
Journal of Artificial Intelligence Research 76 (2023) 1219-1245 Submitted 03/2021; published 04/2023

Fair and Efficient Allocation of Scarce Resources
Based on Predicted Outcomes: Implications

for Homeless Service Delivery

Amanda R. Kube akube@uchicago.edu
Division of Computational and Data Sciences
Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130 USA

Sanmay Das sanmay@gmu.edu
Department of Computer Science
George Mason University
4400 University Drive, Fairfax VA 22030 USA

Patrick J. Fowler pjfowler@wustl.edu

Brown School of Social Work, Public Health, and Social Policy &

Division of Computational and Data Sciences

Washington University in St. Louis

One Brookings Drive, St. Louis, MO 63130 USA

Abstract

Artificial intelligence, machine learning, and algorithmic techniques in general, pro-
vide two crucial abilities with the potential to improve decision-making in the context
of allocation of scarce societal resources. They have the ability to flexibly and accu-
rately model treatment response at the individual level, potentially allowing us to better
match available resources to individuals. In addition, they have the ability to reason
simultaneously about the effects of matching sets of scarce resources to populations of
individuals. In this work, we leverage these abilities to study algorithmic allocation of
scarce societal resources in the context of homelessness. In communities throughout the
United States, there is constant demand for an array of homeless services intended to
address different levels of need. Allocations of housing services must match households
to appropriate services that continuously fluctuate in availability, while inefficiencies in
allocation could “waste” scarce resources as households will remain in-need and reenter
the homeless system, increasing the overall demand for homeless services. This complex
allocation problem introduces novel technical and ethical challenges. Using administra-
tive data from a regional homeless system, we formulate the problem of “optimal”
allocation of resources given data on households with need for homeless services. The
optimization problem aims to allocate available resources such that predicted probabil-
ities of household reentry are minimized. The key element of this work is its use of a
counterfactual prediction approach that predicts household probabilities of reentry into
homeless services if assigned to each service. Through these counterfactual predictions,
we find that this approach has the potential to improve the efficiency of the homeless
system by reducing re-entry, and, therefore, system-wide demand. However, efficiency
comes with trade-offs - a significant fraction of households are assigned to services that
increase probability of re-entry. To address this issue as well as the inherent fairness
considerations present in any context where there are insufficient resources to meet de-
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mand, we discuss the efficiency, equity, and fairness issues that arise in our work and
consider potential implications for homeless policies.

1. Introduction

Homelessness represents a long-standing social problem with considerable individual and
collective costs. Homeless services coordinated at the community level (i.e, local homeless
systems) have limited resources and therefore struggle to keep up with demand for housing
assistance, and there is little evidence to support the efficiency of current decision making in
the allocation of limited housing services as the allocation decisions themselves are under-
studied (Brown et al., 2018; Fowler et al., 2019b; Shinn et al., 2013). Advances in machine
learning and AI techniques have made it possible to apply learning algorithms to generate
possible solutions to social problems ranging from raising HIV awareness (Yadav et al.,
2016) to wildlife conservation (Dilkina & Gomes, 2010). In this paper, we explore the
feasibility of data-driven approaches to inform policies that guide homeless service delivery.
Specifically, we ask the question of whether individual predictions of success for certain
types of homeless services can be leveraged to reduce the rate of re-entry into the homeless
system across the population of households seeking assistance.

Background on resource allocation for social services: Public systems that co-
ordinate responses to social problems face unique challenges at the intersection of efficiency
and fairness. Social services aim to address a wide array of homeless household needs
through a host of services that range in time and intensity; providers continuously make
decisions on whom to serve with what service or combination of services. Moreover, con-
stant resource constraints limit the capacity to address widespread demand for assistance.
The information available for decision-making is far from perfect given the imprecision of
needs assessments, as well as poor understanding of what services work for whom (Gubits
et al., 2018; Shinn et al., 2017). In the context of scarcity, providers make complex decisions
under great uncertainty with small margins of error. Poor decisions that either under- or
over-serve homeless households waste scarce resources and miss opportunities for meeting
the needs of those not served at all.

In the algorithmic decision-making literature on social service provision, the typical
approach is to prioritize decisions based on risk scores. For example, Chouldechova and
colleagues consider risk assessment in the context of child maltreatment to decide on which
calls to a child protection hotline should be investigated further (Chouldechova et al., 2018;
Brown et al., 2019). These represent classic triage situations, and deal with the problem
of which cases to select given a limited budget and a risk assessment. Another context of
algorithmic decision-making concerns online resource allocation – when a resource becomes
available, which of various agents waiting in a queue should be allocated that resource?
The most relevant studies along these lines are those of Chan et al. (2017) and Azizi et al.
(2018), who consider allocation policies specifically for homeless youth. Chan et al. (2017)
focus on possible improvement over the current score-based allocation system with improved
human-machine collaboration using AI Decision Aids. Azizi et al. (2018) take this thought
further, formulating a dynamic allocation problem between arriving homeless youth and
two types of housing resources (rapid rehousing and permanent supportive housing) and
consider the issues involved in fair and efficient online allocation of youth to these resources.
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The market and mechanism design literature features considerable research on assign-
ment problems, school allocation, organ allocation, refugee matching, etc. (Kominers et al.
(2017) provide an excellent introduction to market design). A key focus there has been
on the preferences and incentives of the participants, as well as the level of control of the
mechanism in allocation decisions. In traditional assignment problems, it is assumed that
the principal, the agent who chooses the payoff structure, has full control over all allocation
decisions (Kuhn, 1955); much of the literature on two-sided matching seeks stable match-
ings that respect pairwise preferences (Roth & Sotomayor, 1990); work on school choice
considers student preferences and school priorities differently (Abdulkadiroglu et al., 2005);
the kidney exchange literature seeks to maximize the number of matches of incompatible
pairs (Roth et al., 2005; Dickerson et al., 2016).

One of the main benefits of our approach is the possibility of increasing efficiency by
exploiting gains from heterogeneity in match quality between households and services. This
issue has been explored infrequently in the market design literature, perhaps because of the
historical focus on ordinal preferences rather than cardinal utilities (Anshelevich & Das,
2010; Anshelevich et al., 2013), which better aligns with systems where agents have con-
siderable control in terms of accepting and rejecting their assignment or matching. How-
ever, consideration of cardinal utilities has come up recently in the context of compati-
ble living donor kidney transplantation (Li et al., 2019) where one can take advantage of
differences in match quality between the organ and the patient and in refugee matching
(e.g. Delacrétaz, Kominers, & Teytelboym, 2016; Bansak, Ferwerda, Hainmueller, Dillon,
Hangartner, Lawrence, & Weinstein, 2018; Ahani, Andersson, Martinello, Teytelboym, &
Trapp, 2021) where one can optimize over utilities of matchings between refugees and re-
settlement venues.

Recent approaches to refugee matching, roughly contemporaneous with this research, are
the closest point of comparison to our work (Ahani et al., 2021; Bansak et al., 2018). Ahani
et al. (2021) use a combination of machine learning and integer programming to optimize
employment outcomes for resettled refugees using historical data. Following Bansak et al.
(2018), Ahani et al. (2021) take advantage of the randomness present in current refugee
assignment to ensure that selection bias does not affect their modeling. Though we also use
machine learning and integer programming on historical data, our setting offers a different
challenge given that housing services in our data are not assigned to households at random.
Therefore, our observational data, which is routinely collected as part of service provision,
is confounded by caseworker decisions. This magnifies the importance of causal modeling.
As opposed to the types of problems that Kleinberg et al. (2015) call “prediction policy
problems”, or for example using machine learning predictions of loan default to manage
risk (Butaru et al., 2016), we need useful counterfactual estimates of the effects of different
services in order to begin defining the resource allocation problem.

There has been significant recent progress in causal modeling from a machine learning
perspective (Johansson, Shalit, & Sontag, 2016, e.g.). Bayesian counterfactual approaches
offer particular promise for informing social services delivery (Hill, 2011), since Bayesian
models can provide coherent probabilistic estimates of heterogeneous treatment effects, and
thus, allow predictions of individual outcomes under counterfactual predictions (Chipman
et al., 2007, 2010). Therefore, we test a promising Bayesian model for this purpose. While
our primary goal is to use it in the counterfactual prediction setting, we also compare
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it with other learning algorithms using standard machine learning metrics on the typical
out-of-sample prediction task.

Ours is one of the first studies to consider using machine learning-based estimates of
counterfactual outcome probabilities to estimate the value of, and thus inform, allocation
decisions for social services, specifically interventions for homeless households. We present
this work as a proof-of-concept, based on a real administrative dataset across the whole
range of homeless populations in a metro area, to address the following question: By op-
timizing allocations based on predicted outcomes, how much could we potentially improve
outcomes, and what would be the distributional effects of these improvements?

Problem setup: Local homeless systems coordinate community-wide services that ad-
dress housing crises. In the United States, services range in intensity from time-limited non-
residential supports to ongoing rental assistance with intensive case management (United
States Congress, 2009). Each service is capacity constrained, given the constant widespread
demand for affordable housing. Thus, homeless providers allocate many households to many
services that each vary in availability at any given time. Homeless services aim to stabilize
households and reduce future demand for assistance.

National policies currently focus evaluation of homeless service delivery on whether
households use additional homeless services within two years of entry into the system;
counts are generated from administrative data that record entries and exists across homeless
services (HUD, 2012). However, routine capacity constraints make it challenging to measure
success, since those in need may not be able to receive services. Missing information impedes
service improvements in most communities across the United States (Fowler et al., 2019b).

In this work, we take advantage of unique local administrative records that capture
community-wide demand and receipt of homeless assistance across time. The data we
use link homeless service records with requests for assistance through a regional homeless
hotline. Operators at the central hotline field all requests for services, as well as make
referrals to appropriate and available services. Households call back if they are in need of
additional services, and a digital trail captures subsequent requests, regardless of eligibility
or delivery of services. This extensive data collection exceeds federal requirements and
allows for a comprehensive assessment of homeless services impossible for most communities.

We test several machine learning methods for predicting outcomes of matching house-
holds to different interventions, and choose to use BART (Bayesian Additive Regression
Trees) because it is competitive in out-of-sample performance with other methods, allows
for meaningful probability distributions over outcomes, and has been established as a pow-
erful method for causal inference with observational and complex data (Hill, 2011). Using
BART, we build and evaluate counterfactual models for whether a household would have re-
entered the homeless system within 2 years if they had been assigned to a different service,
and solve a capacitated assignment problem in order to minimize the number of households
re-entering the system within two years, subject to capacity constraints on each service.

Preview of results: Using administrative data on a weekly basis over the course of
166 weeks, we estimate counterfactual predictions of reentry into homeless services for each
household within two years. Models appear well-calibrated; we predict (out-of-sample),
in expectation, that 2855 (28.43%) households would re-enter the system, whereas 2765
(27.53%) actually re-entered. In the optimized assignment, we find the BART model pre-
dicts that only 2611 households would re-enter the system, a reduction of 244 households
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(5.57%) in expectation. Thus, there may be benefits achievable (by this re-entry metric)
from improving the combined prediction-allocation mechanism. However, these benefits
come with tradeoffs. The allocations are not Pareto-improving; 21 percent of households
increase their probability of re-entry according to the predictions. We formulate and solve
a constrained version of the allocation problem that guarantees no household increases the
probability of re-entry by more than 5 percentage points in the new allocation. This leads
to only a small change in the predicted number of re-entering households compared with
the unconstrained optimization.

Implications: Our work serves as a proof of concept through a case study. We bring
administrative data to bear on the question of how much AI techniques can improve social
service provision, with full awareness that the precise results presented may depend on
specific modeling choices, and the reliability of the counterfactual estimates. This work
contributes to the emerging dialogue on social service delivery based on machine learning
predictions. We emphasize the importance of considering fairness, ethics, and the long-
term dynamics of systems that use these kinds of predictive models, while at the same time
believing that engaging these questions with actual data and estimates can contribute to
resolving the lack of evidence guiding current social service delivery.

2. Ethics and Fairness

Since we are considering a problem of allocating scarce, shared societal resources using
algorithmic approaches, it is important to foreground the discussion of ethical issues and
fairness concerns. The use of techniques from machine learning and artificial intelligence
(and more broadly, algorithmic approaches) in different societal contexts increasingly raise
concerns regarding fairness, accountability, and transparency (O’Neil, 2016, among others).
Although they demonstrate potential for improvements in efficiency, fundamental questions
exist as to whether data-driven allocations introduce or perpetuate systematic biases that
contribute to inequities, and moreover, whether the inherent complexity of decision-making
impedes timely detection and correction of these inequities. A number of recent studies
justify these concerns, demonstrating racial disparities in credit lending, hotspot policing,
and crime sentencing (Ensign et al., 2018; Pleiss et al., 2017; Corbett-Davies et al., 2017);
each example shows that marginalized, underrepresented minorities disproportionately suf-
fer from unfair algorithmic decisions. The unintended consequences require that we carefully
consider how to design adequate protections against systematic misuses.

The European Union recently passed legislation in response to concerns about ethics,
fairness, and privacy. The “General Data Protection Regulation” (GDPR) imposes restric-
tions on how individual data can be used for algorithmic decision making in ways that
“significantly affect” users. The GDPR coincides with a broader argument for not just full
transparency, but rather human interpretability regarding how decisions are derived from
algorithmic approaches to ensure adequate assessment of fairness. However, requirements
for human interpretability could also diminish the potential of AI to solve societal prob-
lems. Algorithmic approaches generate novel solutions that may not correspond to human
intuition; requirements for full explainability of these complex processes limits the inherent
value of applications to thorny social problems.
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David Weinberger presents a compelling example related to autonomous vehicles in a
Wired op-ed (Weinberger, 2018). If self-driving automobiles lowered the number of vehicular
fatalities by 90%, would it really be worth losing that benefit because of the difficulty of ex-
plaining (or legal liabilities that may be associated with) the remaining crashes? Certainly,
the answer partly depends on whether the remaining crashes disproportionately affect some
portion of the population as well as other considerations. Weinberger goes on to argue
that while the regulation of AI applied to social problems is critical, it can be achieved
through existing processes for resolving policy issues (Weinberger, 2018). Governance pro-
vides formal and informal methods for establishing rules and norms applied to collective
problems, which also include sustainable approaches for mutual accountability. According
to Weinberger, the right approach towards AI regulation involves specification of appropri-
ate optimization goals arrived through the social processes of policy-making that consider
both efficiency and equity. However, with a few exceptions (Chouldechova et al., 2018, e.g.)
there has not been much empirical investigation probing the tradeoffs that emerge when
incorporating fairness considerations into algorithmic decisions, especially in the context of
scarcity.

3. Background and Data

Homelessness represents a complex public health challenge for communities across the
United States. Federal guidelines define homelessness as residence in unstable and non-
permanent accommodations. This includes shelters, places not meant for habitation (eg.,
cars, park, abandoned buildings), as well as being at imminent risk for eviction. Annual
counts since 2007 estimate that more than 550,000 people experience homelessness on a
single January night across the United States (Henry et al., 2018), while approximately 1.5
million people use homeless services at some point during each year (Henry et al., 2018).
Families with children under 18 years of age comprise more than one-third of homeless
households (Henry et al., 2018). Experiences of homelessness and associated turmoil carries
life long implications, as well as significant social costs in lost productivity, compromised
health, and compensatory social service expenditures (Khadduri et al., 2010; Culhane et al.,
2011; Fowler et al., 2019a).

The homeless system represents the primary community-wide service response to hous-
ing crises. Funds allocated by Congress on an annual basis support the delivery of five types
of homeless assistance. Service types vary in intensity, and relatedly, availability. The most
intensive service - Permanent Supportive Housing - provides long-term rental assistance
plus comprehensive case management to address barriers to stability, such as mental health
and substance abuse treatment; it is reserved for the highest risk households and consumes
the greatest amount of financial resources. Similarly to Permanent Supportive Housing,
Transitional Housing also offers comprehensive case management but only up to 24 months
in congregate settings. Rapid Rehousing allows up to 24 months of rental assistance without
additional intensive case management. At the end of two years, households in Transitional
Housing or Rapid Rehousing either move on their own or step-up to Permanent Supportive
Housing, if available. Emergency Shelters offer immediate accommodations for those with
no other place to go, and typically serve a large number of households for a brief period
of time. Shelters are intended to stabilize households and divert high-risk families to the
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longer-term housing services. Finally, Homelessness Prevention provides households at im-
minent risk for homelessness with short-term and non-reoccurring assistance to mitigate
housing crises. Local non-profit provider networks determine the delivery of day-to-day ser-
vices within general structures determined by federal funding priorities. During the study
period, providers offered services to eligible households on a first-come-first-served basis.

Despite substantial investments, homeless rates remain high in the United States (Fowler
et al., 2019a). An enormous challenge is that of matching service types to need. While
federal guidelines mandate that local agencies provide services based on risk assessments
(United States Congress, 2009), existing tools fail to discern high and low risk households
reliably and accurately (Brown et al., 2018; Shinn et al., 2013). Homeless service providers
have limited evidence for adapting responses to observed and unobserved household char-
acteristics (Fowler et al., 2019b). Moreover, there are no tools that assess the impact of
service matches on overall system performance in reducing reentries.1

3.1 Data Collection

Data for this work come from the homeless management information system (HMIS) of a
major metropolitan area from 2007 through 2014. The HMIS records all housing services
provided to individuals and families seeking federally funded homelessness assistance. Local
service providers enter information on requests and receipt of services in real time through a
web-based platform in accordance with federal mandates for collection of universal elements.
A local non-profit organization contracted with the homeless system hosts the platform and
provides support, including user training, technical assistance, and active quality control.

Records provide information on the characteristics and services delivered to households
in contact with the homeless system. Household-level characteristics include an array of
information on demographics, housing risk, and eligibility determinations. Services include
entry and exit dates from the five federally defined types of homeless assistance: homeless-
ness prevention, emergency shelter, rapid rehousing, transitional housing, and permanent
supportive housing. In addition, the metropolitan area coordinates requests for assistance
through a homeless hotline, and household-level data record information on every call, in-
cluding dates and referral for services. Household identifiers allow linkages of information
across time. Data sharing agreements with regional homeless systems allow access to dei-
dentified records in accordance with the relevant Institutional Review Board, which made
a non-human subjects determination. Regardless, all information was transferred, stored,
and analyzed according to best practices in data security. This includes ethics training in
research for all research team members.

3.2 Data Cleaning and Feature Selection

For this project, we extract data provided by 75 different homeless agencies and link partic-
ipants across programs by a unique, anonymous identification number. We then aggregate
data by household over time using a unique household identification number. This results
in a dataset of households containing household characteristics available upon entry into

1. Annual evaluations of homeless system performance monitor overall rates of return to the homeless
system within 24 months, but do not evaluate allocations; future federal funding depends in part on
demonstrating trends toward reductions in reentries.
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the system, as well as information on all entries and exits from different homeless services.
We exclude permanent supportive housing for the present study because the service was
rarely used as an initial response for first time entries into the homeless system during the
study period. The primary outcome (the label we are trying to predict) is reentry into the
homeless system. Operationally, reentry is defined as requesting services within two years
of exit from the system, regardless of whether services were actually received. We do this
using hotline call records to determine whether a household requested additional housing
assistance after the initial service. This ensures that we capture further need, and not just
availability of services. When transitions between services (e.g. homeless shelter to rapid
rehousing) occur on the same day, we assume that they represent a continuation of homeless
services and do not count this as a reentry. We consider households to have exited from
the system when the time between leaving one service and entering another exceeds one
day. Our analyses include households who entered the homeless system after the start of
2007 and exited before the end of 2012 to provide a minimum two-year follow-up for all
households.

Type Number Examples

Binary Features 3 Gender, Spouse Present, HUD Chronic Homeless
Non-Binary Categorical Features 19 Veteran Status, Disabling Condition, Substance Abuse

Continuous Features 13 Age, Monthly Income, Calls to Hotline, Duration of Wait

Total Features 35

Table 1: Summary of features included in BART model

Since the data captures homeless services across time, it contains both time-invariant
(e.g., race, gender, ethnicity) as well as time-variant (e.g., monthly income, age) features.
We select values of time-variant features that are collected at the time of first entry into the
homeless system and have adequate amounts of available data for use in modeling. Most
of the variables we selected were categorical, and missing values are treated as a separate
category in these cases. Table 1 shows a summary and examples of the features included.
A more complete summary of the dataset is included in Table 8 in the Appendix.

3.3 Data Characteristics

The dataset includes records on 13940 households. The target variable, or label, is a binary
indicator of whether households reentered the homeless system, defined as requesting and/or
receiving homeless services within 2 years of initial exit. Of the 13940 households, 3987
(28.60%) reentered the homeless system within two years; among reentries, 2066 (51.82%)
were placed in a subsequent service, while 1921 (48.18%) called the hotline to request ser-
vices, but by the end of the two year period had not been placed in another service. Reasons
for failing to receive additional services varied; most commonly, services were unavailable
and clients were referred to other services (79.13%) or clients did not follow up on referrals
(17.67%).

Table 2 shows the number of households initially assigned to each homeless service type,
as well as the percentage of reentries within 2 years for each service. Models use a single
feature vector, which consists of service assignment plus additional covariate data collected
at first entry into the system.
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Service Type Number Assigned Percent Reentered

Emergency Shelter 4431 43.11
Transitional Housing 2449 34.38
Rapid Rehousing 844 40.40

Homelessness Prevention 6216 14.38

Total 13940 28.60

Table 2: Summary of service assignment and homeless system reentry within two years by
type of service

3.4 Eligibility for Prevention

Based on conversations with our community partner, it became apparent that prevention
services are not considered for many households due to their current housing circumstances.
If a household’s prior residence is one of the following: psychiatric facility, detox center,
hospital, jail or prison, hotel or motel, staying with a friend or family member, foster care or
group home, rental by client, or owned by client or if their prior residence was unknown but
they are not considered homeless by federal definitions, we consider that household to be
eligible for prevention. Otherwise, they are deemed ineligible for prevention and prevention
is not considered as a potential service for that household in our analyses. Of the 13940
households in our data, 10492 (75.27%) were eligible for prevention.

4. Analyzing Services

This application requires a method that can handle the challenges of counterfactual infer-
ence using observational data, while simultaneously providing a well-grounded probabilistic
model. Bayesian Additive Regression Trees (BART), an ensemble model that outperforms
propensity score and nearest neighbor matching algorithms for causal inference on obser-
vational data, especially when the data are complex (Hill, 2011), is a promising method for
mitigating this challenge, (Chipman et al., 2007, 2010).

Bayesian nonparametric modeling for causal inference has a number of advantages that
fit this application (Chipman et al., 2010; Hill, 2011; Johansson et al., 2016). Such models
are capable of providing robust estimates of treatment effects using observational data like
administrative service records. They can handle a large number of features or predictors,
as well as complex data that include interactions and nonlinearities seen in prior studies
of homeless service delivery (Shinn et al., 2013). In the following section, we compare the
predictive performance of BART on our dataset to that of several other popular machine
learning algorithms: random forests, logistic regression, LASSO, and gradient boosted trees.

4.1 Model Comparison

We compared the out-of-sample predictive performance of BART to four commonly used
machine learning algorithms using 10-fold cross validation. First, we implemented BART
using the default parameters provided by the model creators (Chipman et al., 2010). Then,
we implemented simple logistic regression and LASSO using 10-fold cross validation to
choose the value of lambda, the regularization parameter. We also implemented random
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forests with 500 trees, a minimum node size of 1, and considering 6 variables for each split
(Breiman, 2001). Lastly, we implemented gradient boosted trees with 100 trees with a
maximum depth of 1, 10 observations per node minimum, and a learning rate of 0.1. As we
are comparing to BART using the default parameters, these hyperparameters were chosen
because they are commonly used default parameters/implementations for each method.
We assess predictive performance using multiple metrics: AUC (Area Under the ROC
Curve), Misclassification Error, Precision, Recall, and Calibration which we operationalize
as Expected Reentries/True Reentries. The results of this analysis are shown in Table 3.
We also assess calibration individually for each service type operationalized in the same
manner in Table 4. BART either outperforms or performs equally to each of the other
methods and is well-calibrated across services. As stated previously, it also mitigates the
issue of confounder bias that may be present in our observational data and allows for the
estimation of household-specific treatment effects. For these reasons we conduct all further
analyses in this paper using BART. All model fitting and counterfactual inference that
follows is done using the R package BayesTree written by the model’s creators (Chipman
et al., 2010).

Method AUC Misclassification Error Precision Recall Calibration

BART 0.7534 0.2506 0.6136 0.3393 0.9999
Logistic Regression 0.7386 0.2576 0.6171 0.2670 0.9996

LASSO 0.7386 0.2583 0.6254 0.2465 0.9995
Random Forests 0.7444 0.2516 0.6110 0.3361 0.8864

Gradient Boosted Trees 0.7462 0.2564 0.6104 0.2920 0.9999

Table 3: Comparison of prediction performance of several commonly used methods using
multiple metrics

Method Emergency Shelter Transitional Housing Rapid Rehousing Homelessness Prevention

BART 0.9990 1.0009 0.9961 1.0022
Logistic Regression 1.0001 0.9989 0.9980 0.9999

LASSO 0.9921 1.0059 0.9753 1.0183
Random Forests 0.9423 0.8285 0.9824 0.7860

Gradient Boosted Trees 0.9747 1.0371 0.9382 1.0419

Table 4: Comparison of the calibration of each method by service type

4.2 Counterfactual Estimation of Heterogeneity in Match Quality

Using BART, we built models to produce out-of-sample counterfactual estimates of reentry
probabilities if households received each homeless service (i.e., prevention, rapid rehousing,
shelter, transitional housing).2 For those households that are ineligible for prevention, we
did not consider prevention as a potential service. For most of the 10492 households eligible
for prevention, homelessness prevention produced the lowest probability of reentering the
system within two years (10030 households are predicted to do best in prevention). Three

2. These counterfactual estimates for all 13940 households are made available in the following repository:
https://github.com/amandakube/Allocating-Homelessness-Interventions—Counterfactual-Predictions
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households were predicted to do best in emergency shelter, 323 in transitional housing,
and 136 in rapid rehousing. Most of these households were predicted to have the highest
probability of reentry if placed in emergency shelter (7126 households) with less predicted
to do worst in transitional housing (1990 households), rapid rehousing (1374 households),
and prevention (2 households).

For most of the 3448 households ineligible for prevention, transitional housing produced
the lowest probability of reentering the system (2324 households). One-hundred-ninety-two
households were predicted to do best in emergency shelter and 932 in rapid rehousing.
Again, most of these households were predicted to have the highest probability of reentry if
placed in emergency shelter (2119 households) with less predicted to do worst in transitional
housing (476 households) and rapid rehousing (853 households).

Relative Ordering of Services Number of Average Probability Average Probability Average Probability Average Probability
Households of Reentry in ES of Reentry in TH of Reentry in RRH of Reentry in Prev

Prevention Eligible

Prev, TH, RRH, ES 4363 0.32 0.26 0.29 0.21
Prev, RRH, TH, ES 2415 0.30 0.28 0.26 0.20
Prev, RRH, ES, TH 1601 0.25 0.26 0.22 0.17
Prev, TH, ES, RRH 1105 0.25 0.22 0.27 0.17
Prev, ES, RRH, TH 348 0.22 0.24 0.23 0.16
TH, Prev, RRH, ES 208 0.42 0.33 0.39 0.36
Prev, ES, TH, RRH 198 0.20 0.21 022 0.15
TH, Prev, ES, RRH 71 0.41 0.33 0.43 0.36
RRH, Prev, TH, ES 68 0.53 0.49 0.45 0.47
TH, RRH, Prev, ES 44 0.52 0.45 0.46 0.48
RRH, Prev, ES, TH 35 0.42 0.44 0.38 0.39
RRH, TH, Prev, ES 28 0.57 0.51 0.50 0.52
RRH, ES, Prev, TH 4 0.50 0.56 0.50 0.52
ES, Prev, RRH, TH 2 0.65 0.71 0.67 0.66
ES, TH, RRH, Prev 1 0.84 0.85 0.87 0.88
RRH, TH, ES, Prev 1 0.75 0.72 0.72 0.75
Prevention Ineligible

TH, RRH, ES 1561 0.46 0.39 0.43 -
TH, ES, RRH 763 0.44 0.39 0.46 -
RRH, TH, ES 558 0.45 0.41 0.39 -
RRH, ES, TH 374 0.38 0.40 0.36 -
ES, RRH, TH 102 0.43 0.47 0.45 -
ES, TH, RRH 90 0.40 0.41 0.43 -

Table 5: Number of households having each of the orderings of services from least to
greatest probability of reentry (Emergency Shelter = ES, Transitional Housing = TH, Rapid
Rehousing = RRH, Homelessness Prevention = Prev)

For each household, we determined which services are predicted to outperform others
and developed a relative ordering of service effectiveness. Table 5 illustrates this ordering
of service effectiveness. Summing across households, almost one-third (31.3%) do best in
prevention followed by transitional housing, rapid rehousing, and shelter. Another 17.3%
would benefit most in prevention, followed by rapid rehousing, transitional housing, and
shelter. For a small proportion of households (11.2%), transitional housing followed by
rapid rehousing, and shelter would be best as they are ineligible for prevention. These
patterns demonstrate the heterogeneity in treatment effects we hope to leverage to improve
the efficiency of allocations.

The probabilities estimated by BART allow us to perform an initial examination of
the possibility of optimizing homeless service delivery. If all households were placed in the
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service in which they have the lowest predicted probability of reentry, we predict 25.00%
of households would reenter in expectation. This is a 12.59 percent decrease from the
28.60% who actually reentered. However, it represents an oversimplification of the allocation
problem, which in reality is subject to capacity constraints on the number of households
that can be served by a particular service at any given time. In the following section, we
formulate the optimal allocation problem including these service capacity constraints.

5. Optimal Allocation Using Estimated Personalized Treatment Effects

In order to frame the optimal allocation problem, we need two main sets of variables es-
timated from the data. First are the predictions of probability of reentry for households
given they are placed in each of the possible services. For this, we use out-of-sample BART
predictions. Second are the capacities of the different services mentioned in the previous
section - that is, the number of households that can be accommodated at a given time due
to space or monetary limitations. In order to estimate these, we aggregate data on a weekly
basis, and set the capacity of a service equal to the number of households who truly entered
into the service in that week. One week is granular enough to give some flexibility to the
optimizer, while also not leading to waits that are outside the tolerance of the system. We
note here that we solve the problem in a static manner every week, although there could, of
course, be interesting dynamic matching issues at play (Akbarpour et al., 2020; Anshelevich
et al., 2013).

5.1 The Optimization Problem

We solve an Integer Program for each week of data. Our objective is to minimize the
expected number of reentries, ensuring that every household is assigned exactly one service
and that no service is assigned more households than its estimated capacity as described
above. Let xij be a binary variable representing whether or not household i is placed in
service j. Then, the Integer Programming problem is given by

min
xij

∑
i

∑
j

pijxij

subject to
∑
j

xij = 1 ∀i ∈ Z

∑
i

xij ≤ Cj ∀j ∈ Z

xij ∈ {0, 1}

where pij is the probability of household i reentering if they are placed in service j and Cj

is the capacity of service j.
We use this IP framework and Gurobi optimization software to find an optimal allocation

for households who entered the system during each week.
In the following section, we show this can be re-formulated as a weighted bipartite

b-matching problem, known to admit a polynomial time solution.
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5.1.1 Reduction to Weighted Bipartite b-matching

Weighted Bipartite b-Matching is the following problem: Given a weighted bipartite graph
G with positive, real-valued edge weights, find a subgraph H of G with maximum total
weight such that every vertex i in H is incident to at most bi edges (Chen et al., 2016).

Given an instance of the current optimization problem, we create an instance of Weighted
Bipartite b-Matching as follows. First, create a bipartite graph G such that there are
four nodes representing the four services on the right and a single node representing each
household on the left. Between each household node i and each service node j, create an
edge and give that edge weight 1− pij . For each household node i, let the degree constraint
bi of node i be 1. For each service node j, let the degree constraint bj of node j be Cj . Then,
the allocation of households to services that minimizes expected re-entries while respecting
capacity constraints is given by a maximum weighted bipartite b-matching on graph G.

Claim: An optimal weighted bipartite b-matching solution of maximum weight on graph
G gives an allocation of households to services that solves the current optimization problem.

Proof: Assume there exists an optimal weighted bipartite b-matching solution of max-
imum weight on graph G that does not give an allocation of households to services that
minimizes expected re-entries while respecting capacity constraints.

We know that each household i is going to be matched to exactly one service j since
each household node in G has capacity 1 and not fulfilling that capacity can only reduce the
total weight of the solution. Similarly, each service j must be at capacity, since leaving any
household unmatched would only result in a solution of smaller total weight. Therefore,
if there is an improvement to be made to the optimal allocation of households to services,
it must be due to swapping some pair of edges. Now, suppose household h is assigned to
service k and h′ to service k′. Suppose swapping them so that h were assigned to k′ and
h′ to k would improve the re-entry minimization objective. Then it must be the case that
phk + ph′k′ > phk′ + ph′k. Which implies (1 − phk) + (1 − ph′k′) < (1 − phk′) + (1 − ph′k).
Therefore, swapping them would increase the total weight of the weighted bipartite b-
matching solution.

This contradicts the assumption that our solution to the weighted bipartite b-matching
problem was of maximum weight. Therefore, the allocation of households to services that
minimizes expected re-entries while respecting capacity constraints must be given by a
maximum weighted bipartite b-matching on graph G. ■

This shows that the solution to our optimization problem can be found in polynomial
time. In practice, the optimization is extremely fast in Gurobi (0.03 seconds on average), and
time requirements are dominated by running BART, therefore we use the IP formulation.

5.1.2 Optimization Results

Only households who entered the homeless system between October, 2009 (after initial
implementation of the rapid rehousing service) through December, 2012 were included in
the optimization. This results in tracking 10043 households across 166 separate weeks
optimized.3 For households ineligible for prevention, their predicted probability if placed in

3. Two simultaneous changes in homeless service delivery precluded additional follow-up. First, new data
management software failed to match households in the system before and after 2015. Second, local
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prevention is set to 1 so as to eliminate the possibility of the algorithm placing that housing
in prevention.

Over the 166 weeks, 2765 out of 10043 households (27.53%) actually reentered the home-
less system. Summing BART predictions to estimate how many households would reenter
in expectation produces an estimate of 2855 households (28.43%), suggesting that the pre-
dicted reentry probabilities given by BART are reliable. Using these predicted probabilities
to find an optimal allocation, predicted reentries reduce to 2611 households (26.00%). Thus,
the optimal allocation framework reduces the predicted number of reentries into the home-
less system by 5.57% over this period. Also recall that the best that could be achieved
by assigning each household to its optimal service, without any capacity constraints, was
a reentry rate of 25.00%, so our allocation gets us much closer to the best possible reentry
rate for this formulation.

5.2 Fairness Considerations

An immediate question is whether the optimal allocation is capturing some inherent inef-
ficiency in the allocation system, and is therefore Pareto-improving or at least improving
allocations for a substantial portion of the population.

Figure 1 shows the distribution of changes in predicted probability of reentry based
on our BART model in the optimal service versus predicted probability of reentry for the
actual service allocation. In the optimal allocation, 3522 (35.07%) individual households
are allocated to a service in which they have a lower probability of reentry than the service
in which they actually participated (shown by the area of the histogram to the right of
0). Another 4388 (43.69%) are allocated to the same service they were originally assigned.
Importantly, 2133 (21.24%) households are allocated to a service in which they have a higher
probability of reentry (shown by the area of the histogram to the left of 0). Therefore, a
substantial fraction of households are being hurt by the reassignment, even though more
are being helped.

Original
Optimal

Emergency Shelter Transitional Housing Rapid Re-housing Homelessness Prevention

Emergency Shelter 0 0.08 0.06 0.12
Transitional Housing -0.03 0 0.01 0.06
Rapid Re-housing 0.02 0.09 0 0.10

Homelessness Prevention -0.03 0.03 -0.00 0

Table 6: Average percentage point difference in probability of reentry for households mov-
ing between services in the optimal and original allocations. Positive numbers represent
decreases in probability of reentry.

Table 6 shows the average percentage point difference in probability of reentry for house-
holds moving from one service in the original allocation to a different service in the optimal
allocation. The mainly positive non-zero off diagonals suggest potential improvements from
optimization that range from small (e.g., rapid rehousing to shelter) to larger changes, espe-
cially reassignment to transitional housing. Although BART shows homelessness prevention

homeless providers simultaneously shifted services to comply with federal requirements for coordinated
entry into homeless services; the result, in effect, unpaired prevention from other homeless services.
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Difference in probability of reentry between the original and the optimal allocation
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Figure 1: Histogram of improvement in reentry probability under the unconstrained opti-
mized allocation (the 4388 households whose probability of reentry was unchanged are not
included)

represents the best option for most households, the percentage point gains are relatively
modest; those who are moved out of prevention typically have worse outcomes.

Figure 2 shows the mechanism of improvement, given capacity constraints. It maps the
changes in allocation between the different services in the optimal allocation, as compared
with the original. Figure 2a shows the number of households who moved from each service to
another in the optimal allocation and Figure 2b shows the net flows of households moving
between services. It is clear that the main mechanisms of improvement are flows where
a significant number of households are being placed in transitional housing rather than
rapid rehousing and in prevention rather than transitional housing; in order to make room
for these, households move from prevention to shelters. This flow indicates a potentially
complex mechanism for improving outcomes, since it is not simply a two-way swap between
services.

We explore further who benefits in optimization to assess potential inequities. We build
random forest models using the default hyperparameter values listed for the classification
problem of predicting whether a household has a higher or lower probability of reentry
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after optimal allocation. We chose random forests due to the ease of producing measures
of variable importance from a random forest model. The models have access to the entire
original set of features, but ignore service type. The relative importance of each feature
for prediction (calculated using the mean decrease in accuracy of features – a standard
permutation test used in random forest feature importance) provides insights into the key
characteristics that differentiate those who improve or worsen their reentry probability. The
out-of-bag error for the random forest model was 0.09 and the AUC was 0.97. Figure 3 plots
the 30 most influential variables. Some of the most important features are prior residence,
housing status at entry, and the number of hotline calls prior to entry.

Figure 3: Plot of the mean decrease in accuracy of features for predicting whether the
optimal allocation will increase or decrease a household’s probability of reentry

Perhaps the most striking discovery to emerge from the analysis is that the optimal
allocation seems to help those who stand out as being more in need. Households benefited
most by reallocation disproportionately are homeless upon entry and make frequent calls to
the hotline for help; they also are more likely to reside in non-federally funded homeless ser-
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vices (primarily provided through local religious organizations), substance abuse treatment
facilities, or with family. Moreover, reallocation benefits households more likely to report
a disability who wait longer for entry into services. Households harmed by optimization,
on the other hand, are more likely to be at risk or at imminent risk upon entry, first time
hotline callers with briefer waits for services, and in their own or rental units; household
heads also are somewhat older and more likely to have children. The no change group also
experience stable housing in their own units upon entry. Table 7 summarizes comparisons of
household characteristics by reallocation outcomes. All differences in continuous variables
between the group who improved versus harmed were tested using a Student’s t-test and
have p-valus at or below 3.21e-14.

Feature Improved Group Harmed Group No Change Group Total
(n = 3522) (n = 2133) (n = 4388) (n = 10043)

%/Mean (SD) %/Mean (SD) %/Mean (SD) %/Mean

Prior Residence: Emergency Shelter 42.84 10.77 46.40 12.85
Prior Residence: Transitional housing for homeless persons 41.17 8.33 50.50 5.97
Prior Residence: Substance abuse treatment facility or detox center 81.19 1.63 17.19 16.72
Prior Residence: Staying or living in with family member 59.17 11.67 29.16 11.78
Prior Residence: Rental by client no ongoing housing subsidy 4.07 33.63 62.30 24.45
Prior Residence: Owned by client no ongoing housing subsidy 2.94 43.12 53.94 12.88
Housing Status At Entry: Homeless 79.76 9.66 10.58 10.72
Housing Status At Entry: At imminent risk of losing housing 5.41 36.31 58.28 34.63
Housing Status At Entry: At-risk of homelessness 3.82 38.05 58.12 11.46
Housing Status At Entry: Stably Housed 21.60 26.83 51.57 2.86
Housing Status At Entry: Client doesn’t know 58.49 6.20 35.31 40.33
Calls Before Entry 3.65 (5.91) 1.35 (4.15) 2.63 (5.50) 2.72 (5.46)
Gender of Head of Household: Female 31.33 21.68 47.00 68.31
Gender of Head of Household: Male 43.14 20.30 36.57 31.69
Number of Family Members 1.53 (1.10) 2.66 (1.62) 2.01 (1.31) 1.98 (1.38)
Age of Head of Household 38.31 (13.31) 40.98 (12.41) 39.80 (12.41) 39.53 (12.77)
Head of Household Has Disabling Condition: No 33.82 21.36 44.82 82.82
Head of Household Has Disabling Condition: Yes 41.39 19.47 39.14 15.03
Head of Household Has Disabling Condition: Don’t Know 38.97 29.11 31.92 2.12
Head of Household Has Disabling Condition: Refused 50.00 0.00 50.00 0.02
Monthly Income 871.76 (1111.02) 2008.84 (2753.28) 1487.54 (1528.84) 1382.31 (1800.82)
Number of Children 0.50 (1.05) 1.41 (1.49) 0.92 (1.25) 0.88 (1.28)
Wait Before Entry 253.89 (452.80) 141.48 (393.75) 249.51 (469.72) 228.10 (450.80)

Table 7: Summary statistics for the most influential features for determining which house-
holds will benefit from the optimal allocation (due to the large number of prior residence
categories, those making up less than 5% of the population were omitted from the table)

Overall, these results suggest an ability to improve upon the allocation rules used by the
homeless system. To note, although more than one optimal solutions could exist, we find
evidence only for a single solution across runs. Interestingly, the efficiency gains are achieved
primarily through “shuffling” households between emergency shelters (which is a uniformly
poor service), prevention (which may be appropriate for more vulnerable households than
previously believed), and transitional housing (an intense and expensive service with higher
efficacy). There is clearly some household-level heterogeneity that could potentially be
exploited to achieve gains.

5.3 Constraining Increased Probability of Reentry

Another important dimension of fairness raised in algorithmic decision-making pertains to
the local costs of redistributing resources. Inefficiencies in the original allocation may be
because decision-makers are prioritizing equity by assigning more vulnerable households
to more intensive services (whether the measurement of vulnerability corresponds to the
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actual notion we care about is a separate question)(Fowler et al., 2019a). Of course, this
idea may be flawed in that some of these “more vulnerable” households may actually be
equally well-served by less intensive services.

One way to potentially deal with fairness concerns like these is to make them explicit
in the optimization. As an example, we consider what happens if we add a constraint
that prevents any household from suffering too high a predicted cost, in terms of predicted
increases in probability of reentry, from the change in allocation. For example:∑

j

pijxij ≤
∑
j

pijyij + δ ∀i

where each yij is a binary variable representing whether or not household i was originally
placed in service j. And δ is a constraint which keeps households from being allocated to
a service in which their predicted probability of reentry is more than δ percentage points
higher than that of the service they participated in originally.

To illustrate the results of the allocation when this constraint is added, Figure 4 shows
the distribution of changes in the the new allocation when δ is set to 5 percentage points.
The hard threshold prevents any negative changes of greater than 5 percentage points.
When we include this constraint, the solution to the optimization problem yields an allo-
cation with a predicted 2644 households (26.25%) reentering the system within two years.
This is just a little bit higher than the optimized allocation without the constraint, but
still a 4.36% decrease compared to the predicted reentry number for the original alloca-
tion. Looking again at individual households, 2619 (26.08%) are allocated into a service
that lowers probability of reentry, 5746 (57.21%) are allocated into the original assignment,
and 1678 (16.71%) are allocated into a service that increases probability of reentry. The
majority of households who do worse suffer very small penalties.

We empirically investigate the influence of imposing more and less restrictive fairness
constraints on reentry rates. Figure 5 shows the percentage reduction in expected reentries
as a function of δ (how much each household’s predicted reentry probability is allowed to
increase in the optimal allocation). That is, how much predicted cost households are allowed
to incur from the change in allocation. An interesting result from this investigation is that,
even when the constraint is set to 0.01 and barely allows any household’s predicted reentry
probability to increase, we achieve a modest reduction in expected reentries. Therefore, we
can produce gains in efficiency even in the presence of strict fairness constraints.

6. Discussion

Our work tests the feasibility of using data-driven counterfactual approaches to inform poli-
cies that guide homeless service provision. We analyze the potential for different allocation
mechanisms to improve outcomes using counterfactual estimates of probability of reentry
into the system. Our results suggest that optimal weekly assignments reduces system reen-
tries. However, optimization of system-wide service delivery withholds useful services for
one-third of households. Although the average harm to households is small in comparison
to the benefits for other households, the results emphasize that optimal reallocation of ser-
vices fails to improve the outcomes of all households in the homeless system. Assuming the
original allocation to be fair, models explore the imposition of an approximate fairness con-
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Figure 4: Histogram of improvement in reentry probability under the constrained opti-
mized allocation (the 5762 individuals whose probability of reentry was unchanged are not
included)

straint that avoid households from being reallocated to services that worsen the probability
of reentry into the system compared to the original allocation. Results show smaller but
meaningful reductions in reentries into the homeless system using fair data-driven alloca-
tions of services.

Our findings demonstrate the critical importance of fairness and justice considerations
in the design of algorithmic allocations of homeless services delivery. The assumptions,
implications, and potential unintended consequences must be thoroughly analyzed and ad-
dressed before implementing data-driven decision-making. One potential solution allows
workers to override certain allocation decisions. The idea has previously been adopted as
part of a homelessness prevention screening instrument used in New York City (Shinn et al.,
2013). Shinn and colleagues note that analysis of the reasons behind these overrides can
help to inform future models of this type. The addition of potential override reasons to
an allocation model could help to increase fairness and inform re-calibrations of models. It
also makes the transition to an allocation program smoother by allowing homeless service
workers to maintain control over allocations.

The results presented here must be considered in the context of limitations of this kind of
study. It is difficult to rule out all potential confounds for treatment estimates. Our models
leverage all available data from homeless services for predictions, and extensive sensitivity
analyses provide some confidence in the results. However, the observational nature of the
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Figure 5: Graph showing percent decrease in expected number of reentries as a function of
constraint on how much a household’s predicted reentry probability is allowed increase in
the optimal allocation

data constrains modeling for variables we were not aware of or to which we did not have
access. If the estimated treatment effects are biased, this would inherently worsen efficiency
gains by introducing unreliability.

Another key limitation concerns the potential for unobserved inequities in homeless ser-
vice delivery. Administrative records only collect information on services provided; models
remain vulnerable to service decisions that intentionally (i.e., explicit bias) or unintention-
ally (i.e., implicit bias) disadvantage specific groups. As illustrated in prior applications,
algorithmic decision making risks perpetuating systematic inequalities captured in the data
(Ensign et al., 2018; Pleiss et al., 2017; Corbett-Davies et al., 2017). Surprisingly, ini-
tial tests in the present study suggest optimal allocation disproportionately advantages
more vulnerable households. The unexpected findings potentially reveal counterproductive
assumptions guiding service delivery. Currently, homeless policies prioritize scarce inten-
sive services for more vulnerable households, whereas the data-driven allocation maximizes
timely receipt of preventive services for first time entries into the homeless system (United
States Congress, 2009). These findings are consistent with a growing body of evidence on
community-wide benefits of homelessness prevention (Fowler et al., 2019b). Insights from
the present study introduce new avenues for future work that informs data-driven home-
less service delivery. Further investigation into heterogeneous effects of different homeless
services offers opportunities to ask key policy questions of what works for whom. This is
especially true for prevention services that unexpectedly show promise at first time entry.
In addition, deeper investigation into winners and losers of data-driven allocation needs to
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test for potential disparities. Fairness considerations must extend to assess whether specific
groups are being disproportionately reassigned to certain services (e.g. shelter versus pre-
vention). Answering questions like this would help us learn how to decrease the number of
households harmed by this type of service allocation.

In sum, our study demonstrates both the potential of, and the need for caution in, data-
driven homeless service delivery. Although machine learning improves efficiency, fairness
considerations arise that require careful implementation in practice. Data-driven insights
also raise questions regarding policies that underlie service delivery – fitting an algorithms-
in-the-loop process (Green & Chen, 2019). This study opens new lines of inquiry for de-
signing and testing computational approaches that promote social good.
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Appendix A. Descriptive Statistics

Table 8 provides descriptive statistics for the dataset.

Feature Total
n=13940

% / M(SD)

Household Characteristics

Number of Household Members 1.94(1.36)

Spouse Present 6.55

Number of Children 0.84(1.26)

Number of Children Ages 0 to 2 0.16(0.43)

Number of Children Ages 3 to 5 0.14(0.41)

Number of Children Ages 6 to 10 0.20(0.53)

Number of Children Ages 11 to 14 0.15(0.43)

Number of Children Ages 15 to 17 0.10(0.34)

Number of Unrelated Adults 0.04(0.22)

Number of Unrelated Children 0.06(0.36)

Number of Calls Before Entry 2.82(5.34)

Wait Before Entry (in days) 192.70(402.18)

Monthly Income (in US Dollars) 1328.73(1792.28)

Head of Household Characteristics

Female 66.19

Age (years) 40.04(12.66)

White 15.22

African American 83.24

Hispanic or Latino Ethnicity 1.17

Veteran 4.71

Disabling Condition 12.40

Physical Disability 14.05

Received Physical Disability Services 5.55

Developmental Disability 1.92

Received Developmental Disability Services 0.36

Chronic Health Condition 25.07

Received Chronic Health Services 14.19

HIV/AIDS 0.44

Received HIV/AIDS Services 0.19

Mental Health Problem 21.56

Received Mental Health Services 8.67

Alcohol Abuse Problem 4.19

Drug Abuse Problem 9.71

Both Alcohol and Drug Abuse Problem 5.83

Received Substance Abuse Services 9.66

Domestic Violence Survivor 0.59

Chronically Homeless 2.14

Homeless 8.29

At Imminent Risk of Losing Housing 25.47

At Risk of Homelessness 8.91

Stably Housed 2.88

Coming from Emergency Shelter 12.08

Coming from Transitional Housing 6.18

Coming from Substance Abuse Treatment Facility or Detox Center 8.06

Coming from Hospital or other Residential Non-psychiatric Medical Facility 1.37

Coming from a Family Member’s Residence 11.61

Coming from a Friend’s Residence 3.19

Coming from a Place not Meant for Habitation 4.73

Coming from a Rental with Housing Subsidy 1.42

Coming from a Rental without Housing Subsidy 17.80

Coming from a Residence Owned by Client without Housing Subsidy 19.61

Table 8: Summary of the dataset by service type
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