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Abstract

It has been pointed out by Katsuno and Mendelzon that the so-called AGM revi-
sion operators, defined by Alchourrón, Gärdenfors and Makinson, do not behave well in
dynamically-changing applications. On that premise, Katsuno and Mendelzon formally
characterized a different type of belief-change operators, typically referred to as KM up-
date operators, which, to this date, constitute a benchmark in belief update. In this article,
we show that there exist KM update operators that yield the same counter-intuitive results
as any AGM revision operator. Against this non-satisfactory background, we prove that a
translation of Parikh’s relevance-sensitive axiom (P), in the realm of belief update, suffices
to block this liberal behaviour of KM update operators. It is shown, both axiomatically
and semantically, that axiom (P) for belief update, essentially, encodes a type of relevance
that acts at the possible-worlds level, in the context of which each possible world is locally
modified, in the light of new information. Interestingly, relevance at the possible-worlds
level is shown to be equivalent to a form of relevance that acts at the sentential level, by
considering the building blocks of relevance to be the sentences of the language. Further-
more, we concretely demonstrate that Parikh’s notion of relevance in belief update can be
regarded as (at least a partial) solution to the frame, ramification and qualification prob-
lems, encountered in dynamically-changing worlds. Last but not least, a whole new class
of well-behaved, relevance-sensitive KM update operators is introduced, which generalize
Forbus’ update operator and are perfectly-suited for real-world implementations.

1. Introduction

Belief revision (or, simply, revision) is the process by which a rational agent modifies
her beliefs about a static/unchanging world, in the light of new information (Gärdenfors,
1988). A prominent approach that formalizes belief revision is that proposed by Alchourrón,
Gärdenfors, and Makinson (1985), now known as the AGM paradigm, after the initials of
its three founders. Within the AGM paradigm, the agent’s belief corpus is represented by a
logical theory of an underlying logic language, and a new piece of information is expressed
by a logical sentence. A collection of postulates, called the AGM postulates, characterizes
any rational revision operator, named AGM revision operator, which maps theories and
sentences to theories.

In a cornerstone article, Katsuno and Mendelzon (1992) pinpointed an insufficiency of
AGM revision operators in producing reasonable results in a real-world scenario, the so-
called book/magazine example. They, in turn, argued that AGM revision operators were
never meant to deal with situations analogous to the book/magazine example in the first
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place, and proposed as a solution to this problem a new type of belief change that is
appropriate for dynamically-changing applications, known as belief update.1

Belief update (or, simply, update) refers to the type of belief change by which, in
view of new information, a change in the state of the world —rather than in the descrip-
tion/perception of the state of the world— takes place. Following the AGM tradition,
Katsuno and Mendelzon characterized belief update in terms of a set of rationality pos-
tulates, typically referred to as the KM postulates. The update operators that satisfy the
KM postulates are called KM update operators, and, like the AGM revision operators, map
theories and sentences to theories. Contrary to AGM revision operators, however, which
treat theories as unified entities, KM update operators operate in a pointwise manner, by
reducing the update of an arbitrary theory to the modification of each possible world that
satisfies the theory.

Although KM update operators have been proven to be benchmark formal tools for
belief update, we show, in this article, that they are liberal in their treatment of relevance.
In response to this weakness, we propose a relevance-sensitive framework for belief update,
which strictly strengthens Katsuno and Mendelzon’s approach, based on Parikh’s model for
belief revision (1999). Specifically, the following contributions are made:

� We show that there are in fact KM update operators that yield the same counter-
intuitive results as any AGM revision operator.

� Against this non-satisfactory background, we show that a translation of Parikh’s
relevance-sensitive axiom (P) in the realm of belief update suffices to block these
undesirable behaviours of KM update operators. Parikh’s axiom, originally formu-
lated for capturing local revision, encodes the following intuitive principle: If a theory
K is splittable, namely, it can be expressed in two syntax-disjoint compartments (rep-
resenting independent subject matters), then the revision of K by a new piece of
information ϕ affects only the part of K that is syntactically relevant to the minimal
language of ϕ. Evidently, Parikh’s axiom perceives relevance at the theory level, in
the sense that it considers the building blocks of relevance to be the disjoint com-
partments of a splittable theory. Splittability is, in turn, a function of the contingent
beliefs of an agent. Parikh’s approach is often referred to as the language-splitting
model, and, since its proposal, has been extensively studied; see, indicatively, the
works by Chopra and Parikh (2000), Makinson and Kourousias (2006), Kourousias
and Makinson (2007), Makinson (2009), Peppas, Williams, Chopra, and Foo (2015),
and Aravanis, Peppas, and Williams (2019).

� Peppas et al. (2015) identified two different interpretations of Parikh’s axiom (P),
called the weak and the strong version of (P), both of which are plausible depending
on the application. We prove that the weak version of axiom (P), when translated in
the realm of belief update, reduces to a simple postulate, named (R1), which ensures
that the modification of any possible world (representing a world state) should not
affect the part of the world that is irrelevant to the new information ϕ. On the
other hand, the strong version of (P) for belief update strictly implies (but it is not

1. Although the process of belief update was first noticed by Keller and Winslett (1985), it was elaborated
and formalized by Katsuno and Mendelzon (1992).
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equivalent to) a postulate, named (R2), which ensures that the modification of the
ϕ-relevant part of possible worlds is not affected by their ϕ-irrelevant part; thus, (R2)
makes the update-process context-independent. Both postulates (R1) and (R2) do not
demand the splittability of theories, as they act directly at the possible-worlds level
— this behaviour is aligned with the pointwise operation of KM postulates.

� We show that postulates (R1)–(R2) are, in turn, equivalent to postulates (S1)–(S2),
respectively. Both (S1) and (S2) act at the sentential level, in the sense that they
consider the building blocks of relevance to be the sentences (beliefs) of a theory.

� Possible-worlds semantics for all the relevance-sensitive postulates for belief update
presented herein are provided, by formulating appropriate constraints on preorders
over possible worlds which precisely characterize the postulates. We, also, discuss
the resemblance between the semantic characterization of the weak version of axiom
(P) for belief update and Winslett’s Possible Models Approach (PMA) (1988), which
constitutes a popular method suitable for reasoning about action.

� The ability to ignore unrelated information is a prerequisite for the implementation of
real-world rational agents, equipped with high-level cognitive capabilities. Although
this is, in general, a rather simple task for humans in their daily-life action, it turned
out to be a challenging problem in formalizing dynamically-changing worlds; an ap-
propriate formalization requires “too much” explicit information about environment
dynamics. This challenge is formally described, to a large extent, in the three classi-
cal problems of (logic-based) Artificial Intelligence, namely, the frame (McCarthy &
Hayes, 1969), ramification (Finger, 1987), and qualification (McCarthy, 1977) prob-
lems. As the main desideratum concerning these important problems is the distinction
between the relevant and irrelevant fluents with respect to an action,2 they are evi-
dently in a close connection with relevance-sensitive belief update. Accordingly, we
concretely show how a slight adjustment of the weak version of axiom (P) for belief
update, which incorporates the notion of causality, can be regarded as (at least a
partial) solution to these problems.

� A whole class of concrete KM update operators that respect all the presented
relevance-sensitive postulates is introduced, both axiomatically and semantically; we
call these new operators parametrized-difference (PD) update operators, or PD up-
date operators, for short. PD update operators constitute a natural generalization of
Forbus’ update operator (1989), and are, essentially, a subsequent reformulation of
parametrized-difference revision operators of Peppas and Williams (2016, 2018). We
demonstrate that PD update operators are perfectly-suited for real-world implemen-
tations, as they can be compactly specified.

Although relevance in belief revision has been extensively studied —beyond the works
mentioned earlier, see also (Gärdenfors, 1990; Hansson & Wassermann, 2002; Wassermann,
2001b, 2001a; Kern-Isberner & Brewka, 2017; Delgrande & Peppas, 2018)— the role that
this important notion plays in the realm of belief update has not gained the analogous

2. A fluent is a condition of a world state that can change over time.
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attention. Indeed, to the best of our knowledge, the only work that directly bears on
the approach adopted herein is that by Perrussel, Marchi, Thévenin, and Zhang (2012).
Nevertheless, that work departs from the classical framework of Katsuno and Mendelzon, as
it considers belief update by handling prime implicants; thus, a significant deviation from the
KM postulates, as well as their semantic characterization, was required. The present work,
on the other hand, is fully aligned with the standard Katsuno and Mendelzon’s approach,
and essentially provides a strict strengthening of the KM postulates, by characterizing a
proper sub-class of KM update operators —namely, the sub-class satisfying the proposed
postulates— that respect relevant change.

The remainder of this article is structured as follows. The next section sets the formal
background for our discussion. Thereafter, Sections 3 and 4 discuss belief revision and belief
update, respectively, followed by Section 5, which introduces Parikh’s notion of relevance.
Sections 6 and 7 investigate (both axiomatically and semantically) the weak and the strong
version of Parikh’s axiom (P), respectively, in the realm of belief update. In Section 8, PD
update operators are introduced. A brief concluding section closes the paper.

2. Formal Background

This section sets the formal background material that shall be used throughout this article.

Language. We shall work with a propositional language L, built over a finite, non-empty
set P of atoms (propositional variables), using the standard Boolean connectives ∧ (con-
junction), ∨ (disjunction), → (implication), ↔ (equivalence), ¬ (negation), and governed
by classical propositional logic. The classical consequence relation is denoted by |=.

Sentences. A sentence ϕ of L is contingent iff it is neither a tautology, nor a contradiction.
For a set of sentences Γ of L, Cn(Γ) denotes the set of all logical consequences of Γ; i.e.,
Cn(Γ) =

{
ϕ ∈ L : Γ |= ϕ

}
. For a sequence of sentences x1, . . . , xn of L, we shall write

Cn(x1, . . . , xn), as an abbreviation of Cn
(
{x1, . . . , xn}

)
. For a set of sentences Γ of L,

∧
Γ

denotes the single sentence of L resulting from the conjunction of all sentences in Γ.

Theories. A theory (also referred to as belief set) K is any set of sentences of L closed
under logical consequence; i.e., K = Cn(K). A theory K is complete iff, for all sentences
ϕ ∈ L, either ϕ ∈ K or ¬ϕ ∈ K. For a theory K and a sentence ϕ of L, the expansion of
K by ϕ, denoted by K + ϕ, is defined to be the deductive closure of the set K ∪ {ϕ}; i.e.,

K + ϕ = Cn
(
K ∪ {ϕ}

)
.

Literals. A literal is an atom p ∈ P or its negation. For a set of literals Q, |Q| de-
notes the cardinality of Q, whereas, Q denotes the set of all the negated literals in Q; i.e.,
Q = {¬q : q ∈ Q}.

Possible Worlds. A possible world (or, simply, world) r is defined to be a consistent set of
literals, such that, for any atom p ∈ P, either p ∈ r or ¬p ∈ r. The set of all possible worlds
is denoted by M. By the definition of complete theories, it follows that there is a one-to-one
correspondence between consistent complete theories and possible worlds, such that, for
any consistent complete theory K, there exists a world w ∈M such that [K] = {w}. For a
sentence (set of sentences) ϕ of L, [ϕ] is the set of all worlds satisfying ϕ.
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Sublanguages. Let Q be a subset of P. We denote by LQ the sublanguage of L defined
over Q, using the standard Boolean connectives. For a sentence ϕ of L, we denote by Pϕ
the (unique) minimal subset of P, through which a sentence that is logically equivalent to
ϕ can be formulated. If ϕ is not contingent, we take Pϕ to be the empty set. We define the
minimal language Lϕ of ϕ to be the propositional (sub)language defined over Pϕ, using the
standard Boolean connectives. We, also, define Lϕ to be the propositional (sub)language
defined over P−Pϕ, using the standard Boolean connectives. If Pϕ (resp., P−Pϕ) is empty,
then Lϕ (resp., Lϕ) is empty. Lastly, for a possible world r of M and a contingent sentence
ϕ of L, rϕ denotes the restriction of r to the minimal language Lϕ; that is, rϕ = r ∩ Lϕ.3

Preorders. A partial preorder over a set V is a reflexive, transitive binary relation in V .
A partial preorder � is total iff, for all r, r′ ∈ V , r � r′ or r′ � r. The strict part of � is
denoted by ≺; i.e., r ≺ r′ iff r � r′ and r′ � r. The symmetric part of � is denoted by ≈;
i.e., r ≈ r′ iff r � r′ and r′ � r. Also, min(V,�) denotes the set of all minimal elements of
V , with respect to �; that is,

min(V,�) =
{
r ∈ V : for all r′ ∈ V , if r′ � r, then r � r′

}
.

3. Belief Revision

In this section, we present the axiomatic and semantic characterization of the process of
belief revision, along with a benchmark scenario of the belief-update literature that served
as a motivation to this work.

3.1 Axiomatic Characterization

A revision operator is a function ∗ that maps a theory K and a sentence ϕ to a new theory
K ∗ϕ, representing the result of revising K by ϕ. We shall say that a revision operator ∗ is
an AGM revision operator iff it satisfies the following postulates, known as AGM postulates:

(K ∗ 1) K ∗ ϕ is a theory of L.

(K ∗ 2) ϕ ∈ K ∗ ϕ.

(K ∗ 3) K ∗ ϕ ⊆ K + ϕ.

(K ∗ 4) If ¬ϕ /∈ K, then K + ϕ ⊆ K ∗ ϕ.

(K ∗ 5) K ∗ ϕ = L iff ϕ is inconsistent.

(K ∗ 6) If Cn(ϕ) = Cn(ψ), then K ∗ ϕ = K ∗ ψ.

(K ∗ 7) K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ.

(K ∗ 8) If ¬ψ /∈ K ∗ ϕ, then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ).

The guiding principle behind the AGM postulates —whose rationale is discussed by
Gärdenfors (1988, Section 3.3) and Peppas (2008, Section 8.3.1)— is that of economy of

3. Notation and terminology on sublanguages is borrowed from Parikh (1999), Peppas et al. (2015), and
Makinson (2009).
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information; namely, the new information ϕ must be consistently incorporated into the
initial belief set K, changing it as little as possible. Note that, in the special case where
ϕ is consistent with K, it follows from postulates (K ∗ 3)–(K ∗ 4) that revision reduces to
expansion; that is, K ∗ ϕ = K + ϕ.

3.2 Semantic Characterization

Let us, now, proceed to the semantic characterization of belief revision. It turns out that
the revision operators that satisfy postulates (K ∗ 1)–(K ∗ 8) are precisely those that are
induced by means of total preorders over all possible worlds.

Definition 1 (Faithful Preorder Associated with Theories, Katsuno & Mendelzon, 1991).
A total preorder �K over M is faithful to a theory K iff, for any r, r′ ∈ M, the following
two conditions hold:

(i) If r ∈ [K], then r �K r′.

(ii) If r ∈ [K] and r′ /∈ [K], then r ≺K r′.

Intuitively, r �K r′ precisely when the world r is at least as plausible (relative to K) as
the world r′.

Definition 2 (Faithful Assignment, Katsuno & Mendelzon, 1991). A faithful assignment
is a function that maps each theory K of L to a total preorder �K over M, that is faithful
to K.

The following theorem characterizes the class of revision operators induced by faithful
assignments based on total preorders.

Theorem 1 (Katsuno & Mendelzon, 1991). A revision operator ∗ satisfies postulates
(K ∗ 1)–(K ∗ 8) iff there exists a faithful assignment that maps each theory K of L to a
total preorder �K over M, such that, for any ϕ ∈ L:

(F∗)
[
K ∗ ϕ

]
= min([ϕ],�K).

3.3 The Book/Magazine Example

As pointed out by Katsuno and Mendelzon (1992), the type of belief change encoded in the
AGM revision operators is inadequate to produce reasonable outcomes in dynamically-
changing applications. The scenario they use to make their case is known as the
book/magazine example, presented below.

Example 1 (The Book/Magazine Example, Katsuno & Mendelzon, 1992). Consider a
room with a table, a magazine and a book. We look through an open door at the room, and
see that either the magazine or the book is on the table, but not both. However, because of
poor lighting, we cannot distinguish which is which. Supposing that atom b represents the
fact that “the book is on the table”, and that atom m represents the fact that “the magazine
is on the table”, the initial state of the world can be described by a theory K, such that:
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K = Cn
(

(b ∧ ¬m) ∨ (¬b ∧m)
)

.

Now, we instruct a robot to place the book on the floor; that is, if the book is on the table,
the robot will place it on the floor, otherwise, it will do nothing. After the (successful) action
of the robot, the new state of the world will, presumably, be the initial theory K modified by
the new information ϕ = ¬b.

Assuming that L contains only the atoms b and m, i.e., P = {b,m}, the set [K] contains
exactly the two worlds w1 = {b,¬m} and w2 = {¬b,m}, whereas, the set [ϕ] contains
exactly the two worlds w2 and r = {¬b,¬m}. If we use an arbitrary AGM revision operator
∗ to modify theory K, we obtain that

K ∗ ϕ = K + ϕ = Cn(¬b ∧m),

as the new information ϕ is consistent with K; that is to say, K is expanded by ϕ. This
is clearly a counter-intuitive result, since, if the magazine was initially on the floor (¬m),
putting the book on the floor (¬b), somehow the magazine jumps onto the table (m).

4. Belief Update

In this section, an overview of the process of belief update is presented, as defined by Katsuno
and Mendelzon (1992), along with a concrete KM update operator, introduced by Winslett
(1988). The liberal behaviour of KM postulates in the context of the book/magazine ex-
ample is formally pointed out as well.

4.1 Axiomatic Characterization

An update operator is a function � that maps a theory K and a sentence ϕ to a new theory
K �ϕ, representing the result of updating K by ϕ. We shall say that an update operator �
is a KM update operator iff it satisfies the following postulates, known as KM postulates:

(K � 1) K � ϕ is a theory of L.

(K � 2) ϕ ∈ K � ϕ.

(K � 3) If ϕ ∈ K, then K � ϕ = K.

(K � 4) K � ϕ = L iff K or ϕ is inconsistent.

(K � 5) If Cn(ϕ) = Cn(ψ), then K � ϕ = K � ψ.

(K � 6) K � (ϕ ∧ ψ) ⊆ (K � ϕ) + ψ.

(K � 7) If ψ ∈ K � ϕ and ϕ ∈ K � ψ, then K � ϕ = K � ψ.

(K � 8) If K is complete, then K � (ϕ ∨ ψ) ⊆ Cn
(
(K � ϕ) ∪ (K � ψ)

)
.

(K � 9) If [K] 6= ∅, then K � ϕ =
⋂

w∈[K]

Cn(w) � ϕ.

For ease of comparison, the KM postulates have been rephrased in the AGM notation.
That is to say, postulates (K �1)–(K �9) are equivalent to postulates (U1)–(U8) introduced
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by Katsuno and Mendelzon (1992), when sentences are replaced by theories in the repre-
sentation of states of belief — details on this transformation can be found in the works
of Peppas, Nayak, Pagnucco, Foo, Kwok, and Prokopenko (1996), and Peppas (1993, Sec-
tion 5.5), whereas, a discussion on (K � 1)–(K � 9) has been conducted by Peppas (2008,
Section 8.8). As in the case of the AGM postulates (K∗1)–(K∗8), postulates (K�1)–(K�9)
have been formulated according to the dictates of the principle of minimal change; hence,
the initial theory K is updated so that the modification be as little as possible.

4.2 Semantic Characterization

Let us, now, proceed to the semantic characterization of belief update. It turns out that
the update operators that satisfy postulates (K � 1)–(K � 9) are precisely those that are
induced by means of partial preorders over all possible worlds.

Definition 3 (Faithful Preorder Associated with Worlds, Katsuno & Mendelzon, 1992).
A partial preorder �w over M is faithful to a world w iff, for any r ∈ M, w 6= r implies
w ≺w r.

As in the case of faithful preorders associated with theories, r �w r′ states that the
world r is at least as plausible (relative to w) as the world r′.

Definition 4 (Faithful Pointwise Assignment, Katsuno & Mendelzon, 1992). A faithful
pointwise assignment is a function that maps each world w of M to a partial preorder �w
over M, that is faithful to w.

The following theorem characterizes the class of update operators induced by faithful
pointwise assignments based on partial preorders.

Theorem 2 (Katsuno & Mendelzon, 1992). An update operator � satisfies postulates
(K � 1)–(K � 9) iff there exists a faithful pointwise assignment that maps each world w
of M to a partial preorder �w over M, such that, for any theory K and any ϕ ∈ L:

(F�)
[
K � ϕ

]
=

⋃
w∈[K]

min([ϕ],�w).

The semantic characterizations of revision and update, although similar, point out two
major differences between these important processes of belief change. Firstly, and perhaps
more importantly, to a fixed theory K, a whole family of preorders over worlds is assigned
in belief update (one for each K-world), contrary to a single preorder assigned in belief
revision. This pointwise behaviour of update is due to postulate (K � 9), which ensures
that the deductive closure of every K-world —which, essentially, constitutes a consistent
complete theory— is modified separately. Secondly, the preorders corresponding to the
AGM postulates (K ∗ 1)–(K ∗ 8) are total, whereas, the preorders corresponding to the KM
postulates (K � 1)–(K � 9) are partial (and, thus, not necessarily total). For a more detailed
discussion on the distinction between revision and update, the interested reader is referred
to the work of Peppas et al. (1996).

It proves to be the case that, replacing postulates (K � 7) and (K � 8) by the following
postulate (K � 10), we restrict the class of KM update operators only to those that are
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induced by total preorders over possible worlds.4 For the sake of comparison with belief
revision, we shall confine ourselves to this type of KM update operators, unless explicitly
stated otherwise. In order to avoid a cumbersome presentation, we shall, also, focus on the
principal case of consistent theories (belief sets) and contingent new information.

(K � 10) If K is complete and ¬ψ /∈ K � ϕ, then (K � ϕ) + ψ ⊆ K � (ϕ ∧ ψ).

We conclude this subsection with the next remark, which follows directly from the
semantic conditions (F∗) and (F�).
Remark 1. Let ∗ be an AGM revision operator, � be a KM update operator, and K be a
consistent complete theory of L, such that, for a world w ∈ M, [K] = {w}. Moreover, let
�K be a total preorder over M that ∗ assigns at K, via (F∗), and let �w be a total preorder
over M that � assigns at w, via (F�). Then, for any sentence ϕ of L, it is true that:

K ∗ ϕ = K � ϕ iff �K = �w.

4.3 Possible Models Approach

Possible Models Approach (PMA) is a popular method, proposed by Winslett (1988), that
is suitable for certain applications of reasoning about action. Restricting PMA to a propo-
sitional framework, we end up with a (unique) update operator, herein denoted by �W .5 In
order to present Winslett’s operator, we need the following definition concerning a notion
of difference between possible worlds.

Definition 5 (Difference between Worlds). The difference between two worlds w, r of M,
denoted by Diff (w, r), is the set of atoms over which the two worlds disagree. That is:

Diff (w, r) =
(

(w − r) ∪ (r − w)
)
∩ P.

Then, the operator �W is induced, via condition (F�), by means of the family of partial
preorders {vw}w∈M, defined, for any r, r′ ∈M, as follows:

(W) r vw r′ iff Diff (w, r) ⊆ Diff (w, r′).

It is not hard to verify that the preorder vw is not total, and faithful to w. Hence, �W
is a KM update operator that satisfies the KM postulates (K � 1)–(K � 9), but does not
satisfy postulate (K � 10).

It turns out that the use of the KM update operator �W in Example 1 to modify theory

K = Cn
(

(b∧¬m)∨ (¬b∧m)
)

, in the light of the information ϕ = ¬b, leads to the desired

outcome. In particular, from the fact that Diff (w1, w2) = {b,m} and Diff (w1, r) = {b},
we derive that r @w1 w2.6 Consequently, we obtain from condition (F�) that

[
K �W ϕ

]
=

{w2, r}, that is, K �W ϕ = Cn(¬b), which is obviously a reasonable result, as all we know
after the (successful) action of the robot is that the book is on the floor.

4. The counterpart of (K � 10) in (Katsuno & Mendelzon, 1992) is postulate (U9) — for details on the
relation between postulates (K � 1)–(K � 10) and (U1)–(U9), the reader is referred to the works of
Peppas et al. (1996) and Peppas (1993, Section 5.5).

5. The original definition of PMA has been provided by Winslett for the case of first-order calculus.
6. @w1 denotes the strict part of vw1 .
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4.4 Counter-Intuitive KM Update Operators

Unfortunately, as it is shown in the next remark, not every KM update operator leads to
intuitive results as far as the well-known book/magazine example is concerned.

Remark 2. Let P = {b,m}. Moreover, let K and ϕ be a theory and a sentence of L,

respectively, such that K = Cn
(

(b ∧ ¬m) ∨ (¬b ∧m)
)

and ϕ = ¬b (cf. Example 1). There

exists a KM update operator � such that, for any AGM revision operator ∗, K �ϕ = K ∗ϕ.

Proof. The set [K] contains exactly the two worlds w1 = {b,¬m} and w2 = {¬b,m},
whereas, the set [ϕ] contains exactly the two worlds w2 and r = {¬b,¬m}.7 Let � be a KM
update operator, induced (via condition (F�)) by a family of total preorders over worlds,
such that w2 ≺w1 r. Then, from (F�), we have that K � ϕ = Cn(¬b ∧m) = K ∗ ϕ. �

Evidently, the KM update operator � of Remark 2 has the same counter-intuitive be-
haviour, in the context of the book/magazine example, as any AGM revision operator —
since revision reduces, in this case, to expansion. The reason why � fails to produce the
desired outcome is that it does not take into account some form of relevance; since the robot
is instructed to change only book’s place, there is no reason that the magazine is affected by
this modification. It seems that the KM postulates interpret the notion of minimal change
as follows: As few formulas of the initial theory K as possible are given up so that the
new information ϕ is (consistently) incorporated into K, yet, it is not ensured that those
formulas are, actually, related to ϕ.8

One can devise a plethora of update-scenarios, analogous to the book/magazine exam-
ple, in which KM update operators behave in a counter-intuitive manner. In response to
this weakness, we shall present a relevance-sensitive framework for belief update, which
essentially strictly strengthens Katsuno and Mendelzon’s framework, and remedies the lib-
eral behaviour of KM update operators. Our proposal is based on Parikh’s approach for
relevance-sensitive belief revision (1999), introduced in the subsequent section.

5. Parikh’s Notion of Relevance

This section is devoted to the presentation of Parikh’s notion of relevance, both axiomatically
and semantically.

5.1 Axiomatic Side

After the observation that the severe full-meet revision (Alchourrón et al., 1985) —a type of
revision that discards all prior beliefs of a theory K and retains only the (deductive closure
of the) new information ϕ, in the principal case where ϕ contradicts K— satisfies the AGM
postulates, Parikh (1999) proposed an additional axiom, named (P) and presented below,
that addresses the problem of relevance-sensitive belief revision.

7. For convenience, the notation of Example 1 is maintained.
8. In the next section (Section 5), it will be shown that this type of “misbehaviour”, as far as the AGM

postulates are concerned, has been noted by Parikh (1999). It should be mentioned that an interesting
discussion on the interpretation of the notion of minimal change in the AGM setting has been conducted
by Rott (2000).
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(P) If K = Cn(x, y), where x, y are sentences of disjoint sublanguages Lx,Ly,
respectively, and Lϕ ⊆ Lx, then K ∗ϕ =

(
CnLx(x) ◦ϕ

)
+ y, where ◦ is a local

revision operator defined over the sublanguage Lx.

In the above condition, CnLx(x) denotes the deductive closure of x in the sublanguage
Lx; i.e., CnLx(x) = Cn(x) ∩ Lx.

Axiom (P) asserts that, if it happens that the initial belief set K is splittable (i.e., it
can be expressed in two syntax-disjoint compartments Cn(x) and Cn(y)), then this can
be exploited in the revision-process, during which the portion of K that is syntactically
irrelevant to the new information remains intact. Hence, Parikh’s axiom perceives relevance
at the theory level, in the sense that it considers the building blocks of relevance to be the
disjoint compartments of a splittable theory; splittability is a property of theories which, in
turn, depends on the contingent beliefs of an agent.

In subsequent works by Peppas, Chopra, and Foo (2004) and Peppas et al. (2015), two
distinct interpretations of axiom (P) were identified, namely, its weak and strong version.
For presenting these two versions of (P), consider the following two conditions that make
no reference to a local revision operator.

(P1) If K = Cn(x, y), Lx ∩Ly = ∅, and Lϕ ⊆ Lx, then (K ∗ ϕ) ∩Lx = K ∩Lx.

(P2) If K = Cn(x, y), Lx ∩ Ly = ∅, and Lϕ ⊆ Lx, then (K ∗ ϕ) ∩ Lx =(
Cn(x) ∗ ϕ

)
∩ Lx.

Condition (P1) corresponds to the weak version of axiom (P), and says that, if a theory
K can be expressed in two syntax-disjoint compartments Cn(x) and Cn(y), its revision
by a sentence that can be formulated within Lx should not affect anything outside Lx.
Appending (P1) with condition (P2), which demands that the Lx-part of a theory is modified
independently of its Lx-part, we get the strong version of axiom (P).

5.2 Semantic Characterization

Peppas et al. (2015) characterized both postulates (P1) and (P2) in terms of total preorders
over possible worlds; we present this semantic characterization, since we shall rely on it later
in this article. First, however, let us fix the appropriate definitions.9

Definition 6 (Theory-Splitting, Parikh, 1999). Let K be a theory of L, and let Q =
{Q1, . . . , Qn} be a partition of P; i.e.,

⋃
Q = P, Qi 6= ∅, and Qi ∩ Qj = ∅, for all

1 6 i 6= j 6 n. The set Q is a K-splitting iff there exist sentences x1 ∈ LQ1 , . . . , xn ∈ LQn,
such that K = Cn(x1, . . . , xn).

Parikh (1999) showed that, for every theory K of L, there is a unique finest K-splitting,
denoted by FK , which refines every (other) K-splitting.10 That is to say, there is a unique
way to consider theory K as being composed of disjoint compartments.

9. For a characterization of postulates (P1)–(P2) in terms of all the well-known constructive models for
belief revision, the interested reader is referred to the work of Aravanis et al. (2019).

10. A partition Q′ refines another partition Q iff, for every Q′i ∈ Q′, there is a Qj ∈ Q, such that Q′i ⊆ Qj .
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Definition 7 (Difference between Theories and Possible Worlds, Peppas et al., 2015). Let K
be a consistent theory of L, and let FK = {F1, . . . , Fn} be the finest K-splitting. Moreover,
let r be a possible world of M. The difference between K and r, denoted by Diff (K, r), is
the union of the elements Fi of FK , for which there exists a sentence ϕ that can be expressed
in the sublanguage LFi, on that K and r disagree. In symbols:

Diff (K, r) =
⋃{

Fi ∈ FK : for some ϕ ∈ LFi, K |= ϕ and r |= ¬ϕ
}

.

Notice that, in the special case of a consistent complete theory K, i.e., whenever [K] =
{w}, for some world w ∈M, it is true that, for any r ∈M, Diff (K, r) = Diff (w, r).

Definition 8 (Total-Preorder Filtering, Peppas et al., 2015). Let � be a total preorder over
the possible worlds of M, and let x be a contingent sentence of L. The x-filtering of �,
denoted by �x, is the (unique) total preorder over M, such that, for any r, r′ ∈M:

r �x r′ iff there is a world z ∈ [rx], such that z � z′, for all worlds z′ ∈ [r′x].

Intuitively, the total preorder �x can be regarded as a “projection” of the total preorder
� to the minimal language Lx of x, treating the atoms outside Lx as invisible. Notice that,
if Lx = L, then �x = �.

The following example will help us clarify the above definitions.

Example 2. Let P = {a, b, c} and K = Cn
(
a ↔ b, c

)
. Clearly, theory K is splittable,

and the finest K-splitting is FK =
{
{a, b}, {c}

}
. Consider the world r = {¬a, b, c}. Then,

Diff (K, r) = {a, b}, since K and r disagree on the sentence ϕ = a∨¬b ∈ L{a,b}; i.e., K |= ϕ
and r |= ¬ϕ. Thereafter, let �K be the total preorder over the possible worlds of M, which
is faithful to K, shown below:11

abc
abc

≺K
abc
abc

≺K abc ≺K
abc
abc

≺K abc

Then, for a sentence x = a ∨ b (for which Lx = L{a,b}), the x-filtering �xK of �K is the
following total preorder over M:

abc
abc
abc
abc

≺xK
abc
abc

≺xK
abc
abc

Against this background, consider the following conditions (Q1)–(Q3), which constrain
total preorders over possible worlds.

(Q1) If Diff (K, r) ⊂ Diff (K, r′) and Diff (r, r′) ∩ Diff (K, r) = ∅, then r ≺K r′.

(Q2) If Diff (K, r) = Diff (K, r′) and Diff (r, r′) ∩ Diff (K, r) = ∅, then r ≈K r′.

(Q3) If K = Cn(x, y) and Lx ∩ Ly = ∅, then �xK = �xCn(x).

11. For the sake of readability, possible worlds are represented as sequences (rather than sets) of literals,
and the negation of an atom p is represented as p (instead of ¬p).
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Theorem 3 states that the semantic characterization of postulate (P1) is the conjunc-
tion of conditions (Q1)–(Q2), whereas, the semantic characterization of postulate (P2)
corresponds to condition (Q3).

Theorem 3 (Peppas et al., 2015). Let ∗ be an AGM revision operator, K be a theory of
L, and �K be a total preorder over M that is faithful to K, corresponding to ∗ by means of
(F∗). Then, ∗ satisfies postulate (P1) iff �K satisfies conditions (Q1)–(Q2), and, moreover,
∗ satisfies postulate (P2) iff �K satisfies condition (Q3).

5.3 A Näıve Translation in Belief Update

For applying Parikh’s notion of relevance in the context of belief update, we need to recast
postulates (P1)–(P2) so that they constrain the behaviour of update operators. Accordingly,
by the replacement of the revision operator ∗ of (P1)–(P2) with an update operator �, we
end up with the following conditions (P1�)–(P2�), which correspond to a näıve translation
of (P1)–(P2), respectively, in the realm of belief update.

(P1�) If K = Cn(x, y), Lx ∩Ly = ∅, and Lϕ ⊆ Lx, then (K � ϕ) ∩Lx = K ∩Lx.

(P2�) If K = Cn(x, y), Lx ∩ Ly = ∅, and Lϕ ⊆ Lx, then (K � ϕ) ∩ Lx =(
Cn(x) � ϕ

)
∩ Lx.

At first glance, it seems that postulates (P1�)–(P2�), like (P1)–(P2), act at the the-
ory level, since they refer to splittable theories. A closer look at (P1�)–(P2�), however,
against the background of Katsuno and Mendelzon’s framework for belief update, reveals a
somewhat different reality, discussed in the subsequent two sections.

6. The Weak Version of Axiom (P) in Belief Update

We start our analysis with the weak version of axiom (P) for belief update, namely, postulate
(P1�), from both an axiomatic and a semantic perspective.

6.1 Axiomatic Side

It turns out that, in the presence of postulates (K � 1)–(K � 10), postulate (P1�) becomes
equivalent to postulate (S1), which is, in turn, equivalent to postulate (R1); both (S1) and
(R1) are shown below.

(S1) (K � ϕ) ∩ Lϕ = K ∩ Lϕ.

(R1) If K is complete, then (K � ϕ) ∩ Lϕ = K ∩ Lϕ.

Before presenting the formal result that establishes the equivalence between (P1�), (S1)
and (R1), let us discuss the intuition behind the latter two conditions. Postulate (S1) states
that the new information ϕ should not affect any sentence (belief) of a theory K that is
syntactically irrelevant to ϕ. Contrary to (P1�), which encodes relevance at the theory
level, postulate (S1) encodes relevance at the sentential level, in the sense that it considers
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the building blocks of relevance to be the sentences of an arbitrary theory, which is not
necessarily splittable.

Postulate (R1), on the other hand, is identical to (S1) when restricted to consistent
complete theories, encoding the following simple rule: The update of any consistent complete
theory K by a new piece of information ϕ should not affect the ϕ-irrelevant part of K. Since
there is a one-to-one correspondence between consistent complete theories and possible
worlds,12 postulate (R1), essentially, acts at the possible-worlds level; thus, it is aligned
with the pointwise operation of the update-process.

The alluded connection between (P1�), (S1) and (R1) is established in Theorem 4.

Theorem 4. Postulate (P1�) is equivalent to postulate (S1), and postulate (S1) is equivalent
to postulate (R1).

Proof. Let � be a KM update operator. We need to prove that � satisfies (P1�) iff � satisfies
(S1) iff � satisfies (R1).

We, first, show that � satisfies (S1) iff � satisfies (R1). The left-to-right implication
follows directly, by restricting the application of (S1) to consistent complete theories. As
far as the right-to-left implication is concerned, suppose that � satisfies (R1). To show that
� satisfies (S1), let K be a theory of L, and let ϕ be a sentence of L. From (R1), it follows
that the Lϕ-part of all K-worlds remains unaffected by the �-update of K by ϕ. This again
entails that (K �ϕ)∩Lϕ = K ∩Lϕ. Hence, we have shown that � satisfies (S1) iff � satisfies
(R1), as desired.

Next, we show that (S1) entails (P1�). Assume, therefore, that � satisfies (S1). We
prove that � satisfies (P1�). Let K be a theory of L, such that, for some sentences x, y ∈ L,
K = Cn(x, y) and Lx ∩ Ly = ∅. Moreover, let ϕ be a sentence of L, such that Lϕ ⊆ Lx.
Consider any consistent sentence ψ ∈ Lx, such that ψ ∈ K (i.e., ψ ∈ K∩Lx). From Lϕ ⊆ Lx,
we derive that ψ ∈ K ∩Lϕ. Hence, from (S1), it follows that ψ ∈ (K �ϕ)∩Lϕ. Given that
ψ ∈ Lx, this again entails that ψ ∈ (K �ϕ)∩Lx. Therefore, K ∩Lx ⊆ (K �ϕ)∩Lx. With a
totally symmetric line of reasoning, we can show that (K �ϕ)∩Lx ⊆ K∩Lx. Consequently,
we have that (K � ϕ) ∩ Lx = K ∩ Lx; that is, (P1�).

To conclude the proof, it suffices to show that (P1�) entails (R1). Assume, therefore,
that � satisfies (P1�). We prove that � satisfies (R1). Let K be a consistent complete theory,
and let ϕ be any sentence of L. Then, there exists a world w ∈ M, such that K = Cn(w).
Therefore, there exist two sentences x, y ∈ L, such that K = Cn(x, y), Lx ∩ Ly = ∅, and
Lϕ = Lx. Hence, it follows from (P1�) that (K � ϕ) ∩ Lϕ = K ∩ Lϕ, as desired. �

The results of the present subsection are summarized in the following relationship (where
⇐⇒ denotes equivalence):

(P1�) ⇐⇒ (S1) ⇐⇒ (R1)

6.2 Semantic Characterization

We, now, turn to the semantic characterization of postulate (R1), which, in the presence
of Theorem 4, coincides with the semantic characterization of postulate (S1) and that of

12. Recall that a consistent theory K is complete iff there exists a world w ∈ M such that [K] = {w}.
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postulate (P1�). Accordingly, the semantic counterpart of (R1) is the subsequent constraint
on a total preorder �w that is faithful to a world w (for any r, r′ ∈M).

(SR1) If Diff (w, r) ⊂ Diff (w, r′), then r ≺w r′.

According to (SR1), the less a world differs in atoms from a world w, the more plausible it
is, relative to w. In case, however, two worlds r, r′ are Diff-incomparable (i.e., Diff (w, r) 6⊂
Diff (w, r′) and Diff (w, r′) 6⊂ Diff (w, r)), (SR1) places no constraints on their relative order,
with respect to �w. As a consequence, contrary to Winslett’s condition (W), constraint
(SR1) can be applied to total preorders over worlds. Note, lastly, that (SR1) constitutes a
strict weakening of (W), and it has been studied by Peppas, Foo, and Nayak (2000), as a
measure of similarity between worlds, in the context of belief revision.

The next theorem establishes the correspondence between conditions (R1) and (SR1).

Theorem 5. Let � be a KM update operator, and let {�w}w∈M be the family of total
preorders over M, corresponding to � by means of (F�). Then, � satisfies (R1) iff {�w}w∈M
satisfies (SR1).

Proof. The proof is analogous to the proof of Theorem 2 by Peppas et al. (2015); we present
it herein as well, for completeness.
( ⇒ )
Let K be a consistent complete theory; clearly then, for some world w, [K] = {w}. Assume
that � satisfies postulate (R1) at K. Moreover, assume that, contrary to the theorem, �w
violates (SR1). Then, for some worlds r, r′ ∈ M, Diff (w, r) ⊂ Diff (w, r′) and r′ �w r.
Since �w is faithful to w, this entails that r 6= w and r′ 6= w.

Define ϕ to be the conjunction of all literals in r that are not in w; i.e., ϕ =
∧

(r − w).
Then, from Diff (w, r) ⊂ Diff (w, r′), we derive that r′ ∈ [ϕ]. Given that r′ �w r, it follows
that either r is not �w-minimal in [ϕ], or, if it is �w-minimal in [ϕ], then so is r′. In either
case, there is a world r′′ ∈ min([ϕ],�w), such that r′′ 6= r; thus, Diff (w, r) ⊂ Diff (w, r′′).
Consider, now, any atom p ∈

(
Diff (w, r′′)−Diff (w, r)

)
, and define q = p if p ∈ r′′, and

q = ¬p otherwise. Clearly, q ∈ r′′ and ¬q ∈ w. Furthermore, by construction, q /∈ Lϕ.13

From q ∈ r′′, and since r′′ is a �w-minimal ϕ-world, it follows, from condition (F�), that
¬q /∈ K � ϕ. On the other hand, from ¬q ∈ K and ¬q /∈ Lϕ, (R1) entails that ¬q ∈ K � ϕ.
Contradiction.

( ⇐ )
Assume that, for any w ∈ M, �w satisfies condition (SR1), and let K be a consistent
complete theory; clearly then, for some world w, [K] = {w}. Consider a sentence ϕ of L,
and let r be any world in [K � ϕ]; thus, from condition (F�), r ∈ min([ϕ],�w). We will
show that Diff (w, r) ⊆ Lϕ. Assume, on the contrary, that there is a literal l ∈ w ∩ Lϕ,
such that l /∈ r. Let r′ be the world that agrees with r in all literals, except l. Clearly
then, since r ∈ [ϕ] and l /∈ Lϕ, we derive that r′ ∈ [ϕ]. Moreover, by the construction
of r′, Diff (w, r′) ⊂ Diff (w, r). Consequently, by condition (SR1), r′ �w r. This clearly
contradicts our assumption that r is a �w-minimal ϕ-world. Hence, we have shown that

13. To see that q /∈ Lϕ (or, equivalently, p /∈ Lϕ), observe that LDiff (w,r) = Lϕ and Diff (w, r) ⊂ Diff (w, r′′);
thus, Diff (w, r′′) contains atoms outside Lϕ.
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Diff (w, r) ⊆ Lϕ. This shows that all worlds r in [K � ϕ] agree with w on all atoms outside
Lϕ. Therefore, (K � ϕ) ∩ Lϕ = K ∩ Lϕ, as desired. �

It is not hard to verify that the following important remark is true.

Remark 3. Any KM update operator � satisfying postulate (R1) produces the appropriate
outcome in the book/magazine example (Example 1); that is, it holds that

K � ϕ = Cn(¬b).

Hence, the addition of (R1) —or, equivalently, (P1�) or (S1)— to the KM postulates
excludes the type of undesirable KM update operators identified in Remark 2 of Subsec-
tion 4.4 — notice that the KM update operator � in the proof of Remark 2 does not satisfy
postulate (R1), as the preorder �w1 violates constraint (SR1).

6.3 Relevance against the Frame, Ramification and Qualification Problem

A classical and significant problem in dynamically-changing worlds, namely, the frame prob-
lem (McCarthy & Hayes, 1969), is closely connected to relevance-sensitive belief update.
The frame problem is the challenge of succinctly representing the effects of actions, without
having to represent explicitly a large number of intuitively obvious non-effects. Evidently
then, the main desideratum of the frame problem is the distinction between the relevant
and irrelevant fluents, with respect to an action. Two other widely-studied problems are
associated with the frame problem; namely, the ramification problem (Finger, 1987), which
denotes the problem of handling the indirect effects of actions, and the qualification problem
(McCarthy, 1977), which is concerned with the impossibility of listing all the preconditions
required for a real-world action to have its intended effect.

In notable works on reasoning about action (McCain & Turner, 1995; Thielscher, 1996,
2001), causality —which indicates how the world progresses— has been identified as a
crucial concept in avoiding unintended ramifications and inferring derived qualifications.
Accordingly, Thielscher (1996, 2001) proposes that the incorporation of causal information,
concerning a domain to be encoded, can be accomplished by statements, known as causal
relationships, of the following form (where a, b, c are atoms of the language):

“A change of ¬a to a causes a change of ¬b to b, provided that c is true.”

It is important to mention that causal relationships should not be considered as pure logical
formulas, identical to those contained in belief sets; logical formulas do not include causal
information, in contrast to causal relationships which encode the circumstances under which
the occurrence of an effect causes another effect.

As noted by Thielscher, however, mere causality is insufficient to properly handle ram-
ifications and qualifications. He argues that what is additionally needed is some kind of
persistence law, which specifies those aspects of the world that are unaffected by an action’s
direct and indirect effects, and, moreover, distinguishes the normal from abnormal qualifi-
cations. As we sketch in the remainder of this subsection, the role of an axiom of persistence
can be performed by a slight adjustment of the weak version of Parikh’s axiom for belief
update (namely, postulate (R1) or (S1) or (P1�)), which incorporates causality.

266



Relevance in Belief Update

Let us, first, fix the appropriate notation and terminology. For a causal relationship ρ,
Pρ denotes the set of atoms occurring in ρ. Let ϕ be a sentence of L, which represents the
occurrence of a new action. We shall say that the causal relationships ρ1, ρ2, . . . , ρn−1, ρn are
ϕ-dependent iff Pϕ ∩Pρ1 6= ∅ and Pρ1 ∩Pρ2 6= ∅ and . . . and Pρn−1 ∩Pρn 6= ∅. Intuitively,
the fluents represented by the atoms contained in the ϕ-dependent causal relationships
have a potential causal influence by the action represented by ϕ. Notice that this type
of causal dependency is syntax-based. As an example, consider the following two causal
relationships: “A change of ¬a to a causes either a change of ¬b to b or a change of ¬c
to c” and “A change of ¬c to c causes a change of ¬d to d”, where a, b, c, d are atoms of
the language. Then, assuming that ϕ = a, both the aforementioned causal relationships
are ϕ-dependent (although a change of ¬a to a does not, necessarily, cause a change of ¬d
to d). Thereafter, let us denote by P Cϕ the set containing the atoms occurring in all the

ϕ-dependent causal relationships. Then, we define L Cϕ to be the language generated from

the set of atoms Pϕ ∪ P Cϕ , using the standard Boolean connectives; i.e., L Cϕ = L(Pϕ ∪P Cϕ ).

Obviously, Lϕ ⊆ L Cϕ .
Against this background, consider the following rule (RC), which, essentially, encodes

a weakening of the modification-policy encoded in the weak version of Parikh’s axiom for
belief update (since Lϕ ⊆ L Cϕ ).

(RC) “The modification of a world state, in response to a sentence ϕ that represents
the occurrence of a new action, should not affect, or affected by, any fluent which
is represented by atoms contained in L Cϕ .”

The above principle ensures, in a simple and compact manner, that only things relevant
to an action change in a dynamic environment, whereas, the rest remain unaffected. Thus,
for instance, rule (RC) would guarantee that moving does not affect color and painting does
not affect location. It follows, then, that a modification-policy adhering to the relevance-
sensitive principle of (RC) ensures that:

� A new action, represented by a sentence ϕ, cannot initiate any change of fluent rep-
resented by atoms of the language L Cϕ . That is to say, any such fluent is considered
irrelevant, and it is not affected during the modification-process. This, in turn, entails
that only the relevant ramifications (with respect to a new action) will be accommo-
dated in the new state of the world.

� During the modification of a world state, in response to a new action represented by
a sentence ϕ, any qualifications (preconditions) preventing the successful occurrences
of effects, which are represented by atoms of the language L Cϕ , are assumed abnormal
(or irrelevant).

The formal scheme, described above, that handles (at least to a certain degree) the
frame, ramification and qualification problems, by means of relevance-sensitive modification-
policies, is depicted in Figure 1. The following concrete example illustrates its application
to a representative real-world dynamic scenario.

Example 3. Consider the simple electric circuit of Figure 2, which consists of a battery, two
switches (switch1, switch2) and two light bulbs (light bulb1, light bulb2). We shall refer
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Figure 1: A formal scheme that handles (at least to a certain degree) the frame, ramification
and qualification problems, by means of relevance-sensitive modification-policies.

to the filaments of light bulb1 and light bulb2 as filament1 and filament2, respectively.
Suppose that the language used to represent the state of the circuit is built over the set of
atoms P =

{
s1, l1, f1, s2, l2, f2

}
, where si, li, fi denote the propositions “switchi is on”,

“light bulbi is on”, “the filament of light bulbi is damaged”, respectively, and i ∈ {1, 2}.
The topology of the circuit entails that the left side of the circuit (i.e., the condition of
components switch1, light bulb1 and filament1) is causally independent from the right
side of the circuit (i.e., the condition of components switch2, light bulb2 and filament2);
therefore, each light bulb is solely controlled by its respective switch, and, moreover, for the
sentence ϕ = s1, it is true that L Cϕ = L{s1,l1,f1}.

In the initial state of the world, we know that both switches are turned off, thus, both
light bulbs are off. We have, also, no information of a damaged filament1. Furthermore,
assume that the causal properties of the domain are encoded in the following two causal
relationships.

“A change of ¬s1 to s1 causes a change of ¬l1 to l1, provided that f1 is not true.”

“A change of ¬s2 to s2 causes a change of ¬l2 to l2, provided that f2 is not true.”

Now, we instruct a robot to toggle switch1 on. In order to estimate the new state of the
world, after the (successful) action of the robot, we need to modify the initial state of the
world, taking into account the new information ϕ = s1. Supposing that our modification-
policy respects rule (RC), we expect, under the current assumptions, that s1 will become
true (direct effect), and that light bulb1 will turn on (indirect effect), in the new state of the
world. On the other hand, rule (RC) dictates that nothing is changed in the right side of the
circuit, during the operation of the robot; hence, for example, we have no reason to believe
that, in the new state of the world, light bulb2 turns on. Note, also, that we have no reason
to believe that light bulb1 is off, since we have no information of a damaged filament1
in the initial state of the world (thus, f1 is not true), and, moreover, any qualifications
(preconditions) preventing the successful occurrences of effects, which are represented by
atoms of L Cϕ , are assumed irrelevant.
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switch1

light bulb1 −
+

switch2

light bulb2

Figure 2: A simple electric circuit, consisting of a battery, two switches and two light bulbs.

Consequently, only the plausible (relevant) ramifications of the action of the robot are
accommodated in the new state of the world, and, moreover, any implausible qualifications
that prevent the successful occurrences of effects are not taken into account.

In this subsection, we essentially demonstrated how a slight modification of postu-
late (R1) —namely, rule (RC), which, as a matter of fact, does not refer to KM update
operators— can be used as an axiom of persistence, in the context of dynamically-changing
worlds. The reason for adopting a variance of (R1), and not (R1) itself, is that the syntax-
relevance encoded in (R1) (contrary to that encoded in (RC)) does not take into account the
causal properties of a domain. In the absence of causal information, the syntax-relevance of
(R1) can be restrictive, leading to counter-intuitive results. To see this, consider Example 3,
in the context of which a robot performs a new action, represented by a sentence ϕ, namely,
toggles switch1 on; i.e., ϕ = s1. On that premise, postulate (R1) would lead to a new state
of the world in which light bulb1 would be off, since, in the initial state of the world, ¬l1
holds, and, according to (R1), no fluent represented by atoms of the language Lϕ should be
modified, during the operation of the robot. This is, clearly, a counter-intuitive outcome,
as the fluents represented by s1 and l1, although syntax-irrelevant, are causally dependent.

Undoubtedly, a deeper investigation of how syntax-relevance in belief update can prop-
erly accommodate causal information constitutes an appealing avenue for future research.14

7. The Strong Version of Axiom (P) in Belief Update

In this section, we study the strong version of Parikh’s axiom (P) for belief update, namely,
the conjunction of postulates (P1�) and (P2�). Given that (P1�) was analysed earlier, we
study, in this section, postulate (P2�), both axiomatically and semantically.

7.1 Axiomatic Side

It turns out that, in the presence of postulates (K � 1)–(K � 10), (P2�) strictly implies
postulate (R2), which is, in turn, equivalent to postulate (S2); both (S2) and (R2) are
shown below.

14. An interesting approach that studies the relation between causality and the notion of minimal change
—which is directly associated with relevance— has been followed by Pagnucco and Peppas (2001).
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(S2) If K ∩ Lϕ = H ∩ Lϕ, then (K � ϕ) ∩ Lϕ = (H � ϕ) ∩ Lϕ.

(R2) If K, H are complete and K∩Lϕ = H ∩Lϕ, then (K �ϕ)∩Lϕ = (H �ϕ)∩Lϕ.

Before presenting the formal results that establish the connections between (P2�), (S2)
and (R2), let us discuss the intuition behind the latter two conditions. Postulate (S2) states
that, if two theories K and H agree on their Lϕ-parts (namely, on all sentences of Lϕ), then
the updated theoriesK�ϕ andH�ϕ should agree on their Lϕ-parts as well. Hence, according
to (S2), the ϕ-irrelevant part of a theory does not affect the way that the ϕ-relevant part
of it is modified; thus, the update-process becomes context-independent. As in the case of
(S1), and contrary to (P2�), condition (S2) encodes relevance at the sentential level, and
does not rely on properties of theories (e.g., splittability), since it refers to arbitrary theories
of the language.

Postulate (R2), on the other hand, encodes the exact principle that (S2) encodes, but
restricted only to consistent complete theories. Since there is a one-to-one correspondence
between consistent complete theories and possible worlds, postulate (R2) —like (R1)— acts
at the possible-worlds level; thus, it is aligned with the pointwise operation of belief update.

The alluded connection between (P2�), (S2) and (R2) is established in the subsequent
three theorems.

Theorem 6. Postulate (S2) is equivalent to postulate (R2).

Proof. Let � be a KM update operator. We need to prove that � satisfies (S2) iff � satisfies
(R2). The left-to-right implication follows directly, by restricting the application of (S2) to
consistent complete theories. As far as the right-to-left implication is concerned, suppose
that � satisfies (R2). To show that � satisfies (S2), let K, H be two theories of L, and
let ϕ be any sentence of L, such that K ∩ Lϕ = H ∩ Lϕ. From K ∩ Lϕ = H ∩ Lϕ, we
derive that

{
rϕ : r ∈ [K]

}
=
{
rϕ : r ∈ [H]

}
. This, together with (R2), entails that{

rϕ : r ∈ [K � ϕ]
}

=
{
rϕ : r ∈ [H � ϕ]

}
. Therefore, (K � ϕ) ∩ Lϕ = (H � ϕ) ∩ Lϕ, as

desired. �

Theorem 7. Postulate (P2�) entails postulate (R2).

Proof. Let � be a KM update operator, and assume that � satisfies (P2�). We prove that �
satisfies (R2). Let K, H be two consistent complete theories and ϕ be a sentence of L, such
that K ∩Lϕ = H ∩Lϕ. Since K, H are consistent complete theories, there exist two worlds
w,w′ ∈ M, such that K = Cn(w) and H = Cn(w′). This, together with the fact that
K ∩ Lϕ = H ∩ Lϕ, entails that there exist sentences x, y, z ∈ L, such that K = Cn(x, y),
H = Cn(x, z), Lx ∩Ly = Lx ∩Lz = ∅, and Lϕ = Lx. Therefore, it follows from (P2�) that
(K � ϕ) ∩ Lϕ = (H � ϕ) ∩ Lϕ, as desired. �

The converse of Theorem 7 is not, in general, true. This is shown in Theorem 8, which,
together with Theorem 7, proves that postulate (P2�) is, in fact, a strict strengthening of
postulate (R2).

Theorem 8. There exists a KM update operator that satisfies postulate (R2), but does not
satisfy postulate (P2�).
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Proof. Assume that P = {a, b, c}. Let x be a sentence of L, such that x = (a∧b)∨(¬a∧¬b),
and let K = Cn(x, c) and H = Cn(x,¬c); clearly, both K and H split in two disjoint
compartments. Moreover, the set [K] contains exactly the two worlds w1 = {a, b, c} and
w2 = {¬a,¬b, c}, whereas, the set [H] contains exactly the two worlds u1 = {a, b,¬c} and
u2 = {¬a,¬b,¬c}.

Let ϕ be a sentence of L, such that ϕ = ¬a. Hence, Lϕ ⊂ Lx and, thus, Lϕ ⊆ Lx.
Moreover, let � be a KM update operator that satisfies (R2), induced (via (F�)) by a family
{�w}w∈M of total preorders, such that min([ϕ],�w1) =

{
{¬a,¬b, c}

}
=
[
Cn(w1) � ϕ

]
, and

min([ϕ],�u1) =
{
{¬a, b,¬c}

}
=
[
Cn(u1) � ϕ

]
. Then, condition (F�) entails that [K � ϕ] ={

{¬a,¬b, c}
}

and [H � ϕ] =
{
{¬a, b,¬c}, {¬a,¬b,¬c}

}
; that is, K � ϕ = Cn(¬a,¬b, c)

and H � ϕ = Cn(¬a,¬c).15 Observe that (K � ϕ) ∩ Lx 6= (H � ϕ) ∩ Lx, even though
K ∩ Lx = H ∩ Lx, hence, � violates postulate (P2�). �

A key element in the proof of the above theorem is the consideration of a new piece of
information ϕ whose minimal language Lϕ is a proper subset of the minimal language Lx
of the sentence x, which identifies the first compartment of the splittable theories K and
H. Under this situation, postulate (R2) —or, equivalently, (S2)— constrains (only) the
Lϕ-part of theories K, H, K � ϕ and H � ϕ, but not the (wider) Lx-part of these theories,
which postulate (P2�) constrains. This is the root cause of the fact that the converse of
Theorem 7 does not, in general, hold.

The results of the present subsection are summarized in the following relationship (where
=⇒, ⇐⇒ denote strict implication and equivalence, respectively):

(P2�) =⇒ (S2) ⇐⇒ (R2)

7.2 Semantic Characterization

In this subsection, we formulate the semantic characterizations of postulate (R2) —or,
equivalently, (S2)— and postulate (P2�). First, we introduce the semantic counterpart of
(R2), which is the following constraint on total preorders over worlds.

(SR2) If wϕ = w′ϕ, then �ϕw = �ϕw′ .

According to (SR2), the total preorders that are faithful to any two worlds that agree
on all atoms of Lϕ, ought to have identical ϕ-filterings.

The next theorem establishes the correspondence between conditions (R2) and (SR2).

Theorem 9. Let � be a KM update operator, and let {�w}w∈M be the family of total
preorders over M, corresponding to � by means of (F�). Then, � satisfies (R2) iff {�w}w∈M
satisfies (SR2).

Proof. The proof is analogous to the proof of Theorem 5 by Peppas et al. (2015); we present
it herein as well, for completeness.
( ⇒ )
Assume that � satisfies postulate (R2). Let w, w′ be two worlds of M and ϕ be a sentence
of L, such that wϕ = w′ϕ. First, we show that �ϕw ⊆ �ϕw′ .

15. Notice that the worlds w2 and u2 satisfy ϕ.
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Let r, r′ be any two worlds such that r �ϕw r′. Define ψ to be the sentence ψ =(∧
rϕ
)
∨
(∧

r′ϕ
)
. Clearly, ψ ∈ Lϕ. From the definition of �ϕw, we derive that there is a

world u ∈ [rϕ] which is �w-minimal in [rϕ] ∪ [r′ϕ]. This again entails, from condition (F�),
that ¬

(∧
rϕ
)
/∈ Cn(w) � ψ. Then, given that Cn(w) ∩ Lϕ = Cn(w′) ∩ Lϕ (as wϕ = w′ϕ),

it follows from postulate (R2) that ¬
(∧

rϕ
)
/∈ Cn(w′) � ψ. Hence, there is a world z ∈ [rϕ]

which is �w′-minimal in [rϕ]∪ [r′ϕ]. This again entails that r �ϕw′ r
′. Therefore, �ϕw ⊆ �ϕw′ .

The proof of the converse, i.e., �ϕw′ ⊆ �
ϕ
w, is totally symmetric.

( ⇐ )
Assume that condition (SR2) is satisfied. Let K, H be two consistent complete theories
and let ϕ be a sentence of L, such that K ∩ Lϕ = H ∩ Lϕ. Observe that, since K and
H are consistent complete theories, there are worlds w,w′ ∈ M, such that [K] = {w} and
[H] = {w′}. First, we show that (H � ϕ) ∩ Lϕ ⊆ (K � ϕ) ∩ Lϕ.

Consider any consistent sentence ψ such that ψ /∈ (K � ϕ) ∩ Lϕ. Then, from condition
(F�), there is a �w-minimal ϕ-world r, such that r |= ¬ψ. Moreover, it is true that⋃{

[r′ϕ] : r′ ∈ [ϕ]
}

= [ϕ]. Hence, since r is �w-minimal in [ϕ], we derive that r is, also,
�w-minimal in

⋃{
[r′ϕ] : r′ ∈ [ϕ]

}
. This again entails, from the definition of �ϕw, that r

is �ϕw-minimal in
⋃{

[r′ϕ] : r′ ∈ [ϕ]
}

. Then, from condition (SR2), we derive that r is
�ϕw′-minimal in

⋃{
[r′ϕ] : r′ ∈ [ϕ]

}
. Hence, r is �w′-minimal in [ϕ], and, therefore, from

condition (F�), r ∈ [H � ϕ]. Given that r |= ¬ψ, it follows that ψ /∈ H � ϕ. Consequently,
we have shown that (H � ϕ) ∩ Lϕ ⊆ (K � ϕ) ∩ Lϕ.

The proof of the converse, i.e., (K � ϕ) ∩ Lϕ ⊆ (H � ϕ) ∩ Lϕ, is totally symmetric. �

As far as postulate (P2�) is concerned, its semantic counterpart is the following condition
(SP2�), which constrains total preorders over worlds. In the special case where theories K
and H in condition (SP2�) are consistent complete theories, (SP2�) reduces to condition
(SR2); this is to be expected, since, in that case, postulate (P2�) reduces to postulate
(R2) — for the rationale behind this latter statement, the reader is referred to the proof of
Theorem 7.

(SP2�) If K = Cn(x, y), H = Cn(x, z) and Lx ∩ Ly = Lx ∩ Lz = ∅, then,
for every w ∈ [K], there is a w′ ∈ [H], such that �xw ⊆ �xw′ .

Theorem 10 establishes the correspondence between conditions (P2�) and (SP2�).

Theorem 10. Let � be a KM update operator, and let {�w}w∈M be the family of total
preorders over M, corresponding to � by means of (F�). Then, � satisfies (P2�) iff {�w}w∈M
satisfies (SP2�).

Proof.
( ⇒ )
Assume that � satisfies postulate (P2�). Let K, H be two theories of L, such that, for some
sentences x, y, z ∈ L, K = Cn(x, y), H = Cn(x, z) and Lx ∩ Ly = Lx ∩ Lz = ∅. We show
that, for every w ∈ [K], there is a w′ ∈ [H], such that �xw ⊆ �xw′ .

Let w be any world in [K], and let r, r′ be any two worlds ofM, such that r �xw r′. Define
ϕ to be the sentence ϕ =

(∧
rx
)
∨
(∧

r′x
)
. Clearly, Lϕ ⊆ Lx. From the definition of �xw, we

derive that there is a world z ∈ [rx] which is �w-minimal in [rx] ∪ [r′x]. This again entails,
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from (F�), that ¬
(∧

rx
)
/∈ K � ϕ. Then, from postulate (P2�), ¬

(∧
rx
)
/∈ H � ϕ.16 Hence,

(F�) entails that, for some world w′ ∈ [H], there is a world u ∈ [rx] which is �w′-minimal
in [rx] ∪ [r′x]. Therefore, from the definition of �xw′ , we derive that r �xw′ r′, as desired.

( ⇐ )
Assume that condition (SP2�) is satisfied. Let K be a theory of L, such that, for some
sentences x, y ∈ L, K = Cn(x, y) and Lx ∩ Ly = ∅. Moreover, let ϕ be a sentence,
such that Lϕ ⊆ Lx; thus, it is true that

⋃{
[r′x] : r′ ∈ [ϕ]

}
= [ϕ]. First, we show that(

Cn(x)�ϕ
)
∩Lx ⊆ (K�ϕ)∩Lx. Consider any consistent sentence ψ such that ψ /∈ (K�ϕ)∩Lx.

We will prove that ψ /∈ (Cn(x)�ϕ)∩Lx. If ψ /∈ Lx, this is trivially true. Assume, therefore,
that ψ ∈ Lx and ψ /∈ (K � ϕ). Then, from condition (F�), for some world w ∈ [K], there is
a �w-minimal ϕ-world r, such that r |= ¬ψ.

From
⋃{

[r′x] : r′ ∈ [ϕ]
}

= [ϕ] and since r is �w-minimal in [ϕ], we derive that r is,
also, �w-minimal in

⋃{
[r′x] : r′ ∈ [ϕ]

}
. From the definition of �xw, this entails that r is

�xw-minimal in
⋃{

[r′x] : r′ ∈ [ϕ]
}

. Then, from condition (SP2�), we derive that there is a
world w′ ∈ [Cn(x)], such that r is �xw′-minimal in

⋃{
[r′x] : r′ ∈ [ϕ]

}
. From the definition of

�xw′ and since
⋃{

[r′x] : r′ ∈ [ϕ]
}

= [ϕ], we have that r is �w′-minimal in [ϕ], and, therefore,
from condition (F�), r ∈ [Cn(x)�ϕ]. Given that r |= ¬ψ, it follows that ψ /∈ Cn(x)�ϕ, thus,
ψ /∈ (Cn(x) �ϕ)∩Lx. Consequently, we have shown that

(
Cn(x) �ϕ

)
∩Lx ⊆ (K �ϕ)∩Lx,

as desired.

The proof of the converse, i.e., (K � ϕ) ∩ Lx ⊆
(
Cn(x) � ϕ

)
∩ Lx, is totally symmetric,

since condition (SP2�) entails that, for every w ∈ [Cn(x)], there is a w′ ∈ [K], such that
�xw ⊆ �xw′ . �

It should be evident that postulates (R1) (equivalently, (S1) or (P1�)), (R2) (equiva-
lently, (S2)) and (P2�) constitute reasonable constraints of the behaviour of arbitrary KM
update operators; thus, each one of these postulates circumscribes a particular proper sub-
class of the whole class of KM update operators. Furthermore, although (R2) and (P2�) are
related, they are both quite independent from (R1). In any case, depending on the underly-
ing application, one may argue in favour of many types of constraints; postulates (R1), (R2)
and (P2�), however, may be seen as core domain-independent rules for relevance-sensitive
belief update.

We close this section noting that the characterization results of Aravanis (2019) and
Aravanis et al. (2019) can be utilized to, straightforwardly, translate conditions (SR1) and
(SR2) in the realm of the other two well-known semantic models for belief change — namely,
the epistemic-entrenchment (Gärdenfors & Makinson, 1988) and partial-meet (Alchourrón
et al., 1985) models.

8. Parametrized-Difference Update Operators

Having introduced the notion of relevance in the realm of belief update, we turn to the
(semantic and axiomatic) introduction of a well-behaved family of concrete KM update
operators, based on the approach of parametrized-difference belief revision by Peppas and

16. Notice that postulate (P2�) entails that (K � ϕ) ∩ Lx =
(
Cn(x) � ϕ

)
∩ Lx = (H � ϕ) ∩ Lx.
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Williams (2016, 2018).17 We call these new operators parametrized-difference (PD) update
operators; for short, PD update operators. As it will be shown, the alluded operators are
quite natural and intuitive, compactly-specified, as they are induced from a fixed ordering
over atoms, and relevance-sensitive, since they satisfy all the relevance-sensitive postulates
presented herein; this latter feature of PD update operators proves that the conjunction of
the presented postulates is consistent with the KM postulates.

8.1 Semantic Characterization

Let E be a total preorder over the set P of all atoms. As the atoms of the language,
essentially, represent conditions (facts) of a world state, we assume that the preorder E
reflects the (prior) comparative plausibility of change of these world conditions; the more
resistant to change a world condition is, the higher it appears in the preorder E. That is
to say, aE b asserts that a change of the world condition b is less plausible than a change of
the world condition a.

For a set of atoms S and an atom q, by Sq we denote the set Sq =
{
p ∈ S : pE q

}
. The

definition of E can, then, be extended to sets of atoms.

Definition 9 (Total Preorder over Sets of Atoms, Peppas & Williams, 2016). Let E be a
total preorder over the set of atoms P. For any two sets of atoms S, S ′, S E S ′ iff one of
the following three conditions holds (C denotes the strict part of E):

(i) |S| < |S ′|.

(ii) |S| = |S ′|, and for all q ∈ P, |Sq| = |S ′q|.

(iii) |S| = |S ′|, and for some q ∈ P, |Sq| > |S ′q|, and for all pC q, |Sp| = |S ′p|.

In the above definition, condition (ii) states that S and S ′ are lexicographically indistin-
guishable (with respect to E), whereas, condition (iii) states that S lexicographically precedes
S ′ (with respect to E). It turns out that the extended E of Definition 9 is a total preorder
over 2P . The intended interpretation of the extended total preorder E, defined over 2P , is
the same as that of a total preorder defined over P; namely, S E S ′ states that a change
of the world condition represented by all atoms of S ′ is less plausible than a change of the
world condition represented by all atoms of S.

Definition 10 (PD Preorder Associated with Worlds). Let E be a total preorder over the
set of atoms P. A PD preorder, associated with a world w ∈M and denoted by �Ew, is any
binary relation over M, such that, for any r, r′ ∈M:

(PD) r �Ew r′ iff Diff (w, r) E Diff (w, r′).

The results of Peppas and Williams (2016) entail that �Ew is a total preorder over M,
faithful to w.

17. Parametrized-difference belief revision was further investigated by Aravanis, Peppas, and Williams
(2021).
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In the special case where E = P × P (i.e., all atoms are equally plausible), condition
(PD) reduces to condition (H), presented below, which essentially produces a Hamming-
based total preorder, identical to that proposed by Dalal (1988), and applied to belief update
by Forbus (1989).

(H) r �Ew r′ iff |Diff (w, r)| 6 |Diff (w, r′)|, where E = P × P.

Let us, now, proceed to the definition of a PD update operator.

Definition 11 (PD Update Operator). Let E be a total preorder over the set of atoms P.
A PD update operator is the KM update operator induced from a family {�Ew}w∈M of PD
preorders, by means of condition (F�).

Definition 11 implies that a single total preorder E over atoms induces a unique KM
update operator, named, PD update operator, which, not only satisfies the KM postulates
(K �1)–(K �9), but also postulate (K �10). Given that the specification of an arbitrary KM
update operator requires a whole family of preorders over worlds (one for each world of M),
the significantly lower specification cost of PD update operators becomes apparent. Note,
moreover, that, among all the concrete belief-update operators proposed in the literature
(and surveyed by Herzig & Rifi, 1999), only those of Winslett and Forbus satisfy the full
set of KM postulates (K � 1)–(K � 9); Forbus’ operator satisfies postulate (K � 10) as well,
whereas, Winslett’s operator does not.18 Herein, we defined a generalization of Forbus’
proposal, namely, PD update operators, which also satisfy all postulates (K � 1)–(K � 10).

To illustrate the practical use of PD update operators, a concrete update-scenario,
addressed by this type of operators, is presented subsequently.

Example 4. Consider a chemical laboratory, in which two dangerous chemical reactions
A and B take place. We denote by a the proposition “the chemical reaction A has been
triggered”, and by b the proposition “the chemical reaction B has been triggered”. Initially,
it is known that either both reactions have been triggered, or both reactions have not been
triggered; hence, the initial state of the world can be described by a theory K, such that
K = Cn

(
(a ∧ b) ∨ (¬a ∧ ¬b)

)
. Furthermore, it is, also, known that chemical reaction B

ignites much harder than chemical reaction A.

Given the hazard involved with the chemical reactions A and B, we instruct a durable
robot to go inside the chemical laboratory, and trigger at least one of the two reactions A
and B; that is, if both reactions have not been triggered, the robot will try to trigger at
least one of them, otherwise, the robot will do nothing. After the (successful) action of the
robot, and given the different plausibility of ignition of the two reactions, it is plausible to
assume that, in the new state of the world, reaction A —rather than reaction B— has been
triggered.

The aforementioned scenario, essentially, constitutes an update-scenario which can eas-
ily be addressed with the use of a PD update operator. Specifically, consider the PD update
operator �, induced from the following total preorder E over the atoms a and b: aCb. Then,
the �-update of the initial theory K by the sentence ϕ = a ∨ b leads to the modified theory

18. It is noteworthy that the KM update operator of Forbus produces the same intuitive results as Winslett’s
PMA, when applied to the book/magazine example of Subsection 3.3.
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K � ϕ = Cn(a), which is a reasonable result representing the new state of the world, given
the different plausibility of ignition of the chemical reactions A and B.19

It is important to mention that, in the above example, the use of a PD revision operator
to modify theory K, in the light of the new information ϕ (which is consistent with K),
would lead to the new theory Cn(a, b) — since, in this case, revision reduces to expansion.
This, however, is a counter-intuitive outcome, since, in the new state of the world, the
chemical reaction B may have not been ignited; recall that reaction B ignites much harder
than reaction A. We note, lastly, that one can devise a variety of real-world dynamically-
changing domains that can be encoded with the use of PD update operators.

8.2 Axiomatic Characterization

In case of consistent complete theories, parametrized-difference belief revision has a nice
axiomatic characterization (Peppas & Williams, 2018). Herein, we show that this char-
acterization can be translated (with slight modifications) in the realm of belief update, in
order to characterize PD update operators as well. Let us, first, fix the appropriate notation
and terminology.

In this subsection, p, q, z, u denote literals, A, B denote non-empty consistent sets of
literals, and K, H denote consistent complete theories. A set of literals shall, occasionally,
be treated as a sentence, namely, the conjunction of all its literals, leaving it to the context
to resolve any ambiguity; thus, for example, in the expression “Q∩P”, Q is a set of literals,
whereas, in “¬Q”, Q is a sentence of L.

Definition 12 (Peppas & Williams, 2018). Let � be a KM update operator, and let K be a
complete theory of L. For two non-empty sets of literals A,B, we define:

A≪K B iff A,B ⊆ K and ¬A /∈ K � (A ∨B).

Intuitively, given a theory K that contains both A and B, A≪K B holds whenever it
is at least as costly to change (the values of) all literals in B than it is to change (the values
of) all literals in A.

Definition 13, below, is a strict version of Definition 12.

Definition 13 (Peppas & Williams, 2018). Let � be a KM update operator, and let K be a
complete theory of L. For two non-empty sets of literals A,B, we define:

A�K B iff A≪K B and B 6≪K A,

or, equivalently,

A�K B iff A,B ⊆ K and ¬B ∈ K � (A ∨B).

19. To see how theory K � ϕ is produced, observe that [K] contains exactly the two worlds w1 = {a, b}
and w2 = {¬a,¬b}. Then, the world w1 satisfies ϕ, whereas, the PD preorder �E

w2
is such that:

{¬a,¬b} ≺E
w2
{a,¬b} ≺E

w2
{¬a, b} ≺E

w2
{a, b} (where ≺E

w2
denotes the strict part of �E

w2
). Hence,

min([ϕ],�E
w2

) =
{
{a,¬b}

}
=

[
Cn(w2) � ϕ

]
. Therefore, we derive, from condition (F�), that [K � ϕ] ={

{a, b}, {a,¬b}
}

; i.e., K � ϕ = Cn(a).
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Lastly, for two literals p, q, p ≪K q and p �K q denote the abbreviations of
{p}≪K {q} and {p} �K {q}, respectively.

Consider, now, the following collection of postulates from Peppas and Williams (2018):

(D1) If A≪K B, then |A| 6 |B|.

(D2) If A≪K B, p≪K q, and q /∈ B, then A ∧ p≪K B ∧ q.

(D3) If A≪K B, p�K q, and q /∈ B, then A ∧ p�K B ∧ q.

(D4) If A�K B, p ∈ K, q /∈ B, and, for all z ∈ B, z≪K q, then A ∧ p�K B ∧ q.

(D5) If p≪K q, z ∈ {p,¬p}, u ∈ {q,¬q}, and z, u ∈ H, then z≪H u.

A brief explanation of postulates (D1)–(D5) is presented along the following lines — for
more details, the reader is referred to (Peppas & Williams, 2018). Postulate (D1) states
that, if one needs to reverse all literals in A or all literals in B, then the update-process
never picks the larger set. Postulate (D2) says that, if switching the literals in A is at least
as easy as switching the literals in B, and switching p is at least as easy as switching q,
then switching A and p together is at least as easy as switching B and q together (provided
that q is not already in B). Postulate (D3) is, essentially, a strict version of (D2). Postulate
(D4) states that, if reversing A is strictly easier than reversing B, and reversing q is at
least as hard as reversing any literal z ∈ B, then, for any literal p ∈ K, changing A and p
together is strictly easier than changing B and q together (provided that q is not already
in B). Lastly, postulate (D5) says that, if, for a theory K, it is at least as easy to reverse
p than it is to reverse q, then this relationship is preserved for any other theory H and any
other two literals z, u that share the same atoms with p and q, respectively; for instance, if
p≪K q and p,¬q ∈ H, then, according to (D5), p≪H ¬q.

In view of Remark 1 of Subsection 4.2, and since we are confined to consistent complete
theories, the results of Peppas and Williams (2018) entail that, for any KM update operator
�, the following two statements are true:

� If � is a PD update operator, then � satisfies postulates (D1)–(D5).

� If � satisfies postulates (D1)–(D5), then there is a total preorder E over the atoms of
P, such that � is the KM update operator induced from the family {�Ew}w∈M of PD
preorders, by means of condition (F�).

Consequently, due to Peppas and Williams, we can formulate the following represen-
tation theorem, which provides the axiomatic characterization of the family of PD update
operators.

Theorem 11 (Peppas & Williams, 2018). Let � be a KM update operator. Then, � is a
PD update operator iff � satisfies postulates (D1)–(D5).

By definition, the class of PD update operators is a proper sub-class of the class of
KM update operators that are induced by total preorders over worlds, since PD update
operators are those KM update operators identified by postulates (D1)–(D5).
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8.3 PD Update Operators are Relevance-Sensitive

The next theorem shows that PD update operators respect postulates (R1) and (P2�).

Theorem 12. PD update operators satisfy postulates (R1) and (P2�).

Proof. Let E be a total preorder over P, and let � be the PD update operator induced from
the family {�Ew}w∈M of PD preorders, via condition (F�).

For (R1), it suffices to show that {�Ew}w∈M satisfies condition (SR1). Let w, r, r′ be
any worlds of M, such that Diff (w, r) ⊂ Diff (w, r′). Clearly then, Diff (w, r) < Diff (w, r′).
Therefore, we derive, from condition (PD), that r ≺Ew r′, as desired.

For (P2�), it suffices to show that condition (SP2�) is satisfied. Let K, H be two
theories of L, such that, for some sentences x, y, z ∈ L, K = Cn(x, y), H = Cn(x, z) and
Lx ∩ Ly = Lx ∩ Lz = ∅; thus,

{
ux : u ∈ [K]

}
=
{
ux : u ∈ [H]

}
. From the fact that the

PD preorders assigned to worlds are all induced (via condition (PD)) from the same total
preorder E, it is not hard to verify that, for any world w ∈ [K] and any world w′ ∈ [H],
such that wx = w′x, it is true that �E, x

w = �E, x
w′ (where �E, x

w , �E, x
w′ denote the x-filterings of

�Ew, �Ew′ , respectively).20 Therefore, it follows that, for every w ∈ [K], there is a w′ ∈ [H],
such that �E, x

w ⊆ �E, x
w′ , as desired. �

Since there exist total preorders (associated with possible worlds) that satisfy conditions
(SR1) and (SP2�), and, at the same time, violate condition (PD) (i.e., they are not PD
preorders), it follows that there exist KM update operators that respect postulates (R1)
and (P2�), which are not PD update operators. Hence, the class of PD update operators is
a proper sub-class of the class of KM update operators that satisfy (R1) and (P2�).

Theorems 7 and 12 imply the following results.

Corollary 1. PD update operators satisfy postulate (R2).

Corollary 2. The conjunction of postulates (R1), (R2) and (P2�) is consistent with the
KM postulates.

Theorems 7 and 12, also, imply that all the relevance-sensitive postulates for belief
update, presented herein, are entailed by postulates (D1)–(D5). Hence, (D1)–(D5) capture
the notion of syntax-relevance for belief update, proposed in the present article.

Furthermore, as the KM update operator of Forbus is a specific PD update operator,
the following corollary is, immediately, derived from Theorem 12 and Corollary 1.

Corollary 3. Forbus’ KM update operator satisfies postulates (R1), (R2) and (P2�).

Figure 3 depicts the whole class of KM update operators, induced by arbitrary par-
tial preorders over worlds, its proper sub-classes circumscribed by the relevance-sensitive
postulates (R1) (equivalently, (S1) or (P1�)), (R2) (equivalently, (S2)), and (P2�), as well
as the place of PD update operators and Winslett’s operator �W relative to those classes.
Figure 3, also, depicts the corresponding semantic characterizations of the aforementioned
KM update operators. Recall that, by hypothesis, the relevance-sensitive postulates studied
herein constrain KM update operators that are induced by total preorders over worlds.

20. This conclusion can, also, be reached through Theorem 7 by Aravanis et al. (2021), combined with the
fact that, for a world w ∈ M, the definitions of the two total preorders �w and �Cn(w) coincide.
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KM Update Operators

(R1)

(R1) & (R2)

(R1) & (P2�)

PD Update

Operators

(D1)–(D5)

�W

Partial Preorders over Worlds

(SR1)

(SR1) & (SR2)

(SR1) & (SP2�)

PD Preorders

(PD)

{vw}w∈M

(F�)

Figure 3: The class of KM update operators, induced by arbitrary partial preorders over
worlds, its proper sub-classes circumscribed by the relevance-sensitive postulates
(R1), (R2) and (P2�), the place of PD update operators and Winslett’s operator
�W relative to those classes, and the corresponding semantic characterizations;
by hypothesis, the relevance-sensitive postulates studied herein constrain KM
update operators that are induced by total preorders over worlds.

As stated in the Introduction, the only work on relevance-sensitive belief update that
bears on the approach described herein is that by Perrussel et al. (2012). Recall, however,
that the authors of that work define belief update in terms of prime implicants (PI). Al-
though we are not aiming at focusing on PI-based update operators —as they significantly
deviate in nature from KM update operators—, we note that Forbus’ KM update operator,
which, as stated in Corollary 3 respects the notion of relevance formalized in this article, is
not equivalent to its PI-based counterpart, defined by Perrussel et al. (2012), which respects
the notion of relevance formalized by its originators. This remark —which is exemplified
through the following example— suggests, in turn, that PI-based relevance acts differently
in relation to relevance presented herein.

Example 5. Let us denote by �F Forbus’ KM update operator, and by �PIF its PI-based
counterpart, defined by Perrussel et al. (2012). Assume that P = {a, b, c, d, e}, and let
K = Cn

(
(b ∧ c ∧ e) ∨ (d ∧ e)

)
and ϕ = (a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ ¬c). Then, we have that

[K �F ϕ] =
{
{a, b,¬c, d, e}, {¬a,¬b,¬c, d, e}, {a, b,¬c,¬d, e}, {¬a,¬b,¬c,¬d, e}

}
, whereas,

[K �PIF ϕ] =
{
{a, b,¬c, d, e}, {¬a,¬b,¬c, d, e}, {a, b,¬c,¬d, e}

}
— refer to Example 3 in

(Perrussel et al., 2012) for details on how the set of worlds [K �PIF ϕ] is produced. Therefore,
[K �F ϕ] 6= [K �PIF ϕ], thus, K �F ϕ 6= K �PIF ϕ.
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9. Conclusion

In this article, we pointed out that the widely-accepted KM update operators are too
liberal in their treatment of the notion of relevance. In response to this weakness, we
showed that a recast of (the weak version of) Parikh’s relevance-sensitive axiom (P), in
the realm of belief update, suffices to exclude unreasonable update-policies, by strictly
strengthening Katsuno and Mendelzon’s framework. Axiom (P) for belief update was in
detail investigated, both axiomatically and semantically. Specifically, it was proved that
the weak version of (P) for belief update is equivalent to postulate (R1), whereas, the
strong version of (P) strictly implies (but it is not equivalent to) postulate (R2). Both
postulates (R1) and (R2) encode relevance at the possible-worlds level, according to which
each possible world is locally modified, in the light of new information. Postulates (R1)–(R2)
turned out to be equivalent to postulates (S1)–(S2), respectively, which encode relevance
at the sentential level, in the sense that they consider sentences to be the building blocks
of relevance. Furthermore, we concretely demonstrated that a slight adjustment of the
weak version of axiom (P) for belief update, which incorporates causal information, can
be regarded as (at least a partial) solution to the frame, ramification and qualification
problems, encountered in dynamically-changing worlds. As a last contribution, a whole new
family of concrete KM update operators, named PD update operators, was (axiomatically
and semantically) introduced. PD update operators constitute a natural generalization of
Forbus’ KM update operator, are compactly-specified and relevance-sensitive; hence, they
are ideal candidates for real-world implementations.

This article opens up many interesting avenues for future work. Firstly, the notion
of relevance both at the possible-worlds and the sentential level —encoded, in the realm
of belief update, in postulates (R1)–(R2) and (S1)–(S2), respectively— is very natural
and, even, useful in the realm of belief revision as well; the study of this issue, and its
interrelations with Parikh’s axiom for belief revision, constitutes a promising research topic.
Also of much interest would be a deeper investigation of how relevance-sensitive belief
update can be applied to address the frame, ramification and qualification problems, in
more practical terms. Lastly, an appealing direction of research would be the study of the
relation between relevance-sensitive KM update operators and relevance-sensitive PI-based
update operators; for instance, can we impose certain conditions so that these two types of
update operators produce the same results?
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