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Abstract
Machine learning on sets towards sequential output is an important and ubiquitous task, with

applications ranging from language modelling and meta-learning to multi-agent strategy games and
power grid optimization. Combining elements of representation learning and structured prediction,
its two primary challenges include obtaining a meaningful, permutation invariant set representation
and subsequently utilizing this representation to output a complex target permutation. This paper
provides a comprehensive introduction to the field as well as an overview of important machine
learning methods tackling both of these key challenges, with a detailed qualitative comparison of
selected model architectures.

1. Introduction

We begin by providing a definition of the set-to-sequence field and outline its importance in various
areas of application.

1.1 What is Set-to-Sequence?

Set-to-sequence encompasses a group of problems where input takes the form of unordered collections
of elements and the output is an ordered sequence. These challenges can be approached as a
machine learning problem, where models learn arbitrary functions for performing the set-to-sequence
mapping.

Set-to-sequence covers combinatorial optimization and structure prediction problems where ex-
haustive search is often not tractable. Machine learning (ML) approaches to set-to-sequence combine
set-encoding techniques with permutation learning and have found an exceptionally wide range of
practical applications.

Many of the successful deep learning approaches take advantage of the structure in their input
data. However, sets do not posses the kind of internal structure that images and natural language
sentences do. In set-to-sequence our input data does not have an inherent order and therefore
our models must take into consideration the permutation invariance of sets. Obtaining meaningful
permutation invariant representations is an important challenge for machine learning models in order
to ensure that the same set will not result in two different outputs, due to the arbitrary initial order
in which its elements were presented to the model.

1.2 Why Does Set-to-Sequence Matter?

Machine learning set-to-sequence methods can approximate solutions to computationally intractable
problems in many areas. They have been applied to learning competitive solvers for the NP-Hard
Travelling Salesman Problem (Vinyals et al., 2015); tackling prominent NLP challenges such as
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sentence ordering (Wang & Wan, 2019) and text summarization (Sun et al., 2019); and in multi-
agent reinforcement learning (Sunehag et al., 2018). A notable example is the agent employed by
the AlphaStar model, which defeated a grandmaster level player in the strategy game of Starcraft
II (Vinyals et al., 2019).

Set-to-sequence ML models also play an important role in data-intensive 3D point cloud process-
ing (Qi et al., 2017) and meta-learning (Huang et al., 2018b). Set-input and set-ordering problems
themselves are prominent in a wide array of applications ranging from power grid optimization (Cui
et al., 2019), where solving them led to power usage savings of up to 30%, through anomaly detection
(Jung et al., 2015) to measurements of contaminated galaxy clusters (Ntampaka et al., 2016).

This review contributes to the field in two primary ways:

1. By providing a single point of entry for researchers interested in the set-to-sequence field and
for applied practitioners solving set-input ordering challenges.

2. By comparing all the discussed methods via a number of aspects relevant for both academic
and applied work and presenting this comparison in the form of easy-to-read tables, which will
help guide the reader towards the most applicable method for their specific area of interest.

The remainder of this paper is structured in the following way: firstly, we introduce the reader
to the necessary background concepts and related work in section 2, including specific notes on
the adopted notation. Secondly, an overview of set encoding methods is given in section 3, with
comparison tables and details of the underlying mathematical transformations. Thirdly, section 4
contains a survey of popular ordering methods, which use the encoded set representation to output a
complex permutation. The lists provided in sections 3 and 4 are not exhaustive and focus primarily
on deep learning approaches. Finally, a discussion of current limitations and directions for further
research is given in section 5, followed by a short conclusive summary in section 6.

2. Background

In this section the reader is introduced to the key concepts related to machine learning on sets and
permutation learning, with minor notes on notation throughout the rest of the paper. Additionally,
a comprehensive overview of related work from other fields of machine learning is given, including
natural language processing, information retrieval and set segmentation.

2.1 Important Concepts

For the purposes of this review a set can be intuitively defined as a collection of distinct elements,
without a canonical order between them (Halmos, 2017). An important property of sets is that they
can have a varying number of elements, also referred to as their cardinality. Whilst the intuitive
definition of a set is susceptible to known paradoxes (Rang & Thomas, 1981), the machine learning
methods discussed here do not require an in-depth understanding of the proper definition from
axiomatic set theory. Interested readers can find further information pertaining to it in other referred
publications (Takeuti & Zaring, 2013).

As per the axiom of extensionality, sets are defined only by their elements (Hayden et al., 1968).
In practice this means that given, for example a set A = {x, y, z} and set B = {z, y, x} we know
that A = B. The order in which the elements are presented in roster notation does not matter.
From now on, when we refer to a set, we specifically limit our considerations to finite sets only.

Set-to-sequence ML methods are distinctly different from earlier, encoder-decoder sequence-to-
sequence model architectures (Sutskever et al., 2014). The difference stems from having to handle
set-input data. This imposes two requirements on set-to-sequence ML methods that are not met by
most neural network models:
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1. Permutation Invariance

The output of the model must be the same under every possible permutation of the elements
from the input set.

2. Varying Input Length

The same model must be able to process input sets of different lengths.

If these criteria are not met, the ML model by definition treats its input as a sequence, not a set.
Fully feed-forward methods fail to meet both criteria and the recurrent neural networks (RNNs),
which form the foundation of most sequence-to-sequence autoencoders, are sensitive to alterations of
the order of their input (Vinyals et al., 2016). To truly treat input data as an inherently unordered set
we must be certain that permuting the input will not result in a different encoded set representation
(Zaheer et al., 2017). Additionally, depending on the presence and type of a downstream task that
uses this representation, we are interested in whether the final output is also permutation invariant,
which is not necessarily the case with all reordering methods.

More formally, a function f : P(X) → Y is permutation invariant regarding the order of the
elements of its input set if for every permutation π the following property holds: f({x1, . . . , xn}) =
f({xπ(1), . . . , xπ(n)}). A related property of functions on sets, which has been formally investigated
by Zaheer et al. (2017), is permutation equivariance. In tasks where each set element has an
associated target label, such that these individual labels depend on the entirety of the set, we would
ideally want our predicted labels to remain the same per element, regardless of how the original
input set is permuted. That property is permutation equivariance.

At this point it is important to distinguish between two types of set-to-sequence challenges. In
the first type the output is a reordering of the input elements, with the possibility of repeating
an element multiple times in the output sequence or skipping it entirely. Such permutations with
potential repetition and exclusion are further denoted as complex permutations. We can refer to the
type of problems involving various kinds of permutations of the input elements as self-referential
set-to-sequence challenges.

The self-referential set-to-sequence domain includes classic combinatorial optimization problems
and forms the majority of this review. There are many different ways to frame this task and formalize
the resulting output, which are discussed in section 4. They include primarily pointer-based attention
(4.2), the generation of permutation matrices (4.3) and ranking scores (4.4).

Figure 1: Set-to-Sequence Tasks by Referentiality

In the second type of set-to-sequence challenges, the task is to generate output that is sequential
in nature, but is not defined as a permutation of the original input elements. We denote this as
non-referential set-to-sequence. It encompasses for example summarization of a set of documents.
Here, the input is indeed a set, with unique elements that do not have a canonical ordering to them.
The output is a sequence of natural language tokens in the form of a human-readable summary,
without referring directly to the elements of the input set. This area is only partially covered by
this review.
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For a simple visual explanation highlighting the difference between self-referential (top) and non-
referential (bottom) set-to-sequence tasks, see Figure 1. In both cases the input is a set of 3 disks of
varying shades of blue. In a self-referential setting the target might be a permutation from lightest
to darkest. In a non-referential setting the target may be a sequence of word tokens describing the
input set.

Specifically, all descriptions of set-input encoding methods are shared between the two types of
set-to-sequence problems and therefore will be of value to readers interested in either. However, for
considerations related to sequence prediction in general, areas of interest include recurrent neural
network encoder-decoder models (Sutskever et al., 2014), reinforcement learning actor-critic methods
(Bahdanau et al., 2017) and fully-connected transformer architectures as investigated by Vaswani
et al. (2017), Devlin et al. (2019) and Brown et al. (2020).

In summary, the former type of set-to-sequence ML architectures, which this review focuses on,
tackle two primary challenges:

1. Handling varying-length set-input data in a way that ensures permutation invariance

2. Handling outputs as complex permutations or reorderings of the original input

The first challenge, once solved, allows us to use machine learning methods to perform set-
input regression, classification, recommendation (Vartak & Thiagarajan, 2017), as well as clustering
problems and more (Edwards & Storkey, 2017).

Depending on the specific task at hand, the permutation invariant representation of the input
set may also be required to encode higher order interactions between the input set elements, as
seen in the work of Lee et al. (2019) and Zhang et al. (2020), which is a separate but important
consideration in the area of encoding sets.

The second challenge of permutation learning is made simpler by solving the first one, but has
also been successfully tackled without addressing it (Vinyals et al., 2015). It focuses on learning the
proper order of arbitrary input elements. As a result, the model learns to predict the best structure
of the output sequence composition.

2.2 Difficulty of Learning to Reorder

Permutation learning is an inherently difficult challenge. Even a relatively simple application of
set-to-sequence methods to the Travelling Salesman Problem (TSP) in a two dimensional Euclidean
space involves tackling an NP-Hard problem (Vinyals et al., 2015).

Whilst highly successful, polynomial time algorithms for obtaining good approximate solutions
to this task do exist, such as the ones proposed by Arora (1996) and Karlin et al. (2020), it is also
valuable to investigate the capacity of current machine learning techniques to learn them iteratively.

In the two dimensional Euclidean version of the TSP our input is a set of point coordinates and
our desired output is a permutation of these points in a way that results in the shortest distance
travelled between them. Additionally, we must not skip nor revisit any of the points. For a visual
example, see Figure 2.

This challenge is difficult because the number of possible permutations increases factorially in the
cardinality of the input set. It is a self-referential set-to-sequence problem due to its input having no
inherent order and the desired output being a permutation of the input elements. Given the same
set of points as input, we expect the output to be the same tour, regardless of the order in which
they are originally presented.

Further difficulties arise when we consider how to formalize the resulting reordering. One possible
method involves the use of the aforementioned permutation matrices, which are discrete and therefore
do not lend themselves to direct use of gradient-based backpropagation without a relaxation of
the concept (Emami & Ranka, 2018). This and other formulations of representing a reordering
(mentioned below) are discussed in more detail in section 4.
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Figure 2: Travelling Salesman Problem

An example of a TSP input is given as a set of points in a 2D Euclidean space (top left) and an arbitrarily
ordered array (bottom left). Individual dots represent x, y coordinates. As output, we see the shortest path
between points (top right) and an array representing their target order (bottom right).

Such difficulties have motivated researchers to instead investigate differentiable, attention-based
methods that involve pointing to the elements of the original set to define their permuted order.
This approach often involves potentially computationally expensive beam search during inference.

Finally, if we forego the requirement of handling varying-length inputs, we can look to traditional
learn-to-rank approaches for inspiration. In such frameworks the reordering is formulated as the
assignment of a relevance score to each element, followed by sorting the elements according to that
score, in monotonic order. However, sorting is a piecewise linear function, which therefore may
contain many kinks where it is not differentiable. As a result, differentiable proxies to the sorting
operator have been developed, but they did not achieve the expected O(n log n) time complexity
until a method consisting of a projection onto a permutahedron was proposed by Blondel et al.
(2020).

Alternatively, in learn-to-rank, our model may be trained to return ranks, i.e. positions of the
input elements in the target (properly ordered) sequence. These ranks are piecewise constant func-
tions, with derivatives that are either null or undefined, preventing gradient-based learning. However,
significant progress has been made towards directly approximating ranking metrics (Roĺınek et al.,
2020) and constructing differentiable sorting and ranking operators (Blondel et al., 2020). Addition-
ally, Engilberge et al. (2019) propose a deep neural net which can act as a differentiable proxy for
ranking, allowing the use of traditionally non-differentiable metrics such as Spearman’s rank-order
correlation (Spearman, 1904) as loss functions.

2.3 ML on Sets and Combinatorial Optimization

Set-to-sequence combines techniques from the field of machine learning on sets and combinatorial
optimization. The former covers research areas related to both set-input and set-output problems,
of which set-to-sequence is only concerned with the first kind. The latter consists of finding an
optimal object from a finite set of objects and is strongly related to many forms of ordering tasks.
The canonical example is the aforementioned TSP, which in itself has a long history of attempts
at solving it through the most popular machine learning methods of the time, for example Smith
(1999), Pihera and Musliu (2014), Ishaya et al. (2019) and Bengio et al. (2020).

Combinatorial optimization as such is of vital importance to modern industry applications. Con-
sider the archetypal Vehicle Routing Problem (VRP), which poses the task of finding an optimal set
of routes for a fleet of vehicles aiming to deliver goods to a given set of locations. The quality of
the solution is determined by the global transportation cost. In the simplest variant of VRP, this is
dependent on the sum of the lengths of tours for all vehicles. This effectively requires an ordering
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of the locations into optimal trips, per each vehicle. Given the scale of modern logistical challenges
and the environmental impact of freight, it is understandable that there have been many attempts
to apply recent machine learning developments to such problems (Ibrahim, R, & Ishaya, 2019).

Current state-of-the-art combinatorial optimization algorithms often rely on handcrafted and
hard-to-maintain heuristics for making decisions that are otherwise computationally infeasible or
not well defined mathematically, for example Bello et al. (2016). It is a natural area of application
for machine learning research and has been approached through the use of graph-based methods
(Dai et al., 2017), reinforcement learning (Nazari et al., 2018) and attention mechanisms (Kool
et al., 2019). For a comprehensive survey of the wider intersection of combinatorial optimization
and machine learning, see Bengio et al. (2020).

2.4 Notation

The paper follows the notational conventions that are most common in literature. Scalar values are
marked with lower case italics xi, vectors with lower case bold typeface x, matrices with capital case
italics X. These matrices may be used to represent sets, in which case they are presented through
roster notation with curly brackets, for example X = {x1, . . . ,xn}.

However, sets may also consist of scalar elements, in which case a capital letter is still used
to represent them: A = {ai, . . . , an}. Given the importance of differentiating between unordered
sets and ordered sequences, the latter are represented through angled brackets x = 〈x1, . . . , xn〉 for
additional clarity. When indicating the index of an element within a vector, whose symbol already
contains a subscript (e.g. vj) the index of the scalar element is given in the superscript (vij).

Individual permutations are marked as π, such that an example πi = 〈3, 2, 1〉, consisting of integer
indices referring to the original sequence x = 〈x1, x2, x3〉, would result in the reordered sequence
xπ = 〈x3, x2, x1〉. In some cases, if the order of elements in the original sequence is nontrivial, a
permutation π can also be given in two-line notation making both xπ and the integer indices explicit:

π =

(
x3 x2 x1

3 2 1

)
(1)

2.5 Connections with Other ML Fields

In this section, a brief overview of other related topics from different fields of machine learning
research is given. The aim is to point the reader who may only be tangentially concerned with
set-to-sequence tasks to the appropriate area within their main field of interest. A reader with a
decided focus on set-to-sequence is encouraged to continue reading section 3 directly.

2.5.1 Natural Language Processing (NLP)

There is a number of cases from the field of Natural Language Processing (NLP) that require tackling
similar challenges to the ones faced by set-to-sequence methods. The popular sequence-to-sequence,
encoder-decoder framework proposed by Sutskever et al. (2014) can itself, in principle, be applied
to set-to-sequence problems, but does not perform well in practice. An example of such a case is
the work on word ordering tasks, also known as linearizations, towards syntactically plausible word
representations (Nishida & Nakayama, 2017).

The authors use sentences of ordered words to train the network to output a binary permutation
matrix. When the original input, in the form of randomly ordered words from the target sentence,
gets matrix-multiplied by this permutation matrix, the proper order is recovered. The network,
referred to by the authors as the Word Ordering Network (WON), is an example of one way to
formalize an ordering task. It can be seen as a simplification of the Pointer Network encoding method
(Vinyals et al., 2015), discussed in more depth in a later section, whilst more closely resembling
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the classic sequence-to-sequence models in the decoder (where it sequentially outputs rows of the
permutation matrix).

Another example of an NLP task where permuting plays a key role is sentence ordering and order
discrimination. The goal is to take a set of sentences and order them back into the original paragraph.
Historically, this area of research has been dominated by hierarchical RNN-based approaches, which
make use of LSTMs or GRUs in an auto-encoder framework (Logeswaran et al., 2018). First, a
recurrent network is used to obtain the embedding of each sentence and then another to obtain the
context representation of the entire paragraph.

More recent developments have seen the use of attention mechanisms to make it easier for this
embedding to encode vital information regardless of the distance between information-carrying ele-
ments, as per the vanishing gradient problem. An example of this can be found in the ATTOrderNet
architecture (Cui et al., 2018) and more recently in the Set Transformer (Lee et al., 2019), discussed
in detail in section 3.5.

An example of an NLP set-to-sequence challenge where the output is not a permutation is the
task of summarizing multiple documents into a single sequence of text as seen in the works of Ma
et al. (2016) and Mani et al. (2018).

2.5.2 Ranking, Information Retrieval and Content Ordering

Another related, but succinctly distinct field comes in the form of ranking problems, information
retrieval and content ordering. These encompass a family of challenges where there exists an optimal
hierarchical order to the input elements, such that given two elements there is always a proper way
in which they should be placed in relation to one another, which does not change depending on the
other input-set elements.

More specifically, in the context of ranking for search, if we enter the query ‘cats‘, the returned
image of a cat should always rank higher than an image of a ‘dog‘, regardless of what the other
returned images may contain. This assumption is not always true in complex set-to-sequence prob-
lems, where any new element of the input-set can change what the proper relative order or structure
of the already available elements’ sequence should be.

Traditionally, learn-to-rank problems have been tackled in a pairwise manner (Cohen et al.,
1998), later approaches have applied neural methods on a list-based formulation of this problem
(Cao et al., 2007). Ranking has also found application in content selection (Puduppully et al., 2019)
and been employed as a useful auxiliary objective in a multitask setting for regression problems (Liu
et al., 2019). A detailed look at listwise ranking approaches to ordering and structure prediction
can be found in section 4.4.

2.5.3 Set Regression, Classification and Segmentation

A more closely related area of work stems from set-input problems that have an output that is
not a sequence. These include set regression, classification and segmentation challenges, among
others. Effectively, this research field requires solving a near identical challenge to the first of two
primary set-to-sequence challenges outlined at the beginning of this section, in that obtaining a
proper encoding of the input set is vital.

Examples of such methods include PointNets for 3-dimensional point cloud classification and
segmentation (Qi et al., 2017), which builds on previous work by Vinyals et al. (2016) in a specific
geometric setting requiring both rotation and translation invariance (see section 3.6.3). Another
example comes in the form of techniques for labelling objects based on a set of images from multiple
viewpoints such as security cameras (Zhao et al., 2019a) and even fully convolutional models for set
segmentation (Oliveira et al., 2020).

Methods that obtain the input set representation in a way that is interesting to set-to-sequence
problems are included in the main section of this review and given appropriate focus, regardless of
whether their original application was in sequence-output challenges.
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2.5.4 Set-Output Tasks, Including Set-to-Set

Conversely, a large field of work revolves around methods that learn to generate or predict a set as
their output. Sets are the natural representation for many kinds of output data in machine learning
tasks. These include a set of objects present in an image in an object detection setting (Zhao et al.,
2019b), a group of points in a point cloud (Achlioptas et al., 2018) and a selection of nodes in a
molecular graph for the problem of molecule generation (De Cao & Kipf, 2018).

The main challenge of set-output methods mirrors the primary challenge of representing sets in a
permutation invariant way in set-input problems. If the order in which the model outputs elements
does not matter, there are n! equivalent, correct outputs that the model has to learn to consider
equally good.

For example, imagine a simple task where the model must learn to take as input a set of integers
and return the set of all primes present in the input. Specifically, given the input A = {1, 2, 3, 4, 5}
the correct output should take the form of the set B = {2, 3, 5}. However, given that ML model
implementations operate on ordered, multidimensional arrays, the model must learn to treat all of
these possible output sequences as equally correct: 〈2, 3, 5〉, 〈2, 5, 3〉, 〈3, 2, 5〉, 〈3, 5, 2〉, 〈5, 2, 3〉, 〈5, 3, 2〉.

Failure to properly account for this property of output sets leads to discontinuities that are
difficult for most modern neural architectures to learn, even on seemingly trivial synthetic datasets
(Zhang et al., 2020). An example that illustrates this comes in the form of an autoencoder trained
to embed and then reconstruct input consisting of a set of n 2-dimensional points forming a regular
polygon.

Every example in this dataset is a rotation of the same polygon around the origin. The disconti-
nuity arises from this rotation, which forces a switch with regards to which element of the input set
the model’s output neurons will be responsible for decoding. This is referred to as the responsibility
problem. Proper handling of the set structure in the output requires the application of permuta-
tion invariant and permutation equivariant operations, much like in set-input problems, where the
responsibility problem is not present.

Notable recent methods in the field of set prediction include the Deep Set Prediction Network
(DSPN) by Zhang et al. (2019), which consists of a deep learning vector-to-set model that enables
permutation invariance, and the Transformer Set Prediction Network (TSPN) by Kosiorek et al.
(2020), that additionally takes advantage of the multiheaded self-attention introduced by Vaswani
et al. (2017). The TSPN addresses the limitations of the DSPN related to set-cardinality learning.
Additionally, an iterative attention mechanism referred to as Slot Attention has been proposed by
Locatello et al. (2020), which decomposes input features into a set of representations, lending itself
to set prediction tasks.

A sub-field of interest within set prediction is referred to as set-to-set, where both the input and
output are structured as a set. Such tasks include recommendation (Sarwar et al., 2001), image
search (Wang et al., 2014) and person re-identification (Zheng et al., 2015). Set-to-set challenges
require both permutation invariance in the parts of the model that encode the input set and a proper
cross-similarity function for the output sets (Saito et al., 2019), circumnavigating the responsibility
problem.

2.5.5 Ensuring Other Types of Invariance

Finally, it may be of value to mention methods that obtain types of invariance other than under
permutation. These methods stem from areas of application where the model’s final prediction
should not be dependent on such predefined transformations. Examples include translational and
rotational (also known as viewpoint) invariance, common in computer vision problems, addressed
in the works of Ling et al. (2016) and Marcos (2016). Taking as illustrative case the task of object
detection, to ensure the former quality the model needs to recognize the same object regardless of
its position within the input image. To ensure the latter, given three dimensional images of a scene,
the model must correctly identify an object regardless of the angle from which it is being perceived.
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An important traditional approach to learning models that are invariant to certain transfor-
mation is data augmentation, as seen in Taylor and Nitschke (2018) and Hernández-Garćıa et al.
(2019). Here, the underlying idea is that the model will be able to learn to become invariant to the
chosen transformations once we augment our data with instructive examples that have been appro-
priately translated, rotated, partially obscured, blurred, illuminated, resized or had other applicable
transformation applied to them, often in combination. More recent approaches that aim to safe-
guard machine learning models against relying on unintended aspects of data through adversarial
strategies have also been proposed (Jaiswal et al., 2018). In order to apply the data augmentation
approach to the set-to-sequence domain, we would increase our training set up to n! times, providing
the model with every possible permutation of each example set.

To prevent the costs associated with a larger training set, machine learning methods commonly
employ various pooling operators after the stacked, equivariant feature extraction layers to obtain
the desired invariance. However, in the case of translation invariance through pooled convolutional
operations, the assumption that this completely prevents the model from exploiting the absolute
location of an object in an image has been challenged (Kayhan & Gemert, 2020).

3. Set Encoding Methods

In this section, a qualitative comparison of different set encoding ML methods is provided, followed
by detailed subsections devoted to the individual model architectures.

3.1 Method Comparison

This section introduces the reader to each of the relevant set-encoding methods in turn. These are
also sometimes referred to in literature as set-pooling methods (Lee et al., 2019). Additionally, a
number of comparison tables provides a summary overview: 3.1, 3.1.1.

It is important to note that some of the methods discussed in this section were designed specif-
ically to handle set-to-sequence problems. As such, they contain both a set encoding module and
a permutation outputting mechanism. Since it is not always immediately obvious how to combine
a method that handles set encoding with a method that is designed to output a reordering, we
compare various aspects of these methods in multiple places.

The models are compared with regards to the following aspects:

1. Permutation Invariance: whether the model obtains a permutation invariant representation
of the input set. The same set must result in the same embedded representation, regardless of
how the actual input array was permuted.

This feature does not guarantee that the final output of the model will be the same for differently
ordered sequences obtained from a single set, as that may depend on the ordering method applied
to the obtained permutation invariant set embedding, in order to output a sequence. This stems
from the fact that these methods may require the reintroduction of the information relating to the
order of the original input array and refer to it directly when outputting a permutation - particularly
pointer-based attention. For more information on this, see section 4.

2. Multiset Input: whether the model can distinguish between a given input set and certain
examples of its corresponding multisets, with repeated elements.

For example, the average() pooling operator will not be able to distinguish between a set X =
{1, 2, 3} and a multiset X ′ = {1, 1, 2, 2, 3, 3}. The max() operator will similarly fail in the case of
X ′′ = {1, 1, 2, 3}.

3. Complexity: how the model’s computational complexity relates to the cardinality n of the
input set, and possibly other hyperparameters specific to a given architecture.
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4. Applications: selected prominent domains which the model has been successfully applied to.
Further examples can be found in the later sections devoted to each model.

Additionally, the most prominent architectures can be split into RNN-based methods, namely
the Pointer Network and Read-Process-and-Write model, and the more recent fully connected ones,
primarily the foundational DeepSets method and the Set Transformer.

Alternatively, an interesting way to distinguish between them would be to consider methods that
depend on a variation of the attention mechanism introduced by Bahdanau et al. (2015), such as
the Pointer Network and the Set Transformer, and others that do not utilize it.

Model Perm. Invariance Multiset Complexity

Pointer Network (2015) No No1 O(n2)
Read-Process-and-Write (2016) Yes Yes O(n2)
PointNet (2017) Yes No2 O(n)
DeepSets (2017) Yes Yes3 O(n)
Janossy Pooling (2019) Yes Yes O(n!)
Set Transformer (2019) Yes Yes O(n2)
AttSets (2020) Yes Yes O(n)

FSPooling (2020) Yes Yes O(n log2n)
RepSet (2020) Yes Yes O(mn+ n2 log n)

Table 1: Comparison of set encoding methods, part 1

3.1.1 Notes on Complexity

The complexity of the Read-Process-and-Write method is additionally impacted by the number t
of steps in the Process block that computes the permutation invariant embedding of the input set.
t is constant, but an interesting area of further research would be to learn it adaptively, similar to
the method described by Graves (2016). The complexity of PointNet becomes O(n2) for 2D images
and O(n3) for voxels, due to the convolutional operations. The authors of Janossy Pooling propose
3 methods of balancing tractability and the model’s representational power, as outlined in section:
3.6.2

Regarding the Set Transformer, the use of l stacked SAB layers results in quadratic complexity
of O(n2l), use of a stack of l proposed ISAB layers with m inducing points results in complexity
of O(nlm). Similarly to the PointNet architecture, the complexity of AttSets grows depending on
the dimensionality of the input, due to the use of convolutional layers in the encoder. However,
the authors also provide a novel training paradigm, called FASet, and benchmark its mean time
consumption for a single object against a selection of simple pooling methods, with favourable
performance.

Regarding the RepSet method, m is the chosen number of hidden sets for the bipartite matching
algorithm, represented by the columns of a trainable matrix. For more information on this and a
proposed, more tractable relaxation, see section 3.6.5.

1. The Pointer Network does not treat its input properly as a set, therefore it cannot be said to properly handle
multiset input either, but it will distinguish between input vectors with repeated elements.

2. Due to experimental results on the selected tasks, the authors of PointNet settle on max() as their recommended
pooling operator, which does not distinguish between certain multiset variants. However, they report robust
measurements of the performance of other pooling methods which can easily be included in the final model
architecture and provide comparable results.

3. Depends on the pooling operator used after the stacked fully-connected layers, of which the authors of DeepSets
primarily focus on sum(), which does distinguish between sets and multisets. However, max(), which does not
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Model Applications

Pointer Network (2015) combinatorial, multi-agent
Read-Process-and-Write (2016) combinatorial, sorting
PointNet (2017) 3D shape classification and segmentation
DeepSets (2017) set expansion, anomaly detection
Janossy Pooling (2019) arithmetic, graph classification
Set Transformer (2019) amortized clustering, anomaly detection
AttSets (2020) 3D shape reconstruction
FSPooling (2020) set and graph classification
RepSet (2020) text and graph classification

Table 2: Comparison of set encoding methods, part 2

3.1.2 Notes on Dataset Performance

The listed set encoding methods can be applied to a wide spectrum of tasks. As a result, their
performance has been tested on a variety of datasets, often in subtly different settings, which prevents
direct comparison. In lieu of a table presenting their performance on a selected subset of such
datasets, we provide a short discussion of the experimental results that do lend themselves to being
compared. A more comprehensive experimental analysis in this area is a possible direction for future
work.

Both Pointer Networks and the Read-Process-and-Write (RPW) method have been tested on the
simple task of sorting a set of five floating point numbers between 0 and 1 (Vinyals et al., 2016). The
Pointer Network achieved an accuracy of 0.90 compared to 0.94 reached by the RPW. Additionally,
the RPW method appeared to be better at handling larger sets of floats. Both DeepSets and
Janossy Pooling (Murphy et al., 2019) have been tested on simple arithmetic tasks such as sum-
of-digits prediction, with each method reaching an accuracy of 1.0, albeit tested on input sets of
different cardinalities. The Set Transformer has instead been tested on maximum value regression.

The Set Transformer, DeepSets and Janossy Pooling have also all been tested in terms of per-
formance on unique count tasks. However, in the case of the Set Transformer experiments were
performed on sets of handwritten characters from the Omniglot dataset (Lake et al., 2019), in the
case of DeepSets on the MNIST8m hand-written digits (Loosli et al., 2007) and in the case of Janossy
Pooling on simple integer sets.

The most commonly shared experimental task in the papers introducing and consequently uti-
lizing the listed methods was point cloud classification. Particularly the ModelNet40 dataset (Wu
et al., 2015) has been used to test four of the mentioned models. Whilst AttSets (Yang et al., 2020)
employs it to formulate a multi-view reconstruction task, the other three methods are tested on the
core classification task with PointNet reaching an accuracy of 0.892 (Qi et al., 2017), DeepSets 0.900
(Zaheer et al., 2017) and the Set Transformer 0.904 (Lee et al., 2019). However, the specific methods
used to produce the point clouds from the provided mesh representation of objects showcased certain
differences, further highlighting the need for a systematic, uniform comparison.

Both the Set Transformer and DeepSets methods have been tested on the task of set anomaly
detection, specifically by way of the CelebA dataset (Liu et al., 2015). However, the DeepSets model
was tested in terms of accuracy (0.75) and the Set Transformer in terms of the area under receiver
operating characteristic curve and area under precision-recall curve, preventing direct comparison.

is also proposed as a problem-dependent variation. The formal proof extending DeepSets to multiset inputs was
given by Xu et al. (2019).
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The FSPool technique’s performance has been compared to the Janossy Pooling method through
a visual question answering task, employing the CLEVR (Johnson et al., 2017) dataset. The accuracy
of the latter was reported as 0.97 ± 0.54, and of the former as 0.9927 ± 0.18 (Zhang et al., 2020).

Another useful task for the purposes of performance comparison is document classification, where
given a document, the input to the model is the set of embeddings of its terms. DeepSets, Set
Transformer and RepSet have been directly compared through their performance in this regard
on 8 separate datasets (Skianis et al., 2020), with the Set Transformer consistently outperforming
DeepSets, and RepSet outperforming both of the aforementioned methods.

Finally, the performance of DeepSets, Set Transformer and RepSet has been compared on the
task of graph classification through the 5 datasets proposed by Kersting et al. (2016). The classi-
fication accuracy of DeepSets on the MUTAG dataset was 0.862, Set Transformer’s was 0.877 and
RepSet’s 0.886. However, on the arguably more difficult IMDB MULTI dataset the Set Transformer
outperformed RepSet, reaching an accuracy of 0.502, compared to 0.499. For a full overview, see
the paper by Skianis et al. (2020).

Further details regarding the performance and limitations of presented methods are available in
the sections devoted to them individually (below).

3.2 Pointer Networks

The Pointer Network (Vinyals et al., 2015) is an encoder-decoder neural network architecture includ-
ing a modified attention mechanism, which allows it to learn a target reordering of input elements. It
is the first deep learning method capable of taking sets as input and learning a desired permutation,
resulting in complex output sequences.

Pointer Networks were originally designed to tackle combinatorial optimization problems with
varying input sizes, which was their main advantage over previous sequence-to-sequence methods. A
Pointer Network can be trained on inputs of varying length and has been demonstrated to generalize
reasonably well to unseen lengths (Vinyals et al., 2015).

Additionally, Pointer Networks included a modification of the content-based attention mechanism
introduced by Bahdanau et al. (2015) which made it possible to treat the output of the model as
pointers to elements of the input sequence. This attention-based pointing is one of the most popular
methods for giving models the ability to output a permutation of the original input, regardless of
the way they encode the original set. Due to its importance as a purely element-ordering technique,
it is separately described in further detail in section 4.2.

3.2.1 Pointer Networks Limitations

An important characteristic of Pointer Networks is that they do not strictly treat the input as a set,
instead processing it solely through sequential recurrent neural networks. As a partial consequence
they do not obtain a permutation invariant representation of the encoded set. This results in a
situation where the same set can be represented as two differently ordered input arrays, leading to
the model predicting two different outputs for it. Thus returning the optimal order is not guaranteed.

Another important limitation is that nothing is explicitly preventing the model from outputting
an invalid reordering of the input set or sequence. This becomes apparent during early training,
when the model points to the same elements of the input at various indices of the output sequence.
However, this can be mitigated by the addition of a beam search mechanism to the decoder during
inference or by progressive masking. In the latter case, the entry in the attention vector referring
to an element that had already been pointed to is preset to an infinitely negative value at each
successive iteration, preventing it from being pointed to again, at the cost of certain inductive bias
being introduced into the model.
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3.2.2 Pointer Networks Details

The Pointer Network consists of a recurrent neural network (RNN) encoder and an RNN decoder
with a modified attention mechanism. The model obtains a content-based attention vector aj ∈ Rn
at each decoder step j. This vector represents the conditional probability of each input element xi
being the correct one to be pointed to at this step, conditioned on all previous steps as well as the
entire input sequence x = 〈xi, . . . , xn〉, in the form of all encoder hidden states E = 〈e1, . . . , en〉
obtained when the encoder block iterates over the input array.

For simplicity, we will assume that each element xi must be pointed to exactly once, meaning
that the output sequence of nonnegative integer pointers y = 〈yi, . . . , yn〉 ∈ Zn represents a valid
permutation π, such that a sample target output yπ = 〈0, 2, 1〉 would represent the reordered
sequence xπ = 〈x1, x2, x3〉 for the sample input x = 〈x1, x3, x2〉. This will mean that when iterating
over both encoder states ei and decoder states dj, we will always be in range 1 to n. The input
sequence x can itself consist of multidimensional elements, or such embeddings of each xi can be
obtained prior to the pointer network module through a chosen embedding layer.

The attention mechanism in the decoder block is as follows:

zij = vTtanh(W1ei +W2dj) for i ∈ (1, . . . , n) (2)

aj = softmax(zj) for j ∈ (1, . . . , n) (3)

P (yi|y1, . . . , yi−1,x) = aj for j ∈ (1, . . . , n) (4)

Where dj is the decoder’s hidden state at the j-th output element, ei is the encoder hidden state
at the i-th input element, W1, W2 and v are trainable tensors. The zj vector is of the same length as
the input x and represents an output distribution over the dictionary of input elements. After the
application of the softmax nonlinear activation function, turning it into aj, it becomes an attention
vector. For a visual explanation, see Figure 3.

3.2.3 Pointer Networks Applications

The primary application of Pointer Networks are tasks where the target output is a reordering of
the elements of the initial input. This reordering is based on pointers to indices of the original input
sequence. Examples of such problems in currently active research areas include element sorting,
coherence modeling (Logeswaran et al., 2018), word ordering (Cui et al., 2018) and sentence ordering
(Wang & Wan, 2019), as well as summarization (Sun et al., 2019) and ranking in information
extraction (Bello et al., 2018).

In the original paper, the Pointer Network models have been tested on challenging combinato-
rial optimization problems such as finding planar convex hulls, computing Delaunay triangulations
and the Travelling Salesman Problem. Experiments have shown that even with computationally
intractable, NP-Hard problems such as TSP, this model architecture was able to learn competitive
approximate solutions, limited by the scale of the problem, with n <= 50 for the TSP.

Pointer Networks also found usage within the AlphaStar reinforcement learning model which
defeated a grandmaster level player in the competitive real-time strategy game of Starcraft II (Vinyals
et al., 2019). They were employed to help the agent manage the structured, combinatorial action
space in conjunction with an auto-regressive policy.

3.3 Read-Process-and-Write Model

The Read-Process-and-Write (RPW) model is a neural network architecture consisting of three
distinct blocks and aiming to obtain a permutation invariant representation of the input set, whilst
learning a function mapping it to arbitrary target outputs (Vinyals et al., 2016).
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Figure 3: Pointer Network

In Figure 3, an encoding RNN sequentially processes each element of the input array (blue dots), encoding
it into a hidden state sen (dark gray), which is fed to the pointing decoder RNN (light gray). At every step,
the second network produces a vector that represents a content-based pointer attention over the encoded
inputs.

RPW satisfies the key property of obtaining a permutation invariant representation of its input
through a variation of the attention mechanism. It can be seen as a special case of a Neural Turing
Machine (Graves et al., 2014) or a Memory Network (Weston et al., 2015) in that it is a recurrent
neural network model that creates a memory representation of each element in the input sequence
and accesses it via an attention mechanism.

In the original RPW paper its authors also demonstrated that the order in which elements
are organized as input has a significant impact on the learning performance of earlier sequence-to-
sequence architectures. This is an important observation given the fact that the recurrent neural
networks employed in them are, in theory, universal approximators (Schafer, 2007).

3.3.1 RPW Limitations

Whilst the RPW model constitutes a significant improvement in the way machine learning methods
handle input sets, it suffers from the same limitation as Pointer Networks in terms of ordering their
elements into the output sequence. Namely, it is not strictly prevented from pointing to the same
element of the input set multiple times in the output, effectively returning either an invalid sequence
or an incomplete reordering. This is a particularly important limitation in relation to handling
multisets (also known as msets or bags), where the same element can occur multiple times in the
input. However, it can be mitigated through beam search or progressive masking as described in
the Pointer Network section. It also suffers from a significant decrease in performance as the size of
the input set increases.

3.3.2 RPW Details

The RPW architecture consists of three distinct blocks:

898



Set-to-Sequence Methods in Machine Learning

1. Read Block - which embeds every element of the input set using the same neural network for
each xi ∈ X.

2. Process Block - which consists of a recurrent neural network that evolves its hidden state using a
modified content-based attention mechanism to obtain a permutation invariant representation
of the input over a separately predefined number of steps t.

3. Write Block - which takes the form of a Pointer Network in the set-to-sequence tasks but can
also be another recurrent neural network decoder for tasks where the output elements come
from a fixed dictionary.

The Process Block evolves the permutation invariant representation of the input set by repeating
the following steps t times:

qt = LSTM(q∗t−1) (5)

zit = f(mi,qt) (6)

ait =
exp(zit)∑
j exp(zjt )

(7)

rt =
∑
i

ait mi (8)

q∗t = 〈qt, rt〉 (9)

where i is the index over all embedded elements of the memory vector mi obtained by the Read
Block, qt is effectively a query vector allowing us to read the permutation invariant representation
rt from the memories using an attention mechanism and f() is any differentiable operation that
takes two vectors and returns a scalar, most commonly the dot product f(a,b) = a ·b =

∑n
i=1 aibi.

An important implementation nuance is related to the third step, where the attention vector at

is obtained via a softmax operation. Depending on weights initialization, that step can result in the
undefined operation of dividing infinity by infinity. This can be prevented by bounding the value
range of the zt vector by the use of the tanh function (Logeswaran et al., 2018).

The LSTM() is a recurrent neural network that takes no inputs, only evolving the hidden state
qt. The final set encoding q∗t , is obtained by concatenating the previous hidden state qt and the
permutation invariant representation rt. q∗t becomes the hidden state input during the next iteration
t of the Process Block.

3.3.3 RPW Applications

The RPW architecture has been applied to both continuous and discrete inputs. In the former
case, the input can be a set of floating point numbers or a high-dimensional embedding of the
entities of interest. In the latter, it can be dictionary entries. Considerations related to the specific
structure of those input elements are out of scope for this paper as they pertain to the wider topic
of representation learning.

This model architecture has also been used in few-shot object recognition (Xu et al., 2017), graph
classification (Ying et al., 2018) and one-shot learning in the context of drug discovery (Altae-Tran
et al., 2017). The original paper tests it on the problem of sorting a varying-size set of floating point
numbers between 0 and 1. It achieves accuracy of 94% on sets of 5 elements, performance dropping
significantly for larger ones (50% for 10 elements, 10% for 15).

This key property of obtaining a permutation invariant representation was further formalized in
the DeepSets paper, presented in the following section.
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3.4 DeepSets

The DeepSets framework (Zaheer et al., 2017) provides a robust mathematical analysis for designing
permutation invariant and permutation equivariant deep learning models. Both of these concepts
are explained in section 2.1. Where the Vinyals et al. (2016) paper focused on the former in the
setting of a specific practical application, the authors of DeepSets provide a generic framework for
the proper handling of set-inputs for both supervised and unsupervised learning.

The primary contribution of the DeepSets method lies in tackling the first part of the more general
set-to-sequence challenge, which is to implement arbitrary set functions that result in permutation
invariant representations. We have already described one example of an operation that ensured this
in the RPW model’s Process Block, namely a variation of the content-based attention mechanism
consisting of a modified recurrent neural network. DeepSets propose a simpler, sum-based method
to achieve this.

The DeepSets framework offers a simplified procedure by relying on summation of all element
representations prior to further nonlinear transformations, which then transform these summed
representations into the desired output (e.g. a class probability distribution or a single number for
set regression). Later reimplementations of the DeepSets architecture experiment with replacing the
sum operation with other permutation invariant alternatives such as taking the mean or maximum,
with comparable results (Lee et al., 2019).

Additionally, the DeepSets analysis expands upon the set-input challenge by allowing for permu-
tation equivariance, where the order of the output elements mirrors the order of the input sequence.
This can be achieved, in one case, by adding a diagonal symmetry and diagonal identity constraint
to the weights matrix of a fully-connected neural network layer, prior to the nonlinearity. However,
set-to-sequence methods do not make extensive use of permutation equivariance therefore these are
not detailed here. For more information, see the original paper.

3.4.1 Deep Sets Details

The proposed permutation invariant function for inference over sets takes the following general form:

1. Each element xi in the input set is transformed independently into an embedded representation
φ(xi), possibly through multiple layers of a feed-forward neural network.

2. The representations φ(xi) are summed together and the result is further processed using an-
other network ρ consisting of any number of fully-connected layers with nonlinearities.

Both φ and ρ can be replaced by universal approximators, which can be learned to approximate
arbitrary polynomials. In cases where additional information q is available, it can be used to obtain
the conditional mapping φ(xi|q). The key to permutation invariance in this framework is simply
summation of the obtained per-element representations.

DeepSets({x1, . . . , xn}) = ρ(sum({φ(x1), . . . , φ(xn)})) (10)

3.4.2 Deep Sets Limitations

This approach is much simpler to implement, compared to the RNN-based Pointer Networks and
the RPW model. However, it generally prevents the model from learning pair-wise and higher order
interactions between the elements of the set, which are lost during the summation. Additionally,
significant doubts have been raised by Wagstaff et al. (2019) relating to the limits of the represen-
tational power of the DeepSets method. More precisely, the O(n) computational complexity comes
at the cost of the dimensionality of the latent space having to be at least equal to the cardinality of
the input set n to ensure universal function approximation.
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Figure 4: DeepSets

Every element of the two identical, shuffled sets of blue dots (leftmost) is embedded in an independent and
identical way by the φ layer, resulting in a permutation equivariant transformation. These are then summed
(Σ) into a permutation invariant representation and further transformed by the ρ layer.

3.4.3 Deep Sets Applications

The DeepSets framework has been applied to point cloud classification (Qi et al., 2017), generaliza-
tion tasks in reinforcement learning (Karch et al., 2020), outlier detection and anomaly classification
(Oladosu et al., 2020) among others.

3.5 Set Transformer

One of the most elaborate methods designed for set-input problems is the Set Transformer (Lee
et al., 2019). This method can be seen as an extension of the popular feed-forward, attention-based
Transformer (Vaswani et al., 2017) to the domain of machine learning on sets.

The Set Transformer consists of the expected stacked multi-head self-attention layers for both
the internal encoder and decoder as seen in the classic Transformer. One aspect that separates
it from the previously described set-to-sequence methods is that instead of using a fixed pooling
operation such as summing or taking the average to ensure permutation invariance, it employs a
parameterized pooling function that is learned and therefore much more adaptive to the particular
task at hand. This is further referred to as Pooling by Multihead Attention (PMA) and explained in
more detail later in this section.

The Set Transformer is specifically designed to model higher-order interactions among elements
and their subsets within the input set, whilst satisfying the permutation invariance and variable
input size requirements common to set-to-sequence problems. Its key novel contribution is that it
concurrently encodes the entire input set through a sequence of permutation equivariant Set Atten-
tion Blocks (SABs). By comparison, the previously discussed DeepSets method obtained element
features independently of other input set elements. This modification allows the Set Transformer
to explicitly learn pairwise and even more complex interactions between set elements during the
encoding step, dependent on the number of stacked SAB layers.

3.5.1 Set Transformer Limitations

However, the Set Transformer also introduces certain costs. The SAB, a proposed variation on the
multihead attention block employed in the classic Transformer, which enables the Set Transformer to
encode higher-order interactions between set elements, has the limiting quality of requiring quadratic
time complexity O(n2) relative to the cardinality of the input set n.
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The authors of the method address this limitation by proposing an Induced Set Attention Block
(ISAB). It takes advantage of a vector of inducing points, which is of predetermined size and is used
to obtain a hidden representation of the input set by attending to it. This is in effect a low-rank
projection that might be familiar to readers who have experience with autoencoder models. The
technique reduces the required computation time to a linear O(mn), where m is the chosen number
of inducing points and n is the set cardinality, at the cost of reduced performance and an additional
hyperparameter to be tuned.

3.5.2 Set Transformer Details

What follows is a more detailed inspection of the SAB, ISAB and PMA methods, which assumes
some familiarity with the multihead attention mechanism proposed by (Vaswani et al., 2017) as per
the Transformer architecture. However, to establish full clarity, we will formally define both the
basic Transformer attention and its multihead variant first.

Assume we have a set of n elements as our input, each with dimensions de. First, we obtain three
new vectors per each element by multiplying it with three matrices, whose weights are learned during
the training step. These transformed input representations are further referred to as n query vectors
Q ∈ Rn×dq , key vectors (K ∈ Rn×dk) and value vectors (V ∈ Rn×dv ). These are then mapped to
the desired attention outputs, applying an activation function such as softmax in the following way:

TransformerAttention(Q,K, V ) = softmax(QK>)V (11)

The original implementation includes a scaling factor, which has been omitted from the above
equation for the sake of simplicity. The pairwise dot product of the query Q and key K vectors
measures how related each pair is. The final output is a weighted sum of V .

The multihead attention mechanism extends this further by projecting each query, key and value
onto h separate vectors via sets of the three parameter matrices WQ

i ,W
K
i ,W

V
i , one per each of the

h heads. Then, the TransformerAttention() function is applied to each of these h vectors to obtain
each head’s preliminary output Oi:

Oi = TransformerAttention(QWQ
i ,KW

K
i , V W

V
i ) (12)

Finally, these outputs {Oi}hi=1 are concatenated and then linearly transformed:

MultiheadAttention(Q,K, V ) = concatenate(O1, . . . , Oh)W 0 (13)

Now we can begin to move on to the Set Attention Block (SAB). It is designed to take a set and
perform a slightly modified self-attention operation between its individual elements, which results
in an output set of the same size. It will be useful to first define a Multihead Attention Block
(MAB), which is an intermediate building block in both SAB and its less computationally intensive
alternative - ISAB. MAB takes as input two matrices of the same dimensions: A,B ∈ Rn×d and
first obtains a hidden representation Z using a layer normalization operation as defined by Ba et al.
(2016):

Z = LayerNormalization(A+ MultiheadAttention(A,B,B)) (14)

Then, it processes each element in each row of Z in an independent, identical way, in the same
manner we have seen as part of the DeepSets method, prior to the summation. This can be done
via a row-wise feed forward layer φ():

MAB(A,B) = LayerNormalization(Z + φ(Z)) (15)

However, in our set-to-sequence setting we do not have two separate matrices of sets A and B
that we wish to encode into some joint representation. Therefore the actual SAB() is defined on a
single matrix of an input set X ∈ Rn×d:
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SAB(X) = MAB(X,X) (16)

If we stack l SAB layers in our set encoder, which we are able to do since both the input and
output of the Set Attention Block is a set of the same size, the model’s computational complexity in
the cardinality of this set is O(n2l) ≈ O(n2). At the cost of quadratic computation time, stacking
2 SAB layers enables the model to encode pairwise interactions between elements. Stacking more
such layers makes explicitly encoding higher-order interactions possible, which is a crucial novel
contribution for tasks where such interactions define the target output.

The authors of the Set Transformer method address the computational cost of SAB by proposing
a less expensive variation of it, called the Induced Set Attention Block. In ISAB, an additional array
of inducing points I ∈ Rm×d is included. This vector is of predefined dimension m, resulting in a
computational complexity O(mn) or O(lmn), if stacked ISAB layers are applied. The calculations
within ISAB are defined as follows:

ISABm(X) = MAB(X,MAB(I,X)) (17)

The learned values of the inducing points I are expected to encode large-scale aspects of the
input set as meaningful features for the ultimate task. Similar to SAB, the output of ISAB is a set
of the same size as the input set, which is why we still need a pooling operation to be applied to it
at this point.

The final aspect of the Set Transformer that distinguishes it from the earlier set-encoding methods
is the Pooling by Multihead Attention (PMA) stage. Unlike a simple sum, mean or max, the
PMA pooling function has learnable parameters, which allows it to increase or decrease the relative
importance given to the encoding of individual encoded elements of the output of the SAB and ISAB
blocks. Usage of PMA requires specifying the number k of seed vectors S ∈ Rk×d. Assuming we
have already obtained the encoded set features E ∈ Rn×d via stacked SAB or ISAB layers:

PMAk(E) = MAB(S, φ(E)) (18)

In most cases a single (k = 1) seed vector is used, resulting in a single pooled set encoding, but
certain clustering tasks may require multiple related outputs, justifying the use of a larger k.

3.5.3 Set Transformer Applications

The overall Set Transformer architecture can, in principle, be applied to any set-input problem (and
therefore any set-to-sequence task). It will perform particularly well in problems where pairwise
and higher-order interactions between the input set’s elements are important to the task at hand.
The authors of the original paper demonstrate the model’s usefulness within such areas on the
challenge of counting unique characters in a set of input images, amortized clustering with mixture
of Gaussians, point cloud classification and set anomaly detection.

It has since been applied to set-of-sets embedding problems (Meng et al., 2019) and transfer
learning in dialogue systems (Wolf et al., 2019).

3.6 Other Set-Input Methods

Below is a list of other set encoding methods that do not necessarily lend themselves directly to
set-to-sequence problems, but may be of interest to the reader. The specifics of using the learned,
permutation invariant set representation to produce a sequence of set elements are discussed at the
beginning of the next chapter, specifically in subsection 4.1.
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3.6.1 Featurewise Sort Pooling

This method, also known by its abbreviation as FSPool (Zhang et al., 2020), came from the field of
set prediction, in relation to a problem where both the input and output can be conceived of as sets.
The authors expand upon one of the naive approaches to encoding sets in a permutation invariant
way. Namely, the technique of simply sorting all the elements of the input set by the values of their
single chosen feature, as seen in previous work by Zhang et al. (2018).

In set-output problems this approach results in discontinuities in the optimisation whenever
two elements swap positions after the sort. This is referred to in set prediction challenges as the
responsibility problem (Zhang et al., 2020). To avoid this difficulty, the authors have developed a
novel pooling method which sorts each feature across the elements of the input set and then performs
a weighted sum.

This allows the model to remember the permutation applied through the featurewise sorting and
apply its inverse in the decoder. This process restores the original, arbitrary order of the input
elements making the encoding a permutation equivariant operation, preventing the discontinuity in
the outputs of the model.

3.6.2 Janossy Pooling

Another interesting approach to set-encoding through the use of simpler pooling operators was
proposed by Murphy et al. (2019). In the titular Janossy Pooling, the symmetric (permutation in-
variant) encoding function is expressed as the average of a mixture of permutation sensitive functions
applied to all reorderings of the original input.

This approach immediately raises the question of tractability. Generating all permutations of a
set results in n! intermediate inputs, all of which would then require the application of the chosen
permutation sensitive function. To mitigate this, the authors propose a number of strategies, among
them the use of a smaller number of selected canonical orderings that are presumed to carry relevant
information for the specific task at hand, such as simple sorting, betweenness centrality and others
(Niepert et al., 2016).

As an alternative to canonical orderings, the authors also propose a method related to a model’s
ability to explicitly learn pairwise and higher-order interactions between the elements of the input
set. This method is referred to as k-ary dependencies. It consists of projecting the input to a length
k sequence, for example by only keeping the first k elements, limiting the number of permutations
that need to be averaged to k!, which can be tractable for a small enough k. The number k becomes a
hyperparameter capable of balancing tractability with the model’s ability to learn k-ary interactions
in the input. Finally, the authors also experiment with permutation sampling as the third method
of reducing the computational complexity of Janossy Pooling, as proposed by Moore and Neville
(2017) and Hamilton et al. (2017) in relation to machine learning on graphs.

3.6.3 PointNet

Not to be confused with the Pointer Network described in section 3.2, PointNet is a set-encoding
method designed to handle 3D point clouds proposed by Qi et al. (2017). The geometric setting of
the problem tackled by the authors of this model shares many similarities with the set-to-sequence
domain. These include the lack of order in the input, requiring the use of symmetric, permutation
invariant encoding functions, and the importance of interactions between individual input elements
or, specifically in this case, points. An additional requirement for this setting is invariance under
certain geometric transformations of the entire point cloud. For example, if we are tasked with
classifying 3D objects represented by a point cloud, we want to correctly classify a chair regardless
of its rotation and translation.

In practice, PointNet first obtains an embedding of each of the input points through stacked,
fully-connected layers in the form of a multilayer perceptron, such that each element is identically
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and independently transformed. This permutation equivariant representation is then pooled via
the max() operator (per dimension) and further transformed through an additional fully-connected
layer. This is in effect a slight variation of the procedure proposed by Zaheer et al. (2017) and
discussed in section 3.4. Other pooling operations, including an attention-based sum inspired by the
RPW model (Vinyals et al., 2016), are also experimented with in the original paper..

Finally, the obtained point cloud encoding is concatenated with the embedding of each point,
reminiscent of the approach seen in listwise ranking, described in section 4.4. This combination of
local and global features is shown to be crucial for point segmentation tasks. The authors also provide
proof that their network is a universal approximator for continuous set functions and demonstrate
its robustness to small perturbations of the input set.

3.6.4 AttSets

The AttSets model, proposed by Yang et al. (2020), uses weighted attention to obtain a permutation
invariant representation of the input set. It was originally applied to a multi-view 3D reconstruction
task, where a set of images of the same object from different angles is used to estimate its true three
dimensional shape.

AttSets improves the performance of previous, simpler pooling functions used for 3D object
recognition. These include both first-order operators such as max(), average() and sum(), which
do not have any trainable parameters, as well as higher-order statistical functions such as bilinear
pooling (Lin et al., 2018), log-covariance pooling (Ionescu et al., 2015) and harmonized bilinear
pooling (Yu et al., 2018), which have only few.

In order to achieve this, each element of the set is individually and independently transformed via
a learned attention function, which can take the form of a fully connected layer or a multidimensional
convolutional layer, depending on the form of the input. The output of this function is normalized
via softmax() and then used as an attention mask over the original input elements. This allows the
model to learn to pay a varying degree of attention to individual dimensions of the input elements’
representations. To obtain the final, fixed-length set encoding, the original input elements are
multiplied by the attention mask and summed together.

3.6.5 RepSet

An interesting set-encoding method, referred to as RepSet, has been proposed by Skianis et al.
(2020). The RepSet model consists of stacked feed-forward, fully connected layers, reminiscent
of the DeepSets method (Zaheer et al., 2017), followed by a custom permutation invariant layer
replacing the sum() operator. This layer is inspired by concepts from the field of bipartite graph
matching and has allowed the model to show promising performance on text and graph classification
tasks.

The permutation invariance is achieved through a configurable number of hidden sets (potentially
of different cardinalities), whose elements correspond to columns of trainable weight matrices. These
are then compared with the elements of the actual input set to create matrices that are fed to a
bipartite matching algorithm, specifically the Hungarian Algorithm (Grinman, 2015). The resulting
values can be further transformed through standard neural network layers for set classification and
regression purposes.

A significant issue with this approach is the computational complexity O(mn+n2 log n), where
n is the cardinality of the input set and m is the chosen number of hidden sets. This characteristic,
limiting the usefulness of the method regarding larger sets, stems from the bipartite matching algo-
rithm needed to obtain the final set encoding. The authors of the method address this by proposing
a relaxation of RepSet, referred to as ApproxRepSet (Skianis et al., 2020), which removes one of the
constraints on the range of values taken by the elements of the hidden sets.
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4. Ordering Methods

This section focuses on the second of the two primary challenges inherent to set-to-sequence tasks,
which is outputting a permutation. Assuming we are able to obtain a meaningful representation
of an input set of any length, how do we use that representation to produce a reordering of the
input’s original elements? This is a constraint that is easy to satisfy when designing traditional
combinatorial optimization algorithms, yet in deep learning it requires relatively complex model
architectures (Bengio et al., 2020).

Three particular branches of ordering methods have emerged as most prominent in deep learning:

1. Attention-based Pointing

In which a vector of attention weights over all elements of the input set is generated iteratively
at every index of the output sequence. The highest attention value points to the element that
should be placed in the current position within the sequence.

2. Permutation Matrices

Where a square, binary, doubly-stochastic matrix or a relaxation thereof is generated for each
input set. The index of the highest value in each row identifies the element that should take
the position at the same index as the number of the row. The input can be left-multiplied by
this matrix to obtain the final reordering.

3. Listwise Ranking

In ranking methods the target order is represented through the assignment of a score to each
element of the input set, which enables the final permutation to be obtained through sorting.
Listwise ranking takes into consideration the relative scores of all other set elements when
computing the score for a particular one.

Each of these three basic frameworks is described in the following sections, with references to
specific methods that expand upon them, where relevant. First, however, we must discuss how
best to utilize the permutation invariant set representation, obtained via the set encoding methods
discussed in section 3, to output the target sequence.

4.1 From Set Representation to a Sequence

As stated previously, deep learning models do not directly take unordered sets as input. Instead
they transform ordered arrays representing one (usually arbitrary) of n! permutations of a given
set’s elements. Therefore, an inductive bias is introduced into the model’s internal architecture to
first obtain a permutation invariant representation of the underlying input set, which by definition
will be the same regardless of which arbitrary permutation the model happened to receive.

However, when our prediction target is the optimal order of a given set’s elements and we are
directly feeding our model an array in some arbitrary order, then our target output sequence must
refer to this initial, random order when predicting the preferred one. In effect, in the case of simple
permuted sequences without repetition and exclusion, we are seeking a permutation equivariant
function that outputs ranks, conditioned on a permutation invariant representation of the entire set.
In the case of complex permutations, we also expect the same sequence to be predicted based on
the same input set.

Regardless, the output sequence has to refer to the arbitrary order in which the input set elements
are presented to it. In essence, whilst we assume there is one optimal order of a given set’s elements,
there are n! target permutations relative to the n! arbitrary ones that form the actual input of the
model, per input set. This is because each target permutation reorders an arbitrary one that the
model receives as actual input, each representing the same, singular optimal order of the underlying
set’s elements.
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The remaining question is how to utilize the fixed-length, permutation invariant set represen-
tation when outputting the sequence representing a permutation of the arbitrarily ordered input’s
elements. There are two dominant approaches, namely summation and concatenation of the rep-
resentation of the entire set with the learned representations of each element. In this way, every
transformation of individual set elements has the chance to take into consideration the entire avail-
able set, as previously seen in the PointNet model by Qi et al. (2017).

Considerations regarding which of those two methods is preferable relate to the larger field
of representation learning, with ample examples both on the side of summation (Szegedy et al.,
2016) and concatenation (Noreen et al., 2020). These include the ResNet architecture by He et al.
(2016), with addition used in the eponymous residual connections, and the DenseNet model and its
descendants, employing concatenation (Huang et al., 2018a), within the field of computer vision.

An alternative approach, applicable to RNN-based ordering methods, would be to utilize the
set representation in the hidden state of the recurrent network. Similarly, attention-based methods
could use the set representation to influence which elements the model focuses on. Finally, in ranking
approaches the set representation can rather elegantly be used in place of the query (see section 4.4
for more details). Investigation of the efficacy of these methods is a possible direction for future
research, as outlined in section 5.6.

4.2 Attention-Based Pointing

The term attention covers a wide spectrum of methods within the field of machine learning. First
introduced as part of an encoder-decoder model applied to a sequence-to-sequence translation task
by Bahdanau et al. (2015), it has since been utilized in a number of other domains, including
computer vision (Xu et al., 2015), graph-based problems (Veličković et al., 2018), reinforcement
learning (Iqbal & Sha, 2019) and many more. For a comprehensive overview, see Chaudhari et al.
(2019).

In structured output tasks that are inherent to the set-to-sequence domain, the key idea is to
induce a vector of attention weights over the entire input, allowing for the selection of elements
by their position, conditioned on the learned representation of the entire input and the sequentially
predicted outputs. An example of such a setting from the field of natural language processing (NLP)
is linearization, which involves solving a problem that will be familiar to most readers who have tried
to learn a new language. Namely, given a randomly shuffled set of words, we are tasked with ordering
them into a properly structured sentence. A survey of these and other attention-based methods in
NLP can be found in the work of Hu (2019).

In effect, the model can learn to identify the current most pertinent position in the input through
the attention weights, which we then interpret as pointers to the next preferred element for the
output sequence. It may be worth mentioning that valid concerns have been raised as to the overall
interpretability of attention weights in text classification and question answering tasks by Jain and
Wallace (2019). However, in attention-based pointing these weights have a direct impact on the
predicted permutation, leaving little room for interpretational ambiguity.

4.2.1 Details of Attention-Based Pointing

Attention-based pointing is an adaptation of content-based attention (Graves et al., 2014) to an
ordering challenge. The model learns a distribution over all input elements at each position of the
output sequence. This should not be confused with self-attention, also known as intra-attention
(Cheng et al., 2016), where the target sequence is always the same as the input. In self-attention,
the parameterized attention function learns to relate different positions of the input sequence to
each other. In attention-based pointing the attention function learns to relate the elements of the
input with the current positions of the output.

Assume we have a randomly ordered input sequence of varying length n, consisting of d-dimensional
elements: X = 〈x1, . . . ,xn〉 such that X ∈ Rn×d, which we want to order according to some pref-
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erence. This sequence is an n-tuple, representing a single permutation of the corresponding set
X ′ = {x1, . . . ,xn}, which we cannot represent directly as a single vector, due to the fact that
vectors posses inherent order whereas sets do not.

Our target output is a sequence of integer pointers Y = 〈y1, . . . , yn : yi ∈ Z+〉,, satisfying the
conditions: ∀i, j : yi 6= yj and ∀i, 1 ≤ yi ≤ n, signifying that no element from the input can take
multiple positions in the output sequence and every element must be assigned a position in the final
reordering. Our objective is to define a differentiable function f : X → Y that meets these criteria,
with some parameters θ, lending itself to gradient-based training.

The simplest effective formulation of such an attention-based ordering function requires the
following learnable parameters: two square weights matrices W1,W2 ∈ Rd×d as well as a single
vector v ∈ Rd×1. Additionally, given the sequential nature in which the ordering is generated, we
also have access to a decoder state st at each step t, for which we calculate the attention-based
probability distribution over input elements. The array of encoded set elements X is processed in
the following way:

zit = xiW1 + stW2 for i ∈ (1, . . . , n) (19)

ait =
exp

(
vTσ

(
zit
))∑n

j exp
(
vTσ

(
zjt

)) for i ∈ (1, . . . , n) (20)

yt = argmax(at) for t ∈ (1, . . . , n) (21)

where σ is a nonlinear activation function, commonly the hyperbolic tangent (Logeswaran et al.,
2018). The vector zt = 〈zit, . . . , znt 〉 is a representation of all input elements, adjusted by the
representation of the generated output sequence at step t, through additive attention (Bahdanau
et al., 2015). Finally, yt is an integer pointer to the element of X which received the highest attention
value within the attention vector at = 〈ait, . . . , ain〉 at the current step t of the sequentially predicted
output sequence.

Most methods obtain the embedding of the entire input X through more complex encoding
methods, such as stacked bidirectional LSTMs, as seen in the work of Vinyals et al. (2015) and
Vinyals et al. (2016). This representation retains the information about the original arbitrary
order of the elements and should be dependent on the entire set. In the above example, the length
t of the output sequence of pointers Y is the same as the cardinality of X ′, which is the case
in many combinatorial optimization problems. However, in some structured prediction tasks the
optimal length of the output is also subject to the learning process, allowing for pointing to the
same element xi multiple times or not at all, as is the case in catalog design (Carlson-Skalak et al.,
1998).

It should be noted that in the above formulation nothing is explicitly preventing the model
from pointing to the same element xi at multiple positions of the output sequence. In practice the
iterative learning process can largely prevent this from occurring, given appropriate training data.
One method to explicitly prohibit repetition is progressive masking, as described in section 3.2.1.

In practice, beam search is commonly used during inference to increase the probability that the
most optimal sequence is predicted, as evidenced in the work of Bahdanau et al. (2017) and Kool
et al. (2019). Beam search employs a heuristic search algorithm to expand a limited number of most
promising vertices of the graph defined by the attention vectors over a predefined number of output
steps. It tracks a small number of potential partial solutions, at the controlled cost of memory and
computation. However, the exact reason why a small beam number results in qualitatively better
predictions has recently been called into question (Meister et al., 2020). For a more detailed overview
in the context of sequence prediction, see Wiseman and Rush (2016).
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4.2.2 Methods Using Attention-Based Pointing

Many neural network model architectures across distant fields of application include variations on
the basic attention-based pointing mechanism. These include specifically set-to-sequence methods,
such as the Pointer Networks discussed in section 3.2.2 and the RPW model detailed in section 3.3.2,
as well as elements of complex models in reinforcement learning applied to competitive real-time
strategy challenges (Vinyals et al., 2019).

Additionally, attention-based pointing found usage in identifying entailment between documents
(Rocktäschel et al., 2016), abstractive text summarization (See et al., 2017), rare and out-of-
vocabulary word prediction (Merity et al., 2016) as well as describing multimedia content (Cho
et al., 2015). An interesting augmentation of attention-based pointing has been experimented with
in the context of generating structured queries (in SQL) from natural language sequences (Zhong
et al., 2018). However, the improvement stems from augmenting the input with SQL keywords to
limit the output space, not from an essential adjustment to the underlying attention-based pointing
mechanism.

An application of attention-based pointing to generate solutions to another classic combinatorial
optimization challenge, the Vehicle Routing Problem, was proposed by Kool et al. (2019). The
resulting architecture is an encoder-decoder Graph Attention Network (Veličković et al., 2018),
employing multiheaded attention in the encoder and node masking in the decoder, which uses the
embeddings of all the nodes and the entire graph at each step t to point to the next node to be
visited. Unlike the previously discussed methods, this model is trained using a gradient estimator
from the field of reinforcement learning, first proposed by Williams (1992).

4.3 Permutation Matrices

A permutation matrix is a square, binary matrix P having exactly one entry pij = 1 in each row i
and each column j (Stuart & Weaver, 1991). All other entries are equal to 0. P ’s dimensions are
defined by the length of the desired output sequence, most commonly equal to the length of the
input. A permutation matrix is unimodal in that each of its rows has a unique, highest value. It is
also doubly-stochastic, since it consists entirely of nonnegative numbers, with each row and column
summing to 1.

The key property of a permutation matrix is that given an arbitrarily ordered sequence, we can
left-multiply it by a permutation matrix to obtain a reordered sequence. For example, given an
arbitrarily shuffled input sequence x = 〈x1, x5, x3, x4, x2〉, which we want to permute in such a way
as to restore the i−indexed ascending order to obtain xπ = 〈x1, x2, x3, x4, x5〉, we can predict the
permutation matrix visualized below. Our target is the permutation π, given in two-line notation:

π =

(
x1 x5 x3 x4 x2

1 5 3 4 2

)
(22)

We can apply this permutation to the transposed input x> via left-multiplication by the target
permutation matrix P :

xπ = Px> =


1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



x1

x5

x3

x4

x2

 =


x1

x2

x3

x4

x5

 (23)

This gives us a way to represent the target permutation in the form of a matrix of numbers
between 0 and 1, marking an important step towards enabling the application of machine learning
methods.
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4.3.1 Making Permutation Matrices Learnable

In order to use a permutation matrix as the target output of a machine learning model that can
be trained through some form of gradient-based iterative optimization, we must introduce certain
relaxations of the concept. Otherwise, we are left with the equivalent of a sorting operator which is
non-differentiable (Grover et al., 2019).

Traditionally, sorting operations result in either a permutation π = 〈1, 5, 3, 4, 2〉 (from the previ-
ous example) or a vector of reordered elements xπ = 〈x1, x2, x3, x4, x5〉. Much like the permutation
matrix, the former is non-differentiable with respect to the input due to being integer-valued and
the latter due to being piecewise linear (Cuturi et al., 2019).

The most direct way to obtain a differentiable relaxation P ′ of the permutation matrix P is to
map the input x to a continuous codomain, as opposed to the original discrete one. Thus, we need
a relaxation such that P ′ ∈ Rn×n, lending itself to gradient-based optimization. Additionally, an
efficient projection from the continuous codomain back to the discrete one must exist to allow for
the use of loss functions and evaluation metrics. This can be achieved by applying the argmax()
function per row of P ′ to find the position in which the unique 1 would have been located in the
actual permutation matrix P .

The resulting relaxation must retain the property of row-stochasticity, such that:

∀i, j ∈ {1, . . . , n} : p′ij ≥ 0 (24)

∀i ∈ {1, . . . , n} :

n∑
j=1

p′ij = 1 (25)

and of unimodality, such that a vector y is both obtainable from the relaxation matrix P ′ through
row-wise argmax() and a valid permutation of the input:

∀i ∈ {1, . . . , n} : yi = argmax(p′i) (26)

There are many possible methods of obtaining this relaxation from the input after it has been
transformed by a chosen neural network architecture, such as adding elementwise Gumbel per-
turbations (Mena et al., 2018), applying the Sinkhorn operator to directly sample matrices near
the Birkhoff polytope (Linderman et al., 2018), which is the convex hull whose points are doubly-
stochastic matrices (Emami & Ranka, 2018), or through the application of a softmax() operator on
a derived matrix of absolute pairwise distances between the individual input elements (Grover et al.,
2019).

Depending on the specifics of the task at hand, the target matrix can be predicted in a single pass
(if the length of the input and output is a constant, known prior to inference) or sequentially, row by
row (Nishida & Nakayama, 2017). An interesting method employing permutation matrices has been
proposed by Zhang et al. (2019), in which a trainable, pairwise ordering cost function is used to
produce an anti-symmetric matrix C, whose entry cij represents the cost of placing the i-th element
before the j-th. This function is represented as a neural network, which is then used to continuously
adjust the learned permutation matrix. This is referred to as a Permutation-Optimisation module,
and has been demonstrated to perform well on number sorting, re-assembling image mosaics and
visual question answering, with one limiting feature of entailing cubic time complexity.

4.4 Listwise Ranking

Ranking methods determine the predicted order of elements by assigning a score to each element
and then sorting them according to these scores. In listwise ranking, a score is calculated based on a
list of available elements and a query, for which a specific order is to be predicted. The terminology
stems from applications in information retrieval, where the task is to rank the available documents
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(such as web pages) in order of relevance for a given query (e.g. a search term). For an overview of
neural ranking methods, see Mitra et al. (2018).

Listwise ranking is distinguished from point- and pair-wise ranking. Pointwise methods reduce
the ranking problem to regression, in that the relevance score for an element is obtained only from
its own representation and the query. Pairwise approaches reduce it to binary classification (Lei
et al., 2017). Given a query and a pair of elements, they predict which element is the more relevant
of the two. In listwise ranking, the prediction is performed on a list of objects.

Application of listwise ranking methods to set-to-sequence problems requires certain adjustments.
Most importantly, in such ordering and structure prediction challenges we are not given a specific
query, for which an ordering is to be generated. However, we are able to obtain a permutation
invariant set representation through the set encoding methods detailed in section 3. We can use
this learned embedding to fill the role that a query performs in traditional learn-to-rank methods.
Intuitively, the relative rank of each element in the output sequence should depend on the entire
available set.

This marks an important departure from the assumption that two elements have a canonical
relative order, which should remain unchanged regardless of what other elements are present in the
input set. In practice, higher-order interactions between available elements can entirely change the
target sequence. In order to learn such properties, a ranking method can utilize the permutation
invariant set representation as the query and predict the relevance scores of all available elements
in one go, in the listwise manner described in the following subsection.

4.4.1 Details of Listwise Ranking

In order to illustrate the basic underlying mechanisms in listwise ranking methods, this subsection
investigates the first method that formulated order prediction on a list of objects, namely the ListNet
model, proposed by (Cao et al., 2007). From this point on, whenever we refer to a query, we are
referring to the permutation invariant representation of the entire set obtained via the previously
outlined set encoding methods. This representation can be learned in parallel with the weights of
the ranking the model.

Once more, assume we are given an arbitrarily ordered input sequence X = 〈x1, . . . ,xn〉 such
that X ∈ Rn×d. This sequence is one of n! possible permutations of the corresponding set X ′ =
{x1, . . . ,xn}. The objective is to transform the given X vector into the best possible permutation
of X ′, according to some preference. This target permutation is π = 〈π(1), . . . , π(n)〉, such that π(i)
is the object at position i in the permutation. The set of all possible permutations of length n is
denoted as Ωn. The target permutation π is represented by a vector of scores yπ = 〈yπ(i), . . . , yπ(n)〉,
where yπ(i) is the predicted relevance score for the element xi. All elements of the original input X
get assigned a score by the learned neural network, in a listwise manner.

A naive approach would be to try to obtain the probability Py(π) of each of the n! possible
permutations from Ωn, given a set of scores y:

Py(π) =

n∏
i=1

φ(yπ(i))∑n
k=i φ(yπ(k))

(27)

where φ() is any increasing and strictly positive function applied to the scores and yπ(i) is the
relevance score of element i in the vector yπ corresponding to some permutation π (Cao et al., 2007).

However, this is a computationally inefficient approach, therefore we instead calculate the top one
probability for each element xi. This probability is equal to the sum of the permutation probabilities
of every permutation where the i-th element was ranked first. For the exact proof of this equivalence,
see the appendix in Cao et al. (2007). The crucial observation is that we do not need to calculate
all the permutation probabilities to obtain the correct top one probability Ptop(xi) of each element,
given a list of scores yπ:
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Ptop (xi) =
exp

(
yπ(i)

)∑n
k=1 exp

(
yπ(k)

) (28)

In effect, the probability distribution over permutations is obtained by applying the softmax()
function to the predicted relevance scores. Since this is a supervised learning framework, our model
has access to the ground truth distribution for each example list. This allows for the use of loss
functions that compare two distributions, such as the Kullback-Leibler (KL) divergence, also referred
to as relative entropy (Liu & Shum, 2003).

In order to obtain the vector of relevance scores yπ, the query vector q ∈ Rm is concatenated with
a fixed-length, learned embedding of each element of the input set xi, resulting in the final input
I ∈ Rn×(m+d), per single example list. In the original ListNet model, this input is transformed
through stacked, fully-connected layers, of which the last one has a single unit outputting the
relevance score per element.

As such, this transforms each concatenation of the query and the embedded element in an
independent and identical manner. This is practical for ranking tasks, where two items always have
the same relative target order, given a query. However, in more complex structure prediction tasks,
common in set-to-sequence challenges, relying entirely on the set encoding q and the listwise loss
to identify interactions between set elements limits the ability to approximate complex functions,
in which higher-order interactions between elements have an impact on the final order (Lan et al.,
2009). This limitations of ListNet is partially addressed by later methods, discussed in section 4.4.2.

Additionally, a limitation of the ranking approach is that by representing the target output
sequence through relevance scores per input element, we cannot learn to output sequences of any
length other than n. This also precludes the use of listwise ranking in challenges where the output
sequence is of the same length as the number of input elements n, but repetition and exclusion of
elements is required. For a more detailed look into the underlying theoretical aspects of listwise
ranking, see Xia et al. (2008).

4.4.2 Methods Using Listwise Ranking

Multiple listwise ranking methods in machine learning have been developed since the original List-
Net model. A notable framework that addresses the challenge of learning pairwise interactions
between elements came in the form of BoltzRank, in which the rank probabilities are sampled from
a Boltzmann distribution, employing an energy function that depends on a score influenced by both
individual and pairwise potentials (Volkovs & Zemel, 2009).

Another approach of interest is the FATE framework proposed by Pfannschmidt et al. (2018).
The authors identify the problem of predicting a relevance score for an element and the query with
only the loss function carrying the signal regarding the context of other available elements. In order
to address this, they effectively employ a permutation invariant set-encoder (Zaheer et al., 2017),
whose output is concatenated to the learned representation of each element, in a variation of the
basic method described in section 4.4.1.

Ai et al. (2018) propose a complex architecture combining two-stage ranking, sequential recurrent
neural networks and an attention-based loss function. The proposed Deep Listwise Context Model
(DLCM) sequentially encodes the most relevant results using the corresponding feature vectors,
trains an additional, local context model and employs it to re-rank the best k results.

Finally, Pang et al. (2020) employ the Set Transformer to obtain element representations that
encode cross-document interactions and return a permutation invariant ranking by sorting the per-
mutation equivariant relevance scores per each document.
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5. Discussion

In this section, the key challenges and contexts of application for set-to-sequence deep learning
methods are discussed. Additionally, separate sections are devoted to the progress in set encoding
and permutation learning, along with current limitations and proposed directions for future research.

5.1 Key Challenges

Core challenges of set-to-sequence include representing sets of varying sizes in a permutation in-
variant way, encoding pairwise and higher-order interactions between set elements and keeping the
computational complexity moderate in the cardinality of the input set. This last requirement stems
from the fact that in many important set-to-sequence problems the size of the input set can be
quite large, particularly in computer vision point-cloud based tasks (Ge et al., 2018). This has been
addressed by various proposed set-encoding or set-pooling methods discussed in section 3, such as
RNN-based Pointer Networks (Vinyals et al., 2015) and Read-Process-and-Write models (Vinyals
et al., 2016) as well as through fully connected methods such as DeepSets (Zaheer et al., 2017) and
the Set Transformer (Lee et al., 2019), among others.

Another set of key challenges in set-to-sequence stems from the many possible ways of formal-
izing the process of outputting a permutation sequence. Potential methods include learn-to-rank
approaches, permutation matrices and attention-based methods discussed in section 4. Additionally,
it is not always trivial to combine the output of the specific set-encoding technique with the expected
input of these permutation methods in a way that results in good model performance. Finally, we
expect not just the set-encoding module but the entire set-to-sequence model to be permutation
invariant and always give the optimal output regardless of how the array representing the set is
reordered at input.

5.2 Contexts of Application

There are many contexts where the input data does not have an inherent ordering and the number of
input elements varies (i.e. set-input problems) and possibly even more where the input elements are
not unique, instead repeating a meaningful number of times, in which case the task presents an mset-
or multiset-input problem. Additionally, the set elements may be allowed to reoccur multiple times
in the predicted sequence or be excluded from it entirely, forming a complex permutation. These
elements can be both continuous (e.g. word embeddings) or discrete (coming from an index-based
dictionary). An example of such a problem with a strong industrial application is the question of
how to order available product offers into a displayable catalogue that will keep the reader engaged
and eventually inspire them to make a relevant purchase (Liao & Chen, 2004).

Similar challenges are faced by the experts who order news articles into a coherent publication,
book authors composing chapters into a novel and by engineers tackling the challenge of catalog
design, in which a configuration is created by assembling off-the-shelf components into a functional
system (Carlson-Skalak et al., 1998). Set-to-sequence methods can also benefit architects in their
search for the best configurations of the design space, taking into consideration structural efficiency,
daylight availability and other aspects of building performance (Brown & Mueller, 2017). Whenever
the elements come from a pre-existing set and the output is structured as a complex permutation,
we are facing a set-to-sequence challenge.

5.3 Progress in Set Encoding

As machine learning methods become more and more widely used, the range of input and output
data structures that these methods are applied to becomes larger. Mirroring the development and
consecutive growth in popularity of methods created specifically to handle certain types of input
data, such as convolutional neural networks for images and recurrent models for sequences, one of the
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most significant developments in set-to-sequence has been the work towards obtaining permutation
invariant representations of sets of varying lengths.

Particularly, this representation can now be obtained in a way that is capable of explicitly
encoding not just pairwise but also higher-order interactions between input elements. Intuitively
these improvements mirror the way we as humans process input sets, in that we group the elements
into meaningful collections, allowing for enough flexibility that this grouping may change entirely
upon the introduction of a new element.

5.4 Progress in Permutation Learning

Comparative progress has been made regarding the ways in which we formalize the permutation tasks
at hand. Given that the simplest form of permutation (reordering) is sorting, the early methods
formalized this challenge as a ranking problem, with pointwise, pairwise and eventually listwise loss
being used to train the model. These methods suffer from the assumption that any two elements
have a canonical pairwise ranking, regardless of the features of the other elements in the input set.

Another alternative emerged in the form of self-attention applied in such a way as to output
softmaxed pointers to the elements of the input set at each step in the output sequence, with
the additional use of beam search during inference (Vinyals et al., 2015). The third dominant
formalization comes in the form of learning to output a permutation matrix. This allows for the
original input to then be matrix-multiplied by the row-stochastic permutation matrix, resulting in
the desired reordering (Nishida & Nakayama, 2017), (Emami & Ranka, 2018). It is a sign of the
complexity of the field that no clear preferred formalization of its core challenge has emerged, with
ranking (for example) still finding useful application in active research (Kumar et al., 2020).

5.5 Limitations

A crucial limitation of many of the cutting edge set-to-sequence models, such as the Set Trans-
former (Lee et al., 2019) and the permutation mechanism in Pointer Networks, is their reliance on
self-attention. Whilst Transformer-based methods that rely solely on multiheaded self-attention have
seen remarkable success, even in applications beyond a fixed-length context (Dai et al., 2019), their
ability to process hierarchical structure has hard limits. Specifically, purely self-attention architec-
tures are entirely dependent on the number of multi-attention heads and layers growing alongside the
size of the input to retain the ability to model recursion, finite-state languages and other hierarchical
aspects of our data (Hahn, 2020).

In order to overcome this limitation, efforts have been made to combine the benefits of sequential
computation, inherent to recurrent neural networks, with the advantages of parallel computation
and the global receptive field of the Transformer. This method is referred to as the Universal
Transformer (Dehghani et al., 2019). In addition, it also includes the Adaptive Computation Time
mechanism proposed by Graves (2016), which enables the model to dynamically learn how many
computational steps to perform per the features of the input sequence. However, these advances
have not yet been translated to the domain of set-input challenges.

5.6 Directions for Further Research

There are many possible directions for further investigations, pertaining to both the area of encoding
sets and proposing novel permutation learning methods. As hinted in section 4.1, the question of how
best to utilize the fixed length set representation within the internals of the ordering module remains
open. However, we believe the areas of learning complex permutations (5.6.1) and differentiable loss
functions (5.6.2) deserve separate attention, given in the following subsections.
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5.6.1 Complex Permutations

An important and natural extension of the research within set-to-sequence is to apply it to challenges
where the output sequence allows for repetition and exclusion of input set elements, thus going be-
yond traditional permutation learning (Diallo et al., 2020). As such, these complex permutations
present an additional challenge of dynamically predicting the optimal sequence length without sac-
rificing the second of the two aforementioned prerequisites for ML methods on sets, namely the
requirement that the same model must be able to process finite input sets of any cardinality. It is
not immediately clear how to achieve both properties, with multiple promising approaches gaining
prominence, ranging from the addition of a confidence loss for long time-series prediction (Harmon
& Klabjan, 2019), to the aforementioned adaptive computation time (Wu et al., 2020). For an
overview of dynamic neural network methods in general, see Han et al. (2021).

Important tasks involving a complex target permutation include predicting a configuration rep-
resenting the assembly of off-the-shelf components into a functional system (Carlson-Skalak et al.,
1998) and the composition of product offers into rendered catalogues (Liao & Chen, 2004). Ad-
ditionally, an interesting area for further research would be to extend these complex permutation
sequences to grids and lattices, as suggested by Zhang et al. (2019), or even to graphs, expanding
on the work of Serviansky et al. (2020).

5.6.2 Differentiable Loss Functions

Another important area for further work is centered around the problem of framing the set-to-
sequence challenges in such a way as to enable the use of differentiable loss functions. A naive but
often practically effective approach is to frame the problem as categorization and use a cross-entropy
loss, as discussed in Engilberge et al. (2019). However, it precludes meaningful distinction between
pointing to an incorrect element that is very similar to the correct one and pointing to an entirely
different incorrect element.

Alternatively, if a ranking framework is applied, where a score is generated for each element and
subsequently used to sort all elements into a new permutation, we gain access to well documented
listwise losses, such as the ones successfully employed in the ListNet or ListMLE (Kumar et al., 2020)
frameworks. Many metrics that would lend themselves to ordering challenges do not have defined
derivatives for their entire domain. The development and testing of their smooth approximations is
of great potential value, as seen in the works of Roĺınek et al. (2020) and Blondel et al. (2020).

6. Conclusion

Set-to-sequence is currently established as a family of methods with an exceptionally wide range of
applications. At its essence, it is a combination of three areas seeing a lot of attention within the
machine learning and deep learning research communities, namely set-input problems, combinatorial
optimization and structured prediction. As such, a number of methods that can further our under-
standing of this field originates from other areas of interest, sometimes without seeing immediate
application to set-to-sequence challenges. Progress owes to advances in model architectures, parallel
computing, hyperparameter optimization as well as the overall growing interest in applying machine
learning solutions to a wider and wider gamut of industrial challenges.

We have presented an overview of set-to-sequence methods from the fields of machine learning
and deep learning. The initial sections of this paper introduced the reader to the key concepts in
relation to machine learning on sets, most notably the properties of permutation invariance, per-
mutation equivariance and the requirement of handling inputs of varying lengths. In relation to
this, in section 3, the reader is introduced to a number of selected set-encoding model architectures,
including a significantly detailed look at their underlying mathematical transformations. To facili-
tate comprehensive understanding, we compared these and other related methods through several
summary tables presented in section 3.1.
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Additionally, a survey of potential ordering methods has been provided in section 4. This in-
cluded the three primary ways of formalizing the output permutation in the set-to-sequence setting,
namely listwise ranking, relaxations of permutation matrices and attention-based pointing. Once a
permutation invariant set representation is obtained through one of the aforementioned set-encoding
models, the ordering methods’ calculations can be conditioned on this embedding to output a se-
quence of elements from the original input set, in one fully trainable deep learning framework.
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Nazari, M., Oroojlooy, A., Takáč, M., & Snyder, L. V. (2018). Reinforcement learning for solving the
vehicle routing problem. Advances in Neural Information Processing Systems, 2018-December,
9839–9849.

Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning convolutional neural networks for graphs.
In International conference on machine learning, pp. 2014–2023.

920



Set-to-Sequence Methods in Machine Learning

Nishida, N., & Nakayama, H. (2017). Word ordering as unsupervised learning towards syntactically
plausible word representations. In Proceedings of the 8th International Joint Conference on
Natural Language Processing (IJCNLP 2017), pp. 70–79.

Noreen, N., Palaniappan, S., Qayyum, A., Ahmad, I., Imran, M., & Shoaib, M. (2020). A deep
learning model based on concatenation approach for the diagnosis of brain tumor. IEEE
Access, 8, 55135–55144.

Ntampaka, M., Trac, H., Sutherland, D., Fromenteau, S., Poczos, B., & Schneider, J. (2016). Dy-
namical mass measurements of contaminated galaxy clusters using machine learning. The
Astrophysical Journal, 831.

Oladosu, A., Xu, T., Ekfeldt, P., Kelly, B. A., Cranmer, M., Ho, S., Price-Whelan, A. M., & Contardo,
G. (2020). Meta-learning one-class classification with deepsets: Application in the milky way.
Preprint arXiv:2007.04459, ArXiv.

Oliveira, H., Silva, C., Machado, G. L., Nogueira, K., & Santos, J. A. d. (2020). Fully convolutional
open set segmentation. Preprint arXiv:2006.14673, ArXiv.

Pang, L., Xu, J., Ai, Q., Lan, Y., Cheng, X., & Wen, J. (2020). Setrank: Learning a permutation-
invariant ranking model for information retrieval. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 499–508.
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