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Abstract

Many tasks in Natural Language Processing (NLP) and Computer Vision (cv) offer ev-
idence that humans disagree, from objective tasks such as part-of-speech tagging to more
subjective tasks such as classifying an image or deciding whether a proposition follows from
certain premises. While most learning in artificial intelligence (A1) still relies on the as-
sumption that a single (gold) interpretation exists for each item, a growing body of research
aims to develop learning methods that do not rely on this assumption. In this survey, we
review the evidence for disagreements on NLP and CV tasks, focusing on tasks for which
substantial datasets containing this information have been created. We discuss the most
popular approaches to training models from datasets containing multiple judgments poten-
tially in disagreement. We systematically compare these different approaches by training
them with each of the available datasets, considering several ways to evaluate the resulting
models. Finally, we discuss the results in depth, focusing on four key research questions,
and assess how the type of evaluation and the characteristics of a dataset determine the
answers to these questions. Our results suggest, first of all, that even if we abandon the
assumption of a gold standard, it is still essential to reach a consensus on how to evaluate
models. This is because the relative performance of the various training methods is crit-
ically affected by the chosen form of evaluation. Secondly, we observed a strong dataset
effect. With substantial datasets, providing many judgments by high-quality coders for
each item, training directly with soft labels achieved better results than training from ag-
gregated or even gold labels. This result holds for both hard and soft evaluation. But when
the above conditions do not hold, leveraging both gold and soft labels generally achieved
the best results in the hard evaluation. All datasets and models employed in this paper are
freely available as supplementary materials.

(©2021 AT Access Foundation. All rights reserved.



UMA, FORNACIARI, HOVY, PAUN, PLANK & POESIO

1. Introduction

Modern research in cognitive science and artificial intelligence (AI) is driven by the avail-
ability of large datasets annotated with human judgments (Ide and Pustejovsky, 2017).
These data instances and their corresponding labels are not only used to train and test
computational models, but also to provide data-driven evidence of linguistic phenomena,
complementing a linguist’s intuition. In addition, they can be used to compute statistics
about the frequencies of certain phenomena (de Marneffe and Potts, 2017).

The simplest way to create an annotated dataset is to appoint a single expert, motivated
either by altruism or a financial incentive, to provide the labels for all data instances (or
items). But this approach is only feasible for the small-to-medium scale annotations that
were the norm until about ten years ago, not for the much larger datasets required today.
In addition, the quality of the data produced this way is overly dependent on the expertise
of this sole annotator and their skillfulness at annotation. Furthermore, in tasks with
elements of subjectivity or ambiguity, the data will be implicitly encoded with any bias the
annotator may have about the subject matter. To mitigate these limitations, most large-
scale annotation projects use several experts for annotation. Typically, these experts provide
2-3 annotations for each item. A subsequent adjudication step produces a single label for
each item, the so-called gold label. This strategy has been used to annotate most large
NLP corpora, for example ONTONOTES (Pradhan et al., 2011; Hovy et al., 2006). However,
using experts is very expensive, prohibitively so for large-scale projects. Thus, a third
alternative has gained increasing popularity: sourcing annotations from a “crowd” of people,
typically (but not always) non-experts. This approach is called crowdsourcing (Snow
et al., 2008; Michelucci, 2013; Poesio et al., 2017). Crowd workers are usually recruited
by offering small financial incentives (in which case the approach is sometimes known as
microtask crowdsourcing) or by re-configuring the task as a game people play willingly
(so-called game-with-a-purpose (von Ahn and Dabbish, 2008; Lafourcade et al., 2015)).
Crowdsourcing can produce annotations faster and at a fraction of the cost it takes to collect
them from experts.

Notwithstanding these differences, most annotation projects assume that a single pre-
ferred interpretation or an objective truth exists for each item. But research has shown
this assumption to be an idealization at best, both in natural language processing and
computer vision. Every large-scale annotation project frequently encounters cases on which
humans disagree. In some cases, these disagreements are due to misunderstandings or
poorly specified annotation schemes. However, in many cases, the interpretation is inher-
ently ambiguous or unclear (Basile et al., 2021). For example, for anaphoric or coreference
annotation, Poesio et al. (2007) have discussed justified sloppiness in anaphoric reference,
as illustrated in example (1).

(1) 3.1 M: can we .. kindly hook up
: uh
3.3 : engine E2 to the boxcar at ..

Elmira
S: ok
M: +and+ send it to Corning

: as soon as possible please

: okay
[2sec]

w

o O O
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S
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7.1 M: do let me know when it gets
there

8.1 S: okay it’1l /

8.2 : it should get there at 2 AM

9.1 M: great

9.2 : uh can you give the

9.3 : manager at Corning instructions
that

9.4 : as soon as it arrives

9.5 : it should be filled with
oranges

10.1 S: okay

10.2 : then we can get that filled

In this exchange, it is not clear whether the pronoun ¢t in 5.1 (in red) refers to the engine
E2 that has been hooked up to the boxcar at Elmira or to the boxcar itself—or indeed
whether the distinction matters at all. It is only at utterance 9.5 that we get evidence that
it probably refers to the boxcar at Elmira, since only boxcars can be filled with oranges.
Evidence that subjects disagree in such cases has been discussed in several studies (e.g.,
Poesio and Artstein, 2005; Poesio et al., 2006), and similar cases of disagreements due
to justified sloppiness exist in all large-scale anaphoric annotation projects (Versley, 2008;
Recasens et al., 2011; Yang et al., 2011; Pradhan et al., 2012).

Indeed, disagreements are frequent in all areas of NLP and in all large-scale annotation
projects. The NLP community has realized from the start that it makes no sense to consider
gold targets as objective truth in applications such as machine translation, summarization,
and natural language generation, where human creativity plays a role and has developed
specialized training and evaluation methods for such applications. Recently, the field has
tackled classification tasks that involve labelling text according to inherently subjective
judgments, such as sentiment analysis (Kenyon-Dean et al., 2018) or offensive language de-
tection (Basile, 2020). It would be clearly misguided to rely on gold labels for training or
evaluation in such tasks, as doing so would set one subjective interpretation over all alterna-
tives. Disagreements in interpretation have also been found in annotation projects, such as
natural language inference, that ask annotators to make complex judgements (Pavlick and
Kwiatkowski, 2019). But disagreements in interpretation are not limited to these complex
cases; in fact, they are commonly found even in annotation projects concerned with what
might have been thought of as objective and “simple” aspects of language, from part-of-
speech tagging (Plank et al., 2014b) to wordsenses (Passonneau et al., 2012) and semantic
role labelling (Dumitrache et al., 2019).

The extent of this disagreement varies depending on the complexity and genre of the
task, but it can be substantial. For anaphoric annotation, an analysis of the Phrase Detec-
tives corpus showed that 64.3% of its data instances contain disagreements.! Of those, 12.6%
are due to ambiguity, with ambiguous instances making up about 9.0% of the data (Poesio
et al., 2019). Recasens et al. (2011) found disagreement due to ambiguity in 12% of the
markables in the ANCORA corpus, while Poesio and Artstein (2005) found disagreements
in 42% of the markables in the ARRAU dialogue corpus when annotating full anaphoric
references. Pradhan et al. (2012) report that for 31% of the disagreements in the standard

1. The Phrase Detectives corpus can be found at http://www.phrasedetectives.org/
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corpus for coreference resolution, ONTONOTES, the disagreement was caused by linguistic
ambiguity. Other aspects of semantic interpretation like lexical disambiguation or semantic
role assignment appear to be at least as complex (Passonneau et al., 2012).

Figure 1: Examples from the LabelMe dataset (Russell et al., 2008)

The assumption that an objective true class exists for all items and that the gold label
for each item represents its objective true class has proven an idealization in cv as well.
Different coders have assigned different, equally plausible labels to the same items in many
widely used crowdsourced computer vision datasets. Consider, for instance, the task of
object identification in images. Examples (a), (b), and (¢) in Figure 1, discussed in Ro-
drigues et al. (2017), are from the LabelMe dataset (Russell et al., 2008). Due to the overlap
between labels, coders’ judgements are highly subjective. The gold label for (a) is “inside
city,” and one annotator chose that label, but two other annotators chose “tall building.”
The gold label for (b) is “street.” Again, this was produced by one annotator, but two others
chose “inside city.” The same is true for (c). For (d), none of the annotators chose the gold
“street.” Instead, all chose “inside city.” Clearly, in all these cases, the annotator labels are
acceptable, even if they differ from the gold standard. The problem of disagreement among
coders, including experts, on the classification of noisy image data arises in Cv applications
ranging from astronomical classification (Smyth et al., 1994) to the classification of medical
images (Raykar et al., 2010) and various others (Sharmanska et al., 2016; Rodrigues and
Pereira, 2018; Firman et al., 2018).

Possibly the most widely adopted approach to dealing with disagreements in crowd-
sourced data is a source-filter model, i.e., to assume that there exists a single objective
truth that is merely obfuscated by the disagreements, and to use an aggregation method
over the noisy annotations to find the true “gold” label, a latent parameter (Dawid and
Skene, 1979; Carpenter, 2008; Whitehill et al., 2009; Hovy et al., 2013; Passonneau and
Carpenter, 2014; Paun et al., 2018). But the presence of systematic disagreements raises
serious questions about the basic assumption underlying this approach, i.e., the existence of
a single, objectively true label. A number of alternative approaches have therefor been pro-
posed (Sheng et al., 2008; Beigman-Klebanov and Beigman, 2009; Cohn and Specia, 2013;
Plank et al., 2014a; Aroyo and Welty, 2015; Guan et al., 2017; Jamison and Gurevych,
2015; Sharmanska et al., 2016; Rodrigues and Pereira, 2018; Li et al., 2019; Uma et al.,
2020; Fornaciari et al., 2021). At one extreme, researchers have proposed excluding items
on which there is substantial disagreement as bad examples, at least from the test set (e.g.,
(Beigman-Klebanov and Beigman, 2009)), but possibly also from training. At the other ex-
treme, researchers have argued that “disagreement is signal, not noise” (Aroyo and Welty,
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2015)—i.e., that disagreements provide useful information for learning. Various models
have been proposed to leverage all of the information provided by annotators, including
information about disagreements (Plank et al., 2014a; Aroyo and Welty, 2015; Jamison and
Gurevych, 2015; Sharmanska et al., 2016; Uma et al., 2020; Fornaciari et al., 2021). Some
of these models do not rely on gold labels at all (Sheng et al., 2008; Sharmanska et al.,
2016; Guan et al., 2017; Rodrigues and Pereira, 2018; Firman et al., 2018; Peterson et al.,
2019; Uma et al., 2020).

This last view, which advocates for disagreement as a signal, is reminiscent of proposals
to improve the generalization abilities of machine learning models through a process known
as distillation. In distillation, a “student network” is trained using as target the soft output
distribution of a “teacher network” (Hinton et al., 2015; Furlanello et al., 2018; Clark et al.,
2019). Some distillation work has demonstrated that student networks thus trained (Born
Again Networks) can outperform the original teacher networks. Going further, Peterson
et al. (2019) have demonstrated that using the distribution extracted from annotations as
a soft target results in even better generalization ability than distillation for some image
classification tasks.

In this paper, we comprehensively survey the evidence for disagreements on the judg-
ments required to train AI systems. We also survey the range of approaches that have
emerged in computational linguistics and computer vision that aim to surpass the simplis-
tic way of dealing with disagreement adopted in most Al approaches to supervised learning.
We do not simply review these methods for learning from disagreement; we also use some
of the key datasets providing evidence of disagreement to compare them to each other.
Furthermore, we compare them to learning from gold labels, assessing the conditions under
which each method is effective. In the process, we address the following questions:

e RQ1: What is the most appropriate way of evaluating a model using datasets that
provide multiple annotations for each item if we do not assume that every item can
be interpreted only one way?

e RQ2 is best broken in two sub-questions:

(a) What is the evidence that using information from the crowd annotations helps to
build better models than learning from gold labels only?

(b) In case the answer to RQ2a is positive, what is the best way to leverage crowd
information in addition to gold labels?

e RQ3 is best broken in two sub-questions:

(a) Can methods for learning from disagreement that do not assume the existence
of a gold truth (and that do not rely on manual adjudication) perform similarly
or better than methods that rely on gold labels?

(b) Which of these methods achieve the best results?
e RQ/ is best broken into two parts:

(a) To what extent do the answers to RQ2 and RQ3 depend on the answer to RQ1,
i.e., on the evaluation method?
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(b) To what extent do the answers RQ2 and RQ3 depend on the task and the
characteristics of the annotators of the dataset? Which characteristics matter?

RQ1 alludes to the fact that if we question the existence of a single gold label for each
item, then evaluating models based on how well they replicate that gold label does not make
much sense. While proposals for alternative, “soft” evaluation metrics (i.e., not dependent
on that assumption) exist (Firman et al., 2018; Dumitrache, 2019; Peterson et al., 2019),
in practice, most studies still use “hard” evaluation metrics such as accuracy. We are not
aware of any previous attempt to systematically evaluate models with both “hard” and
“soft” evaluation metrics. Addressing this gap is one of the main contributions of this
study.

Some papers have surveyed the impact of disagreements on learning from crowdsourced
labels, but none as comprehensively as the present one. The paper that comes closest is
by Jamison and Gurevych (2015), who examined the impact of infusing classifiers with
information from annotators, but only considered two of the approaches reviewed here,
hard filtering and the soft-labelling approach proposed by Sheng et al. (2008), which we
will refer to as srel (for Sheng REpeated Labelling). They compared these two methods
to training with gold labels and labels aggregated via majority voting, finding that soft
labelling did not outperform training with gold or aggregated labels for their datasets using
their classifiers and hard metrics. Our study examines a great many methods beyond those
explored by Jamison and Gurevych. Additionally, we investigate the effect of disagreement
on the success of each training method, evaluating model performance using soft metrics
in addition to hard metrics. Furthermore, we use current, state-of-the-art baselines based
on neural networks as our starting point. As Jamison and Gurevych’s paper remains one
of the few contributions to this area, we used two of their datasets to compare our findings
with theirs.

This survey paper is structured as follows. Section 2 reviews the evidence that humans
disagree on many tasks in language and image interpretation and presents the datasets we
employed (these are available as supplementary materials). Section 3 reviews the most im-
portant approaches to learning from disagreement. Section 4 discusses possible answers to
RQ1, i.e., how models trained using disagreement methods can be tested on datasets con-
taining multiple and possibly disagreeing judgments. Section 5 describes the experimental
design used to answer our research questions. It discusses the models used for each dataset
and the methods used to train them. Section 6 contains the results of our experiments.
Section 7 breaks down the results task by task, drawing attention to the effect of several
aspects of each task on the results. Section 8 contains a general discussion of the results and
their insights into our research questions. Finally, Section 9 summarizes the conclusions of
this study.

2. Disagreements in NLP and CV: Evidence and Resources

As mentioned above, an extensive body of literature provides evidence of the extent to which
humans disagree on many aspects of interpretation in NLP and V. In this section, we discuss
some of this evidence in greater detail, focusing on studies that also created datasets that
preserve these disagreements. These datasets form the basis of our experimental evaluation
in Sections 5-7.
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We chose tasks with the aim of using deep learning methods that reflect the current state
of the art to improve upon previous experimental studies on learning from disagreement, in
particular Jamison and Gurevych (2015). This constraint restricted us to tasks for which
datasets large enough to train such models exist; our rule of thumb was to consider only
datasets of at least 1,000 items. The one exception was in the task of recognizing textual
entailment (RTE)/natural language inference, where some key work on disagreements in
interpretation has been carried out, in particular by Pavlick and Kwiatkowski (2019). We
decided to use for this task the dataset by Snow et al. (2008), which only consists of 800
items but has been ubiquitous in research on crowdsourcing and aggregation and was used
by Jamison and Gurevych (2015).

The NLP tasks we selected include part-of-speech (POS) tagging, which led to the creation
of the Gimpel corpus (Plank et al., 2014b,a; Jamison and Gurevych, 2015)); information
status (18) classification, a simplified version of the anaphoric interpretation task studied in
some of the early work on disagreements (Poesio and Artstein, 2005; Poesio et al., 2006) and
for which we were able to leverage the largest NLP corpus providing multiply annotated data,
Phrase Detectives (Poesio et al., 2019); (medical) relation extraction (MRE), extensively
studied in the CrowdTruth project (Aroyo and Welty, 2015; Dumitrache, 2019; Dumitrache
et al., 2019), which resulted in the creation of several datasets including the one used in this
study (Dumitrache et al., 2018b); and recognizing textual entailment (RTE), which led to
the development of the Snow et al. corpus used, for example, in Snow et al. (2008); Jamison
and Gurevych (2015). For cv, we focused on image classification (1¢), using two important
datasets created to study learning from disagreement: the LabelMe corpus (IC-LABELME),
a crowdsourced version of which was created by Rodrigues and Pereira (2018), and the
CIFAR-10H corpus, recently crowdsourced by Peterson et al. (2019). This section briefly
discusses each of these tasks, their respective datasets, and the evidence of disagreement they
provide. We used a standardized format for the task descriptions to facilitate comparison
and summarize the characteristics of the datasets in Section 2.6.

2.1 Part-of-Speech tagging

POS tagging is the task of assigning part-of-speech tags such as noun or verb to every word in
a text. It is thought to reflect a very basic aspect of human lexical or syntactic competence,
and we would therefore expect little or no disagreement in the judgments of coders asked
to carry out this type of annotation. But in fact, one of the best-known studies in the
area of learning from disagreements, Plank et al. (2014b), was motivated by the observation
that annotators systematically disagree even on such supposedly simple linguistic tasks as
this one. Plank et al. found systematic disagreements between, for example, adpositions
(ADP) and particles (PRT), as in get out; adjectives (ADJ) and nouns, as in stone lion; and
adjectives and adverbs (ADV), e.g., in see you later. They found the same disagreements
among experts and non-experts, and across text types. Plank et al. investigated the nature
of these disagreements, finding that while some disagreements were a result of annotation
error, others were evidence that the category of certain items was linguistically debatable.
They further discovered that making the annotation guidelines increasingly more detailed
did not eliminate these latter errors or “hard cases” (Plank et al., 2014b). They thus
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hypothesized that these disagreements were a result of label uncertainty and could be used
to inform the learning process.

The dataset The analysis by Plank et al. (2014b) was carried out as part of the creation
of one of the best-known datasets for research on learning from disagreement, and the first
dataset chosen for this study. This dataset—henceforth, mostly abbreviated as POS—builds
upon the Gimpel et al. (2011) corpus of POS labels for Twitter posts with the crowdsourced
labels provided by Hovy et al. (2014). Plank et al. mapped the Gimpel tags to the universal
12-tag set (Petrov et al., 2011), using these tags as gold labels, and collected at least
5 crowdsourced labels per token from 177 annotators. The dataset consists of over 14k
examples and was previously used in Plank et al. (2014a) and Jamison and Gurevych
(2015). We used the data released by Plank et al. (2014a) as a development set.?

Annotations and annotators The size of the crowd employed to collect judgments is
important(Snow et al., 2008). A number of studies (Poesio and Artstein, 2005; Dumitra-
che, 2019; Peterson et al., 2019) have shown that the number of annotations collected is
also of key importance for studying disagreement. For instance, Poesio and Artstein (2005)
have shown that what they call implicit ambiguity—the ambiguity emerging from dis-
agreements among annotators, rather than from annotators explicitly marking items as
ambiguous—only starts to emerge for the task of anaphoric annotation when at least 5
annotations per item are collected. (The precise number of annotations appears to depend
on the task.) Each item in the Gimpel dataset was annotated 5 times, apart from 946 items
with a much greater number of annotations—these were most likely tutorial items (Gimpel
et al., 2011). The percentage of items annotated by each coder ranges from 2.64% to 5.29%.
Given that there are 12 possible categories, the ratio number of coders to possible categories
(the coder:label ratio) is 5:12 or 0.416.

Also important is the level of agreement between these annotators; the average item-
observed agreement, computed using the Fleiss multi-annotator version of the kappa statis-
tic (Fleiss et al., 2004) (henceforth: k), is 0.725 overall and 0.706 excluding tutorial items.
We also note the performance of the annotator with respect to the gold label as a way to
measure the degree of alignment between the experts and the annotators. This measure-
ment is an indicator of how much the gold stands apart from the crowd. We use accuracy
for this measure and in this dataset, the average accuracy per annotator in the Pos dataset
is 67.81%, with over 38.98% of coders falling below this average. Only about 29% of anno-
tators have a near-gold performance, achieving 75% or more accuracy with respect to gold
labels. We highlight this point because noise is a factor affecting the ability of models to
learn from crowds, as discussed in Sections 7 and 8.

Quality of aggregated labels We also measure the accuracy of aggregated labels with
respect to the gold as it indicates how much the crowd consensus aligns with the expert
label. The accuracy of aggregated labels with respect to gold labels indicates how well
the crowd consensus aligns with the expert label. There is substantial disagreement in
this dataset: 48.09% of the items received annotations assigning them to more than one
category. Majority voting accuracy with respect to gold labels is 79.69%; the Dawid and
Skene (1979) and MACE aggregation methods (Hovy et al., 2013) discussed later produce

2. Plank et al.’s data can be found at http://lowlands.ku.dk/results/
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labels that are 79.13% and 79.83% accurate, respectively, when accuracy is determined by
gold labels.

2.2 (Anaphora and) Information Status Classification

Possibly the first type of disagreement systematically studied in NLP was disagreement on
anaphoric annotation (coreference), already identified by the previously mentioned studies
by Artstein and Poesio (Poesio and Artstein, 2005; Poesio et al., 2006), further evidence for
which was unearthed as part of the annotation of virtually every modern corpus of anaphoric
information: ANCORA (Recasens et al., 2011), ARRAU (Poesio and Artstein, 2008; Uryupina
et al., 2020), ONTONOTES (Pradhan et al., 2012), Phrase Detectives (Poesio et al., 2019),
the Potsdam Commentary Corpus (Krasavina and Chiarcos, 2007), the Prague Dependency
Treebank (Nedoluzhko et al., 2016), and TUBA/DZ (Versley, 2008). Anaphora is a more
complex task than POS tagging, but it is still considered a basic aspect of language inter-
pretation. Yet the previously mentioned researchers found disagreements on the anaphoric
interpretation of between 12% and 40% of all mentions depending on the genre and the
range of anaphoric phenomena considered (Poesio et al., 2019). Besides the examples of
ambiguity as to the antecedent of an anaphoric expression discussed in the Introduction,
this research found subjects disagreeing as to whether nominal form 4t was anaphoric or
expletive (as in when she [Alice] thought it over afterwards, it occurred to her that she ought
to have wondered about this ...); whether a nominal introduced a new entity or referred to
an old one; and more complex cases of ambiguity related to the antecedent, e.g., in cases
of reference to “split antecedent” plurals and discourse deixis (Poesio et al., 2019; Recasens
et al., 2011).

Because of the complexity of adapting models of learning from disagreement to full
anaphora/coreference resolution, in this study we only looked at disagreements on a sim-
plified form of the task, information status classification (1s), which involves identifying the
information status of a noun phrase, i.e., whether that noun phrase refers to a new entity
or to an entity that has already been introduced.

Dataset There are different annotation schemes for annotating information status (Prince,
1981, 1992; Nissim et al., 2004; Riester et al., 2010). The dataset we used, and that we
call PDIS here, is extracted from the Phrase Detectives 2 corpus for coreference resolution
(Poesio et al., 2019),% which used a simplified, binary definition of the 1s derived from the
annotation scheme used in Phrase Detectives. In PDIS, only markables classified as intro-
ducing a new entity (discourse new, DN) or as referring to a previously introduced entity
(discourse old, DO) are considered. Markables classified as expletives or as predicative are
not considered, and information about coreference chains is ignored.

To our knowledge, the Phrase Detectives 2 corpus is the largest NLP corpus with multi-
ple annotations. It consists of a total of 542 documents containing 408k tokens and about
108k markables. Of these, 497 documents were used for training and development and 45
were used for testing. These documents were annotated by over 1,828 annotators producing
at least 8 annotations per markable. There are no expert annotations for the 497 train-
ing/development documents, but the 45 documents for testing contain both expert and

3. The Phrase Detectives 2 corpus is freely available from the LDC and from https://github.com/
dali-ambiguity.
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crowd annotations. The training, development, and test data respectively contain 97,040,
4,753, and 5,855 markables.

Annotations and annotators The full Phrase Detectives 2 corpus contains a total of
2,235,664 judgments, for an average of 20.6 annotations/validations per item. After re-
stricting the judgments to only the binary DN/DO labels and excluding validations (Poesio
et al., 2019), we were left with an average of 11.87 annotations per item for the PDIS bi-
nary subset (or 7.01 if only one annotation was counted for each annotator). The average
observed agreement per item is 0.809. Each coder annotated 413.75 items on average, and
the average coder accuracy is 78.13%. At least 71% of coders are at least 75% accurate.

Quality of aggregated labels In PDIS, considering only the subset of data for which
gold labels are available, the labels aggregated using majority voting are 89.54% accurate,
whereas the labels aggregated using Dawid and Skene (1979) and MACE are 98.14 % and
97.89 % accurate, respectively.

2.3 Relation Extraction and Frame Disambiguation

Another aspect of semantic interpretation for which there is extensive evidence of disagree-
ments among annotators is relation extraction—the task of deciding, given two mentions
and a segment of text (clause or sentence), whether that segment expresses one among
a fixed number of relations between the entities referred to by those mentions. Relation
extraction was one of the two most extensively studied tasks in the CrowdTruth project
(Aroyo and Welty, 2015; Dumitrache et al., 2018a, 2019). Aroyo and Welty (2015) discuss
examples encountered in projects for crowdsourcing medical relation extraction such as (2):

(2)  GADOLINIUM AGENTS used for patients with severe renal failure show signs of
NEPHROGENIC SYSTEMIC FIBROSIS.

Annotators asked to label the relation between the underlined pairs with one of the
unified medical language system UMLS relations systematically disagreed on whether pairs
such as the one in the example were instances of the cause (strict sufficient causality)
relation or the side-effect (possibility of a condition arising) relation. Again, neither
experts nor novice annotators were able to systematically make the distinction.

Two types of relation extraction were studied in CrowdTruth: medical relation extrac-
tion (MRE), the application to medical texts, and frame disambiguation, the version of the
task in which the repertoire of relations is provided by FrameNet (Dumitrache et al., 2019).
We focus on MRE in this paper.

Dataset We used the medical relation extraction (MRE) dataset from Dumitrache et al.
(2018b). They created a dataset of 3,984 English sentences extracted from PubMed article
abstracts for medical relation extraction centered on two main relations, the cause and
treat relations, that have been processed with disagreement analysis to capture ambiguity.
The sentences were sampled from the set collected by Wang and Fan (2014) using distant
supervision (Mintz et al., 2009).

Dumitrache et al. (2018b) collected expert annotations for a randomly sampled set of
975 sentences from the distant supervision dataset, with each sentence being annotated by a
single expert. The annotation task involved deciding whether or not the UMLS seed relation
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discovered by distant supervision did in fact hold between two highlighted terms in a given
sentence (Dumitrache et al., 2018b). The crowdsourcing was carried out using so-called
disagreement-aware crowdsourcing (Aroyo and Welty, 2015): For every sentence, the
crowd was asked to choose any number of relations from 14 possible relations, including
other and none, applicable to the highlighted terms in the sentence.*

For our experiments, we only considered the cause relation. Like Dumitrache et al.
(2018b), we framed the task as a binary classification. The gold label for each sentence
given the highlighted terms was 1 if the expert agreed that the two entities stood in a
cause relation, 0 otherwise. Similarly, for each annotator who annotated the sentence, the
assigned label was 1 if the annotator selected cause amongst his/her choices, 0 otherwise.

Annotations and annotators Fach of the 975 sentences was annotated by at least 15.3
annotators (a minimum of 15 and a maximum of 30). On average, each coder annotated
5% of the items (a minimum of 0.1% and a maximum of 43.58%) and the average annotator
accuracy was 76.1% (minimum of 0% and maximum of 100%); 58% of the annotators were
at least 75% accurate. The observed agreement per item was 0.857.

Quality of aggregated labels The majority voting label was aggregated by counting
the number of workers who selected the cause relation as a valid relation for the sentence.
Labels aggregated using majority voting were 74.6% accurate with respect to the gold labels.
Labels aggregated using Dawid and Skene (1979) and MACE were 76% and 76.61% accurate,
respectively. Dumitrache et al. (2018b) also provide labels aggregated using the CrowdTruth
approach (discussed in section 3). These labels are 80.51% accurate with respect to the gold
labels.

2.4 Recognizing Textual Entailment/Natural Language Inference

Another aspect of language interpretation for which there is systematic evidence of dis-
agreement among subjects is recognizing textual entailment (henceforth, RTE) (Dagan et al.,
2005).> Recognizing textual entailment /natural language inference is deciding whether the
proposition conveyed by a text (the hypothesis k) can be inferred from another proposition
(the premise p) (Dagan et al., 2005). In NLP this task is typically formulated as a binary
classification task in which a pair p/h is classified as true if the hypothesis can be inferred
from the premise, false otherwise.

RTE attempts to model what is arguably the foundation of semantics (Cooper et al.,
1996), but it has proven hard for humans to agree on RTE judgments. Lalor et al. (2018)
discuss examples like (3), in which it is not clear whether the hypothesis that the child
plays/intends to play with the balloon follows from the premise that he’s reaching for it
and laughing.

(3) a. Premise: A young boy in a beige jacket laughs as he reaches for a teal balloon.
b. Hypothesis: The boy plays with the balloon.

4. The dataset by Dumitrache et al. (2018b) is available from https://github.com/CrowdTruth/
Medical-Relation-Extraction.

5. The term “natural language inference” is now also used (Bowman et al., 2015; Pavlick and Kwiatkowski,
2019), but we will mainly use the term RTE given that this is the name of the dataset we used.
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In a recent and systematic analysis of inherent disagreement on RTE judgments, Pavlick
and Kwiatkowski (2019) found that workers disagreed on at least 20% of the p/h pairs
they were asked to classify. They also found that a mixture of Gaussian models generalized
better to unseen examples than single-component Gaussians, providing additional evidence
that unimodal label distributions are at best an idealization—human disagreement is a
reproducible signal. Pavlick and Kwiatkowski (2019) have further analyzed the uncertainty
from the model output distribution, showing that it differs from the human distribution; this
work has inspired a recent study on disagreement for RTE/NLI (Nie et al., 2020). Nie et al.
have shown that NLI models achieve near perfect accuracy on high-agreement instances but
fall to random levels when there is low human agreement.

The dataset To study the effect of disagreements on learning RTE models, we used
the classic PASCAL RTE-1 challenge dataset (Dagan et al., 2005), which contains 800 text-
hypothesis pairs (Dagan et al., 2005). Crowdsourced annotations for this corpus were later
collected by Snow et al. (2008); 164 annotators produced 10 annotations for each sentence
pair. Each sentence pair also received a gold label. We chose this dataset because it allowed
us to compare our results with those of other researchers who have studied disagreement in
RTE, in particular Jamison and Gurevych (2015).% It is also substantially larger than the
datasets produced by Lalor et al. (2018) and Pavlick and Kwiatkowski (2019).

Annotations and annotators In PASCAL RTE-1, each item received exactly 10 annota-
tions from one of the 164 coders. This is a binary classification dataset, and the coder:label
ratio is 10:2 (5). The average observed agreement across all items, computed using k (Fleiss
et al., 2004), is 0.629.

Each coder annotated between 2.5% and 100% of the items, 6.09% on average. The
average accuracy per annotator was 83.70%, and only 35.37% of annotators fell below this
average—82.93% were at least 75% accurate.

Quality of aggregated labels There was a substantial amount of pre-aggregation dis-
agreement in this corpus, much higher than with the Pos dataset: 91.88% of the items had
more than one interpretation. However, the alignment between aggregated (silver) labels
and gold labels was much higher than with Pos. Majority voting aligned with the gold
label in 90.25% of cases, while using the Dawid and Skene (1979) and MACE aggregation
methods produced labels that aligned with the gold labels in 92.88% and 92.63% of cases,
respectively.

2.5 Image Classification

Image classification is a very general term for the task of assigning an image to the category
that best describes it among a fixed set; the available categories depend on the application.
Historically, it has given rise to more research on learning from disagreement than per-
haps any other area of A1. Image classification has provided the motivation for developing
methods for aggregating multiple expert-produced labels, particularly for medical images
(Dawid and Skene, 1979; Smyth et al., 1994; Whitehill et al., 2009). More recently, re-
searchers working on applications of this type have started to develop methods that learn

6. The dataset from Snow et al. (2008) is available from http://sites.google.com/site/nlpannotations
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classifiers directly from the labels produced by the crowd (Raykar et al., 2010; Albarqouni
et al., 2016; Guan et al., 2017; Rodrigues and Pereira, 2018; Peterson et al., 2019). We there-
fore considered it essential to include datasets used in (and often originating from) this type
of research in our assessment of methods for learning from disagreement. Specifically, we
employed two datasets, both extensively used in the cv literature.

2.5.1 LABELME

Dataset LabelMe (Russell et al., 2008) is a widely used, community-created image clas-
sification dataset where images are assigned to one of 8 categories: highway, inside city,
tall building, street, forest, coast, mountain, open country.” Rodrigues and Pereira
(2018) collected crowd labels for 10,000 of these images using Amazon Mechanical Turk to
engage 59 annotators producing at least one label for each image. In this study, we used
this version of LabelMe, henceforth 1C-LABELME.

Annotations and annotators FEach item in the IC-LABELME dataset was annotated at
least once and a maximum of 3 times; the average number of annotations per item is 2.55.
With 8 classes for this dataset, the average ratio number of coders to possible categories
is 2.55:8, or 0.318. The average item observed agreement, computed using ~ (Fleiss et al.,
2004), is 0.732.

Each coder annotated from 0.3% to 18.2% of items, for an average of 6.09%. The average
accuracy per annotator was 69.16%. While over 38.98% of coders fell below this average,
42.37% were at least 75% or accurate.

Quality of aggregated labels For this dataset, majority voting aggregation produced
labels with 76.9% accuracy with respect to the gold labels while Dawid and Skene (1979)
and MACE aggregation generated labels with 79.9% and 78.3% accuracy, respectively.

2.5.2 CIFAR10H

Dataset The CIFAR-10 dataset is another state-of-the-art image classification dataset
(Springenberg et al., 2015; Graham, 2014; Ghosh et al., 2017; Gastaldi, 2017).8 In full,
it consists of 60k 32x32 color images in 10 categories (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck) with 6k images per class. There are 50k training
images and 10k test images.

Recently, this dataset has also been used in research into learning from crowdsourced
data. In particular, Peterson et al. (2019) collected human annotations for the test portion
of CIFAR-10 using Amazon Mechanical Turk, creating the “CIFAR10H” dataset.” This
dataset consists of 511,400 human categorization decisions over 10k images with an average
of 50 annotations per image.

In this paper, we used the CIFAR10H dataset, referred here as 1C-CIFAR10H, for training
and testing using a 70:30 random split while ensuring that the number of images per class
remained balanced as in the original dataset. We also used a subset of the CIFAR-10
training dataset (3k images) as our development set.

7. The LabelMe dataset can be found at http://labelme.csail.mit.edu/
8. The CIFAR-10 dataset is available at https://www.cs.toronto.edu/~kriz/cifar.html
9. The dataset from Peterson et al. (2019) is available from https://github.com/jcpeterson/cifar-10h
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Annotations and annotators FEach item was annotated an average of 51.1 times (a
minimum of 47 and a maximum of 63). Given that there are 10 possible classes, the
average coder:label ratio is 5.11. The average observed agreement per item is 0.924.

Peterson et al. (2019) removed annotators with less than 75% accuracy from the dataset,
so 100% of the remaining coders were at least 75% accurate, resulting in an average anno-
tator accuracy of 95%.

Quality of aggregated labels Majority voting produced labels with 99.21% accuracy
with respect to the gold labels, while aggregating using Dawid and Skene (1979) and MACE
aggregation generated labels with 99.27% and 99.24% accuracy respectively.

2.6 A Summary of the Datasets used in this Study

Tables 1 and 2 summarize the key statistics related to the datasets discussed in this section.

Table 1: Annotations and Annotators

POS PDIS MRE RTE IC-LABELME IC-CIFAR10H

Number of items 14,000 96,305 975 800 10,000 10,000
Number of crowd workers 177 1,741 304 164 59 2,457
Number of labels 12 2 2 2 8 10
Average annotations per item 16.37 11.87  15.30 10.00 2.50 51.10
Median annotations per item 5 10 15 10 3 51
Average number of items annotated per coder 1335.48 381.757 49.08 48.78 431.69 200
Median number of annotations per coder 1276 20 14 20 270 200
Average coder accuracy 0.93 0.82 0.76 0.84 0.69 0.95
Coder accuracy variance 0.003 0.062  0.053 0.015 0.033 0.001
Percentage of coders with accuracy above 0.75 1.00 0.77 0.58 0.83 0.42 1.00
Average observed agreement per item 0.73 0.81 0.86  0.63 0.73 0.92
Average item entropy using raw distribution 0.13 0.38 031 0.72 0.10 0.07
Average item entropy (best-performing distribution, BDE) 0.39 0.09 0.31 0.22 0.76 0.07

Table 2: Quality of Aggregated Labels

POS PDIS MRE RTE IC-LABELME IC-CIFARI1OH

Percentage accuracy of Mv aggregated labels 0.80 0.89 0.75 0.90 0.77 0.99
Percentage accuracy of D&S aggregated labels  0.79 0.98 0.76 0.93 0.80 0.99
Percentage accuracy of MACE aggregated labels 0.79 0.98 0.77 0.93 0.78 0.99

As the tables show, the datasets differ along a number of dimensions, from the average
number of annotations per item to the average number of annotations per coder to the
accuracy of coders to the degree of confusion, measured in terms of observed agreement and
entropy. We computed two forms of entropy: entropy according to the “ra” soft label for
an item (the probability distribution based on the annotators’ raw annotations) and best
distribution entropy (BDE) (the entropy according to the soft label that performed best
for a particular dataset). As we will see in later sections, these differences help us understand
the differences in performance among the approaches to learning from disagreement studied
in this paper.
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2.7 Other Tasks

Although we focused on the six tasks (datasets) discussed above, judgment disagreements
have been observed by virtually every major annotation project for virtually all language
and vision interpretation tasks. In this section we briefly review some of the literature on
the presence of systematic disagreement in other aspects of language interpretation.

Syntactic interpretation Alonso et al. (2015) observed that the disagreements noted
by Plank et al. (2014b) were largely characteristic of dependency parsing and applied the
method proposed by Plank et al. (2014a), which also yielded promising results.

Wordsense disambiguation and supersenses Projects on wordsense annotation gave
rise to an early line of research on disagreements in NLP that arose alongside research
on anaphoric disagreement. Possibly the best known in this area is the seminal work of
Passonneau and colleagues on wordsense disambiguation in the American National Corpus
(see, e..g, Passonneau et al. (2012) and Passonneau and Carpenter (2014)). Passonneau
et al. (2012) carried out a systematic analysis of disagreements related to different types
of words (nouns, verbs, and adjectives), investigating the extent to which disagreements
depended on annotator quality, instructions, and context. Further investigations of the
practice of wordsense annotation were carried out by Jurgens (2013). Alonso et al. (2016)
showed that disagreement arises also in supersense tagging, and they performed experiments
using the method developed by Plank et al. (2014b) on English and Danish supersense
datasets.

Named entity recognition The other NLP task systematically explored in the Crowd Truth
project was named entity recognition (NER) (Inel and Aroyo, 2017). This task was the sec-
ond application of the methods developed in that project, discussed in Section 5.2. Named
entity recognition was also one of the test applications in Rodrigues and Pereira (2018).

Discourse structure More disagreement is to be expected when considering tasks re-
quiring more complex judgments, such as analyzing discourse structure. This intuition was
confirmed in early work by Stede (2008). More recently, further evidence has been provided
in work on argument structure annotation. The AURC-8 corpus (Trautmann et al., 2019)
contains gold-standard annotations for argument component spans derived from crowd-
sourced labels. As well as disagreement over whether a span is argumentative or not, the
starts and ends of argument components are often ambiguous, leading to significant dis-
agreements between annotators. Simpson and Gurevych (2019) used as one of the datasets
for testing their sequence-learning from crowds method a subset of the crowdsourced an-
notations from AURC-8 containing 8000 sentences, each with five judgements from 105
annotators.

Sentiment analysis and other subjective tasks Even more disagreement is to be
expected with subjective tasks such as sentiment analysis or hate speech (Basile, 2020).
This intuition is confirmed by evidence such as the study by Kenyon-Dean et al. (2018) in
support of the annotation of the McGill Twitter Sentiment Analysis corpus. Kenyon-Dean
and colleagues found that over 30% of the instances in the corpus were “controversial” or
“complicated” cases about which annotators disagreed. Akhtar et al. (2019) experimented
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with partitioning the annotators in hate speech datasets into clusters reflecting more uniform
subjective judgments in order to achieve increased inter-annotator agreement.

2.8 Sources of Disagreement

While all disagreement results in label uncertainty, some of the examples of disagreement
discussed in the Introduction are the results of ambiguity and/or subjectivity and are hence
intrinsic to a given task (for instance, the example of anaphoric ambiguity). Others are a
result of annotator or annotation interface errors or problems with the annotation scheme
and introduce noise to the data. The six datasets employed in this paper are characterized
by different forms of disagreement; understanding the nature and sources of the disagree-
ments found in a dataset would thus appear to be an essential prerequisite if we are to
properly harness disagreement in building machine learning models for that dataset. Sev-
eral annotation projects have attempted to classify possible sources of disagreement—with
varying degrees of success (see, e..g, Poesio et al. (2019)). In this section we discuss the
sources of disagreement that occur in our six datasets, attempting to classify them despite
the difficulty of making some of the distinctions.

2.8.1 ERRORS AND INTERFACE PROBLEMS

Traditionally, disagreement has been viewed as the result of annotator errors: mistakes
or slips made by the annotator. Several annotation projects have highlighted this source
of disagreement. Indeed, Nedoluzhko et al. (2016) found that 15% of annotator disagree-
ment was as a result of annotator errors, Pradhan et al. (2012) attributed 25% of the
disagreements in ONTONOTES to annotator error, and Plank et al. (2014b) found that while
the ratio of noise:genuine ambiguity differed depending on the level of confusion of label
pairs, annotation errors were responsibly for 30% of the disagreement on difficult items.
Disagreement due to annotator error, while not informative about the task itself, provides
information about the reliability of the annotators, their level of attention, or their level of
understanding of the task.

Errors resulting in disagreement could also be the result of interface problems or
limitations. In coreference annotation, for example, errors in the markable extraction pro-
cess (i.e., incorrectly defined span boundaries for markable noun phrases) often introduce
disagreements: Annotators, unable to select the appropriate span, either select a preceding
antecedent in the same chain, a span which is a subset of the correct span, or annotate the
markable as problematic. These differing judgements lead to unnecessary disagreements.
Consider the following sentence from the Phrase Detectives corpus, where the (automati-
cally) extracted markable is in bold font and surrounded by square brackets:

“Once upon a time there was a dear little girl who was loved by everyone who looked at her but

[most of all by her grandmother]”

most of all by her grandmother is not a valid markable; as a result, annotators disagree on
the most suitable label. A majority of the annotators marked the markable as DN, “discourse
new,” while the other annotators marked it as “predicative.” Our analysis of a sample of
documents in the corpus showed that interface limitations and problems accounted for a
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majority of the disagreement in the validated Phrase Detectives corpus (Poesio et al., 2019).
In ONTONOTES, another coreference corpus, interface and annotation scheme limitations
account for 43% of the disagreements. As with annotator errors, disagreements resulting
from interface errors are not informative about the tasks but are useful information about
the annotation project.

2.8.2 ANNOTATION SCHEME

Incomplete, imprecise, or vague annotation schemes may also result in annotator disagree-
ments. Such annotation schemes may contain ill-defined classes or overlapping classes
and/or may not cover all items, leaving an annotator unsure as to the best label for an
item (Nedoluzhko et al., 2016). As discussed in the Introduction, the annotation scheme
used in 1IC-LABELME (Russell et al., 2008) is a prime example of a scheme containing over-
lapping class names and vague descriptions. For instance, the classes inside city, street,
and tall building are not mutually exclusive, so an annotator forced to choose only of out
of of the three will likely make an arbitrary decision. Figure 2 shows three images with
buildings, each assigned a different gold label. Such examples show that even “gold” labels
for such items merely reflect the biases of the expert annotators, not an objective truth.

(a) inside city (b) street (c) tall building

Figure 2: Examples showing similar images from LabelMe captioned with their gold la-
bels (Russell et al., 2008; Rodrigues and Pereira, 2018)

It is therefore not surprising that annotators would disagree on the interpretation of
such items. Figure 3 shows the confusion matrix between majority voting consensus and
gold labels for the crowdsourced LabelMe dataset collected by Rodrigues and Pereira (2018).
Images classified as inside city by the gold label were assigned to the category tall building
by the majority 22% of the time, while images classified by the gold label as street were
assigned the label inside city by a majority of annotators 26% of the time.

This is unsurprising considering Figure 2: Streets can have tall buildings and are often
located inside city. It is also understandable that images classified as open country by
their gold labels are assigned the class mountains by the majority 23% of the time; this
is justifiable because open country sometimes contains mountains. Figure 4 gives an
illustration of this.

Similar overlap exists among other label pairs. Merging the 8 fine-grained categories
of LabelMe into 3 categories—(1) coast, (2)inside city + street 4 tall building, and
(3) forest + mountain + open country—results in majority voting aggregated labels
that accord with gold labels in 95% of cases, 18% more than the when the labels are left
unmerged.
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Figure 3: Confusion matrix between gold labels and
majority voting consensus for LabelMe

(a) open country (b) mountain (c) open country (d) mountain

Figure 4: More examples showing similar images from LabelMe, each assigned a different
gold label (Russell et al., 2008; Rodrigues and Pereira, 2018)

2.8.3 AMBIGUITY

At the beginning of the corpus-driven revolution in NLP it was assumed that all disagree-
ments in annotation were due either to errors, interface problems, or poorly defined anno-
tation schemes. But in fact, many disagreements among annotators are due to ambiguity:
the fact that a number of expressions can be interpreted in semantically distinct ways in a
given context (Poesio, 2020). Ambiguity is not a consequence of a poor annotation scheme
but of the inherent complexity of understanding and interpretation. Several studies have
found genuine ambiguity to be a leading source of disagreement. The example of anaphoric
ambiguity in the Introduction comes from a seminal work studying disagreement as evi-
dence for ambiguity, the paper by Poesio and Artstein (2005) on annotation of anaphora in
dialogue data. Poesio and Artstein employed 18 students to annotate the same segments
of a dialogue from the TRAINS corpus by selecting all valid antecedents for every markable
expression the annotator perceived to be ambiguous. They found that at least 10% of the
72 markables annotated were marked explicitly ambiguous by at least one annotator (Poe-
sio and Artstein, 2005). They also found cases of implicit ambiguity, where markable
items were not marked as ambiguous by annotators but different annotators chose different,
equally valid labels. Our analysis of some documents from the Phrase Detectives corpus
showed similar results. We found that while a majority of the disagreements were the re-
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sult of interface problems, 9.1% could plausibly belong to more than one coreference chain
(Poesio et al., 2019).

Further evidence of disagreement due to ambiguity can be found in the POs dataset
used in this paper. Plank et al. (2014b) analyzed the inter-annotator disagreements in
this corpus and demonstrated that some disagreements were consistent across domains and
languages, and certain label pairs were more confusing than others (Plank et al., 2014b).
They employed expert linguists to annotate 880 items from the Gimpel et al. dataset, finding
that a majority of the disagreements for certain label pairs stemmed from linguistically
debatable cases (Plank et al., 2014b). For example, Plank et al. found that all the NOUN-
PRON disagreements were always linguistically debatable cases; the same was true for 70%
of the ADP-ADV disagreements. Figure 5 shows the the result of Plank et al.’s analysis of

hard
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Figure 5: Figure showing the proportion of hard cases that make up 880
pOS items (dark gray) and the proportion of these hard cases that are
linguistically motivated (light gray) (Plank et al., 2014b)

the disagreement involving these label pairs; the dark gray bars show the relative occurrence
of a pair confusion in the dataset, while light gray bars show the proportion of disagreement
that is due to linguistic ambiguity. These results were further validated when 10 linguistic
faculty members were asked to select the correct label for 10 items in the dataset; in 8 out
of 10 cases, these experts disagreed on on the right tag.

It should be noted that the presence of ambiguity in a text is not always nocuous (Yang
et al., 2011)—i.e., not being able to recover the intended interpretation of some expressions
need not be problematic (Poesio and Artstein, 2005; Poesio, 2020). For instance, in example
(1), the fact that pronoun it is ambiguous in context does not affect the listener in that
the two interpretations are equivalent: The ambiguity is innocuous. But Yang et al. (2011)
discuss several cases in which the ambiguity of an expression may be problematic.
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2.8.4 ITEM DIFFICULTY

In the cases of ambiguity discussed in 2.8.3, the interpretations of an expression are clear
even though it is not clear from the context which interpretation is intended. There are
cases, however, where disagreement is caused by the fact that it is not clear what the
interpretation of an item is, if any. We grouped these cases in a distinct category that
we call item difficulty disagreement.'® While difficulty in this sense is encountered in all
annotation projects, item difficulty is a leading cause of disagreement for two of the datasets
studied in this paper, the RTE dataset and the CIFAR dataset.

Zaenen et al. (2005) have noted that the PASCAL dataset contains examples that do
not fit a clearly defined inference pattern, making them problematic to categorize. As an
illustration, consider the randomly selected high-disagreement (polarizing) items in RTE
shown in Table 3. We can observe from Table 3 that the items on which annotators disagree
contain convoluted premises (2 and 9), convoluted hypotheses (3 and 8), or require extra-
textual information that annotators need to supply based on their real-world knowledge (1,
4, 5,6, 7,10). We classified these cases of disagreement in RTE as being caused by (general)
difficulty rather than ambiguity because the entailment relation cannot be both true and
false; it is just that it is not clear what the correct value is. For example, item 7 is difficult
because it is unclear whether or not the newly appointed editor-in-chief has assumed his
role; however, the hypothesis “ Al Jumhoria is the Iraqi Ambassador to India” either follows
from the premise or doesn’t; it cannot do both. These polarizing examples stand in contrast
to the non-polarizing (perfect agreement) instances in RTE shown in Table 3.1

The nature of difficulty in CIFAR can be illustrated by contrasting the example images
in Figure 7, about which the annotators perfectly agree, with the example images in Figure
6, for which observed agreement is less than 0.3. The images presented for annotation are
tiny, each containing a single object among the categories under consideration.'? In the
easy cases, the object to be identified is clear; in the difficult cases the images are hard to
identify. As with RTE, we found disagreements in this task were largely due to this item
difficulty. Even when the images are tiny or distorted, so that annotators disagree on what
they refer to, they still refer to real-world objects that cannot be labelled in multiple ways.

(a) cat (b) airplane (c) deer

Figure 6: Some images in CIFAR with less than 0.3 observed agreement

10. The connection between disagreement and difficult can also be found in Beigman and Beigman-Klebanov
(2009); Reidsma and Carletta (2008), and Beigman-Klebanov and Beigman (2014), among other previous
studies.

11. It is interesting to note that the randomly selected perfect agreement instances are all True according
to the gold standard. Statistics show that the observed agreement for the gold True class is on average
higher than that of the False; annotators found it easier to identify entailment than to identify non-
entailment.

12. Some images contain people or scenery, neither of which is a category in CIFAR.
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Table 3: 10 randomly selected polarizing items in RTE

Premise ‘Hypothcsis ‘Gold‘Obsorvod Agreement
1 [MSF was unnerved by a Taliban accusa-|Taliban spies on U.S. False 0.44
tion that its members were spying for the
U.S.
2 |Al Thawra added, “Lahoud is well aware|The newspaper added that regardless of|True 0.44
of that and realizes that Israeli challenges|the Israeli challenges, Lahoud would still
have never stopped for one moment; and|be able to deliver on his duties, supported
that escalation will not hamper him from|by Syria and a united Lebanon.
undertaking his national duties, relying on
the support of all of Lebanon with all of
its factions, as well as on the full support
of Syria in order to achieve his national
tasks and deliver on his commitments."
3 |Al-Koshah'’s events had surfaced after the|Was events Al Kusheh case emerged after|False 0.44
British “Sunday Telegraph"; newspaper|the publication; newspaper Sunday Tele-
published last October 25 an article in|graph; “the British on 25 last October
which it accused Egyptian police of “;cru-|writes an accused in which the Egyptian
cifying and raping Copts" police"; with steel Copts and rape of their
Families
4 |Seiler was reported missing March 27 and|Abducted Audrey Seiler found four days|True 0.46
was found four days later in a marsh near|after missing.
her campus apartment.
5 |The Bugbear virus infects computers run-|Virus infects thousands of computers. False 0.46
ning the Windows operating system and
an unpatched version of Internet Explorer
5.5.
6 |Britney Spears is getting hitched for the|Britney Spears is pregnant False 0.46
second time this year - this time to a pro-
fessional dancer father whose girlfriend of|
three years is pregnant.
7 |In turn, the Editor-in-Chief of Al Jumho-|Al Jumhoria is the Iraqi Ambassador to|False 0.46
ria Newspaper was appointed Ambassador|India.
of Iraq to India.
8 |Two Western citizens, one of whom is|Wounded nationals statement one British|False 0.46
British, three policemen and two kidnap-|land three police and in the attack which
pers were wounded in the attack thatlended the arrest 13
ended in the arrest of 13 kidnappers.
9 |German Chancellor Gerhard Schroeder|Schroeder doesn’t support Vershoftstadt|False 0.46
accused U.K. Prime Minister Tony Blair|as a candidate.
and Italian Prime Minister Silvio Berlus-
coni of allying with European conservative
parties in a “blockade" of the German and
French-backed candidate, Belgian Prime
Minister Guy Verhofstadst.
10|Johnston is the seventh person to be killed|IRA killed Johnston. False 0.46
in sectarian violence this year in Northern
Ireland where the outlawed IRA is fighting
to end British rule in the province.
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Table 4: 10 randomly selected high agreement items in RTE

Premise ‘Hypothesis ‘Gold‘Observed Agreement
1 |Iraq has been under a stringent economic|An embargo was imposed on Iraq in 1990.| True 1.0
embargo since its August 1990 invasion of]
Kuwait and relief workers are increasingly
concerned about the health of its popula-
tion.
2 |The three-day G8 summit will take place/The G8 summit will last three days. True 1.0
in Scotland.
3 |Kidnappings in Argentina have increased|Argentina sees upsurge in kidnappings. |True 1.0
more than fivefold in the last two years,
official figures show.
4 |But even in light of this unparalleled de-|European elections took place on June 13.|True 1.0
cline, the SPD’s result in the June 13 Eu-
ropean elections is of a qualitatively dif-
ferent character.
5|A federal jury needed just four hours to|Chadrick Fulks gets the death penalty  |True 1.0
return a death sentence against Chadrick
Fulks, who pleaded guilty to kidnapping
and carjacking resulting in the death of|
an Horry County woman.
6 |The G8 summit, held June 8-10, brought|Canada, France, Germany, Italy, Japan, True 1.0
together leaders of the world’s major in-|Russia, United Kingdom and European
dustrial democracies, including Canada,|Union participated in the G8 summit.
France, Germany, Italy, Japan, Russia,
United Kingdom, European Union and
United States.
7 |Crude Oil Prices Slump Oil prices drop True 1.0
8 |Last July, a 12-year-old boy in Nagasaki -|Last year a 12-year-old boy in Nagasaki|True 1.0
a city just north of Sasebo - was accused|was accused of murdering a four-year-old
of kidnapping, molesting and killing a 4-|boy by pushing him off a roof.
year-old by shoving him off the roof of a
car garage.
9 |Shrek 2 retained the top spot with $92.2|Shrek 2 retained the top spot with $92.2|True 1.0
million over the long Memorial Day week-|million over the long Memorial Day week-
end, fending off the global-catastrophelend, fending off the global-catastrophe
tale ‘The Day After Tomorrow’ which de-|tale ‘The Day After Tomorrow’ which de-
buted with $86 million, according to stu-|buted with $86 million, according to stu-
dio estimates Monday. dio estimates Monday.
10|Ghazi Yawar, a Sunni Muslim who lived|Yawer is a Sunni Muslim. True 1.0

for years in Saudi Arabia, has been picked
as president of Iraq after the favored U.S.
choice, Adnan Pachachi, declined to take
the job.

(a) horse

Figure 7: Some images in CIFAR with perfect observed agreement

(b) ship

(c) dog
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2.8.5 SUBJECTIVITY

To conclude, we briefly discuss here another source of disagreement common in certain
NLP tasks: subjectivity. As discussed in Section 2.7, in tasks such as offensive language
identification, annotators may disagree on whether a segment of text is offensive or not, not
because of interface issues, an overlap between categories, or because they are not paying
sufficient attention, nor because the items are difficult to understand, but because they have
different views on whether a segment counts as offensive or not (Akhtar et al., 2019). For
instance, the Sexism dataset from Waseem (2016) consists of tweets such as (4) (reported
by Akhtar et al. (2019)) classified by expert annotators and the crowd as either sexist or
not.

(4) @ XXX uh... did you watch the video? one of the women talked about how it’s
assumed she’s angry because she’s latina.

Very low intercoder agreement is observed for such items, which are also flagged as being
polarized by methods such as those proposed by Akhtar et al. (2019). This is because people
have different subjective views on what counts as sexist or not.

In this study we focused on “objective” judgments, and thus none of the datasets studied
in this paper cover this type of disagreement; we mention it here only for completeness. But
it should be clear that such cases present the most serious challenge to the very idea of the
“gold label,” as any single label assigned to items such as (4) would be purely arbitrary.

3. Approaches to Learning from Disagreement

Current methods for learning from crowd annotations can be divided in four broad cate-
gories, summarized in Table 5:

1. Methods that automatically aggregate crowd annotations into (typically, one) single
label for each instance. Most, although not all, of these models operate under the
assumption that a single, objective (“gold”) truth exists for every instance and aim to
produce the best estimate of this truth without requiring manual adjudication, and
ideally not even expert judgments. (The term silver truth is sometimes used for these
automatically aggregated labels.)

2. Methods that still assume that a gold label exists for every item, but relax the assump-
tion that this true label is always recoverable and use information about disagreement
to either eliminate (filter) items whose gold label does not appear to be recoverable
due to excessive disagreement among coders (hard items) or to weigh them.

3. Methods that can be used to learn a classifier directly from the crowd annotations,
possibly via a (typically probabilistic) distribution that assigns a score to each label
(soft label) computed from the crowd annotations using, e.g., softmax.

4. Methods that involve training a classifier using a combination of hard labels and soft
labels extracted from crowd annotations. These methods use gold labels or estimate
ground truths in training, but supplement these with information from the crowd
annotations, e.g., to weigh an item by its estimated difficulty or the ability of its
annotators.
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Table 5: Taxonomy of learning from disagreement. Filter: whether items are filtered out;
hard labels (single ground truth); soft labels: learning from multiple annotations.

Category Example approache Filter Hard Soft
Aggregation of coder judgements Dawid & Skene, CrowdTruth v
Filtering hard items Reidsma & op den Akker, Beigman-Klebanov et al. v v
Learning directly from crowd annotations DLC, Soft loss, CrowdTruth v
Augmenting hard labels w/ disagreements PEWE, Multi-task learning v v

The rest of this section reviews the research that has been carried out in each of these
directions. For each of these categories, we will briefly discuss a few key research projects
and papers, with emphasis on the details of a method and its underlying assumption about
truth. The evaluation criterion for a model will also be noted. In Section 5, we will list the
state-of-the-art and commonly used methods that we selected for in-depth analysis for each
category, providing details about their implementation.

3.1 Aggregating Coder Judgments

The simplest way to automatically aggregate a multiplicity of annotations is majority vot-
ing (MV). Using this method, the estimated label for a given item is simply the label which
receives the most annotations. Majority voting is simple to understand and implement,
and it can produce good results when the annotators are in agreement with each other and
with the experts, but it makes one key assumption that does not always apply: that all
annotators are equally adept at the task. Further, majority voting does not take the level
of difficulty of an instance into account in producing an aggregated label. These limitations
are well known, and much research has aimed at addressing them.

Probabilistic aggregation methods Possibly the first and definitely the most widely
used method attempting to address the limitations of majority voting was proposed by
Dawid and Skene (1979). Their approach (henceforth, D&s) estimates the posterior prob-
ability of a label [; for instance i conditioned on the observed label y, the actual label z;,
the prevalence of the labels 7, and the probability 6; ; 5 that annotator j assigns label &’ to
an item given its actual label is k (this latter probability is estimated for each coder from
his/her annotations):

p(lily, 0, ) o< p(zi|m)p(yll;, 0)

Numerous other probabilistic models for estimating ground truth have been proposed since
D&S. Some of the most widely used include Smyth et al. (1994); Carpenter (2008); Whitehill
et al. (2009); Hovy et al. (2013); Kamar et al. (2015); Moreno et al. (2015); Felt et al. (2015)
and Li et al. (2019) (see Paun et al. (2018) for an overview and comparison of some of these
models for NLP applications).!® A model that has proven effective in many NLP applications

13. A great many other surveys of aggregation methods exist. Among these, we will only briefly mention
here those by Zhang et al. (2016) and Zheng et al. (2017) to explain how this paper positions itself in
comparison. Zhang et al. (2016) analyzed the basic concepts of label quality, outlined major research out-
comes in methods for harnessing crowdsourced labels, and summarized some of available crowdsourcing
datasets and tools. They also compared the performance of several ground-truth inference algorithms,
noting that D&S is a standard method for label aggregation across several datasets, although it is out-
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is the simpler MACE model by Hovy et al. (2013), in which the § parameter of D& is replaced
by a parameter S;; specifying the probability that coder j is spamming on . Some of the
models, such as Carpenter (2008); Whitehill et al. (2009) and Kamar et al. (2015), also
model item difficulty (see below).

A non-probabilistic approach to aggregation particularly motivated by the intuition that
disagreements are informative and not making the assumption that a gold truth exists was
developed within the CrowdTruth project (Aroyo and Welty, 2015; Dumitrache et al., 2018c,
2019); we will discuss this approach next.

The CrowdTruth approach to aggregation The aim of the CrowdTruth project
(Aroyo and Welty, 2015) was to investigate the hypothesis that “disagreement is signal,
not noise.” Research within this project led to the development of new metrics for assessing
the quality of annotators, agreement on instances (a measure of item difficulty), and agree-
ment on labels (Inel et al., 2014; Dumitrache et al., 2018¢; Dumitrache, 2019), as well as
revised versions of the standard precision/recall/F evaluation metrics discussed in Section
4. These methods were applied to relation extraction (Dumitrache, 2019), named entity
recognition (Inel et al., 2014), and a variety of other tasks with both a closed and an open
number of labels (Dumitrache, 2019).

Two versions of the metrics were proposed. In both versions, the computation of the
metrics is based on two basic ingredients: a worker vector w,; recording the answers of
worker w on instance ¢ and a media unit vector V; summing up all the annotations of
all the workers on instance i. These vectors are then used to compute quality metrics for
workers, items (media units) and classes (annotations):

annotator quality: (WQS(i))—the overall agreement of one worker with the other work-
ers;

media unit quality: (UQS(u))—the overall worker agreement on media unit u; and

annotation quality: (AQS(a))—the overall agreement over an annotation, i.e., label,
across all units in which it appears.

In the original version of the metrics as used, e.g., in Chapters 2 and 3 of Dumitrache’s
dissertation, these quality metrics were computed using cosine similarity to standards (e.g.,
the media quality—the extent to which an instance was a good example of a particular
class—was computed by measuring the cosine similarity between that instance’s media unit
vector and the unit vector with a 1 for the class and 0 for all other classes). In version 2.0,
all scores are mutually dependent on each other and are therefore computed through an
iterative process.

In Dumitrache’s work in particular, these quality metrics were then used to assign one
or more classes to an instance i: every label whose score for 7 was higher than a certain
(empirically established) threshold was considered a label for that instance.

performed on datasets with a high number of categories. Zheng et al. (2017) carried out an experimental
survey of several ground-truth estimation techniques. They also recommend D&S, as it is robust across
several tasks with very little overhead especially in terms of computational efficiency. The main differ-
ence between this study and surveys such as Zhang et al. (2016) and Zheng et al. (2017) is that in this
paper, ground-truth inference algorithms are only one category of the experimented methods.

1409



UMA, FORNACIARI, HOVY, PAUN, PLANK & POESIO

These metrics were shown to work better than MV in Dumitrache’s work, but were not
compared against other aggregation methods or other methods for using crowd annotations;
we carry out this comparison in this survey.

Heuristic- and metric-based aggregation methods Many heuristic-based aggrega-
tion methods have been proposed (for a review see, e.g., Quoc Viet Hung et al. (2013);
Sheshadri and Lease (2013), and Daniel et al. (2018)), but none of these have been shown
to outperform D&S when the estimated ground truth is compared to gold labels.

Aggregation methods considered in this survey Dawid and Skene (1979) remains
the most widely used probabilistic method for aggregating crowd annotations. As such,
it is the main aggregation model analyzed in this survey. We also used majority voting
as a baseline, as well as the two best-known aggregation methods proposed in the litera-
ture, MACE and the CrowdTruth approach to aggregation. We provide more details on the
aggregation methods tested in this paper in Section 5.

3.2 Filtering Hard Items

Manual adjudication and automatic aggregation both result in a single gold or estimated
(silver) label for all instances in a dataset that can then be fed to a supervised classifier.
Models trained using such data are usually also evaluated assuming that a single label exists
for each instance in the data. In this traditional approach, even substantial disagreement
on a training/testing instance does not result in the removal of that instance. Several
researchers, however, have argued that information about disagreement should be used to
filter the dataset; items on which there is substantial disagreement should not be used to
train or evaluate models.

For instance, Reidsma and op den Akker (2008) consider inter-annotator disagreement
to be an indicator of how easy or difficult an item is. They consider two ways of using
disagreement to improve the performance of a classifier. The first method is to filter the
data by training on the high agreement subset of the data only, i.e., treating the other items
as noise. The second, softer approach is to train several classifiers, one for each annotator,
and to build a “voting classifier” that makes a prediction when all the classifiers agree on
the class label. Both methods have been shown to have high precision but low recall when
evaluated on test data containing instances with varying levels of agreement.

A more systematic analysis of the effect of noisy items was carried out by Beigman-
Klebanov and colleagues (see, e.g., Beigman Klebanov et al. (2008); Beigman-Klebanov
and Beigman (2009); Beigman and Beigman-Klebanov (2009), and Beigman-Klebanov and
Beigman (2014)). Beigman-Klebanov et al. argue that low agreement on an item suggests
it is not a good example for the phenomenon at hand, as it introduces noise in a model at
training time and cannot be fairly assessed at test time; it should therefore be filtered from
the training and test data, or at the very least separated from the high agreement (easy)
cases and trained on and evaluated separately. Beigman-Klebanov and Beigman (2009)
proposed a model of “hardness” that can be used to carry out this filtering or separation,
but did not test this model. Beigman-Klebanov and Beigman (2014) proposed a simpler
model based on a categorization of items ranging from “very easy” to “very hard” depending
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on the extent of the disagreement and compared the effect of selecting subsets of items at
training and test time.

One important issue concerning “hardness” is the observation by Reidsma and Carletta
(2008) that not all disagreements are equally problematic for a machine learning algorithm.
Disagreements are unproblematic as long as they can be viewed as random noise; they be-
come an issue when they reveal the existence of different annotator biases, which, according
to Reidsma and Carletta, are revealed by the appearance of patterns of disagreement. A
proper model of hardness ought to capture this finding.

Several models of hardness have been explored in the literature in addition to Kle-
banov et al.’s. Arguably, the theoretically most developed approaches are the models of
item difficulty incorporated in popular probabilistic aggregation models such as Carpenter’s
(Carpenter, 2008) and Whitehill’s GLAD model (Whitehill et al., 2009). We tested item dif-
ficulty based on high inter-annotator disagreement as in Reidsma and op den Akker (2008)
and computed using Whitehill’s GLAD model, which is the most widely used.

3.3 Learning a Classifier Directly from Crowd Annotations

The third category of approaches to learning from the crowd consists of methods that do
not make the assumption that a single gold label exists or is recoverable (and thus do not
aim to identify a silver label, although they may weight labels according to various factors)
and/or aim to capture the intuition that the distribution of labels produced by the crowd
provides useful information (and thus do not attempt to filter items on which substantial
disagreement is observed). Such methods therefore attempt to learn a model directly from
the crowd’s annotations. Broadly speaking, one can find three varieties of this class of
methods in the literature:

(1) methods that treat each annotation as a separate learning instance;

(2) methods that aggregate the annotations into a probabilistic distribution (soft label),
then learn directly from that distribution using a soft loss function;

(3) methods that estimate a probabilistic soft label as above jointly with learning a clas-
sifier.

We next discuss paradigmatic approaches for each of these sub-categories.

Repeated labelling The first type of approach is exemplified by one of the best-known
proposals in this area: Sheng et al. (2008)’s repeated-labelling approach (SREL). Sheng
et al. (2008) proposed that for each instance x, replicas of x are created for each unique
label j assigned by the crowd to x. A distinct replica may be created for each annotation,
or a replica may be created for each label, but weighted appropriately (e.g., it can receive
a weight of ﬁ or |z7|, where |27| is the number of annotations of x with label j). This

approach is the sole soft-labelling approach tested by Jamison and Gurevych (2015).

Soft loss functions A second but equally intuitive way to train directly from the anno-
tations is to use the probability distributions of item labels as soft targets in a loss function
that can be used with such labels, such as cross-entropy (henceforth CE) or mean square
error (MSE). Recently, Peterson et al. (2019) have provided evidence of the benefits obtained
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using such soft labels applied to training a computer vision model for image classification.
Peterson et al. (2019) have argued that the cross entropy between the soft label and the
probabilistic distribution predicted by the model is the optimal loss function when the goal
is to generalize well to unseen data. They showed that training using soft loss outperforms
training on the single gold. Consider the standard loss function:

min’y_ L(fo, xi, yi), (5)

=1

where L is the loss for a model with parameters # and the objective is to minimize L
with respect to some observed data {x;,y;}I", such that the function fy generalizes well,
i.e., minimizes the expected loss over unobserved labels given previously unseen input data
{z;}72, drawn from the same data distribution:

iZL(fev i, yj = )p(y; = clzj). (6)

1=1 ¢

Uma et al. (2020) further explored this approach by applying it to datasets from NLP as
well as Ccv, using different types of characteristics, and considering alternative probability-
comparing functions such as the Kullback-Leibler divergence. We discuss these options in
more detail in Section 5.2.

Training using soft labels also bears similarities to using self-supervised loss functions
in the semi-supervised learning literature. For example, in temporal ensembling (Laine and
Aila, 2016) a secondary distance loss on pseudo-labeled samples (e.g., squared distance) is
used to guide learning, albeit with a different goal.

Learning from crowds Raykar et al. (2010) pioneered the learning from crowds
approach of carrying out aggregation while jointly training a model. Building on Dawid and
Skene (1979), Raykar et al. (2010) used the expectation maximization algorithm to jointly
learn an estimated gold label, annotator reliability, and a classifier to predict whether a
suspicious region on a medical image from an X-ray, CT scan, or MRI was malignant or
benign. The annotations used in their experiments were provided by expert radiologists,
and the model learned was a logistic classifier, but they argue that the model can be used
for any classifier and in a multi-class setting.

An extension of this approach to a deep learning setting was later proposed by, for
example, Albarqouni et al. (2016), who developed a multi-scale CNN, AggNet, to handle
data aggregation directly as part of the learning process via an additional crowdsourcing
layer. Albarqouni et al. (2016) also exemplified their method using histology images in
a binary classification setting. Guan et al. (2017), too, propose a neural network model
for learning from medical experts (in this case, learning diabetic retinopathy severity on
a 5-point scale). However, their model learns from multiple annotators (also experts) by
modeling them individually with a shared net that produces unique outputs for each expert,
and in addition learns averaging weights for combining their modeled predictions (Guan
et al., 2017).

Most recently, Rodrigues and Pereira (2018) proposed a similar approach to Guan et al.
(2017) that they called deep learning from crowds (henceforth, DLC). DLC not only
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learns to combine the votes of multiple annotators, but also captures and corrects their bi-
ases while remaining computationally less complex than Guan et al. (2017). Deep learning
from crowds was shown to work for binary classification, multiclass classification, regression,
and structured prediction problems, both in ¢v and NLP. In their paper, Rodrigues and
Pereira (2018) show that their model outperforms existing models including Guan et al.
(2017) when evaluated against a gold truth (see below). We chose DLC as the paradig-
matic model for this sub-category in part because it had the best performance when our
experiments started, and in part because it has been applied both to ¢v and NLP problems.

3.4 Using both Hard Labels and Information about Disagreements

Finally, a range of methods have been proposed that assume the existence of a gold or silver
hard label for each item but also recognize that uncertainty is a real possibility, and thus
models may benefit from leveraging information from crowd annotations. Such methods
can be further subdivided into:

(1) methods that use the crowd annotations to estimate the uncertainty on the label—and
use this estimate to weight the loss associated to an item—and

(2) methods that jointly learn from the hard labels and the additional information (soft
labels or item difficulty).

Plank et al. One of the best known proposals regarding learning from disagreements in
NLP, the method by Plank et al. (2014a) (which we will refer to as pewe) falls under the
first sub-category.

Plank et al. computed the extent of confusion on a label from inter-annotator agreement
between two expert annotators on a small sample, and used that overall degree of confusion
between labels to weight items while learning a part-of-speech (POS) tagging model from
gold labels. They tested two different ways to quantify this label uncertainty, F1l-score
and tag confusion probability, finding that tag confusion probability outperformed F1 score
(Plank et al., 2014a).

Sharmanska et al. A number of alternative approaches also using label confusion or
item difficulty to weight the hard label have been proposed. For instance, Sharmanska
et al. (2016) used inter-annotator agreement to discriminate between easy and difficult
examples, but like Plank et al. (2014a), they integrated this information into their classifier
as a measure of confidence in the usefulness of the data instance instead of using it to
filter the instance. They did this using a model based on Gaussian processes in which
“annotation ambiguities” informed the likelihood function of the classifier regarding whether
the influence of a given item should be retained, reduced, or ignored. Their work was not
concerned with the availability or lack of ground truth; rather, they focused on instance
weighting and attempted to use disagreement to inform how much importance the learner
should ascribe to each instance in the data (Sharmanska et al., 2016).

Jointly learning from gold and disagreements Lalor et al. (2018) proposed training
algorithms in which both gold labels and soft labels were used at different times—either
using gold labels for one epoch and soft labels for the next, or training using gold labels
and then fine-tuning using soft labels.
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More recently, Fornaciari et al. (2021) exploited crowd disagreement in a multi-task
learning (MTL) setting. They trained models for two common NLP tasks—POS-tagging
and stem identification—which jointly learn to classify the hard labels (i.e., gold-standard
classes) and the soft labels (i.e., the coders’ annotations), represented as a probability
distribution. They used cross-entropy loss for the gold classification task but Kullback-
Leibler divergence to estimate the error between the predicted and the target probability
distribution.

Fornaciari et al. compared models trained in this MTL setting with single-task learning
(sTL) models, which only learn the gold classification task without exploiting disagree-
ment. Their results show that the MTL models consistently outperform the STL ones. They
interpreted the contribution of the secondary task in terms of regularization: The back-
propagation of the loss tends to penalize errors more for the instances where there is a peak
of probability, i.e., where the coders agree more. In contrast, there is less of a penalty in
instances with smoother distributions, i.e., where the coders disagree.

3.5 Coming to Soft Labels from Another Direction: Learning from Noisy
Labels and Distillation

As mentioned in the Introduction, a very active line of research in Al in general and computer
vision/NLP in particular is the study of methods to learn from noisy labels above and beyond
the noise due to disagreements between annotators (Mnih and Hinton, 2012; Northcutt
et al., 2019). A line of work particularly relevant to this paper focuses on methods that
introduce a measure of noise in the labels in order in order to improve generalization.
Among such methods, the best known is perhaps distillation, proposed by Hinton et al.
(2015). Distillation is a technique for transferring knowledge from a more complex, “teacher’
model to a smaller, “pupil” model. One of the key ideas is that distillation works best
when the student learns from the entire probability distribution assigned to an item by the
teacher instead of from a single label. Although there is a connection between learning
from soft labels containing disagreements originating from human judgments and learning
from (naturally or artificially) noisy labels in general (a connection also highlighted by, e.g.,
Peterson et al. (2019), who compare their models for learning from disagreement with models
for learning via distillation), methods in which the soft label is generated from models are
outside the scope of this study, which focuses on learning from naturally generated soft
labels.

4. Evaluation

As we have seen, there is by now an extensive literature on learning from multiple an-
notations, possibly in disagreement. Much, although not all, of this work is motivated by
empirical findings such as those discussed in Sections 1 and 2 suggesting that gold labels are
only an idealization, at least for cognitive tasks. Yet, much less research has been devoted
to the the question of how to evaluate models in such circumstances, especially when the
“true” label is not known (i.e., our RQ1).

Two forms of evaluation have been used in the literature on learning from data containing
multiple annotations of the same item. Hard evaluation metrics such as accuracy or F1
are traditionally used when it is assumed that a true label exists notwithstanding the
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disagreement between annotators. More recently, however, evidence such as that presented
in Section 2 has led researchers to question the validity of evaluating models trained with
data collected without assuming a gold label against test data with gold labels (e.g., using
accuracy). Therefore, in this survey, all models were evaluated using not only traditional,
“hard” evaluation metrics, but also soft evaluation metrics which do not involve a gold
label, some already used in the literature but not yet established, some novel. In this
section we discuss the options we considered.

4.1 Hard Evaluation Metrics

Two types of metrics have been used for hard evaluation against gold labels, measuring
respectively:

1. How well the model predicts gold labels when all items are treated equally:
This is the traditional “hard” way of measuring model performance, and it is interest-
ing to note how many proposals for learning from disagreement were evaluated this
way, even among those arguing that assuming a gold label exists is too strong an
idealization (Sheng et al., 2008; Plank et al., 2014a; Alonso et al., 2015; Sharmanska
et al., 2016; Rodrigues and Pereira, 2018). The most frequently used hard measures
include percentage accuracy and class-weighted F1 with respect to the gold labels;
we used both in this study.

2. How well the model captures truth when items are weighed depending on
disagreement: An alternative approach to evaluating models using disagreement as
signal is the crowd-truth weighted f-measure (henceforth, CT F1) (Dumitrache et al.,
2018c¢). This metric still relies on a “hard” label, but does not give the same weight to
all items. The intuition is that items on which there is a lot of disagreement (“hard”
items) should be weighted less than “easy” items; hence an inverse-confusion score (a
“sentence relation score,” which we will call here the “item relation score” (irs) for the
sake of generality) is used to weight the standard precision and recall scores, resulting
in the weighted precision, Pl, and weighted recall, R/, defined as:

P Yoiirs(i) * tp(i)
S irs(i) * () + (1 = irs(@) = 7o)

(7)

e Yoiirs(i) = tp(i) (8)
—Yars(i) x tp(i) +irs(i) x fn(i)
The weighted f-measure, CT F1, is then defined as usual as the harmonic mean of the
weighted precision, P,, and weighted recall, R (Dumitrache et al., 2018c).

irs(i) is defined as the cosine similarity between the item vector and the unit vector
for the label under consideration; a higher ¢rs implies that a majority of annotators
agreed with the gold labelling. Formally, irs(i) = cos(V;,7) where V; is the media
unit vector discussed in Section 3.1 (the item’s label distribution) and 7 is a vector
whose dimension is the number of labels, with 0 values for all components except for
the component corresponding to relation r.
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4.2 Soft Evaluation Metrics

No generally accepted form of soft evaluation exists if the existence of a gold label is not
assumed. Therefore, we considered a variety of approaches, measuring:

1. How similar the distribution of labels assigned by the model to an item 1is
to the distribution of judgments produced by the annotators for that item:
This type of evaluation captures the ability of the model to learn the probabilities
of each label relative to the others for a given instance. The underlying assumption
is that the item label distribution produced by the annotators is representative of
the implicit ambiguity of each item. Given a set of inputs, x = {z;}!", if we define
Phum(x;) to be the probability distribution of the crowd annotations over the set of
labels for that item and py(z;) as the probability distribution for that item produced
by a model with parameters 6, we measured this similarity in two ways:

e Peterson et al. (2019) proposed evaluating the trained models using cross en-
tropy (CE) in order to capture how confident the model is in its top prediction
compared to humans and the reasonableness of its distribution over alternative
categories.

m
CE(Phum(X)7P0<X)) = thum(wi) log p9($i)- (9)

i=1
e Jensen-Shannon divergence (3sD) (Lin, 1991) is a standard method for mea-
suring the similarity between two probability distributions. It is based on the

Kullback-Leibler divergence (Kullback and Leibler, 1951) (KL), but is symmetric
and always has a finite value (see discussion below).

The Jensen-Shannon Divergence between ppym (i) and pg(z;) can be expressed
in terms of KL divergence as follows:

1

TS D@ (1) || 1)) = 5 Dict (pram ) | M) + 5

Drr(po(z:) || M) (10)

where M = w'

D1, (phum (i) || pe(x;)) denotes the KL divergence between the two distributions
and is computed as:

phum(xi)
po(zi) an

Using Jensen-Shannon Divergence, the similarity can be expressed as:

DKL(phum(xi) ” p@(l'i)) = phum(xi) log

IS D (prum (%), po(x)) = > JSD(Dhum (i) || polx:)) (12)
i=1

2. How well the model captures human uncertainty in its prediction: An al-
ternative approach to evaluating a model’s ability to reproduce human judgments is
to evaluate the model’s ability to capture the disagreements among annotators in an-
notating the item as measured using normalized entropy. The assumption is that
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the entropy of the annotators’ distribution is a good measure of how confusing the
annotators find the item. To measure the ability of a trained model 8 to capture an-
notators’ confusion, first, we compute on an item basis the normalized entropy of the
probability distribution produced by the model, Hyorm (pg(z;)), and the normalized
entropy of the soft labels, Hyorm (Phum(zi)), for each item i. We then compute the
vectors of the entropy values over all the items, Horm hum and Hporm g. Finally,
the model is evaluated using;:

e the cosine similarity between the two vectors, which we call the entropy simi-
larity metric:

H norm__hum *° H norm_ 0
Hnormihum| ‘ | |Hnorm79‘ |

Sim(Hnormihumv Hnormf@) = | | (13)

e Pearson (1896)’s correlation between the two vectors, which we call the entropy
correlation metric:

corr (Hnorm_hum ) Hnor‘m_g) <14)

4.3 Comparisons of the Evaluation Metrics

In this section, we provide some intuition and explanations of our expectations for the
evaluation metrics introduced in sections 4.1 and 4.2.

4.3.1 Accuracy vs F1 vs CT F1

As discussed in Section 4.1, three “hard evaluation” metrics can be used to capture the de-
gree of correctness of the predictions of a model/method with respect to the expert provided
target labels—accuracy, F1, and ¢T F1. The first two metrics do not take disagreement into
account; the ¢T F1 metric on the other hand weights each item’s contribution to the overall
score by how confusing the annotators find that item. Hence, we had three expectations for
the metrics. Firstly, we expected the relative rankings of the models to be largely similar
using both accuracy and F1, except that because the F1 metric is class weighted, we ex-
pected that in datasets with class imbalances, the rank of the methods might be different,
as it would be based on their performance on the majority class.

Second and third expectations about the hard metrics were discussed by Dumitrache
et al. (2018c,a). To illustrate them, we’ll use a simplified example. Consider a binary
task with items belonging to either category 0 or 1, assuming that for the 4 items in the
dataset, item relation scores (irs) are [0.2,0.2, 1, 0.8], respectively,'* and the gold labels are
[1,1,1,1]. Then, consider three models my, mg, and ms. The predictions of these models
and their F1 and cT F1 for class 1 on the hypothetical data subset are shown in Table 6.
Model 1, myq, is a perfect model, retrieving all the relevant items. mo retrieved the items
with high irs (i.e., the items for which the annotators highly agree with the gold label). ms
retrieved the low irs items. Two observations can be made from the table: (1) the margin
between mgy and m; is narrower for CT F1 than for F1 and (2) for mg, the CT F1 score is
higher than the F1 score. By de-emphasizing “hard” items, the CT F1 score allows models

14. Given the definition for irs, the more annotators agree with the gold interpretation, the higher the irs
score.
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Table 6: The predictions F1 and CT F1 for hypothetical models on a hypothetical binary
task

Model id ‘ Model predictions F1 cCT Fl1

m 1,1, 1, 1] 1.0 1.0
ms 0,0, 1, 1] 0.5 0.53
ms 1, 1,0, 0] 0.5 0.28

that perform well on “easy” items to achieve more competitive scores. This in line with the
hypothesis of Dumitrache et al. (2018a): Making the assumption that, for all items, the gold
label is always perfectly suited/related to the item underscores the models’ performance.
Dumitrache et al. (2018a) further state that low(er) F1 scores for models are caused by
these “hard” items. If their hypothesis stands, we do not expect to see models behave like
mg, i.e., to have a negative differential between their T F1 and F1 scores.

4.3.2 JSD vs Cross ENTROPY

As mentioned in Section 4.2, the JSD function is a standard way of measuring the difference
between two distributions. In coding theory, KL divergence (also known as relative entropy)
is often interpreted as the number of extra bits required to send messages using the dis-
tribution ¢ when the optimal distribution is P. In the machine learning and statistical
literature, KL is often used to measure the amount of information lost when () is proposed
as an approximation of P (P typically represents the “true” distribution and @ a model’s
prediction). Mathematically, the relative entropy from @ to P (i.e., the relative entropy of
@ with respect to P) is defined as follows:

Dir(P || Q) == p(x)logq(x) + Y p(z)logp(x (15)
reX reX
This implies that when p(z) = ¢(z), Drr(P || Q) = 0.
cross entropy can also be interpreted using coding theory. While KL measures the
number of extra bits per message, cross entropy is the average or expected number of bits
needed to send messages using () when the optimal distribution is P. Mathematically, the
cross entropy of ) with respect to P is given as:

- p(x)logg(x (16)

reX

Consequently, when p(z) = ¢(x), H(P,Q) = —> ,cx p(z)logp(x), which is the entropy
of P—H(P). In other words, the lower bound of Hx (P, Q) is not necessarily 0 but the
entropy of P.'> We can also re-formulate Dy (P || Q) as follows:

H(P,Q) = Dkr(P || Q) + H(P) (17)

where H(P) denotes the entropy of P.

15. In our context, the lower bound of Hx (P, @) is only 0 when a given item belongs exclusively to a single
class
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The implications of these observations for the purposes of evaluating models by com-
paring their predicted distributions with the distribution produced by the annotators are
as follows. Firstly, when a model’s predictions are perfectly identical to the human distri-
bution, the KL divergence (and the JsD) is always 0—i.e., both KL and JSD, but not CE,
are lower bounded at 0. Secondly, we see from equations (15) and (16) that neither KL
divergence nor CE have an upper bound. The Jensen-Shannon divergence function, how-
ever, is capped at 1 In2 for the log base e, or 1 if using the base 2 logarithm (Lin, 1991).
This upper and lower boundedness makes JSD desirable as a metric, as the results are more
easily comparable across datasets. Having both hard and soft metric scores on the same
scale allows for the possible combination of both (for instance by taking the sum of half of
each). This is the reason we chose JSD as one of our soft evaluation metrics.'®

Finally, the fact that JSD scores are bounded within a small range, unlike CE and KL,
also means that all the results are confined within a smaller range than the scores for KL
divergence or CE. This might have implications for checking the significance of results for
the same dataset across different models; a narrower range would mean the results might
seem to converge to a point, making it difficult to tell at a glance which results significantly
differed from each other. For this reason, we also kept the widely known and used unbounded
CE metric as a soft evaluation metric. We did, however, expect the model rankings of both
CE and JSD to be largely similar.

4.3.3 ENTROPY SIMILARITY VS ENTROPY CORRELATION

We used (normalized) entropy to measure the degree of uncertainty in the prediction of the
crowd or the model for any any given item. To compare the uncertainty of a model with
respect to the uncertainty of the crowd, we used Pearson correlation (Pearson, 1896) and
cosine similarity (see Section 4). While neither satisfies the triangle of inequality nor can be
considered a metric in the mathematical sense, they both measure important relationships.
With entropy correlation, we can measure the linear relationship between the two vectors.
In other words, we can answer the question, “Is the model uncertainty high when the crowd
uncertainty is high and low when crowd uncertainty is low?” With entropy similarity,
bounded between [0, 1], we can get a sense of how similar the vector of model entropy is to
the vector of crowd entropy.

It is worth noting that cosine similarity is correlated with correlation; the more similar
vectors are, the higher their correlation. As such, we expected the models’ ranking by
entropy similarity and entropy correlation to be largely the same. It is also worth noting
that since we used the normalized version of entropy, the results using these two “metrics”
are comparable across datasets.!”

4.3.4 ENTROPY SIMILARITY/ENTROPY CORRELATION VS CROSS ENTROPY/JSD

The reason for using both divergences (cross entropy and JSD) and the scalar measures
entropy similarity/correlation (using entropy similarity /entropy correlation) can be illus-
trated by the following hypothetical example. Consider a scenario where ppym (yi|zi) =

16. There has been some discussion in the literature about normalized cross entropy (Stemmer et al., 2002;
Sohn, 2016), but this is not yet as widely accepted as JSD.
17. We refer to them as metrics for the purposes of this paper.
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[0.8,0.2,0.0,0.0] for a given item i and two models m; and mg produces a pg(yi|z;) of
[0.6,0.2,0.2,0.0] and [0.0,0.0,0.8,0.2], respectively. We can make two observations from this
example. First, model m; agrees more with the crowd on where probability mass should
be assigned to item i. Second, model my totally disagrees with the crowd on which classes
are valid for item 7 but has the same general level of uncertainty about its prediction as the
crowd. With cross entropy and JSD we can capture the first type of similarity: The cross
entropy and JSD scores for m; and mg are (0.73,0.33) and (27.63,1.0), respectively.'® In
contrast, with entropy similarity and entropy correlation we can capture the second type of

similarity: Hyorm (Phum (Yili)) = Hporm (Pm, (yil2i)) = 0.36 while Hyorm (P, (vi]zi)) = 0.69.

5. An In-Depth Comparison of Methods for Learning from Disagreement

In previous sections we discussed several NLP and computer vision tasks that motivated
the development of methods for taking information about disagreements into account (Sec-
tion 2), surveyed the literature on learning from multiply annotated data (Section 3), and
discussed how models trained using such methods can be assessed (Section 4). In order
to analyze these methods in more depth, we carried out experiments with those that were
the most representative, comparing them on the same tasks using some of the best-known
datasets in this literature. In this section, we discuss the design of these experiments.

First of all, we discuss in Section 5.1 the models that we implemented for each of the
six tasks studied in this research (see Section 2). Secondly, we list in Section 5.2 the
prominent state-of-the-art methods for learning from disagreement that we identified as
best exemplifying each of the classes of approach discussed in Section 3 and tested by using
each of them to train the models in Section 5.1 for the six tasks in Section 2. For each task,
we computed the significance of the difference in performance between each pair of trained
models using bootstrap sampling, following Berg-Kirkpatrick et al. (2012) and Sggaard
et al. (2014). Section 5.2 provides the necessary detail about these training methods and
how they were applied to each task.

The results of this comparison are presented and discussed in the following sections.
A summary of the results is presented in Section 6; these results are then analyzed on a
task-by-task basis in Section 7, and an overall discussion is provided in Section 8.

5.1 The Models

Part-of-speech tagging For POs tagging, we implemented our own POS tagger, in-
spired by Plank et al. (2016) but deploying an attention layer over two kinds of input
representations—character and word level—with each level of representation encoded using
a separate RNN architecture. At the character level, each word was encoded as a sequence
of characters (using a “sequence RNN”), and the final states for each sequence of characters
were used as representations. To get word-level representations, each word was encoded
by passing the word embeddings through a “context bi-RNN”; the word embeddings were
initialized from pretrained Glove embeddings (Pennington et al., 2014). Each representa-
tion was passed through a separate attention mechanism (Yang et al., 2016). The final
representation, a concatenation of these outputs, was passed through a FFN with one ReLU

18. We avoided infinite values by clipping the values using a small epsilon, le-12
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hidden layer and an output layer with softmax activation so that the output of the model
was the probabilities for each word belonging to each of the the 12 universal POS tags.

The model was always trained for 20 epochs using the Adam optimizer (Kingma and
Ba, 2015) at a learning rate of 0.001 with the the model with best development F1 saved
at each epoch. This best model was used to evaluate the test data.

Information status classification The model for this task was developed by combining
elements from two architectures: the state-of-art coreference architecture and the state-of-
art IS classification architecture. The state-of-the-art architecture for 1s classification at
the time we started these experiments (Hou, 2016) was developed for the ISNOTES corpus
(Markert et al., 2012; Hou et al., 2013) and achieves a performance of 78.9% on that corpus.
The state-of-art coreference resolution architecture at that time (Lee et al., 2018) includes a
mention representation component. We developed our model by sorting the mentions using
the algorithm outlined by Hou (2016) and a span representation similar to Lee et al. (2018)
but including the non-syntactic features from Hou.

The 1S model was trained for 10 epochs with training parameters set according to Lee
et al. (2018). For each experiment, we chose the best model based on the development set.

Relation extraction For this task we fine-tuned a BERT sentence classifier (Devlin et al.,
2019) for the binary (medical) relation extraction task. The predicted probability for a
sentence was obtained by applying a softmax function over the classifier’s 2D output.

The model was trained for 4 epochs using a 10-fold cross-validation at a learning rate
of 2e-5. Although simple, this model performs much better than the original model by
Dumitrache et al. (2018b), which only achieved a micro-averaged F1 of 0.638 on the same
MRE dataset used here, whereas our model achieves a micro-averaged F1 of 0.847.

Recognizing textual entailment Jamison and Gurevych (2015) reproduced the basic
RTE system described by Dagan et al. (2005), but this model is no longer state of the art, so
we developed a new model. Given the small size of the dataset, the model had to be concise,
with as few parameters as possible without sacrificing performance. Our system encodes
the premise and hypothesis texts using BERT (Devlin et al., 2019) and concatenates the
encoded pair. This concatenation is the sentence-pair representation and is passed through
a feed-forward neural network with 3 ReLU activated hidden layers and an output layer.
The predicted probability for each example pair is obtained by applying a softmax function
over the outputs.

The model was trained for 20 epochs using 10-fold cross-validation and the Adam op-
timizer (Kingma and Ba, 2015) at a learning rate of 0.0001. When trained on gold labels,
this model outperforms that in Jamison and Gurevych (2015). While the Jamison and
Gurevych (2015) RTE achieved 51.3 micro F1, our model achieves 61.31 micro F1.

Image classification: LabelMe We replicated the model from Rodrigues and Pereira
(2018) for this task. Rodrigues and Pereira (2018) encoded the images using pretrained
CNN layers of the VGG-16 deep neural network (Simonyan et al., 2013). This encoding is
passed into a feed-forward neural network layer with a ReLLU activated hidden layer and a
single output layer. Output probabilities are obtained by applying a softmax function to
these outputs.
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In our experiments, we randomly split the 10k images with crowd annotations into
training and test data (8882 and 1118 images respectively) to allow for ground truth and
probabilistic evaluation. We used 500 gold-labeled images from the dataset as our develop-
ment set. Training was carried out for 50 epochs using the Adam optimizer (Kingma and
Ba, 2015) at a learning rate of 0.001. The model with the best development F1 was always
chosen as the model used for evaluation.

Image classification: CIFAR-10H The model trained for this task was the ResNet-
34A model (He et al., 2016), a deep residual framework that is one of the best-performing
systems for the CIFAR-10 image classification model. We used a publicly available Pytorch
implementation of this ResNet model.

We trained the model with for a total of 65 epochs divided into segments of of 50, 5,
and 10, using a learning rate of 0.1 and decaying the learning rate by 0.0001 at the end
of every segment. The model used for the evaluation phrase was the model with the best
development dataset.

5.2 Learning from Disagreement: Approaches Tested

In order to compare methods for learning from disagreement, we trained each of the ar-
chitectures discussed in the previous section using representative approaches from every
category discussed in Section 3. In this section, we list the methods we tested, providing
the essential details about how they were implemented or used. The methods are grouped
according to the same categories as in Section 3.

5.2.1 AGGREGATING CODER JUDGMENTS

As discussed in Section 3, possibly the most common approach to using the labels produced
by the crowd is to go through an aggregation step during which the labels used for learning
are obtained either through manual adjudication or through automatic aggregation. This
process is normally based on the assumption that each item belongs to a single category,
but the result of this preliminary step may also be a graded ranking of the labels. We
trained our models using data aggregated as follows:

1. Gold Training This is training using a single gold label per instance, usually obtained
through the manual adjudication of annotations produced by at least two manual
annotators. (All the datasets we employed provided gold labels, with the exception
of PDIS, which only includes gold labels for the test data.)

2. Majority Voting This is training using for each instance the label chosen by the
majority of coders.

3. Dawid and Skene This is training using, for each instance, a single label produced by
choosing the label with the highest posterior probability as assigned by the Dawid and
Skene (1979) algorithm, which infers a per-class model of an annotator’s expertise. We
used a publicly available implementation of the Dawid and Skene (1979) algorithm,?°

19. The CIFAR-10 model is available at https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10
20. The Dawid and Skene algorithm can be found at https://github.com/sukrutrao/Fast-Dawid-Skene
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but unlike the original paper, which used random initialization, we obtained initial
estimates of the ground truth using majority voting.

4. MACE As a probabilistic alternative to D&S, we also tested the MACE item-response

model (Hovy et al., 2013), which only learns whether an annotator is spamming on
a given instance. We used the freely available implementation of MACE provided by
the authors.?!

5. CrowdTruth As a final aggregation method, we tested the quasi-probabilistic ap-

proaches developed in the CrowdTruth project, which involves computing several
“quality metrics”—annotator, item, and label—to assign a label to an instance (Du-
mitrache et al., 2018c).

The quasi-probabilistic approach in Dumitrache et al. (2018a), Dumitrache et al.
(2018d), and Dumitrache (2019) was used for Twitter event identification, news event
extraction, sound interpretation, and medical relation extraction (MRE), the task ex-
perimented with in this paper. As discussed in Section 2, Dumitrache et al. (2018a)
collected annotations for these tasks using disagreement-aware crowdsourcing, i.e.,
workers were presented with a multiple-choice task, selecting from the 14 possible
relations all the suitable interpretations (labels) for each item.?? Because the MRE
dataset used here is the one used by Dumitrache et al. (2018a), and they provide
the aggregated labels,?? we used these provided aggregate labels for the CrowdTruth
experiments on the MRE task.

Dumitrache et al. (2018a) generated labels from MRE crowd annotations using the
following instantiation of the general approach discussed in Section 3:

(a) worker vector, W ; For each worker 7 annotating a sentence s, the vector cell
for each relation the worker selects is marked 1, whereas the vector cell for the
relations not selected are marked 0.

(b) sentence vector, V; The sentence vector for each sentence is computed by
summing up the worker/annotation vectors for all the workers. Vi = >, Wy ;

(c) sentence-relation score, srs(s,r) The sentence-relation score is computed as
the cosine similarity between the sentence vector and the unit vector for that
relation, srs(s,r) = cos(Vs, ), where 7 is a one-hot vector with size the number
of relations, marked as 0 in all cells except the cell corresponding to the relation
being computed. The idea is that the higher the sentence-relation score, the
more clearly the relation is expressed in the sentence, and thus the lower the
level of ambiguity.

21.
22.

23.

The version of MACE used can be found at https://github.com/dirkhovy/MACE

We should point out that the annotations for the other datasets experimented with in this paper (POs,
RTE, IC-LABELME, IC-CIFAR10H, and PDIS) were not collected using disagreement-aware crowdsourcing;
annotators could only select one of the available categories for each item to be annotated, although
different annotators could end up choosing different labels.

Dumitrache’s  aggregated labels can be found at  https://github.com/CrowdTruth/
Medical-Relation-Extraction
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(d) sentence-relation score threshold, ¢ This is a fixed value in the [0, 1] interval
used to differentiate between negative and positive relations for a sentence. Given
a sentence-relation score threshold ¢, sentences with an srs threshold above t were
given a positive label, while sentences with srs below t received a negative label.

Given the srs score for a set of sentences, Dumitrache et al. (2018a) produced weighted
labels for those sentences by (1) separating the sentences into negative and positive
sets based on the srs threshold (which they chose after experimenting with several
thresholds) and (2) re-scaling the labels of sentences in the negative categories in the
[-1, 0] interval. They did this because the manifold model (Wang and Fan, 2014)
used in the paper required labels in the [-1, 1] interval. For our binary MRE classifier,
we marked sentences in the negative set 0 and sentences in the positive set 1. We
also experimented with using corresponding weighted labels (using the srs score as
weights for training) but found that this led to a slight decrease in accuracy and F1;
we therefore report the training on the unweighted binary labels.

Extracting a single crowd ground truth using the methodology discussed above (i.e.,
computing the srs score and a 0.5 threshold) is equivalent to majority voting, as the
label with the most annotations will still be selected as the preferred label. We thus
adapted the CrowdTruth methodology to a multi-class, multi-label scenario by using
a vector with as many components as the number of labels, where the components
were the srs scores of the corresponding labels. (A similar approach was used by
Dumitrache et al. (2019) to adapt the methods to a multi-class setting.) For this
reason, we consider the CrowdTruth approach for other tasks apart from MRE to be
a soft-label method.

5.2.2 FILTERING HARD ITEMS

The second group of methods examined uses information about disagreements to exclude
or at least weight instances.?* We tested the following methods:

1. Agreement Filtering This involves training using an aggregated label after filter-
ing away examples with low observed agreement (Artstein and Poesio, 2008). It was
proposed by Beigman and Beigman-Klebanov (2009), but there was no specific rec-
ommendation as to what the agreement cut-off ought to be. Jamison and Gurevych
(2015) tested two heuristically chosen thresholds for each task: low agreement and
high agreement. In our experiments with this approach, we tried several cut-offs, and
the results were the same: a decline in performance for all tasks except IC-LABELME
image classification. In the end, we reported results obtained by filtering items with
observed agreement below the average observed agreement for that dataset (which
differs from task to task, as in Jamison and Gurevych’s work).

The formula for computing observed agreement was the same as in Artstein and Poesio
(2008). Given a set of items I indexed by i, a set of categories K indexed by k, and a
set of coders C' indexed by ¢, the observed agreement for each item, agr;, is given as:

24. Instance weighting can also be categorized in the third category, “Learning directly from the crowd
annotations.”
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1
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where n;; is the number of times item 7 is classified as category k. This formula was
designed under the assumption that the C was the same for each item, which does
not hold for three of the four datasets used here. To accommodate this, we adjusted
¢ to mean the number of coders annotating the given item.

1 K

K o 1
@) Z < 2@ ) = ank(nm —1) (19)
2/ k=1

cl-(ci — 1) =1

agr; =

. Weighting by observed agreement We also tested a soft version of filtering that in-
volves weighting items by their degree of item difficulty instead of removing them. The
idea is to weight difficult items less, so that the model learns to pay less attention to
those items and does not overfit on items for which the labels are difficult /ambiguous.

We tried two versions of this approach. In the first version, the loss of each item was
weighted by the observed agreement of that item. Using this method and learning
using MV as the aggregated label, has the effect of possibly down-weighting items on
which majority voting differs from the gold interpretation. No previous references were
found for this model, and this work is possibly the first use of this observed-agreement
weighting method.

. Weighting by item difficulty A second version of the weighting used the inverse
difficulty predictions generated by Whitehill et al. (2009)’s GLAD (generative model
of labels, abilities, and difficulties) aggregation model. The model uses a maximum
likelihood algorithm to simultaneously infer annotator expertise, image difficulty, and
the most probable label; it was tested by Whitehill et al. for binary image classification
tasks (“male” vs “female” image categorization and “Duchenne” or “non-Duchenne”
smile image categorization).

We implemented this model and used our implementation to make item predictions
for the binary classification tasks RTE, MRE, and PDIS.?® During training, we weighted
the loss for each item by the the item’s probability of correctness, an estimate that
takes image difficulty and labeler quality into account as in Whitehill et al. (2009)’s
model.

5.2.3 LEARNING DIRECTLY FROM THE CROWD ANNOTATIONS

The methods grouped in this category in Section 3 seek to train a model directly from the
annotations provided by the workers, i.e., without first going through an aggregation step.
One point worth emphasizing is that in most cases, these models were originally evaluated
assuming only a single ground truth. As far as we are aware, this survey is the first time all

25. There is little literature generalizing item difficulty models to the multi-label classification case—see
Paun et al. (2021).
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of these approaches have been evaluated using both “hard” and “soft” evaluation metrics,
as discussed in Section 4.

1. Sheng et al.’s repeated labelling Sheng et al. (2008) proposed training a model
directly from multiple annotations by presenting each input-annotation pair to the
network as if it were a separate item. This was done as specified for 4 of the 6 tasks:
POS, IC-LABELME, RTE, and MRE.

Because PDIS has over 90k markables, each annotated 7 times on average, and CI-
FAR10H has 10k items annotated an average of 51 times, and because the classifi-
cation model is quite complex, treating each annotation as a separate item for these
tasks becomes unfeasible. Thus for these datasets, the models were fed each unique
label only once, but the loss for each label was weighted by the number of times that
label was chosen.

2. Soft loss functions As discussed in Section 3, Peterson et al. (2019) recently ar-
gued for training using the probabilistic distribution of labels obtained from crowd
annotations (aka probabilistic soft labels) as a target.

Using the human label distribution ppym (y|x)—rather than the hard label from some
consensus (adjudicated gold labels or aggregated labels)—and a negative log-likelihood,
the loss proposed by Peterson et al. (2019) reduces to the loss function:

n
=Y Phum(yilzi) logpg(ys = cla;) (20)
i=1 ¢
where pg(y|z) is obtained by applying a probability function (softmax) over the logits
produced by the classifier. This combination of target soft labels with a probability-
comparing loss function is what we call the soft loss function approach.

Uma et al. (2020) tested this hypothesis on 3 multi-class tasks with varying annotator
and annotation characteristics: POS tagging, IC-LABELME image classification, and 1C-
CIFAR10H image classification. They then compared it to a number of existing models
for learning from crowds. In this paper we report a more extensive investigation. We
also tested the model on three binary classification tasks with varying characteristics.
In addition to the cross-entropy (CE) loss function proposed by Peterson et al. (2019)
and tested by Uma et al. (2020), we also tested other loss functions that can be
used to minimize the difference between probability distributions. In particular, we
tested using as loss functions mean-squared error (MSE) and Kullback-Leibler distance
(Kullback and Leibler, 1951) (KL).

Uma et al. (2020) also extended Peterson et al. (2019)’s empirical validation of the hy-
pothesis in another direction. They hypothesized that although the standard normal-
ization function works well for datasets like IC-CIFAR10H annotated by high-accuracy
annotators and having a positive coder:label ratio, for datasets annotated by low-
accuracy annotators that have a negative coder:label ratio, an exponential function
(the softmax function) would be more appropriate. We continued this exploration,
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extending the idea further to experimentally compare probabilistic soft labels esti-
mated using standard normalization and softmax to the probabilistic soft labels that

are the probabilistic posterior of the aggregation methods discussed in 5.2.1.

3. (Deep) learning from crowds (Rodrigues and Pereira, 2018) This approach
involves adding a bottleneck layer, called a “crowd layer,” after the output layer during
training, so that the model learns the annotator matrix and thus how much weight to
assign to each label. If the output of a neural network model is denoted by o, such
that o, corresponds to the score assigned by the model to the input instance belonging
to class ¢, then the activation of the crowd layer for each annotator, r, is defined as
a" = f.(o), where f, is an annotator-specific function (Rodrigues and Pereira, 2018).
The output of the crowd layer is simply the softmax of the logits (Rodrigues and

Pereira, 2018). The generalized architecture for this is illustrated in Figure 8.

Annotator 1 Annotator 2 Annotator 3 Annotator n
S 7 () = 7 Crowd
B S layer

RN

.

layer
T Base
[. . .. . .J Hidden Model
layer(s)

Input

Figure 8: Crowd layer for the image classification task (Rodrigues and Pereira, 2018)

To experiment with the deep learning from crowds method, we added a crowd layer to
the base models for each task (see Section 5.1) using the DL-MW variant that achieved
the most accurate predictions in Rodrigues and Pereira (2018). In this variant, f,(o)
is defined as W" (o), where W" is an annotator-specific matrix of the estimated
sensitivities and specificities of the annotators, which we initialized to an identity
matrix that is a trainable parameter of the neural network model. Like Rodrigues
and Pereira (2018), we removed the crowd layer at test time and evaluated the model

based on its softmax output.

5.2.4 USING BOTH HARD LABELS AND INFORMATION ABOUT DISAGREEMENTS

These methods use both the aggregated labels and additional information about disagree-
ments. In our experiments, we used the gold label as an aggregate label, as proposed by

both Plank et al. (2014a) and Fornaciari et al. (2021).
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1. Plank-style weighting Plank et al. (2014a) proposed learning from annotator con-
fusion by weighting the loss of each item (task example) by the inverse of how “con-
fusing” the annotators found it. They characterized the confusion using two metrics:
F1l scores between annotators on individual POS tags and tag confusion probabilities
derived from confusion matrices they computed using the annotation of two expert
annotators on 500 Twitter posts, distinct from the dataset to be trained using PEWE.
For our experiment, we used the tag confusion probability, which was shown by Plank
et al. to perform better than the Fl-scores metric.

To compute the tag confusion probabilities, we first generated a confusion matrix cm
over all the POS tags. From this matrix, the probability of confusing two tags, t; and
to, for a given item i was computed as the mean of the probability that annotator Ay
assigned one tag and Ay another, and vice versa, i.e., {t1,t2} is the mean of cmlty, to]
and cmlte, t1] (Plank et al., 2014a). Having computed these values for every pair of
tags (labels), we augmented the loss function of the classifier by multiplying the loss
for each item by 1 — {y4,yp}, where y, is the gold label for the given item and y, is
the predicted label (Plank et al., 2014a).

We adapted this idea to a multi-annotator scenario using the multiple annotations
collected for each dataset. First, for each item, we computed the confusion matrix
between all pairs of annotators and calculated the average confusion matrix across
all annotators. We then computed the average confusion matrix across all the items.
We did this for each task independently. Using this matrix, we augmented the loss
function of the base classifier for each task, following Plank et al. (2014a).

2. Multi-task learning A different approach to combining gold information with dis-
agreement information was proposed by Fornaciari et al. (2021). Their model is based
on multi-task learning (Caruana, 1997). Rather than having a single output layer, the
model has two output layers; one for learning from an aggregated label and the other
for learning from probabilistic soft labels. In this model, (henceforth, MTLSL), the to-
tal loss is the sum of the loss from comparing output 1 with the gold label and output
2 with the probabilistic label distribution. The first loss is computed using a negative
log-likelihood loss function while the second (auxiliary) loss was learned using the KL
divergence loss function. This method was found to improve the performance over
using the gold label alone in several tasks including part-of-speech tagging.

We also tested a second architecture also based on multi-task learning (henceforth,
MTLOA). In this architecture the main task is again to learn the gold label, but the
auxiliary task is to learn the item observed agreement. The loss for the auxiliary
function is computed by calculating the mean-squared error between the predicted
agreement (a Sigmoid squashed output of a neural network) and the observed agree-
ment (Artstein and Poesio, 2008) for all items.

6. Results

In order to go beyond a simple listing of current approaches to training from disagreement
as found in Section 5.2, we used each approach to train all the models discussed in Section
5.1 over each of the six datasets discussed in Section 2.6, evaluating the resulting models
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using the metrics discussed in Section 4. The results are summarized in this section and
analyzed in greater detail in the next two.

Tables 7 to 13 present the results for all the methods on all the tasks using a distinct
evaluation metric. For comparison, we also include the results obtained by training the
same architectures using gold labels (with a cross-entropy loss function). To account for
non-deterministic model training effects, each model was re-run 30 times except for (i) Is,
which was only run 10 times owing to the size of the dataset and model complexity, and
(ii) 1c-CIFAR10H and MRE, which were also run only 10 times due to model complexity. We
report the average of these runs.

In these tables, there is one row for each method for learning from disagreement and one
column for each dataset used in the evaluation. Double lines are used to group closely related
methods in sections, one for each category of methods in Section 5.2 (e.g., aggregation
methods). The best result for each dataset is highlighted in bold, and the best result
among the training methods that do not use gold information is underlined. In each cell
(i.e., for the result of a given training method on a particular dataset), we also include
in superscript the row number of the method with the least significant improvement over
the method in the cell, if any (significance is conducted via bootstrap sampling, following
Berg-Kirkpatrick et al. (2012) and Sggaard et al. (2014)).

As discussed in Section 5.2, one category of methods we tested involves training a
classifier using a soft loss function, i.e., using a standard loss function like cross-entropy,
but targeting a probabilistic label generated from the crowd annotations instead of a one-
hot label as is done, e.g., in Peterson et al. (2019) and Uma et al. (2020). There are,
however, a number of ways in which such a probabilistic label could be obtained. Peterson
et al. generated these probabilistic labels using a standard normalization function over
the distribution of annotations for a given item. Uma et al. compared probabilistic soft
labels estimated using standard normalization with probabilistic soft labels estimated using
the softmax function. In this work, we further expanded this comparison by considering
another natural way of generating such probabilistic labels, namely, using the posterior
probability distribution obtained by two popular aggregations, D&S and MACE. The results
of this analysis are discussed in detail in Section 7.1. The results in Tables 7 to 13 are
those obtained using, for each method, the way of obtaining these labels that gave the best
results.

6.1 Evaluation Against Gold or Hard Labels

Tables 7, 8, and 9 show the results of evaluation against gold labels using accuracy, F1,
and the weighted version of F1 developed in the CrowdTruth project, cT F1l. Figure 9
summarizes these results by displaying for each category of methods the results obtained
by the best-performing approach in that category for each dataset.

The first broad conclusion we can reach from these tables and from Figure 9 is that
the answer to Research Question RQ3a (Can methods for learning from disagreement that
do not assume the existence of a gold label outperform methods that do?) is in most
cases negative if we use “hard” evaluation: For three of the five datasets for which gold
information is available for training (POS, IC-LABELME, and MRE), training using gold labels
(alone, or in conjunction with crowd information) gave better results for hard evaluation
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Table 7: Accuracy results for all methods on all tasks

‘ POS ‘ PDIS ‘ MRE ‘ RTE ‘IC—LABELME‘IC—CIFARlOH‘

1 |Gold 39.08 7] Na [ 84.88 | 61.37 | 97.18 | 65577 |
2 [Mv Silver 78.09 9190.71 °[75.17 2|60.67 1| 80.23 ¢ 65.31 7
3 |D&s Silver 77.67 4| 92.80 |75.20 12/60.37 7| 83.58 9 65.65 7
4 |MACE Silver 78.08 9| 92.90 |75.15 12/60.55 1| 82.53 6 65.52 7
5 |CrowdTruth Silver 79.33 7191.30 6 [75.17 12|60.37 13| 84.50 13 64.09 *
6 |SREL 79.23 7192.11 1°[75.66 12[60.01 2] 83.46 7 68.46
7 |CE loss + probabilistic labels [79.80 1| 92.86 |75.55 2| 60.87 | 84.66 '3 66.54 10
8 |KL loss + probabilistic labels |79.96 ' | 92.86 |75.53 '2/60.68 !| 84.73 13 66.58 10
9 |MSE loss + probabilistic labels| 79.20 7| 92.90 [75.50 12|60.70 6| 84.21 7 63.49 4
10/pLC 77.87 4] 92.82 |74.67 *|59.75°| 83.69° 68.25
11/mv + oA Hard Filter 72.20 3 [68.51 12[74.85 4 |54.77 12| 86.05 12 63.98 4
12|Gold + oA Hard Filter 79.84 1(73.28 14/83.18 1 |55.77 10|  94.60 16 63.54 4
13[MV + 0A Weighting 78.17 9190.44 675.29 12| 61.04 | 85.54 12 65.99 10
14/Mmv + wH Weighting NA |90.31 5|75.25 12| 58.76 6 NA NA
15/Gold + PEWE 89.26 17| 92.70 | 85.43 | 61.15 | 96.37 17 64.78 13
16|MTLOA 89.26 17| 92.86 | 85.41 | 61.00 | 96.13 17 65.23 7
17|/MTLSL 90.11 | 92.95 | 85.42 | 61.43 | 96.821 62.33 °

than training with crowd information alone, irrespective of which measure was used. In
fact, the difference between the best method using gold and the best method only using
crowd annotations could be quite large for these three datasets, up to 10 points in some
cases (e.g., POS).

However, the answer to RQ3a is not entirely negative, because with RTE and 1C-
CIFAR10H it was the other way around: With 1C-CIFAR10H, the best results were obtained
using crowd information alone, and with RTE there was no significant difference between
training with gold and training using silver labels aggregated with Mv. Also, we anticipate
that the situation will be completely reversed when soft evaluation metrics are employed;
with this type of evaluation, using crowd information always improves results over only
using gold labels, as shown in Section 6.2.

Another finding clearly emerging from the tables and the figure is that there is no evi-
dence that the approach to using disagreement information that may appear most intuitive,
filtering (i.e., using disagreement information to remove hard items) helps with hard evalu-
ation. For none of these datasets were the best results obtained by filtering difficult items;
on the contrary, filtering typically led to worse results, sometimes substantially so. The one
exception is IC-LABELME: In this case the results obtained by filtering, while much worse
than those obtained by using gold labels without filtering, were on par with those obtained
with other ways of using crowd information.

A third observation is that the answer to RQ2a (What is the evidence that using crowd
information helps in comparison to using only gold labels?) is mixed when using hard
evaluation: Leveraging crowd information in addition to gold sometimes helps, although
not by much, but other times it does not. With two of the five datasets for which we have
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Table 8: F1 on all tasks using all methods

| ] | Pos | PpIS | MRE | RTE [IC-LABELME|IC-CIFAR10H]

1 [Gold 88.99 17 Na [ 8446 |61.28] 97.18 | 65547 |
2 [Mv Silver 76.86 °[90.55 ° [65.24 9160.63 1| 79.52 4 65.13 7
3 |D&s Silver 76.64 2| 92.78 |67.80 °(60.32 1| 83.03 7 65.53 7
4 |MACE Silver 77.08 5| 92.87 65.28 ?160.45 1°| 81.87°6 65.40 7
5 |CrowdTruth Silver 78.14 7191.13 6{76.11 12/ 59.52 3| 83.99 13 63.90 4
6 |SREL 78.21 792.00 ®[67.19 °[58.66 °| 82.96 ? 68.36
7 |CE loss + probabilistic labels |78.75 1| 92.84 [66.44 3| 60.68 | 84.02 13 66.43 10
8 |KL loss 4 probabilistic labels [78.92 1| 92.84 |66.44 2 |60.43 15| 84.09 3 66.45 10
9 |MSE loss + probabilistic labels| 78.14 7| 92.88 |66.38 2 [60.51 1| 83.61 3 63.33 4
10/pLC 76.27 2| 92.74 |63.87 2[58.42°| 83.19°? 67.99
11jmMVv + 0A Hard Filter 68.85 1| 57.56 |64.34 *|46.76 2| 85.37 1* 63.69 4
12|Gold + oA Hard Filter 76.99 9| 65.50 |82.38 1]49.55 10| 94.59 16 63.17 15
13|MV + 0A Weighting 76.86 9 190.21 °[65.16 7| 60.74 | 84.88 12 65.89 10
14)Mv + WH Weighting NA [90.13°(65.34 9 |58.53 6 NA NA
15|Gold + PEWE 89.18 171 92.65 | 85.07 | 61.12 | 96.37 17 64.67 13
16|MTLOA 89.15 17| 92.82 | 84.95 | 60.99 | 96.13 '7 65.18 7
17|MTLSL 90.06 | 92.92 | 84.87 | 61.13 96.82 1 62.34 15
Table 9: CrowdTruth weighted F1 for all tasks using all methods
] \ \ POS \ PDIS \ MRE \ RTE ‘IC—LABELME‘IC—CIFARlOH‘
1 [Gold 9246 '] ~Na [ 86.94 [ 74.05| 98.25 [ 784810 |
2 |mv Silver 85.40 6194.54 5|70.02 7|73.39 15| 87.33 ¢ 78.14 7
3 |D&s Silver 85.27 2| 96.00 |75.34 °73.24 15| 89.23 9 78.50 10
4 |MACE Silver 85.69 6| 96.02 |70.13 7|73.46 1| 88.80° 78.43 10
5 |CrowdTruth Silver 86.58 7]94.84 682.17 12|72.15 4| 90.11 7 77211
6 [SREL 86.51 7]95.43 19]74.89 5[71.19°] 89.48 9 80.56
7 |CE loss + probabilistic labels [87.15 1| 96.03 |72.80%|73.40'| 90.17 13 79.17 10
8 KL loss + probabilistic labels [87.27 1| 96.01 |73.10 |73.17 16| 90.20 3 79.09 10
9 |MSE loss + probabilistic labels| 86.61 7| 96.04 |73.21 6(73.27 3| 89.90 '3 76.74 15
10jpLC 84.76 2195.87 3 66.11 2|71.06 >| 89.57 9 80.30
11[MV + oA Hard Filter 78.54 12[67.76 1% 66.47 #|59.20 '?| 91.04 ' 77.11 %
12/Gold + oA Hard filter 82.96 % |74.18 ©|84.76 1 62.12 1% 96.47 1% | 76.65 1°
13|]Mv 4+ 0A Weighting 85.31 6194.26 2[70.63 7 [73.37 5| 90.76 2 78.80 10
14MV + WH Weighting NA |94.292]70.26 7| 71.63 8 NA NA
15|Gold + PEWE 92.60 17| 95.87 | 87.53 | 73.87 | 97.76 17 77.76 13
16/MTLOA 92.56 17| 95.98 | 87.42 | 73.83 | 97.60 17 78.17 7
17|MTLSL 93.07 | 96.05 | 87.65 | 73.66 08.02 1 76.00 15
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Figure 9: Graph showing the F1 scores of the best-performing training approach for each
category on all the datasets

gold information—P0OS and MRE—using information from the soft label to supplement the
gold according to the MTLSL method improved performance over using only gold labels with
all three hard metrics. This difference was small—typically around one percentage point—
but significant in the case of P0s. With RTE, the best-performing method depended on
the metric, but the differences were never significant.26 With the two 1¢ datasets, however,
using gold labels alone yielded a significant improvement in the results only when compared
to using gold labels in combination with crowd information, especially in the case of the
IC-CIFAR10H dataset. (Although we should quickly qualify that statement by adding that
that doesn’t mean crowd information is not useful with 1C-CIFAR10H—on the contrary, the
best overall results were obtained using crowd information only!) Using crowd information
in addition to the hard label also helped slightly in the 1S task when the hard label was
an aggregated silver label, although the difference was not significant. Again, we must
immediately point out that the situation was reversed with soft evaluation.

The answer to RQ2b (What is the best way to leverage crowd information in addition
to gold labels?) is that with most datasets, MTLSL is either significantly better, better, or
indistinguishable from other approaches. The one exception is 1C-CIFAR10H, where MTLSL
performed rather poorly—but in this case the best among the approaches leveraging both
gold labels and crowd information was the other multi-task learning approach we tested,
MTLOA, which uses observed agreement as an auxiliary function.

26. In line with Card et al. (2020), who discuss statistical power in relation to dataset size, it might be worth
considering retiring this small dataset.
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The final observation is that the answer to RQ3b (Which method for learning from
disagreement achieves the best results?) is that there isn’t a clear “winner” among the
methods not using a gold label: What methods achieve the best results depends on the
dataset.

We summarize the results as follows, using A >> B to signify that most methods in
category A are significantly better than most methods in category B, A ~ B to signify
that most methods in category A are statistically indistinguishable from most methods in
category B, and A > B to signify that some methods in category A are significantly better
than some methods in category B, whereas others are equivalent.

1. On Pos, the best results among the methods using only crowd information were
obtained by the three methods using a soft loss function, then by using aggregation,
then weighting and filtering. The performance ranking for POS shown in Figure 9 can
be schematically summarized as follows, where HARDgorp is gold training, SOFT
includes the CrowdTruth method, and categories are ranked by the performance of
the best-performing method in the category:

AUGMENTEDgorp >> HARDgorp >> SOFT > FILTERqoLp >>
HARDgsivEr 2 WEIGHTsvEr >> FILTERs,vER

2. On PDIS, no gold labels are available, so the silver label achieving the best results (ag-
gregated with MACE) was used as the hard label. The best results for this hard silver
label were obtained using MTLSL, but augmenting hard silver with crowd informa-
tion, using hard silver only, or using crowd information only with soft-label methods
achieved statistically indistinguishable results on this dataset. The only significant
differences were between any of these methods and weighting and between weighting
and hard filtering, which gave extremely poor results.

AUGMENTEDsrveEr ~ HARDgsiver ~ SOFT >> WEIGHTsi,vErR >>
FILTER

3. MRE is the one dataset on which different methods achieved the best results depending
on which hard evaluation metric was used, for reasons discussed in more detail in
the following section. Methods exploiting both gold labels and crowd information
achieved the best results with all three hard metrics, systematically outperforming
training with gold only, although the difference was not significant. But among the
methods not relying on gold labels, CrowdTruth aggregation obtained by far the best
results in terms of F1 and especially of ¢T F1, with a margin of 10 points or more
over other methods. Soft-label methods achieved the best accuracy results, although
the difference was not significant.

AUGMENTEDgorp ~ HARDgorp >> FILTERGoLp >> CT ~accURACY
|/ >>p1 SOFT ~sccuracy | >>r1 HARDgsivpr > WEIGHTs v ER
> FILTERSILVER

4. RTE is one of the two datasets for which using gold labels did not yield better results
than using crowd information only. The results using gold labels, gold labels aug-
mented with crowd information, silver weighting, and some of the soft loss functions
were all statistically equivalent. Among the soft-labelling methods, the best results
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were obtained by OA weighting, then soft loss using CE, then aggregation. But all
methods achieved roughly comparable results with all metrics, with a maximum 1-2
percentage points between the worse and the best results; again, the only exception
is hard filtering, which performed substantially worse.

AUGMENTEDgorp ~ HARDcor,p ~ WEIGHTsivER ~ SOFT >>
HARDsivEr ~>> FILTER

5. The best results with IC-LABELME were obtained using gold labels alone (which did
very slightly, but significantly, better than combining gold labels with crowd informa-
tion). The next best results were obtained using OA for filtering or weighting silver
labels—this is the only dataset in which filtering/weighting silver items proved to be
a competitive approach. Soft labels were next, then aggregation. Using hard silver
labels yielded the worst results in terms of hard evaluation metrics, but this is the
dataset on which probabilistic aggregation outperformed Mv by the largest margin:
training over the cT-aggregated labels, while not resulting in the best F1, improved
performance over training with the Mv labels by more than 4 points.

HARDgorp >> AUGMENTEDgorp >> FILTERgoLp >> FILTERs,vER ~
WEIGHgvER >> SOFT >> HARDsiL.vER

6. Finally, 1C-CIFAR10H was the one dataset for which using crowd information yielded
significantly better results only when compared to using gold, or augmented gold,
labels. The best results were obtained using SREL—an improvement of around three
points—but soft-loss training also significantly outperformed gold training, which was
statistically indistinguishable from both silver training and MTLOA.

SOFT >> WFEIGHsivEr >> HARDsivEr ~ HARDqorLp >>
AUGMENTEDgorp >> FILTER

We further analyze these results on a task-by-task basis in Section 7, aiming to explain
these dataset-dependent differences.

One final consideration: It can be observed that the three evaluation metrics tend to
be aligned, in the sense that the methods performing best on a given task were the same
irrespective of the evaluation used, with the few exceptions noted.

6.2 Evaluation Against Soft Labels

Given the empirical evidence challenging the assumption that it is always possible to assign
a unique label to items in cognitive tasks reviewed in Section 2, the form of evaluation
discussed in the previous subsection—testing models against gold labels—while standard
in NLP and in AI, is at the very least questionable. In this paper, therefore, we also used
the “soft” evaluation metrics discussed in Section 4 to analyze current methods for training
with disagreement. The results are shown in Tables 10 to 13.

Arguably, the main result of this paper is that the answer to RQ3a, which as seen in
Section 6.1 is mainly negative when using hard evaluation metrics, becomes positive with
soft evaluation metrics, i.e., the ranking among methods for learning from disagreement
seen in the previous section is to a large extent reversed when these methods are evaluated
using a soft evaluation metric, so that methods not using gold labels generally outperform
hard-training methods for all datasets and all metrics.
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Figure 10: Graph showing the cross entropy scores of the best performing training approach
for each category on all the datasets (lower is better)

The answer to RQ3b—which of these methods performs best—again depends on the
task and, to a lesser extent, on the metric, but for almost all metrics and almost all tasks
the best results were obtained by some form of soft-loss training or repeated labelling.

The answer to RQ2a is also uniformly positive: With soft evaluation, using crowd
information always helps improve the results over training using gold labels only, for all
evaluation metrics and all datasets. In answer to RQ2b, some form of multi-task learning
with an auxiliary function capturing disagreements is usually the best approach, with MTLSL
in particular achieving fair results in many cases.

On a task-by-task basis, the results can be summarized as follows (a more detailed
discussion can be found in the next section):

e Almost all training methods using gold labels, except for MTLSL, achieved signifi-
cantly worse performance under all soft metrics with POs, as with all other datasets.
Soft-loss training methods performed best, with CE- and KL-loss training performing
significantly better than all other methods according to all soft evaluation metrics.
Interestingly, MTLSL performed better than most soft-labelling methods other than
soft loss, but MTLOA did not. It is also worth noting that CrowdTruth aggregation
achieved better results than the other aggregation methods. This can be loosely sum-
marized as follows:

SOFTcE kL ~CE / >>jspcs MTLSL > CT ~ SOFT > HARDgsirvgr >>
WEIGHT ~ FILTER >> HARDcgorp
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Table 10: Cross entropy between produced probabilities and soft labels for all tasks using
all methods (smaller is better)

\ \ POS \ PDIS \ MRE \ RTE ‘IC—LABELME‘IC—CIFARIOH‘

1 |Gold 3.346 1] Na  [0.574 '7[0.771 ¥ 5.159 2 | 2.607° |
2 [Mv Silver 2.583 110.397 14]0.522 11]0.785 3| 3.065 % 2.627 °
3 |p&s Silver 2.524 410.300 9] 0.350 6|0.772 8| 2.902 10 2.554 °
4 |MACE Silver 2.506 1910.297 2 0.460 3 [0.797 13| 2.906 0 2.646 °
5 |CrowdTruth Silver 1.482 910.403 1%0.610 [ 0.673 6] 2.717 © 1.763 9
6 |SREL 1.787 °10.359 9| 0.310 | 0.669 2.572 9 1.062
7 |CE loss + probabilistic labels | 1.358 0.273 16| 0.310 {0.740 °| 1.638 1.112
8 |KL loss + probabilistic labels | 1.279 [0.265 6| 0.309 [0.742 9| 1.638 1.109
9 |MSE loss + probabilistic labels| 1.442 7{0.289 ® | 0.309 |0.717 °| 1.747 7 1.491 8
10jpLC 2.136 6(0.275 16/0.715 15 0.668 | 2.798 ° 3.507 11
11|MVv + oA Hard Filter 3.243 15[2.246 12[0.490 %]0.879 14| 3.684 13 2.961 1°
12|Gold + oA Hard Filter 3.115 131.863 17| 0.495 4|0.879 4| 4.612 15 2.844 15
13|Mv 4+ 0A Weighting 2.759 210.372 ©(0.527 14/0.787 3| 3.121? 2.615°
14MV + WH Weighting NA [0.379 6]0.516 11 0.842 4 NA NA
15/Gold + PEWE 3.432 1]0.261 16[0.621 16/ 0.779 3| 4.198 16 2.691 15
16/MTLOA 3.288 12| 0.245 |0.579 17/0.796 13| 3.926 11 2.505 °
17|MTLSL 1.382 [ 0.618 ®|0.569 3/ 0.786 3| 1.642 4.0321

Table 11: Jensen-Shannon divergence results on all tasks using all methods (smaller is
better)

| ] | Pos | PDIS | MRE | RTE [IC-LABELME[IC-CIFAR1OH]|

1 [Gold 0.413 '] ~a  [0.251 *[0.415 7] 0.547 % [ 040510 |
2 |Mmv Silver 0.353 4]0.218 16/ 0.166 *[0.416 7| 0.452 ¢ 0.399 10
3 |D&s Silver 0.353 410.129 1710.156 7 [0.416 7| 0.449 © 0.404 10
4 |MACE Silver 0.351 10/0.129 171 0.163 3|0.415 7| 0.448 10 0.395 10
5 |CrowdTruth Silver 0.236 7]0.243 13]0.297 1°]0.425 12| (0.428 © 0.417 1
6 |SREL 0.318 910.268 191 0.136 [0.426 1| 0.417 9 0.415 1
7 |CE loss + probabilistic labels | 0.207 |0.146 ? |0.148 6]0.413 3|  0.201 0.427 1
8 KL loss + probabilistic labels | 0.206 |0.150 7|0.148 6]0.413 3|  0.201 0.428 1
9 |MSE loss + probabilistic labels|0.280 17]0.128 17/0.148 ¢|0.416 7| 0.208 7 0.431 1
10/pLC 0.342 610.220 2|0.177 170.426 1| 0.430 6 0.368
11/mv 4+ oa Hard Filter 0.397 130.351 12[0.169 14|0.430 12| 0.489 13 0.407 2
12|Gold + oA Hard Filter 0.426 15/0.303 °{0.241 19/0.421 1| 0.539 15 0.412 2
13[MV + 0A Weighting 0.353 4/0.232 1°10.166 *[0.410 '"| 0.464 2 0.392 10
14/mv + wH Weighting NA [0.256 10/0.167 4]0.422 16 NA NA
15/Gold + PEWE 0.415 '110.163 ®(0.258 1 |0.417 1| 0.537 16 0.407 2
16|MTLOA 0.413 10.178 15|0.250 12|0.418 1| 0.531 1! 0.401 10
17|MTLSL 0.236 7| 0.096 [0.172 11| 0.404 0.201 0.415 1
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Table 12: Cosine Similarity between the entropy of the produced distribution and the
annotation label distribution for all tasks using all methods

\ POS \ PDIS \ MRE \ RTE ‘IC—LABELME‘IC—CIFARlOH‘

1 |Gold 0.659 "' ~Na  ]0.655 '20.567 %] 0.551 16 [ 0.389° |
2 |mv Silver 0.758 190.115 13[0.478 *]0.570 7| 0.778 3 0.383 °
3 [D&s Silver 0.762 19/0.176 210.700 7 [0.571 7| 0.797 10 0.391 °
4 |MACE Silver 0.750 19/0.183 910.548 15(0.560 2| 0.777 3 0.379 ®
5 |CrowdTruth Silver 0.885 710.116 3[0.717 7[0.589 6] 0.840 19 0.472 9
6 [SREL 0.873 710.167 1] 0.772 [0.590] 0.860 17 0.546
7 |CE loss + probabilistic labels | 0.899 [0.204 15/0.761 6|0.579 °| 0.979 0.546
8 |KL loss 4+ probabilistic labels | 0.907 |0.211 '°/0.763 6|0.579 ?| 0.978 7 0.547
9 |MSE loss + probabilistic labels[0.888 7|0.191 7 |0.761 ¢ |0.584 5| 0.978 7 0.506 ©
10/pLC 0.849 910.207 2/ 0.688 3 [0.589 6| 0.852 6 0.331 13
11|MVv + oa Hard Filter 0.698 13]0.065 °[0.590 1°[0.517 4] 0.697 1% 0.390 °
12|Gold + oA Hard Filter 0.729 *10.071 ®|0.678 5 [0.518 4| 0.592 12 0.379 ®
13[MV + oA Weighting 0.720 *10.136 '4[0.455 2]0.570 7| 0.755 % 0.372°
14Mv + wH Weighting NA |0.161 4]0.501 4]0.571 7 NA NA
15/Gold + PEWE 0.650 16]0.241 16[0.641 ' [0.570 7| 0.597 16 0.391 °
16|MTLOA 0.667 11| 0.264 [0.655 12|0.567 3| 0.625 11 0.393 5
17/MTLSL 0.876 510.071 ®]0.433 2|0.563 1| 0.976 7 0.352 13

Table 13: Pearson correlation between the entropy of the produced distribution and the
annotation label distribution for all tasks using all methods

|

\ \ POS \ PDIS \ MRE \ RTE \IC-LABELME\IC—CIFAMOH\

1 [Gold 0.399 "] ~a [0.223%]0.0377] -0.016% [ 0.127° |
2 [Mv Silver 0.517 19]-0.104 ']0.214 ] 0.043 7| 0.026 1T 0.118 °
3 D& Silver 0.504 101 0.029 9 [0.382 7/ 0.039 7 | 0.111 ! 0.125°
4 |MACE Silver 0.513 101 0.032 9 |0.265 3| 0.022 ' | 0.139 ! 0.112°°
5 |Crowd Truth Silver 0.642 7[-0.113 2]0.293 7| 0.037 7 | 0.194 10 0.160
6 |SREL 0.635 7]-0.098 1°] 0.511 [ 0.030 2| 0.284 8 0.217
7 |CE loss + probabilistic labels | 0.656 |0.051 °[0.444 6| 0.056 0.407 0.215
8 |KL loss 4 probabilistic labels | 0.663 [0.053 1°(0.450 6| 0.059 0.403 ? 0.217
9 |MSE loss + probabilistic labels| 0.640 7 [0.047 1°(0.435 6| 0.058 0.425 0.190 ©
10/pLC 0.603 61-0.040 70.010 17| 0.025 3 | 0.263 6 0.119 5
11|Mv + oA Hard Filter 0.411 2[-0.023 1710.208 *[-0.061 2| 0.192 1© 0.121°
12|Gold + 0A Hard Filter 0.451 61-0.029 17/0.227 3|-0.046 *| 0.130 ! 0.107 °
13)MV + oA Weighting 0.517 101-0.102 1°70.211 *] 0.056 | 0.195 © 0.100 °
14|Mv + wH Weighting NA |-0.091 1°/0.217 4| 0.065 NA NA
15|Gold + PEWE 0.395 1| 0.067 [0.2174[0.030 3 | -0.020 2 0.129 °
16|MTLOA 0.408 2| 0.079 [0.2154/0.0357 | -0.016 2 0.124 °
17|MTLSL 0.612 6] 0.020 7 [0.120 13| 0.047 7 | 0.376 7 0.105 °
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e With pPDIS, MTL methods (using silver as the hard label) performed best according to
all four soft evaluation metrics, but the type of MTL that worked best depended on the
evaluation, and sometimes the difference in results was quite substantial. E.g., with
cross entropy, MTLOA was the best type of training, but MTLSL was the worst. Soft-
loss methods were next best, then methods that rely on a prior aggregation. It should
be noted that the best results with soft-loss functions with this dataset were obtained
using the posterior of probabilistic aggregation methods as the target, suggesting that
filtering noise from crowd annotations helps with this dataset. It should also be noted
that all methods struggled to predict the entropy of the annotator label distribution
with this dataset, whether computed using cosine similarity or, even more so, using
Pearson correlation, again suggesting that there is lots of noise.

MTLOA/MTLSL >> SOFT >> HARDgivpr > WEIGHT > FILTER.

e With MRE, soft-labelling methods performed best, but different types of training
achieved the best results depending on the evaluation used. Repeated labelling gen-
erally performed best, followed by soft-loss methods, except for cross-entropy, where
it was the other way around; however, the difference was typically not significant.
SOFTsgeng >> SOFTross > HARDgsivpr > FILTER, WEIGHT >
AUGMENTEDgorp > HARDGorLD.-

e One striking aspect of the results with RTE is that those for the different methods were
much closer than with other datasets, although significant differences did emerge. In
particular, while the methods relying only on crowd information outperformed gold
training and training on aggregated silver labels according to most soft metrics, the
differences were much smaller, and MTLSL outperformed the soft-labelling methods in
terms of JSD. For this dataset, SREL and DLC achieved the best results in terms of
cross-entropy (there was a small difference between the two, but it was not signifi-
cant) and cosine similarity; the difference with other soft-loss methods was significant.
Another noticeable result is that the Pearson correlation between the entropy of the
produced distribution and that of the target distribution was mostly near 0. The
results with this dataset are difficult to summarize because the soft metrics did not
all point to the same ranking, but as a first approximation, we can say that:
SOFTsgeng,pLc > CT > MTLSL > HARDgsirvgr > WEIGHT,FILTER >
H ARDGO LD-

e With IC-LABELME, the best-performing method on all metrics was training using a
soft loss function with softmax distribution, although again MTLSL was, in most cases,
a very close second and was equivalent to soft-loss training when evaluated using cross
entropy or JSD. Unsurprisingly perhaps, for this task, using only gold labels for train-
ing resulted in a extremely poor match regarding predicted entropy.
SOFT > MTLSL >> CT > HARDgipvgr >> WEIGHT >> FILTER >
HARDgorp-

e And finally, for 1C-CIFAR10H, soft-labelling methods clearly performed better than
hard, although, again, which method performed best—soft-loss, repeated labelling—
depended on the measure used.

SOFT >> CT,HARDgsi1vgr > FILTER, WEIGHT > HARD¢gorD-
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6.3 Preliminary Discussion

In this section we saw that generally speaking, methods relying on hard labels (gold or
silver) performed better when performance was measured using “hard” evaluation measures,
whereas methods not assuming that such labels can be found performed best with “soft”
evaluation. But the fact that the results were very much dataset dependent suggests that
the performance of these methods is likely affected by the characteristics of the dataset. In
the next section we carry out a detailed analysis exploring this suggestion.

7. A Dataset-by-Dataset Analysis

We just saw in Section 6 that the relative performance of current methods for learning from
disagreement varies greatly from dataset to dataset with both hard and soft evaluation
metrics. The aim of this section is to analyze these differences in greater depth, looking at
each dataset in isolation in order to understand how the pattern of results observed in that
dataset relate to its characteristics. Each subsection includes sections devoted to the results
obtained on a dataset by training with gold labels supplemented with crowd information,
with aggregated labels, and with soft labels only.

7.1 Generating Probabilistic Labels from Crowds

As anticipated in Section 6, the performance of soft-loss training methods depends very
much on how the probabilistic labels are obtained. In that section, soft evaluation and soft-
loss training was carried out using the best-performing probabilistic label. As a necessary
preamble to the analysis that follows, we begin this section by discussing in detail how these
“best labels” were determined.

Table 14: Different methods for generating probabilistic labels from crowd annotations and
their effect on accuracy

POS IS MRE RTE IC-LABELME  IC-CIFAR10H
Standard Norm 78.99 + 0.36 90.68 £ 0.43 75.79 + 0.29 60.24 + 0.99 83.46 £+ 0.82 66.54 + 0.95
Softmax 80.03 + 0.28 90.50 £ 0.55 75.27 & 0.18 60.87 + 0.84 84.66 + 0.52 65.50 £+ 1.10

D&S posterior  77.95 £ 0.61 92.74 £ 0.22 74.78 £ 0.26 60.51 + 0.86 83.27 £ 0.76 65.16 £ 1.34
MACE posterior 78.27 £ 0.94 92.81 + 0.26 75.32 £ 0.36 60.53 £ 0.83 83.53 £ 0.56 65.28 + 1.02

The results in Table 14 illustrate the effect on accuracy of these different ways of obtain-
ing the probabilistic labels. As we can see from that table, how the probabilistic distribution
is obtained does affect the results. The results for POS, IC-LABELME, and IC-CIFAR10H are
consistent with the findings in Uma et al. (2020): Estimating probabilistic labels using stan-
dard normalization is preferable for 1C-CIFAR10H, while estimating the labels using softmax
is preferable for POs and IC-LABELME. In addition, we found that using softmax gave the
best results for the RTE dataset, standard normalization was best for MRE, and using the
MACE posterior was best for PDIS. These differences, we hypothesize, can be attributed to
the fact that the standard normalization function does not change the class proportions (as
the softmax function does) or under-count disagreement (as the MACE and D&S posteriors
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do) but retains the richness of the original representation. The differences between the
datasets explain why these properties of these functions matter.

Like Uma et al. (2020), we hypothesize that the standard normalization function is
a better choice for high-agreement datasets that also have a large distribution of good-
quality annotations. This hypothesis is supported by the results from the tasks trained
using datasets that meet this criteria: 1C-CIFAR10H and MRE. For these datasets, which are
characterized by a combination of (1) relatively higher observed agreement of 0.92 and 0.86,
respectively; (2) a median of 50 and 15 annotators per item, respectively; (3) annotators
with an average accuracy of 0.95 and 0.76, respectively; and (4) a majority of good-quality
annotators (see Table 1), soft-loss training targeting standard normalization probabilistic
labels yielded the most accurate results. In general, the trend seems to be that the higher the
observed agreement, the higher the accuracy of training by targeting standard normalized
soft labels over targeting softmaxed soft labels (see Figure 11).

In contrast, the softmax yields the best probabilistic label for low-agreement datasets,
as it exacerbates disagreement and assigns a mass to to all items, even ones receiving no
annotations. This affects performance with some datasets. Consider the following example
from the POS dataset with the token to be tagged in bold:

Sentence:“Journalists and Social Media experts alike will appreciate this spoof out of Dallas :
URL”
Gold Label: Determinant

Crowd annotations: {Noun: 1, Pronoun:1, Adjective:1, Adposition:2}

The observed agreement for the item is 0.1, indicating that annotators found the item con-
fusing. The standard normalization only assigns a probability to the four labels produced by
annotators: {Noun:0.2, Pronoun:0.2, Adjective:0.2, Adposition:0.4 }. Softmax, in addition
to assigning probabilities to these four labels—{ Noun:0.11, Pronoun:0.11, Adjective:0.11,
Adposition:0.31 }—also assigns a small probability of 0.04 to each of the other labels not
selected by any annotators (including the Determinant class). So for this low-agreement
item, although normalization and softmax produce distributions with the same mode (i.e.,
the majority vote), the softmax function (1) assigns a smaller mass to the modal class
(which according to the gold standard is not the correct label for that item) and (2) assigns
a small mass to the class chosen by the experts. Thus, for datasets like RTE that have a
relatively low observed agreement of 0.63 and datasets like POS and IC-LABELME that, in
addition to having relatively low agreement of 0.73, have no annotated gold labels for over
11% of items, the softmax function proves to be the best option.

The pPDIS dataset is a mixed bag, with an observed agreement closer to MRE and I1C-
CIFAR10H than to that of POS and IC-LABELME; the results reflect this. The difference in
accuracy between training with standard-normalized soft labels and training with softmaxed
soft labels was smallest for the PDIS dataset. However, soft-loss methods for this task benefit
from using the MACE and D&S models that try to discriminate between annotators and
eliminate noise, likely because of the relatively lower observed agreement (leaving room for
improvement) and high number of annotations per annotator (ample examples from which
to learn annotator characteristics).
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Figure 11: Graph of observed agreement against the difference in accuracy training with standard nor-
malization (stdn) soft labels and training with softmax soft labels.

As a result of this analysis, in our experiments the soft labels used were standard-
normalized soft labels for 1C-CIFAR10H and MRE, MACE posterior for 1S, and softmax soft
labels for POS, RTE, and 1C-LABELME.

7.2 Part-of-Speech Tagging

The key characteristics of the POS dataset (see Tables 1 and 2) are that it has the second
highest number of items (14,000), average coder accuracy is high (.93), and the mean number
of annotations per item is also fairly high (16.37). On the other end, observed agreement
is relatively low (.73), and the quality of aggregated labels is low as well. Finally, while the
raw annotator entropy is fairly low (.13), the best distribution entropy (BDE) is fairly high
(.39).

7.2.1 GoLD vS. NON-GOLD

As discussed in Section 6, with the POs dataset we saw clear differences in performance
between the models using gold labels and those using silver or soft labels, in both directions.
Methods using gold labels clearly did better in terms of hard evaluation metrics, although
using soft information helped, whereas methods only using soft labels clearly did better in
terms of soft evaluation metrics.

This substantial difference between using and not using gold labels is surprising given
the high coder accuracy and the substantial number of annotations per item and the well-
known findings of, e.g., Snow et al. (2008) and Sheng et al. (2008) that the quality of labels
produced by the crowd is comparable to that of labels produced by experts provided that
sufficient coders of sufficient quality are employed. To understand this surprising result, we
carried out a more in-depth analysis of the data, the results of which are shown in Table 15.
First of all, the table shows that the high mean number of annotators per item is deceptive:
Whereas several items have a high number of annotations (177), for others the number of
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annotations is much lower, so that the median of this figure is only 5. Second, Table 15
shows that this dataset is not uniform, but can be partitioned into two subsets with very
different characteristics. Fighty percent of the judgments in the dataset are about nouns,
even though, according to the gold labels, nouns constitute only 27.7% of the total number
of items. The alignment between coders and gold labels (coder accuracy) for nouns is very
high, almost 98%, and so is the average number of annotations per item. In contrast, only
20% of the judgments are about the remaining 72% of items, and “coder accuracy” on these
is much lower. This suggests that, for the great majority of items, the agreement of the
crowd with the gold labels is not high enough to ensure that training on soft labels only will
achieve high accuracy when evaluated on gold. As discussed in Section 2.8.3, the analysis
by Plank et al. (2014b) suggests that one reason for the low coder accuracy on this dataset
is that many items are linguistically debatable, and the great majority of these cases involve
categories other than nouns—although label overlap would also appear to play an important
role and we cannot exclude some cases of difficulty or indeed annotator error (see Section
2.8). As we will see, Snow et al.’s hypothesis holds with datasets where coders agree much
more with gold labels and where there are high number of annotations per item.

Table 15: Nouns vs non-nouns in the POS dataset

Nouns Others
Percentage of items in the subset 27.72 72.28
Percentage of judgments in category per 80.13 19.87
Average number of annotations per item 12.57 3.80
Average coder accuracy 97.89 69.08
Average item observed agreement 0.804 0.695
MV aggregated label accuracy 85.94 77.52

7.2.2 USING SOFT LABELS TO SUPPLEMENT GOLD LABELS

The second finding highlighted by Tables 7 to 9 is that using crowd information in addition
to gold does help with this dataset. MTLSL stands out as the best method for learning
hard or weighted truth for the pos dataset under all three hard evaluation metrics. This
method, which targets the soft-label distribution as an auxiliary task to supplement the gold
labels, achieved +1.03, +1.06, and +0.61 significant points over training on gold alone when
evaluated using accuracy, F1, and CT F1 respectively. The other methods that augment
gold labels with information from the crowd, MTLOA and PEWE, also outperformed the
gold, although not by a significant margin.

The fact that the training methods leveraging crowd information improved over gold
training suggest that the crowd provides information that usefully supplements the gold
labels. As previously mentioned, the POS dataset is characterized by a combination of
a relatively high number of judgments per item, accurate coders, relatively low observed
agreement between them, and relatively high “best distribution entropy.” It would seem
then plausible that it is the quality, quantity, and diversity of crowd judgments that leads
to the crowd information improving performance over gold labels—which provides further
evidence that the low agreement is not so much due to poor “coder accuracy,” but to the
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fact that more than one interpretation is possible for several items in this dataset, as pointed
out by Plank et al. (2014b). As we will see, this hypothesis that these are the conditions
under which using soft labels in addition to gold labels improves performance also holds for
the other datasets we studied.

It is less surprising that MTLSL also outperformed gold training according to all four soft
evaluation metrics: It produces a distribution less divergent from that of the annotators
(as measured using cross entropy and Jensen-Shannon divergence) and better captures
item confusion (as measured by cosine similarity and Pearson correlation). Of the other
approaches to using crowd information to supplement gold labels, MTLOA and PEWE, MTLOA
always outperformed gold training, sometimes significantly so, but PEWE fell behind gold
training, significantly so when evaluated using cross entropy and cosine similarity.

Finally, the fact that the MTLSL method for supplementing gold labels was more effective
than MTLOA and PEWE suggests that, with this dataset, targeting the distribution of labels
is more useful than targeting observed agreement or confusion among labels.?”

7.2.3 LEARNING FROM AGGREGATED LABELS

With hard evaluation, training on this dataset using aggregated labels produced results
significantly worse than training from gold labels and slightly worse than training from
soft labels. With soft evaluation, training with aggregated labels yielded worse or signifi-
cantly worse results than training with soft labels but better or substantially better results
than training with gold labels. Majority voting (MVv), Dawid and Skene (D&S), and MACE
achieved comparable results according to all metrics.

As we will see, this result was replicated with the other datasets: Training against the
entire “soft label” yielded as good or better results than training against aggregated silver
labels with all of our datasets and with all types of evaluation. This suggests that the
distribution of labels produced by the annotators generally does provide useful information,
which is lost when the soft label is aggregated. Training with aggregated labels only matches
training with soft labels with datasets such as PDIS, where (relatively) low “coder accuracy”
is actually the result of a lot of noise in the annotations (as opposed to ambiguity as in
POS), yet there is an abundance of annotations per item, allowing an aggregation method to
learn accurate models. This results in high-quality aggregated labels for PDIS, much higher
than obtained with Mv. For most of the evaluation metrics, aggregation methods did not
outperform MV on POS; these methods also performed about the same with hard evaluation
as the DLC method (Rodrigues and Pereira, 2018), which likewise attempts to learn coder
models and uses them to weight interpretations. We take these results as further evidence
that in POS, a lot of disagreement is informative.

7.2.4 LEARNING FROM SOFT LABELS

The best results for this dataset without using gold labels for training were obtained by
two soft-loss methods, KL and CE, using as target the distribution obtained by softmaxing
the raw proportions, rather than standard normalization or the output of probabilistic

27. It should however be noted that PEWE outperformed gold training in the original paper (Plank et al.,
2014a), in which the method used the confusion among two expert annotators. Perhaps a better way
exists to extend PEWE to a multi-annotator scenario than the one used here.
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aggregation. The best results were obtained by using KL as a soft loss function; training
using CE as a soft loss function achieved slightly worse but not significantly different results.
These two methods also obtained the best results according to soft evaluation metrics,
both in producing the probability distribution least divergent from the annotators’ label
distribution and for capturing confusion as measured by entropy. These results provide
further evidence that the crowd information included with this dataset provides useful
information for learning; the fact that the entropy of the soft-label distributions is highly
predictable is particularly significant in this respect.

The next best results were obtained by a cluster of methods including MSE soft loss,
SREL, and the soft approximation of the CrowdTruth aggregation method (see Section
5.2.1). These methods were significantly outperformed by the KL and CE soft-loss methods,
but significantly outperformed the other soft-label method, DLC. All soft-labelling methods
outperformed training using aggregated labels.

7.2.5 FILTERING AND WEIGHTING BY ITEM DIFFICULTY

Using crowd information (specifically, observed agreement on an item) to filter “hard”
items generally resulted in significantly worse hard evaluation performance:?® Training
with gold labels with hard items filtered always resulted in worse performance than training
with all the gold labels, and training with Mv silver labels with hard items filtered always
resulted in worse performance than training with the entire dataset with one exception
discussed below, IC-LABELME. POS is a clear illustration of this trend. For Fl evaluation
for example, filtering hard items before training on gold labels resulted in a drop of 12 F1
points below gold training without pre-filtering, and training on labels aggregated using
majority voting after filtering hard items fell 8 F1 points below training using MV silver
labels without pre-filtering. However, with soft evaluation (with which hard label methods
generally perform worse anyway), the effect of filtering was less clear-cut: In some cases we
saw an improvement, in others we did not. With pos, training on gold labels after filtering
hard items (gold + OA filter) led to significantly better soft evaluation results than training
on gold labels without pre-filtering; however, the reverse was the case for Mv + 0A filter
and MV training.

Augmenting silver (MVv) labels by weighting the loss of each item according to some
measure of confusion, such as the observed agreement for that item (OA weighting), generally
worked better than filtering for hard evaluation. Besides again yielding much better results
with IC-LABELME, it also achieved better results than training with unweighted Mv labels
on MRE, RTE, and IC-CIFAR10H, although the difference was generally not significant. But
weighting did not typically affect soft evaluation results. With pPOS we did not see an
improvement over using MV labels alone according to either hard or soft metrics; in fact
we found significantly worse cosine similarity and cross entropy results. This may suggest
that, given the complexity of the annotations discussed above, OA alone is not informative
about the nature of disagreements for this task.

28. We remind our readers that the item difficulty models we are aware of, such as GLAD (Whitehill et al.,
2009), are not applicable to this dataset as it is not binary.
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7.3 Information Status Classification

In the PDIS dataset, gold labels are only available for testing, not for training, so it is not
possible to report results for training with gold labels, and our discussion will focus on the
results obtained with aggregated labels and soft labels. We did evaluate the performance
of “hybrid” methods relying both on a hard label and information from soft labels PEWE,
MTLSL) on this dataset. However, our hard label was the most accurate aggregated label
(we used the labels produced by MACE, but D&S was just as accurate) instead of a gold label
as in other datasets. The results with “gold” and “augmented gold” labels are therefore not
directly comparable to those obtained with other datasets.

The key characteristics of PDIS (see Tables 1 and 2) are that it has the highest number
of items (96,305), and the average number of annotations per item is also fairly high (11.87).
Observed agreement is medium high (.81). However, average coder accuracy is mediocre
(.78), and the percentage of “expert” coders is low (.71). Notwithstanding this, the quality
of aggregated labels is high, .98. Finally, the entropy statistics are the opposite of those
obtained with POS: while the raw annotator entropy is fairly high (.38), the best distribution
entropy (BDE) is one of the lowest (.09).

7.3.1 USING SOFT LABELS TO SUPPLEMENT (SILVER) HARD LABELS

As with POS, MTLSL was the best method for learning hard or weighted truth for PDIS under
all three hard evaluation metrics; unlike with POS, however, the improvement over only using
the (silver) hard label was not significant. MTLOA and PEWE also performed on par with
MACE. The explanation proposed when discussing POS in the previous subsection—that
soft labels provide information that can lead to improvements over the hard labels when
the dataset contains sufficient quality, quantity, and diversity in the soft labels—can be
applied to explain the results with PDIS as well. In the case of PDIS, while we have a high
number of crowd judgments, their quality is lower than with POS (average accuracy is .78;
percentage of “expert” coders is .71), and above all we have much less diversity, as measured
by our best distribution entropy measure (which in this case was obtained from the posterior
probability): .09, as opposed to .39 with POs. This substantial difference suggests that many
more of the coders’ disagreements with regard to the gold labels are due to errors or other
noise, and thus can be identified by a probabilistic aggregation method, in comparison with
POS, where most of disagreements are due to ambiguity or overlap, and thus provide useful
information.?? This hypothesis is confirmed by analyses of the disagreements such as those
reported in Section 2.8.1. We would therefore expect a smaller improvement over only using
the hard labels, as indeed was the case.

With soft evaluation, augmenting MACE with crowd information generally improved
results. In particular, MTLOA and PEWE outperformed MACE and in fact all the aggregated-
and soft-labelling methods according to three out of the four evaluation metrics (all except
Jensen-Shannon divergence). However, MACE outperformed MTLSL using all evaluation
metrics except Jensen-Shannon divergence. This suggests that information about label
and/or annotator confusion is more useful for this dataset than the probabilistic output of
the MACE aggregation model used as a soft target for MTLSL (see Section 7.1). This provides

29. Note also that whereas ambiguity is possible, indeed frequent, in this dataset, label overlap isn’t: either
an entity has been previously mentioned, or it hasn’t.
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further evidence for the hypothesis that much of the disagreement in this dataset is due to
noise.

7.3.2 LEARNING FROM AGGREGATED LABELS

As shown in Table 1, PDIS is a very mixed dataset in terms of annotator performance. We
have already discussed how average coder accuracy is not very high, 78%, and the variation
is much wider than in the other datasets. In addition, the annotators did varying amounts
of work, annotating from about 1% to 13% of the dataset; the majority of the annotations,
however, were produced by the annotators doing the most work. We would therefore expect,
first of all, probabilistic aggregation methods to perform much better than majority voting
with regard to hard evaluation, as MV’s assumption that all annotators have similar ability
clearly does not hold. Meanwhile, unlike with POS, probabilistic aggregation methods have
a lot of evidence from which to learn accurate characterizations of the annotators that
produced most of the labels. This prediction is borne out, first, by the fact that the quality
of probabilistically aggregated labels (98%) is much higher than the quality of MV labels
(89%) (see Table 2) and the quality of aggregated labels in POS (at most 80%). And second,
by the fact that training with probabilistically aggregated labels outscored training with
MV labels by at least 2 percentage points with all three hard evaluation metrics (see Tables
7,8, and 9).

A second prediction is that having access to the entire distribution of labels produced
by the crowd should be less informative in terms of predicting the most likely label for this
dataset than for POs, primarily because the diversity of labels as estimated by the best
distribution entropy is so low (.09) but also because the quality of coders as estimated in
terms of observed agreement is much lower and coder ability is highly variable. (One could
also think that given that probabilistic aggregation methods achieve such high accuracy it
would be difficult to improve on them, but this is not the case e.g., with 1C-CIFAR10H, as
we will see.) And indeed, for this dataset, training using aggregated labels performed on
par with training using soft-labelling methods.

7.3.3 LEARNING FROM SOFT LABELS

Soft labels do not appear to be entirely uninformative, however. As we stated earlier, with
MTLSL, making use of both the hard aggregated silver and the soft label outperformed train-
ing with aggregated silver only, even if only marginally. More importantly, soft-labelling
methods and/or versions of MTL outperformed pure aggregated label training with all soft
evaluation metrics.

While the performance of aggregated labels was on par with augmented methods and
most soft-labelling methods (the CE/KL/MSE soft-loss methods) with hard evaluation, these
soft-loss methods outperformed training with aggregated labels when it came to learning
the entropy of the annotator-produced distributions, a proxy for labelling uncertainty that
we measured using cosine similarity and the Pearson correlation of the entropy.

However, a striking feature of this dataset is that all methods were quite bad at predict-
ing entropy. This is also the only dataset for which the best distribution was obtained from
the posterior of a probabilistic aggregation method (MACE) rather than directly from raw
annotations using softmax or standard normalization. Again, these two findings suggest
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that crowd information for this dataset is very noisy, so no method can learn to predict soft
labels accurately. The second finding likely also explains why none of the soft-loss meth-
ods (CE/KL/MSE) improved even insignificantly over their hard-label counterpart for this
dataset: The soft labels obtained via MACE have had too much disagreement information
removed to be useful.

As mentioned above, the CE/KL/MSE soft-loss methods were on par with the aggregated
(and augmented) methods when it came to hard evaluation metrics. These methods were
also on par with DLC when evaluating using accuracy and F1 and slightly outperformed
it when evaluating using cT F1. Like the MACE and D&$S aggregation models, DLC learns
ground truth by learning annotator reliability. But the CE/KL/MSE soft-loss methods and
DLC all significantly outperformed SREL, which is based on raw coder annotations. This
again shows that for PDIS, gains in hard evaluation performance are seen with models that
discriminate between annotators/annotations. Further evidence is the fact that although
the T soft aggregation method outperformed Mv, it was the least performant soft-label
method when it came to hard evaluation. While the best of the CE/KL/MSE methods
always outperformed the best aggregated method when evaluated using soft metrics, the
same cannot be said of DLC, SREL, and the CT soft-aggregation method, as we will see when
discussing other datasets.

7.3.4 FILTERING AND WEIGHTING BY ITEM DIFFICULTY

As with pPos, pre-filtering then training resulted in lower performance than training on
MV labels alone when evaluated using all the metrics. While we did not have gold labels
for training, we observed that pre-filtering and training using the very high quality MACE
aggregated labels also led to a worse performance according to all the metrics. This is likely
because with such a noisy dataset, a lot of items would be eliminated by filtering.

While weighting using observed agreement or using the item difficulty scores produced
by the Whitehill et al. (2009) method outperformed training using Mv alone when using
soft metrics, it did not lead to a higher hard evaluation performance. Another interesting
finding is that weighting with probabilistically inferred inverse difficulty generally results in
worse performance than weighting with OA.

7.4 (Medical) Relation Extraction

The key characteristics of MRE (see Tables 1 and 2) are that it is one of the smallest datasets
we studied, with only 975 items, and coder accuracy against gold labels is also fairly low:
Average coder accuracy is even lower than with pDIS (.76), and the percentage of “expert”
coders is lower still (.58), although observed agreement among annotators is reasonably high
(.86). The average number of annotations per item is fairly high (15.3), but the quality
of aggregated labels is the lowest among all of our datasets (highest is .77). Both raw
annotator entropy and best distribution entropy are fairly high (.31).

Another interesting observation is that, going by the gold label, the dataset is very
imbalanced, with a nearly 3:1 ratio between class 0 (false) and class 1 (true). As a result,
the accuracy ranking for various methods often differed from their ¥1 or T F1 ranking.
Because we used the class-weighted version of the F1 metric, we expected results would
differ, as the metric would assign a higher score to the model that produced more correct
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answers of class 0. And, on this note, a striking result is that if the goal was to learn the
majority class (i.e., evaluated using F1 or the weighted F1 metric), the CrowdTruth method
outperformed all other methods for learning from crowds, confirming the results obtained
by Dumitrache et al. (2018a).

7.4.1 GoLD vS. NON-GOLD

With MRE, as with POs, we found a large difference in performance between the results
obtained when training from the crowd only and training using gold labels when measured
using hard evaluation metrics. We observed a similar difference with pos (Section 7.2), for
which we indicated that the most likely explanation was low coder accuracy against gold
labels for nearly all classes except nouns and pronouns. The same explanation applies to
MRE, as we can see without digging into the dataset: MRE and IC-LABELME, discussed in
Section 7.6, are the datasets with the lowest average coder accuracy (measured against gold
labels) and the lowest proportion of “good” annotators (again, measured against gold). In
other words, these are the datasets where the crowd produced labels least like the gold.
As seen in Section 2.8, perhaps the majority of disagreements from gold in POS are due
to ambiguity, although there is some label overlap, whereas in IC-LABELME, label overlap
seems to play a substantial role. MRE would appear to be like IC-LABELME in this respect
(see also the discussion in Dumitrache et al. (2018a) and Dumitrache (2019)). It is therefore
not surprising that the models trained on these soft labels alone also produce labels that
substantially differ from the gold labels.

7.4.2 USING SOFT LABELS TO SUPPLEMENT GOLD LABELS

As noted above, using gold labels in training yielded the best results for MRE with hard
evaluation. The best results with all hard metrics were obtained by supplementing gold la-
bels with soft labels, but the improvement over using only gold was typically not significant.
(MTLSL worked slightly better according to accuracy and CT F1, PEWE according to F1.)
The fact that we saw a small but not significant improvement is, we believe, consistent with
the hypothesis proposed in Section 7.2.2 about the conditions under which an improvement
can be seen: MRE has a fairly high BDE, indicative of a good level of diversity, but not
as high as that of POS; it has a good number of annotations per item, but the size of the
dataset is likely too small to observe an effect, and coder accuracy is also fairly low.

With soft evaluation, we found that one of the gold + soft label methods achieved slightly
better results than training with gold only according to CE or JsSD, but slightly worse when
measured using cosine similarity and entropy correlation. The most likely explanation is
that in the MRE dataset the annotators often have to choose a label against many applicable
ones, so the entropy may not be predictable; but it may also be a matter of size.

7.4.3 LEARNING FROM AGGREGATED LABELS

Several interesting observations can be made on the basis of the hard evaluation tables in
Section 6.1. First of all, we can see that unlike with POs, where soft-label training generally
outperformed training with aggregated labels, pretty much all crowd-only training methods
achieved about the same results in terms of accuracy (Table 7), although some interesting
differences can be seen with F1 and CT F1. Second, we found that there was a clear winner
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for this dataset among the crowd-only methods in terms of F1 and cT Fl: CrowdTruth
aggregation, which achieved a performance almost 10 points higher than any other method.
As CrowdTruth is best considered a soft-label method, we discuss this finding next. Third,
we found that, again, the comparison between probabilistic aggregation methods and MV
was very much affected by the hard evaluation metrics. With accuracy, all aggregation
methods performed about the same, as previously stated. With F1 and CcT F1, however, D&S
performed much better than both Mv and MACE in terms of both hard and soft evaluation—
this is the only dataset for which we found a substantial difference between D&S and MACE
under either form of evaluation. Together with the finding about the performance of CT
aggregation, this result suggests that D&S is better than either MV or MACE at modelling
the main class.

With soft evaluation, silver training with D&S outperformed gold training both in learn-
ing the distribution of the annotations (i.e., evaluation using JSD and CE) and according to
the entropy similarity metrics but was outperformed by soft-labelling methods.

7.4.4 LEARNING FROM SOFT LABELS

The difference in F1 and CT F1 performance between CT “aggregation” and all other crowd-
only methods with this dataset is, we believe, due to the same reason that explains the better
performance of D&S over MACE aggregation: the focus on the true class. D&S aggregation
learns models of the coders’ sensitivity and specificity to the true class; likewise, the objective
of CT aggregation is to find good examples for the true class.

However, other soft-label methods apart from CT aggregation did not improve results
over silver training when evaluating using hard metrics. This is most likely due to the fact
that this dataset does not satisfy any of the conditions under which soft-label methods
achieve good performance: It is the second smallest, and the quality of the annotations is
the second lowest. However, soft-label training did outperform hard-label (silver and gold
and augmented) training when evaluating using soft evaluation metrics.

7.4.5 FILTERING AND EIGHTING BY ITEM DIFFICULTY

One clear result for filtering and weighting on this task is that both approaches led to
significantly worse accuracy than non-filtering/non-weighting using hard evaluation metrics.
And, while filtering led to better soft evaluation results, weighting largely remained on par
with non-weighting. Neither method led to gold-level hard evaluation performance.

7.5 Recognizing Textual Entailment

The key characteristics of the RTE dataset are that it is the smallest dataset, counting
only about 800 items, but it has a good number of annotations per item, 10. The extent
of agreement between the coders and gold labels, as measured by average coder accuracy
(0.84) and percentage of expert coders (0.83), is quite good, although not as high as that of
IC-CIFAR10H. The average number of annotations per coder is not, however, at 48.8, very
high, and the observed agreement between coders, 0.63, is also quite low—in fact, it is the
lowest among all datasets.

This low agreement between coders appears to be due primarily to the fact that many
items in the RTE dataset are “difficult” in the sense that it is unclear whether the premise

1449



UMA, FORNACIARI, HOVY, PAUN, PLANK & POESIO

entails the hypothesis or not, as discussed in Section 2.8.4. The fact that agreement with
gold labels is quite high suggests that the difficult items are not the majority, which would
confirm the findings of, e.g., Pavlick and Kwiatkowski (2019)—in their data, about 20% of
cases are difficult.

7.5.1 GoLD vSs. NON-GOLD

One obvious characteristic of RTE is that although using gold labels still yielded the best
hard evaluation results (with gold or gold + soft achieving the best results depending on
the metric), the margin between training with gold labels and training with crowd labels
was minimal, much smaller than with the two datasets we have seen thus far, POS and MRE;
in fact, soft-loss and weighting methods achieved equivalent results to using gold labels for
accuracy and F1. (A direct comparison to PDIS is not possible, as that dataset has no gold
labels for training.) This result was previously reported by the creators of this dataset, Snow
et al. (2008), but without explanation. We believe it can be accounted for with reference
to coder accuracy. In RTE, the coders have a much higher average accuracy with respect
to gold labels, and the percentage of expert coders is very much higher, than in MRE in
particular. As for POS, as discussed in Section 7.2.1, the headline coder accuracy and expert
percentage figures are deceptive, in that accuracy is only high with one category, while for
the others it is quite low.

Further evidence for this explanation is the fact that the quality of aggregated labels
is very high even though each annotator only produced relatively few annotations. The
majority voting accuracy is already 90% with respect to gold (or 93% depending on how
the ties are broken). The other hard aggregation methods also produced labels with 93%
accuracy. It is therefore not surprising that the performance margin between gold training
and crowd-based training was virtually nil.

In a nutshell, we are arguing that with this dataset, the gold labels are not different in
quality from the labels provided by the crowd. On the other end, unlike with 1C-CIFAR10H
in particular, there are grounds for disagreement, namely, difficulty, which explains why the
agreement between coders is low (as well as, we would argue, the substantially lower values
reached for hard evaluation compared to the other NLP datasets, and in particular to MRE,
which has a comparable size).

7.5.2 USING SOFT LABELS TO SUPPLEMENT GOLD LABELS

With RTE, gold-plus methods did not result in significant improvements in hard evaluation
over gold-only training, unlike with POS or MRE. Supplementing the gold labels with crowd
information led to non-significant improvements over gold training in terms of accuracy, to
equivalent results with the other metrics (slightly lower, but again, the difference was not
significant). In our view, this is in part due to the fact that the quantity of data is much
smaller than with POS, in part to the fact that the diversity of the labels, as measured
with BDE, is lower than with MRE (and half that of the diversity we see with POs, where
gold + soft—-methods did significantly improve over gold). As for soft evaluation, we found
that MTLSL achieved significant improvements over gold in terms of JSD, but otherwise
the results obtained supplementing gold labels with crowd information were comparable to
those obtained training with gold labels alone.
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7.5.3 LEARNING FROM AGGREGATED LABELS

Training using any silver label achieved slightly lower results with RTE than training with
gold, less than one accuracy/F1/CT F1 point—a margin that is significant but much lower
than that observed with POS or MRE. This might seem surprising given that the number
of annotations per coder is relatively small, but we think it can also be explained as the
result of the high quality of the crowd annotations, making them essentially comparable
to gold annotation. This hypothesis is confirmed by the fact that Mv achieved comparable
results to the probabilistic aggregation methods. None of the silver-label methods was
significantly outperformed by any other method for learning only from crowds. For soft
evaluation, in most cases, there was no significant difference between training using gold
labels and training using silver labels: Both gold- and silver-label training methods were
outperformed by soft-labelling and augmented methods.

7.5.4 LEARNING FROM SOFT LABELS

When discussing the results with POs in Section 7.2.3, we pointed out how soft-label train-
ing achieved as good or better results in terms of hard evaluation than aggregate labels
with all datasets. Specifically, there are three datasets with which soft-label training gave
better results—P0OS, IC-LABELME, and IC-CIFAR10H—and three with which the results were
equivalent—pPDIS, MRE, and RTE. What characteristics do these last three datasets have in
common?

In Section 7.2.3, we argued that training with aggregated labels matches performance
with soft labels when average coder accuracy is relatively low but there are enough anno-
tations per item and per coder to allow the aggregation method to acquire good models of
the coders, resulting in high-quality aggregated labels. We saw in Section 2.2 that these
conditions held for PDIS; they hold for RTE as well. They do not, however, hold for MRE.
But there are two additional characteristics common to these three datasets. The first is
that these three datasets, for which soft-label training does not improve over silver aggre-
gate training, are all binary classification tasks. It may be that in terms of hard evaluation,
a model trained for binary tasks is always better off “taking a stand” as opposed to taking
a probabilistic approach to truth. Another characteristic these datasets have in common
is that they have the highest raw distribution entropy (see Table 1). Soft-loss training is,
perhaps, not especially tolerant of confusion.

More specifically, it is the soft-loss methods that performed on par with silver-training
methods on this dataset, outperforming repeated labelling and DLC. In fact, the repeated-
labelling method SREL achieved worse results on this dataset than training using Mmv labels
with all hard metrics—this is the only dataset for which this happened. RTE is also the
dataset with the highest item entropy (0.72, 0.34 points higher than the next highest, PDIS).
This is consistent with what we remarked before about the high level of difficulty-induced
disagreement in this dataset. Taken together, these facts suggest that SREL is not suited
for datasets with such characteristics. This hypothesis is further strengthened by the fact
that the next method for which repeated labelling achieved much worse results than the
best silver or soft-loss method is PDIS, the dataset with the next highest entropy.
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With soft evaluation, the results were somewhat mixed. However, we can definitively say
that, with the exception of Jensen-Shannon divergece, the soft evaluation methods achieved
the best results.

7.5.5 FILTERING AND WEIGHTING BY ITEM DIFFICULTY

As with the datasets seen thus far, filtering items with low agreement did not yield any
improvements over training using all the items in terms of hard evaluation, and weighting by
observed agreement did not achieve better results than using majority voting labels without
weighting items. However, unlike what we observed with PDIS and with MRE, weighting
using the inverse difficulty scores inferred by the Whitehill et al. (2009) aggregation model
resulted in a substantially worse performance when evaluated using hard metrics.

7.6 Image Classification 1: LabelMe

IC-LABELME’s most distinctive features are the low number of annotations per item (2.5
on average), the extremely low coder accuracy with respect to gold (.69 average accuracy,
with only 42% of coders achieving expert accuracy levels), and the extremely high BDE (.76,
almost double the next highest).

7.6.1 GoLD vS. NON-GOLD

With IC-LABELME we again found a large difference between training using gold labels and
training using only crowd information. With hard evaluation, we found that using gold
labels resulted in an advantage over soft-label training of more than 10 percentage points
for accuracy and F1 and slightly less for cT F1, similar to what we observed with MRE and
POS. The same explanation we proposed for MRE and, after some analysis, for POS—that the
reason for the large difference is the substantial difference between coder judgments and gold
judgments—applies to IC-LABELME as well: These are the datasets with the lowest coder
accuracy and the lowest percentage of expert-quality annotators when evaluated against
gold annotations.

By contrast, with soft evaluation, the situation was exactly reversed, and we found a
large difference with all soft evaluation metrics in favor of methods using crowd information,
either by itself in soft-labelling methods—in particular, soft-loss methods, but also training
with aggregated labels—or in combination with gold labels. MTLSL performed on par with
soft-loss methods when measured by cross-entropy and JSD and only slightly worse in terms
of the entropy similarity measures.

This reversal confirms what was already obvious from the example discussed in Section
1: that gold judgments are very different from crowd judgments in this dataset. However,
as discussed in Section 2.8.2, with IC-LABELME the discrepancy between gold and crowd
judgments appears to be due to the degree of overlap among the labels in the annotation
scheme, rather than ambiguity as in the case of POS or carelessness as in the case of PDIS.
Further evidence for this is the extremely high BDE, by far the highest in any of the datasets
we used.
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7.6.2 USING SOFT LABELS TO SUPPLEMENT GOLD LABELS

As already mentioned in discussing gold vs. non-gold, very different results were achieved
with this dataset by leveraging crowd information in addition to gold labels depending on
which form of evaluation was used.

The best hard evaluation results against gold for this task were obtained by training
with gold labels alone: Supplementing gold labels with crowd information led to a lower
performance than training with gold alone, which is significant in all cases except with F1
evaluation of MTLSL; the difference between gold only and augmented gold with MTLSL is
small. The simplest explanation for this would be that given the high level of randomness
in the choice of labels, training using gold labels is the best way to optimize for testing
against gold labels.

But whereas crowd information did not improve upon gold labels for learning hard truth,
MTLSL always significantly outperformed gold-only training with soft evaluation, as did the
other gold-plus training—the exception being the entropy correlation results, where PEWE
and MTLOA-only remained on par with gold training. (Gold-plus methods were, however,
generally outperformed by soft-loss methods with soft evaluation, except again for MTLSL,
which achieved equal-best performance with the soft-loss methods in terms of cross-entropy
and JSD and near-best with the entropy correlation metrics.)

There are at least two reasons for this difference in results. First of all, as already
discussed, although training with crowd information alone can match or indeed outperform
gold training, this only happens when certain conditions are met, which is not the case with
IC-LABELME. With IC-LABELME, the average number of annotations per item is only 2.5,
with a maximum of 3, and over 4% of the items only have a single annotation. In other
words, the number of annotators per item is insufficient, meaning the crowd annotations
do not contain additional information for gold augmentation/regularization. And second,
crowd judgments are very different from gold judgments with this dataset, as already noted
above. As a result, methods relying on one type of judgment generally performed badly
when evaluating against the other type, and vice versa—the one exception being MTLSL,
which optimizes for both.

7.6.3 LEARNING FROM AGGREGATED LABELS

With this dataset, as with PDIS, probabilistic aggregation methods outperformed majority-
vote aggregation by a substantial margin when evaluated against the gold label, and for the
same reason: the low similarity between coder judgments and the gold labels, or between the
judgments of different coders. But while training with probabilistically aggregated labels
outperformed MV, all silver methods were outperformed by soft-labelling, weighting, and
filtering methods using all the evaluation metrics.

7.6.4 LEARNING FROM SOFT LABELS

Soft-loss training significantly outperformed all other soft-labelling methods with IC-LABELME
in terms of hard evaluation, except for weighting and filtering (see next subsection). Soft-
loss methods also produced the best soft evaluation results with almost all metrics.
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7.6.5 FILTERING AND WEIGHTING BY ITEM AGREEMENT

IC-LABELME is the only dataset for which filtering items by observed agreement, and then
training over the remaining items, resulted in an improvement over training without pre-
filtering. In fact, with this dataset, filtering + MV labels was the best approach to learning
from crowds. We believe that this is again because this dataset is the one in which annotators
disagree the most with the gold labels, as shown by the low coder accuracy figures—and
also by the fact this is the only dataset in which the expert annotators do not constitute a
majority in the annotator population. Because the base model for this task was pre-trained
with previously learned and encoded images, the model loses nothing by discarding low
observed agreement and perhaps mislabelled items.

7.7 Image Classification 2: CIFAR-10H

IC-CIFAR10H is not a particularly large dataset—it is comparable to POS or IC-LABELME—
but it has the highest number of annotations per item, over 50. It also has very high
annotator accuracy, with all annotators having an accuracy of 75% or more. The only other
dataset with a percentage of coders with a similarly high degree of agreement with the gold
label is POS; but, unlike in POS, in IC-CIFAR10H the annotators did not overwhelmingly
label only one category. Also, each coder annotated about 200 items on average. As a
result of high number of annotations per item, coder quality, and a good number of items
being annotated per annotator, the quality of the aggregated labels is the highest, .99, for
this dataset, irrespective of the type of aggregation used. Finally, this is a dataset with very
high oA and very low entropy, both raw and BDE.

These last characteristics, as well as the high coder accuracy, appear to be due to the
fact that the image categories are clearly distinct, unlike in 1C-LABELME, and that there
is no ambiguity. However, some items are more difficult to label because of blurriness and
small size, as discussed in Section 2.8.4.

7.7.1 GoLD vS. NON-GOLD

Another result of the high similarity between gold labels and crowd labels and the high
number of annotations for 1C-CIFAR10H is that it is the one dataset for which training
with crowd information outperformed training with gold labels, regardless of the method
used. We already mentioned in connection with RTE the finding in Sheng et al. (2008) and
Snow et al. (2008) that a large enough crowd may produce labels of quality comparable to
that of gold labels produced by experts when the crowd workers are of sufficient quality;
1C-CIFAR10H shows that in fact the crowd can outperform experts.

7.7.2 USING SOFT LABELS TO SUPPLEMENT GOLD LABELS

Two out the three methods for augmenting gold labels, PEWE and MTLSL, resulted in sig-
nificantly reduced hard evaluation performance with respect to gold on this dataset; only
MTLOA achieved a performance on par with gold training. We saw the same result with
IC-LABELME, and again we hypothesize that the reason is that the crowd annotations do
not provide useful additional information for gold augmentation/regularization. However,
here, the reason is different. With 1C-LABELME, the motivation for the lack of improve-
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ment was the low number of annotations and the low level of agreement of the annotators
compared to gold. For 1C-CIFAR10H, however, the reason is that the crowd annotations do
not provide enough diversity compared to gold labels, as they appear to be drawn from the
same distribution: There is hardly any disagreement between gold labels and soft labels.
This can be seen from the combination of high accuracy and high observed agreement of
the crowd labels with respect to the gold. We can also see that both the raw annotation
entropy and the BDE are extremely low, the lowest among all the datasets. Further evi-
dence is that the gold + soft methods did not even outperform gold training in terms of
soft evaluation—again, the only dataset for which this was the case.

7.7.3 LEARNING WITH AGGREGATED LABELS

D&sS and MACE did not significantly improve over Mv for this dataset, regardless of the
evaluation metric. This is unsurprising given the quality of the coders—Ilabels aggregated
using majority voting already achieved the same accuracy (over 99% with respect to gold
labels) as probabilistically aggregated labels, a sign that discriminating between annotators
would offer little improvement over the majority with respect to learning ground truth. For
the same reason, silver training was not significantly distinguishable from gold training.

7.7.4 LEARNING WITH SOFT LABELS

As already discussed, 1C-CIFAR10H demonstrates that a large crowd providing high qual-
ity annotations can not only match, but outperform gold training. For this task, the
soft-labelling methods outperformed all types of hard-label training, both silver and gold.
Among soft-labelling methods, repeated labelling and DLC outperformed soft-loss and ag-
gregated methods according to all the hard evaluation metrics, but soft-loss methods still
outperformed all hard-label methods, both gold and silver. The results with soft evaluation
were more complex: Repeated labelling and soft-loss training achieved the best results with
cross-entropy by a wide margin over DLC, which, however, outperformed all other meth-
ods when evaluated using Jensen-Shannon divergence. Soft-loss methods achieved the best
results in terms of entropy estimation.

7.7.5 FILTERING AND WEIGHTING BY ITEM DIFFICULTY

For this task, training with Mmv labels but weighting the loss for each item depending on the
observed agreement for that item led to a small improvement over majority-voting training.
This only happened with one other dataset: IC-LABELME. In the case of IC-LABELME, one
could argue that the dataset contains lots of difficult items, as shown by the low overall
agreement, and that observed agreement works well at identifying such items. However, the
reason why weighting improved results over Mv for 1C-CIFAR10H as well (whereas filtering
does not) is not immediately apparent. But the effect is small, and at any rate, MV training
is not the highest-performance method.

8. Discussion

In this section, we address the research questions put forth at the beginning of this work,
and discuss the results as answers to these questions.
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8.1 Are gold labels required to achieve the best results in training (RQ3a)?
And does the answer depend on the form of evaluation (RQ4a) and
dataset (RQ4b)?

Our clearest (if possibly least surprising) result is that the answer to RQ4a (but also to
RQ4b) in the context of RQ3a is very much the affirmative. Training with gold labels
as the target almost always achieves the best results when the evaluation is against gold
labels, although this depends on the characteristics of the dataset (see below). But with soft
evaluation against soft labels—aka probability distributions extracted from the annotators’
judgments—the best results are always achieved by only using these soft labels as targets in
training, irrespective of the dataset, although methods leveraging both gold and soft labels
generally match, if never exceed, the performance of soft-label training methods. This
finding may seem obvious in retrospect, but as far as we know it has not been previously
discussed in the literature.

Furthermore, our results with 1C-CIFAR10H, in particular, indicate that under certain
conditions, models trained without assuming a gold truth can achieve better performance
than models that leverage gold labels. Among our datasets, there were three with which
using gold resulted in substantially better performance with hard evaluation (POS, MRE,
IC-LABELME), and one with which the difference, while significant, was minimal (RTE). But
with 1C-CIFAR10H, training using soft labels without gold worked better than training with
gold. (We did not have gold for training with one dataset, PDIS.) Our results reveal that
when a dataset is sufficiently large—and is annotated by a large number of high-quality
coders according to an annotation scheme such that annotators frequently agree with each
other—a number of ambiguity-aware training methods produce better results than training
on gold labels. 1C-CIFAR10H met these conditions, and RTE got close. We also noted that
POS is an apparent counterexample to this hypothesis, given that gold training outperformed
training with only crowd information by a large margin even though the dataset has high
coder accuracy and a substantial number of annotations per item. But our analyses indicate
that the high overall coder accuracy and the high overall number of annotations for POS
are in fact deceptive, as the dataset is divided in two subsets: one with lots of annotations
and high accuracy and one with a very low number of annotations and low accuracy. And
the high accuracy is mostly for nouns, whereas with other part-of-speech tags the accuracy
is much lower.

8.2 Does Supplementing Gold Labels with Crowd information Result in
Better Performance than Training with Gold Only (RQ2a)? And Does the
Answer Depend on the Form of Evaluation (RQ4a) and the Dataset
(RQ4b)?

The answer to RQ2a also very much depends on the form of evaluation and the dataset.
With soft evaluation, leveraging crowd information in addition to gold labels results in
better or significantly better performance with almost all forms of evaluation and almost
all datasets; the only exceptions are RTE with cross-entropy and 1C-CIFAR10H with JSD.
With hard evaluation, there are three datasets in which supplementing gold information
with information from the crowd (leveraging the soft label) helped: significantly with POS
(1 p.p. gain), marginally with ppDIS and MRE. With RTE, again there was no significant
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difference, and which method achieved better performance depended on the metric. But
with IC-LABELME and I1C-CIFAR10H, using soft labels in addition to gold hurt performance.
This last point is particularly surprising in light of the fact that with 1C-CIFAR10H using
only crowd information achieved much better results than using gold.

Our proposed explanation for these hard evaluation results is that soft labels help gold-
label training “when the soft label provides useful information beyond the preferred label
that leads to a better model”—i.e., when the soft label helps regularize gold-label training.
In order for this to happen, two conditions must hold. First of all, the decision on the
best label for an item must be sufficiently complex, on average. We propose that this
complexity can be measured using average best distribution entropy (BDE): If the BDE is
too low, leveraging soft labels in addition to hard labels does not help—which is why MTLSL
outperforms gold with POS, but not with 1C-CIFAR10H, for which the BDE is nearly 0, even
though coder accuracy with 1C-CIFAR10H in particular is very high. In other words, where
the soft labels mostly reproduce the gold standard, their informative contribution lessens.
Second, there have to be enough judgments for the soft label to be sufficiently reliable. This
explains why we only see marginal improvements with 1C-LABELME (too few annotations
per item) and RTE (too few items).

8.3 Which Method for Learning from Disagreement Achieves the Best Results
(RQ3b)? And Again, to which Extent Does the Answer Depend on the
Form of Evaluation (RQ4a) and the Dataset (RQ4b)?

One of the key results of this paper is that the answer to RQ3b is more complex than one
would expect based on the previous literature. Two points are, however, very clear. First
of all, soft-label training generally outperforms aggregate- (silver-) label training with all
datasets and all forms of evaluation. And second, which soft-labelling method performs
best very much depends on the form of evaluation and the characteristics of the dataset.

With soft evaluation, some form of soft-label training achieved the best results with
virtually all datasets and all metrics, except with Pearson correlation of entropy with RTE,
the smallest dataset. Specifically, some form of soft-loss training achieved the best results
with all datasets except for RTE and MRE; repeated labelling achieved the best results with
MRE (all metrics) and RTE (cosine similary of entropy); and deep learning from crowds
generally achieves worse results than the other soft-label methods, except with RTE (CE)
and 1C-CIFAR10H (JSD).

With hard evaluation, which method performed best very much depended on the charac-
teristics of the dataset. The most substantial gap in performance was observed with MRE,
a dataset focusing on positive examples, and CrowdTruth “aggregation”—more of a soft
label method in our extension to multiple classes—achieved substantially better F1 and CT
F1 results than any other method. Soft-loss training achieved competitive results for all
the multi-class datasets for which annotator distribution has a low average entropy (POS,
IC-LABELME, and IC-CIFAR10H), but it was the best method for only pPoOS, a dataset for
which the average annotator (gold) accuracy is high but the accuracy of aggregated labels
is unexpectedly low. With 1C-LABELME, which features a low level of alignment between
gold labels and most annotators (perhaps owing to the high subjectivity of the task and
arbitrariness of the gold truth—see Section 1), the best method was pre-filtering low 0A
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items and training on the rest. With 1C-CIFAR10H, characterized by a high number of per-
item annotations produced by high-quality coders, SREL and DLC, both of which multiply
examples, outperformed other methods. Probabilistic aggregation techniques such as D&S
and MACE worked best for PDIS, which has a large number of coders of varying ability.

8.4 How Can We Best Evaluate Models on Datasets that Provide a Range of
Judgments (RQ1)?

And finally, we return to RQ1. Throughout this discussion we have highlighted how much
the relative ranking of the methods for learning with disagreement depends on the form of
evaluation. The inevitable conclusion is that evaluating models using only hard evaluation
metrics such as accuracy or F1, or only using soft metrics such as cross-entropy, will only
provide a partial picture of how well a model performs on a dataset. A hard evaluation
metric is only truly appropriate for datasets on the low disagreement end of the spectrum,
as indicated, e.g., by what we have called best distribution entropy, or BDE. In all other
cases, also reporting the results with a soft evaluation metric is arguably more accurate.3’

On the other end, one could ask whether all of the metrics we studied in this paper are
required. With regards to hard evaluation, we can see that accuracy, 1, and CcT F1 rank
the learning methods similarly, except on the MRE dataset, which is highly imbalanced (see
Section 7.4). Also, while F1 and CT F1 ranked the methods in a very similar way, we can
see that the ¢T F1 metric increased the scores of all the methods. Comparing the F1 and
cT F1 scores in Tables 8 and 9,3 we can observe that for any given method, including the
ones that do not take disagreement into account during training, the CT F1 score is always
higher than the F1 score. So one reason for choosing F1 or ¢T F1 is whether one finds
her/himself in agreement with the argument by Dumitrache et al. (2018¢c) that evaluating
a model under the assumption of a single correct answer underestimates its performance.

Another possible criterion for deciding between F1 and CT F1 is the observation that
with T F1, the gains of highly accurate (typically, gold-trained) models over less accurate
models are reduced. This can be gathered from the results with five of the six datasets, the
one exception being RTE. Consider, for example, the difference between the best gold/gold-
plus method and the best crowd-only method on the POS dataset in Tables 8 and 9. The
F1 difference between gold training and training using the KL soft-loss method was 11.14
points, while the ¢T F1 difference was 5.8. In other words, the difference we observed
between the performance of the KL soft-loss method and the performance of the gold model
was much reduced when confusion was factored in. One interpretation would be that if we
prefer to report only one metric, CT F1 may give a picture of the differences among methods
less affected by difficult items. (Alternatively, it might be possible to design an experiment
to test which of the two metrics yields scores more in keeping with human intuition.)

The differences among the results according to soft evaluation metrics are more substan-
tial. Both CE and JSD measure the distance between the probability distribution outputted

30. And of course, at the other extreme—which we didn’t investigate in this study—of tasks where the labels
are highly subjective, such as hate speech detection, it may be argued that using a hard metric makes
little sense. For such tasks, it would appear that soft evaluation metrics such as those trialled here would
be more appropriate.

31. We compare CT F1 with F1 rather than with accuracy as the two metrics differ only in the down-weighting
of confusing items by CT F1 (see Section 4).
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by a model and the target distribution, and the two measures are closely related, but apart
from POS and IC-LABELME, these metrics yielded very different results. More research is
required in order to understand which of the two methods more accurately reflects intu-
ition, but given that cross-entropy is already widely used in practice, it would certainly
be reasonable to interpret our results as not providing sufficient justification for choosing
JSD over CE. The results for both these metrics were also substantially different from those
obtained with the two entropy-based measures, but these also differed from each other to
a large degree. Again, no conclusion can be reached at this point in time as to which of
these metrics is more appropriate for the purposes of assessing how well models capture the
uncertainty among human judgments. One conclusion is, however, clear: It is time to move
beyond comparing models to a single ground truth (Basile et al., 2021).

9. Conclusion

With the growth in size, sophistication, and quality of annotated resources, and the increas-
ing practice of employing several annotators to produce them, the idealization that a “gold”
interpretation can be specified for every item in the dataset and used as the target during
learning/evaluation, underlying much practice in supervised learning, is becoming less and
less justifiable. (Also increasing is the evidence that training with noisy labels results in
better performance of the obtained models on unseen data.) Abandoning this idealization
requires the development of new paradigms both for training and for evaluating models. In
this paper, we identified several Al tasks for which the gold-standard idealization has been
shown not to hold and used them for an in-depth analysis of the by now extensive literature
on learning from data possibly containing disagreements.

Our results suggest, first of all, that reaching a consensus on how to evaluate models if
we abandon the gold-standard assumption is an essential prerequisite for this research, as
the relative performance of the training methods under consideration is critically affected
by the chosen evaluation. Our experiments do not allow us to reach a definitive conclusion
in this matter, as no soft evaluation metric was found to be clearly more appropriate than
any other. Until such consensus is reached, however, we found no reason not to simply use
cross-entropy to compare the output of a system to a soft label.

Secondly, we observed a strong dataset effect. With datasets of a substantial size and
providing large numbers of judgments for each item, annotated by high-quality coders,
training directly from the soft labels achieved better results than training from aggregated
labels, or even from gold labels, both when evaluating using hard evaluation and when
using soft evaluation. When those conditions did not hold, leveraging gold labels generally
achieved the best results in terms of hard evaluation, but leveraging soft labels in addition to
gold labels generally achieved the best overall results, greatly improving performance when
measured using soft metrics and leading to as good or better results than using gold labels
only in terms of hard evaluation with datasets not satisfying the conditions discussed above.
Among the methods not relying on a gold label, it was notable that aggregation generally
resulted in worse performance than training directly from the soft label, particularly when
using soft-loss or repeated-labelling methods.

In terms of recommendations for future directions, more research is clearly needed on
the evaluation side. Other than that, our results suggest that the best way to achieve
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Do you have a lof of data
instances annotated by high
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Ragardless of the evaluation (cfr. POS, RTE. MRE,
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Dayou h‘la;rgej:;;perl) gald @ posterior soft loss if the
: crovad is mixed. as in PDIS)

Do you have a moderate “Best

Distribution Entropy” (BDE)?

Use gold + crowd, e.g. MTLEL
(cfr. POS, MRE, RTE)

Us2 gold only (cfr. ICLabalMe)

Figure 12: A guide to choosing a best-performing model given the characteristics of one’s
dataset and hard or soft evaluation

high-quality and empirically grounded datasets is to collect a substantial number of judg-
ments from high-quality coders. Our recommendations for researchers working with existing
datasets are summarized in the somewhat simplified decision tree in Figure 12. (We encour-
age researchers to read in detail the parts of this study discussing the datasets identified in
the simplified decision tree that most resemble their own.)
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