC-like, SATzilla-like and 3S-like approaches for solving
CSPs are reported in Amadini et al. (2014); Amadini, Gabbrielli, and Mauro (2016b, 2016a).2

Apart from SUNNY, other well-known CSP portfolio approaches are CPHydra and Proteus.
CPHydra (Bridge, O’Mahony, & O’Sullivan, 2012) was probably the first CSP solver

using a portfolio approach. Similarly to SUNNY, CPHydra employs k-NN to compute
a schedule of solvers which maximizes the chances of solving an instance within a given
timeout. CPHydra, however, computes the schedule of solvers differently, and does not
define any heuristic for scheduling the selected solvers. CPHydra won the 2008 International
CSP Solver Competition, but subsequent investigations (Amadini et al., 2013, 2014, 2016a)
showed some weaknesses in scalability and runtime minimization.

Proteus (Hurley, Kotthoff, Malitsky, & O’Sullivan, 2014) is a hierarchical portfolio-based
approach to CSP solving that does not rely purely on CSP solvers, but may convert a CSP
to SAT by choosing a conversion technique and an accommodating SAT solver. A number
of machine learning techniques are employed at each level in the hierarchy, e.g., decision
trees, regression, k-NN, and support vector machines.

2. The notation ISAC-like, SATzilla-like and 3S-like indicates that the original SAT-based approach was
adapted or re-implemented to be evaluated on CP instances.
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Besides the SAT and CSP settings, the flexibility of the AS framework led to the con-
struction of effective algorithm portfolios in related settings. For example, portfolio solvers
as Aspeed and claspfolio have been proposed for solving Answer-Set Programming (ASP)
problems. Aspeed (Hoos, Kaminski, Lindauer, & Schaub, 2015) is a variant of 3S where the
per-instance long-running solver selection has been replaced by a solver schedule. Lindauer
et al. (2016) released ISA which further improved Aspeed by introducing an optimization ob-
jective “timeout-minimal” in the schedule generation. Claspfolio (Hoos, Lindauer, & Schaub,
2014) supports different AS mechanisms (e.g. ISAC-like, 3S-like, SATzilla-like) and was a
gold medallist in different tracks of the ASP Competition 2009 and 2011. The contribution
of ME-ASP (Maratea, Pulina, & Ricca, 2013a) is also worth mentioning. ME-ASP identi-
fies one solver per ASP instance. To make its prediction robust, it exploits the strength of
several independent classifiers (six in total, including k-NN, SVM, Random forests, etc) and
chooses the best one according to their cross-validation performances on training instances.
An improvement of ME-ASP is described in Maratea, Pulina, and Ricca (2013b), where the
authors added the capability of updating the learned policies when the original approach
fails to give good predictions. The idea of coupling classification with policy adaptation
methods comes from AQME (Pulina & Tacchella, 2009), a multi-engine solver for quantified
Boolean formulas (QBF).

SATZilla (Xu et al., 2012) has been rather influential also outside the SAT domain.
For example, in AI planning, Planzilla (Rizzini, Fawcett, Vallati, Gerevini, & Hoos, 2017)
and its improved variants (model-based approaches) were all inspired by the random forests
and regression techniques proposed by SATZilla/Zilla. Similarly, for Satisfiability Modulo
Theories (SMT) problems, MachSMT (Scott, Niemetz, Preiner, Nejati, & Ganesh, 2021) was
recently introduced and its essential parts also rely on random forests. The main difference
between the model-based Planzilla selector and MachSMT is that the first one chooses
solvers minimizing the ratio between solved instances and solving time, while the latter only
considers the solving time of candidate solvers.

A number of AS approaches have been developed to tackle optimization problems. In
this case, mapping SAT/CSP algorithm selection techniques to the more general Max-
SAT (Ansótegui, Gabàs, Malitsky, & Sellmann, 2016) and Constraint Optimization Problem
(COP) (Amadini et al., 2016b) settings are not so straightforward. The main issue here is
how to evaluate sub-optimal solutions, and optimal solutions for which optimality has not
been proved by a solver. A reasonable performance metric for optimization problems com-
putes a (normalized) score reflecting the quality of the best solution found by a solver in a
given time window. However, one can also think to other metrics taking into account the
anytime performance of a solver, i.e., the sub-optimal solutions it finds during the search
(see, e.g., the area score of Amadini et al. (2016b)).

We reiterate here the importance of tracking the sub-optimal solutions for AS scenarios,
especially for those AS approaches that, like SUNNY, schedule more than one solver. The
importance of a good anytime performance has been also acknowledged by the MiniZinc
Challenge (Stuckey, Becket, & Fischer, 2010), the yearly international competition for CP
solvers, that starting from 2017 introduced the area score which measures the area under
the curve defined by fs(t) = v where v is the best value found by solver s at time t. To our
knowledge, SUNNY is the only general-purpose AS approach taking into account the area
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score to select a solver: the other approaches only consider the best value f(τ) at the stroke
of the timeout τ .

A number of ad hoc AS approaches have been developed instead for some specific op-
timisation problems like Knapsack, Most Probable Explanation, Set Partitioning, Travel
Salesman Problem (Guo & Hsu, 2007; Hutter, Xu, Hoos, & Leyton-Brown, 2012; Kerschke,
Kotthoff, Bossek, Hoos, & Trautmann, 2018; Kotthoff, Kerschke, Hoos, & Trautmann, 2015).

Considering the AS approaches that attended the 2015 ICON challenge (Lindauer et
al., 2019), apart from sunny-as, other five AS systems were submitted: ASAP, AutoFolio,
FlexFolio, Zilla, ZillaFolio. It is worth noticing that, unlike SUNNY, all of them are hybrid
systems combining different AS approaches.

ASAP (Algorithm Selector And Prescheduler system) (Gonard, Schoenauer, & Sebag,
2017, 2019) relies on random forests and k-NN. It combines pre-solving scheduling and
per-instance algorithm selection by training them jointly.

AutoFolio (Lindauer, Hoos, Hutter, & Schaub, 2015) combines several algorithm selec-
tion approaches (e.g., SATZilla, 3S, SNNAP, ISAC, LLAMA (Kotthoff, 2013)) in a single
system and uses algorithm configuration (Hutter, Hoos, & Leyton-Brown, 2011) to search
for the best approach and its hyperparameter settings for the scenario at hand. Along with
the scenarios in ASlib, AutoFolio also demonstrated its effectiveness in dealing with Cir-
cuit QBFs (Hoos, Peitl, Slivovsky, & Szeider, 2018). Unsurprisingly, this paper also shows
that the quality of the selected features can substantially impact the selection accuracy of
AutoFolio.

FlexFolio (Lindauer, 2015) is a claspfolio-based AS system (Hoos et al., 2014) integrating
various feature generators, solver selection approaches, solver portfolios, as well as solver-
schedule-based pre-solving techniques into a single, unified framework.

Zilla is an evolution of SATZilla (Xu et al., 2008, 2012) using pair-wise, cost-sensitive
random forests combined with pre-solving schedules. ZillaFolio combines Zilla and AutoFolio
by first evaluating both approaches on the training set. Then, it chooses the best one for
generating the predictions for the test set.

The OASC 2017 challenge (Lindauer, van Rijn, & Kotthoff, 2017) included a preliminary
version of sunny-as2, improved versions of ASAP (i.e., ASAP.v2 and ASAP.v3), an improved
version of Zilla (i.e., *Zilla) and a new contestant which came in two flavors: AS-ASL and
AS-RF. Both AS-ASL and AS-RF (Malone, Kangas, Järvisalo, Koivisto, & Myllymäki,
2017, 2018) used a greedy wrapper-based feature selection approach with the AS selector as
evaluator to locate relevant features. The system was trained differently for the two versions:
AS-ASL uses ensemble learning model while AS-RF uses the random forest. A final schedule
is built on the trained model.

One common thing between ASAP.v2/3, *Zilla and AS-RF/ASL is that all of them
attempt to solve an unseen problem instance by statically scheduling a number of solver(s)
before the AS process. The solver AS-ASL selects a single solver while ASAP and *Zilla
define a static solver schedule. A comprehensive summary of the above approaches as well
as several challenge insights are discussed in Lindauer et al. (2019).

For the sake of completeness we also mention parallel AS approaches, although they do
not fall within the scope of this paper. The parallel version of SUNNY (Amadini, Gab-
brielli, & Mauro, 2015a) won several gold medals in the MiniZinc Challenges by selecting
relevant solvers to run in parallel on a per-instance basis. In contrast, the work by Lindauer,
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Hoos, Leyton-Brown, and Schaub (2017) studied the methods for static parallel portfolio
construction. In addition to selecting relevant solvers, they also identifies performing pa-
rameter values for the selected solvers. Given a limited time budget for training, a large
amount of candidate solvers and their wide configuration space, the task of making parallel
portfolio is not trivial. Therefore, they examined greedy techniques to speed up their pro-
cedures, and clause sharing for algorithm configuration to improve prediction performance.
Likewise, in the domain of AI planning, portfolio parallelization has also been investigated.
An example is the static parallel portfolio proposed by Vallati, Chrpa, and Kitchin (2018)
where planners are scheduled to each available CPU core.

We conclude by mentioning some interesting AS approaches that, however, did not at-
tend the 2015 and 2017 challenges. The work by Ansotegui, Sellmann, and Tierney (2018)
is built upon CSHC. They first estimate the confidence of the predicted solutions and then
use the estimations to decide whether it is appropriate to substitute the solution with a
static schedule. By using the OASC dataset, the authors demonstrated a significant im-
provement over the original CSHC approach reaching the state-of-the-art performance in
several scenarios. In Mısır and Sebag (2017), the AS problem is seen as a recommendation
problem solved with the well-known technique of collaborative filtering (Ekstrand, Riedl, &
Konstan, 2011). This approach has a performance similar to the initial version of sunny-as.
In Loreggia, Malitsky, Samulowitz, and Saraswat (2016), the authors introduce an original
approach that transforms the text-encoded instances for the AS into a 2-D image. These
images are later processed by a Deep Neural Network system to predict the best solver to use
for each of them. This approach enables to find out (and also generate) relevant features for
the Algorithm Selection. Preliminary experiments are quite encouraging, even though this
approach still lags behind w.r.t. state-of-the-art approaches who are using and exploiting
crafted instance features.

3. Preliminaries

In this section we formalize the Algorithm Selection problem (Bischl et al., 2016) and the
metrics used to evaluate algorithm selectors. We then briefly introduce the feature selection
process and the SUNNY algorithm on which sunny-as and sunny-as2 rely. We conclude by
providing more details about the OASC and its scenarios.

3.1 Algorithm Selection Problem and Evaluation Metrics

To create an algorithm selector we need a scenario with more than one algorithm to choose,
some instances on which to apply the selector, and a performance metric to optimize. This
information can be formally defined as follows.

Definition 1 (AS scenario). An AS scenario is a triple (I,A,m) where:

• I is a set of instances,

• A is a set (or portfolio) of algorithms (or solvers) with |A| > 1,

• m : I × A → R is a performance metric.
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Without loss of generality, from now on we assume that lower values for the performance
metric m are better, i.e., the goal is to minimize m.

An algorithm selector, or shortly a selector, is a function that for each instance of the
scenario aims to return the best algorithm, according to the performance metric, for that
instance. Formally:

Definition 2 (Selector). Given an AS scenario (I,A,m) a selector s is a total mapping
from I to A.

The algorithm selection problem (Rice, 1976) consists in creating the best possible se-
lector. Formally:

Definition 3 (AS Problem). Given an AS scenario (I,A,m) the AS Problem is the problem
of finding the selector s such that the overall performance

∑
i∈I

m(i, s(i)) is minimized.

If the performance metric m is fully defined, the AS Problem can be easily solved by
assigning to every instance the algorithm with lower value of m. Unfortunately, in the real
world, the performance metric m on I is only partially known. In this case, the goal is to
define a selector able to estimate the value of m for the instances i ∈ I where m(i, A) is
unknown. A selector can be validated by partitioning I into a training set Itr and a test set
Its. The training instances of Itr are used to build the selector s, while the test instances of
Its are used to evaluate the performance of s:

∑
i∈Its

m(i, s(i)). As we shall see, the training

set Itr can be further split to tune and validate the parameters of the selector.
Different approaches have been proposed to build and evaluate an algorithm selector.

First of all, since the instances of I are often too hard to solve in a reasonable time, typically
a solving timeout τ is set. For this reason, often the performance metric is extended with
other criteria to penalize an algorithm selector that does not find any solution within the
timeout. One of the most used is the Penalized Average Runtime (PAR) score with penalty
λ > 1 that penalizes instances not solved within the timeout with λ times the timeout.

Formally, if m denotes the runtime, it is defined as PARλ =
1

|I|
∑
i∈I

m′(i, s(i)) where

m′(i, A) =

{
m(i, A) if m(i, A) < τ

λ× τ otherwise.

For example, in both the 2015 ICON challenge and the OASC, the PAR10 score was used
for measuring the selectors’ performance on every single scenario.

Unfortunately, the PAR value can greatly change across different scenarios according to
the timeout, making it difficult to assess the global performance across all the scenarios.
Hence, when dealing with heterogeneous scenarios, it is often better to consider normalized
metrics. As baselines, one can consider the performance of the single best solver (SBS, the
best individual solver according to the performance metric) of the scenario as upper bound
and the performance of the virtual best solver (VBS, the oracle selector always able to pick
the best solver for all the instances in the test set) as lower bound. Ideally, the performance
of a selector should be in between the performance of the SBS and that of the VBS. However,
while an algorithm selector can never outperform the VBS, it might happen that it performs
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worse than the SBS. This is more likely to happen when the gap between SBS and VBS is
exiguous.

Two metrics are often used in the literature to compare algorithm selectors: the speedup
or improvement factor (Lindauer et al., 2019) and the closed gap (Lindauer, van Rijn, &
Kotthoff, 2017). The speedup is a number that measures the relative performance of two
systems. If ms and mVBS are respectively the cumulative performances of a selector s and
the virtual best solver across all the instances of a scenario, the speedup of the VBS w.r.t.
the selector is defined as the ratio between ms and mVBS. Since the selector can not be
faster than the VBS, this value is always greater than 1, and values closer to 1 are better.
To normalize this metric in a bounded interval (the upper bound varies across different
scenarios) the fraction can be reversed by considering the ratio between mVBS and ms. In
this case the value always falls in (0, 1], and the greater the value the better the selector.

Unlike the speedup, the closed gap score measures how good a selector is in improving
the performance of the SBS w.r.t. the VBS in the AS scenario. Assuming that mSBS is the
cumulative performance of the SBS across all the instances of the scenario, the closed gap
is defined as:

mSBS −ms

mSBS −mVBS
A good selector will have a performance ms close to the virtual best solver, which makes
the closed gap score close to 1. On the contrary, a poor performance consists of having ms

close to the single best solver mSBS, thus making the closed gap close to 0 if not even lower.
An alternative way to evaluate the performance of algorithm selectors is to use compar-

ative scores without considering the SBS and VBS baselines. For example, in the MiniZinc
Challenge (Stuckey et al., 2014) a Borda count is used to measure the performance of CP
solvers. The Borda count allows voters (instances) to order the candidates (solvers) accord-
ing to their preferences and giving to them points corresponding to the number of candidates
ranked lower. Once all votes have been counted, the candidate with the most points is the
winner. This scoring system can be applied to algorithm selectors in a straightforward way.

Formally, let (I,A,m) be a scenario, S a set of selectors, τ the timeout. Let us denote
with m(i, s) the performance of selector s on problem i. The Borda score of selector s ∈ S
on instance i ∈ I is Borda(i, s) =

∑
s′∈S−{s} cmp(m(i, s),m(i, s′)) where the comparative

function cmp is defined as:

cmp(t, t′) =



0 if t = τ

1 if t < τ ∧ t′ = τ

0.5 if t = t′ = 0
t′

t+ t′
otherwise.

Since cmp is always in [0, 1], the score Borda(i, s) is always in [0, |S| − 1]: the higher its
value, the more selectors it can beat. When considering multiple instances, the winner is
the selector s that maximizes the sum of the scores over all instances, i.e.,

∑
i∈I Borda(i, s).

3.2 Feature Selection

Typically, AS scenarios characterize each instance i ∈ I with a corresponding feature vector
F(i) ∈ Rn, and the selection of the best algorithm A for i is actually performed according
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to F(i), i.e., A = s(F(i)). The feature selection (FS) process allows one to consider smaller
feature vectors F ′(i) ∈ Rm, derived from F(i) by projecting a number m ≤ n of its features.
The purpose of feature selection is simplifying the prediction model, lowering the training
and feature extraction costs, and hopefully improving the prediction accuracy.

FS techniques (Guyon & Elisseeff, 2003) basically consist of a combination of two com-
ponents: a search technique for finding good subsets of features, and an evaluation function
to score these subsets. Since exploring all the possible subsets of features is computation-
ally intractable for non-trivial feature spaces, heuristics are employed to guide the search
of the best subsets. Greedy search strategies usually come in two flavors: forward selection
and backward elimination. In forward selection, features are progressively incorporated into
larger and larger subsets. Conversely, in backward elimination features are progressively
removed starting from all the available features. A combination of these two techniques,
genetic algorithms, or local search algorithms such as simulated annealing are also used.

There are different ways of classifying FS approaches. A well established distinction is
between filters and wrappers. Filter methods select the features regardless of the model,
trying to suppress the least interesting ones. These methods are particularly efficient and
robust to overfitting. In contrast, wrappers evaluate subsets of features possibly detecting
the interactions between them. Wrapper methods can be more accurate than filters, but
have two main disadvantages: they are more exposed to overfitting, and they have a much
higher computational cost. More recently, also hybrid and embedded FS methods have been
proposed (Jovic, Brkic, & Bogunovic, 2015). Hybrid methods combine wrappers and filters
to get the best of these two worlds. Embedded methods are instead integrated into the
learning algorithm, i.e., they perform feature selection during the model training.

In this work we do not consider filter methods. We refer the interested readers to
Amadini, Biselli, Gabbrielli, Liu, and Mauro (2015a) to know more about SUNNY with
filter-based FS.

3.3 SUNNY and sunny-as

The SUNNY portfolio approach was firstly introduced in Amadini et al. (2014). SUNNY
relies on a number of assumptions: (i) a small portfolio is usually enough to achieve a good
performance; (ii) solvers either solve a problem quite quickly, or cannot solve it in reasonable
time; (iii) solvers perform similarly on similar instances; (iv) a too heavy training phase is
often an unnecessary burden. In this section we briefly recap how SUNNY works, while
in Sect. 6 we shall address in more detail these assumptions—especially in light of the
experiments reported in Sect. 5.

SUNNY is based on the k-nearest neighbors (k-NN) algorithm and embeds built-in
heuristics for schedule generation. Despite the original version of SUNNY handled CSPs
only, here we describe its generalised version—the one we used to tackle general ASlib sce-
narios.

Let us fix the set of instances I = Itr ∪ Its, the set of algorithms A, the performance
metric m, and the runtime timeout τ . Given a test instance x ∈ Its, SUNNY produces a
sequential schedule σ = [(A1, t1), . . . , (Ah, th)] where algorithm Ai ∈ A runs for ti seconds
on x and

∑h
i=1 ti = τ . The schedule is obtained as follows. First, SUNNY employs k-NN

to select from Itr the subset Ik of the k instances closest to x according to the Euclidean
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Table 1: Runtime (in seconds). τ means the solver timeout.

x1 x2 x3 x4 x5
A1 τ τ 3 τ 278
A2 τ 593 τ τ τ
A3 τ τ 36 1452 τ
A4 τ τ τ 122 60

distance computed on the feature vector F(x). Then, it uses three heuristics to compute
σ: (i) Hsel, for selecting the most effective algorithms {A1, . . . , Ah} ⊆ A in Ik; (ii) Hall,
for allocating to each Ai ∈ A a certain runtime ti ∈ [0, τ ] for i = 1, . . . , h; (iii) Hsch, for
scheduling the sequential execution of the algorithms according to their performance in Ik.

The heuristics Hsel, Hall, and Hsch are based on the performance metric m, and depend
on the application domain. For CSPs, Hsel selects the smallest sets of solvers S ⊆ A that
solve the most instances in Ik, by using the runtime for breaking ties; Hall allocates to
each Ai ∈ S a time ti proportional to the instances that S can solve in Ik, by using a
special backup solver for covering the instances of Ik that are not solvable by any solver;
Finally, Hsch sorts the solvers by increasing solving time in Ik. For Constraint Optimization
Problems the approach is similar, but different evaluation metrics are used to also consider
the objective value and sub-optimal solutions (Amadini et al., 2016b). For more details
about SUNNY we refer the interested reader to Amadini et al. (2014, 2016b). Below we
show Example 1 illustrating how SUNNY works on a given CSP.

Example 1. Let x be a CSP, A = {A1, A2, A3, A4} a portfolio, A3 the backup solver,
τ = 1800 seconds the solving timeout, Ik = {x1, ..., x5} the k = 5 neighbors of x, and the
runtime of solver Ai on problem xj defined as in Tab. 1. In this case, the smallest set of
solvers that solve most instances in the neighborhood are {A1, A2, A3}, {A1, A2, A4}, and
{A2, A3, A4}. The heuristic Hsel selects S = {A1, A2, A4} because these solvers are faster in
solving the instances in Ik. Since A1 and A4 solve 2 instances, A2 solves 1 instance and x1
is not solved by any solver, the time window [0, τ ] is partitioned in 2 + 2 + 1 + 1 = 6 slots:
2 assigned to A1 and A4, 1 slot to A2, and 1 to the backup solver A3. Finally, Hsch sorts
in ascending order the solvers by average solving time in Ik. The final schedule produced by
SUNNY is, therefore, σ = [(A4, 600), (A1, 600), (A3, 300), (A2, 300)].

One of the goals of SUNNY is to avoid the overfitting w.r.t. the performance of the
solvers in the selected neighbors. For this reason, their runtime is only marginally used
to allocate time to the solvers. A similar but more runtime-dependent approach like,
e.g., CPHydra (Bridge et al., 2012) would instead compute a runtime-optimal allocation
(A1, 3), (A2, 593), (A4, 122), able to cover all the neighborhood instances, and then it would
distribute this allocation in the solving time window [0, τ ]. SUNNY does not follow this logic
to not be too tied to the strong assumption that the runtime in the neighborhood faithfully
reflect the runtime on the instance to be solved. To understand the rationale behind this
choice, let us see the CPHydra-like schedule above: A1 is the solver with the best average
runtime in the neighborhood, but its time slot is about 200 times less than the one of A2,
and about 40 times less than the one of A4. This schedule is clearly skewed towards A2,
which after all is the solver having the worst average runtime in the neighborhood.
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As one can expect, the design choices of SUNNY have pros and cons. For example,
unlike the CPHydra-like schedule, the schedule produced by SUNNY in Example 1 cannot
solve the instance x2 although x2 is actually part of the neighborhood. More insights on
SUNNY are provided in Sect. 6.

By default, SUNNY does not perform any feature selection: it simply removes all the
features that are constant over each F(x), and scales the remaining features into the range
[−1, 1] (scaling features is important for algorithms based on k-NN). The default neighbor-
hood size is

√
Itr, possibly rounded to the nearest integer. The backup solver is the solver

A∗ ∈ A minimising the sum
∑
i∈Itr

m(i, A∗), which is usually the SBS of the scenario.

The sunny-as (Amadini, Biselli, et al., 2015b) tool implements the SUNNY algorithm to
handle generic AS scenarios of the ASlib. In its optional pre-processing phase, performed
offline, sunny-as can perform a feature selection based on different filter methods and select
a pre-solver to be run for a limited amount of time. At runtime, it produces the schedule of
solvers by following the approach explained above.

3.4 2017 OASC Challenge

In 2017, the COnfiguration and SElection of ALgorithms (COSEAL) group (COSEAL group,
2013) organized the first Open Algorithm Selection Challenge (OASC) to compare different
algorithm selectors.

The challenge is built upon the Algorithm Selection library (ASlib) (Bischl et al., 2016)
which includes a collection of different algorithm selection scenarios. ASlib distinguishes
between two types of scenarios: runtime scenarios and quality scenarios. In runtime scenarios
the goal is to select an algorithm that minimizes the runtime (e.g., for decision problems).
The goal in quality scenarios is instead to find the algorithm that obtains the highest score
according to some metric (e.g., for optimization problems). ASlib does not consider the
anytime performance: the sub-optimal solutions computed by an algorithm are not tracked.
This makes it impossible to reconstruct ex-post the score of interleaved executions. For this
reason, in the OASC the scheduling was allowed only for runtime scenarios.

The 2017 OASC consisted of 11 scenarios: 8 runtime and 3 quality scenarios. Differently
from the previous ICON challenge for Algorithm Selection held in 2015, the OASC used
scenarios from a broader domain which come from the recent international competitions on
CSP, MAXSAT, MIP, QBF, and SAT. In the OASC, each scenario is evaluated by one pair
of training and test set replacing the 10-fold cross-validation of the ICON challenge. The
participants had access to performance and feature data on training instances (2/3 of the
total), and only the instance features for the test instances (1/3 of the total).

In this paper, since SUNNY produces a schedule of solvers not usable for quality scenar-
ios, we focus only on runtime scenarios. An overview of them with their number of instances,
algorithms, features, and the timeouts is shown in Tab. 2.3

3. Note that Bado and Svea have a different timeout value from the source scenarios. To avoid confusion,
the alias names are used when we intend the dataset of the OASC challenge.
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Table 2: OASC Scenarios.

Scenario Source Algorithms Problems Features Timeout (OASC) Timeout (ASlib)
Caren CSP-MZN-2016 8 66 95 1200 s 1200 s
Mira MIP-2016 5 145 143 7200 s 7200 s
Magnus MAXSAT-PMS-2016 19 400 37 1800 s 1800 s
Monty MAXSAT-WPMS-2016 18 420 37 1800 s 1800 s
Quill QBF-2016 24 550 46 1800 s 1800 s
Bado BNSL-2016 8 786 86 28800 s 7200 s
Svea SAT12-ALL 31 1076 115 4800 s 1200 s
Sora SAT03-16 INDU 10 1333 483 5000 s 5000 s

4. sunny-as2

sunny-as2 is the evolution of sunny-as and the selector that attended the 2017 OASC com-
petition. The most significant innovation of sunny-as2 is arguably the introduction of an
integrated approach where the features and the k-value are possibly co-learned during the
training step. This makes sunny-as2 “less lazy” than the original SUNNY approach, which
only scaled the features in [−1, 1] without performing any actual training.4 The integrated
approach we developed is similar to what has been done in Zyout, Abdel-Qader, and Jacobs
(2011); Park and Kim (2015) in the context of biology and medicine. However, to the best
of our knowledge, no similar approach has been developed for algorithm selection.

Based on training data, sunny-as2 automatically selects the most relevant features and/or
the most promising value of the neighborhood parameter k to be used for online prediction.
We recall that, differently from sunny-as2, sunny-as had only a limited support for filter-based
feature selection, it only allowed the manual configuration of SUNNY parameters, and did
not support all the evaluation modalities of the current selector.

The importance of feature selection and parameters configuration for SUNNY were in-
dependently discussed with empirical experiments conducted by Lindauer et al. (2016);
Amadini, Biselli, et al. (2015a). In particular, Amadini, Biselli, et al. (2015a) demonstrated
the benefits of a filter-based feature selection, while Lindauer et al. (2016) highlighted that
parameters like the schedule size |σ| and the neighborhood size k can have a substantial
impact on the performance of SUNNY. In this regard, the authors introduced TSUNNY,
a version of SUNNY that—by allowing the configuration of both |σ| and k parameters—
yielded a remarkable improvement over the original SUNNY. Our work is however different
because: first, we introduce a greedy variant of SUNNY for selecting subset of solvers; sec-
ond, we combine wrapper-based feature selection and k-configuration, while their system
does not deal with feature selection.

To improve the configuration accuracy and robustness, and to assess the quality of a pa-
rameters setting, sunny-as2 relies on cross-validation (CV) (Kohavi, 1995). Cross-validation
is useful to mitigate the well-known problem of overfitting. In this regard it is fundamental
to split the dataset properly. For example, in the OASC only one split between test and
training instances was used to evaluate the performance of algorithm selectors. As also no-
ticed by the OASC organizers (Lindauer et al., 2019), randomness played an important role

4. The “Y” of the SUNNY acronym actually stands for lazy (Amadini et al., 2014).
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in the competition. In particular, they stated that “this result demonstrates the importance
of evaluating algorithm selection systems across multiple random seeds, or multiple test sets”.

To evaluate the performance of our algorithm selector by overcoming the overfitting
problem and to obtain more robust and rigorous results, in this work we adopted a repeated
nested cross-validation approach (Loughrey & Cunningham, 2005). A nested cross-validation
consists of two CVs, an outer CV which forms test-training pairs, and an inner CV applied
on the training sets used to learn a model that is later assessed on the outer test sets.

The original dataset is split into five folds thus obtaining five pairs (T1, S1) . . . , (T5, S5)
where the Ti are the outer training sets and the Si are the (outer) test sets, for i = 1, . . . , 5.
For each Ti we then perform an inner 10-fold CV to get a suitable parameter setting. We
split each Ti into further ten sub-folds T ′i,1, . . . , T

′
i,10, and in turn for j = 1, . . . , 10 we use

a sub-fold T ′i,j as validation set to assess the parameter setting computed with the inner
training set, which is the union of the other nine sub-folds

⋃
k 6=j T

′
i,k. We then select, among

the 10 configurations obtained, the one for which SUNNY achieves the best PAR10 score
on the corresponding validation set. The selected configuration is used to run SUNNY on
the paired test set Si. Finally, to reduce the variability and increase the robustness of our
approach, we repeated the whole process for five times by using different random partitions.
The performance of sunny-as2 on each scenario was then assessed by considering the average
closed gap scores over all the 5× 5 = 25 test sets.

Before explaining how sunny-as2 learns features and k-value, we first describe greedy-
SUNNY, the “greedy variant” of SUNNY.

4.1 greedy-SUNNY

The selection of solvers performed by SUNNY might be too computationally expensive, i.e.,
exponential in the size of the portfolio in the worst case. Therefore, to perform a quicker
estimation of the quality of a parameter setting, we introduced a simpler variant of SUNNY
that we called greedy-SUNNY.

As for SUNNY, the mechanism of schedule generation in greedy-SUNNY is driven by
the concept of marginal contribution (Xu et al., 2012), i.e., how much a new solver can
improve the overall portfolio. However, greedy-SUNNY differs from SUNNY in the way the
schedule of solvers is computed. Given the set N of the instances of the neighborhood,
the original SUNNY approach computes the smallest set of solvers in the portfolio that
maximizes the number of solved instances in N . The worst-case time complexity of this
procedure is exponential in the number of available solvers.

To overcome this limitation, greedy-SUNNY starts from an empty set of solvers S and
adds to it one solver at a time by selecting the one that is able to solve the largest number
of instances in N . The instances solved by the selected solver are then removed from N and
the process is repeated until a given number λ of solvers is added to S or there are no more
instances to solve (i.e., N = ∅).5 Based on some empirical experiments, the default value of
λ was set to a small value (i.e., 3) as also suggested by the experiments in Lindauer et al.
(2016). If λ is a constant, the time-complexity of greedy-SUNNY is O(nk) where k = |N |
and n is the number of available solvers.

5. As one can expect, greedy-SUNNY does not guarantee that S is the minimal subset of solvers solving
the most instances of N .
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4.2 Learning the Parameters

sunny-as2 provides different procedures for learning features and/or the k value. The con-
figuration procedure is performed in two phases: (i) data preparation, and (ii) parameters
configuration.

4.2.1 Data Preparation

The dataset is first split into 5 folds (T1, S1) . . . , (T5, S5) for the outer CV, and each Ti is in
turn split in T ′i,1, . . . , T

′
i,10 for the inner CV by performing the following four steps: 1) each

training instance is associated to the solver that solves it in the shortest time; 2) for each
solver, the list of its associated instances is ordered from the hardest to the easiest in terms
of runtime; 3) we select one instance at a time from each set associated to each solver until
a global limit on the number of instances is reached; 4) the selected instances are finally
divided into 10 folds for cross-validation.6

At step 4), sunny-as2 offers three choices: random split, stratified split (Kohavi, 1995)
and rank split (a.k.a. systematic split in Reitermanova (2010)). The random split simply
partitions the instances randomly. The stratified split guarantees that for each label (in our
context, the best solver for that instance) all the folds contains roughly the same percentage
of instances. The rank split ranks the instances by their hardness, represented by the sum
of the runtime, then each fold takes one instance in turn from the ranked instances.

While the stratified approach distributes the instances based on the best solver able to
solve them, the rank method tries to distribute the instances based on their hardness. In
the first case, every fold will likely have a witness for every label, while in the latter every
fold will be a mixture of easy and hard instances.

4.2.2 Parameters Configuration

sunny-as2 enables the automated configuration of the features and/or the k-value by means
of the greedy-SUNNY approach introduced in Sect. 4.1. The user can choose between three
different learning modes, namely:

1. sunny-as2-k. In this case, all the features are used and only the k-configuration is
performed by varying k in the range [1,maxK ] where maxK is an external parameter
set by the user. The best value of k is then chosen.

2. sunny-as2-f. In this case, the neighborhood size k is set to its default value (i.e.,
the square root of the number of instances, rounded to the nearest integer) and a
wrapper-based feature selection is performed. Iteratively, starting from the empty set,
sunny-as2-f adds to the set of already selected features the one which better decreases
the PAR10. The iteration stops when the PAR10 increases or reaches a time cap.

3. sunny-as2-fk. This approach combines both sunny-as2-f and sunny-as2-k: the neigh-
borhood size parameter and the set of selected features are configured together by
running sunny-as2-f with different values of k in the range [1,maxK ]. The k with the
lowest PAR10 is then identified. The entire procedure is repeated until the addition

6. In the first split, if an instance cannot be solved by any of the available solvers it will be discarded as
commonly done in these cases.
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Algorithm 1 Configuration procedure of sunny-as2-fk.
1: function learnFK(A, λ, I, maxK, F , maxF)
2: bestF ← ∅
3: bestK ← 1
4: bestScore← −∞
5: while |bestF | < maxF do
6: currScore← −∞
7: for f ∈ F do
8: currFeatures← bestF ∪ {f}
9: for k ← 1, . . . ,maxK do

10: tmpScore← getScore(A, λ, I, k, currFeatures)
11: if tmpScore > currScore then
12: currScore← tmpScore
13: currFeat← f
14: currK ← k
15: end if
16: end for
17: end for
18: if currScore ≤ bestScore then . Cannot improve the best score
19: break
20: end if
21: bestScore← currScore
22: bestF ← bestF ∪ {currFeat}
23: bestK ← currK
24: F = F − {currFeat}
25: end while
26: return bestF , bestK
27: end function

of a feature with k varying in [1,maxK ] does not improve the PAR10 score or a given
time cap is reached. The resulting feature set and k value are chosen for the online
prediction.7

Algorithm 1 shows through pseudocode how sunny-as2-fk selects the features and the k-
value. The learnFK algorithm takes as input the portfolio of algorithms A, the maximum
schedule size λ for greedy-SUNNY, the set of training instances I, the maximum neighbor-
hood size maxK, the original set of features F , and the upper bound maxF on the maximum
number of features to be selected. learnFK returns the learned value bestK ∈ [1,maxK]
for the neighborhood size and the learned set of features bestF ⊆ F having |bestF | ≤ maxF .

After the i-th iteration of the outer for loop (Lines 7–17) the current set of features
currFeatures consists of exactly i features. Each time currFeatures is set, the inner for
loop is executed n times to also evaluate different values of k on the dataset I. The evaluation
is performed by the function getScore, returning the score of a particular setting obtained

7. Since sunny-as2-fk integrates the feature selection into the k-configuration process, it may be considered
as an embedded FS method.
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with greedy-SUNNY (cf. Sect. 4.1). However, getScore can be easily generalized to assess
the score of a setting obtained with an input algorithm different from greedy-SUNNY (e.g.,
the original SUNNY approach).

At the end of the outer for loop, if adding a new feature could not improve the score
obtained in the previous iteration (i.e., with |currFeatures|−1 features) the learning process
terminates. Otherwise, both the features and the k-value are updated and a new iteration
begins, until the score cannot be further improved or the maximum number of features maxF
is reached.

If d = min(maxF, |F|), n = min(maxK, |I|) and the worst-case time complexity of
getScore is γ, then the overall worst-case time complexity of learnFK is O(d2nγ). This
cost is still polynomial w.r.t. |A|, d, and n because getScore is polynomial thanks to the
fact that λ is a constant.

From learnFK one can easily deduct the algorithm for learning either the k-value (for
sunny-as2-k) or the selected features (for sunny-as2-f): in the first case, the outer for loop is
omitted because features do not vary; in the second case, the inner loop is skipped because
the value of k is constant.

We conclude this section by summarizing the input parameters that, unlike features and
k-value, are not learned automatically by sunny-as2:

1. split mode: the way of creating validation folds for the inner CV, including: random,
rank, and stratified split. Default: rank.

2. training instances limit: the maximum number of instances used for training. De-
fault: 700.

3. feature limit: the maximum number of features for feature selection, used by sunny-
as2-f and sunny-as2-fk. Default: 5.

4. k range: the range of neighborhood sizes used by both sunny-as2-k and sunny-as2-fk.
Default: [1,30].

5. schedule limit for training (λ): the limit of the schedule size for greedy-SUNNY.
Default: 3.

6. seed: the seed used to split the training set into folds. Default: 100.

7. time cap: the time cap used by sunny-as2-f and sunny-as2-fk to perform the training.
Default: 24 h.

The default values of these parameters were decided by conducting an extensive set
of manual experiments over ASlib scenarios, with the goal of reaching a good trade-off
between the performance and the time needed for the training phase (i.e., at most one day).
In Sect. 5.3 we shall report some of these experiments.

5. Experiments

In this section we present (part of) the experiments we conducted over several different
configurations of sunny-as2.
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Table 3: Additional ASlib scenarios.

Scenario Source Algorithms (m) Problems (n) Features (d) Timeout (τ)
ASP ASP-POTASSCO 11 1212 138 600 s
CPMP CPMP-2015 4 555 22 3600 s
GRAPHS GRAPHS-2015 7 5725 35 100000000 s
TSP TSP-LION2015 4 3106 122 3600 s

We first present the benchmarks and the methodology used (Sect. 5.1). Then, in Sect.
5.2 we assess the impact of the new components of sunny-as2 to quantify what we can gain by
learning the neighborhood size, by using a smaller number of features, and by using greedy-
SUNNY instead of, or together with, the original SUNNY approach. Finally, in Sect. 5.3
we use as baseline sunny-as2-fk, i.e., sunny-as2’s most comprehensive approach that exploits
both the learning of the neighborhood size and the feature selection, to understand how its
performance can vary by tuning one parameter at a time and by leaving the other parameters
to their default values.

In the following, unless otherwise specified, sunny-as2 always denotes the sunny-as2-fk
variant.

5.1 Experimental Setting

We evaluated sunny-as2 on the runtime scenarios of the ASlib. In particular, we selected
the 8 runtime scenarios of the OASC challenge described in Sect. 3.4 (see Tab. 2). These
scenarios contain problem instances belonging to the following domains: Constraint Satis-
faction, Mixed-Integer Programming, SAT solving, Max-SAT solving, Quantified Boolean
Formulas, and learning in Bayesian networks. To avoid biases towards a specific domain,8

we added four more ASlib scenarios representing all those domains that were not consid-
ered in the OASC, namely: Answer Set Programming, Pre-marshalling problem, Subgraph
Isomorphisms, and Traveling Salesman Problem (see Tab. 3).

We used the repeated nested cross-validation with 5 repetitions, 5 folds in the outer
loop and 10 folds in the inner loop, explained in Sect. 4. For the OASC scenarios, we used
only the instances belonging to the training set of the OASC competition since we later on
wanted to check the performance of the last version of sunny-as2 on the OASC test sets. For
the four additional scenarios, since they did not come with a separation between training
and test sets, we instead applied the repeated cross-validation on all their instances. For
each scenario, the performance of sunny-as2 was evaluated with the average closed gap score
over all the repetitions. In each repetition, the closed gap score was calculated as explained
in Sect. 3.1 by using the PAR10 as performance metric m.

All the experiments were conducted on Linux machines equipped with Intel Corei5
3.30GHz processors and 8 GB of RAM. We used a time cap of 24 hours for learning the
parameters. All the ASlib scenarios are publicly available at https://github.com/
coseal/aslib_data.

8. ASlib scenarios are skewed towards SAT problems: almost half of them are based on SAT or Max-SAT.
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Figure 1: Close gap distribution of various learning modes.

5.2 Assessment of New Components

In this section we measure the impact of the new components we introduced in this paper.
We assess what we can gain by learning the neighborhood size and/or the number of features,
and how greedy-SUNNY can improve the original SUNNY algorithm.

5.2.1 Learning Modes

We compared the sunny-as2-f, sunny-as2-k, and sunny-as2-fk variants of sunny-as2 against
the original version of sunny-as that does not exploit any parameter configuration.

Table 4: Comparisons of sunny-as2 learning modes in terms of closed gap.

Approach Caren Mira Magnus Monty Quill Bado Svea Sora ASP CPMP GRAPHS TSP Average
sunny −0.0517 −0.1289 0.6343 0.4291 0.6976 0.7854 0.6458 0.1781 0.6674 0.7488 0.6968 −0.4457 0.4047
sunny-as2-f −0.0603 −0.1649 0.4425 0.4489 0.6854 0.7695 0.5783 0.2459 0.7717 0.7771 0.5663 −0.1058 0.4129
sunny-as2-k 0.1611 0.0276 0.6352 0.5830 0.7361 0.7976 0.6915 0.3591 0.7193 0.7273 0.6504 −0.8822 0.4338
sunny-as2-fk 0.0845 −0.1891 0.4458 0.5846 0.7139 0.7590 0.6643 0.3428 0.7454 0.7885 0.5614 −0.0343 0.4556

We run the different sunny-as2 learning modes with their default parameters for all the
scenarios. Tab. 4 shows the average closed gap of each approach across all the repeti-
tions performed. Interestingly, there is not a dominant learning mode. As also shown in
Lindauer et al. (2016), a proper k-configuration leads to a good performance improvement
for SUNNY—indeed, sunny-as2-k is able to reach the peak performance in 7 scenarios out of
12. However, sunny-as2-fk has the best average closed gap. One reason for this is the poor
performance of sunny-as2-k in the TSP scenario.

The original sunny-as is clearly less promising than any other variant of sunny-as2, even
though for the GRAPHS scenario it achieves the best performance. What we can conclude
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from Tab. 4 is that most of the performance improvement is due to the selection of the right
neighborhood size k. However, feature selection can also give a positive contribution.

Fig. 1 depicts with boxplots the closed gap scores reported in Tab. 1. Specifically, for
each scenario we collected the corresponding 25 closed gap scores, one for each test set. Each
box of Fig. 1 delimits the first and third quartile of the closed gap distribution, while the
horizontal line inside each box is the median. The vertical whiskers indicate the rest of the
distribution excluding diamonds, which are considered as outliers since they are outside the
inter-quartile ranges. The larger the box, the less stable a learning system is. For example,
sunny-as2-f is quite unstable in Caren, Mira and Graphs scenarios. sunny-as2-fk looks more
robust than sunny-as2-f, while sunny-as2-k and sunny-as seems to be slightly more stable in
most cases.

Tab. 5 shows the average time (in minutes) spent for training each fold. As we can see,
sunny-as2-k is the fastest approach, followed by sunny-as2-f and sunny-as2-fk. This is not
surprising because learning features is a computationally expensive task, especially when
wrapper methods are used.

Table 5: Average training time in minutes of sunny-as2 learning modes.

Approach Caren Mira Magnus Monty Quill Bado Svea Sora ASP CPMP GRAPHS TSP
sunny-as2-f 0.1 0.47 0.73 0.66 2.51 7.41 29.29 105.69 32.64 0.49 160.12 161.03
sunny-as2-k 0.02 0.12 0.25 0.26 0.7 2.39 5.84 25.15 8.81 0.38 58.67 50.64
sunny-as2-fk 3.34 10.53 14.54 16.73 45.56 156.83 321.15 1174.54 329.77 9.82 73.92 222.05

5.2.2 greedy-SUNNY vs SUNNY

As mentioned in Sect. 4.1, greedy-SUNNY was introduced to speed up the training process.
Here we empirically show that greedy-SUNNY not only speeds up the training of sunny-as2,
but it also outperforms the performance achieved by using the original SUNNY approach
for training.

In the following experiments we use sunny-as2 with its default parameters, by only varying
the approach adopted for generating the schedule of solvers for both training and testing.
In the latter case, we use a time limit of a week due to the long computation time required
by the original SUNNY approach to create schedules.

Note that SUNNY and greedy-SUNNY are interoperable because they share the same
underlying AS approach. The only difference is the way they select the subsets of solvers:
greedy-SUNNY uses a possibly not optimal greedy approach, while SUNNY relies on an
exhaustive search—possibly exponential in the portfolio size. The output of the learnFK
algorithm (Algorithm 1) is always a set of features F and a neighborhood size k, regardless
of whether SUNNY or greedy-SUNNY is used on the validation set. These parameters are
then used to compute the schedules on the unforeseen test instances, regardless of whether
SUNNY or greedy-SUNNY is used to select the solvers.

The results are reported in Tab. 6. Column names denote the pairs of functions used
for the training and testing respectively. For brevity, we write GSUNNY instead of greedy-
SUNNY. For instance, the second column “SUNNY-GSUNNY” means that SUNNY has been
used for training, and greedy-SUNNY for testing.
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Table 6: Closed gap of different combinations of SUNNY/greedy-SUNNY for training/testing.

Scenario SUNNY-SUNNY SUNNY-GSUNNY GSUNNY-SUNNY GSUNNY-GSUNNY
Caren 0.0156 −0.0182 0.0845 0.0845
Mira −0.1907 −0.2519 −0.1891 −0.2502
Magnus 0.4701 0.4692 0.4458 0.4449
Monty 0.5652 0.5655 0.5846 0.5784
Quill 0.6966 0.6823 0.7139 0.6989
Bado 0.7381 0.7324 0.7590 0.7496
Svea Timeout Timeout 0.6643 0.6587
Sora 0.3050 0.2763 0.3428 0.3212
ASP 0.7488 0.7386 0.7454 0.7402
CPMP 0.7624 0.7674 0.7885 0.7809
GRAPHS 0.5948 0.5942 0.5614 0.5613
TSP 0.0297 −0.0140 −0.0343 −0.0576
All 0.3946 0.3785 0.4556 0.4426

Tab. 6 shows that the peak performance in each scenario is always reached when SUNNY
is used for testing. This makes sense: using greedy-SUNNY on an unforeseen instance
might be useful in a time-sensitive context where an exponential-time solvers’ selection
is not acceptable but, in general, SUNNY provides a more precise scheduling. However,
the GSUNNY-GSUNNY column shows that on average the score of sunny-as2 using greedy-
SUNNY only is not far from the best performance achieved by GSUNNY-SUNNY.

The most interesting thing of Tab. 6 is probably that, on average, using greedy-SUNNY
for learning the features and the k value not only speeds up the training but also improves
the prediction accuracy. Indeed, the score achieved by GSUNNY-SUNNY and GSUNNY-
GSUNNY is consistently better than the one of SUNNY-SUNNY and SUNNY-GSUNNY.
We conjecture that, in the training phase, it might be more important to prioritise the first λ
solvers solving the most instances in the neighborhood rather than selecting a sub-portfolio
from all the available solvers as done by SUNNY (we recall that the maximum schedule size
λ for the default greedy-SUNNY is 3).

greedy-SUNNY can be particularly useful on scenarios with a large number of solvers.
This is evident in Tab. 7 describing the hours spent for training using the different ap-
proaches.9 As expected, greedy-SUNNY is quicker than the original SUNNY approach for
any considered scenarios.

Table 7: Hours spent for training by using greedy-SUNNY and SUNNY.

scenario Caren Mira Magnus Monty Quill Bado Svea Sora ASP CPMP GRAPHS TSP
GSUNNY 0.06 0.18 0.24 0.28 0.76 2.61 5.35 19.58 5.5 0.16 1.23 3.7
SUNNY 0.27 0.2 0.55 1.09 21.57 3.54 Timeout 35.23 8.95 0.2 1.49 4.53

# solvers 20 5 19 18 24 8 31 10 11 4 7 4
# insts 54 145 370 357 512 700 700 700 700 555 700 700
# features 95 143 37 37 46 86 115 483 138 22 35 122

9. Based on our estimation, the Svea scenario would have taken about 17000 hours to be completed.
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Figure 2: Close gap distribution of various split modes.

5.3 Tuning the Parameters

In this section we study the sensitivity of the parameters that sunny-as2 cannot learn, namely:
the split modes for cross-validation, the limit on the numbers of features to select, the limit
on the number of training instances, and finally the schedule limit λ. We conclude the
section by reporting an analysis on the performance variability of sunny-as2.

For all the experiments, we set the parameters of sunny-as2 to their default values and
we varied one parameter at a time. We mark with ‘Timeout’ the cases where the training
phase for at least one fold did not finish within a day. When a training timeout occurs for
a specific scenario, we assign to it a closed gap score of 0, i.e., the score of the single best
solver. In other terms, if we cannot train a scenario within 24 hours we simply assume that
the single best solver is used for that scenario.

5.3.1 Cross-Validation

We study the effects of different cross-validations when training the model. Tab. 8 com-
pares different cross-validation approaches for all the scenarios in our benchmark. For these
experiments we set the internal parameters of sunny-as2 to their default values (cf. Sect.
4.2.2) except the split mode one.

Table 8: Random/Stratified/Rank Cross-Validation comparison in terms of closed gap.

Mode Caren Mira Magnus Monty Quill Bado Svea Sora ASP CPMP GRAPHS TSP Average
random −0.1092 −0.0121 0.5326 0.5796 0.7077 0.7588 0.6409 0.2992 0.7655 0.7832 0.4678 −0.1417 0.4394
stratified −0.2196 −0.2269 0.6097 0.5508 0.7253 0.7786 0.6446 0.3317 0.7653 0.7994 0.5406 −0.1489 0.4292
rank 0.0845 −0.1891 0.4458 0.5846 0.7139 0.7590 0.6643 0.3428 0.7454 0.7885 0.5614 −0.0343 0.4556
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The three split modes we examined are: random, stratified and rank. The random mode
generates folds in a random way; the stratified mode generates folds based on class label
(fastest algorithm); the rank first orders the instances according to their hardness (cf. 4.2.1),
then systematically partitions them into each fold.

As shown in Tab. 8, the closed gap of rank CV is on average better than both random
and stratified CV. It appears that distributing instances according to their hardness leads
to more balanced folds, and this in turn implies a better training. However, there is not a
single dominant approach: stratified is the best in four scenarios, rank in six, and random
in only two scenarios. It appears that stratified CV performs better than rank in scenarios
with a higher number of instances.

Fig. 2 shows the boxplots of Tab. 8. We can see that the rank mode looks more stable
than random and stratified modes in most scenarios except Svea.

5.3.2 Number of Training Instances

Here we study the impact of the number of training instances. As above, we fixed the default
parameter values listed in Sect. 4.2.2, and we just varied the limit of training instances.

It is worth noting that, as detailed in the procedure of data preparation (cf. Sect. 4.2),
when the limit is below the total amount of instances of a scenario, the instances are not
selected randomly but chosen according to their best solvers and their hardness in order to
have a more representative training set.

Table 9: Closed gap by varying the number of training instances.

Scenario 100 150 200 300 400 500 600 700 800 900 1000 All
Caren 0.0845
Mira −0.1562 −0.1891
Magnus 0.4935 0.3856 0.5216 0.4458 0.4458
Monty 0.4381 0.4947 0.5235 0.5846 0.5846
Quill 0.7599 0.7781 0.7812 0.7641 0.7046 0.7139 0.7139
Bado 0.7082 0.7574 0.7815 0.7673 0.7790 0.7177 0.7361 0.7590 0.7590
Svea 0.2845 0.3862 0.4643 0.5671 0.6097 0.6222 0.6354 0.6643 0.6676 0.6563 0.6563
Sora 0.0451 0.1701 0.2104 0.2139 0.2395 0.2672 0.2998 0.3428 Timeout Timeout Timeout Timeout
ASP 0.6741 0.7135 0.7233 0.7440 0.7178 0.7436 0.7494 0.7454 0.7700 0.7873 0.7873
CPMP 0.7960 0.7929 0.7970 0.8073 0.7748 0.7885
GRAPHS 0.3423 0.4318 0.5416 0.5335 0.4271 0.3999 0.3998 0.5614 0.5948 0.5391 0.5609 Timeout
TSP −0.4957 −0.3539 −0.1172 −0.0808 0.0612 0.0792 −0.0389 −0.0343 0.0103 −0.2041 −0.1143 Timeout
Average 0.3322 0.3710 0.4269 0.4369 0.4366 0.4382 0.4342 0.4556 0.4358 0.4138 0.4231 0.3859

We run sunny-as2 with different instance limits starting from 100 (the smallest scenario
has less than 100 instances) with increments of 100, with a time cap of 1 day of computation
per fold.

Tab. 9 presents the average closed gap scores for experiments with up to 1000 instances.
The last column reports the results achieved by considering all the training instances, while
the other columns contain the results achieved by considering a fixed number of training
instances (i.e., 100, 200, . . . , 1000). The last row reports the average closed gap score across
all scenarios. In case a scenario has less instances than required, we simply consider all of
them.

We omit the results for GRAPHS and TSP scenarios with more than 1000 instances,
since their closed gaps are below the maximal value reached with 800 instances for GRAPHS
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and with 500 instances for the TSP scenario. The GRAPHS scenario timeouts with 2500
instances while TSP timeouts with 1500 instances.

We can note that by reducing the number of training instances the closed gap of sunny-
as2 does not worsen significantly. After 200 instances, increasing the number of training
instances does have a limited impact: the score oscillates around 0.41 and 0.46. The best
average score of 0.4556 is obtained with 700 instances. We conjecture that this is partially
due to the procedure for data preparation (cf. Sect. 4.2.1) that picks the instances after
ordering them by hardness, thus reducing the folds skewness. The resulting set of instances
is large enough to form a homogeneous set reflecting the instance class distribution of the
entire scenario even after a random or stratified split. Adding more instances is not always
beneficial. First, a large number of training instances deteriorates the running time perfor-
mance of the k-NN algorithm on which SUNNY relies producing a slowdown of the solver
selection process for both SUNNY and greedy-SUNNY. Second, it can also cause a degra-
dation of performances. Probably this is due to the fact that more instances can introduce
additional noise that impacts the selection of solvers by sunny-as2.

5.3.3 Number of Features

It is well established that a small number of features is often enough to provide a competitive
performance for an AS system—and a machine learning system in general. For example,
according to the reduced set analysis performed by Bischl et al. (2016), no AS scenario
required more than 9 features. To better understand the impact of the number of features
we run sunny-as2 with a feature limit from one to ten (i.e., maxF ∈ [1, 10] when calling the
learnFK function shown in Algorithm 1), and by leaving the other parameters set to their
default values as specified in Sect. 4.2.2.

Table 10: Closed gap of sunny-as2 by varying the feature limit.

Scenario 1 2 3 4 5 6 7 8 9 10 All
Caren 0.1811 0.0579 −0.0124 0.0830 0.0845 0.1157 0.1156 0.1150 0.0483 0.0803 0.0803
Mira −0.2221 −0.2292 −0.2541 −0.2261 −0.1891 −0.1919 −0.2278 −0.2248 −0.2242 −0.2226 −0.2295
Magnus 0.4145 0.4753 0.5225 0.4962 0.4458 0.4702 0.4698 0.4707 0.4707 0.4824 0.4824
Monty 0.4373 0.4791 0.5637 0.5530 0.5846 0.5643 0.5771 0.5723 0.5660 0.5726 0.5785
Quill 0.6726 0.6898 0.7097 0.7208 0.7139 0.7186 0.7159 0.7159 0.7159 0.7159 0.7159
Bado 0.6841 0.7561 0.7620 0.7482 0.7590 0.7413 0.7559 0.7576 0.7599 0.7578 0.7578
Svea 0.3946 0.5526 0.6044 0.6425 0.6643 0.6601 0.6604 0.6680 0.6680 0.6623 0.6639
Sora 0.1873 0.2583 0.3170 0.3251 0.3428 0.3492 Timeout Timeout Timeout Timeout Timeout
ASP 0.7040 0.7295 0.7531 0.7540 0.7454 0.7441 0.7480 0.7532 0.7533 0.7533 0.7534
CPMP 0.7909 0.7816 0.7905 0.7905 0.7885 0.7885 0.7885 0.7885 0.7885 0.7885 0.7885
GRAPHS 0.3611 0.5135 0.5517 0.5281 0.5614 0.5491 0.5408 0.5364 0.5321 0.5321 0.5321
TSP −0.0090 −0.0364 −0.0706 −0.0389 −0.0343 −0.1047 −0.0845 −0.1287 −0.1518 −0.1045 −0.1272
Average 0.3830 0.4190 0.4365 0.4480 0.4556 0.4504 0.4216 0.4187 0.4106 0.4182 0.4163

Tab. 10 shows the closed gap results. As we can see, often the highest performance was
reached with a limited amount of features, and in no scenario the best performance was
exclusively achieved with the original feature set. Although there is not a dominant value
for all the scenarios, the overall average score is achieved when the limit of features is set to
five.
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5.3.4 Schedule Size for greedy-SUNNY

In the training process, greedy-SUNNY uses a parameter λ to limit the size of the generated
schedule and to be faster than the original SUNNY approach when computing the schedule
of solvers. We then investigated the performance of sunny-as2 by varying the λ parameter
of greedy-SUNNY (see Algorithm 1 in Sect. 4).

One thing to note before introducing the impact of varying λ for greedy-SUNNY is that,
in general, the original SUNNY approach does not produce large schedules. This can be
seen, e.g., in Tab. 11, reporting the average size of the schedules found by the original
SUNNY approach and its standard deviation when using a 5-fold cross-validation to train
SUNNY. Despite no limit on the schedule size is given, SUNNY tends to produce schedules
with an average size that varies from one to three, generally around two. This happens
because SUNNY aim to selects the smallest subset of solvers solving the most instances in
the neighborhood.

Table 11: SUNNY’s average schedule size with standard deviation.

Caren Mira Magnus Monty Quill Bado Svea Sora ASP CPMP GRAPHS TSP
Schedule size (λ) 1.9±0.4 1.5±0.5 1.9±0.4 1.8±0.6 1.9±1.1 2.0±0.7 3.0±1.0 2.4±0.7 2.1±0.7 2.4±0.8 1.1±0.2 1.3±0.5

Table 12: Closed gap by varying the schedule size of greedy-SUNNY.

λ Caren Mira Magnus Monty Quill Bado Svea Sora ASP CPMP GRAPHS TSP All
1 −0.0165 −0.3208 0.5431 0.5515 0.6118 0.7258 0.6248 0.2448 0.7649 0.6805 0.4689 −0.1777 0.3918
2 −0.2234 −0.1891 0.4211 0.5508 0.6686 0.7322 0.6396 0.2789 0.7413 0.7218 0.5419 −0.0113 0.4060
3 0.0845 −0.1891 0.4458 0.5846 0.7139 0.7590 0.6643 0.3428 0.7454 0.7885 0.5614 −0.0343 0.4556
4 0.0812 −0.1891 0.4458 0.5451 0.7087 0.7434 0.6601 0.3263 0.7454 0.7698 0.5614 −0.0343 0.4470
5 0.0812 −0.1891 0.4458 0.5451 0.7059 0.7434 0.6584 0.3250 0.7454 0.5614 0.4465
6 0.0812 0.4458 0.5451 0.7059 0.7434 0.6584 0.3250 0.7454 0.5614 0.4465

This witnesses that, in order to understand how sunny-as2 performance is impacted by
the λ parameter, there is no need to consider high values for λ. For this reason in Tab. 12 we
report the closed gap score achieved when running sunny-as2 with its default values except
λ, which is varied from one to six. obtained by running SUNNY).10

By observing the average results for each λ value, we can see that the overall best
performance was reached with λ set to three. If λ is less than three, for most scenarios, the
results are worse, and when λ is greater than three the performances are the same, if not
slightly worse.

5.3.5 Variability

One of the major concerns when dealing with predictions is the potentially huge impact of
randomness (e.g., how the folds are split) on the results. To cope with the variability of our
experiments we have adopted the repeated nested cross-validation approach that produces
more robust results since the randomness of the inner cross-validation is weighted out in
the outer cross-validation. Additionally, the repetition of the results takes into account the
variability induced by creating randomly the folds for the outer cross-validation.

10. A white space in Tab. 12 denotes the impossibility to run an experiment for a given λ due to the limited
amount of solvers available in the scenario.
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Table 13: Closed gap of training and test set using the best configuration found in each of
the five folds.

Caren Mira Magnus Monty
train test train test train test train test
0.5022 0.2561 0.9429 0.6692 0.8379 0.4850 0.8658 0.2182
0.6705 −9.3722 0.9709 0.0080 0.8270 0.9711 0.7192 0.6078
0.5934 0.9310 0.9858 0.4784 0.9723 0.0531 0.7276 0.7111
0.6724 0.8784 0.9754 -30.2757 0.8203 0.7517 0.8031 0.6629
0.7531 −0.0558 0.9878 −0.0556 0.8466 0.9522 0.7752 0.9945

Quill Bado Svea Sora
train test train test train test train test
0.8341 0.7623 0.8852 0.7944 0.6956 0.7455 0.6139 0.2746
0.7644 0.7150 0.8865 0.6210 0.7495 0.8183 0.5565 0.0560
0.8289 0.7596 0.9162 0.8441 0.7591 0.6683 0.5445 0.3103
0.7856 0.5950 0.7935 0.7951 0.7670 0.6969 0.5360 0.3221
0.8963 0.7902 0.8896 0.6961 0.7276 0.6270 0.6666 0.0890

ASP CPMP GRAPHS TSP
train test train test train test train test
0.8391 0.6777 0.8079 0.7776 0.8556 0.2083 0.7400 −0.0187
0.8708 0.7385 0.8450 0.5576 0.8150 0.5970 0.5863 0.0087
0.8927 0.7366 0.8277 0.8553 0.8780 0.7204 0.5933 0.4889
0.8686 0.8114 0.8211 0.7690 0.8713 0.9851 0.5854 0.5176
0.9106 0.7165 0.8727 0.7628 0.7927 0.6097 0.6358 −1.8486

If we look at the performance on the single outer folds, we can notice that sunny-as2’s
performance can have a significant variation. For example, Tab. 13, compares the closed
gap score of the training set and the test set when running sunny-as2 on the first repetition
of the 5 cross-validation with default parameters.

It is quite obvious that the closed gap is higher in the training instances because in these
cases the instances used for the training are also used for the testing. It is more interesting to
observe that the closed gap of the training set is sometimes not uniform (e.g., TSP scenario)
and that there can be significant differences between the closed gap of the train and test set
for certain folds (e.g., Caren scenario). This could mean that a random fold splitting might
have a big impact on the learning.

6. Insights on SUNNY

In this section we study the SUNNY algorithm more in depth, by exploring its strengths
and its weaknesses with the aim of finding meaningful patterns. We also show the virtual
performance that the version of sunny-as2 described in this paper would have achieved in
the 2017 OASC, and we provide a new empirical comparison including new scenarios and
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AS approaches. Before that, let us recall from Sect. 3.3 the informal assumptions on which
the original SUNNY algorithm relied on, namely:

(i) a small portfolio is usually enough to achieve a good performance;

(ii) solvers either solve a problem quite quickly, or cannot solve it in reasonable time;

(iii) solvers perform similarly on similar instances;

(iv) a too heavy training phase is often an unnecessary burden.

Points (i) and (ii) motivate the way SUNNY selects and schedules its solvers, respectively.
In fact, if few solvers are enough to solve a given set of problems then the solvers selection of
SUNNY never falls in its worst-case—exponential w.r.t. the size of the portfolio. If condition
(ii) holds, then the time allocated to each selected solver can be small—provided, of course,
that the right solvers are chosen.

Points (iii) and (iv) explain why the k-NN algorithm has been chosen for SUNNY. If
assumption (iii) holds, then the solvers’ performance over the neighborhood of the new,
unforeseen instance to be solved are a good estimation for the solvers’ performance on that
instance. Assumption (iv) guided the choice of a lazy approach, in fact the k-NN algorithm
does not build explicitly a prediction model.

As seen in Sect. 4, sunny-as2 partly disagrees with point (iv): sunny-as2-f, and sunny-
as2-fk variants of sunny-as2 actually mitigate the laziness of SUNNY by adding a training
phase where k-configuration and/or feature selection are performed. The experiments of
Sect. 5 somehow confirmed hypothesis (i) (see, e.g., Sect. 5.3.4 and in particular Tab. 11)
and rejected hypothesis (iv): a proper training phase, even if computationally expensive,
may remarkably boost the performance of SUNNY. Let us now try to empirically understand
if conditions (ii) and (iii) are verified on the scenarios evaluated in Sect. 5.

Fig. 3 and 4 plot the runtime of the SBS (green), the VBS (blue), and sunny-as2 (yellow)
on every instance of each scenario. The instances are sorted in ascending order by the
runtime of the corresponding algorithm selector. The runtime distributions depicted in the
plots provide evidence for hypothesis (ii): the runtime curves are essentially flat until they
grow very quickly towards the end.

Hypothesis (iii) informally states that solvers perform similarly on similar instances,
assuming that the feature vectors are able to describe the nature of the instances. To get
an idea of the similarity between instances and solvers’ performances we decided to use

the Jaccard index which, given sets A and B, is computed as J(A,B) =
|A ∩B|
|A ∪B|

. This

index is a value between 0 (when A ∩ B = ∅) and 1 (when A = B) that gives a measure
of the similarity of sets A and B: the higher the index, the more similar the sets are.
For each instance i ∈ I of a given scenario (I,A,m) we compute J(Fi, Pi) where Fi ⊆ I
is the “regular” k-neighborhood computed by sunny-as2 according to the feature vectors,
and Pi ⊆ I is the “oracle-like” k-neighborhood computed by sunny-as2 according to the
performance vectors defined as 〈m(i, A1), . . . ,m(i, An)〉 where A = {A1, . . . , An}.

Fig. 5 shows the average Jaccard index computed over all the training instances for each
repetition using the runtime as metric for the performance vectors. As we can see, the
average index is usually pretty low: it is below 0.1 for the majority of scenarios and the
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(a) TSP. (b) Caren.

(c) Mira. (d) Magnus.

(e) Monty. (f) GRAPHS.

Figure 3: Runtime distribution per scenario.

maximum index is below 0.2. The average value considering all the scenarios is 0.0636, i.e.,
on average, for every ten instances of Pi∪Fi less than one belongs to the intersection Pi∩Fi.
The low Jaccard index raises major doubts on the assumption that solvers perform similarly
on similar instances. We shall talk more in depth about this aspect in the next section.

6.1 Hard Scenarios for SUNNY

Let us now closely investigate the scenarios where sunny-as2 struggled, trying to extract
meaningful patterns.

We start by extending the study performed in Sect. 5.3.5 by considering the closed gap
distribution over the 25 training/test folds of all the repetitions (Tab. 13 of Sect. 5 refers to
the first repetition only). Fig. 6 shows the closed gap performance with boxplots.
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(a) Sora. (b) Quill.

(c) Bado. (d) CPMP.

(e) ASP. (f) Svea.

Figure 4: Runtime distribution per scenario.

We found two indicators that seem to well represent the link between sunny-as2’s per-
formance and the AS scenarios, i.e., the number of instances unsolved by the SBS and the
speedup of the VBS w.r.t. the SBS. Both metrics somehow measure the distance between
SBS and VBS: the former only focuses on the problems solved, while the latter also takes
runtime into account. Fig. 6a and 6b show the closed gap score distributions for each sce-
nario, sorted respectively by increasing number of SBS unsolved instances and by speedup
of the VBS w.r.t. SBS. For representation purposes, the few closed gap scores having a value
below −1 were replaced with −1.

From Fig. 6a and Fig. 6b one can clearly see that sunny-as2 tends to have a more strong
and stable performance in scenarios with higher values of the two indicators (e.g., Bado
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Figure 5: Jaccard index per scenario.

and CPMP). Conversely, its performance is poor for scenarios with lower values for these
indicators (e.g., TSP and Mira).

The plots in Fig. 6a and Fig. 6b are similar. However, the position of Caren scenario in
Fig. 6b may suggest that the number of SBS unsolved instances is a more reliable indicator
to analyze the performance of sunny-as2 in terms of closed gap.

Overall, SUNNY seems to not work well when the SBS has little room for improvements.
We argue that the difficulties of SUNNY in scenarios with a low value of the above indicators
are quite normal. Conversely, an algorithm selector performing too well in those scenarios
might denote an overfitting w.r.t. the few instances for which the SBS is not a good choice.
Moreover, there can be other (co-)explanations for the bad performance of SUNNY on TSP,
Mira and Caren. In fact, TSP is the scenario with the lowest number of algorithms (only 4)
and the performance of the SBS almost overlaps with that of the VBS (see Fig. 3a). Caren
and Mira are instead the scenarios with the fewest number of instances: only 66 and 145
respectively.

We further investigated the cases where sunny-as2 did not work well by focusing on the
instances that it could not solve. We distinguish them in two categories: (i) those unsolved
because wrong solvers were scheduled, i.e., no solver in the schedule could actually solve that
instance within the timeout; and (ii) those unsolved because not enough time was allocated,
i.e., at least one of the scheduled solvers could actually solve that instance with a time slot
larger than the allocated one.

Fig. 7 shows the instances unsolved by sunny-as2 for each scenario, grouped by the above
categories. The plot also shows the portfolio size of each scenario. It is quite interesting
to see that in all the scenarios except CPMP around 70% of sunny-as2’s failures are due
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(a) Scenarios ordered by the number of SBS unsolved instances.

(b) Scenarios ordered by the VBS speedup w.r.t. SBS.

Figure 6: Closed gap score distribution in training and test folds.

to a wrong identification of the solvers from the neighborhood instances. This means that
probably the Achilles’ heel of SUNNY is not the way the solvers are scheduled, but rather
the way they are predicted. The underlying k-NN algorithm might not be the best choice
because the assumption that similar instances have similar behavior does not always hold.

Despite the good closed gap score reached by sunny-as2 on the CPMP scenario, this
is the only scenario where the number of unsolved instances due to the time allocation
is greater than the number of unsolved instances due to wrongly scheduled solvers. We
conjecture that this behavior is motivated by two co-factors: CPMP has the lowest number
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Figure 7: Unsolved instances by sunny-as2. White numbers on the bottom of the histograms
refer to the portfolio size, while the numbers on the top of the histograms refer to the average
schedule size.

of available solvers and the SBS performance is quite far from the VBS performance (see
Fig. 4d). For these reasons, SUNNY tends to allocate less time to the SBS and more time
to the other solvers w.r.t. to scenarios where the speedup of the VBS is low, even when
few solvers are available (e.g., the TSP scenario). In fact, we note from Tab. 11 that the
average number of scheduled solvers for the CPMP scenario is 2.4, i.e., the 60% of the overall
portfolio size.

Summarizing, according to the experiments we conducted in this work, we can say that
the hypothesis (i) and (ii), stating that a small portfolio is usually enough to achieve a
good performance and that solvers either solve a problem quite quickly, or cannot solve it
in reasonable time are mostly true. Conversely, hypothesis (iii) “solvers perform similarly
on similar instances” and (iv) “a too heavy training phase is often an unnecessary burden”
are not empirically confirmed.

6.2 Comparison with Other Approaches

In this section we provide a comparison between sunny-as2 and other state-of-the-art AS
approaches. First of all, we show what would have been the performance of the improved
sunny-as2 in the 2017 OASC. In fact, the version of sunny-as2 submitted to OASC was
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Table 14: Closed gap score results with OASC test instances.

Approach Caren Mira Magnus Monty Quill Bado Svea Sora All
sunny-as2 0.7855 0.0291 0.5833 0.8450 0.8414 0.9057 0.6077 0.4059 0.6255
sunny-as2-fk-OASC 0.9099 0.4320 0.5723 0.9102 0.5691 0.8444 0.6578 0.0084 0.6130
ASAP.v2 0.3238 0.5053 0.4979 0.8331 0.6981 0.7573 0.6765 0.2150 0.5634
AutoFolio 0.5995 0.0846 0.6707 0.6923 0.5165 0.8089 0.6585 0.3479 0.5474
*Zilla 0.6356 0.4761 0.4932 0.4194 0.8001 0.7322 0.5850 0.1754 0.5396
ASAP.v3 0.3276 0.5091 0.4963 0.7631 0.5797 0.8048 0.6881 0.0639 0.5291
sunny-as2-k-OASC 0.6440 −0.0137 0.4924 0.6318 0.8495 0.7441 0.5789 0.0021 0.4911
SUNNY-original 0.7687 −0.8996 0.5859 0.4025 0.7697 0.7687 0.4866 0.1899 0.3841
Random Forest 0.1952 0.4892 0.2037 −1.4422 −0.4737 0.7913 0.5966 0.0934 0.0567
AS-RF −1.0617 0.4947 −1.0521 −6.8992 −0.3280 0.8331 0.5853 −0.3700 −0.9747

a preliminary version that, among other things, used a 10-fold cross-validation without
implementing the rank split method to create the folds.11

Tab. 14 presents the virtual performance of sunny-as2 in the 2017 OASC. In addition
to the original competitors (viz., *Zilla, ASAP, AS-RF and the preliminary versions of
sunny-as2 called sunny-as2-fk-OASC and sunny-as2-k-OASC in Tab. 14) we added three more
baselines: AutoFolio (Lindauer et al., 2015),12 the best performing approach of the 2015
ICON challenge in terms of PAR10 score; the original SUNNY approach (Amadini et al.,
2014), not performing any training; and an off-the-shelf random forest approach trained on
the whole training set without additional cross validations. The latter was implemented
with Scikit-learn (Pedregosa et al., 2011) by labeling each instance with the fastest solver
solving it (i.e., it maps the AS problem into a classification problem and uses random forest
to tackle the classification problem). The number of estimators was set to 200, as done by
ASAP.v2.

sunny-as2 was trained as explained in Sect. 4.2.1. For each scenario we picked the con-
figuration that achieved the highest closed gap score among the 5 different configurations
obtained on the training set (one for each fold of the outer cross-validation, we did not per-
form repetitions here). For *Zilla (Cameron, Hoos, Leyton-Brown, & Hutter, 2017), AS-RF
(Malone et al., 2017), and ASAP (Gonard et al., 2017) approaches, we only present the
results they obtained in the OASC 2017 because no new version of these systems have been
released since then.13 Note that *Zilla, AutoFolio and AS-RF configure their system hyper-
parameters automatically thus they do not require manual tuning. ASAP instead identified
good performing parameters before the competition. We tried several other parameters
for ASAP, without however outperforming the ones used in the challenge (cf. Tab. 23 in

11. Appendix B describes in detail the technical differences between the current version of sunny-as2 and
the one submitted to OASC.

12. The version of AutoFolio we used is AutoFolio 2015 which attended the ICON challenge. Unfortunately,
we experienced some issues with the most recent version Lindauer (2016) due to the external libraries
dependencies used by AutoFolio for parameter tuning. Without parameter tuning, the recent version of
AutoFolio has worse results than the 2015 edition and therefore, for fairness reason, we reported only
the results of AutoFolio 2015.

13. The performance of these approaches are available at COSEAL group (2013). Note that the competition
reported in (Lindauer et al., 2019) used a different closed gap metric, i.e., 1 − mSBS−ms

mSBS−mV BS
, and the

scoring tool was slightly amended. This work considers the fixed version of *Zilla since the original one
submitted to the competition had a critical bug (Lindauer et al., 2019).
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Table 15: Runtime ASlib scenarios added after 2017.

Scenario Algorithms Problems Features Timeout
GLUHACK-2018 8 237 50 5000 s
SAT18-EXP 37 286 50 5000 s
MAXSAT19-UCMS 7 440 54 3600 s

Appendix C). In these experiments, AutoFolio and Random Forest are the only systems
predicting a single solver rather than scheduling a number of solvers.

Tab. 14 shows that sunny-as2 has the highest average closed gap, and it is the best
approach in Bado and Sora scenarios. Its performance is quite close to the one of sunny-as2-
fk-OASC: the difference is greater than 0.2 only in two scenarios, i.e., Caren and Mira. This
is not surprising since sunny-as2 is quite similar to sunny-as2-fk-OASC. ASAP.v2 does not
attain the best score in any scenario, but in general its performance is robust and effective—
this confirms what reported in (Gonard et al., 2019). AutoFolio is slightly behind ASAP.v2,
nevertheless it achieves good results and it is the best approach for the Magnus scenario. As
sunny-as2, also AutoFolio suffers in scenarios like Caren and Mira having a small number of
instances. *Zilla and ASAP.v3 also close more than 50% of the gap between the SBS and the
VBS. sunny-as2-k-OASC is instead slightly below this threshold: the performance difference
w.r.t. sunny-as2-fk-OASC denotes the importance of a proper feature selection. The original
SUNNY approach is even worse: this confirms the effectiveness of the strategy introduced
by sunny-as2. At the bottom of the table we find the AS approaches based on random forest.
This witnesses that turning an AS problem into a classification problem does not seem a
good idea in general.

One thing to note is that the results of the OASC competition are based on a single
training-test split. As discussed also by Lindauer et al. (2019), this “increases the risk of a
particular submission with randomized components getting lucky”. For this reason, we also
compared the performance of sunny-as2 and the other AS approaches we could reproduce 14

using the default 10 cross-validation splits of the ASlib. In addition to the ASlib scenarios
considered so far, we included all the runtime scenarios added to the ASlib after the OASC
challenge, viz. GLUHACK-2018, SAT18-EXP and MAXSAT19-UCMS (cf. Tab. 15). In the
experiments in Sect. 5, we did not consider these scenarios because we already had 2 SAT
scenarios (i.e., Magnus and Monty) and 2 Max-Sat scenarios(i.e., Svea and Sora).

Tab. 16 shows the results using the default splits of ASlib for each scenario. The last
two rows of the table denote, respectively, the average closed gap across all the scenarios,
and the average closed gap across all the scenarios excluding the TSP scenario. The latter
considerably unbalances the results because the performance of all the selectors except ASAP
is on average worse than the SBS, hence the closed gap score is negative. We recall that for
the TSP scenario the performance of SBS and VBS are very close (cf. Fig. 3a). The best
approach in these new experiments is ASAP which looks fairly robust for all the scenarios.
sunny-as2 however is not far, especially if we exclude the TSP scenario.

It is worth noting that the closed gap score can over-penalize an approach performing
worse than the SBS. Indeed, the average close gap score has upper bound 1 (the VBS

14. AS-RF has been excluded because it has library compatibility issues and it is no longer maintained.
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Table 16: Closed gap score results using ASlib default splits.

Scenario ASAP.v2 sunny-as2 SUNNY-original AutoFolio *Zilla Random Forest
ASP-POTASSCO 0.7444 0.8258 0.6300 0.8273 0.6786 0.5314
BNSL-2016 0.8463 0.8155 0.8372 0.8479 0.7616 0.7451
CPMP-2015 0.6323 0.8423 0.7509 0.3046 0.4773 0.1732
CSP-Minizinc-Time-2016 0.6251 0.4522 0.3427 0.5365 0.0866 0.2723
GLUHACK-2018 0.4663 0.4427 0.2663 0.4426 0.2402 0.4057
GRAPHS-2015 0.7580 0.6339 0.6917 0.6597 0.5934 −0.6412
MAXSAT-PMS-2016 0.5734 0.5311 0.4951 0.5309 0.5182 0.3263
MAXSAT-WPMS-2016 0.7736 0.8144 0.5044 0.6333 0.5909 −1.1826
MAXSAT19-UCMS 0.6583 0.6659 0.6728 0.2787 0.4241 −0.2413
MIP-2016 0.3500 0.1273 0.2453 0.1116 0.2490 −0.3626
QBF-2016 0.7568 0.8434 0.8132 0.6872 0.6260 −0.1366
SAT03-16_INDU 0.3997 0.2494 0.1480 0.3990 0.2888 0.1503
SAT12-ALL 0.7617 0.7139 0.6310 0.7516 0.6182 0.6528
SAT18-EXP 0.5576 0.5255 0.5726 0.4942 0.3923 0.3202
TSP-LION2015 0.4042 −0.7949 −0.2617 -0.4762 −3.2917 -19.1569
Average 0.6205 0.5126 0.4893 0.4686 0.2169 −1.2096
Average excluding TSP 0.6360 0.6060 0.5429 0.5361 0.4675 0.0724

Table 17: Borda count results.

Scenario Sunny-as2 ASAP.v2 AutoFolio *Zilla SUNNY-original Random Forest
ASP-POTASSCO 2.5373 2.2235 2.5465 2.4129 2.5033 2.6163
BNSL-2016 2.5368 1.2830 2.7249 2.6694 2.6150 3.0250
CPMP-2015 2.7489 2.0501 2.4070 2.2744 2.5957 2.3660
CSP-Minizinc-Time-2016 2.5902 2.1552 2.8031 2.2682 1.8956 2.7214
GLUHACK-2018 2.4031 1.9040 2.4275 2.0343 2.1623 2.4528
GRAPHS-2015 2.5709 2.3045 2.6037 1.3239 2.8054 3.3731
MAXSAT-PMS-2016 2.5857 1.4747 2.8863 2.3444 2.5938 2.8616
MAXSAT-WPMS-2016 2.9194 1.5168 2.8361 2.4280 2.6662 2.4043
MAXSAT19-UCMS 2.5782 2.0893 2.3597 2.5424 2.4888 2.5189
MIP-2016 2.4419 2.4239 2.4605 2.5087 2.5368 2.4035
QBF-2016 2.3819 1.8642 3.0209 2.1644 2.5688 2.7154
SAT03-16_INDU 2.4301 2.1508 2.6197 2.4159 2.3414 2.5812
SAT12-ALL 2.6560 1.6785 2.7395 2.2674 2.3141 2.8250
SAT18-EXP 2.4686 1.9239 2.3395 2.0738 2.3971 2.4998
TSP-LION2015 2.4215 2.4352 2.2380 2.7398 2.4463 2.6979

Tot. 38.2705 29.4776 39.0129 34.4679 36.9306 40.0622

cannot be outperformed), but not a lower bound: one bad result in a fold of a scenario
can considerably drop the overall average. For example, in the TSP scenario the difference
in terms of solved instances between ASAP and sunny-as2 is less than 0.3%. However, the
closed gap score is 0.40 versus −0.26.

We further investigated these results, by keeping the very same scenarios and splits
while changing the evaluation metrics. We considered the Borda count used in the MiniZinc
Challenge (Stuckey et al., 2014) and defined in Sect. 3.1. We recall that for every instance
i of a scenario, a selector s ∈ S gets a score Borda(i, s) ∈ [0, |S| − 1] proportional to how
many other selectors in S − {s} it beats.

Tab. 17 reports the normalized Borda scores for each scenario: if I is the dataset of the

scenario, the normalized Borda score of selector s is
1

|I|
∑

i∈I Borda(i, s).
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Figure 8: Cumulative Borda count by varying the δ threshold.

Results are interesting: by using this metric, adopted by the MiniZinc Challenge since
2008, the ranking of Tab. 16 is turned upside down. Random Forest, which was the approach
with the worst closed gap score, is now the best approach in terms of Borda count. AutoFolio
and sunny-as2 are not far from it, whereas, surprisingly, ASAP is the one with the worst
Borda count.

There can be different reasons for this overturning. As also discussed in (Amadini,
Gabbrielli, & Mauro, 2015b), the Borda count of the MiniZinc Challenge can excessively
penalize minimal time differences. For instance, if s and s′ solve a problem in 1 and 2
seconds respectively, s scores 2/3 = 0.667 while s′ scores 1/3 = 0.333. However, if they solve
another problem in 500 and 1000 seconds respectively the score would remain invariant even
if the absolute time difference in the latter case is 500 seconds.

To investigate whether the difference between closed gap and Borda count scores is due to
the amplification of small time differences, we define a parametric variant of Borda score that
considers equivalent selectors having runtime difference below a given threshold. Formally,
given a threshold δ ≥ 0, we define Bordaδ(i, s) =

∑
s′∈S−{s} cmpδ(m(i, s),m(i, s′)) where:

cmpδ(t, t
′) =



0 if t = τ

1 if t < τ ∧ t′ = τ

0.5 if |t− t′| ≤ δ
t′

t+ t′
otherwise.

If δ = 0, Bordaδ is exactly the Borda score defined in Sect. 3.1, and cmp0 actually corresponds
to the cmp function. A score of 0.5 is instead given if the difference between the runtime is
less than the time threshold δ.

Fig. 8 shows how the cumulative Borda score of each approach varies when increasing δ
(note the logscale on the x-axis). We can clearly see a reversal of performance between ASAP
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Table 18: Average normalized scores and percentage of solved instances.

Scenario Sunny-as2 ASAP.v2 AutoFolio *Zilla SUNNY-original Random Forest
Avg. normalized PAR1 0.1062 0.1103 0.1083 0.1187 0.1142 0.1449
Avg. normalized PAR10 0.0508 0.0497 0.0613 0.0730 0.0597 0.1027

Avg. % solved instances 95.5387 95.7039 94.3874 93.2127 94.6362 90.1971

and Random Forest as δ increases. This means that Random Forest solve faster more easy
instances while ASAP and sunny-as2 approaches are better in dealing with harder instances.
The reason for this behavior might be that ASAP uses a pre-scheduling that could tamper
its performance for easy instances that cannot be solved in short time by the solver(s) in
the pre-schedule. sunny-as2 seems less susceptible to this problem because no pre-solving
is performed and its scheduling heuristics prioritize the solvers having lower runtime in the
neighborhood.

When small values of δ are considered, the best approaches is the one based on a simple
Random Forest classification, followed by AutoFolio for values of δ between 5 and 24 seconds.
sunny-as2 becomes the best approach from δ = 25 to δ = 405. Then, ASAP takes over. This
behavior reflects the fact that ASAP solves slightly more instances than sunny-as2, while
on average sunny-as2 is slightly faster doing good choices for easy instances. This is also
corroborated by the numbers in Tab. 18 reporting the average PAR1 and PAR10 scores
normalized w.r.t. the timeouts, and the average percentage of solved instances. Compared
to ASAP, sunny-as2 has a lower average PAR1 but higher PAR10 due to the fact that PAR10

penalizes more the timeouts and sunny-as2 solved in average 0.16% fewer instances.
The performance of sunny-as2 and ASAP asymptotically coincides, and interestingly also

AutoFolio and SUNNY-original seem to converge.
Overall, sunny-as2 achieves a good and robust performance with different evaluation

metrics, even if it is not always the best approach. Importantly, it consistently outperforms
its original version on which sunny-as was based.

7. Conclusions and Future Work

In this work we described sunny-as2, an algorithm selector that—by applying techniques like
wrapper-based feature selection and configuration of the neighborhood size—significantly
outperforms its early version sunny-as and improves on its preliminary version submitted in
the OASC 2017, when it reached the first position in the runtime minimization track.

We conducted an extensive study by varying different parameters of sunny-as2, showing
how its performance can fluctuate across different scenarios of the ASlib. We also performed
an original and in-depth study of the SUNNY algorithm, including insights on the instances
unsolved by sunny-as2 and the use of a greedy approach as an effective surrogate of the origi-
nal SUNNY approach. We compared sunny-as2 against other state-of-the-art AS approaches,
and observed how results can change when different evaluation metrics are adopted.

What we experimentally learned from the evaluations performed is that feature selection
and k-configuration are quite effective for SUNNY, and perform better when integrated.
Moreover, the greedy approach we introduced enables a faster and more effective training
w.r.t. the schedule generation procedure of the original SUNNY approach. Concerning the
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SUNNY algorithm itself, we exposed the weakness of the similarity assumption on which the
k-NN algorithm used by SUNNY relies. The empirical evaluations we performed confirm
both the effectiveness of sunny-as2 on several AS scenarios, and its robustness under different
performance metrics.

A natural future direction for SUNNY that emerges from our experiments is the study
of alternative sub-portfolio selection mechanisms not relying on k-NN. Moreover, we are
planning to improve sunny-as2 by targeting the solution quality in the optimization scenarios
of the OASC competition. In these scenarios sunny-as2 is strongly penalized because the
scheduling of solvers is not allowed. We would also like to consider different strategies for
scenarios having a low speedup and a limited number of unsolved instances by the best
solver of the portfolio.

Another direction for future works is to further study the correlation between simple,
easy-to-get properties of the scenario (e.g., skewness, distribution of labels, distribution of
hard instances, number of instances, solver marginal contribution) and the best parameters
for sunny-as2, hoping to find good values for its parameters depending on these simple
scenario properties. Our initial findings have already excluded, e.g., the use of mutual
information between features in order to limit the number of features. However, additional
investigations are needed.
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Appendix A. Composition of OASC Scenarios

In this section we provide more details about the composition of OASC scenarios, by focusing
on the performance of the best solvers on the training/test set of every scenario.

In particular, Tab. 19 shows the three fastest algorithms for each scenario (by merging
training and test set). For each scenario, the first column indicates the algorithm ID; the
second and the third column show the fraction of solved instances in training and test set
respectively. In case of skewed scenarios, e.g. Caren and Monty, the values in training and
test set are significantly different.

Table 19: The best three overall algorithms in each scenario and the fraction of solved
instances in training fold and test fold.

Caren Mira Magnus Monty
Best Train Test Best Train Test Best Train Test Best Train Test
algorithm_8 0.89 0.83 algorithm_4 0.94 0.96 algorithm_17 0.95 0.94 algorithm_14 0.75 0.83
algorithm_13 0.78 0.86 algorithm_2 0.9 0.9 algorithm_5 0.95 0.93 algorithm_17 0.82 0.73
algorithm_6 0.76 0.86 algorithm_1 0.66 0.6 algorithm_2 0.95 0.92 algorithm_5 0.79 0.74

Quill Bado Svea Sora
Best Train Test Best Train Test Best Train Test Best Train Test
algorithm_15 0.84 0.81 algorithm_3 0.88 0.88 algorithm_27 0.73 0.75 algorithm_8 0.93 0.93
algorithm_18 0.8 0.79 algorithm_8 0.87 0.88 algorithm_30 0.73 0.73 algorithm_3 0.9 0.91
algorithm_10 0.78 0.78 algorithm_1 0.87 0.87 algorithm_10 0.55 0.54 algorithm_7 0.88 0.89

Appendix B. Notes on the Preliminary Version of sunny-as2 Submitted
to the OASC

In the OASC, sunny-as2 did not use the nested CV but a simple 10-fold CV thus making it
more prone to overfitting. Moreover, it used a different ranking method for sampling and
to generate the CV folds. The instances were clustered in sets based on their best solver
and then sorted by hardness. The clusters formed a circular list [c1, . . . , cn]. At this point,
by iterating over the list of clusters, the instances have been added to the folds adding the
first instance of c1 to the first fold, the first instance of c2 to the second fold, and so forth
until all the instances in all the clusters were added into folds. When the last instance of
the cluster was picked, the cluster was removed from the list. When the instance was added
to the 10th fold, the assignment restarted with the first fold.

The instance distribution in each fold generated by this particular systematic sampling is
different from all other sampling methods: some class labels are shared equally in each fold
(as stratified), and some class labels may have a periodic appearance (half of the folds have
more instances of a certain class and other folds have few). We overlooked this behavior at
the time of the submission.

However, this systematic split may have a drawback when the dataset is ordered against
the sampling, i.e. the sampling always picks the instance of the same class. This happened
for the Sora scenario which has exactly 10 class labels. The instances were ordered peri-
odically with these classes and each of the resulting folds contained more than 90% of the
instances of the same class, thus making each fold not representative. For this reason, the
submitted version to the OASC had a bad performance in Sora. Due to these limitations,
in this work we decided not to use the systematic sampling used in the competition.

368



Enhancing SUNNY for Algorithm Selection

Table 20: Relative values of instance limits considering the total number of instances per
scenario, in reference to Tab. 9. Values in bold font correspond to the best closed-gap
performance.

100 150 200 300 400 500 600 700 800 900 1000 All Problems
Caren 1 66
Mira 0.6897 1 145
Magnus 0.25 0.375 0.5 0.75 1 400
Monty 0.2381 0.3571 0.4762 0.7143 1 420
Quill 0.1818 0.2727 0.3636 0.5455 0.7273 0.9091 1 550
Bado 0.1272 0.1908 0.2545 0.3817 0.5089 0.6361 0.7634 0.8906 1 786
Svea 0.0929 0.1394 0.1859 0.2788 0.3717 0.4647 0.5576 0.6506 0.7435 0.8364 1 1076
Sora 0.075 0.1125 0.15 0.2251 0.3001 0.3751 0.4501 0.5251 0.6002 0.6752 0.7502 1 1333
ASP-POTASSCO 0.0825 0.1238 0.165 0.2475 0.33 0.4125 0.495 0.5776 0.6601 0.7426 1 1212
CPMP-2015 0.1802 0.2703 0.3604 0.5405 0.7207 0.9009 1 555
GRAPHS-2015 0.0175 0.0262 0.0349 0.0524 0.0699 0.0873 0.1048 0.1223 0.1397 0.1572 0.1747 1 5725
TSP-LION2015 0.0322 0.0483 0.0644 0.0966 0.1288 0.161 0.1932 0.2254 0.2576 0.2898 0.322 1 3106

Appendix C. Experiments with Relative Values

In this Section we show the relative values w.r.t. the total number of instances, features,
and solvers of a given scenario. In particular:

• Tab. 20 shows the fraction between the number of instances on that column and the
total number of instances of the scenario on that row

• Tab. 21 shows the fraction between the number of features on that column and the
total number of features of the scenario on that row

• Tab. 22 shows the fraction between the number of solvers on that row and the total
number of solvers of the scenario on that column

In each table, we mark in bold font the cell corresponding to the best closed-gap performance
for the given scenario.

Table 21: Relative values of features considering the total number of features per scenario,
in reference to Tab. 10. Values in bold font correspond to the best closed-gap performance.

1 2 3 4 5 6 7 8 9 10 Features
Caren 0.0105 0.0211 0.0316 0.0421 0.0526 0.0632 0.0737 0.0842 0.0947 0.1053 95
Mira 0.007 0.014 0.021 0.028 0.035 0.042 0.049 0.0559 0.0629 0.0699 143
Magnus 0.027 0.0541 0.0811 0.1081 0.1351 0.1622 0.1892 0.2162 0.2432 0.2703 37
Monty 0.027 0.0541 0.0811 0.1081 0.1351 0.1622 0.1892 0.2162 0.2432 0.2703 37
Quill 0.0217 0.0435 0.0652 0.087 0.1087 0.1304 0.1522 0.1739 0.1957 0.2174 46
Bado 0.0116 0.0233 0.0349 0.0465 0.0581 0.0698 0.0814 0.093 0.1047 0.1163 86
Svea 0.0087 0.0174 0.0261 0.0348 0.0435 0.0522 0.0609 0.0696 0.0783 0.087 115
Sora 0.0021 0.0041 0.0062 0.0083 0.0104 0.0124 0.0145 0.0166 0.0186 0.0207 483
ASP-POTASSCO 0.0072 0.0145 0.0217 0.029 0.0362 0.0435 0.0507 0.058 0.0652 0.0725 138
CPMP-2015 0.0455 0.0909 0.1364 0.1818 0.2273 0.2727 0.3182 0.3636 0.4091 0.4545 22
GRAPHS-2015 0.0286 0.0571 0.0857 0.1143 0.1429 0.1714 0.2 0.2286 0.2571 0.2857 35
TSP-LION2015 0.0082 0.0164 0.0246 0.0328 0.041 0.0492 0.0574 0.0656 0.0738 0.082 122
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Table 22: Relative values of schedule sizes considering the total number of solvers per
scenario, in reference to Tab. 12. Values in bold font correspond to the best closed-gap
performance.

Caren Mira Magnus Monty Quill Bado Svea Sora ASP-POTASSCO CPMP-2015 GRAPHS-2015 TSP-LION2015
1 0.125 0.2 0.0526 0.0556 0.0417 0.125 0.0323 0.1 0.0909 0.25 0.1429 0.25
2 0.25 0.4 0.1053 0.1111 0.0833 0.25 0.0645 0.2 0.1818 0.5 0.2857 0.5
3 0.375 0.6 0.1579 0.1667 0.125 0.375 0.0968 0.3 0.2727 0.75 0.4286 0.75
4 0.5 0.8 0.2105 0.2222 0.1667 0.5 0.129 0.4 0.3636 1 0.5714 1
5 0.625 1 0.2632 0.2778 0.2083 0.625 0.1613 0.5 0.4545 0.7143
6 0.75 0.3158 0.3333 0.25 0.75 0.1935 0.6 0.5455 0.8571

Solvers 8 5 19 18 24 8 31 10 11 4 7 4

Appendix D. Experiments Related to ASAP-v2 Parameter Tuning

As described by Gonard et al. (2019, 2017), the relevant parameters for ASAP-v2 are the
number of estimators (decision trees) and the weight for regularization. In Tab. 23, we
present the results obtained by performing various experiments with ASAP-v2 choosing
different value combinations for these two parameters. For an entry Asap-t-i-w-j, i means
the number of estimators and j refers to the weight.

Overall, the results show that ASAP-v2 is quite stable but that we did not find a com-
bination of hyper-parameters that dominates all the other values for all the scenarios.
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Table 23: ASAP-v2 results with different parameter values.

Approach Bado Caren GLUHACK-2018 MAXSAT19-UCMS Magnus Mira Monty Quill SAT18-EXP Sora Svea Average
Asap-t-10-w-0.001 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-10-w-0.01 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-10-w-0.05 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-10-w-0.1 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-10-w-0.25 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-10-w-0.5 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-10-w-1.0 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-10-w-2.0 0.8414 0.7810 0.3856 0.5590 0.4977 0.0258 0.6965 0.5474 0.5281 0.2716 0.6543 0.5262
Asap-t-20-w-0.001 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-20-w-0.01 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-20-w-0.05 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-20-w-0.1 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-20-w-0.25 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-20-w-0.5 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-20-w-1.0 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-20-w-2.0 0.7829 0.5907 0.3883 0.5580 0.4941 0.0546 0.7606 0.6686 0.5975 0.3536 0.6283 0.5343
Asap-t-40-w-0.001 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-40-w-0.01 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-40-w-0.05 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-40-w-0.1 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-40-w-0.25 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-40-w-0.5 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-40-w-1.0 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-40-w-2.0 0.8617 0.5906 0.3535 0.5992 0.6399 0.0553 0.6863 0.6677 0.5272 0.3103 0.6475 0.5399
Asap-t-80-w-0.001 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-80-w-0.01 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-80-w-0.05 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-80-w-0.1 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-80-w-0.25 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-80-w-0.5 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-80-w-1.0 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-80-w-2.0 0.8814 0.5837 0.3883 0.5992 0.6391 0.0550 0.6860 0.6368 0.5645 0.3126 0.6872 0.5485
Asap-t-160-w-0.001 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-160-w-0.01 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-160-w-0.05 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-160-w-0.1 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-160-w-0.25 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-160-w-0.5 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-160-w-1.0 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-160-w-2.0 0.8630 0.7833 0.3525 0.5992 0.6417 0.0556 0.6918 0.6365 0.5956 0.2690 0.6813 0.5609
Asap-t-320-w-0.001 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-320-w-0.01 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-320-w-0.05 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-320-w-0.1 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-320-w-0.25 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-320-w-0.5 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-320-w-1.0 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-320-w-2.0 0.8831 0.5899 0.3872 0.5992 0.7146 0.0542 0.7572 0.6370 0.5957 0.2693 0.6942 0.5620
Asap-t-640-w-0.001 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-640-w-0.01 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-640-w-0.05 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-640-w-0.1 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-640-w-0.25 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-640-w-0.5 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-640-w-1.0 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-640-w-2.0 0.8634 0.3924 0.4233 0.5992 0.7161 0.0542 0.6180 0.6666 0.5991 0.2693 0.6961 0.5362
Asap-t-1280-w-0.001 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
Asap-t-1280-w-0.01 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
Asap-t-1280-w-0.05 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
Asap-t-1280-w-0.1 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
Asap-t-1280-w-0.25 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
Asap-t-1280-w-0.5 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
Asap-t-1280-w-1.0 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
Asap-t-1280-w-2.0 0.8629 0.3961 0.3884 0.5992 0.6425 0.0550 0.6866 0.6665 0.5633 0.2457 0.7043 0.5282
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