
Journal of Artificial Intelligence Research 72 (2021) 533-612 Submitted 03/2021; published 10/2021

Contrastive Explanations of Plans Through Model Restrictions

Benjamin Krarup benjamin.krarup@kcl.ac.uk
Senka Krivic senka.krivic@kcl.ac.uk
Daniele Magazzeni daniele.magazzeni@kcl.ac.uk
Derek Long derek.long@kcl.ac.uk
King’s College London, Bush House, WC2B 4BG, London, UK

Michael Cashmore michael.cashmore@strath.ac.uk
University of Strathclyde, Livingstone Tower, G1 1XH, Glasgow, UK

David E. Smith david.smith@psresearch.xyz
PS Research, 25960 Quail Ln, Los Altos Hills, CA 94022, USA

Abstract

In automated planning, the need for explanations arises when there is a mismatch
between a proposed plan and the user’s expectation. We frame Explainable AI Planning
as an iterative plan exploration process, in which the user asks a succession of contrastive
questions that lead to the generation and solution of hypothetical planning problems that
are restrictions of the original problem. The object of the exploration is for the user to
understand the constraints that govern the original plan and, ultimately, to arrive at a
satisfactory plan. We present the results of a user study that demonstrates that when users
ask questions about plans, those questions are usually contrastive, i.e. “why A rather than
B?”. We use the data from this study to construct a taxonomy of user questions that often
arise during plan exploration. Our approach to iterative plan exploration is a process of
successive model restriction. Each contrastive user question imposes a set of constraints on
the planning problem, leading to the construction of a new hypothetical planning problem
as a restriction of the original. Solving this restricted problem results in a plan that can
be compared with the original plan, admitting a contrastive explanation. We formally
define model-based compilations in PDDL2.1 for each type of constraint derived from
a contrastive user question in the taxonomy, and empirically evaluate the compilations
in terms of computational complexity. The compilations were implemented as part of an
explanation framework supporting iterative model restriction. We demonstrate its benefits
in a second user study.

1. Introduction

Automated planning is being used in increasingly complex applications, and explanation
plays an important role in building trust, both in planners and in the plans they produce. A
plan is a form of communication, either as a set of instructions to be enacted by autonomous
or human agents, or as a proposal of intention communicated to a user. In either case, the
plan conveys the means by which a goal is to be achieved, but not the reasons for the
choices it embodies. When the audience for a plan includes humans then it is natural to
suppose that some users might wish to question the reasoning, intention and underlying
assumptions that lead to those choices.

c©2021 AI Access Foundation. All rights reserved.

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

The need for explanations arises when there is a mismatch between a proposed plan
and the user’s expectation. This might be because the user had not managed to construct a
viable plan, or constructed one that did not match the system’s proposed plan. Explanations
attempt to bridge the gap between these mismatched positions and might be local, focusing
on the specific proposed plan and its properties, or global, focusing on the assumptions on
which the plan rests, or the process by which it was constructed.

1.1 An Outline of the Approach

To help guide the reader through this paper, we now outline our overall approach and
introduce some of the key concepts.

Following ideas of Smith (2012) we consider explanation to be an iterative process;
the user is presented with explanations through a process of iterative plan exploration,
according to a five-stage mixed-initiative process illustrated in Figure 1. In this figure, (i) the
user asks a question; (ii) a constraint is derived from the user question (forming the formal
question); (iii) a hypothetical planning model (HModel) is generated which encapsulates this
constraint; (iv) the planner is run on the HModel producing a hypothetical plan (HPlan);
(v) the HPlan is compared to the original plan resulting in a contrastive explanation that
shows the consequences of the user suggestion.

Figure 1: The five-stage iterative process for generating a contrastive explanation from a
user question. The hypothetical model is created by compiling the formal question into
the planning model (in PDDL 2.1), a planner is used to solve the model and produce a
hypothetical plan.

The user can compare plans and iterate the process by changing or refining the question,
resulting in a new HModel, and a new HPlan. This allows the user to ask a sequence of
questions that progressively restrict the original system model. The process ends when
the user is either satisfied with the explanation and accepts the plan generated for one of
the HModels at some stage in this process, or otherwise decides that there is no value in
further exploration. In the latter case, the user might decide that a solution of their own is
better than any of the solutions the planner has generated, which could be a consequence

534

Contrastive Explanations of Plans throughModel Restrictions

of discrepancies between the user’s model and the model available to the planner. We
present this iterative plan exploration process in detail in Section 3.1.

We have adopted this iterative approach because of the following two assumptions and
their consequences:

• The user’s domain model and problem, and the limits of their ability (or willingness)
to construct detailed plans are all unknown to us.

The iterative process does not require that the planning models used by the planner
and the user be the same. However, the formulation of questions does require that
the user and the planner share vocabulary, including the names and parameter types
of actions and predicates, the names of objects appearing in the problem, and the
goal.

• The correctness of the domain model available to the planner is also unknown to us.
Furthermore, the planner is necessarily incomplete, since even classical planning is
P-Space complete, and planners are expected to produce answers in a small amount
of time and memory.

The first assumption leads us to conclude that we cannot truly know the reason for a
user’s question about a plan: whether it is puzzlement about unexpected use of actions,
confusion at a perceived misapplication of an action, or simply curiosity about how a plan
was found. The second assumption implies that we cannot be sure that a failure of the
planner to construct a plan means that there is no plan, or that a plan produced by the
planner is either correct (with respect to the user’s model) or good. We also do not assume
that the user has necessarily formulated an explicit alternative plan. In some cases, the user
might not have such a plan in mind and, in that case, the iterative process might simply
reflect the user exploring the space of plans around the initial plan in order to gain some
insight into the alternatives that exist.

As we will argue in Section 2, supported by a user study, many queries made by a user in
interaction with a planner or plan-based system are contrastive (Miller, 2018) — of the form
“Why A rather than B?”. Fox et al. (2017) highlight the why query as an important one for
XAI, and discuss possible responses. As we structure these questions into a formal query
(Figure 1 (ii)), we refer to B as a foil, and use it to construct a constraint on the original plan.
To answer these kinds of questions, one must reason about the hypothetical alternative
(Figure 1 (iii)) resulting from the foil B, which means constructing an alternative plan for
which B is satisfied, rather than A (Figure 1 (iv)). The definition of the alternative plan,
which we refer to as the Hypothetical Plan (HPlan) (Definition 4), is detailed and formalised
in Section 3.

We take the view that the purpose of an explanation to a contrastive question is to,
assist the user in understanding how the original plan differs from a plan for the foil. These
differences between plans will include:

• how the actions differ;

• how the actions and plan structure contribute to satisfying the plan metric or prefer-
ences and

535

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

• how the causal structure differs.

Our existing interface, described in Section 5, highlights the action differences between the
plans, addressing the first of these three, but it is left to the user to draw conclusions about
the second and third, by inspection of the two plans. This step is shown in Figure 1 as stage
(v).

Explanation of automatically generated plans can be seen as a special case of expla-
nation of the output of AI programs in general. Even though the area of Explainable AI
Planning (XAIP) is relatively young, there has been considerable work in the field in recent
years. Chakraborti et al. (2020) outline the different approaches to XAIP that have emerged
in the last couple of years, and contrast them with earlier efforts in the field. They group the
approaches for XAIP into two main categories: algorithm-based explanations and model-
based explanations. Psychological studies of explanation (see, for example, Mueller et al.,
2019) make a distinction between global and local explanations. Algorithm-based expla-
nations typically attempt to explain the underlying planning algorithm so that a user can
better understand the workings of the planning system and are therefore global in nature.
For example, Magnaguagno et al. (2017) provide an interactive visualisation of the search
tree for a given problem. Model-based explanations are algorithm-agnostic methods for
generating explanations for the solutions to a planning problem. These can be consid-
ered to be global or local explanations depending on whether the user is interested in the
model itself, or in explaining particular decisions resulting from the model for a particu-
lar problem. The iterative plan exploration process primarily supports local model-based
explanations, by focusing on alternative plans for the same problem but, through active
exploration of the plan space, the process may also yield insights into properties of the
domain model and of the planner itself (Lipton, 1990, 2016; Ribeiro, Singh, & Guestrin,
2016).

Despite the broad interest in explainable AI, the general question of what constitutes
an explanation can be surprisingly contentious and difficult to answer. In order to provide
a meaningful answer one must be clear about what it is that one is trying to explain. The
term XAIP would suggest that we might be trying to explain a plan. However, the problem
of trying to explain how or why a plan works is different from the problem of explaining
why a plan is a good plan. In the former case, one is trying to help the user understand the
correctness of the plan, whereas in the latter case, one is trying to help the user understand
why the plan is better than others. In the case of contrastive questions, the shape of the
response is more narrowly defined, because the user has suggested a foil. This leads us to
consider several cases:

• If the foil is satisfiable, and the HPlan is worse than the original plan (according to
the planning metric in our model) then “explanation” would consist of trying to help
the user understand how and why the original plan is better than the HPlan. In the
absence of explicit information about the user’s model, a reasonable approach is to
identify the differences between the original plan and the HPlan and show how those
differences influence the plan metric.

• If the HPlan is better than the original plan, then the best thing is to acknowledge that
the HPlan appears to be better, and to explain why. In this case the ‘why’ consists

536

Contrastive Explanations of Plans throughModel Restrictions

of indicating how the metric has improved, and which differences contribute to the
difference in the metric.

• If there are multiple competing objectives, such as competing preferences, then there
is the possibility that neither the original or HPlan is superior. In this case, again
it seems that an explanation consists of identifying the differences between the two
plans and how they influence the metric.

• If the foil cannot be satisfied then we would be interested in explaining why we think
the foil is unsatisfiable (according to the model used by the planner). In this paper,
we do not consider how best to handle unsolvable planning problems. We simply
report the failure to find a plan and leave interpretation to the user. Refinements of
this approach are obviously possible (see, for example, Sreedharan et al., 2019).

Automatically distinguishing between the last three cases is, of course, subject to the model
and metric being used by the planner. Our assumption is that we do not have the user’s
model, or know whether the model and metric being used by the planner are correct. As a
result, we are not explicitly doing model reconciliation (see, for example, Chakraborti et al.,
2017 and Sreedharan et al., 2018, discussed in Section 7). Instead, we focus on presenting
the HPlan to the user and highlighting the differences between the HPlan and the original
plan.

The results of the user study show that users ask questions not only about the choice
of actions and objects, but also about the timing of activities. We therefore consider
temporal/numeric domains. The constraints that are implied by users’ questions can
require us to limit activities within particular time windows within the structure of the
HPlan, either to prevent or to enforce certain actions appearing within those windows. Of
course, not all of the questions a user asks will be focused on the temporal structure of
the plan, so the classical plan properties, such as ordering and causal structure, are also
relevant to the process.

In Section 6 we present evaluation of the approach we propose, including a second
user study designed to observe the value of the iterative plan exploration process we
implemented as a tool for supporting users in understanding plans.

The paper ends with a broader discussion of related work (Section 7) and, finally, we
draw our conclusions (Section 8).

2. Elicitation of Questions Through a User Study

In this section, we describe a study that we conducted to gain insight into the types of
questions that users pose about planning systems, when the model is well known to the
user. As we indicated in the introduction, several researchers have observed (e.g: Mueller
et al., 2019) that it is useful to draw a distinction between local and global questions
which call for local and global explanations, respectively. In the context of a plan, a global
question might be asked because the inquirer does not fully understand the model used
by the planner, or the process by which it was constructed. In contrast, a local question is
one focused on specific decisions made in the plan.

When plan-based control was used to automate drilling (Long, 2018), the process in-
volved a series of stages during which the nature of required explanations evolved. During

537

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

initial development users primarily asked global questions to validate their understand-
ing of the model, ensuring its correctness, and building trust in the system. As this trust
developed and the model used by the planner became better understood, users were more
likely to ask local questions seeking to understand the intention behind specific actions in
a plan, or to better understand alternatives to particular choices.

Local questions are asked in a variety of contexts. Domain experts may wish to challenge
a decision made by the planner when they possess insight into the domain that they believe
can improve upon a sub-optimal plan. Alternatively, users may simply be interested in
exploring the space of plans and ask questions to suggest alternative decisions, and better
understand their impact. In the former case, a sceptical expert might seek to demonstrate
weakness in the way that the system made a decision, while in the latter case the role of the
system is promoted to an advisor or aide, with the user relying on the system to support
exploration of the space of alternative solutions.

The interrogative word used when asking local questions is why, whereas for global
questions it is usually how or what. We hypothesise that when the model is well-known,
users ask more local, contrastive why questions than global how or what questions. The null
hypothesis and alternate hypothesis, H0 and Ha for our study are therefore as follows:

H0: Users ask an equal distribution of why, how, and what questions about
planning scenarios, when the model is well known.

Ha: Users ask more why questions than how or what questions about planning
scenarios, when the model is well known.

2.1 Methodology

We designed a study to elicit questions from users about plans. We recruited participants,
through a website (https://www.prolific.co) that specialises in sourcing eligible sub-
jects, each of which were compensated £10 for their time. We selected a sample size of 15,
which is a typical number for this type of study (Chakraborti et al., 2018; Kulkarni et al.,
2019) and has been shown to cause data saturation in qualitative studies (Nielsen, 2000;
Faulkner, 2003). The participants were from different, non-planning related, backgrounds
and professions between the ages of 21 and 39 years old. In the study, participants were
presented with three planning scenarios which were described to them in detail. They
were first asked to watch a short video (Chen et al., 2019) showing an animation of a
planning problem being performed. Once the participants were familiar with the content
of the animation they were asked to re-watch the video and write down any questions
they had, and (if applicable) a reason for why they asked the question. For each question
the participants were told to note down the time during the video that caused it to be
asked. The participants were asked to do this twice more with two videos of new planning
problems. However, this time they were told to only ask questions that were specific to
decisions, or actions that were made in the plan. Participants were asked to re-watch each
video until they could not produce any new questions. On average participants asked 11
questions and took 44 minutes to complete the study. From this data, we performed a
content analysis to extract a taxonomy of the types of questions that people answered in
our scenarios.

538

Contrastive Explanations of Plans throughModel Restrictions

Question Type Video 1 Video 2 Video 3

What? 2 1 3
How? 0 3 2
Why? 65 50 42

Table 1: Frequency of questions asked by participants for each video characterised by
Miller’s taxonomy of questions (Miller, 2019).

We used three different scenarios in the study: (Video 1) a family of five must sail to the
other side of a river, with some constraints placed on sailing the boat;1 (Video 2) a logistics
problem where six packages have to be delivered to specific locations using trucks and
aeroplanes;2 and (Video 3) a robot must place different objects into positions on a grid.3

We chose these domains because they are simple to understand and reason about without
much participant training, and are varied in what they model.

2.2 Results and Analysis

The results of this study are shown in Table 1. The questions were categorised into Miller’s
taxonomy by the interrogative word used in the question, either what, how, or why. Table 1
shows the number of questions in each category in the taxonomy and compares the ques-
tions asked in video 1, where users were asked to propose any questions, and videos 2 and
3, where the questions had to be related to the plan.

These results show that users generally want to understand why certain decisions were
made by the planning system rather than how the planning system works, or what a
specific component of the system’s purpose is. There were 157 instances of contrastive why
questions, 151 of which were in reference to specific decisions made in the plan. There were
only 11 what and how questions which asked for a deeper understanding of the planner
behaviour. Of the questions posed by users, 89.9% were contrastive why questions.

Performing a chi-square test, �2(2; 168) = 273:25, these results are therefore significant
at p < 0:001. We can therefore reject our null hypothesis, H0, and accept our alternate
hypothesis, Ha.

The results in Table 1 support this further when comparing the results of video 1 with
videos 2 and 3. This shows that when there are no constraints on the questions users can
ask, or when they are explicitly asked to question the plan, in both cases they want to
understand why certain decisions were made in the plan.

2.3 Taxonomy of Questions

Following our accepted hypothesis, we focus on providing explanations for why questions.
Research from the social sciences (Miller, 2018) argues that why questions are typically
contrastive; that is, they are of the form “Why A rather than some hypothetical foil B?”.

1. https://youtu.be/MSCakpJUcpc

2. https://youtu.be/tuvgky0f_Bs

3. https://youtu.be/YXO8EIj3oDM

539

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

Question Type #

FQ1 Why is action A not used in the plan, rather than being used? 17
FQ2 Why is action A used in the plan, rather than not being used? 75
FQ3 Why is action A used in state S, rather than action B? 35
FQ4 Why is action A used outside of time window W, rather than only being

allowed within W?
6

FQ5 Why is action A not performed before (after) action B, rather than A being
performed after (before) B?

10

FQ6 Why is action A not used in time window W, rather than being used within
W?

2

FQ7 Why is action A used at time T, rather than at least some time T’ after/before
T?

6

FQ8 Non-contrastive or out of scope 17

Table 2: Frequency of questions categorised into the Contrastive Taxonomy. We provide
explanations for questions FQ1 - 7.

Contrastive questions capture the context of the question; they provide an insight into
what the questioner needs in an explanation (Lewis, 1986). Garfinkel (1982) illustrates this
with a story about a famous bank robber, Willie Sutton, who, when asked asked why he
robbed banks, replied “That’s where the money is.” Sutton answered the question “Why do
you rob banks rather than other things?”, instead of the question “Why do you rob banks
rather than not robbing them?”. The foil was not explicitly stated in the question and so
was left ambiguous. Garfinkel argues that explanations are relative to these contrastive
contexts, and that they can be made unambiguous by explicitly stating the contrast case.

A contrastive question asked about a plan can be answered with a contrastive explanation
which will highlight the differences between the original plan and a contrastive plan that
accounts for the user suggested foil. Providing contrastive explanations is not only effective
in improving understanding, but is simpler than providing a full causal analysis (Miller,
2019). They are also naturally good for comparisons, as we can directly compare the
original plan with a plan containing the user foil.

We categorised each why question from the three different domains in the user study
above into a taxonomy of Formal Questions (FQ) which we call the Contrastive Taxonomy.
The Contrastive Taxonomy is shown in Table 2, and shows the frequency of questions asked
by users about the plans produced for the three different domains. This represents a set of
questions that are important for a plan-based system to answer. The questions in categories
FQ1 to FQ7 are of the form “Why A rather than B?” and are clearly contrastive. They are
also local questions because they query decisions made in the plan in terms of actions that
were or were not chosen to be performed and when those actions were performed.

We categorised the questions into the Contrastive Taxonomy by splitting the question
into the fact and the, sometimes implied, contrast case. For example, take the question,
posed by a participant about the first planning situation:

“Why did Son swap with Fisherman?... Fisherman should pick up Daughter”

540

Contrastive Explanations of Plans throughModel Restrictions

The fact is that the Son swapped places on the boat with the Fisherman, and the contrast
case is that the Fisherman should have picked up the Daughter. If, like in this example,
the contrast case was an explicit action which the user expected in place of some other
action in the plan, the question was categorised as type FQ3. If the contrast case was
implicit or explicitly negating the fact, the question was categorised as either type FQ1
or FQ2, depending on the fact. If the user questioned an ordering between two actions
the question was categorised as type FQ5. If the question was in these types FQ1 or FQ2
but referred to a specific time, it was categorised as type FQ4, FQ6 or FQ7. What and how
questions were categorised as type FQ8, as they are not regarded as contrastive questions.
We also categorised any question about the video itself, i.e discrepancies in the animation
as FQ8. Our proposed compilation techniques do not extend to these types of questions.

Table 2 shows that the most commonly asked questions (type FQ2) are about actions
that were performed, rather than absent actions they expected to have been in the plan.
However, when users do question why an action they expected did not happen, they are
more likely to ask it as an explicit contrastive question with respect to some other action that
did happen (type FQ3). Users do not question the times in which actions are performed
(types FQ4, FQ6, FQ7), or the ordering of actions (type FQ5) as much as why an action was
performed or not. The results show that the majority of user questions are constrastive.
The contrast case is more likely to be the negation of the fact (types FQ1, FQ2, FQ4 - 7).
However, a significant proportion of the questions specify a specific action as the contrast
case that the user expected to have been performed instead of the factual action (type
FQ3). This shows that users likely have an idea (mental model) of a plan which they use
to question the factual plan. They might question why an action was performed, when it
was not part of their ideal plan. Or they might question why an action, that was present in
their ideal plan, did not appear in the factual plan.

The small number of questions that were not contrastive or local, how (5) and what (6)
questions, were classed in the final category FQ8. There were also a small number (6) of
why questions that were classified as out of the scope of this paper. A question was classed
as out of the scope of the paper if it was not related to the planning system or the plan
produced. For example, a participant questioned the animation system used to visualise
the plan execution, “Why did the pink square change to green?”. This is not a question
about a decision but the inner workings of the animation software used. Notice that these
questions were still local and contrastive in nature, just not questions relevant to planning
systems and therefore not ones we are concerned with answering.

In Section 4 we present a novel approach to compiling constraints derived from these
questions into planning models to demonstrate the users query. Using the Contrastive
Taxonomy, we can assert the percentage of user questions that we can address with this
approach, as well as gain insights into the different types of questions users ask in real
world examples. Our approach directly addresses formal question types FQ1-7 which
cover all of the contrastive questions asked by the users about plans in the above study.
We can provide compilations of 89.8% of the 168 questions that users asked.

541

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

3. Plans: Queries and Explanations

In this section we provide the formal definitions that support our approach to explanation.
We define the planning model and give a reference example, and then focus on the process
of plan exploration as iterative model restriction.

3.1 Formal Definition of a Planning Problem

Our definition of a planning model follows the definition of PDDL2.1 given by Fox & Long (2003),
extended by a set of time windows and explicit record of the plan metric. The formal de-
scription of such a planning model is as follows.

Definition 1 A planning model is a pair Π = 〈D;Prob〉. The domain D = 〈Ps;Vs;As; arity〉 is
a tuple where Ps is a finite set of predicate symbols, Vs is a finite set of function symbols, As is a
set of action schemas, called operators, and arity is a function mapping all of these symbols to their
respective arity. The problem Prob = 〈Os; I;G;M;W〉 is a tuple where Os is the set of objects in the
planning instance, I is the initial state, G is the goal condition, M is a plan-metric function from
plans to real values (plan costs) and W is a set of time windows.

A set of atomic propositions P is formed by applying the predicate symbols Ps to the
objects Os (respecting arities). One proposition p is formed by applying an ordered set of
objects o ⊆ O to one predicate ps, respecting its arity. For example, applying the predicate
(robot at ?v - robot ?wp - waypoint) with arity 2 to the ordered set of objects {Jerry; sh3} forms
the proposition (robot at Jerry sh3). This process is called “grounding” and is denoted with:

ground(ps; �) = p

where � ⊆ O is an ordered set of objects. Similarly the set of primitive numeric expressions
(PNEs) V are formed by applying the function symbols Vs to Os.

A state s consists of a time t ∈ R, a logical part sl ⊆ P, and a numeric part sv that
describes the values for the PNE’s at that state. The initial state I is the state at time t = 0.

The goal G = g1; :::; gn is a set of propositions, including a subset of the logical state
variables, P and a set of numeric propositions over the numeric variables, V, that must
hold at the end of an action sequence for a plan to be valid. Similarly to propositions and
PNEs, the set of ground actions A is generated by the substitution of objects for operator
parameters. Each ground action is defined as follows:

Definition 2 A ground action a ∈ A has a duration Dur(a) which constrains the length of time
that must pass between the start and end of a; a start (end) condition Pre`(a) (Prea(a)) which must
hold at the state that a starts (ends); an invariant condition Pre↔(a) which must hold throughout
the entire execution of a; add e�ects E� (a)+

`
;E� (a)+

a
⊆ P that are made true at the start and end of

the action respectively; delete e�ects E� (a)−
`
;E� (a)−

a
⊆ P that are made false at the start and end of

the action respectively; and numeric e�ects E� (a)n
`
, E� (a)n

↔, E� (a)n
a

that act upon some n ∈ V.

A plan is a sequence of grounded actions, � = 〈a1; a2; : : : ; an〉 each with a respective time
denoted by Dispatch(ai). We use the definition of plan validity from Fox & Long (2003)
(Definition 15 “Validity of a Simple Plan”). A simple plan is derived from a plan, �, by
taking the end points of the durative actions of � as separate simple (non-durative) actions

542

Contrastive Explanations of Plans throughModel Restrictions

Figure 2: Diagram of the warehouse delivery system domain. SH are shelves, P are
packages, and Tom and Jerry are robots responsible for delivering the packages to their
correct shelves. The black lines indicate the paths the robots can traverse the shelves.

(called happenings) and generating a sequence of times, ti=0:::k and a sequence of states,
si=0:::k+1 such that s0 = I and for each i = 0 : : : k, si+1 is the result of executing the happening
at time ti from state si. The simple plan � is valid if sk+1 |= G (that is, the propositions in G
are satisfied in sk+1 with the standard interpretation of arithmetic operators).

The plan-metric function is, by default, the makespan of the plan to which it is applied.
Therefore usually, and throughout this paper, the higher the metric of the plan the worse the
quality of the plan. More generally, the metric assesses plan quality by taking into account
both the extent to which a plan respects user preferences and also the costs associated with
the choices of action or combinations of actions within a plan. It is often the case that plans
fail to meet expectations because of a mismatch in the way that plans are evaluated.

Each time window w ∈ W is a tuple w = 〈wlb;wub;wv〉 where wv is a proposition which
becomes true or a numeric effect which acts upon some n ∈ V. wlb ∈ R is the time at which
the proposition becomes true, or the numeric effect is applied. wub ∈ R is the time at which
the proposition becomes false. The constraint wlb < wub must hold. Note that the numeric
effect is not applied or reverted at wub, so wub is superfluous for numeric effects.

3.2 Running Example

As a reference example, we use a simplified version of a model of a warehouse delivery
system. There are multiple robots that work to move pallets from their delivery location to
the correct storage shelf. Before the pallets can be stored, the shelf must be set up.

543

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

Figure 3 defines the domain for this model. There are four durative actions, goto waypoint,
set shel f , load pallet, and unload pallet. The goto waypoint action is used for the robots to
navigate the factory, robots can only navigate along set paths and two or more robots
cannot be in the same location at the same time. The set shel f action ensures that the shelf
is ready to store a package (the robot cannot perform this action while holding a pallet).
The load pallet action loads the pallet from a shelf on to the robot. Finally, the unload pallet
action unloads the pallet onto a previously set shelf.

For illustration purposes, we use a very simple problem with two robots, two pallets,
and six waypoints. An example problem is shown in Figure 4, and an example plan for this
planning problem is shown in Figure 5. Figure 5 consists of a sequence of actions each with
two attached values denoting the time they are executed and for how long. A diagram
illustrating this domain is shown in Figure 2. For simplicity, we assume the cost of this
plan is its duration (20.003) which in this case is optimal.4 The domain and problem show
predicates that are used to model the negated form of a predicate, for example not occupied.
These are used because many flavours of PDDL do not allow negative preconditions,
however, the techniques we use in this paper are not dependant on this constraint.

Tying the reference example back to the definitions in Section 3.1, the first action present
in Figure 5 is the operator goto waypoint in Figure 3 grounded with the objects {Tom,sh5,sh6}.
Each operator parameter is substituted with the corresponding object to give a ground
action, this is represented in Figure 6 which shows the duration, conditions, and effects.

For ease of notation we allow access to multiple types of effects or preconditions through
the ground action functions at once. For example for some ground action a, E� + denotes
all add effects of a, Pre`a(a) denotes all start and end preconditions of a but not invariant
conditions, E� (a) denotes all effects of a including numeric effects.

3.3 Iterative Plan Exploration

Fundamentally, the need for plan explanation is driven by the fact that a human and a
planning agent may have different models of the planning problem and different compu-
tational capabilities. In Definition 1 a planning model Π was defined in terms of a domain
D = 〈Ps;Vs;As; arity〉 and problem Prob = 〈Os; I;G;M;W〉. For the purposes of this paper
we assume that the human’s planning model ΠH, and planning agent’s model ΠP share
the same vocabulary, namely the same predicate symbols Ps, function symbols Vs, and
actions As from the domain D, and objects Os from the problem. However, the action
durations, conditions, and effects may be different, and the initial states I, goals G, and
plan metric M may be different. We do not assume that the human knows the planning
agent’s model ΠP, or vice versa. This assumption differs from previous work on model
reconciliation (Chakraborti et al., 2017) in that we do not assume that the planner knows
(or learns) the planning model of the human.

Even when a human and a planning agent have the same planning models ΠH = ΠP,
there are typically multiple plans satisfying this planning model. Although a planner is
intended to optimise the plan with respect to the plan metric, it is common to produce only

4. Optimal under PDDL 2.1 epsilon semantics with epsilon equal to .001. The plan is obtained using the
planner POPF (Coles, Coles, Fox, & Long, 2010). However, our framework theoretically works with any
PDDL2.1 planner.

544

Contrastive Explanations of Plans throughModel Restrictions

(:types

waypoint robot - locatable

pallet)

(:predicates

(robot_at ?v - robot ?wp - waypoint)

(connected ?from ?to - waypoint)

(visited ?wp - waypoint)

(not_occupied ?wp - waypoint)

(set_shelf ?shelf - waypoint)

(pallet_at ?p - pallet ?l - locatable)

(not_holding_pallet ?v - robot))

(:functions

(travel_time ?wp1 ?wp2 - waypoint))

(:durative-action goto_waypoint

:parameters (?v - robot ?from ?to - waypoint)

:duration(= ?duration (travel_time ?from ?to))

:condition (and

(at start (robot_at ?v ?from))

(at start (not_occupied ?to))

(over all (connected ?from ?to)))

:effect (and

(at start (not (not_occupied ?to)))

(at end (not_occupied ?from))

(at start (not (robot_at ?v ?from)))

(at end (robot_at ?v ?to)))

)

(:durative-action set_shelf

:parameters (?v - robot

?shelf - waypoint)

...)

(:durative-action load_pallet

:parameters (?v - robot ?p - pallet

?shelf - waypoint)

...)

(:durative-action unload_pallet ...)

Figure 3: A fragment of a robotics ware-
house delivery domain used as a running
example. Some of the operator bodies have
been omitted for space. The full description
of the goto waypoint action is shown.

(define (problem task)

(:domain warehouse_domain)

(:objects

sh1 sh2 sh3 sh4 sh5 sh6 - waypoint

p1 p2 - pallet

Jerry Tom - robot)

(:init

(robot_at Jerry sh3) (robot_at Tom sh5)

(not_holding_pallet Jerry)

(not_holding_pallet Tom)

(not_occupied sh1) (not_occupied sh2)

(not_occupied sh4) (not_occupied sh6)

(pallet_at p1 sh3) (pallet_at p2 sh6)

(connected sh1 sh2) (connected sh2 sh1)

(connected sh2 sh3) (connected sh3 sh2)

(connected sh3 sh4) (connected sh4 sh3)

(connected sh4 sh5) (connected sh5 sh4)

(connected sh5 sh6) (connected sh6 sh5)

(connected sh6 sh1) (connected sh1 sh6)

(= (travel_time sh1 sh2) 4)

(= (travel_time sh2 sh1) 4)

(= (travel_time sh2 sh3) 8)

(= (travel_time sh3 sh2) 8)

(= (travel_time sh3 sh4) 5)

(= (travel_time sh4 sh3) 5)

(= (travel_time sh4 sh5) 1)

(= (travel_time sh5 sh4) 1)

(= (travel_time sh5 sh6) 3)

(= (travel_time sh6 sh5) 3)

(= (travel_time sh6 sh1) 4)

(= (travel_time sh1 sh6) 4)

)

(:goal (and

(pallet_at p1 sh6)

(pallet_at p2 sh1))))

Figure 4: A fragment of the problem in-
stance used in the running example. The
full initial state and goal state are shown.
The robot’s Tom and Jerry start at shelves
sh3 and sh5 respectively. The pallets p1 and
p2 are at shelves sh3 and sh6 and must be
delivered to sh6 and sh1. The connections
and travel times between the shelves are
shown.

545

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

0.000: (goto_waypoint Tom sh5 sh6) [3.000]

0.000: (load_pallet Jerry p1 sh3) [2.000]

2.000: (goto_waypoint Jerry sh3 sh4) [5.000]

3.001: (set_shelf Tom sh6) [1.000]

4.001: (goto_waypoint Tom sh6 sh1) [4.000]

7.001: (goto_waypoint Jerry sh4 sh5) [1.000]

8.001: (set_shelf Tom sh1) [1.000]

8.002: (goto_waypoint Jerry sh5 sh6) [3.000]

9.001: (goto_waypoint Tom sh1 sh2) [4.000]

11.002: (unload_pallet Jerry p1 sh6) [1.500]

12.503: (load_pallet Jerry p2 sh6) [2.000]

14.503: (goto_waypoint Jerry sh6 sh1) [4.000]

18.503: (unload_pallet Jerry p2 sh1) [1.500]

Figure 5: The solution plan from the domain and problem shown in Figures 3 and 4, with
a cost of 20.003.

(:ground-action goto_waypoint Tom sh5 sh6

:duration (= 3.000)

:condition (and

(at start (robot_at Tom sh5))

(at start (not_occupied sh6))

(over all (connected sh5 sh6)))

:effect (and

(at start (not (not_occupied sh6)))

(at end (not_occupied sh5))

(at start (not (robot_at Tom sh5)))

(at end (robot_at Tom sh6)))

)

Figure 6: The operator goto waypoint from the domain in Figure 3 grounded with the
objects Tom, sh5, and sh6 to form the ground action (goto waypoint Tom sh5 sh6).

one of the valid plans, rather than an optimal plan for a model. A planner might even fail
to produce a plan at all, for some problems. In part, this is an inevitable consequence of the
undecidability of planning problems with numeric variables and functions (Helmert, 2002),
but it is also a consequence of the practical limits on the computational resources available
to a planner (time and memory). These observations are equally valid for automated and
human planners. In order to discuss the process of developing plan explanations, it is
helpful to define the planning abilities of both the planner and the user. We model the
planning capability of an agent as a partial function from planning models to plans:

Definition 3 The planning capability of an agent A (human or machine), is a partial function,
CA, from planning models to plans. Given the agent’s planning model, ΠA, if CA(ΠA) is defined,
then it is a candidate plan �A for the agent.

The planning capability CA, can be affected by a multitude of factors. The part of
the function domain on which CA is defined determines the planning competency of the
agent – domain-problem pairs for which the agent cannot find a plan lie outside this

546

Contrastive Explanations of Plans throughModel Restrictions

competency. Note that the planning competency of an agent can be restricted by a bound
on the computational resources the agent is allowed to devote to the problem, as well as
by the capabilities of the agent in constructing and adequately searching the search space
that the problem defines. When A is an automated AI planner P, the computational ability
is determined by the search strategy implemented in the planner, its heuristic (if there is
one), and the resources allocated to the task. For sound planners, when CP(ΠP) is defined
it is a valid plan for ΠP.

When A is a human planner H, the planning capability is determined by the under-
standing that the human has of the planning model and the patience and problem-solving
effort they are willing to devote to solving the problem. It cannot be assumed that, if
CH(ΠH) is defined, that the human’s model ΠH accurately reflects the world, or that the
reasoning CH is sound. This means that the plan may not be valid. One aspect of the pro-
cess of planning and explanation is that the user can revise their model ΠH as the process
unfolds. However, it is also possible that the user can change their planning capability CH,
by coming to a greater understanding of the model, by engaging in more reasoning, or by
simply concluding that the solution provided by an automated system is satisfactory. It
is also possible that the planner responses lead to the user changing their view of what
might be a good plan to solve a problem, while still not adopting the solution offered by the
planner. Thus, the user’s planning model and capability might be extended or modified
by consideration of the planner output or question responses. This revision might include
correcting flawed plans produced by the original planning model and capability of the
user.

In this paper, we do not explicitly attempt to model any learning process on the part
of the human, although we allow that this may happen. Furthermore, we do not consider
any learning by the planning agent. Instead, we adopt the approach that the human user
asks contrastive questions that impose additional restrictions � on the agent’s planning
problem ΠP to generate a succession of hypothetical planning problems. The object of
these questions and the resulting hypothetical plans is for the user to understand and
ultimately arrive at a satisfactory plan. Model learning and reconciliation by the human
and planning agent can be seen as complementary techniques that could make this process
more effective and more efficient.

Given the planning models ΠH and ΠP, and planning capabilities CH and CP of a human
and planning agent, the two agents disagree when CH(ΠH) , CP(ΠP), which can arise in the
case that either of these terms is undefined, or if both terms are defined and yield different
plans. We assume that, in this case, the user is capable of inspecting the planner output and
determining a question that will expose some part of the explanation for this difference.
By questioning why certain decisions were made in the plan and receiving contrastive
explanations the user can gain an initial understanding. As their understanding of the
plan develops they can ask more educated questions to gain a deeper understanding or
try to arrive at an alternative plan that they consider more satisfactory. Ultimately, this
process concludes when the user is satisfied with some plan. In an ideal case, this will
be when the user and the planner have converged on the same plan, but this need not
happen. For example, suppose CP(ΠP) = � and CH(ΠH) = �′ and � , �′. The user might
inspect � and, after seeking explanation for the differences between it and �′, conclude that
there is some deficiency in the planner’s model ΠP or planner’s reasoning CP and therefore

547

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

decide that �′ is the plan they want. Thus, the sequence, in this case, might conclude with
the user rejecting the plan offered by the planner and not changing their own model or
computational ability at all.

We formalise the iterative process of questioning and explanation as one of successive
model restriction, in which the user asks contrastive questions in an attempt to understand
the planning agent’s plan and potentially steer the planning agent towards a satisfactory
solution. We suppose that, when CH(ΠH) , CP(ΠP), the user can construct some foil, �, in
the form of a constraint that CP(ΠP) does not satisfy, so that seeking an explanation for the
plan, CP(ΠP), can be seen as seeking a plan for ΠP that also satisfies �. This requirement
acts as a restriction on ΠP and is captured as follows.

Definition 4 A constraint property is a predicate, �, over plans.
A constraint operator,× is defined so that, for a planning model Π and any constraint property

�, Π × � is a model (an HModel), Π′, called a model restriction of Π, satisfying the condition
that any plan for Π′ is a plan for Π that also satisfies �. A plan for an HModel is refered to as an
HPlan.

The process in which the user interacts with a planner is an iterative one – the user
successively views plans and seeks explanations by generating foils that impose additional
restrictions on the planning problem. The collection of model restrictions forms a tree,
rooted at the original model and extended by the incremental addition of new constraint
properties, as shown in Figure 7. The user can visit the nodes of this tree in any order.
As the user inspects the result of applying CP to a node in this tree, their own planning
model and capability, ΠH and CH, may change, reflecting accumulating understanding of
the plans that can be constructed for the model. As a result, the order in which the user
visits the nodes matters and can lead to different outcomes. One possible path, showing
the evolving capability and model for the user, is shown in Figure 8. This figure should not
be interpreted as implying that the user must explore the tree in a systematic way. It is also
worth emphasising that any constraint, �, may be added to any model, so that the user is
not forced to develop a tree of models in any particular way to arrive at the consequence
of adding any specific constraint to a model.

We call what we have described above the Iterative Plan Exploration Process. In this
process the user explores possible plans through a sequence of questions that impose
model restrictions on the planning system. This problem can arise for many reasons. In
the case where a user has an expectation of what the plan should look like that differs from
the proposed plan, the user may not accept the proposed plan without understanding why
it was produced, or exploring other plan options. A user might be unsure of the quality of
the plan but not have the reasoning capabilities to properly evaluate the plan quality. The
user can explore how alternate actions and decisions that could have been made in the plan
affect the plan quality. This will either refute or support their concerns, that either the plan
they were presented was of good quality or that there is a plan of better quality. If a better
plan cannot be found under the added constraint, this might allay their concerns, while, if
a better plan is found, it will confirm the user’s suspicions. In either case, the user might
go on to explore additional constraints, in search of a better plan, or to better understand
the space of possible plans. A user might have hidden preferences that are not modelled,
and through the addition of constraints can make sure that the plan behaves in such a way

548

Contrastive Explanations of Plans throughModel Restrictions

ΠP

ΠP
× �1 ΠP

× �2 ΠP
× �3

ΠP
× �1 × �4 ΠP

× �1 × �5 ΠP
× �3 × �x

ΠP
× �1 × �4 × �y

Figure 7: A fragment of a tree of model restrictions for a planner P. Each node ni in the tree
is a model restriction of the model of it’s parent node ni−1, and a constraint �i:

ΠP

ΠP
× �1 ΠP

× �3

ΠP
× �1 × �2

CH
0User’s initial Planning Capability:

CP
�
ΠP
× �1 × �2

�
CH

3 ; ΠH
3 ; �3

CP
�
ΠP
× �3

�
CH

4 ; ΠH
4 ; �4

CP
�
ΠP
× �1

�
CH

2 ; ΠH
2 ; �2

CH
1 ; ΠH

1 ; �1

CP
�
ΠP

�
First interaction:

Figure 8: An example of a sequence of interactions between a user and a planner. At
each interaction the user updates their planning model and capability, identifies a new
constraint, which may or may not incorporate previous constraints. The order in which
nodes are explored, as indicated by the dotted line, is entirely under the control of the user.

549

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

that their preferences are fulfilled. Alternatively, the user might simply want to increase
their understanding of the model by questioning why certain decisions were made in the
plan before they are willing to accept it.

In each of these cases, reasoning about what did not happen in the plan can give one
a deeper understanding of the decisions made in the plan and simultaneously allow one
to explore potentially more suitable plan candidates. The user is offered the opportunity
to consider what did not happen in a plan (in particular, why a plan does not satisfy some
constraint), by asking the contrastive question “why is the plan for this model as it is and not
one that also satisfies the constraint �?”. As indicated earlier, we require that the user and
the system share the same vocabulary. This qualification ensures that any user restriction
� can actually be understood by the planner – i.e. that the model ΠP makes sense. As a
result, the user can restrict a model in a way that prevents the planner from using an action
in states where some condition is not satisfied, effectively adding a precondition to that
action. Similarly, the model can be restricted to prevent the planner from exploiting an
effect of an action, by constraining the actions that can be applied after the particular action.
Although this process will not allow the user to add arbitrary preconditions or eliminate
arbitrary effects (since the states that are generated remain faithful to the model the planner
is actually using), this observation makes the point that the model restrictions can include
close approximations to model revisions that act directly on the actions themselves.

An example that illustrates a fragment of the iterative plan exploration process is as
follows. Using the model Π shown in Figures 3 and 4 and the plan � shown in Figure 5,
the user might think that the action (goto waypoint Jerry sh4 sh5) should not be present in
the plan (�), so Π×� = Π′, a model constrained to ensure that (goto waypoint Jerry sh4 sh5)
is not used. Π can be considered to be the root of a tree such as that shown in Figure 7 and
Π′, derived by the addition of the constraint posed above, can be seen as the first branch
to the left in that figure. A plan �′ for Π′ then represents an alternative way to solve Π,
without using the action (goto waypoint Jerry sh4 sh5). Whether such a plan can be found
by the planner depends on CP (as seen in Figure 8) and whether the user has such a plan
in mind will depend on CH

0 . The evolution of the interaction between the user and system
now depends on whether the new plan, �′, if it is successfully generated, prompts further
questions and corresponding constraints, or satisfies the user.

The new plan �′ might not entirely satisfy the user’s curiosity. It might trigger new
questions or still not satisfy the user’s expectations. The user can explore the space of
plans by iteratively extending and specifying the foil �, until they are satisfied with the
result or cease to find the interaction rewarding. Although the user’s perspective is opaque
to the system, so that it is impossible to know whether the user accepts one of the plans
generated in this exchange, or is persuaded that the system or the user has a flawed model.
Nevertheless, our user study (reported in Section 6.2) suggests that the explanations have
the intended effect of supporting a user in better understanding of the way that the first
proposed plan represents a good solution to the original problem.

It should be noted that, depending on the planning models and capabilities of the
two participants, there might not exist any constraint achieving a common solution. For
example, in the degenerate case in which CP produces no plan at all, for any value of�, then
there can be no mutually satisfactory plan. Typically, the greater the differences between

550

Contrastive Explanations of Plans throughModel Restrictions

the planning models and capabilities of the two agents, the more likely it will be that there
is no common satisfactory plan.

We formally capture the iterative process of model restriction and planning as:

Definition 5 Iterative Model Restriction For a planner P, and a user H: Let CP and ΠP be
the planner’s underlying capability and planning model and CH

0 and ΠH
0 be the initial capability

and planning model of H. Let �i be the set of user imposed constraints, which is initially empty,
i.e. �0 = ∅. Each stage, i (initially zero), of this process starts with the planner producing a plan
�P

i = CP(ΠP
i) for the model ΠP

i = ΠP
× �i.

The user responds to this plan �P
i by potentially updating their capability and model to CH

i+1
and PiHi+1 and then either terminating the interaction, or asking a question that imposes a new
constraint �i+1 on the problem. This results in the planner solving a new constrained problem
ΠP

i+1 = ΠP
× �i+1 at the next step.

Although it is possible that the planner will fail to produce a plan at some stage, i, we do
not address the problem of explaining the unsolvability of plans in this paper (Göbelbecker
et al., 2010; Sreedharan et al., 2019). Nevertheless, the failure will be observed by the user
and it can trigger a decision to either select a previous plan �P

j for some j < i, or explore a
new constraint �i+1 for the next iteration.

We have assumed here that the planner’s underlying capability and planning model
CP and ΠP do not evolve during the process. While this is not strictly necessary, possible
evolution or improvement of the planner capabilities and model based on the sequence of
user questions and the resulting �i is an issue we do not consider here. In contrast, the
user’s capability and planning model CH and ΠH are assumed to evolve, but in unknown
ways. Again, we do not attempt to model the user’s learning process.

3.4 Ending Exploration

The process we have described is one in which a user explores a tree of model restrictions,
rooted at the original model. At each node in the tree the planner will produce some output
(although possibly no plan) and the user will revise their personal planning model and
capability. This revision might be trivial, in that the user might simply retain the model
and capability they held at the previous iteration. The model revisions need not converge
in any sense, but at some point the exploration will end. We now briefly consider the status
of the exploration at the conclusion of an interaction.

One way that the exploration can end is that the plan produced for the final model
yields a plan that is acceptable to the user, so that the user adopts this plan for the original
model. This is a case where the system and the user converge on a plan that is mutually
agreed to be a solution to the original model, meeting conditions that might or might not
have been part of the original model and that the user might or might not have envisaged
at the outset of the exploration.

Another way the exploration can end is with the user having explored the plans for
several models and, finally, having been persuaded in this process that the first plan
produced by the planner for the original model is actually the desired plan, the user
modifies their planning model and capability so that this is a plan for the original model of
the planner and revised model of the user. Again, this is a mutually agreed plan, but in this

551

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

case it is not the last plan produced, but the first; the exploration process in this case acts
to help the user to arrive at a point where they are persuaded that it is the plan that they
want. In contrast to the first case, where the user might not ever modify their planning
model or capability, in this second case the user must modify their planning model and
capability to accept the plan for the original planner model. This process is the idealised
form of plan explanation we anticipate: the user explores the plans for restricted models
in order to understand why the original plan is the correct plan for the problem and they
adapt their own planning model and capability to reflect this conclusion.

The exploration can also result in the selection of a plan somewhere between these two
extremes, with the user deciding to adopt a plan produced for some previous model in
the exploration, modifying their planning model and capability to include this mutually
agreed plan.

A final outcome is one in which the user explores the space and then rejects all of the
plans the planner offers. In this case, the user might modify their planning model and
capability as a consequence of what they observe and they might or might not conclude
the process with a satisfactory plan for the original model. In this case, there is no mutually
agreed plan and the exploration might not even have helped the user arrive at any useful
conclusions about the problem.

Despite the fact that all of these outcomes are possible, it is impossible to determine,
from the perspective of the system, which of them has been achieved at the end of the
exploration. The system has no access to the planning model or capability of the user
and does not construct queries to probe it. The hypothesis we explore, in the user study
we describe in Section 6.2, is that the user will usually find value in the exploration and
conclude in one of the three cases in which a mutually agreed plan is identified. As can
be seen, it remains impossible to be sure which plan is the mutually agreed plan at the
conclusion of the exploration.

4. Model-Based Compilations

Armed with a formal description of the interactive process of model refinement that under-
pins the construction of our explanations, we now consider how the system can generate
plans for the series of models generated in the process. In particular, given a planning
model Π and a constraint �, we aim to construct a plan for Π × �. The approach we adopt
is to compile the constraint � into the model Π, so that Π × � can be presented to a generic
planner as another model to be solved. This approach avoids embedding the iterative
process inside a planner, instead using a planner as a service inside the process of iterative
model refinement.

Although the point was not explicitly addressed in Definitions 4 and 5, it is not neces-
sarily possible to combine an arbitrary constraint, �with a model Π to yield a model Π×�
that is expressible in the language we use to describe our planning models (Definition 1).
The compilation strategy exploits the case in which Π×� can be expressed in our modelling
language and, in this section, we demonstrate how this is achieved for a collection of differ-
ent forms for �. In the case where the user wishes to capture some constraint that cannot
be captured in this way, it is often possible to incrementally converge on a model restriction
that approximates the constraint, by the addition of constraints that can be expressed and

552

Contrastive Explanations of Plans throughModel Restrictions

that steadily remove parts of the plan space that violate the intended constraint. This pro-
cess is discussed further in Section 4.9, and is analogous to the addition of cuts to a linear
program in order to find a solution to an integer program. The constraints in this section,
for which we present compilations, were chosen in response to the user study presented in
Section 2 and are examples of real questions for which users sought explanations.

The addition of a constraint to a model never increases the collection of feasible solu-
tions, and so might make the search for a solution harder. There are two reasons that this
intuition might not match observations. First, let us consider the construction of feasible
solutions by an incremental series of choices to variables (such as actions added to the head
of a developing plan, as in forward search planning). The addition of constraints will prune
the collection of feasible solutions in this space, but it can also prune states in the search
space which previously could lead to goal states, but now lead to a dead end. That is, the
constraints can act to prune partial solutions that previously appeared promising, leading
to a reduction in search in that part of the space. Secondly, where solutions are constructed
by search, the addition of features to the model can lead to choices being explored in a dif-
ferent order, possibly for entirely implementation-dependent reasons (such as reordering
of action choices inside an internal data-structure, based on order of grounding). These
changes can lead to unpredictable effects on the performance of a planner, possibly leading
to a lucky reduction of search or an unlucky increase in search. These effects will be ob-
served in all search-based solvers and different families of constraints might interact with
the solution strategy of specific planners in different ways. For example, adding timed-
effects to the initial conditions of a problem for popf (Coles et al., 2010) can create additional
choice branches at every step in the construction of a plan. In Section 6 we explore the
effects of the compilations on performance for a range of representative examples.

4.1 Explanation Problem

Definition 6 An explanation problem is a tuple E = 〈Π; �;Q〉, in which Π is a planning model
(Definition 1), � is the plan generated by the planner, and Q is the specific question posed by the
user.

Motivated by the outcome of the user study described in Section 2, we are interested
when the user question Q is a contrastive question of the form “Why A rather than B?”,
where A occurred in the plan and B is the hypothetical alternative expected by the user.
This question can be captured as a constraint that enforces the foil. A foil is normally
partial – i.e. a set of additional constraints on the form of the solution rather than being
a complete alternative. This fits with the framing of this entire process as being one of
iterative model restriction. As discussed in Section 2 explicitly stating the foil makes the
question unambiguous, so we ensure that questions are asked in this form.

As in our user study, we assume that the user knows the model Π and the plan �, so
responses such as stating the goal of the problem will not increase their understanding.
Based on the outcome of the user study, we provide a formal description for compilations
of the questions in the Contrastive Taxonomy (Table 2), reiterated here:

• FQ1 - Why is action a not used in the plan, rather than being used? (Section 4.2)

• FQ2 - Why is action a used in the plan, rather than not being used? (Section 4.3)

553

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

• FQ3 - Why is action a used in state s, rather than action b? (Section 4.4)

• FQ4 - Why is action a not performed before (after) action b, rather than a being
performed after (before) b? (Section 4.5)

• FQ5 - Why is action a used outside of time window w, rather than only being allowed
within w? (Section 4.6)

• FQ6 - Why is action a not used in time window w, rather than being used within w?
(Section 4.7)

• FQ7 - Why is action a used at time t, rather than at least some time t′ after/before t?
(Section 4.8)

This section formalises the compilations of the questions in the Contrastive Taxonomy to
produce an HModel Π′ = Π×�, where� is a constraint derived from Q and Π is a PDDL2.1
model (Fox & Long, 2003). The HModel Π′ is:

Π′ = 〈〈Ps′;Vs;As′; arity′〉; 〈Os; I′;G′;W′〉〉

After the HModel is formed, it is solved to give the HPlan. Any new operators that
are used in the compilation to enforce some constraint are trivially renamed to the original
operators they represent. For each iteration of compilation the HPlan is validated against
the original model Π.

4.2 Add an Action to the Plan

Given a plan �, a formal question Q is asked of the form:

Why is the operator o with parameters � not used, rather than being used?

For example, given the example plan in Figure 5 the user might ask:

“Why is (load pallet Tom p2 sh6) not used, rather than being used?”

They might ask this because a goal of the problem is to load and move the pallet p2 to shelf
sh1. As the robot Tom moves to shelf sh6 where the pallet p2 is located early in the plan,
and the pallet p2 is located at sh6 and the shelves sh6 and sh1 are connected, it might make
sense to the user for the robot Tom to deliver this pallet.

To generate the HPlan, a compilation is formed such that the action a = ground(o; �)
must be applied for the plan to be valid. The compilation introduces a new predicate
has done a, which represents which actions have been applied. Using this, the goal is
extended to include that the user suggested action has been applied. The HModel Π′ is:

Π′ = 〈〈Ps′;Vs;As′; arity′〉; 〈Os; I;G′;W〉〉

where

• Ps′ = Ps ∪ {has done a}

• As′ = {oa} ∪ As \ {o}

554

Contrastive Explanations of Plans throughModel Restrictions

• arity′(x) = arity(x); ∀x ∈ arity

• arity′(has done a) = arity′(oa) = arity(o)

• G′ = G ∪ {ground(has done a; �)}

where the new operator oa extends o with the add effect has done a with corresponding
parameters, i.e.

E� +
a

(oa) = E� +
a

(o) ∪ {has done a}

For example given the user question above where a = ground(load pallet; {Tom; p2; sh6}),
the operator load pallet from the running example is extended to load pallet prime with the
additional add effect has done load pallet. The new operator is shown in the PDDL2.1 syntax
in Figure 9.

(:durative-action load_pallet_prime

:parameters (?v - robot ?p - pallet ?shelf - waypoint)

:duration(= ?duration 2)

:condition (and

(over all (robot_at ?v ?shelf))

(at start (pallet_at ?p ?shelf))

(at start (not_holding_pallet ?v)))

:effect (and

(at start (not (pallet_at ?p ?shelf)))

(at start (not (not_holding_pallet ?v)))

(at end (pallet_at ?p ?v))

(at end (has_done_load_pallet ?v ?p ?shelf)))

)

Figure 9: The operator load pallet prime which extends the original operator load pallet with
the new add effect has done load pallet.

The goal is then extended to include the proposition: (has done load pallet Tom p2 sh6).
The HPlan produced from solving the HModel described is shown in Figure 10.

0.000: (goto_waypoint Tom sh5 sh6) [3.000]

0.000: (load_pallet Jerry p1 sh3) [2.000]

2.000: (goto_waypoint Jerry sh3 sh4) [5.000]

3.001: (set_shelf Tom sh6) [1.000]

4.001: (goto_waypoint Tom sh6 sh1) [4.000]

7.001: (goto_waypoint Jerry sh4 sh5) [1.000]

8.001: (set_shelf Tom sh1) [1.000]

9.001: (goto_waypoint Tom sh1 sh6) [4.000]

13.001: (load_pallet Tom p2 sh6) [2.000]

15.001: (goto_waypoint Tom sh6 sh1) [4.000]

19.001: (unload_pallet Tom p2 sh1) [1.500]

19.002: (goto_waypoint Jerry sh5 sh6) [3.000]

22.002: (unload_pallet Jerry p1 sh6) [1.500]

Figure 10: The HPlan containing the user suggested action load pallet Tom p2 sh6 with a
duration of 23.502

555

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

4.2.1 Justified Actions and Expected Plans

Usually, a user asks a contrastive question about a plan when they expected a different
outcome or some sub-goal to be achieved in a certain way. In the example shown in 4.2, the
user expected the robot Tom to load the pallet p2 onto the shelf sh6, which their question
reflects. It is clear why the user asked this question as it fully describes the goal they
wish to achieve and how to achieve it. The constraint derived from this question causes
an immediate impact in the plan. The package is delivered using a different robot than
previously. However, the objective of some questions are not as clear. For example, if a
user questioned “Why is (set shelf Tom sh4) not used, rather than being used?”, it is not
clear what they intend to achieve with this action. The HPlan produced from the HModel
containing the constraint for this question is shown in Figure 11. The plan starts with some
preliminary movement actions that allow the robot Tom to set up the required shelf sh4.
Tom then traverses to the shelf sh6, the plan then continues the same as the original plan in
Figure 5. The action (set shelf Tom sh4) does not affect the plan and it would still be valid if
the action were removed. The reason for this could be due to the plan that utilises the action
being more expensive, or it could be due to it not being possible for the action (set shelf Tom
sh4) to achieve anything useful. However, it could also be because the planner could not
find a plan where the action is used in such a way that it contributes to the goal. For this
reason, a user may not be satisfied with an HPlan where the action is not used in a way that
is necessary for achieving a goal, we discuss what this means in more detail in Section 4.10.
Although the compilations formalised in this section do not guarantee that any actions that
a user suggests are necessary for achieving a goal, the rest of this subsection provides a
step towards this with the description and formalisation of a compilation.

0.000: (load_pallet jerry p1 sh3) [2.000]

0.000: (goto_waypoint tom sh5 sh4) [1.000]

1.001: (set_shelf tom sh4) [1.000]

2.001: (goto_waypoint tom sh4 sh5) [1.000]

3.002: (goto_waypoint jerry sh3 sh4) [5.000]

3.002: (goto_waypoint tom sh5 sh6) [3.000]

6.002: (set_shelf tom sh6) [1.000]

7.002: (goto_waypoint tom sh6 sh1) [4.000]

8.003: (goto_waypoint jerry sh4 sh5) [1.000]

11.002: (set_shelf tom sh1) [1.000]

11.003: (goto_waypoint jerry sh5 sh6) [3.000]

12.002: (goto_waypoint tom sh1 sh2) [4.000]

14.003: (unload_pallet jerry p1 sh6) [1.500]

15.504: (load_pallet jerry p2 sh6) [2.000]

17.504: (goto_waypoint jerry sh6 sh1) [4.000]

21.504: (unload_pallet jerry p2 sh1) [1.500]

Figure 11: The HPlan with a cost of 23.004 generated to satisfy the constraint derived from
the question “Why is (set shelf Tom sh4) not used, rather than being used?”.

The compilation works by tracking the facts that have been produced through effects
of actions that the user suggested action � has causally supported. One of these facts then
has to be a goal fact. Therefore, there is a causal chain from � to a goal and the action �

556

Contrastive Explanations of Plans throughModel Restrictions

is necessary for achieving the goal in any plan produced by a model with this constraint
applied. For example this compilation ensures that, in the HPlan �′, there will be a causal
chain, � ⊆ �′ = 〈�; a1; a2; : : : ; an〉 where for the state sn+1 after an is finished executing and
some g ∈ G then sn+1 |= g, and for all actions ai ∈ � if ai was removed then �′ 6|= G, assuming
g is not already satisfied in the initial state.

To generate an HPlan that adheres to these properties and satisfies the user question
“Why is a = (set shelf Tom sh4) not used, rather than being used?”, the model is compiled
in the following way. A new operator oa is created which has the same preconditions and
effects as a, but for each positive effect, has a new effect which adds a copy of the fact,
we call this the prime-fact. A new operator is then created for each precondition p for
each operator o in the domain. The precondition to this new operator is the same as o
with a new precondition primep. The effects are the same as o but for each positive effect
the corresponding prime-fact is also made true. These new actions behave the same as
the existing actions in the domain, but they propagate the causal chains originating from
a through the prime-facts. A final set of operators is added for each goal which can be
applied if both a goal and it’s corresponding prime-fact are true, and at least one of these
actions must appear in the plan for it to be valid. This is a work around used because
the majority of PDDL2.1 planners do not accommodate disjunctive goals, however, this
can be simplified by changing the goal to G ∧ (∨i=0(gi ∧ primegi)). If a goal has already
been achieved by another action in the plan that is not part of the causal chain from a then
this action can no longer be applied. The causality of the actions is tracked through these
prime-facts and for any valid plan there will exist a goal that can have it’s origin traced
through prime-facts back to the user suggested action a.

The HModel Π′ is:

Π′ = 〈〈Ps′;Vs;As′; arity′〉; 〈Os; I′;G′;W〉〉

where:

• Psp = {primep;∀p ∈ Ps}

• Gp = {goal primep;∀p ∈ Ps where ground(p; �) = g ∈ G for some �}

• Ps′ = Ps ∪ {has done a; can do a; true;Psp;Gp}

• As′ = As ∪ {oa} ∪ {conjunctxp;∀x ∈ As : ∀p ∈ Pre`a(x)} ∪ {check conjunctg;∀g ∈ Gp}

• arity′(x) = arity(x); ∀x ∈ Ps

• arity′(goal primep) = arity(p); ∀p ∈ Ps where ground(p; �) = g ∈ G for some �}

• arity′(primep) = arity(p); ∀p ∈ Ps

• arity′(has done a) = arity′(can do a) = arity′(oa) = arity(o)

• arity′(true) = ∅

• I′ = I ∪ {ground(can do a; �) ∪ {ground(goal primep; �′);∀p ∈ Gp where ground(p; �′) =
g;∀g ∈ G}

557

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

• G′ = G ∪ {ground(has done a; �)} ∪ true

and the actions are defined such that the preconditions and effects are:

Pre`(oa) = Pre`(o) ∪ {can do a}
E� +
a

(oa) = E� +
a

(o) ∪ {has done a}
∪ {primey ∈ Psp;∀y ∈ E� +

`a
(o)}

Pre`a(conjunctxp) = Pre`a(x) ∪ primep;∀x ∈ As : ∀p ∈ Pre`a(x)
E� +
`a

(conjunctxp) = E� +
`a

(x) ∪ {primey ∈ Psp;∀y ∈ E� +
`a

(x)};∀x ∈ As : ∀p ∈ Pre`a(x)
Dur(check conjunctg) = �where � is a very small number;∀goal primeg ∈ Gp
Pre`(check conjunctg) = primeg ∪ goal primeg;∀g ∈ Ps′where primeg ∈ Psp

∧goal primeg ∈ Gp
E� +
`a

(check conjunctg) = true
E�−
a

(o) = E�−
a
∪ {goal primeg;∀g ∈ E� +

`a
(o) where goal primeg ∈ Gp};∀o ∈ As

The plan for this is shown in Figure 12 where the action (set shelf tom sh4) is necessary
for performing the action (unload pallet tom p1 sh6) which achieves the goal (pallet at p1 sh6).
However, this compilation does not guarantee that the action a will be perfectly justified in
the plan �, that is that there is no set of actions A where a ∈ A and A ⊆ �, such that if you
removed the set of actions A then � |= G (Fink & Yang, 1992). This means that there are no
groups of actions that together are redundant in the plan. This is not the case for the HPlan
in Figure 12, if the set of actions {(done-set shelf tom sh4), (unload pallet-2-conjunct tom

0.000: (goto_waypoint jerry sh3 sh2) [8.000]

0.000: (goto_waypoint tom sh5 sh4) [1.000]

1.001: (done-set_shelf tom sh4) [1.000]

8.001: (goto_waypoint jerry sh2 sh1) [4.000]

8.001: (goto_waypoint tom sh4 sh3) [5.000]

12.002: (set_shelf jerry sh1) [1.000]

13.001: (load_pallet tom p1 sh3) [2.000]

13.002: (goto_waypoint jerry sh1 sh6) [4.000]

15.001: (goto_waypoint tom sh3 sh4) [5.000]

17.002: (set_shelf jerry sh6) [1.000]

18.002: (load_pallet jerry p2 sh6) [2.000]

20.001: (unload_pallet-2-conjunct tom p1 sh4) [1.500]

20.002: (goto_waypoint jerry sh6 sh1) [4.000]

21.502: (load_pallet-0-conjunct tom p1 sh4) [2.000]

23.502: (goto_waypoint tom sh4 sh5) [1.000]

24.002: (unload_pallet jerry p2 sh1) [1.500]

24.503: (goto_waypoint tom sh5 sh6) [3.000]

27.503: (unload_pallet-0-conjunct tom p1 sh6) [1.500]

29.003: (check-conjunct-pallet_at p1 sh6 true) [0.100]

Figure 12: The HPlan with a cost of 29.003 generated to satisfy the constraint derived from
the question “Why is (set shelf Tom sh4) not used, rather than being used?”, such that the
action is necessary in the plan for achieving a goal. The action names are trivially renamed
back to their corresponding actions, and the action (check-conjunct-pallet at p1 sh6 true)
is removed.

558

Contrastive Explanations of Plans throughModel Restrictions

p1 sh4), (load pallet-0-conjunct tom p1 sh4)} is removed, the plan is still valid. To attempt
to determine whether there is a plan where a is perfectly justified would likely require an
extended search over these redundancy sets. This search would be the repeated process
of disallowing an action in the redundancy set to be applied in the plan, re-planning, and
generating the new redundancy set. The search would end when a plan is found where the
action is used in a perfectly justified way, or all the redundancy sets have been searched
over and no plan was found, meaning the action cannot be used in a perfectly justified
way.

This approach also works if the goal contains primitive numeric expressions in the same
way. Any effects that alter the values of PNEs, will duplicate the behaviour with a prime-
effect. The goal is checked in the same way as with a simple proposition. For example, if
an action � decreases the value of a PNE n, and there is a goal such that 5 < n < 10 is true at
the end of the plan. Then � affects primen in the same way as it does n and both 5 < n < 10
and 5 < primen < 10 must be true at the end of the plan for it to be valid.

This approach can be adapted for use in the compilations for all formal questions apart
from FQ2 where it would have no use as an action is removed rather than added.

4.3 Remove a Specific Grounded Action

Given a plan �, a formal question Q is asked of the form:

Why is the operator o with parameters � used, rather than not being used?

For example, given the example plan in Figure 5 the user might ask:

“Why is (goto waypoint Tom sh1 sh2) used, rather than not being used?”

A user might ask this because Tom has already set up all of the shelves that are required.
The user might question why Tom is doing this extra action.

The specifics of the compilation is similar to the compilation in Section 4.2. The HModel
is extended to introduce a new predicate not done action which represents actions that have
not yet been performed. The operator o is extended with the new predicate as an additional
delete effect. The initial state and goal are then extended to include the user selected
grounding of not done action. Now, when the user selected action is performed it deletes
the new goal and so invalidates the plan. This ensures the user suggested action is not
performed.

For example, given the user question above, an HPlan is generated that does not include
the action (goto waypoint Tom sh1 sh2), and is shown in Figure 13. This shows a plan with a
longer duration than the original plan shown in Figure 5. In this HPlan Tom has to deliver
pallet p2 because he is occupying shelf sh1 and cannot vacate it by going to shelf sh2. This
means Jerry cannot pass by him to deliver the pallet more efficiently.

4.4 Replacing an Action in a State

Given a plan �, a formal question Q is asked of the form:

Why is the operator o with parameters � used in state s, rather than the operator n with
parameters �′? where o , n or � , �′

559

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

0.000: (goto_waypoint Tom sh5 sh6) [3.000]

0.000: (load_pallet Jerry p1 sh3) [2.000]

2.000: (goto_waypoint Jerry sh3 sh4) [5.000]

3.001: (set_shelf Tom sh6) [1.000]

4.001: (goto_waypoint Tom sh6 sh1) [4.000]

7.001: (goto_waypoint Jerry sh4 sh5) [1.000]

8.001: (set_shelf Tom sh1) [1.000]

9.001: (goto_waypoint Tom sh1 sh6) [4.000]

13.001: (load_pallet Tom p2 sh6) [2.000]

15.001: (goto_waypoint Tom sh6 sh1) [4.000]

19.001: (unload_pallet Tom p2 sh1) [1.500]

19.002: (goto_waypoint Jerry sh5 sh6) [3.000]

22.002: (unload_pallet Jerry p1 sh6) [1.500]

Figure 13: The HPlan without the action (goto waypoint Tom sh1 sh2) with a duration of
23.502

For example, given the example plan in Figure 5 the user might ask:

“Why is (set shelf Tom sh6) used, rather than (load pallet Tom p2 sh6)?”

The user might ask this because a goal of the problem is to deliver the pallet p2 to the
shelf sh1. As Tom is by the pallet, the user might question why Tom does not load the pallet
in order to deliver it instead of setting up the shelf sh6.

To generate the HPlan, a compilation is formed such that the ground action b =
ground(n; �′) appears in the plan in place of the action ai = ground(o; �). Given the ex-
ample above b = ground(load pallet; {Tom; p2; sh6}), and ai = ground(set shel f ; {Tom; sh6}).
Given a plan:

� = 〈a1; a2; : : : ; an〉

The ground action ai at state s is replaced with b, which is executed, resulting in state I′,
which becomes the new initial state in the HModel. A time window is created for each
durative action that is still executing in state s. These model the end effects of the concurrent
actions. A plan is then generated from this new state with these new time windows for the
original goal, which gives us the plan:

�′ = 〈a′1; a
′

2; : : : ; a
′

n〉

The HPlan is then the initial actions of the original plan � concatenated with b and the new
plan �′:

〈a1; a2; : : : ; ai−1; b; a′1; a
′

2; : : : ; a
′

n〉

Specifically, the HModel Π′ is:

Π′ = 〈〈Ps;Vs;As; arity〉; 〈Os; I′;G;W ∪ C〉〉

where:

• I′ is the final state obtained by executing5
〈a1; a2; : : : ; ai−1; b〉 from state I.

5. We use VAL to validate this execution. We use the add and delete effects of each action, at each happening
(provided by VAL), up to the replacement action to compute I′.

560

Contrastive Explanations of Plans throughModel Restrictions

• C is a set of time windows wx, for each durative action a j that is still executing in
the state I′. For each such action, wx specifies that the end effects of that action
will become true at the time point at which the action is scheduled to complete.
Specifically: wx = 〈(Dispatch(a j) + Dur(a j)) − (Dispatch(b) + Dur(b)); in f ;u〉 where u =
E� (a j)−a ∪ E� (a j)+

a
∪ E� (a j)n

a
.

In the case in which an action a j that is executing in state I′ has an overall condition that
is violated, this is detected when the plan is validated against the original model. As an
example, given the user question above, the new initial state I′ from the running example
is shown in Figure 14.

(:init

(not_occupied sh1) (not_occupied sh2) (not_occupied sh5)

(connected sh1 sh2) (connected sh2 sh1) (connected sh2 sh3)

(connected sh3 sh2) (connected sh3 sh4) (connected sh4 sh3)

(connected sh4 sh5) (connected sh5 sh4) (connected sh5 sh6)

(connected sh6 sh5) (connected sh6 sh1) (connected sh1 sh6)

(pallet_at p1 jerry) (pallet_at p2 tom) (robot_at tom sh6)

(at 3 (robot_at Jerry sh4)) (at 3 (not_occupied sh3))

(= (travel_time sh1 sh2) 4) (= (travel_time sh1 sh6) 4)

(= (travel_time sh2 sh1) 4) (= (travel_time sh2 sh3) 8)

(= (travel_time sh3 sh2) 8) (= (travel_time sh3 sh4) 5)

(= (travel_time sh4 sh3) 5) (= (travel_time sh4 sh5) 1)

(= (travel_time sh5 sh4) 1) (= (travel_time sh5 sh6) 3)

(= (travel_time sh6 sh5) 3) (= (travel_time sh6 sh1) 4))

(:goal (and (pallet_at p1 sh6) (pallet_at p2 sh1))))

Figure 14: The initial state I’ which captures the state directly after executing the alternate
action b = (load pallet Tom p2 sh6) suggested by the user.

This captures the state I′, resulting from executing the actions a1; a2; a3, and b:
0.000: (goto_waypoint Tom sh5 sh6) [3.000]

0.000: (load_pallet Jerry p1 sh3) [2.000]

2.000: (goto_waypoint Jerry sh3 sh4) [5.000]

3.001: (load_pallet Tom p2 sh6) [2.000]

In this state Tom is at shelf sh6 and has loaded the pallet p2. Jerry has loaded the pallet
p1 and is currently moving from shelf sh3 to sh4, This new initial state is then used to
plan for the original goals to get the plan �′, which, along with b and �, gives the HPlan.
However, the problem is unsolvable from this state as a robot cannot set up a shelf whilst
it is transporting a pallet, a shelf must be set up to unload a pallet, Tom and Jerry are
both holding pallets, and there are no shelves set up. Therefore, neither Tom nor Jerry can
unload a pallet at any of the shelves and so can not achieve the goal. By applying the
user’s constraint, and showing there are no more applicable actions, it answers the above
question: “because by doing b rather than a, there is no way to complete the goals of the
problem”.

This compilation keeps the position of the replaced action in the plan, however, it
may not be optimal. This is because we are only re-planning after the inserted action has
been performed. The first half of the plan, because it was originally planned to support

561

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

a different set of actions, may now be inefficient, as shown by Borgo, Cashmore, and
Magazzeni (2018).

If the user instead wishes to replace the action without necessarily retaining its position
in the plan, then the add and remove compilations shown in Sections 4.2 and 4.3 can be
applied iteratively. This is an example of how the compilations can be combined into
something greater than the sum of it’s parts, that answers an entirely new question.

4.5 Reordering Actions

Given a plan �, a formal question Q is asked of the form:

Why is the operator o with parameters � used before (after) the operator n with param-
eters �′, rather than after (before)? where o , n or � , �′

For example, given the example plan in Figure 5 the user might ask:

“Why is (unload pallet Jerry p1 sh6) used before (unload pallet Jerry p2 sh1), rather
than after?”

A user might wonder what would be the outcome if Jerry delivered the pallets the other
way around. There are the same amount of shelves to traverse between each of the delivery
points so the user might wonder if there is a reason it was done in this order. They can
therefore ask the question posed above and see what happens if Jerry delivered pallet p2
before p1.

The compilation to the HModel is performed in the following way. First, a directed-
acyclic-graph (DAG) 〈N;E〉 is built to represent each ordering between actions suggested by
the user. For example the ordering of Q is a ≺ b where a = ground(o; �) and b = ground(n; �′).

This DAG is then encoded into the model Π to create Π′. For each edge (a; b) ∈ E two
new predicates are added: orderedab representing that an edge exists between a and b in the
DAG, and traversedab representing that the edge between actions a and b has been traversed.
The predicate traversedab is added as an effect for a and a precondition for b to ensure that a
comes before b. The predicate orderedab is used to ensure that this ordering only applies to
the ground actions a and b, and can speed up search with a wide suite of planners.

For each node representing a ground action a ∈ N, the action is disallowed using the
compilation from Section 4.3. Then, for each such action a new operator oa is added to
the domain, with the same functionality of the original operator o. The arity of the new
operator, arity(oa) is the combined arity of the original operator plus the arity of all of a’s
sink nodes. Specifically, the HModel Π′ is:

Π′ = 〈〈Ps′;Vs;As′; arity′〉; 〈Os; I′;G;W〉〉

where:

• Ps′ = Ps ∪ {orderedab} ∪ {traversedab}; ∀(a; b) ∈ E

• As′ = As ∪ {oa}; ∀a ∈ N

• arity′(x) = arity(x);∀x ∈ arity

562

Contrastive Explanations of Plans throughModel Restrictions

• arity′(oa) = arity(o) +
P

(a;b)∈E arity(b);∀a ∈ N

• arity′(orderedab) = arity(a) + arity(b);∀(a; b) ∈ E

• arity′(traversedab) = arity(b);∀(a; b) ∈ E

• I′ = I ∪ ground(orderedab; � + �′); ∀(a; b) ∈ E, where � and �′ are the parameters of a
and b, respectively.

In the above, we abuse the arity notation to specify the arity of an action to mean the arity
of the operator from which it was ground; e.g. arity(a) = arity(o) where a = ground(o; �).

Each new operator oa extends o with the precondition that all incoming edges must
have been traversed, i.e. the source node has been performed. The effects are extended to
add that its outgoing edges have been traversed. That is:

Pre`(oa) = Pre`(o) ∪ {orderedab ∈ Ps′;∀b}
∪ {traversedca ∈ Ps′;∀c}

E� +
a

(oa) = E� +
a

(o) ∪ {traversedab ∈ Ps′;∀b}

This ensures that the ordering the user has selected is maintained within the HPlan.
As the operator oa has a combined arity of the original operator plus the arity of all

of a’s sink nodes, there exists a large set of possible ground actions. However, for all
b ∈ N, orderedab is a precondition of oa; and for each edge (a; b) ∈ E the ground proposition
ground(orderedab; � + �′) is added to the initial state to represent that the edge exists in the
DAG. This significantly prunes the possible, valid, groundings of oa.

Given the user question above, two new operators node unload pallet Jerry p2 sh1 (shown
in Figure 15) and node unload pallet Jerry p1 sh6 will be added to the domain. These extend
operator unload pallet from Figure 3 as described above. The HPlan generated is shown in
Figure 16. In this case the plan does not contain the action unload pallet Jerry p1 sh6 and
instead uses Tom to deliver the pallet p1. If the user wants both the before and after actions
to be performed in the plan they can successively apply the add compilation shown in
Section 4.2.

4.6 Forbid an Action Outside a Time Window

Given a plan �, a formal question Q is asked of the form:

Why is the operator o with parameters � used outside of time lb < t < ub, rather than
only being allowed within this time window?

For example, given the example plan in Figure 5 the user might ask:

“Why is (unload pallet Jerry p2 sh1) used outside the interval 11 to 13, rather than
being restricted to that time window?”

From the HPlan provided as a result of the question asked in Section 4.5, the user might
wonder why changing the original order of the actions a = unload pallet Jerry p2 sh6 and
b = unload pallet Jerry p2 sh1, caused b to be performed at the time 23.002 rather than at
11.002, which was the time that action a was originally performed. The user might then ask

563

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

(:durative-action node_unload_pallet_Jerry_p2_sh1

:parameters (?v - robot ?p - pallet ?shelf - waypoint

?v0 - robot ?p0 - pallet ?shelf0 - waypoint)

:duration (= ?duration 1.5)

:condition (and (at start (pallet_at ?p ?v))

(over all (robot_at ?v ?shelf)) (over all (scanned_shelf ?shelf)))

(at start (ordered-node-unload_pallet-Jerry-p2-sh1-unload_pallet

-Jerry-p1-sh6 ?v ?p ?shelf ?v0 ?p0 ?shelf0))

:effect (and (at end (not_holding_pallet ?v))

(at end (pallet_at ?p ?shelf)) (at start (not (pallet_at ?p ?v)))

(at end (traversed-node-unload_pallet-Jerry-p2-sh1-unload_pallet

-Jerry-p1-sh6 ?v0 ?p0 ?shelf0)))

)

Figure 15: An operator added to the original domain to capture an ordering constraint
between actions. The operator extends the original unload pallet operator. Note that the
long generated predicate names have overrun the lines in the pre- and post-conditions.

0.000: (goto_waypoint jerry sh3 sh2) [8.000]

0.000: (goto_waypoint tom sh5 sh6) [3.000]

3.001: (set_shelf tom sh6) [1.000]

4.001: (goto_waypoint tom sh6 sh5) [3.000]

7.002: (goto_waypoint tom sh5 sh4) [1.000]

8.001: (goto_waypoint jerry sh2 sh1) [4.000]

8.003: (goto_waypoint tom sh4 sh3) [5.000]

12.002: (set_shelf jerry sh1) [1.000]

13.002: (goto_waypoint jerry sh1 sh6) [4.000]

13.003: (load_pallet tom p1 sh3) [2.000]

15.003: (goto_waypoint tom sh3 sh4) [5.000]

17.002: (load_pallet jerry p2 sh6) [2.000]

19.002: (goto_waypoint jerry sh6 sh1) [4.000]

20.004: (goto_waypoint tom sh4 sh5) [1.000]

23.002: (node-unload_pallet-jerry-p2-sh1 jerry p2 sh1 jerry p1 sh6) [1.500]

23.003: (goto_waypoint tom sh5 sh6) [3.000]

26.003: (node-unload_pallet-tom-p1-sh6 tom p1 sh6) [1.500]

Figure 16: The HPlan with the action (unload pallet Jerry p2 sh1) before (unload pallet Jerry
p1 sh6) with a duration of 27.503

the question above about the original plan, to receive an explanation for why the action b
cannot be performed at the same time as when a was performed.

To generate the HPlan, the planning model is compiled so that the ground action
a = ground(o; �) can only be used between times lb and ub. To do this, the original operator
o is replaced with two operators oa and o¬a, which extend o with extra constraints.

Operator o¬a replaces the original operator o for all other actions ground(o; �′), where
�′ , �. The action ground(o¬a; �) cannot be used (this is enforced using the compilation for
forbidding an action described in Section 4.3). Operator oa acts as the operator o specifically
for the action a = ground(o; �), which has an added constraint that it can only be performed

564

Contrastive Explanations of Plans throughModel Restrictions

between lb and ub. Specifically, the HModel Π′ is:

Π′ = 〈〈Ps′;Vs;As′; arity′〉; 〈Os; I′;G′;W′〉〉

where:

• Ps′ = Ps ∪ {can do a;not done a}

• As′ = {oa; o¬a} ∪ As \ {o}

• arity′(x) = arity(x);∀x ∈ arity

• arity′(can do a) = arity′(not done a) = arity′(oa) = arity′(o¬a) = arity(o)

• I′ = I ∪ {ground(not done a; �)}

• G′ = G ∪ {ground(not done a; �)}

• W′ = W ∪ {〈lb;ub; ground(can do a; �)〉}

where the new operators o¬a and oa extend o with the delete effect not done a and the
precondition can do a, respectively. i.e:

E�−
`

(o¬a) = E�−
`

(o) ∪ {not done a}
Pre`(oa) = Pre`(o) ∪ {can do a}

As the proposition ground(can do a; �) must be true for ground(oa; �) to be performed, this
ensures that the action a can only be performed within the times lb and ub. Other actions
from the same operator can still be applied at any time using the new operator o¬a. As in
Section 4.3 we make sure the ground action ground(o¬a; �) can never appear in the plan.

For example, given the user question above, the operator unload pallet from Figure 3 is
extended to o¬a and oa as shown in Figure 17.

The initial state is extended to include the proposition (not done unload pallet Jerry p2
sh1) and the time window 〈11; 13; (can do load pallet Jerry p2 sh1)〉, which enforces that the
proposition is true only between the times 11 and 13. The resulting HPlan is shown in
Figure 18, in this case the action (unload pallet Jerry p2 sh1) is no longer present in the plan
as Tom delivers the pallet p2 instead.

4.7 Add an Action Within a Time Window

Given a plan �, a formal question Q is asked of the form:

Why is the operator o with parameters � not used at time lb < t < ub, rather than being
used in this time window?

For example, given the example plan in Figure 5 the user might ask:

“Why is (unload pallet Jerry p2 sh1) not used between times 11 and 13, rather
than being used in this time window?”

565

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

(:durative-action unload_pallet_nota

:parameters (?v - robot ?p - pallet ?shelf - waypoint)

:duration (= ?duration 1.5)

:condition (and (at start (pallet_at ?p ?v))

(over all (robot_at ?v ?shelf)) (over all (scanned_shelf ?shelf)))

:effect (and (at end (not_holding_pallet ?v))

(at end (pallet_at ?p ?shelf))

(at start (not (pallet_at ?p ?v)))

(at start (not (not-done-unload_pallet ?v ?p ?shelf)))))

(:durative-action unload_pallet_a

:parameters (?v - robot ?p - pallet ?shelf - waypoint)

:duration (= ?duration 1.5)

:condition (and (at start (pallet_at ?p ?v))

(over all (robot_at ?v ?shelf))

(over all (scanned_shelf ?shelf))

(over all (applicable-unload_pallet ?v ?p ?shelf)))

:effect (and (at end (not_holding_pallet ?v))

(at end (pallet_at ?p ?shelf))

(at start (not (pallet_at ?p ?v)))))

Figure 17: The PDDL2.1 representation of the operators o¬a and oa.

0.000: (goto_waypoint tom sh5 sh6) [3.000]

0.000: (load_pallet jerry p1 sh3) [2.000]

2.000: (goto_waypoint jerry sh3 sh4) [5.000]

3.001: (set_shelf tom sh6) [1.000]

4.001: (goto_waypoint tom sh6 sh1) [4.000]

7.001: (goto_waypoint jerry sh4 sh5) [1.000]

8.001: (set_shelf tom sh1) [1.000]

9.001: (goto_waypoint tom sh1 sh6) [4.000]

13.001: (load_pallet tom p2 sh6) [2.000]

15.001: (goto_waypoint tom sh6 sh1) [4.000]

19.001: (unload_pallet_nota tom p2 sh1) [1.500]

19.002: (goto_waypoint jerry sh5 sh6) [3.000]

22.002: (unload_pallet_nota jerry p1 sh6) [1.500]

Figure 18: The HPlan produced from solving the HModel that allows the action (un-
load pallet Jerry p2 sh1) to only be performed between the times 11 and 13. Tom was,
therefore, chosen to deliver the package instead.

The HPlan in Figure 18 shows the user that there is a better plan which does not have the
action in this time window. However, the user may only be satisfied once they have seen
a plan where the action is performed in their given time window. To allow this the action
may have to appear in other parts of the plan as well.

This constraint differs from Section 4.6 in two ways: first the action is now forced to be
applied in the time window, and second the action can be applied at other times in the plan.
This constraint is useful in cases such as a robot that has a fuel level. As fuel is depleted
when travelling between waypoints, the robot must refuel, possibly more than once. The

566

Contrastive Explanations of Plans throughModel Restrictions

user might ask “why does the robot not refuel between the times x and y (as well as the
other times it refuels)?”.

To generate the HPlan, the planning model is compiled into a form that forces the
ground action, a = ground(o; �), to be used between times lb and ub, but can also appear at
any other time. This is done using a combination of the compilation in Section 4.2 and a
variation of the compilation in Section 4.6. The former ensures that new action ground(oa; �)
must appear in the plan, and the latter ensures that the action can only be applied within
the time window. The variation of the latter compilation is that the operator o¬a is not
included, and instead the original operator is kept in the domain. This allows the original
action a = ground(o; �) to be applied at other times in the plan. Given this, the HModel Π′

is:
Π′ = 〈〈Ps′;Vs;As′; arity′〉; 〈Os; I;G′;W′〉〉

where:

• Ps′ = Ps ∪ {can do a; has done a}

• As′ = As ∪ {oa}

• arity′(x) = arity(x);∀x ∈ arity

• arity′(can do a) = arity′(has done a)
= arity′(oa) = arity(o)

• G′ = G ∪ {ground(has done a; �)}

• W′ = W ∪ {〈lb;ub; ground(can do a; �)〉}

Jerry cannot deliver the pallet p2 in the time period required by the user and so the plan
is unsolvable.

4.8 Delay/Advance an Action

Given a plan �, a formal question Q is asked of the form:

Why is the operator o with parameters � used at time t, rather than at least some
duration t′ earlier/later t?

For example, given the example plan in Figure 5 the user might ask:

“Why is set shelf Tom sh1 used at time 8.001, rather than at least 8 minutes later?”

A user would ask this type of question when they expected an action to appear earlier
or later in a plan. This could happen for a variety of reasons. In domains with resources
that are depleted by specific actions, and are replenished by others, such as fuel for vehicles,
these questions may arise often. A user might want an explanation of why a vehicle was
refueled earlier or later than was expected. In this case the refuel action can be delayed or
advanced to answer this question.

A user might ask the question posed above about our running example because they
think that Tom is rushing to set up the shelf. Tom sets up the shelf sh1 in preparation for

567

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

the delivery of the pallet p2 eight minutes into the plan. However, Jerry is not ready to
deliver the pallet until the very end of the plan. Tom might be able to complete other
goals before he is required to set up the shelf for the delivery. The reasoning behind the
early preparation can be explained by delaying setting up the shelf until it is completely
necessary and comparing the HPlan produced with the original solution.

To generate the HPlan, the planning model is compiled such that the ground action
a = ground(o; �) is forced to be used in time window w which is at least t′ before/after t. This
compilation is an example of a combination of two other compilations: adding an action
(in Section 4.2) and forbidding the action outside of a time window (in Section 4.6). The
latter enforces that the action can only be applied within the user specified time window,
while the former enforces that the action must be applied. The HModel Π′ is:

Π′ = 〈〈Ps′;Vs;As′; arity′〉; 〈Os; I′;G′;W′〉〉

where:

• Ps′ = Ps ∪ {can do a;not done a; has done a}

• As′ = {oa; o¬a} ∪ As \ {o}

• arity′(x) = arity(x);∀x ∈ arity

• arity′(can do a) = arity′(not done a) =
arity′(has done a) = arity′(oa) =
arity′(o¬a) = arity(o)

• I′ = I ∪ {ground(not done a; �)}

• G′ = G ∪ {
ground(not done a; �);
ground(has done a; �) }

• W′ = W ∪

8>><>>:be f ore : 〈0; tReal; ground(can do a; �)〉
a f ter : 〈tReal; inf; ground(can do a; �)〉

where tReal is t ± t’ and the new operators oa and o¬a both extend o. The latter with the
delete effect not done a, while oa extends o with the precondition can do a and the add effect
has done a; i.e.:

E�−
a

(o¬a) = E�−
a

(o) ∪ {not done a}
Pre↔(oa) = Pre↔(o) ∪ {can do a}
E� +
a

(oa) = E� +
a

(o) ∪ {has done a}
This ensures that the ground action a = ground(oa; �) must be present in the plan between

the times 0 and tReal, or tReal and inf, depending on the user question, and between those
times only. In addition, the user selected action is forced to be performed using the same
approach as in Section 4.2.

The HPlan produced for the users question is shown in Figure 19. The delayed action
(set shelf tom sh1) is now performed at time 17 which, as the action takes one minute, would
allow Jerry to unload the pallet . However, Tom is blocking Jerry from getting to shelf sh1.
Consequently, Jerry has to wait for Tom to evacuate the shelf which delays the completion
of the delivery by 7.5 minutes. Additionally, it can be seen from the plan that Tom does not
contribute to the completion of any other goals in the time before setting up shelf sh1.

568

Contrastive Explanations of Plans throughModel Restrictions

0.000: (goto_waypoint tom sh5 sh6) [3.000]

0.000: (set_shelf_nota jerry sh3) [1.000]

1.000: (load_pallet jerry p1 sh3) [2.000]

3.000: (goto_waypoint jerry sh3 sh4) [5.000]

3.001: (set_shelf_nota tom sh6) [1.000]

4.001: (goto_waypoint tom sh6 sh1) [4.000]

8.001: (goto_waypoint jerry sh4 sh5) [1.000]

9.002: (goto_waypoint jerry sh5 sh6) [3.000]

12.002: (unload_pallet jerry p1 sh6) [1.500]

13.503: (load_pallet jerry p2 sh6) [2.000]

17.000: (set_shelf_a tom sh1) [1.000]

18.000: (goto_waypoint tom sh1 sh2) [4.000]

22.001: (goto_waypoint jerry sh6 sh1) [4.000]

26.001: (unload_pallet jerry p2 sh1) [1.500]

Figure 19: The HPlan with the action (set shelf Tom sh1) performed at least 8 minutes later
than it was originally performed.

4.9 Composition of Compilations

Each compilation defined in this section can be used to answer one of the formal questions
from the contrastive taxonomy that was identified in our user study. However, through
the iterative approach described in Definition 5 the set of questions that can be answered
is not restricted to the formal questions found in the Contrastive Taxonomy. Instead a
composition of these compilations can be used to produce more complex constraints that
answer a much wider set of questions. More complex questions that are not easy to specify
without refinement can be posed through the iterative process of query and feedback.
Moreover, humans themselves have trouble understanding a decision from a “one shot”
justification, they are more likely to comprehend a decision through a conversational
process resulting in a more complete explanation (Hilton, 1990).

For example, consider the multiple questions asked in sequence q1;q2; : : : ;qn that have
constraints �1; �2; : : : ; �n. The user could instead have asked a single complex question qx
that has the corresponding constraint �x:

Π × �x = ((Π × �1) × �2) : : : × �n

This compilation Π×�x would have produced the same HPlan as the final HPlan resulting
from the iterative process. However, this assumes that the user knows the question qx in
advance. In practice, each question might have been prompted by the result of the previous
iteration, allowing the user to refine their question during the process.

This refinement also has the consequence that the user is able to pose questions about
artefacts and processes of the plan that are not obviously representable in the model. As an
example a user might want to know why the pallet p1 took too long to be transported from
shelf sh3 to sh6. This question refers to the time between two ground actions in the plan,
and the vocabulary of the model does not allow a constraint on this time to be expressed.
However, through the iterative process it is possible to incrementally converge to a set of
constraints that force these two events to happen closer together in time. Moreover, it is
possible to follow this process without explicitly and immediately defining the duration

569

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

that the user considers to be ”too long”, instead allowing the user to refine their question
as their understanding grows.

That these compilations can be used to produce more complex constraints that answer
a much wider set of questions can be stated more strongly as: for every valid plan � for a
model Π, there exists a sequence of constraints, �1; : : : ; �n, such that � is the only valid plan
for ((Π × �1); : : : �n). Trivially, we can achieve any expected HPlan by iteratively applying
the replace compilation shown in 4.4. In practice our user study in Section 6.2 showed that
by using a variety of questions, the users converged quickly on their desired plans.

4.10 Justified User Suggestions

For a planning model Π with goals G there can be many valid plans that satisfy G, which
we call the space of plans for a planning model. Generating the plan that will best sat-
isfy the user at each stage of the exploration process is not guaranteed. Firstly, temporal
planning tasks are intractable and in fact in the general case belongs to the complexity
class EXPSPACE-complete (Rintanen et al., 2007) and the introduction of numeric vari-
ables makes the problem undecidable (Helmert, 2002). Our approach is limited by these
impediments, just as a human might try to explain a decision they have made. Secondly,
even should an optimal plan be returned, it might not be the plan that most increases the
user’s understanding of the problem, or provides the fastest route to concluding the plan
exploration process.

However, while it might not be possible to completely specify the metric of user satisfac-
tion in a plan, it is possible to make some assumptions. One reasonable assumption is that
the user wants to see their suggestion have an impact in the plan. When a user questions
why an action was not used in the plan, a hypothetical plan containing that action would
not be satisfactory if its effects are immediately undone, or it does not contribute towards
a goal. Fink and Yang (1992) use “justified actions” to refer to actions that are necessary
for achieving a goal. That is to say an action B is justified in a plan � if there is a sequence
of actions in � where a1; :::;B; :::; an |= G and if we remove the action B then, a1; :::; an 6|= G.
Similarly, a valid plan is perfectly justified if it does not have any legal proper subplan that
also achieves the goal.

Our compilations alone do not guarantee that the action suggested by the user is justified
in the resultant plan. The resultant plan should show, if possible, the user’s suggestion
make a purposeful contribution to the satisfying the goals of the problem. In future work
we aim to build on the compilations strategy in Section 4.2.1 to develop compilations that
ensure that user suggestions are used purposefully within the plan. That is, to enforce that
the resultant plan is perfectly justified, or that at least the user suggestion appears in every
valid subplan.

A second open question is whether the assumption is indeed reasonable. While it might
seem clear that the user should be interested in their suggestion contributing towards the
goal, it should also be considered that the goal G does not necessarily capture all of the
user’s preferences and interests in the problem. As an example, the user might be interested
in investigating the space of plans to determine if there remains enough flexibility to add
additional exploratory actions, or achieve goals that they do not yet know how to concretely
specify.

570

Contrastive Explanations of Plans throughModel Restrictions

5. Explainable Planning as an Iterative Process

In this section we present a framework within which we have implemented the iterative
model restriction process described in Section 3.3 and instantiated through the compilations
described in Section 4. We use an approach we call Explainable Planning as a Service
(XAIP-as-a-service). This paradigm is motivated by Definition 5 and consists of an iterative
conversational process between the user and the planning system. The user asks contrastive
questions about a presented plan and receives explanations until the user terminates the
process. Explainable Planning as a service means implementing the approach as a wrapper
around an existing planning system that takes as input the current planning problem and
domain model, the current plan, and the user’s question. It has the ability to invoke
the existing planning system on hypothetical problems in order to address contrastive
questions. In Section 6 we present the results of the user study conducted with this
XAIP-as-a-service framework, alongside an evaluation of the computational costs and
effectiveness of the compilations.

The XAIP-as-a-service paradigm has the benefit that the known and trusted planner and
model can be used to provide explanations. At each step a new hypothetical plan is created
using the planner chosen by the user, and is validated against the user’s original trusted
model. The user will not accept an explanation generated using a model that differs from
the original one that is potentially verified and trusted. Hence the explanation generated
using the model revised with constraints has to be validated against the original model. In
other words, the contrastive explanation should contain an executable plan which leads to
the goal state that the original planner could have created using the original model. This
satisfies the requirement of Definition 4, that a model restriction satisfies the condition that
any plan for the restricted model is also a plan for the original model. Updates to the
model serve to force decisions from the planner and so explore the consequences of those
decisions. Figure 20 summarises the implementation described in Definition 5 and user
interaction illustrated in Figure 8, following these steps:

Step 1: The XAIP Service takes as input the planning problem and the domain, the plan,
and a question from the user.

Step 2: The contrastive question implies a hypothetical model characterised as an additional
set of constraints on the actions and timing of the original problem. These con-
straints can then be compiled into a revised domain model (HModel) suitable for
use by the original planner.

Step 3: The original planner uses the HModel as input to produce the hypothetical plan
(HPlan) which contains the user suggestion.

Step 4: The XAIP Service validates the HPlan according to the original model.

Step 5: The original plan and HPlan are shown to the user, with differences highlighted.

Step 6: The user may choose to repeat the process from Step 1, selecting the original model
or any HModel and a new question.

571

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

Figure 20: Proposed approach for Explainable Planning as a service. Starting from step 1, a
user asks a contrastive question about a plan for a model produced from their planner. The
XAIP Service first generates the HModel from the user question and uses the same planner
to produce an HPlan. The HPlan is then validated and used to generate a contrastive
explanation. The process can then be repeated from step 1.

PDDL
files

XAIP software
interface

parser

planner

 XAIP controller

XAIP - human
interface

 VAL

Compilations

form
al

question

C
ontrastive

explanation

Figure 21: Architecture of the framework for Explainable Planning as a service.

5.1 Implementation Details

We implemented the XAIP-as-a-Service as modular framework for domains and problems
written in PDDL2.1. (Fox & Long, 2003). This framework interfaces with any planner

572

Contrastive Explanations of Plans throughModel Restrictions

(a) Plan visualisation and question selection.

(b) Explanation visualisation.

Figure 22: Screenshots of the graphical user interface of the XAIP Service framework. The
first image displays the original plan, a user can formulate a question about the plan
using the dialogue. The second image displays the side by side comparison of the original
plan and the HPlan produced from the user’s question. The differences in the plans are
highlighted. Actions that are unchanged are coloured blue, those that are new in the HPlan
are coloured yellow (only appear in the HPlan), actions are coloured green if they appear
in both the plan and the HPlan but have different dispatch times, and actions are coloured
red if they are removed from the plan (do not appear in the HPlan).

573

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

capable of reasoning with PDDL2.1, such as POPF (Coles et al., 2010), Metric-FF (Hoffmann,
2003), OPTIC (Benton, Coles, & Coles, 2012), etc. The architecture of the framework
is illustrated in Figure 21. Interaction with a user is enabled through a graphical user
interface, implemented with Qt-Designer. The modularity of the framework decouples
the interfaces for providing user questions (Step 1), synthesising the HModel (Step 2),
interfacing with the planner (Step 3), and returning HPlans to the user (Step 5).6

The process is controlled by the XAIP controller module of Figure 21. This module uses
the interfaces of the other modules of the framework described below. The controller is also
responsible for validating hypothetical plans against the original domain (Step 4), using
the plan validation system VAL (Howey, Long, & Fox, 2004).

5.1.1 XAIP-Human Interface

The XAIP-human interface module of Figure 21 implements Step 1, and Step 5 of the XAIP-
as-a-service process. The module consists of a Qt interface through which the user is able
to select an existing model (either the original model or a previous HModel), construct a
question, and view the resulting HPlan.

The questions that can be constructed by the interface consist of those that are defined
in the Contrastive Taxonomy in Table 5 in Section 2. A screenshot of the interface is shown
in Figure 22a. In this screenshot the user has already selected a model and plan for which
to ask a question, and selected the question option that corresponds to FQ1. The user
populates the details of the question from an interactive panel so that the final question
reads:

“Why is the action (unload pallet tom p2 sh1) not involved in the plan?”

In the process of question selection, the interface adapts to the current domain and
offers choices for the details of the action A, the domain operators and their valid ground-
ings. The interface presents the HPlan to the user, as shown in Figure 22b. In this plan
comparison both plans are shown side-by-side with differences highlighted. These differ-
ences include added actions which were not present in the original plan, actions which
have been rescheduled/reordered, and actions which have been removed. The user is also
able to compare the costs of each plan, and view the validation report produced by VAL.
In Figure 22b the action that was suggested by the user, (unload pallet top p2 sh1), appears
in the HPlan at time 19:001. In case there is no plan generated, a message is displayed
with the text ”there is no plan obtained and compilation of the question failed”, as stated
in Section 1 we do not attempt to give any further explanation than this.

5.1.2 XAIP Software Interface and Compilations

The XAIP software interface module implements Step 3 of the XAIP-as-a-service process,
interacting with the planner to produce hypothetical plans. This is done by parsing the
original domain and problem and storing the resultant model in an internal knowledge
base. This knowledge base contains a collection of models that can be queried or passed
to the planner.

6. All source code and example domain and problem files are open source and available online:
https://github.com/KCL-Planning/XAIPFramework.

574

Contrastive Explanations of Plans throughModel Restrictions

The Compilation module implements Step 2 by providing an interface that given a
formal question and model, applies the model restriction to produce the HModel. The
Compilations module implements the model restriction in Section 4. When triggered by
the event of the user selecting a model and formal question through the XAIP Human
Interface, the Controller will fetch the model from the XAIP Software Interface, pass the
model and question to the Compilations module, and store the resulting model in the XAIP
Software Interface Knowledge Base.

6. Evaluation

Our evaluation falls into two parts: we evaluate the performance of the compilation of
constraints by examining the planning time and plan quality produced for a large sample
of problems, and we also present the user study that explores the value of the iterative
process of plan explanation. The latter evaluation is based on observed interactions with an
implemented system and is, therefore, more qualitative in style than the former evaluation.
Nevertheless, both evaluations together serve to support our claims that the approach we
have described provides a paradigm that allows users to usefully explore explanations
of plans, by asking contrastive questions and being supplied plans in response to the
constraints implied by those questions.

6.1 Performance Evaluation

Compilations can increase the difficulty of solving a problem so that it can no longer be
solved in a reasonable time. For example, LTL constraints represented as Büchi-Automata
and compiled into PDDL can scale very poorly and would not be appropriate for a real-time
iterative dialogue with our system (Edelkamp, 2006). In order to evaluate the impact of the
compilations listed in Section 4 we perform two experiments. The first is to evaluate the
effect of single compilations on planning time, and the second is to determine the impact
of multiple iterative compilations on planning time.

Explanation is a form of social interaction and takes the form of a conversation (Hilton,
1990). If it takes substantially longer to answer the explanatory question a user poses than
to generate the original solution, it might be unreasonable to expect a user to want to wait
for the explanation (depending on the context). In this case, the explanation process would
be impractical in real world settings and that would undermine the value of the paradigm
we have created of explanation as an iterative, conversational process. Moreover, it must
not get exponentially harder to answer multiple iterations of questions.

The time to apply the compilations and generate the HModel is negligible for all the
cases we consider so we do not take this into account in our evaluation.

We used four temporal domains from the recent ICAPS international planning com-
petitions (IPC) (Long & Fox, 2003) in our experiments. The IPC produces a new set of
benchmark domains each year to test the capabilities and progress made by AI planners
for different types of problems. We selected domains to be varied in what they modelled
and the most interesting in terms of explainability. These are the ZenoTravel, Depots
(IPC3), Crew Planning and Elevators (IPC8) domains. In both experiments we used the
Crew Planning and Elevators domains, in the first experiment we used the Depots domain

575

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

and used the ZenoTravel domain in the second. We explain the reason for the difference in
the domains in the design of the second experiment in Section 6.1.2.

ZenoTravel is a logistics domain which models a scenario in which a number of pilots
have to deliver a number of packages by plane. The planes can travel at different speeds
which consumes fuel at different rates. The pilots must fly their planes at the correct speeds
to minimise the time whilst maintaining the fuel to successfully deliver all of the packages.
The Depots domain combines the transportation style problem of Logistics with the well-
known Blocksworld domain. In this domain crates must be stacked in a certain order at
their destinations. Trucks are used to move the crates between locations and hoists are
used to stack the crates. The Crew Planning domain is designed to plan the itinerary of a
crew on the International Space Station over a period of days. The crew have to complete
tasks critical to maintenance of the station such as configuring thermals and facilitating the
delivery of payloads, whilst also performing the tasks necessary for survival such as eating
and sleeping. In the Elevators domain there are multiple elevators, with different speeds,
that service portions of different building blocks. Each of the blocks share at least one
mutual floor. The goal is to get a set of people to their desired floors using the elevators.

6.1.1 Compilation Impact by Question

Purpose We first designed an experiment to evaluate the impact each type of compilation
in Section 4 has on the time taken to find a solution and the quality of the resultant solution.
We designed this experiment to show that explanations can be produced in a reasonable
time. We also wanted to see what effect compilations have on the quality of the solution.
An explanation generated from an inefficient HPlan would not be satisfactory to the user.
Although we cannot evaluate the quality of any given solution in the context of it’s optimal
solution, the large set of results for any problem will allow us to draw conclusions about
possible inefficiencies. We also looked to determine whether there were any questions,
or question types, for which it is harder to produce HPlans and so took longer to find
solutions.

Design For each of the domains (Crew Planning, Depots, and Elevators) we selected
four problems of varying complexity provided by the same IPC benchmark. We first used
the planner to find the solutions to these as the control. Then, for each question type
categorised in the Contrastive Taxonomy, we randomly generated the formal question and
generated and solved the HModel, we repeated this ten times. All tests used a Core i7
1.9GHZ machine, and 16GB of memory. We used the POPF (Coles et al., 2010) planner
and recorded all solutions found in the time allocated to test the effect compilations have
on optimisation and solution quality. However, for the purpose of this experiment it is
sufficient to evaluate if there are any obvious inefficiencies in our compilation approach,
not to try to find the optimal plans for each constrained problem.

We conducted preliminary tests to determine the amount of planning time to allocate
to each instance. We found that for each of the problems 3 minutes planning time was
sufficient, other than problem 10 for the Depots domain which required 6 minutes. To
illustrate the efficiency of our compilations, the experiment required many tests of each
type of compilation, so we chose the minimum sufficient planning time.

576

Contrastive Explanations of Plans throughModel Restrictions

It was not practical to evaluate our approach with questions composed by humans.
Therefore we randomly generated the questions used in our experiments. To ensure that
the questions made sense, we had to take slightly different approaches to generating each
question type. For each formal question other than FQ1 and FQ3, the actions were randomly
selected from the original plan found from the appropriate model. This was all that was
needed to generate FQ2. We took the extra precaution, with FQ5, to ensure that the order of
the selected actions in the original plan was the opposite of the new order enforced by the
question. For the formal questions FQ4, FQ6, and FQ7, time windows were also generated.
The lower bound was generated using a pseudo-random number generator, constrained to
within the original plan time. The upper bound was formed by first generating a number
between 1.5 and 4 and then multiplying the number by the duration of the selected action.
This produced a spectrum of time windows from those that are very tight to those that are
quite relaxed, which mimicked how a user might ask these types of questions. To generate
the formal questions FQ1 and FQ3 we had to create questions with actions that were not
already present in the original plan. To do this we created a list of the possible grounded
actions in the model and then randomly selected one of these grounded actions, that was
not present in the original plan, to form the question. For FQ3 we also randomly selected
an action from the original plan to replace. We then verified that the randomly selected
(replacement) action was applicable in the state directly before the action chosen to be
replaced. If the action was not applicable, a new action was generated and the process
repeated until an applicable action was found. The rest of the compilation process then
continued as normal.

The questions generated in this way might not be ones users would ask, being artificially
constructed. However, evaluating how users interact with our framework was not the
purpose of these experiments (that we consider in Section 6.2), but the broad coverage of
generated questions gives a reasonable assessment of the performance of the planner on
compiled HModels.

Results A subset of the results of this experiment is shown in Figures 23, 24, 25, 26, and 27.
The results in these figures are a representative sample of the entire population of results
and illustrate the performance characteristics we evaluated with this experiment. The full
results of this experiment are available at https://tinyurl.com/xairesults.

Figures 23 and 24 demonstrate that our compilation approach does not significantly
impact planning time. These graphs include results from every domain we evaluated as
well as multiple problems and show that on average the planning time is not critically
affected over multiple domains and problem variants. We show the easiest and hardest
domains and problems, to reveal how the compilations affected planning time at the
extremes of the range of difficulty of the problems.

Figures 23 and 24 each contain four scatter graphs. The former containing the results
of what we consider to be the easiest problems to solve in our test set, and the latter the
most difficult. We classified the degree of difficulty for a problem as its size (number of
literals in the problem) and the time taken to find any solution for the problem. However,
the difficulty of a problem is only comparable for different problems in the same domain.
Some domains are easier to solve than others, regardless of the problem size. Therefore,
to keep the results representative we selected the easiest (hardest) problems to solve for

577

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

(a) Crew Planning Problem 1, Literals 30,
Planning Time 0

(b) Crew Planning Problem 2, Literals 38, Plan-
ning Time 0

(c) Depots Problem 1, Literals 44,
Planning Time 0

(d) Elevators Problem 1, Literals 86, Planning
Time 0.1

Figure 23: Scatter graph comparing the planning times of each compilation type over the
simplest problems in each of the tested domains. Each sub-caption communicates the
domain and problem from the IPC, the number of literals in the original problem and the
time taken to solve the original problem. Each data point corresponds to a compilation
of a question, colour coded by question type. The position of the data point on the y-axis
corresponds to the increase (decrease) in planning time compared to the original problem.
There is an arbitrary count to help distinguish between compiled problems.

578

Contrastive Explanations of Plans throughModel Restrictions

(a) Elevators Problem 5, Literals 138,
Planning Time 0.38

(b) Depots Problem 10, Literals 192, Planning
Time 245.06

(c) Depots Problem 13, Literals 224,
Planning Time 0.12

(d) Crew Planning Problem 20, Literals 270, Plan-
ning Time 17.45

Figure 24: Scatter graph comparing the planning times of each compilation type over
the hardest problems in each of the tested domains. Each sub-caption communicates the
domain and problem from the IPC, the number of literals in the original problem and the
time taken to solve the original problem. Each data point corresponds to a compilation
of a question, colour coded by question type. The position of the data point on the y-axis
corresponds to the increase (decrease) in planning time compared to the original problem.
There is an arbitrary count to help distinguish between compiled problems.

579

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

(a) Problem 1, Literals 30, Planning Time 0 (b) Problem 2, Literals 38, Planning Time 0

(c) Problem 5, Literals 62, Planning Time 0 (d) Problem 20, Literals 270, Planning Time 17.45

Figure 25: Box and whisker plots comparing the planning times of each compilation type
in the Crew Planning domain over four problems. Each sub-caption communicates the
problem from the IPC, the number of literals in the original problem and the time taken to
solve the original problem. The y-axis shows the change in planning time for the HModel
compared to the original model.

580

Contrastive Explanations of Plans throughModel Restrictions

each domain, and the next easiest (hardest) domain-problem pairs from any of the three
domains. This gives us the results from the four easiest (hardest) problems ordered from
easiest to hardest, whilst making sure we have at least one set of results from each domain.

Each data point on the graphs in Figures 23 and 24 corresponds to a compilation, the
colour corresponds to compilation type categorised by the Contrastive Taxonomy, the key
is displayed on each graph. The horizontal axis of each graph displays an arbitrary count
to distinguish between each compilation. Figures 23a and 23b do not have formal question
FQ2, removing an action, because no plans could be found in the allocated time, we discuss
why this is the case later. The vertical axis measures the difference between the time taken
to find a plan for a compiled HModel and the time to find the original plan for the original
model, in seconds. This means the zero on the vertical axis represents there being no
difference in the time to find solution plans between the compiled model and the original
model, a positive value means there was an increase in the time taken to find a solution for
the compiled model, and the opposite holds for a negative value. The time taken to solve
the original problem is shown in the sub-caption of each graph.

As these plots are used to demonstrate that there is no significant impact on the planning
time for constrained problems, we have not shown any results using further optimising
search after the discovery of the first solution. As any optimisations will only increase the
planning time, it is unfair to compare the planning time of a heavily optimised plan to one
with no optimisations. For example, for a model Π a planner might find the plan � in 10
seconds with a metric of M(�) = 30 and no further plans within it’s 3 minutes of allotted
time. For a constrained model Π × � = Π′ a planner might take 9, 10, and 120 seconds to
find plans with metrics of 60, 40, and 30 respectively, and nothing further in its 3 minutes.
How then should the planning times of the two models Π and Π′ be compared? They
both have 3 minutes to find solutions, however the quality of the solutions compared to
the optimal solution is not known. It might seem sensible to select the two plans with
the closest metrics for comparison. However, one of the discovered solutions could be
optimal and the other very sub-optimal. For example the optimal solution for Π might
be 5, whereas the optimal solution for Π′ is 30. Then we have found an optimal solution
in a large amount of time and a sub-optimal one quickly. It is clear that this is not a fair
comparison. To use a comparison that is well-defined, only the results for the first plan
found in the graphs is included in Figures 23, 24, and 25. However, the full table of results,
including optimisations, can be found at https://tinyurl.com/xairesults.

The majority of points lie close to the horizontal axis showing that the compiled HMod-
els in general are similar to the original models in terms of planning time. The median
average increase in planning times for each of the domain-problem pairs are all below 4
seconds with one negative result which indicates an improvement in planning time. This
substantiates our claim that the compilation of the constraints have an insignificant impact
on the planning time. On average, a user will have to wait less than 4 seconds longer
than the time taken to solve the original problem to see the outcome of their question and
receive an explanation. The highest and lowest increase in planning time both occur in the
Depots domain problem 10, shown in Figure 24b. The highest came from a compilation of
the formal question FQ2, removing an action, which increased the planning time by 117.4
seconds. The lowest increase in planning time, and in fact improvement in planning time,
came from a compilation of the formal question FQ3, replacing an action, which improved

581

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

the planning time by 245.02 seconds. The question types FQ6 and FQ7, the compilation
of which is shown in Sections 4.7 and 4.8 respectively, tended to negatively impact the
planning time the most, with a median increase of 1.10 and 1.18 seconds. Whereas the
compilations for the question types FQ2 and FQ3 had the least effect on the planning time
with an average of 0.02 and 0.00 seconds, respectively. We report the median averages to
ensure extreme values do not skew the results.

The median effect on planning time across all problems ranged from -59.64 to 3.74
seconds. The domain-problem pairs that we considered to be easy had a range of 0.02 to 1.2
seconds, and the domain-problem pairs that we considered to be hard had a range of -59.64
to 0.925 seconds. Although this data suggests that compilations applied to harder problems
have a much higher chance of improving the planning time than easier problems, actually
the difficulty of the original problem did not have a significant effect on the planning time
of the corresponding constrained problem. The results of a Mann-Whitney U test show
that the sets of planning times from the easy and hard problems are statistically equal with
p < 0:05. This shows that the impact compilations have on the planning time does not
grow with the difficulty of the original problem.

Figure 25 contains four box-and-whisker plots, comparing the planning times of each
compilation type in the Crew Planning domain. Each sub-figure displays the results for
each of the problems we tested. This data shows that there is minimal difference between
the types of compilations in their impact on the planning time. These graphs show results
from each of the problems for the Crew Planning domain, this exemplifies a typical use case
of our approach where a user may have a domain for which they have multiple problems,
requiring explanations for each. We chose to display the results for this domain as it has
the most varied results displaying relatively large and small ranges. This gives a good
indication of how the compilations perform at their best and worst cases, and is largely
representative of the other domains tested.

Each box and whisker plot corresponds to a data set of 10 compilations of a specific
type and problem. The horizontal axis displays each of the compilation types labelled by
their corresponding formal question. Figures 25a and 25b do not have formal question
FQ2, because no plans could be found in the allocated time. The vertical axis represents
the same as the graphs in Figures 23 and 24.

Each box in the plot represents the interquartile range (IQR) of the difference in planning
times; that is, the middle 50 percent of planning times for HModels generated from one
compilation type. The whiskers represent the largest and smallest difference in the planning
times. The results suggest that the impact the compilations have on planning time is quite
inconsequential, and that there are not any compilation types that are substantially more
difficult.

The planning times for HModels generated from each compilation type are consistent
across their problems. This can be seen with the overlapping interquartile ranges on most
data sets. This shows that there is little variation in planning time between the types of
compilations and seems to suggest that the difficulty of the original problems impacts the
planning time more significantly than the type of compilation.

The interquartile range of the data sets is generally small, showing there to be little
variation in the planning time for each compilation type. The IQRs of the data sets are
also grouped around the horizontal axis showing that there is not a large increase or

582

Contrastive Explanations of Plans throughModel Restrictions

decrease in planning time for the majority of the compilations across the problems. A
compilation for a question type FQ7 in Figure 25d gave the greatest increase in planning
time of 33.01 seconds. However, this is an extreme value for this data set as can be seen
from the IQR of 2 – 3.08. There were a few other significant changes on planning time from
compilations. For example, for a question type FQ1 in Figure 25a there was an increase
of 0.08 seconds. This is quite substantial considering that the original planning time was
essentially 0 seconds. However, in practice the increase in planning time is negligible. For
each of these significant changes in planning time, the IQR of the data set shows that it is
an extreme value.

The largest IQR is for FQ4 in Figure 25d of 0.055 – 2.145. This is expected, because
problem 20 is the hardest to solve for this domain. The other ranges in this problem are
similar and also show little negative impact in the planning time. The data set with the
largest interquartile range compared to the other compilations performed in the problem
is FQ6, which corresponds to the compilation shown in Section 4.7, in Figure 25b with an
IQR of 0.045 – 0.455. This stands out compared to the other results in the plot where the
ranges are very small, and the values show close to zero, however, in practice an increase
in planning time of 0.045 to 0.455 seconds is still negligible.

The results for problem 20, shown in Figure 25d show that for some compilations
there was an improvement in planning time. For FQ4 this seems to be an extreme case
where only the lowest planning time was an improvement of 17.09 seconds. Whereas, for
compilations of the question type FQ3, the majority improved the planning time. In fact,
across all problems the compilations for FQ3 had the least negative impact on planning
time.

Figures 26 and 27 show the impact of the compilations on the solution quality for the
easy and hard problems we defined earlier. In each of the three domains used in our
experiments, the metric for quality is defined to be the total duration of the plan, keeping
in mind that actions can be performed in parallel. In this case, the higher the metric, the
worse the quality of the plan. The horizontal axis is the same as in Figures 23 and 24
whereas the vertical axis measures the difference between the metric for the plan for a
compiled HModel and the metric for the original plan for the original model. Zero on the
vertical axis represents no difference in metric for the plans from the original and compiled
models, a positive value indicates the metric for a compiled model was higher, and vice
versa for a negative value. Formal question FQ2 is not shown in Figures 26a and 26b,
because no plans could be found in the allocated time.

As opposed to the results comparing the impact of the compilations on planning time,
these results do contain the most optimised plan. This is because each problem had the
same amount of time within which to find a solution, including the original problem.
Although the ultimate planning time for two problems may have differed, they both had
the same opportunity to improve. Therefore, we consider the quality of two plans found
in the same allotted time comparable.

Nonetheless, as we observed earlier, the constraint added in response to a question
could increase the metric for the solution significantly, but still be optimal under the new
constraint. However, another constraint added to the same problem could marginally
increase the metric, but be far from optimal. From the spread of the values in the results,
potentially inefficient solutions are recognisable. Data points that lie in the same metric

583

Krarup, Krivic, Magazzeni, Long, Cashmore, & Smith

(a) Crew Planning Problem 1, Literals 30, Metric
1440

(b) Crew Planning Problem 2, Literals 38, Metric
1440

(c) Depots Problem 1, Literals 44, Metric 53.182 (d) Elevators Problem 1, Literals 86, Metric 80.001

Figure 26: Scatter graph comparing the metrics of each compilation type over the simplest
problems in each of the tested domains. Each sub-caption communicates the domain and
problem from the IPC, the number of literals in the original problem and the metric for
the best plan found in the allotted time. Each data point corresponds to a compilation of
a question, colour coded by question type. The position of the data point on the y-axis
corresponds to the increase (decrease) in the plan metric compared to the original problem.
There is an arbitrary count to help distinguish between compiled problems.

584

