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Abstract

We consider the online version of the coalition structure generation problem, in which
agents, corresponding to the vertices of a graph, appear in an online fashion and have to
be partitioned into coalitions by an authority (i.e., an online algorithm). When an agent
appears, the algorithm has to decide whether to put the agent into an existing coalition or
to create a new one containing, at this moment, only her. The decision is irrevocable. The
objective is partitioning agents into coalitions so as to maximize the resulting social welfare
that is the sum of all coalition values. We consider two cases for the value of a coalition:
(1) the sum of the weights of its edges, and (2) the sum of the weights of its edges divided
by its size.

Coalition structures appear in a variety of application in AI, multi-agent systems, net-
works, as well as in social networks, data analysis, computational biology, game theory,
and scheduling. For each of the coalition value functions we consider the bounded and
unbounded cases depending on whether or not the size of a coalition can exceed a given
value α. Furthermore, we consider the case of a limited number of coalitions and various
weight functions for the edges, i.e., unrestricted, positive and constant weights. We show
tight or nearly tight bounds for the competitive ratio in each case.

1. Introduction

Coalition structure generation (CSG) is a major research challenge in AI, multi-agent sys-
tems, and networking communities. The CSG problem consists in partitioning a set of
agents into coalitions, so as to maximize the resulting social welfare. Specifically, given a
set of agents A = {1, 2, . . . , n} and a value function v : 2A → R (that may map to negative
values) assigning a value to each set of agents (coalition) S ⊆ A, a coalition structure is
a partition of A into disjoint exhaustive coalitions. The objective is to identify coalition
structures that maximize the overall outcome of the system, that is the sum of all coalition
values. This function that we want to maximize is known as the utilitarian social welfare.

CSG models a variety of real world scenarios and not surprisingly is one of the major
problems investigated in AI. For instance, consider a set of agents who can work in teams:
some agents work well together, while others find it hard to do so. When two agents work
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well together, a team which contains both of them can achieve better results due to their
synergy. On the other hand, when the agents are not able to integrate in a satisfactory way,
a team that contains them has a reduced utility due to their inability to cooperate, and
may even perform better if they are removed. There are many other real world applications
of CSG like electronic commerce, e-business, distributed vehicle routing, information gath-
ering, multi-sensor networks, grid computing, autonomous sensors and virtual power plants
(Rahwan, Michalak, Wooldridge, & Jennings, 2015; Voice, Polukarov, & Jennings, 2012).

Several papers of the literature dealing with CSG (see the Related Work Section) con-
sider the problem under a classical computational setting, where a centralized deterministic
authority (i.e., an offline algorithm) decides how to partition the agents into coalitions,
and where it is assumed that all the information on the input is known at the beginning.
However, there exist scenarios (e.g., hiring employees and assigning them to existing teams,
people entering social networks, etc.) in which it is more realistic to assume that agents
arrive over time and the entire input is not available from the start. For this reason, in this
work we study CSG in the classical online setting with agents introduced in an online fash-
ion. Specifically, we assume that agents arrive one after the other and when an agent arrives,
only the values of subsets of agents arrived until this moment are known. The authority
(i.e., an online algorithm) has to decide whether to put the agent into an existing coalition
or to create a new one containing, at this moment, only her. The decision is irrevocable and
clearly depends on the cost function associated with the resulting coalitions. The objective
is still partitioning agents into coalitions so as to maximize the resulting utilitarian social
welfare. We evaluate the performance of online algorithms by using the competitive anal-
ysis, where an online algorithm is compared with an optimal offline algorithm that knows
the entire request sequence in advance.

We notice that every setting of CSG in which (i) agents arrive over time and (ii) an
irrevocable choice has to be made upon their arrival, naturally fits our model. For instance,
consider (a) social-network games, among the most played in the world (Shin & Shin, 2011),
receiving players over time to be assigned to rooms and not allowed to change room before
the end of the game; (b) a research institute aiming at assigning researchers (hired over
time) to departments: the cost of moving a researcher already inserted in a department
could be very high in terms of productivity and of organization and administrative issues;
(c) similarly, a company with geographically spread agencies to which hired employees have
to be assigned. This work may be considered as a fundamental step towards the study
of these realistic CSG applications. Further steps, for instance considering some degree of
uncertainty regarding the weight of edges, deserve future research in order to capture these
scenarios in an increasingly realistic way.

It is not difficult to see that if we consider general value functions there is no competitive
algorithm A with bounded competitive ratio. In fact, consider the online input that is
supplied to A by the following adversary. The adversary releases two agents 1 and 2, where
v({1}) = 0, v({2}) = 0 and v({1, 2}) = 0. The online algorithm A can either put both
agents in the same coalition or in two different coalitions. In the first case, the adversary
release a third agent 3 such that v({3}) = 0, v({1, 3}) = 1, v({2, 3}) = 0 and v({1, 2, 3}) = 0.
We have that the optimal offline solution that put agents 1 and 3 together and agent 2 alone
has social welfare 1, while the social welfare of the solution returned by the online algorithm
A is 0, regardless of the decision about agent 3. In the second case, the adversary release
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a third agent 3 such that v({3}) = 0, v({1, 3}) = 0, v({2, 3}) = 0 and v({1, 2, 3}) = 1.
We have that the optimal offline solution that put the three agents together in the same
coalition has social welfare 1, while the social welfare of the solution returned by the online
algorithm A is 0, regardless of the decision about agent 3.

Despite the non-existence of competitive algorithms with bounded competitive ratio,
considering general value functions has also the drawback that the problem is defined by the
2n distinct coalition values and the mere specification of the input would be intractable. In
this work we focus on a natural and succinct representation of the problem, where the agents
are vertices of an undirected weighted graph, and the value of a coalition depends on the
weights of the edges between coalition members. It is arguably one of the most basic variant
of coalition value functions to consider, however, this simple setting generates a rich set of
problems to study. This graph model has been first studied by Deng and Papadimitriou
(1994) and further considered by Aziz and de Keijzer (2011), Bachrach, Kohli, Kolmogorov,
and Zadimoghaddam (2013), Bistaffa and Farinelli (2018), Voice et al. (2012). As noted
by Voice et al. (2012), it well models various contexts of interest to computer scientists,
where agents represent humans or resources (e.g., machines, computers, service providers or
communication lines), which are typically structured and embedded in a social or computer
network.

When an agent (i.e., a node of the considered graph) arrives, only the weights of her
incident edges toward previously arrived agents are known. After each step t, the current
graph is partitioned into coalitions C(t) = {Ct1, Ct2, . . . , Ctc(t)}, such that every agent belongs

to exactly one coalition Cti , starting from the coalition structure C(t − 1) determined in
the previous step. In particular, when an agent appears, she can either join an existing
coalition or form a new one consisting only of her. The utilitarian social welfare of the
coalition structure C(t) is the sum of the values of all of its coalitions. We consider two
different definitions of coalition value: (1) the sum of the weights of the edges between
coalition members, and (2) the sum of the weights of the edges between coalition members
divided by the number of agents in the coalition. We refer to these two value functions
as total weight and fractional weight, respectively. The former is the most natural one can
think of, while the latter captures social, economic, and political settings in which agents
seek to maximize the average agreement with the members of their coalition. Both of them
have been also widely considered in the literature (see the Related Work Section).

1.1 Our Contribution

We consider the online variant of the CSG problem, where we assume that the input contains
two numbers α, k > 0, that constitute upper bounds for the size of a coalition and for the
number of coalitions, respectively. Furthermore, we consider different types of edge weights:
unrestricted, positive and constant weights. We show tight or nearly tight bounds for the
competitive ratio in each of the cases. Table 1 and Table 2 summarize our results for the
total weight and fractional weight measures, respectively. Our main technical results are the
Ω(log2W ) lower bound (Thm. 4.5) for the competitive ratio of Maximum Fractional Weight
Coalition Structure Generation with positive weights, and the matching upper bound (Thm.
4.4), where W is the maximum absolute value of the edge weights.
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Bounds Weights Lower Bound Upper Bound

α =∞ General
W · (n− 2)(∗) max {W · (n− 2), n− 1}
(Thm. 3.1) (Thm. 3.2)

α <∞
General 2W · (α− 1) 2W · (α− 1)

(Thm. 3.6) (Thm. 3.7)
Positive W 1−ε · (α− 1) W · α

(Thm. 3.8) (Thm. 3.9)

k <∞ General ∞ (Thm. 3.3)
±1 ∞ (∗) (Thm. 3.4)

Table 1: The competitive ratio of Maximum Weight Coalition Structure Generation. Lower
bounds holding only for the strict competitive ratio are marked by (∗).

Bounds Weights Lower Bound Upper Bound

α =∞

General
4W 4W
(Thm. 4.1) (Aziz et al., 2015)

Unweighted
4 4
(Thm. 4.3) (Aziz et al., 2015)

Positive
Ω(log2W ) O(log2W )
(Thm. 4.5) (Thm. 4.4)

α <∞
General

Ω(W ) 4W
(Thm. 4.8) (Aziz et al., 2015)

Unweighted
4(1− 1/α) 4(1− 1/α)
(Thm. 4.6) (Thm. 4.7)

k <∞
General ∞ (Thm. 4.9)
±1 ∞ (∗) (Thm. 4.10)

Positive
n
2

n
2

(Thm. 4.11) (Observation 1)

Table 2: The competitive ratio of Maximum Fractional Weight Coalition Structure Gener-
ation. Lower bounds holding only for the strict competitive ratio are marked by
(∗).

A preliminary version of this work appeared in the proceedings of AAMAS 2018 (Flam-
mini, Monaco, Moscardelli, Shalom, & Zaks, 2018). We would like to remark that, besides
substantially improving the presentation and including all proofs that were omitted in the
conference version, we have significantly strengthened the results by providing, in almost
all cases, lower bounds holding not only for the strict competitive ratio, but also for the
more challenging general non-strict notion of competitive ratio.
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1.2 Related Work

There exist many offline algorithms designed for the CSG problem. One of the main ap-
proach is using dynamic programming algorithms (Rothkopf, Pekec, & Harstad, 1998). The
most efficient one for the CSG problem with general coalition values has been designed by
Rahwan and Jennings (2008) which returns an optimal solution in time O(3n). Another
typical approach is using anytime algorithms, which can return a solution at anytime during
the running time with the property that the quality of this solution improves monotonically
as the computation time increases. Several authors have developed anytime algorithms for
the CSG problem (Dang & Jennings, 2004; Rahwan, Michalak, Wooldridge, & Jennings,
2012; Rahwan, Ramchurn, Jennings, & Giovannucci, 2009; Sandholm, Larson, Andersson,
Shehory, & Tohmé, 1999). The problem of partitioning a set of agents, where larger coali-
tions get higher value but only up to a certain fixed coalition size, has been considered by
Dutta, Dasgupta, Baca, and Nelson (2013). In particular, they deal with the scenario, where
initially agents can be in any arbitrary configuration (coalition structure), and consider the
problem of obtaining a partition that maximizes the social welfare starting from the initial
one by taking into account the cost of transforming from one coalition structure to another.
All these algorithms that solve the CSG problem with general coalition values have a worst
case time complexity exponential in n. Therefore several heuristics have been proposed.
For instance, Shehory and Kraus (1998) propose a greedy algorithm which restricts the
search space by imposing constraints on the size of the coalition. Another greedy algorithm
(Mauro, Basile, Ferilli, & Esposito, 2010) is based on GRASP a general purpose greedy
algorithm that, after each iteration, performs a quick local search to try and improve its
solution. Sen and Dutta (2000) propose a genetic algorithm which uses a stochastic search
process to identify the optimal coalition structure.

Deng and Papadimitriou (1994) are the first to consider the graph model (also called
weighted graph games) that we consider in our paper. Specifically, they consider the offline
scenario of the CSG problem and provide complexity results for it. This graph model
has been further considered by Bachrach et al. (2013) who show that finding the optimal
coalition structure is hard even for planar graphs. Moreover, the authors provide constant
factor approximation algorithms for minor-free graphs (that include the family of planar
graphs) and bounded degree graphs. Voice et al. (2012) consider a different version of the
graph model for the CSG problem, which is a well known graph restricted game considered
by Myerson (1977). In particular, their input is an undirected graph and the coalition value
for a subset of agents (i.e., a coalition) is any function which is independent of disconnected
members, that is, two nodes have no effect on each other’s marginal contribution to their
vertices separator. They consider the problem of computing optimal coalition structures
and provide complexity results for general and specific graphs. Aziz and de Keijzer (2011)
show polynomial time algorithms for coalition structure generation in contexts of spanning
tree games, edge path coalitional games and vertex path coalitional games, where the value
of a coalition of nodes is either 1 or 0, depending on whether or not it contains a spanning
tree, an edge path or a vertex path, respectively.

To the best of our knowledge the online setting adopted in this work was not considered
before. A related (but different) problem in the online setting was initiated by Augustine,
Avin, Liaee, Pandurangan, and Rajaraman (2016). They study the problem of balanced
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repartitioning: given an online sequence of pairs of agents to be interconnected, the objective
is to dynamically partition the agents into coalitions of similar size, at a minimum cost.
Coalition structures can be updated dynamically, by migrating agents between coalitions at
a given cost per migration. Thus, the three main differences between that model and ours
are that we do not require equal size coalitions, we consider different value functions, and
coalitions in our model cannot be reconfigured. Moreover, Nguyen and Zick (2018) extend
the class of weighted voting games to the more general one of resource based coalitional
games and provide several results about the computation of optimal coalition structure,
some of them also holding in the online setting. It is worth noticing that their work deeply
differs from ours because every agent is assigned a weight and the value of a coalition is
either zero or a fixed value that is obtained if and only if the sum of weights of the agents
belonging to it is at least a given threshold. Interestingly, it holds that there are several
correlations among this model and the family of big packing problem, and some (online)
algorithms (e.g., the next-fit one) holding for the bin packing problem can be adapted to
this setting. Furthermore, Buchbinder, Feldman, Filmus, and Garg (2020) study another
online setting that is somewhat related to ours: it consists in assigning items (arriving in
an online fashion) to bidders, where each bidder has a non-negative monotone submodular
utility function, such that a partition of items among the bidders maximizing the total
utility of the bidders is obtained.

Our problem is also related to game theoretic works. Hedonic games, first formalized
by Dréze and Greenberg (1980), model the formation of coalitions (groups) of players when
players have preferences over which group they belong to. In particular, each player has
a subjective utility function over the coalitions they join (a preference order over them,
often induced by some cardinal utility function). Work on hedonic games mainly studies
the existence, computation and performance of stable solutions, i.e., solutions where no
agent or group of agents has interest in deviating from the outcome. Nevertheless, it is
also considered the problem of computing coalition structures that maximize the social
welfare. Additively-separable hedonic games (ASHGs) constitute a natural and succinctly
representable class of hedonic games. Like in our graph model, they can be represented
by a weighted graph, where the set of agents coincides with the set of vertices and the
utility of a coalition to a particular agent is simply the sum of the weights of the edges
adjacent to the agent in the subgraph induced by the coalition. Properties guaranteeing
the existence of stable allocations for ASHGs have been provided by Banerjee, Konishi, and
Sönmez (2001), Bogomolnaia and Jackson (2002), while computational complexity issues
have been studied by Ballester (2004), Aziz, Brandt, and Seedig (2011), Olsen (2009).
ASHGs where the utility of a coalition to a particular agent is the sum of the weights of the
edges adjacent to the agent in the subgraph induced by the coalition plus the weight on the
particular coalition has been studied by Bilò, Fanelli, Flammini, Monaco, and Moscardelli
(2019). Fractional hedonic games (FHGs) (Aziz, Brandl, Brandt, Harrenstein, Olsen, &
Peters, 2019) constitute another natural and succinctly representable class of hedonic games.
They are similar to ASHGs, with the difference that the utility of an agent is divided
by the number of agents of the coalition. Brandl, Brandt, and Strobel (2015) study the
computational complexity of deciding whether a stable coalition structure exists in a given
game. Carosi, Monaco, and Moscardelli (2019) study local-core stable coalition structure
in FHGs and Bilò, Fanelli, Flammini, Monaco, and Moscardelli (2018) also consider the
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problem of computing optimal coalition structures. Fanelli, Monaco, and Moscardelli (2021)
consider relaxed core stability in FHGs. Aziz, Gaspers, Gudmundsson, Mestre, and Taubig
(2015) consider the computational complexity of computing optimal coalition structures for
FHGs under utilitarian and egalitarian social welfare. Some results have been improved
by Flammini, Kodric, Monaco, and Zhang (2021), where also strategyproof mechanisms
for ASHGs and FHGs have been proposed. We note that our value coalition functions
are equivalent to the ones of the corresponding ASHGs and FHGs, being just scaled by
a constant factor of 2. Monaco, Moscardelli, and Velaj (2019, 2020) consider modified
fractional hedonic games (MFHGs), where, slightly differently than FHGs, the utility of
an agent is divided by the size of the coalition she belongs minus 1. Elkind, Fanelli, and
Flammini (2020) study Pareto Optimality in ASHGs, FHGs and MFHGs.

In this work we deal with coalition formation, where the value of a coalition does not
depend on agents who are not part of the coalition. However, there exist coalition formation
settings with externalities (Rahwan et al., 2012). Moreover, we assume that each agent is
member of exactly one coalition. However, there exist coalition formation settings in which
coalitions do not constitute a partition of the agents, but may also overlap (Chalkiadakis,
Elkind, Markakis, Polukarov, & Jennings, 2010; Zick, Markakis, & Elkind, 2014).

1.3 Paper Organization

In Section 2 we present definitions and notation used throughout the paper, and also the
problems’ statement. In Sections 3 and 4 we analyze the total weight measure and the
fractional weight measure, respectively. Section 5 contains concluding remarks.

2. Preliminaries

In this section, we first provide all the necessary definitions and notation. Then, we formally
define our problem.

2.1 Definitions and Notation

For an integer k > 0, we denote by [k] the set {1, . . . , k}.
Through this work G is an undirected edge-weighted graph (V,E,w) on n vertices having

no self-loops, with w : E → R. Each vertex is associated with an agent. We denote by
uv and wu,v, the edge {u, v} ∈ E and its weight w({u, v}), respectively. We assume that
|wu,v| ≥ 1 for every uv ∈ E. We denote by W = maxuv∈E |wu,v| the maximum absolute
value of the edge weights. We say that G is unweighted if wu,v = 1 for any uv ∈ E. We
denote by G+ = (V,E+, w+) the subgraph of G consisting of its positive-weighted edges,
that belong to E+ ⊆ E. Given a set of edges F ⊆ E, we denote by w(F ) =

∑
uv∈F wu,v,

the total weight of edges in F . We denote by G[S], the subgraph of G induced by a subset
S of its vertices, i.e., G[S] = (S,ES , wS), where ES = {uv ∈ E : u, v ∈ S} and wS is
the restriction of w to ES . We denote by δS(v), the set of edges incident to v and S,
i.e., δS(v) = {uv ∈ E : u ∈ S}, and by NS(v) (resp. NS [v]) the open (resp. closed)
neighborhood of v in S. A clique (resp. independent set) of G is a set of pairwise adjacent
(resp. non-adjacent) vertices of G.

1221



Flammini, Monaco, Moscardelli, Shalom, & Zaks

A coalition structure C of G is a partition of V into coalitions C1, C2, . . . , Cc, for some
positive integer c. We use the term coalition for both Ci and the weighted graph G[Ci].
Two coalitions Ci and Cj are adjacent if there exist vi ∈ Ci and vj ∈ Cj with vivj ∈ E. For
a vertex v ∈ V , we denote by C(v) the unique coalition Ci ∈ C such that v ∈ Ci. For two
positive integers α and k, we say that a coalition structure C is (α, k)-bounded if |C| ≤ k
and |Ci| ≤ α, for every Ci ∈ C. We assume that α ≥ 2 and k ≥ 2.

We denote by w(Ci) the total weight of the edges of G[Ci]. The fractional weight of a

coalition Ci is wF (Ci) = w(Ci)
|Ci| . Clearly, when Ci is an independent set, and in particular

a single vertex, we have wF (Ci) = w(Ci) = 0. We refer to the unique agent of a singleton

coalition of C as an isolated agent of C. When G is unweighted we have wF (Ci) = |Ci|−1
2

whenever Ci is a clique, and wF (Ci) = 1− 1
|Ci| whenever G[Ci] is a tree.

The weight of a coalition structure C is w(C) =
∑

Ci∈Cw(Ci), and its fractional weight
is wF (C) =

∑
Ci∈CwF (Ci). We name the coalition structure {V } as the GrandCoalition.

2.2 Problem Statement

We consider the following two optimization problems under the online setting in which the
vertices of G (i.e., the agents) appear one at a time (along with their incident edges) in the
order v1, v2, . . . , vn and one has to decide on the coalition C(vi) of every vi upon her arrival.

MaxW-CSG (Maximum Weight Coalition Structure Generation)
Input: A weighted graph G = (W,E,w). Two positive integers α and k.
Output: An (α, k)-bounded coalition structure C.
Measure to be maximized: w(C).

MaxFW-CSG (Maximum Fractional Weight Coalition Structure Genera-
tion)
Input: A weighted graph G = (W,E,w). Two positive integers α and k.
Output: An (α, k)-bounded coalition structure C.
Measure to be maximized: wF (C).

Let Π ∈ {MaxW-CSG,MaxFW-CSG} be a problem and I an instance of Π; given
a solution S of an instance I, we denote by f(S) its measure. Moreover, we denote by
OPTΠ(I) an arbitrary optimal solution of Π on input I. Given an algorithm A for Π, we
denote by A(I) a solution returned by A on input I. A feasible solution S of an instance I

is a ρ-approximation if f(S) ≥ f(OPTΠ(I))
ρ . An algorithm A is a ρ-approximation algorithm

for Π if every solution A(I) is a ρ-approximation for every instance I of Π.
As usual in the online setting (see Fiat & Woeginger, 1998), an instance of an online

optimization problem Π is a sequence I = σ1, σ2, . . ., where, given the weighted graph G in
input, for every i = 1, 2, . . ., σi = (vi, δ{v1,...,vi−1}(vi), wδ{v1,...,vi−1}(vi)

), where wδ{v1,...,vi−1}(vi)

is the restriction of w to edges in δ{v1,...,vi−1}(vi). It is worth remarking that, since the
number of nodes and edges of G is not known in advance, from the point of view of the
online algorithm the length of sequence I can be considered potentially infinite. An online
algorithm has to produce partial output for every σi without the knowledge of the future
entries, i.e. σi+1, σi+2, . . .. Furthermore, the output produced by the algorithm at step i
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cannot be modified at later steps. An online algorithmA is r-competitive for Π if there exists
some b ≥ 0 such that f(A(I)) ≥ f(OPTΠ(I))

r −b for every instance I. If b = 0 then A is strictly
r-competitive. The competitive ratio (resp. strict competitive ratio) of A is the smallest
r such that A is r-competitive (resp. strictly r-competitive) (Borodin & El-Yaniv, 1998).
Notice that an upper bound holding for the strict competitive ratio is an upper bound for
the competitive ratio with b = 0; conversely, a lower bound is stronger when holds for any
b ≥ 0. When no ambiguity arises we omit the subscript Π, the instance I and the objective
function f . In such cases OPT stands for OPTΠ(I) and also for f(OPTΠ(I)). Similarly, A
may stand for either A(I) or for f(A(I)) besides being the name of an algorithm.

3. Maximum Weight Coalition Structure Generation

In this section we deal with the MaxW-CSG problem.

3.1 Unbounded Coalition Size

Note that when the size of a coalition is unbounded the case of non-negative weights is trivial,
since GrandCoalition is optimal in this case. Therefore, in this section we consider only
instances containing both positive and negative edges.

In Section 3.1.1 we consider the case where the number of coalitions is unbounded, and
in Section 3.1.2 we consider the case of bounded number of coalitions.

3.1.1 Unbounded Number of Coalitions

Theorem 3.1 Given any ε > 0, there exists no deterministic online algorithm for
MaxW-CSG having strict competitive ratio W (n− 2)− ε.

Proof: Let us assume, by the way of contradiction, that A is a strictly r-competitive
deterministic online algorithm for MaxW-CSG with r = W (n−2)−ε. Consider the online
input that is supplied to A by the following adversary. The adversary releases two adjacent
agents v1 and v2. If A does not put both agents in the same coalition the adversary stops.
In this case OPT = 1 and A = 0, thus the strict competitive ratio of A is unbounded.
Therefore, A has to put v1 and v2 in the same coalition, say C1. At this point the weight of
the solution is 1. The adversary releases x additional agents each of which is adjacent only
to v1 and v2 with edges of weight W and −W , respectively. The weight of the coalition
structure of A remains 1, since every agent will add zero to f(A) regardless whether the
agent joins coalition C1, joins any other coalition or forms a new coalition. Consider the
coalition structure C = {{v2}, V \ {v2}}. We have OPT ≥ w(C) = xW . Therefore, the
strict competitive ratio of A is at least

OPT

A ≥ xW = W (n− 2),

a contradiction.

�

Notice that Theorem 3.1 also implies a lower bound of Ω(Wn) to the (non-strict) com-
petitive ratio of MaxW-CSG. In fact, assuming by contradiction that there exists an
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algorithm A with (non-strict) competitive ratio r = o(Wn), we would have that, for a given
constant b ≥ 0, OPT ≤ r(A + b) = o(Wn)A for every possible input instance. In other
words, A ≥ OPT

o(Wn) , that is A is strictly o(Wn)-competitive: a contradiction to Theorem 3.1.

We now consider the following greedy algorithm. Upon presentation of an agent vi,
algorithm Greedy adds her to the coalition Cj that brings the maximum increase in the
weight of the current coalition structure, if this increase is at least 1. If no coalition brings
an increase of at least 1 in the weight, Greedy creates a new coalition {vi} (see Algorithm
1).

Algorithm 1 Greedy

Initialization:
1: C← ∅.

When agent vi arrives:
2: gain← 0
3: for all Cj ∈ C do
4: if δCj (vi) > gain then
5: gain← δCj (vi)
6: j̄ ← j

7: if gain ≥ 1 then
8: Add vi to the coalition Cj̄
9: else

10: Create a new coalition {vi} and add it to C.

Theorem 3.2 The strict competitive ratio of Greedy is (exactly) max {W (n− 2), n− 1}.

Proof: A newly created coalition contains one agent and its weight is zero. Whenever
an agent vi is added to an existing coalition Cj , since the weight of the coalition increases,
there is at least one positive-weighted edge in δCj (vi). Moreover, the size of the coalition
increases by 1, and, by the definition of the algorithm, its weight increases by at least 1.
Therefore, every coalition C returned by Greedy is connected in G+ and its weight is at
least |C| − 1. Denoting by ci the number of coalitions of Greedy having i agents, we have

Greedy ≥
n∑
i=1

(i− 1)ci =
n∑
i=1

ici −
n∑
i=1

ci = n− c,

where c is the number of coalitions of Greedy. Whenever c = n we have Greedy =
OPT = 0. Therefore, in the rest of the proof we assume c ∈ [n− 1].

Consider two coalitions C and C ′ and assume without loss of generality that the first
agent v of C arrived before the first agent v′ of C ′. Since v′ has formed her coalition rather
than joining C, we conclude that the sum of the weights of δC(v′) is less than 1, thus either
δC(v′) is empty or it contains at least one edge that is not in E+. We conclude that there is
at least a couple of nodes u ∈ C and v ∈ C ′ such that {u, v} 6∈ E+, and, by the generality
of C and C ′, the same holds for any pair of coalitions returned by Greedy. Therefore,
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Figure 1: Bounds on the total weight of edges in C1 × C2. (i) u arrives before x. (ii) u
arrives between x and y. (iii) u arrives after y.

|E+| ≤
(
n
2

)
−
(
c
2

)
. We proceed as follows

OPT

Greedy
≤ W |E+|

Greedy
≤W n(n− 1)− c(c− 1)

2(n− c)

≤ W
n(n− 1)− (n− 1)(n− 2)

2
= W (n− 1),

where the inequality in the last line is due to the fact that the quotient is a non-decreasing
function on c, thus it attains maximum at c = n− 1.

For the same reason, whenever c ≤ n− 3 we have

OPT

Greedy
≤W n(n− 1)− (n− 3)(n− 4)

6
= W (n− 2).

We now consider the cases of c = n− 1 and c = n− 2.

� c = n− 2:

In this case the non-singleton coalitions of C consist of either two coalitions of
two agents, or one coalition of three agents. We analyze these cases separately.

– c1 = n − 4, c2 = 2: Let the two non-singleton coalitions be C1 = {x, y}, C2 =
{u, v}, let a = wx,y, b = wu,v, and assume without loss of generality that v is
the last agent among these four agents, and that y arrives after x. Consider
now the three different possibilities that may arise (see Figure 1). (i) If u arrives
before x or (ii) u arrives between x and y, by the definition of Greedy, if
edge xu ∈ E, wx,u is not positive, if edge yu exists in E, wy,u ≤ a ≤ W and,
whenever edges vx and/or vy exist, wv,x + wv,y ≤ b ≤ W . (iii) If u arrives after
y, by the definition of Greedy, if edges xu and/or yu exist in E, wx,u +wy,u ≤
a ≤ W and, whenever edges vx and/or vy exist in E, wv,x + wv,y ≤ b ≤ W .
Therefore, the total weight of positive edges in C1 × C2 is at most 2W . Notice
that, by the definition of Greedy, for any singleton coalition {z}, one of the
edges zx and zy (and also one of zu and zv) is non-positive (or does not exist
in E): there is at most a positive edge between z and C1 and another positive
edge between z and C2. Moreover, again by the definition of the algorithm, no
positive edge can exist in E between nodes belonging to two singleton coalitions.
Therefore, OPT ≤ 2W (n− 4) + 2W +a+ b ≤ 2W (n− 2) and Greedy ≥ 2, thus
OPT/Greedy ≤W (n− 2).
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Figure 2: Bounds on the total weight of edges between C = {x, y, z} and u. (i) u arrives
before x. (ii) u arrives between x and y. (iii) u arrives between y and z. (iv) u
arrives after z.

– c1 = n− 3, c2 = 0, c3 = 1: Let the only non-singleton coalition be C = {x, y, z},
where the agents appear in this order in the input, and let a = wx,y and b =
wy,z = Greedy−a. For a singleton coalition {u} we consider the possible orders
of arrival of u, relative to x, y, z, as depicted in Figure 2.

* (i) and (ii), u arrives before y: In this case, by the definition of Greedy, if
edge xu ∈ E, wx,u is not positive, wu,y ≤ a and wu,z ≤ b = Greedy − a,
thus implying that the total weight of positive edges in δC(u) is at most
Greedy ≤W + Greedy− a.

* (iii), u arrives between y and z: In this case, whenever edges ux and/or
uy exist, wu,x + wu,y < 1, and, if edge uz ∈ E, wu,z ≤ b = Greedy − a,
implying that only one edge, between ux and uy, can have a positive weight,
and therefore the total weight of positive edges in δC(u) is at most W +
Greedy− a.

* (iv), u arrives after z: In this case, whenever edges ux and/or uy and/or uz
exist, wu,x+wu,y+wu,z < 1. We get that the total weight of positive edges in
δC(u) is at most W+1 since, if one of the three edges is positive, then the sum
is at most W , while if two of them are positive, then, since the negative one
has value at least −W , their sum is at most W +1. Finally, we have that the
total weight of positive edges in δC(u) is at most W + 1 ≤W +Greedy−a,
because Greedy ≥ a+ 1.

We conclude that

OPT ≤ (n− 3)(W + Greedy− a) + Greedy

≤ (n− 3)(W + Greedy− 1) + Greedy

= (n− 2)Greedy + (W + 1)(n− 3)

and

OPT

Greedy
≤ n− 2 +

(W − 1)(n− 3)

Greedy

≤ n− 2 +
(W − 1)(n− 3)

2
≤W (n− 2).

� c = n − 1: In this case the C consists of a coalition C = {x, y} and n − 2 singleton
coalitions. Assume without loss of generality that x appears before y in the input.
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Figure 3: Bounds on the total weight of edges between C = {x, y} and u. (i) u arrives
before x. (ii) u arrives between x and y. (iii) u arrives after y.
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Figure 4: Lower bound to the competitive ratio of alg. (i) Execution of Greedy. (ii) The
grand coalition.

Since y joined x, we have wx,y ≥ 1. Let a = wx,y, and let {u} be a singleton coalition
of C. We now bound the total weight w̄ of the edges ux and uy that fall within the
same coalition of a solution. We consider the possible orders of arrival of u, relative
to x and y, as depicted in Figure 3.

– (i) and (ii), u arrives before y: By the definition of Greedy, we have that, if
edge ux ∈ E, wu,x ≤ 0 and, if edge uy ∈ E, wu,y ≤ a: In this case, it holds that
w̄ ≤ a.

– (iii), u arrives after y: By the definition of Greedy, we have that wu,x+wu,y ≤ 1.
Therefore, w̄ ≤ 1 ≤ a if x and y are in the same coalition, and w̄ ≤ W if x and
y are in different coalitions.

Therefore, if x and y are in the same coalition of OPT we have OPT ≤ a+(n−2)a =
(n− 1)a, i.e.

OPT

Greedy
≤ n− 1.

Otherwise, i.e. if x and y are in different coalitions of OPT , we have OPT ≤ (n−2)W
and Greedy = a ≥ 1.

We proceed to show that this bound is tight. Since the competitive ratio of any deter-
ministic online algorithm is at least W (n− 2), we need to show that the competitive ratio
of Greedy is at least n− 1. This is easily proven using an adversary that first presents an
independent set of n− 1 agents followed by an agent connected to every other agent by an
edge of unit weight. Greedy puts the first n−1 agents in n−1 different coalitions and the
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last agent in one of these coalitions (see Figure 4.i), i.e., Greedy = 1. On the other hand
GrandCoalition is a solution with weight n− 1, thus OPT ≥ n− 1 (see Figure 4.ii).

�

3.1.2 Bounded Number of Coalitions

In this section we present impossibility results for the case where the number of coalitions
is bounded by some k ≥ 2, the case of k = 1 being trivial.

In the following two theorems, the adversary releases an independent set of at most k+1
agents until two agents vi, vj are put together, and then an agent only adjacent to vi and
vj .

Theorem 3.3 There exists no competitive deterministic algorithm for MaxW-CSG for
any k ≥ 2.

Proof: Let us assume, by the way of contradiction, that A is a r-competitive algorithm
for MaxW-CSG with an additive term b, i.e. A ≥ OPT

r − b for some b ≥ 0, with r being
either constant or a function of n. The adversary releases an independent set of at most
k + 1 agents until A puts two agents vi, vj in the same coalition. Then it releases an agent
adjacent to only vi and vj with edges of weights bc + 1 and −(bc + 1) respectively. Then,
regardless of the decisions of A, we have A = 0. On the other hand, one can form a coalition
consisting of vi together with the last agent, and form a second coalition from the remaining
agents which constitute an independent set. Thus, OPT > bc implying A = 0 < OPT

r − b,
a contradiction.

�

In the following theorem, it is shown that the strict competitive ratio remains unbounded
even when W = 1.

Theorem 3.4 There exists no strictly competitive deterministic algorithm for
MaxW-CSG for any k ≥ 2, even when W = 1.

Proof: Let us assume, by the way of contradiction, that A is a r-competitive algorithm
for MaxW-CSG, i.e. A ≥ OPT

r , with r being either constant or a function of n. The
adversary releases an independent set of at most k+ 1 agents until A puts two agents vi, vj
in the same coalition. Then it releases an agent adjacent to only vi and vj with edges of
weights 1 and −1 respectively. Then, regardless of the decisions of A, we have A = 0. On
the other hand, one can form a coalition consisting of vi together with the last agent, and
form a second coalition from the remaining agents which constitute an independent set.
Thus, OPT = 1 implying A = 0 < OPT

r , a contradiction.

�

The next result is obtained by exploiting a polynomial reduction from the k-colorability
problem, in which given an unweighted and undirected graph G′ and k colors, the answer
is yes if and only if it is possible to find a mapping of all vertices of G′ to colors {1, . . . , k}
such that for any edge of G′ the colors associated with its endpoints are different.
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Theorem 3.5 The offline variant of the problem MaxW-CSG is inapproximable for any
k ≥ 3, unless P = NP .

Proof: Given an instance G′ of k-colorability, we construct the following edge-weighted
graph G. G is complete graph on the same vertex set as G′. The weight of an edge e of
G is 1 if e is a non-edge of G′ and − |E(G′)| otherwise. If k = n the instance is clearly
a YES instance. Therefore, we assume k < n. To conclude the proof we show that G′ is
k-colorable if and only if OPT > 0.

Suppose that G′ is k-colorable. Then its vertex set can be partitioned into k′ ≤ k
independent sets that induces a coalition structure C with k′ coalitions. The weight of an
independent set I of G is w(I) =

(|I|
2

)
≥ |I|−1

2 . Therefore, OPT ≥ w(C) ≥ n−k′
2 > 0.

Conversely, suppose that OPT > 0. Then, there is a coalition structure C of G with
w(C) > 0 and |C| ≤ k. We claim that every coalition of C is an independent set of G′.
Suppose that C contains a coalition C that is not an independent set. Then G[C] contains
an edge of weight − |E(G′)|. Since w(E+) = |E(G′)| we conclude that w(C) ≤ 0.

�

3.2 Bounded Coalition Size

Recall that we assume α ≥ 2. When both the size of a coalition and the number of coali-
tions is bounded, the size of the instance becomes bounded in which case every algorithm
is 1-competitive. Therefore, in this section we assume that the number of coalitions is un-
bounded. Since in this case GrandCoalition is not necessarily a feasible solution, the
case of positive weights is not trivial. We analyze the cases of general weights and positive
weights in two different sections.

In this section we consider Greedyα, i.e., the variant of Greedy that does not consider
coalitions of size α as possible coalitions for the arriving agent (see Algorithm 2).

Algorithm 2 Greedyα
Initialization:

1: C← ∅.
When agent vi arrives:

2: gain← 0
3: for all Cj ∈ C such that |Cj | < α do
4: if δCj (vi) > gain then
5: gain← δCj (vi)
6: j̄ ← j

7: if gain ≥ 1 then
8: Add vi to the coalition Cj̄
9: else

10: Create a new coalition {vi} and add it to C.
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3.2.1 General Weights

We show that Greedyα is an optimal deterministic online algorithm for MaxW-CSG. We
start with the lower bound.

Theorem 3.6 Given any ε > 0, there exists no deterministic online algorithm for
MaxW-CSG having competitive ratio 2W (α− 1)− ε.

Proof: Let us assume, by the way of contradiction, that A is a r-competitive deterministic
online algorithm for MaxW-CSG with r = 2W (α− 1)− ε and an additive term b ≥ 0.

The adversary issues the agents in various phases, starting from phase 0. We show by
induction on the phase i that the cost Ai of the algorithm at the beginning of phase i is
Ai = i. Clearly, the base of the induction holds for i = 0. In phase i, let pi be an integer
greater than 4W (b+i)

α . The adversary issues `i ≤ piα agents vi1, . . . , v
i
`i

with wvij ,vik
= 1 for

every j, k ∈ [`i] until A puts two agents in the same coalition. This must happen, because
otherwise we have

OPT

r
− b > OPT

2W (α− 1)
− b ≥ pi

(
α
2

)
2W (α− 1)

− b >
4W (b+i)

α

(
α
2

)
2W (α− 1)

− b = i = Ai,

where the optimal solution is obtained by grouping the piα agents into coalitions of size α.
Let vik, v

i
`i

(k < `i) the two agents that are in the same coalition of the solution computed

by A. The adversary issues 2(α − 1) agents in V ′i = {vi`i+1, · · · , vi`i+2(α−1)}, each being

adjacent to both vik and vi`i .

For every new agent vij (j = `i + 1, . . . , `i + 2(α− 1)) the weight wvij ,vik
is W if j is even

and −W otherwise. As for the other edge, we have wvij ,vi`i
= −wvij ,vik . At this point, phase

i ends.
Given that, by the induction hypothesis, Ai = i, we obtain that Ai+1 = Ai + 1 = i+ 1,

regardless of the decision of algorithm A.
Consider now coalition structure C with the following coalitions: for each phase i =

0, 1, . . . , T −1 performed by the adversary, there is a coalition consisting of vik and the α−1
agents in V ′i with even index, and another one consisting of vi` and α− 1 agents in V ′i with
odd index. Since C is a feasible solution with w(C) ≥ 2WT (α− 1), It directly follows that
OPT ≥ 2WT (α− 1) = T (r + ε).

By choosing T > br
ε , it holds that T (r+ε)

r > T + b. We therefore obtain

OPT

r
− b ≥ T (r + ε)

r
− b > T + b− b = AT = A,

a contradiction.

�

We proceed with the analysis of Greedyα. We denote by ci the number of coalitions
with exactly i agents in a given coalition structure returned by Greedyα. The following is
a technical lemma.

Lemma 3.1 The following propositions hold:
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1. The set of isolated agents of Greedyα is an independent set of G+.

2. If all the weights are positive, G+ contains an independent set that intersects every
component of Greedyα with less than α agents.

3. Greedyα ≥
∑α

i=1(i− 1)ci.

Proof:

1. Suppose that Greedyα contains two isolated agents {vi} and {vj} with wvi,vj > 0,
and without loss of generality i < j. Then, when vj appears to Greedyα she would
be added to {vi} contradicting the fact that vj is an isolated agent of Greedyα.

2. Consider the set I consisting of the first agent of every coalition of Greedyα with
less than α agents. Clearly, I intersects every coalition of size less than α. It remains
to show that I is an independent set of G+. Suppose, for a contradiction, that there
are two agents vi, vj ∈ I with i < j and wvi,vj > 0. When vj appears to Greedyα
the option of adding vj to the coalition of vi brings an increase of at least wvi,vj > 0
since all the edges have positive weights. This contradicts the fact that vj is the first
agent of her coalition.

3. Whenever an agent is added to an existing coalition she increases the weight of the
coalition structure by at least 1.

�

Theorem 3.7 Greedyα is a strictly (2W (α− 1))-competitive deterministic online algo-
rithm for MaxW-CSG.

Proof: Let I be the set of isolated agents of Greedyα. Notice that n − |I| =
∑α

i=2 ici.
Combining with Lemma 3.1 (3.) we have 2·Greedyα ≥ n−|I|. By Lemma 3.1, I constitute
an independent set of G+. Therefore, every edge of G+ is incident to at least one of the
n−|I| other agents. Every such agent has degree at most α−1 in every solution. Therefore,
OPT ≤W (n− |I|)(α− 1). Then, the strict competitive ratio of Greedyα is at most:

W (n− |I|)(α− 1)

Greedyα
≤ 2W (α− 1).

�

3.2.2 Positive Weights

We observe that the proof of Theorem 3.6 is not valid in this case, since the adversary uses
negative edges. In this section we show that the lower bound of Theorem 3.6 does not hold
in this case, and that Greedyα is almost optimal.

Theorem 3.8 Given any ε > 0, there exists no deterministic online algorithm for
MaxW-CSG having competitive ratio W 1−ε(α−1), even when all edge weights are positive.
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Proof: Let us assume, by the way of contradiction, that A is a
(
W 1−ε(α− 1

)
)-competitive

deterministic online algorithm with an additive term b ≥ 0 for MaxW-CSG. Consider the
online input that is supplied to A by the following adversary. The adversary chooses α > b
and releases a sufficiently large independent set of agents until A forms either a coalition
of size α, or α− 1 coalitions.

� A forms a coalition C1 of α agents. In this case, the adversary releases a set U of
α(α − 1) agents such that U ∪ C1 is a complete biparite graph with edges of weight
W . We have A = 0, because A cannot add any agent uj to C1. On the other hand,
there is a solution with α coalitions each of which consists of one agent C1 and α− 1
agents of U . Therefore, OPT ≥ Wα(α − 1). Then OPT

W (α−1) − b ≥ α − b > 0 = A, a
contradiction.

� A forms α − 1 coalitions C1, . . . , Cα−1. Let vi be an arbitrary agent of Ci, for every
i ∈ [α − 1]. The adversary releases additional agents u1, u2, . . . until A creates a
new coalition (which must happen at some step ` ≤ α(α − 1) + 1). Every agent
uj is adjacent to agents v1, . . . , vα−1 with all her incident edges having the same

weight wj =
(
b+ 1 +

∑j−1
k=1wk

)1/ε
. At each step j < `, A can increase the total

weight of the coalition structure, by adding at most one edge of weight wj . Therefore,

A ≤∑`−1
k=1wk. On the other hand, there is a solution that puts u` and her adjacent

agents in one coalition, implying OPT ≥ w`(α− 1) and W = w`. We conlude

OPT

W 1−ε(α− 1)
− b ≥ W (α− 1)

W 1−ε(α− 1)
− b = W ε − b = 1 +

`−1∑
k=1

wk > A,

a contradiction.

�

The proof of the following theorem exploits Lemma 3.1, and it is slightly more involved
than the proof of Theorem 3.7.

Theorem 3.9 The strict competitive ratio of Greedyα is αW when all the weights are
positive.

Proof: By Lemma 3.1, G+ contains an independent set I of size
∑α−1

i=1 ci. Since n =∑α
i=1 ici, we have that n − |I| = ∑α−1

i=1 (i − 1)ci + αcα. Every edge of G+ is incident to at
least one of the remaining n−|I| agents of Greedyα. Every such agent has degree at most
α− 1 in every solution. Therefore,

OPT ≤ W (α− 1)(n− |I|)

= W (α− 1)

(
α−1∑
i=1

(i− 1)ci + αcα

)
≤ W (α− 1)(Greedyα + cα).
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Since Greedyα ≥ (α− 1)cα, we obtain

OPT ≤W (α− 1)

(
Greedyα +

Greedyα
α− 1

)
=

αW ·Greedyα.

We now show an example showing that the competitive ratio of Greedyα is at least
αW . Let G be the following graph on α2 vertices. v1, v2, · · · , vα is a path each edge of which
has weight 1. Greedyα will put all these agents in one coalition C1 with w(C1) = α − 1.
The rest of the input is an independent set I. Since C1 has already α agents, every other
agent will be isolated in Greedyα. Therefore, we have Greedyα = α − 1. The vertices
of I are grouped into α groups of α − 1 vertices and every vertex v of group i is adjacent
to vi with an edge of weight W . A possible solution consists of α stars each of which is
centered at one of the vertices v1, . . . , vα and has α − 1 leaves from I. Therefore, OPT ≥
Wα(α− 1) = Wα ·Greedyα.

�

4. Maximum Fractional Weight Coalition Structure Generation

In this section our objective is to maximize the fractional weight of the coalition struc-
ture. We note that, as opposed to problem MaxW-CSG, for non-negative weights,
GrandCoalition is not necessarily an optimal solution even when coalition size is un-
bounded. We start with a general lower bound and then analyze the cases of unbounded
and bounded coalition sizes separately.

Theorem 4.1 Given any ε > 0, there exists no deterministic online algorithm for
MaxFW-CSG having competitive ratio 4W − ε.

Proof: The proof exploits arguments similar to the ones used in the proof of Theorem 3.6.
Let us assume, by the way of contradiction, that A is a r-competitive deterministic online
algorithm for MaxFW-CSG with r = 4W − ε and an additive term b ≥ 0.

The adversary issues the agents in various phases, starting from phase 0. We show by
induction on the phase i that the cost Ai of the algorithm at the beginning of phase i is
Ai ≤ i

2 . Clearly, the base of the induction holds for i = 0. In phase i = 0, 1, . . ., let ni
be an integer such that ni−1

2r − b > i
2 . The adversary issues `i ≤ ni agents vi1, . . . , v

i
` with

wvij ,vik
= 1 for every j, k ∈ [`i] until A puts two agents in the same coalition. This must

happen, because otherwise we have

OPT

r
− b ≥ (ni − 1)/2

r
− b > i

2
≥ Ai,

where the optimal solution is obtained by grouping all the ` agents together into a unique
coalition.

Let vik, v
i
`i

(k < `i) the two agents that are in the same coalition in the solution computed

by A. The adversary issues 2T agents in V ′i = {vi`i+1, · · · , vi`i+2T }, each being adjacent to
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both vik and vi`. For every new agent vij (j = `+ 1, . . . , `+ 2T ) the weight wvij ,vik
is W if j is

even and −W otherwise. As for the other edge, we have wvij ,vi`
= −wvij ,vik . Given that, by

the induction hypothesis, Ai ≤ i
2 , we obtain that Ai+1 ≤ Ai + 1

2 ≤ i+1
2 , regardless of the

decision of algorithm A. In fact, notice that the contribution of edge vikv
i
`i

to A is less or

equal to 1/2, with the equality holding whenever vik and vi`i are the only vertices belonging
to their coalition in the solution computed by A.

Consider now coalition structure C with the following coalitions: for each phase i =
0, 1, . . . , T − 1 performed by the adversary, there is a coalition consisting of vik and the T
agents in V ′i with even index, and another one consisting of vi` and the T agents in V ′i with
odd index. Notice that each of these coalitions has a fractional weight equal to W T

T+1 .

Since C is a feasible solution, it follows that OPT ≥ w(C) ≥ 2W T 2

T+1 = r+ε
2

T 2

T+1 .

By choosing T > r(1+4b)
ε , it holds (by multiplying both sides by Tε) that T 2ε > rT (1 +

4b). Moreover, as T ≥ 1 implies that rT (1 + 4b) ≥ rT (1 + 2b) + 2br, it holds that T 2ε >

rT (1 + 2b) + 2br. This last inequality finally implies that r+ε
2r

T 2

T+1 >
T
2 + b. We therefore

obtain

OPT

r
− b ≥ r + ε

2c

T 2

T + 1
− b > T

2
+ b− b ≥ AT = A,

a contradiction.

�

4.1 Unbounded Coalition Size

In this section we analyze the MaxFW-CSG problem when the coalition size is unbounded.

4.1.1 General Weights

For the case of general weights, the following result is known.

Theorem 4.2 [Theorem 5 in: (Aziz et al., 2015)] Any maximal matching is a 4W -
approximation.

A maximal matching is a coalition structure in which every coalition is connected and
consists of at most two agents. Moreover, for any pair of non-matched agents, they are not
connected by a positive weight edge. A maximal matching can be computed online by the
following algorithm that we name as MaximalMatching (see Algorithm 3). Whenever
an agent vi appears, she is added to an existing coalition of size 1 that is adjacent to vi by
means of a positive weight edge. If no such coalition exists, a new coalition {vi} is created.

We note that MaximalMatching is an optimal algorithm for this case because Theo-
rem 4.1 implies a matching lower bound of 4W . We observe that the adversary in the proof
of Theorem 4.1 uses edges with negative weights. Therefore, it makes sense to consider
the case of graphs having edges with only positive weights. We start with the analysis of
unweighted graphs and then proceed with the case of general positive weights.
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Algorithm 3 MaximalMatching

Initialization:
1: C← ∅.

When agent vi arrives:
2: for all Cj ∈ C such that |Cj | = 1 do
3: if δCj (vi) ≥ 1 then
4: Add vi to the coalition Cj
5: return
6: Create a new coalition {vi} and add it to C.

4.1.2 Unweighted Graphs

Since MaximalMatching is 4W competitive in general, it is 4-competitive for unweighted
graphs. It is possible to show that this is the best possible for deterministic algorithms in
this case.

Theorem 4.3 Given any ε > 0, there exists no deterministic online algorithm for
MaxFW-CSG having competitive ratio 4− ε, even for unweighted graphs.

Proof: Let us assume, by the way of contradiction, that A is a (4− ε)-competitive deter-
ministic online algorithm with an additive term b > 0.

First of all, we show that, for every non-negative integer k, there is an adversary that
causes the output of A to be a matching of k edges, i.e. k coalitions of two agents and n−2k
singleton coalitions. In fact, there exists an adversary that causes A to add a coalition of
two agents given that the current output is a matching of ` edges, thus causing the output
to be a matching of ` + 1 edges: The adversary issues a clique of at most 3` + 8b + 2
vertices (none of which is adjacent to the rest of the input) until A puts two of them in
one coalition. We have to show that this must happen. Assume, by contradiction, that A
does not put any of the agents of the clique in one coalition. On the one hand, the output
of A is a matching with ` edges, thus A = `/2. On the other hand, a possible coalition
structure consists of a matching with ` edges and a clique of 3`+ 8b+ 2 agents. Therefore,
OPT ≥ `/2 + (3`+ 8b+ 1)/2 = 2`+ 4b+ 1/2 > 2`+ 4b. Then, OPT4−ε >

OPT
4 > `

2 + b = A+ b,
a contradiction. We conclude that A must add an edge to its output to augment it to a
matching of `+ 1 agents.

The adversary chooses x = b8/εc, and an integer k ≥ 1 to be determined later. In
the first stage, the adversary causes the output of A to be a matching with k edges. Let
C1, . . . , Ck be the coalitions of A consisting of two edges. These coalitions will possibly grow
in the second stage. At any given point during the execution of A we denote by Fi the first
four agents of Ci, or Fi = Ci if |Ci| < 4. Notice that sets Fi can grow during the second

stage. We define F
def
= ∪ki=1Fi. At the beginning of the second stage we have |F | = 2k, and

by definition, |F | ≤ 4k. The adversary issues a new agent adjacent only to some agent u
of F where u is chosen from F in a round robin manner. The adversary stops when every
agents of F has x neighbours outside of F . Since |F | is bounded, F will not grow after a
certain point. After at most 4kx steps every agent of F will have x neighbours not in F
and the adversary will stop.
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Let k2, k3, k4 be the number of coalitions with 2, 3 and at least 4 agents, respectively.
Clearly, k2 + k3 + k4 = k.

We have A ≤ 1
2k2 + 2

3k3 + k4, since the solution consists of k2 matchings, k3 trees with
3 vertices and k4 trees (of at least 4 vertices). On the other hand, there is a solution that
consists of |F | stars, each of which contains at least x + 1 vertices. Therefore, OPT ≥
(2k2 + 3k3 + 4k4)

(
1− 1

x+1

)
≥ (2k2 + 3k3 + 4k4)

(
1− ε

8

)
. Note that 1−ε/8

4−ε > 1
4 , and let δ be

such that 1−ε/8
4−ε = 1

4−δ . We conclude

OPT

4− ε −A ≥ (2k2 + 3k3 + 4k4)
(
1− ε

8

)
4− ε −

(
1

2
k2 +

2

3
k3 + k4

)
=

2k2 + 3k3 + 4k4

4− δ −
(

1

2
k2 +

2

3
k3 + k4

)
= k2

(
2

4− δ −
1

2

)
+ k3

(
3

4− δ −
2

3

)
+ k4

(
4

4− δ − 1

)
≥ δ

2(4− δ)(k2 + k3 + k4) =
δ

2(4− δ)k,

where the last inequality holds because, since δ ∈ [0, 4), we obtain that i) 2
4−δ − 1

2 = δ
2(4−δ) ,

ii) 3
4−δ − 2

3 >
δ

2(4−δ) , and iii) 4
4−δ −1 ≥ δ

2(4−δ) . Therefore, the adversary chooses k such that
δ

2(4−δ)k > b, a contradiction arises and the claim follows.

�

4.1.3 Positive Weights

In the previous sections we have shown that MaximalMatching is an optimal algorithm
for the general case and also for the unweighted case. In this section we show that quite
surprisingly this is not the case for positive weights. We present an O(log2W )-competitive
algorithm and also a matching lower bound of Ω(log2W ).

Our algorithm partitions the edges into classes according to their weights. We denote the
class of an edge e by class(e) and it is equal to the smallest integer i such that w(e) < 2i. We
note that class(e) > 0. The class of a coalition Ci is denoted by class(Ci) and is equal to the
class of its heaviest edge. If a coalition contains no edge, its class is 0. Upon presentation
of an agent vi, Algorithm Classify considers the edges incident to vi in non-increasing
order with respect to their weights and adds vi to a coalition whose class is lower than the
one of the edge under consideration. If this is not possible, it creates a new coalition (see
Algorithm 4).

Theorem 4.4 Classify is strictly (O(min {n, 1 + logW})2)-competitive.

Proof: Consider an optimal coalition structure OPT , and a coalition structure C =
{C1, C2, . . . , Cc} returned by Classify. Denote by OPTEXT (resp. OPTINT ) the set of
edges whose endpoints fall within a same coalition of OPT , i.e., contribute to wF (OPT ),
but within different coalitions (resp. a same coalition) of C. We denote by OPTEXT and
OPTINT also the contribution of these edges to wF (OPT ). Clearly, OPT = OPTEXT +
OPTINT . In the sequel we upper bound each of these values.
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Algorithm 4 Classify

Initialization:
1: C← ∅.

When agent vi arrives:
2: for all edges e = vivj in descending order of w(e) do
3: if class(e) > class(C(vj)) then
4: Add vi to the coalition C(vj)
5: return
6: Create a new coalition {vi} and add it to C.

C′ C

v′ v

(i)

C′ C

v′
v

(ii)

u

Figure 5: Given any edge vv′ ∈ OPTEXT , there exists a coalition C(vv′) ∈ {C(v),C(v′)}
such that class(C(vv′)) ≥ class(vv′). (i) v is the first agent of C. (ii) Edge uv
caused Classify to add v to C.

Upper bounding OPTEXT : We exploit the following property: For every edge vv′ ∈
OPTEXT there exists a coalition C(vv′) ∈ {C(v),C(v′)} such that class(C(vv′)) ≥
class(vv′).
In fact, let vv′ ∈ OPTEXT , C = C(v) and C ′ = C(v′) (see Figure 5). Assume without loss
of generality that v′ appears before v in the input. If v is the first agent of C (Figure 5.i),
since v is not added to C ′ by Classify we conclude that class(C ′) ≥ class(vv′) and we
are done. Otherwise (Figure 5.ii), v is not the first agent of C thus there exists an edge
e incident to v that caused Classify to add v to C. If w(e) ≥ wv,v′ we have class(C) ≥
class(e) ≥ class(vv′) and we are done. Otherwise, wv,v′ > w(e) thus vv′ was considered
before e by Classify and v was not added to C ′. Therefore, class(C ′) ≥ class(vv′) and
also in this case the property holds.

Consider a coalition Cj ∈ C, and let OPTEXT,Cj be the set of edges e ∈ OPTEXT such

that C(e) = Cj . Since Cj contains an edge of weight at least 2class(Cj)−1, the contribution
of the edges in Cj to Classify is

wF (Cj) ≥
2class(Cj)−1

|Cj |
. (1)

Consider now an agent v ∈ Cj , the set OPTEXT,v of edges of OPTEXT,Cj incident to
v, and let a = |OPTEXT,v|. Let also h be the class of the heaviest edge of OPTEXT,v.
Notice that the edges of OPTEXT,v are in the same coalition of OPT , that contains at least
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a + 1 agents. Therefore, the contribution of the edges in OPTEXT,v to OPT is less than
a2h

a+1 < 2h ≤ 2class(Cj). Summing up for all agents v ∈ Cj , we get

OPTEXT,Cj < |Cj | 2class(Cj) ≤ 2 |Cj |2wF (Cj),

where the last inequality holds by (1). Finally, we sum up over all coalitions Cj , thus obtain

OPTEXT =

c∑
j=1

OPTEXT,Cj < 2

c∑
j=1

(
|Cj |2wF (Cj)

)
≤ 2

(
max
j∈[c]
|Cj |

)2

·Classify. (2)

Upper bounding OPTINT : Let OPTINT,Cj be the contribution to OPT of the edges
of OPTINT that fall within some coalition Cj . OPTINT,Cj is at most half of the sum of
weights of all edges of Cj , because every edge has to be in a coalition of at least two agents.
Therefore, it holds that

OPTINT,Cj ≤
∑

e∈OPTINT,Cj

w(e)

2
≤

∑
e∈E(Cj)

w(e)

2
≤ |Cj |

2
wF (Cj).

By summing up over all coalitions we get

OPTINT =
c∑
j=1

OPTINT,Cj ≤
c∑
j=1

|Cj |
2
wF (Cj)

≤
maxj∈[c] |Cj |

2
·Classify. (3)

Upper bounding OPT : By the way agents are added to Cj by Classify, it holds that

|Cj | ≤ class(Cj). Therefore,

max
j∈[c]
|Cj | ≤ max

j∈[c]
class(Cj) = dlogW e ≤ 1 + logW. (4)

Since 1 ≤ maxj∈[c] |Cj | ≤ n, by exploiting (2), (3) and (4), we conclude that

OPT = OPTEXT +OPTINT

≤
(

2

(
max
j∈[c]
|Cj |

)2

+
maxj∈[c] |Cj |

2

)
·Classify

≤ 5

2

(
max
j∈[c]
|Cj |

)2

·Classify

≤ 5

2
(min {n, 1 + logW})2 ·Classify,

thus proving the claim.

�
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Theorem 4.5 provides a matching lower bound. In order to prove it, we need the following
technical lemma.

Lemma 4.1 Given any integer k, there exists h ≥ k such that, for any sequence of non-
negative integers y1, y2, . . . , yk, . . . , yh with y1 = 1 and yi ≤ 2i−1 for any i = 1, . . . , h,

σ2
h

αh
≥ h2

210
,

where σh =
∑h

i=1 yi and αh =
∑h

i=1
yi

2h−i
, i.e., αh = yh +

yh−1

2 +
yh−2

4 + . . .+ y1

2h−1 .

Proof: Assume by contradiction that
σ2
h
αh

< h2

210 for any h ≥ k. We divide the subsequence
starting at yk in consecutive blocks of length 1, 2, 3, . . . (block j has length j). Let start(j)

and end(j) be the first and the last indices of block j, respectively, i.e., start(j) = k+ j(j−1)
2

and end(j) = start(j + 1)− 1 = k + j(j+1)
2 − 1 = O(k + j2).

In order to complete the proof, it is sufficient to show by induction on j that

σend(j) ≥ j(end(j)− k + 1)22j+1−4.

In fact, it implies that, when end(j) > 2k, there exists an integer yh (h ∈ {1, . . . , end(j)})
such that yh ≥ j22j+1−5. By recalling that h ≤ end(j) = O(k + j2), this is a contradiction
to the fact that yh ≤ 2h−1.

Since y1 = 1, we have σend(1) ≥ 1, that is the base of the induction (for j = 1).
It remains to prove the induction step. The induction hypothesis is that

σend(j) ≥ j(end(j)− k + 1)22j+1−4.

Our aim is to show that

σend(j+1) ≥ (j + 1)(end(j + 1)− k + 1)22j+2−4.

For every i = start(j + 1), . . . , end(j + 1), by the induction hypothesis, it holds that
j2(end(j)−k+1)222j+2−8

αi
≤ σ2

end(j)

αi
≤ σ2

i
αi
< i2

210 . It follows that

αi >
210j2(end(j)− k + 1)222j+2−8

i2

> 2102−4j222j+2−8 (5)

= 2−2j222j+2
,

where inequality (5) holds because, i2

end2(j)
≤ 9 < 24 (since i ≤ end(j + 1)). By summing

over all i ∈ [start(j+1), end(j+1)], we obtain
∑end(j+1)

i=start(j+1) αi > 2−2(j+1)j222j+2
. Since, as

it can be easily checked, it holds that, for any ` ≥ 1,
∑`

i=1 αi ≤ 2
∑`

i=1 yi = 2σ`, it follows

that 2σend(j+1) ≥
∑end(j+1)

i=1 αi ≥
∑end(j+1)

i=start(j+1) αi > 2−2(j + 1)j222j+2
. Therefore, we obtain

σend(j+1) > 2−3(j+ 1)j222j+2
> (j+ 1)(end(j+ 1)− k+ 1)22j+2−4, where the last inequality

holds because 2j2 ≥ end(j + 1)− k + 1, for any j ≥ 1.
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�

Theorem 4.5 The competitive ratio of any deterministic online algorithm for
MaxFW-CSG is Ω(log2W ), even when all weights are positive.

Proof: Assume by contradiction that there exists an r-competitive deterministic online
algorithm A for MaxFW-CSG with r = o(log2W ). Namely, there exists some constant
b ≥ 0 such that A ≥ OPT

r − b for every input.
The adversary works in phases i = 1, 2, . . .. In phase 1, she releases one agent. The

adversary maintains the following invariant which clearly holds after the first phase: a solu-
tion of A consists of a single component C1 and possibly singleton coalitions. Let σi be the
number of agents of C1 at the end of phase i, and let these agents be v1, v2, . . . , vσi . Clearly,
σ1 = 1. The adversary releases, in phase i (for i = 2, 3, . . .), σi−1 agents u1, u2, . . . , uσi−1 ,
such that every uj (j ∈ [σi−1]) is adjacent to vj by an edge of weight 2i−2. Let yi be
the number of agents that A adds to C1 in phase i. It follows that σi = σi−1 + yi and
yi ≤ σi−1 ≤ 2i−1. First of all, notice that A cannot stop adding new agents to the unique
component, because otherwise it would be not competitive, given that the weights of edges
are geometrically increasing. Let k′ be an integer whose value will be suitably chosen at
the end of the proof. Let k ≥ k′ be the first phase after phase k′ such that yk ≥ 1. Let

h ≥ k be an integer such that
σ2
h
αh
≥ h2

210 , whose existence is guaranteed by Lemma 4.1. The
adversary continues until the end of phase h.

Clearly, σi =
∑i

j=1 yj . It can be easily checked that, after phase i, the measure of

the solution of A is
∑i
j=1 yj2

j−2

σi
. On the other hand, there is another coalition structure{

C1, . . . , Cσi−1

}
in which each edge added by the adversary in phase i constitutes a separate

coalition. The fractional weight of this solution is σi−12i−2

2 . Therefore, OPT ≥ σi−12i−2

2 .

Given that σi+1 ≤ 2σi, we obtain OPT ≥ σi2
i−1

8 . Thus, at the end of phase i we have

OPT

A ≥ σ2
i 2
i−1

8
∑i

j=1 yj2
j−2

=
σ2
i 2
i−1

4
∑i

j=1 yj2
j−1

=
σ2
i

4
∑i

j=1 yj2
j−i

=
σ2
i

4αi
,

where αi =
∑i

j=1
yj

2j−i
.

In particular, at the end of phase h, recalling that W = 2h−2, we have

OPT

A ≥ σ2
h

4αh
≥ h2

212
=

(logW + 2)2

212
>

log2W

212
.

Combining with our assumption about the competitive ratio of A, we get (A + b)r ≥
OPT > A log2 W

212 , which implies log2W
212r

< A+b
A ≤ b + 1. We get a contradiction by noting

that, since r = o(log2W ), the ratio log2W
212r

is unbounded.

�

4.2 Bounded Coalition Size

In this section we analyze the MaxFW-CSG problem when the coalition size is bounded
by α.
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4.2.1 Unweighted Graphs

For the case of unweighted graphs, we are able to prove that algorithm MaximalMatching
provides the best possible competitive ratio of 4α−1

α .

Theorem 4.6 proves the lower bound. The proof is very similar to the one of Theorem
4.3. For the sake of completeness, in the following we provide a self-contained proof.

Theorem 4.6 Given any ε > 0, there exists no
(
4α−1

α − ε
)
-competitive deterministic online

algorithm for MaxFW-CSG, even in unweighted graphs.

Proof: Let us assume, by the way of contradiction, that A is a
(
4α−1

α − ε
)
-competitive

deterministic online algorithm with an additive term b > 0.

First of all, we show that, for every non-negative integer k, there is an adversary that
causes the output of A to be a matching of k edges, i.e. k coalitions of two agents and n−2k
singleton coalitions. In fact, there exists an adversary that causes A to add a coalition of
two agents given that the current output is a matching of ` edges, thus causing the output
to be a matching of `+ 1 edges: The adversary issues at most 3`+ 8b+ 1 couple of agents
connected by an edge (i.e, in each couple there are two agents incident to only the edge
connecting them) until A puts the two agents of a same couple in one coalition. We have
to show that this must happen. Assume, by contradiction, that A does not put the two
agents of any couple in one coalition. On the one hand, the output of A is a matching
with ` edges, thus A = `/2. On the other hand, a possible coalition structure consists of a
matching with ` + 3` + 8b + 1 = 4` + 8b + 1 edges. Therefore, OPT ≥ 4`+8b+1

2 > 2` + 4b.

Then, OPT
4α−1

α
−ε >

OPT
4 > `

2 + b = A + b, a contradiction. We conclude that A must add an

edge to its output to augment it to a matching of `+ 1 agents.

The adversary chooses an integer k ≥ 1 to be determined later. In the first stage, the
adversary causes the output of A to be a matching with k edges. Let C1, . . . , Ck be the
coalitions of A consisting of two edges. These coalitions will possibly grow in the second
stage. At any given point during the execution of A we denote by Fi the first four agents of
Ci, or Fi = Ci if |Ci| < 4. Notice that also sets Fi can grow during the second stage. Also,

F
def
= ∪ki=1Fi. At the beginning of the second stage we have |F | = 2k, and by definition,

|F | ≤ 4k. The adversary issues a new agent adjacent only to some agent u of F where u is
chosen from F in a round robin manner. The adversary stops when every agent of F has
α − 1 neighbors outside of F . Since |F | is bounded, F will not grow after a certain point.
After at most 4k(α− 1) steps every agent of F will have α− 1 neighbors not in F and the
adversary will stop.

Let k2, k3, k4 be the number of coalitions with 2, 3 and at least 4 agents, respectively.
Clearly, k2 + k3 + k4 = k.

We have A ≤ 1
2k2 + 2

3k3 + k4, since the solution consists of k2 matchings, k3 trees with
3 vertices and k4 trees (of at least 4 vertices). On the other hand, there is a solution that
consists of |F | stars, each of which contains α vertices. Therefore, letting γ = α−1

α , we have
that OPT ≥ (2k2 + 3k3 + 4k4)

(
1− 1

α

)
= γ(2k2 + 3k3 + 4k4). Notice also that c = 4γ − ε.
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We conclude

OPT

4γ − ε −A ≥ γ(2k2 + 3k3 + 4k4)

4γ − ε −
(

1

2
k2 +

2

3
k3 + k4

)
= k2

(
2γ

4γ − ε −
1

2

)
+ k3

(
3γ

4γ − ε −
2

3

)
+ k4

(
4γ

4γ − ε − 1

)
≥ ε

2(4γ − ε)(k2 + k3 + k4) =
ε

2(4γ − ε)k,

where the last inequality holds because, since γ > 0 and ε > 0, we obtain that i) 2γ
4γ−ε − 1

2 ≥
ε

2(4γ−ε) , ii) 3γ
4γ−ε − 2

3 ≥ ε
2(4γ−ε) , and iii) 4γ

4γ−ε − 1 ≥ ε
2(4γ−ε) . Therefore, if the adversary

chooses k such that ε
2(4γ−ε)k > b, a contradiction arises and the claim follows.

�

The following theorem provides a matching upper bound to Theorem 4.6. Its proof
exploits and refines arguments introduced in the proof of Lemma 1 by Bilò et al. (2018).

Theorem 4.7 Algorithm MaximalMatching is a
(
4α−1

α

)
-competitive deterministic on-

line algorithm for MaxFW-CSG in unweighted graphs.

Proof: Let C be the coalition structure returned by MaximalMatching. A vertex cover
V C ⊆ V is associated with C: V C is such that all agents being endpoints of the edges
contained in the maximal matching belong to V C. Clearly, V C is a vertex cover because
otherwise there should exist an edge of G that could be added to the matching, contradicting
its maximality.

Let C∗ be an optimal solution for the considered instance of MaxFW-CSG. In the
remaining of the proof we prove that wF (C∗)

|V C| ≤ α−1
α . In fact, since |V C| = 4wF (C), the

claim follows.
Define V C = N \ V C. Let C∗i (i ∈ [k]) be a coalition of C∗. Partition the agents of C∗i

in two sets: XV C
i = C∗i ∩ V C and XV C

i = C∗i ∩ V C. We distinguish between two cases:

� XV C
i = ∅; it follows that C∗i ⊆ V C. Therefore, since V C is an independent set,

wF (C∗i ) = 0.

� XV C
i 6= ∅; in this case the total number of edges in C∗i is at most |XV C

i ||XV C
i | +

1
2 |XV C

i |(|XV C
i | − 1). In fact (see Figure 6), all the possible edges may be present in

C∗i among any agent in XV C
i and any agent in XV C

i (being at most |XV C
i ||XV C

i |),
and between any couple of agents in XV C

i (being at most 1
2 |XV C

i |(|XV C
i | − 1)), while

no edge can be present between agents in XV C
i (because XV C

i is an independent set).

It follows that the contribution of coalition C∗i to wF (C∗) is

wF (C∗i ) ≤ |XV C
i ||XV C

i |+ 1
2 |XV C

i |(|XV C
i | − 1)

|XV C
i |+ |XV C

i |

= |XV C
i |
|XV C

i |+ 1
2 |XV C

i | − 1
2

|XV C
i |+ |XV C

i |
.
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C∗
i

XV C
i

XV C
i

Figure 6: Bounding the total number of edges in C∗i . Solid edges represent the ones belong-
ing to the computed maximal matching, while dashed edges are the ones belonging
to C∗i but not belonging to the solution returned by MaximalMatching.

Dividing by |XV C
i | we obtain

wF (C∗i )

|XV C
i | ≤

|XV C
i |+ 1

2
|XV C
i |− 1

2

|XV C
i |+|XV C

i |
≤ α−1

α because |XV C
i | +

|XV C
i | ≤ α and |XV C

i | ≥ 1.

By summing over all indices i ∈ [k], we obtain

wF (C∗)

|V C| =

∑
i∈[k]:XV C

i 6=∅wF (C∗i )

|V C|

=

∑
i∈[k]:XV C

i 6=∅wF (C∗i )∑
i∈[k]:XV C

i 6=∅ |XV C
i |

≤ max
i∈[k]:XV C

i 6=∅

wF (C∗i )

|XV C
i |

≤ α− 1

α
.

�

4.2.2 Weighted Graphs

From Theorem 4.2, we know that, for any α ≥ 2, MaximalMatching is strictly 4W -
competitive for general weights. It is not difficult to show that this bound is asymptotically
tight, even when all the weights are positive.

Theorem 4.8 The competitive ratio of any deterministic online algorithm for
MaxFW-CSG is Ω(W ) even when all weights are positive.

Proof: Let A be any deterministic online algorithm for MaxFW-CSG with an additive
term b. Consider the online input that is supplied to A by the following adversary. The
adversary releases a star v1, v2, . . . centered at v1 until A creates its second coalition C2 =
{vj} or the star is sufficiently large. The weights are such that wvj+1,v1 � wvj ,v1 for every
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j > 1. By setting W = wvj ,v1 , we have that OPT ≥ W
2 . On the other hand A = o(W ) in

both cases, i.e. either the star is sufficiently large, or the heaviest edge is not taken by A.
Therefore, the competitive ratio of A is at least OPT

A+b ≥
W/2
o(W ) = Ω(W ).

�

4.3 Bounded Number of Coalitions

In this section we consider the case where the number of coalitions is bounded by some
k ≥ 2, the case of k = 1 being trivial.

4.3.1 General Weights

By exploiting arguments similar to the ones used in the proofs of Theorem 3.3 and Theorem
3.4, it is possible to prove the following results.

Theorem 4.9 There exists no deterministic competitive algorithm for MaxFW-CSG for
any k ≥ 2.

Proof: Suppose, by the way of contradiction, that A is a r-competitive algorithm for
MaxFW-CSG with an additive term b, i.e. A ≥ OPT

r − b for some b ≥ 0, with r being
either constant or a function of n. The adversary releases an independent set of at most
k + 1 agents until A puts two agents vi, vj in the same coalition. Then it releases an agent
adjacent to only vi and vj with edges of weights 2br+ 1 and −(2br+ 1) respectively. Then,
regardless of the decisions of A, we have A = 0. On the other hand, one can form a
coalition consisting of vi together with the last agent, and form a second coalition from the
remaining agents which constitute an independent set. Thus, OPT = 2br+1

2 > br implying
A = 0 < OPT

r − b, a contradiction.

�

In the following theorem, it is shown that the strict competitive ratio remains unbounded
even when W = 1.

Theorem 4.10 There exists no deterministic strictly competitive algorithm for
MaxFW-CSG for any k ≥ 2, even when W = 1.

Proof: Suppose, by the way of contradiction, that A is a r-competitive algorithm A for
MaxFW-CSG, i.e. A ≥ OPT

r , with r being either constant or a function of n. The
adversary releases an independent set of at most k + 1 vertices until A puts two agents
vi, vj in the same coalition. Then it releases an agent adjacent to only vi and vj with edges
of weights 1 and −1 respectively. Then, regardless of the decisions of A, we have A = 0.
On the other hand, one can form a coalition consisting of vi together with the last agent,
and form a second coalition from the remaining agents which constitute an independent set.
Thus, OPT = 1

2 implying A = 0 < OPT
r , a contradiction.

�
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4.3.2 Positive Weights

Observation 1 For positive weights, GrandCoalition is n
2 -competitive. In fact,

GrandCoalition =
∑
e∈E(G) w(e)

n , and OPT ≤
∑
e∈E(G) w(e)

2 , since the weight of any edge
is shared by at least its two endpoints.

Theorem 4.11 Given any ε > 0, there exists no deterministic online algorithm for
MaxFW-CSG having competitive ratio n

2 − ε, for any k ≥ 2 and even when all weights are
positive.

Proof: Let us assume, by the way of contradiction, that A is a r-competitive deterministic
online algorithm for MaxFW-CSG with r = n

2 − ε and an additive term b > 0. Consider
the online input that is supplied to A by the following adversary. The adversary releases
a star v1, v2, . . . centered at v1. The weights are such that wvj+1,v1 � wvj ,v1 , for every

j > 1. In particular, let oj+1 =
∑j

i=2wvi,v1 be the sum of the weights of the edges viv1,

for i = 2, . . . , j, then we set wvj+1,v1 >
oj+1(n−2ε)+bn(n−2ε)

2ε . Notice that, by the definition of
wvj+1,v1 , for any j > 1 the following holds:

wvj+1,v1

2
n
2 − ε

=
wvj+1,v1

n− 2ε
>
wvj+1,v1 + oj+1

n
+ b. (6)

Let us call C1 the coalition where algorithm A puts agent v1. If, at some step j, A puts
the agent vj into a different coalition than C1, then the adversary stops. In this case, we

get that the optimum has value at least
wvj,v1

2 (by creating a coalition containing only vj
and v1). Therefore

OPT

r
− b ≥ wvj ,v1

2(n2 − ε)
− b > oj(n− 2ε) + b(n2 − 2nε− (4ε(n2 − ε))

n
2 ε− ε2

>
oj

n− 1
= A,

a contradiction.
Finally, if algorithm A puts all agents into coalition C1, we have that

OPT

r
− b ≥ wvn,v1

2(n2 − ε)
− b > wvn,v1 + on

n
+ b− b =

wvn,v1 + on
n

= A,

where the second inequality holds by (6). Therefore, since a contradiction arises also in this
case, the claim follows.

�

5. Conclusion and Open Problems

In this paper we have considered the problem of partitioning agents into coalitions in an
online fashion. Given that previous work on CSG mainly assumes that all the information
on the input is known at the beginning, this work may be considered as a fundamental step
towards more realistic CSG models: Further steps, for instance considering some degree of
uncertainty regarding the weight of edges, deserve future research in order to model CSG
scenarios in an increasingly realistic way.
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We have presented close upper and lower bounds for the competitive ratio in various
scenarios, while considering two natural coalition value functions: the value of a coalition
is defined as the sum of the weights of its edges or as the sum of the weights of its edges
divided by its size. There are few problems left open in the considered scenarios: for
instance, it would be interesting to provide a lower bound to the non-strict competitive
ratio for MaxW-CSG and MaxFW-CSG in the case of bounded number of coalitions and
unweighted graphs. It is worth remarking that, although our model considers undirected
graphs (having undirected edges), dealing with directed graphs (having directed arcs) would
not make the problem richer or more interesting. In fact, given that we are not considering
individual utilities of the nodes but global utilities of the coalitions, if we replace every
couple of arcs being between two nodes in the opposite directions with a single edge having
as weight the sum of their weights and every remaining directed arc with an edge having
the same weight, we obtain an equivalent problem in our (undirected) setting1.

We expect that our study will initiate more research along the same lines. An interesting
research direction is that of considering more involved coalition value functions, depending
on specific applications. For instance, we might consider that there are also costs associ-
ated with each coalition, or other costs taking into account the topological properties of the
subgraphs induced by the coalitions, like for instance the diameter, the average distance
between the agents, measures depending on the centrality indices in social networks, etc.
Recent work about such measures has been presented by Balliu, Flammini, and Olivetti
(2017), Balliu, Flammini, Melideo, and Olivetti (2019). Moreover, it is worth to extend
this research to the case where the coalition structure can be modified by migrating agents
from coalition to coalition by paying some penalty as in the setting considered by Augustine
et al. (2016). Furthermore, one might consider cases where agents can also leave the graph
as in the setting considered by Dinitz (2008) and in general CSG in dynamic environments
(de O. Ramos, Burguillo, & Bazzan, 2014). Finally, it would be interesting to understand
whether randomized algorithms can achieve significantly better performance than deter-
ministic ones, or specifically designed deterministic algorithm can provide better expected
performances when executed on graphs in which connections between nodes obey to some
given probabilistic law. To this respect, a model deserving further research is the scale-free
network considered by Albert and Barabási (2002), in which a network is incrementally
built (in an online fashion) by adding new nodes such that the degree distribution follows
a power law.
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