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Abstract
Autonomous cyber-physical systems (CPS) can improve safety and efficiency for safety-

critical applications, but require rigorous testing before deployment. The complexity of
these systems often precludes the use of formal verification and real-world testing can
be too dangerous during development. Therefore, simulation-based techniques have been
developed that treat the system under test as a black box operating in a simulated en-
vironment. Safety validation tasks include finding disturbances in the environment that
cause the system to fail (falsification), finding the most-likely failure, and estimating the
probability that the system fails. Motivated by the prevalence of safety-critical artificial
intelligence, this work provides a survey of state-of-the-art safety validation techniques for
CPS with a focus on applied algorithms and their modifications for the safety validation
problem. We present and discuss algorithms in the domains of optimization, path planning,
reinforcement learning, and importance sampling. Problem decomposition techniques are
presented to help scale algorithms to large state spaces, which are common for CPS. A
brief overview of safety-critical applications is given, including autonomous vehicles and
aircraft collision avoidance systems. Finally, we present a survey of existing academic and
commercially available safety validation tools.

1. Introduction

Increasing levels of autonomy in cyber-physical systems (CPS) promise to revolutionize
industries such as automotive transportation (U.S. Department of Transportation, 2018)
and aviation (Federal Aviation Administration, 2019; Kochenderfer et al., 2012) by improv-
ing convenience and efficiency while lowering cost. Innovations have been driven by recent
progress in artificial intelligence, particularly in machine learning (LeCun et al., 2015; Rus-
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sell & Norvig, 2020) and planning (Kochenderfer, 2015; Sutton & Barto, 2018). Machine
learning has recently achieved human-competitive performance in board games (Silver et
al., 2016; Silver et al., 2017), video games (Mnih et al., 2015; Vinyals et al., 2019), and
visual perception (He et al., 2017; Pillai et al., 2019). However, applying machine learning
technologies to safety-critical domains has been challenging. Safety-critical CPS differ from
conventional autonomous systems in that their failures can have serious consequences, such
as loss of life and property. As a result, these systems must undergo extensive validation
and testing prior to certification and deployment.

Safety validation is the process of ensuring the correct and safe operation of a system
operating in an environment. Desired safety properties are stipulated in a specification
language and a failure is any violation of that specification. Typically, simulation is used
to find failures of a system caused by disturbances in the environment, and a model of
the disturbances can then be used to determine the probability of failure. A system is
deemed safe if no failure has been found after adequate exploration of the space of possible
disturbances, or if the probability of failure is found to be below an acceptable threshold.
The procedure of proving that a system is safe to all disturbances is known as formal
verification (Clarke et al., 2018; Fitting, 2012; Katoen, 2016; Platzer & Quesel, 2008;
Schumann, 2001) and is outside the scope of this survey.

In this paper, we focus on CPS, which involve software and physical systems interacting
over time. This broad definition includes systems such as robots, cars, aircraft, and plane-
tary rovers. There are several reasons why validating cyber-physical systems is challenging.
First, many of these systems contain complex components, including those produced by
machine learning. The safety properties of these systems may not be well-understood and
subtle and emergent failures can go undetected (Yeh, 2018). Second, many systems, such
as autonomous cars and aircraft, interact with complex and stochastic environments that
are difficult to model. Third, safety properties are generally defined over both the system
under test and its environment. For example, the requirement that “the test vehicle shall
not collide with pedestrians” involves both the system under test (test vehicle) and actors
in its environment (pedestrians). As a result, safety validation must be performed over the
combined system. Another challenge is that sequential interactions between the system and
the environment means that failure scenarios are trajectories over time, and therefore the
search space is combinatorially large. Finally, safety validation is often applied to mature
safety-critical systems later in development, where failures can be extremely rare.

Traditional methods for ensuring safety—through safety processes, engineering analy-
sis, and conventional testing—though necessary, do not scale to the complexity of next-
generation systems. Advanced validation techniques are needed to build confidence in these
systems. Many validation approaches have been proposed in the literature. They can be
broadly categorized by the information they use for analysis. White-box methods use knowl-
edge of the internals of the system. For example, formal verification in the form of model
checking (Clarke et al., 2018; Katoen, 2016) and automated theorem proving (Fitting, 2012;
Platzer & Quesel, 2008; Schumann, 2001), represents the system using mathematical mod-
els. Because the model is known, formal verification methods can find failure examples
when they exist or prove the absence of failures when they do not. However, because for-
mal verification considers all execution possibilities, it often has difficulty scaling to large
problems (see Alur, 2015 for a discussion of verification applied to CPS).
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In contrast to white-box methods, black-box techniques do not assume that the internals
of the system are known. They consider a general mapping from input to output that can be
sampled. Black-box methods can be applied to a much broader class of systems because they
do not require a system specification. Although model-checking techniques can be applied
to some black-box systems (Peled et al., 1999), a prohibitively large (or possibly infinite)
number of samples may be required to provide complete coverage and prove the absence
of failures. Instead, black-box methods often aim to quickly and efficiently find failure
examples. If no failures are found, confidence in the safety of the system will increase with
additional sampling. Due to its flexibility and scalability, black-box validation is often the
only feasible option for large complex systems, and is the focus of this survey.

We consider three safety validation tasks for a system with safety properties. First,
falsification aims to find an example disturbance in the environment that causes the system
to violate the property. This formulation is useful for discovering previously unknown failure
modes and finding regions where the system can operate safely. The second safety validation
task is to find the most-likely failure according to a probabilistic model of the disturbances.
The model can be created through expert knowledge or data to reflect the probabilities
in the real environment. The third safety validation task is to estimate the probability
that a failure will occur. Failure probability estimation is important for acceptance and
certification.

There are many algorithms that have been used for these safety validation tasks. This
survey categorizes and presents many of them. Falsification and most-likely failure analysis
are related tasks in that they involve finding failures of an autonomous system. Categories
of algorithms that are suited for these tasks include optimization, path planning, and rein-
forcement learning. Optimization approaches seek to find a trajectory of disturbances that
cause the system to fail. Path planning approaches use the environment’s state to aid in
the exploration of possible failure modes. Reinforcement learning frames the problem as a
Markov decision process and searches for a policy that maps environment states to distur-
bances that cause the system to fail. When the goal is to estimate the probability of failure
and failures are rare, importance sampling techniques generate scenarios and translate their
results into a probability estimate. For all of the safety validation tasks, a major challenge
is scalability, so problem-decomposition techniques are presented that can allow for better
scalability of the presented algorithms.

This paper is organized as follows. Section 2 introduces notation, formally defines com-
mon terms such as safety validation or black box, and formulates three safety validation
tasks. Section 3 gives an overview of the safety validation process, which involves defining
safety properties, choosing a cost function and algorithm, and determining when sufficient
testing has been performed. Section 4 summarizes the optimization-based algorithms for
safety validation. Section 5 describes how to use the environment state to find failures of the
system through several path-planning algorithms. Section 6 shows how to apply reinforce-
ment learning to safety validation. Section 7 introduces importance sampling algorithms
for estimating the probability of failure. Section 8 presents several ways to address problem
scalability through decomposition. Section 9 surveys the various applications and discusses
common strategies and adaptations of approaches for each domain. Finally, section 10
surveys existing tools in the literature and compares their basic features.
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Figure 1: Model of the safety validation problem.

2. Preliminaries

This section first describes the notation used for the description of safety validation algo-
rithms. It then defines safety validation and black box, and then summarizes several safety
validation tasks.

2.1 Notation

A safety validation problem (fig. 1) consists of a system M, an environment E , and a
safety property ψ that the system should have. The safety property is defined over state
trajectories s = [s1, . . . , st], where st ∈ S is the state of the environment at time t ∈
{1, . . . , tmax}. If the state trajectory s satisfies property ψ we write s ∈ ψ, and write s 6∈ ψ,
otherwise.

The environment is perturbed by an adversary A through disturbances x ∈ X, where
disturbances are chosen in order to induce behavior in the system which violates the safety
property. Disturbance trajectories x can be chosen freely by the adversary, but they have
an associated probability density p(x), p(x), or p(x | s), which models their likelihood in
the environment. The disturbance likelihood can be constructed through expert knowledge
or learned from data.

The environment transitions between states according to a dynamics function f that
depends on the system, environment, and disturbances. In this work, we assume that the
environment and the system are fixed, making disturbances the only way to affect the
system. Therefore, f maps disturbance trajectories into state trajectories

s = f(x). (1)

Some algorithms require the ability to simulate a disturbance xt for a single timestep from
a state st, denoted

st+1 = f(st, xt). (2)

2.2 Definitions

Safety Validation. A safety property specifies that a certain “bad event” will not occur.
In contrast, a liveness property specifies that a certain “good event” will eventually occur.
The safety-liveness distinction is important because a safety property can be shown to be vi-
olated with a concrete counterexample (the primary goal of the surveyed algorithms), while
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the violation of a liveness property requires formal argumentation (Alpern & Schneider,
1987). The definition of a “bad event” is domain specific.

Verification is the process of proving that the system meets its requirements while vali-
dation is the process of ensuring that a system fulfills its intended purpose in its operational
environment (Hirshorn et al., 2017). Although many of the algorithms presented in this
survey can be applied to both verification and validation, we choose the term validation to
emphasize the focus on testing full-scale system prototypes in simulated operational envi-
ronments. Safety validation is therefore the processes of investigating the adherence of a
system to a safety property in its operational domain.

Black-Box Assumption. A system is said to be a black box if the system model M is
not known or is too complex to explicitly reason about. In contrast, a white-box system can
be described analytically or specified in a formal modeling language, and a gray-box system
lies in between. Some white-box systems may be treated as a black box if knowledge of
their design does not help the validation process. For example, while small neural networks
can have properties formally verified by analyzing the network weights (Katz et al., 2017),
large neural networks with millions or billions of parameters are generally too large for
such techniques, and they would need to undergo black-box validation. In some cases, both
the system and the environment are treated as a black-box, which precludes the use of
validation algorithms that require the environment state (see section 3.3 for more details).

2.3 Safety Validation Goals

Three safety validation tasks are considered in this work and are defined below.

Falsification. Falsification is the process of finding a disturbance trajectory that causes
the outputs to violate a specification ψ. Such a trajectory is known as a counterexample,
failure trajectory, or falsifying trajectory. Falsification finds

x s.t. f(x) 6∈ ψ. (3)

Most-Likely Failure Analysis. Most-likely failure analysis tries to find the failure tra-
jectory with maximum likelihood

argmax
x

p(x) s.t. f(x) 6∈ ψ. (4)

Failure Probability Estimation. Failure probability estimation tries to compute the
probability that a specification will be violated. Failure probability is given by the expec-
tation of observing a failure under the disturbance model

Pfail = E
[
1{f(x) 6∈ ψ}

]
. (5)

3. Overview of Solution Techniques

Solving a safety validation problem for a given CPS requires the following steps: 1) define
a safety property to validate, 2) define an appropriate cost function to guide the search, 3)
choose a safety validation algorithm, which depends on the system, environment and safety
validation task and 4) run it until a counterexample is discovered (for falsification and most
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likely failure analysis) or the space of possible scenarios has been sufficiently covered. This
section provides an overview of each of these steps.

3.1 Safety Specification with Temporal logic

In safety validation, the first step is to define a safety property to validate. Although safety
properties could be defined using natural language or human preferences (both of which are
highly expressive), formal specification languages are often preferred because they reduce
ambiguity and permit efficient numerical evaluation of state trajectories. The most common
formal specification languages are based on temporal logic.

Temporal logic is a logical framework for describing properties of signals over time. It
enables reasoning about time and temporal information. Properties are stated as formulas
that evaluate to a Boolean value and the syntax of these formulas is governed by a gram-
mar. Various temporal logics have been proposed for different domains, including linear
temporal logic (Pnueli, 1977), metric temporal logic (Koymans, 1990), and computation
tree logic (Clarke & Emerson, 1981). Signal temporal logic (STL) is a temporal logic for
real-valued signals that is widely used as a specification language for the safety validation of
cyber-physical systems (Donzé & Maler, 2010; Kapinski et al., 2016). The basic unit of an
STL formula is an atomic formula of the form µ(xi) ≥ 0, where xi is a real-valued signal and
µ is an arbitrary function from Rn to R. A combination of Boolean and temporal operators
can be applied to one or more atomic formulas to form more complex formulas. Boolean
operators can include unary or binary Boolean operators, such as negation ¬, conjunction
∧, and disjunction ∨. Temporal operators reason over the temporal aspect of signals. Ex-
amples of temporal operators include always �ψ (ψ holds on the entire subsequent path),
eventually ♦ψ (ψ holds somewhere on the subsequent path), and until ψ1Uψ2 (ψ1 holds at
least until ψ2 becomes true on the subsequent path). Temporal operators may be indexed
by a time interval I over which the property is considered.

The following are some examples of STL formulas representing safety properties:

ψ1 : ♦[0,100](dgoal < 10) (6)
ψ2 : �[0,∞](¬(dh < 500 ∧ dv < 100)) (7)

The specification ψ1 (eq. (6)) states that at some point in the next 100 seconds, the distance
to the goal dgoal becomes less than 10 feet. Such a specification could be used, for example,
to require that an autonomous vehicle reach a goal location within a certain time limit.
The specification ψ2 (eq. (7)) states that for all time, the horizontal separation dh and the
vertical separation dv between two aircraft shall not be simultaneously less than 500 feet and
100 feet, respectively. This specification describes the absence of a near mid-air collision,
which is an important safety event for aircraft collision avoidance systems (Kochenderfer
et al., 2012).

3.2 Cost Functions

A naive approach to safety validation is to search randomly over disturbance trajectories
until a counterexample is discovered. If counterexamples are rare, this process can be
inefficient or even intractable. A cost function cstate(s) that measures the level of safety of
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the system over the state trajectory s can be used to guide the search. A well-designed cost
function will help bias the search over disturbance trajectories toward those that are less
safe. Additionally, if the goal is to find the most-likely failure, then the cost function can
incorporate the likelihood of the disturbance trajectory.

Once a cost function is defined, safety validation becomes an optimization problem over
disturbance trajectories

x∗ = argmin
x

c(x), (8)

where c(x) = cstate(f(x)). The cost function is designed such that c(x) ≥ ε ⇐⇒ f(x) ∈ ψ,
where ε is a safety threshold. Therefore, if a disturbance x causes c(x) < ε, then x is a
counterexample.

The design of the cost function c is specific to the application, but can be done ad-
hoc or using a formal measure of the satisfaction of a safety property. For simple safety
proprieties such as collision avoidance, the miss distance (point of closest approach between
agents) is a common choice (Koren et al., 2018; Lee et al., 2020). Balkan et al. (2017)
propose several possible functions for finding non-convergence behaviors in control systems,
including Lyapunov-like functions, M -step Lyapunov-like functions, neural networks, and
support vector machines.

When the specification is represented by a temporal logic expression, a natural choice for
c is the temporal logic robustness ρ(s, ψ). The robustness is a measure of the degree to which
the trajectory s satisfies the property ψ. Large values of robustness mean that at no point
does the trajectory come close to violating the specification, while low but positive values
of robustness mean that the trajectory is close to violating the specification. A robustness
value less than zero means that the specification has been violated and gives an indication
of by how much. The robustness for space-time signals can be computed from a recursive
definition (Donzé & Maler, 2010; G. E. Fainekos & Pappas, 2009; Leung et al., 2020; H.
Yang, 2013). The derivative of the robustness with respect to the state trajectory can be
approximated, which may help derive gradient-driven coverage metrics (Leung et al., 2020;
Pant et al., 2017) or with doing gradient-based optimization if the black-box assumption
is relaxed. Causal information in the form of a Bayesian network can be incorporated into
the robustness for improved falsification (Akazaki et al., 2017). Connections have also been
made between robustness and delta-reachability to relate falsification and exhaustive search
through approximations (Abbas et al., 2017).

Robustness can be a challenging objective to optimize because it can be non-smooth (Le-
ung et al., 2020) and be dominated by state variables with larger magnitude values. Leung
et al. (2020) propose smooth approximations to the robustness and Akazaki et al. (2018)
optimize a convex function of the robustness −exp (−ρ(s)), which bounds the maximum
cost. State variables may be normalized to alleviate differences in scale between the vari-
ables, but normalization requires the range of the state variables which may not be known
a priori. Zhang et al. (2019) propose measuring the robustness of each state variable inde-
pendently and using a multi-armed bandit algorithm to decide which robustness value to
optimize on each iteration.

In addition to measuring safety, cost functions may include other search heuristics. For
most likely failure analysis, the cost function includes the likelihood of the disturbance
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trajectory p(x) for counterexamples

c′(x) =

{
c(x) if c(x) ≥ ε
−p(x) if c(x) < ε.

(9)

An objective that achieves a similar goal but may be easier to optimize includes a penalty
term for low-likelihood disturbances

c′(x) = c(x)− λp(x), (10)

where the penalty λ > 0 is user-defined. Additional penalty terms related to coverage (see
section 3.4 for an overview) can be included to encourage exploration. Domain-specific
heuristics are also possible. For example, Qin et al. (2019) penalize disturbances that do
not follow a domain-specific set of constraints, which is useful for getting adversarial agents
in a driving scenario to follow traffic laws. Other examples of domain-specific heuristics are
described in section 9.

Solution techniques that build trajectories sequentially (such as those based on planning
and reinforcement learning) can require the evaluation of trajectory segments or states.
Upper and lower bounds on robustness can be computed for incomplete trajectory seg-
ments (Dreossi et al., 2015). An approach for most-likely failure analysis called adaptive
stress testing (AST) (Koren et al., 2019; Lee et al., 2020) defines a cost for individual
state-disturbance pairs

c(st, xt) =


0 if st ∈ Sfail
λ if st 6∈ Sfail, t ≥ tmax

log p(xt | st) if st 6∈ Sfail, t < tmax,
(11)

where the specification ψ is for the system to avoid reaching a set of failure states Sfail,
and λ penalizes disturbances that do not end in a failure state. The log probability of the
disturbance is awarded at each time step to encourage the discovery of likely failures.

3.3 Overview of Algorithms

As demonstrated in the previous section, safety validation algorithms solve an optimization
problem to discover counterexamples. This section outlines four categories of algorithms
distinguished by the information they use for optimization, the requirements on the simu-
lated environment, and the desired safety validation task. For each category, we summarize
the approach and describe its strengths, weaknesses, and requirements. Specific algorithms
are discussed in more detail in sections 4 to 8.

3.3.1 Black-Box Optimization.

Many safety validation algorithms attempt to solve eq. (8) directly over the space of distur-
bance trajectories. Although gradient-based approaches cannot be used due to the black-box
assumption on the system, there are many existing algorithms that can be applied with no
modification (Kochenderfer & Wheeler, 2019). Due to the complexity of many autonomous
systems and environments, however, the optimization problem is generally non-convex and
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can have many local minima. Therefore, algorithms that can escape local minima and have
adequate exploration over the space of disturbance trajectories are preferred.

Two algorithms that have been used out of the box in falsification software (Y. An-
napureddy et al., 2011; Donzé, 2010) (see section 10 for more details) are covariance ma-
trix adaptation evolution strategy (CMA-ES) (Hansen & Ostermeier, 1996) and globalized
Nelder-Mead (GNM) (Luersen & Le Riche, 2004), both of which are effective for global op-
timization. Another way to escape local minima is to combine global and local search (Adi-
moolam et al., 2017; Deshmukh et al., 2015; Mathesen et al., 2019; Yaghoubi & Fainekos,
2019), where one optimization routine is used to explore the space of disturbances trajec-
tories to find regions of interest, and another algorithm does local optimization to find the
best disturbance trajectory in a region.

The primary benefit of optimization-based safety validation is the minimal set of restric-
tions placed on the simulator of the system and the environment. Black-box optimizers do
not need access to the state of the environment and only needs to return the value of a safety
metric for a given disturbance trajectory. The simulation state may be unavailable for im-
plementation or privacy reasons so optimization-based approaches would be a good choice
in those cases. If, however, the state is available and would be useful for finding failures,
then optimization approaches may not function as well as path planning or reinforcement
learning approaches. If an environment has stochasticity in state transitions (in addition to
the applied disturbances), then optimization techniques such as Bayesian optimization can
be used to account for it. The biggest drawback to optimization strategies is the need to
optimize over the entire space of disturbance trajectories, which scales exponentially with
the time horizon.

3.3.2 Path Planning.

Safety validation may be framed as a planning problem through the state space of the envi-
ronment using the disturbances as control inputs. Planning algorithms construct a distur-
bance trajectory x from an initial state s0 to a set of failure states Sfail, with a corresponding
cost for each transition. Classical planning algorithms (Ghallab et al., 2004) typically make
the assumption that there exists a model in a formal language such as PDDL (McDermott et
al., 1998) or STRIPS (Fikes & Nilsson, 1971), and that the size of the state space is discrete
and not too large. Both assumptions are violated when dealing with black-box autonomous
systems operating in continuous state spaces so traditional planning algorithms such as
forward and backward chaining cannot be directly applied. Other planning algorithms such
as value iteration (Sutton & Barto, 2018), Dijkstra’s algorithm (Dijkstra, 1959), and their
variants can work with a black-box transition function but do not scale well to large or
continuous state spaces. Heuristics such as state novelty (Lipovetzky & Geffner, 2012) have
been successfully applied to black-box planning settings with large state spaces (Francès
et al., 2017; Lipovetzky et al., 2015), and could therefore be applicable to safety validation
of CPS.

Planning problems with continuous and high-dimensional state spaces commonly occur
in the field of robotics and path planning (see the overview by LaValle (2006)). Optimal
control algorithms (Lewis et al., 2012) are common in this domain but typically violate
the black-box assumption by requiring gradients of the transition function. Sampling based
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approaches such as the rapidly exploring random tree (RRT) algorithm and the probabilistic
roadmap planner (Kavraki et al., 1996) can work with a black-box simulator and have been
shown to be effective in high-dimensional continuous planning problems. The probabilistic
roadmap planner, however, requires the ability to connect independent state trajectory
segments making it difficult to use in a completely black-box setting. RRT on the other
hand, grows a search tree forward from the set of reachable states and can therefore be used
with a black-box simulator. RRT has been used extensively for safety validation of CPS
and variations on the algorithm will be discussed in greater detail in section 5.

Path planning algorithms rely heavily on the environment state to discover failures,
which can be a strength and weakness. Planning algorithms can efficiently search high-
dimensional state spaces by reusing trajectory segments, and often provide a natural way
to compute state space coverage which can be used to determine when sufficient testing
has been done. If the reachable set of states is small compared to the state space, however,
planning algorithms may perform poorly (J. Kim et al., 2005). A drawback to path planning
algorithms is their inability to naturally handle stochasticity. Most path planning algorithms
rely on the ability to deterministically replay trajectory segments or initialize a simulator
into a predefined state, which may be challenging for some simulators. Additionally, if the
problem has a long time horizon, then prohibitively large trees may be required to find
failure trajectories.

3.3.3 Reinforcement Learning.

In reinforcement learning (RL), the safety validation is modeled as a Markov decision process
(MDP). An MDP is defined by a transition model P (s′ | s, x) that gives the probability of
arriving in state s′ given the current state s, a disturbance (or action) x, a reward R(s, x),
and a discount factor γ ∈ [0, 1] that decreases the value of future rewards. RL algorithms
learn a policy π (a function that maps states to disturbances x = π(s)) that maximizes
expected future rewards. Typically the reward function is chosen to be R(s, x) = −c(s, x)
so that maximizing reward minimizes cost. For an overview of MDPs and their solvers see
the texts by Kochenderfer (2015) or Sutton and Barto (2018).

Reinforcement learning algorithms are similar to path-planning approaches because they
also rely on the environment state (unless specifically formulated otherwise as in Koren et al.
(2019)). While planning algorithms search for full trajectories, RL algorithms learn a policy
that generates disturbances from the current state. Since policies do not explicitly represent
the entire disturbance trajectory, they may be easier to optimize and can be applied to long
time horizon problems. Uncontrolled stochasticity in the environment is naturally handled
by RL algorithms, which are designed to function in stochastic environments. Additionally,
many RL algorithms can be used with episodic simulators that only require the ability to
reset and step forward in time, rather than the ability to initialize to a particular state.
The downside to RL algorithms is that they may be sample inefficient and require complex
(and sometimes brittle) training procedures compared to optimization and path-planning
approaches.
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3.3.4 Importance Sampling.

For many cyber-physical applications, it is impossible to design an autonomous system
that never violates a safety property. In that case, failure probability is a useful metric of
safety. If failure events are rare, then Monte Carlo approaches will require a large number
of samples before converging to the true probability of failure (Hahn, 1972). To address this
problem, importance sampling approaches artificially increase the likelihood of failure with
a proposal distribution q(x), and then weight observed failures to get an unbiased estimate
of the probability of failure with fewer samples.

In addition to causing more failures, the proposal distribution has the property that
q(x) > 0 everywhere that p(x)1{c(x) < ε} > 0 (so all disturbances that lead to failure can
be sampled from q). The proposal distribution is also referred to as the biased, sampled, or
importance distribution. The importance sampling estimate of the probability of failure is
done by taking N samples drawn from q and computing the weighted average

P̂fail =
1

N

N∑
i=1

p(xi)

q(xi)
1{c(xi) < ε}. (12)

The variance of the importance sampling estimate is given by

Var(P̂fail) =
1

N
Eq

[
(p(x)1{c(x) < ε} − q(x)Pfail)

2

q(x)

]
. (13)

The goal of a good importance sampling distribution is to minimize the variance of the
estimator P̂fail so that fewer samples are needed for a good estimate. It is clear from
eq. (13) that a zero variance estimate can be obtained with the optimal importance sampling
distribution

q∗(x) =
p(x)1{c(x) < ε}

Pfail
. (14)

Generating this distribution is not possible in practice because c(x) is a black box and the
normalization constant Pfail is the very quantity being estimated. Importance sampling
algorithms seek to estimate the optimal importance sampling distribution q∗(x).

Importance sampling approaches require finding many failure examples to learn a dis-
tribution over failures. Therefore, failure examples can, in principle, be found using any of
the three previous approaches. The most common importance sampling approaches such as
multilevel splitting and the cross-entropy method function most similarly to optimization-
based techniques because they search directly over the space of disturbance trajectories
and do not require state information. These techniques therefore carry the same strengths
and weakness as optimization techniques. Likewise, importance sampling techniques that
involve the use of environment state have the same benefits and limitation as the corre-
sponding path planning or RL algorithm.

3.4 Coverage Metrics

A natural question that arises in safety validation is “when is testing complete?” There are
an infinite number of possible tests, so measures of coverage are used as a principled way
of determining when sufficient testing has been performed to declare a system safe. We
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overview three types of testing coverage: the probability of failure, coverage of the space of
disturbance trajectories, and coverage of the reachable set of states.

3.4.1 Probabilistic Coverage.

Testing of a safety critical system may be complete when the estimated probability of failure
is below a specified threshold with high confidence. The outcome of each simulation of a
disturbance trajectory is a Bernoulli random variable,

1 {f(x) 6∈ ψ} (15)

where a positive outcome (failure) occurs with probability Pfail. These samples can be used
with the statistical tools of hypothesis testing and estimation to determine when sufficient
testing has been performed.

In hypothesis testing, two complimentary hypotheses are compared based on the evi-
dence of sample trajectories. For example, the null hypothesis H0 may be that the proba-
bility of failure is less than an acceptable threshold p0, H0 := Pfail < p0, and the alternative
hypothesis is the complement H1 := Pfail ≥ p0. The level of confidence in a hypothesis test
is specified by the probability of type I and type II errors (with lower probability of error
requiring more data). For an overview of hypothesis testing techniques for statistical model
checking see the work of Agha and Palmskog (2018).

Estimation techniques compute a confidence interval over the probability of failure.
The frequentist approach involves taking the mean of N independent samples to produce
an estimate of the probability of failure

P̂fail =
1

N

N∑
i=1

1 {f(xi) 6∈ ψ} , (16)

and uses a concentration inequality to estimate the bounds. Suppose after N samples no
failures have been observed, then Hoeffding’s inequality states that

Pr [Pfail ≥ p0] ≤ 2e−2Np20 . (17)

The number of samplesN can be chosen so the right-hand side of the inequality is sufficiently
small. In contrast, the Bayesian approach involves maintaining a belief over the probability
of failure that gets updated with each new sample. For Bernoulli random variables, the Beta
distribution can be used to represent the belief. Benefits of the Bayesian approach include
the ability to incorporate a prior estimate of the probability of failure and the ability to
explicitly compute confidence bounds.

When validating safety-critical systems, failures are often rare and safety thresholds are
strict, so many samples are required to make probabilistic arguments for safety. To alleviate
this burden, importance sampling approaches are used (see section 7 for details), where
samples are drawn from a proposal distribution q(x), under which failures are more likely.
The samples are then appropriately weighted when performing hypothesis tests (Harrison,
2012) or estimation.

A poorly chosen, or inefficient, proposal distribution can increase the variance of an
estimator, which in turn reduces the confidence in the estimate. An inefficient proposal
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distribution can be identified when the importance weights are large, or equivalently, when
the effective sample size is small compared to the actual number of samples. When samples
with large weights are being drawn, Y. Kim and Kochenderfer (2016) suggest limiting the
maximum weight by clipping the proposal distribution in regions with large weights. Uesato
et al. (2019) suggest combining the importance sampling estimator with a basic Monte Carlo
estimator to minimize the downside of a bad proposal distribution and Neufeld et al. (2014)
provide a principled way of choosing the best estimator from several possibilities.

3.4.2 Disturbance-Space Coverage.

If failure events have extremely low probability, or if no probability model is available,
coverage can be measured by how well the sampled disturbance trajectories fill the space
of possible trajectories. Let X × T be the space of disturbance trajectories, and let V be a
set of sampled trajectories. Informally, the coverage C(V ) ∈ [0, 1] is the degree to which V
represent the space X × T . Testing can be concluded when the coverage reaches close to 1.
Although a variety of coverage metrics can be employed, dispersion (Esposito et al., 2004)
and star discrepancy (Dang et al., 2008; Dreossi et al., 2015; Nahhal & Dang, 2007) have
previously been used for safety validation.

For a distance metric between states d, the dispersion is the radius of the largest ball
in X × T that contains no points in V , i.e. maxx∈X×T minxi∈V d(x,xi). Dispersion is
challenging to compute in many dimensions and can be overly conservative (Esposito et al.,
2004). Instead, a coverage metric based on average dispersion can be computed on a grid
with n points and a spacing of δ as

Cdisp(V ) = 1− 1

δ

n∑
j=1

min (dj(V ), δ)

n
, (18)

where dj(V ) is the shortest distance from grid point j to any node in V according to the
metric d (Esposito et al., 2004). The value min(dj(V ), δ) is therefore the radius of the
largest ball that can sit at grid point j and not touch any nodes in the tree or another grid
point. Note that Cdisp → 1 when V contains points at each grid point. The coverage is
therefore related to the fidelity of the grid, with a finer grid giving a more comprehensive
value at greater computational expense.

The star discrepancy coverage metric measures how evenly a set of points is distributed.
The discrepancy D of a set over a region B ⊆ X × T is

D(V,B) =
|V ∩B|
|V |

− vol (B)

vol (X × T )
, (19)

where vol is the volume of a region and |V | is the number of sample points. The first term
is the fraction of the points that are in B and the second term is the ratio of the volume of
B to the volume of space of disturbance trajectories. The star discrepancy D∗ is the largest
discrepancy over all possible subregions of S

D∗(V ) = max
B

D(V,B). (20)

Note that D∗ → 0 when all subregions of S have their “fair share” of the sample points
based on volume, and D∗ → 1 when all the sample points overlap. To turn discrepancy
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into a coverage metric, define

Cdisc(V,B) = 1−D(V,B) (21)

and
Cstar(V ) = 1−D∗(V ). (22)

It is possible to approximate D∗(V ) using a finite partitioning of the state space into regions
{B1, . . . , Bn} such that ∪ni=1Bi = X × T . The discrepancy coverage can be computed for
each box Cdisc(V ∩ Bi, Bi) (Dreossi et al., 2015) or a lower and upper bound of the star
discrepancy coverage can be computed based on Bi (Nahhal & Dang, 2007; Thiémard,
2001).

3.4.3 State-Space Coverage.

When the space of disturbance trajectories is prohibitively large (e.g. for long time horizon
problems), it can be more efficient to define coverage metrics for the state space. In fact,
both dispersion and star-discrepancy were first used as state-space coverage metrics for the
rapidly exploring random tree algorithm (Dang et al., 2008; Dreossi et al., 2015; Esposito
et al., 2004; Nahhal & Dang, 2007).

The challenge to using state-space coverage metrics is that not every state in the state
space may be reachable. A state s is reachable if there is a disturbance trajectory that can
be applied that will cause the environment to reach s. In many safety validation problems,
the reachable states are a subset of the full state space due to the limited control via
disturbances (Esposito et al., 2004). If the reachable set is small compared to S, then the
maximum possible coverage value will also be small, and testing will never terminate. To
mitigate this problem, Esposito et al. (2004) proposed a growth metric on the set of samples
defined as

g(V ) = ∆C(V )/∆|V |. (23)

The growth g measures how much the coverage metric increases with the increase in sample
points in V . In addition to stopping based on adequate coverage, testing can be terminated
if the growth is below a specified threshold, suggesting that adding more sample points to
V will not improve the coverage.

4. Black-Box Optimization

This section surveys algorithms that use black-box optimization techniques to solve safety
validation problems, as well as the modifications that the techniques require to be effec-
tive for safety validation. Safety validation has been performed with simulated annealing,
evolutionary algorithms, Bayesian optimization, and extended ant colony optimization.

4.1 Simulated Annealing

An approach to stochastic global optimization known as simulated annealing uses a random
walk around the disturbance space to minimize a cost function c. A temperature parameter
β is used to control the amount of stochasticity in the method over time and a transition
function P (x′ | x) describes the probability distribution over the next disturbance trajectory
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x′. If the new trajectory is a counterexample, then it is returned, otherwise it is adopted
as x with probability exp(−β(c(x′) − c(x))). Due to the stochastic nature of simulated
annealing, it is often a suitable algorithm for solving a global optimization problem with
many local minima and can therefore be effective for safety validation (Abbas et al., 2013;
Aerts et al., 2018).

A common choice for transition function is to use a Gaussian distribution around the
current point x with a standard deviation that is adjusted based on the ratio of accepted
points (Kochenderfer & Wheeler, 2019). This approach may not work well when the dis-
turbance space has constraints that must be satisfied, such as lower and upper bounds on
the possible disturbances (Abbas et al., 2013). Abbas et al. (2013) proposes the use of a hit
and run approach to transitioning that respects constraints. It follows three steps:

1. Sample a random direction d in the disturbance trajectory space.

2. Perform a line search in the direction of d to determine the range of α such that
x+ αd does not violate any constraints.

3. Sample α from this range according to a chosen distribution. The standard deviation
of this distribution can be adjusted using the acceptance ratio to improve convergence.

Aerts et al. (2018) improved the hit and run scheme by suggesting that α be chosen for each
disturbance dimension separately so that highly constrained dimensions do not restrict the
step size of less constrained dimensions (Aerts et al., 2018).

Typically, the size of x remains fixed throughout the optimization, meaning the temporal
discretization of the disturbance trajectory is never adjusted. Aerts et al. (2018) note
that the frequency content of the disturbance trajectory is salient for some falsification
problems, and therefore the temporal discretization of the disturbance trajectory should
itself be optimized. An approach called input-signal-space optimization uses a two-layered
approach, where an outer loop uses SA to select the length of the disturbance trajectory,
and an inner loop finds the lowest cost trajectory for that length. This approach is able
to adapt the fidelity of the time domain, getting improved results for some falsification
problems (Aerts et al., 2018).

4.2 Evolutionary Algorithms

Evolutionary algorithms approach global optimization by mimicking the biological process
of evolution. A population of individuals is sampled and then evolved using the processes of
crossover, where low cost individuals are combined to form new individuals, and mutation,
where individuals are randomly modified to incorporate new traits into the population.

Q. Zhao et al. (2003) applied a genetic algorithm to generate test cases for embedded
control systems. Each individual is represented by a real-valued vector for all continuous
variables and a binary encoding for all discrete variables. Selection occurs with a probability
inversely related to the cost function. The crossover between two individuals is done using
either a randomized concatenation of subsequences or an arithmetic combination of the
individuals. Although evolutionary algorithms lack convergence guarantees and are largely
based on heuristics, they can be effective for problems with very large input spaces, as
demonstrated by their successful use in the safety validation of multi-agent sense and avoid
algorithms (Zou et al., 2014).
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Evolutionary algorithms can optimize more complex inputs such as temporal logic ex-
pressions represented as trees. Corso and Kochenderfer (2020) hypothesize that counterex-
amples can often be described by a simple temporal logic property of the disturbance tra-
jectory, called a failure description. Failure descriptions lend interpretability to automated
testing and have been shown to be effective at finding counterexamples as well as giving
engineering insight into the failure modes of the system. Genetic programming is used to
optimize failure descriptions ϕ that satisfy

x ∈ ϕ =⇒ c(x) < ε. (24)

The cost function for a given failure description is the average cost of trajectories that
satisfy it. Sampling satisfying trajectories is, in general, a hard problem, but Corso and
Kochenderfer (2020) provide an algorithm to do so under a set of assumptions.

4.3 Bayesian Optimization

In Bayesian optimization (Mockus, 2012), a surrogate model (such as a Gaussian process)
is used to represent the cost function over the space of disturbance trajectories. The model
is used to select disturbance trajectories that are likely to lower the cost function. Main-
taining a surrogate model can be beneficial when evaluations of c(x) are costly or when the
cost is stochastic. For these reasons, Bayesian optimization is a natural choice for safety
validation (Abeysirigoonawardena et al., 2019; Akazaki et al., 2017; Deshmukh et al., 2017;
Mullins et al., 2018; Silvetti et al., 2017; X. Yang et al., 2020).

Bayesian optimization iterates over two steps: 1) updating the surrogate model with new
evaluations, and 2) choosing the next disturbance trajectory to evaluate. The update step
computes a posterior distribution given the new evaluations (the details depend upon the
employed surrogate model). Then the next disturbance trajectory is chosen using an inner
optimization loop that optimizes a metric such as prediction-based exploration, error-based
exploration, lower confidence bound exploration, probability of improvement, or expected
improvement (see Kochenderfer and Wheeler (2019) for details). The inner optimization
can be performed using simulated annealing (Akazaki et al., 2017) or a sampling plan with
good coverage of the space of disturbance trajectories (Silvetti et al., 2017).

One drawback to using Gaussian processes is their inability to scale to large dimensions
and many sample points. To improve scalability for safety validation, Mathesen et al. (2019)
introduced an algorithm called stochastic optimization with adaptive restarts (SOAR) that
uses a two-layered Bayesian optimization approach to trade off between global and local
search. A Gaussian process model is maintained over the global search space, and a stochas-
tic method is used to select regions for further exploration. Local Gaussian process models
are used for refined searching of local regions. When a local region is no longer seeing
improvement, a new region is selected. Deshmukh et al. (2017) addressed scaling to large
dimensions using a dimensionality reduction technique based on random embeddings (Wang
et al., 2016).

4.4 Extended Ant-Colony Optimization

Ant colony optimization is a probabilistic technique initially used for finding optimal paths
through graphs (Dorigo et al., 1996). Ant colony optimization was extended to continuous
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spaces by G. E. Fainekos and Giannakoglou (2003) and later applied to falsification (Y. S. R.
Annapureddy & Fainekos, 2010). Extended ant-colony optimization works by treating each
disturbance trajectory x as a path through a graph with edges between adjacent temporal
points (xt, xt+1). At each time t, the space of disturbances is discretized into N equally
spaced cells. Ants traverse the graph by selecting their next cell i at time t based on the
amount of pheromone present, where high pheromone implies low cost. After an ant selects
their next cell, it then selects a point uniformly at random inside that cell and moves to it.
At the end of each trajectory, pheromone is deposited at each cell for low-cost trajectories.

5. Path Planning

This section surveys safety validation algorithms based on planning algorithms (and their
required modifications). The presented algorithms are variants of the rapidly exploring
random tree algorithm, multiple shooting methods, and Las Vegas tree search.

5.1 Rapidly Exploring Random Tree

Rapidly-exploring random tree (RRT) is a path planning technique for efficiently finding
failure trajectories (Lavalle, 1998). A tree is iteratively constructed by sampling the state
space and growing in the direction of unexplored regions. RRT has been applied to the
safety validation of black-box systems (Branicky et al., 2006; Dang et al., 2008; Dreossi
et al., 2015; Esposito et al., 2004; J. Kim et al., 2005; Koschi et al., 2019; Nahhal & Dang,
2007; Plaku et al., 2009; Tuncali & Fainekos, 2019).

Algorithm 1 Rapidly-exploring random tree.
1: function RRT(s0, Sfail)
2: T ← InitializeTree(s0)
3: loop
4: sgoal ← SampleState()
5: snear ← NearestNeighbor(T , sgoal)
6: xnew ← GetDisturbance(snear, sgoal)
7: snew ← f(snear, xnew)
8: AddNode(T , snear, snew)
9: return CounterExamples(T , Sfail)

The basic approach is presented in algorithm 1. On each iteration, a random point
sgoal in the state space is generated, which acts as the goal state for the next node to be
added (line 4). The tree is searched for the node snear that is closest to the goal state
(line 5) based on some distance metric d. This node will act as the starting point when
attempting to reach the goal. A disturbance xnew is generated that drives snear toward
sgoal (line 6). Since the system is a black-box, an xnew that causes snear = sgoal can only
be approximated through random sampling or a more advanced optimization procedure.
Lastly, the disturbance xnew is simulated, starting from snear, resulting in a new state snew
(line 7) which is then added to the tree as a child of snear (line 8). Note that if the simulator
cannot be initialized to any state, then the trace can be simulated by starting at the root
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and simulating the disturbances through the branch containing snear. The algorithm stops
when the maximum number of iterations is reached, a suitable falsifying trajectory is found,
or tree coverage reaches a specified threshold. Variants of RRT (Branicky et al., 2006; Dang
et al., 2008; Dreossi et al., 2015; Esposito et al., 2004; J. Kim et al., 2005; Koschi et al.,
2019; Nahhal & Dang, 2007; Tuncali & Fainekos, 2019) typically differ in their approach to
state space sampling, choice of distance metric for nearest neighbor selection, or by adding
additional steps that reconfigure the tree for improved performance.

5.1.1 Adaptive Sampling.

When the reachable set is only a subset of the state space, a uniform sampling of goal states
may be inefficient, leading to slow tree growth and low coverage values. There are several
techniques for biasing goal samples toward the reachable set.

An approach known as guided-RRT (g-RRT) (Nahhal & Dang, 2007) biases the selection
of sgoal to regions with low coverage. In g-RRT, the state space is segmented into n regions
{B1, . . . , Bn} and each region is assigned a weight w(Bi). Regions are sampled according
to

P (Bgoal = Bi) =
w(Bi)∑
j w(Bj)

, (25)

and then sgoal is sampled uniformly from Bgoal. In the original version of g-RRT (Dang
et al., 2008; Nahhal & Dang, 2007), the weight w(Bi) is related to the increase in the lower
and upper bounds of Cstar when a new point is added to Bi. In later work (Dreossi et al.,
2015), the weight is w(Bi) = σ(D(T,Bi)), where σ is the sigmoid function. The goal in
both cases is to sample points that increase the coverage of the tree.

J. Kim et al. (2005) maintain a distribution over sgoal that has a mean biased toward low
values of the cost function and a standard deviation that adaptively changes to maximize
sampling in the reachable set. As the algorithm progresses, they keep track of the ratio β
of successful expansions of the tree. A successful expansion is one where

d(snew, sgoal) > d(snear, sgoal), (26)

meaning the tree was able to grow in the direction of sgoal. The ratio β is updated after a
user-specified number of iterations and is used to update the standard deviation between
bounds [σmin, σmax] as

σ = (1− β)(σmax − σmin) + σmin. (27)

Thus, when the number of successful expansions is large, the standard deviation is reduced
to continue sampling in that region, but when the tree frequently cannot grow toward sgoal
the range of values is increased to better search for the reachable set.

5.1.2 Neighbor Selection.

The choice of distance metric for finding the nearest neighbor snear is critical for the per-
formance of RRT. In some applications, it is acceptable to minimize the Euclidean distance
between snear and sgoal (Koschi et al., 2019), but this approach may be insufficient for some
problems. First, Euclidean distance does not take into account whether sgoal can be reached
from snew based on the dynamics of the system. Secondly, if the reachable set is only a small
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subset of the state space, then points on the boundary of the reachable set will frequently
be chosen as snear, limiting the coverage of the tree. Lastly, if there is a cost associated with
each trajectory, it should be considered when picking which node to expand.

To encode reachability in the selection of node neighbors, J. Kim et al. (2005) use an
estimate of the time to go from snear to sgoal defined by

t(snear, sgoal) =

{
d(snear, sgoal)/v if v > 0

∞ otherwise
, (28)

where the velocity is

v = max
x∈X

(
−
∂d(s, sgoal)

∂s
f(snear, x)

∣∣∣∣
s=snear

)
. (29)

To compute the derivative ∂d(s, sgoal)/∂s exactly requires white-box knowledge of the sys-
tem, but it could be estimated with domain knowledge or from simulations (J. Kim et al.,
2005).

Another modification to neighbor selection is known as history-based selection, which
penalizes the selection of nodes that fail to expand (J. Kim et al., 2005). A node fails
to expand if it is selected as snear and creates an output snew that is already in the tree.
Failure to expand typically occurs when snear is on the boundary of the reachable set. The
number of times a node has failed to expand is stored as nf and the distance between nodes
is modified as

dh(snear, sj) = d(snear, sj) + λnf (30)

for any choice of distance metric d and a user specified constant λ > 0. J. Kim et al. (2005)
chose λ to balance the contribution of d and nj .

To incorporate a state-dependent cost function c(s) into the RRT algorithm, Karaman
and Frazzoli (2011) developed the approach known as RRT∗. In RRT∗, the neighbor se-
lection is done by finding a set Snear of nodes in an ε-radius of sgoal and then selecting the
node in Snear that has the lowest cost, i.e.

snear = argmin
si∈Snear

c(si) (31)

where
Snear = {s | d(s, sgoal) < ε}. (32)

For the cost function, Dreossi et al. (2015) use the partial robustness of the system specifi-
cation while Tuncali and Fainekos (2019) use a heuristic cost for autonomous driving.

5.1.3 Other RRT Variants.

In the basic version of RRT, a single tree is maintained and grown until termination, but
under some circumstances multiple trees may be used. When searching over a space of static
parameters θ, a different tree can be grown for each choice of parameter in an approach
called rapidly exploring forest of trees (RRFT) (Esposito et al., 2004). In RRFT, any tree
that has reached a threshold coverage value or has stopped growing will be terminated, and

395



Corso, Moss, Koren, Lee, Kochenderfer

a new tree (with a new value of θ) is added to the forest. This process continues until a
counterexample is found or until the parameter space has been adequately covered with
fully grown trees. Another example of maintaining multiple trees is the approach of Koschi
et al. (2019) where a fixed number of nodes K are added at each iteration, including the
first (so K trees are maintained). Each new node is added to the tree that has the closest
node. Trees that are not being grown can be removed for memory efficiency (Koschi et al.,
2019).

Tuncali and Fainekos (2019) combined stochastic global optimization techniques with
RRT by including a transition test (similar to simulated annealing) and a similarity test for
the addition of new nodes. New nodes are only added if they pass the transition test (based
on their cost function) and if they are sufficiently different from all of the other nodes in
the tree. These two techniques enhance exploration and coverage of the state space.

Koschi et al. (2019) introduced the backwards algorithm for RRT which connects nodes
in the tree backward in time without breaking the black-box assumption. The algorithm
starts by sampling a state s0 in the failure set. At each iteration, a state is randomly
sampled as sgoal, and the nearest neighbor snear in the tree is determined. A disturbance is
selected that drives sgoal toward snear (notice this is opposite from the basic algorithm), and
a new state snew is generated by simulating f(sgoal, xnew). To maintain continuity in the
tree, snew replaces snear and the entire branch connecting snear to s0 is re-simulated with
the same disturbances. If the resulting state (the new s0) is no longer in the failure set,
then the branch is terminated and the algorithm repeats. This approach, although more
computationally expensive, showed improved performance for finding rare failure events of
an adaptive cruise control system (Koschi et al., 2019). Note, however, that unlike the basic
RRT algorithm, this approach requires a simulator that can be initialized based only on the
observed state of the environment.

5.2 Multiple Shooting Methods

Multiple shooting methods (Bock & Plitt, 1984) solve non-linear initial value problems and
have been used for robotic motion planning (Diehl et al., 2006) and falsification (Zutshi
et al., 2014; Zutshi et al., 2013). The idea is to sample trajectory segments using random
initial states and random disturbances. A shortest path problem is solved to find a candidate
trajectory through these segments that connects initial states and failure states, where two
segments are connected if the terminal state of one segment is sufficiently close to the
starting state of another. The discovered path may not be feasible due to the gaps between
segments, so an optimization routine is used to find disturbances that minimize those gaps
and find an actual failure trajectory. In most multiple-shooting algorithms, the procedure
to connect trajectory segments involves using white-box information such as dynamical
equations or gradients (Zutshi et al., 2013), and therefore multiple-shooting algorithms are
not in general applicable to the black-box setting.

Zutshi et al. (2014) introduces two ideas that make multiple shooting methods applicable
for black-box falsification in large state spaces (Zutshi et al., 2014):

1. The state space should only be explored around the reachable set.

2. State space discretization and refinement can be used to connect segments.
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To achieve this, the state space is implicitly discretized into disjoint cells C, each of size δ.
The cells are not explicitly stored, but they are constructed so it is efficient to find which
cell contains a given state. One efficient representation is a Cartesian grid with a fixed cell
size. The reachable set is estimated by running simulations forward in time with random
disturbances and recording which cells are connected together. The cell connections form a
graph that can be searched for candidate falsifying trajectories. Cells in these trajectories
are refined until an actual counterexample is found. Since the algorithm relies on a graph
search over a discretized grid, it may be useful to provide a set of initial states S0 to have
more than one starting cell.

Algorithm 2 Black-box multiple shooting method.
1: function MultipleShooting(S0, Sfail, δ, γ, Nmax, K)
2: T ← ∅
3: loop
4: G← SampleSegments(S0, T, δ,Nmax,K)
5: T ← FindCandidateTrajectories(G,S0, Sfail)
6: if T = ∅
7: return ∅
8: if ActualTrajectories(T ) 6= ∅
9: return ActualTrajectories(T )

10: δ ← γδ

11: function SampleSegments(S0, T , δ, Nmax, K)
12: G← ∅
13: Q← SampleCells(S0, δ)
14: while Q 6= ∅ and |G| < Nmax

15: C ← Pop(Q)
16: Sample {s1, . . . sK} uniformly from C
17: Sample {x1, . . . , xK} from p(x)
18: for i ∈ 1 : K
19: snew = f(si, xi)
20: Cnew ← FindCell(snew, δ)
21: if Cnew ∈ T or T = ∅
22: G← G ∪ (C,Cnew, xi)

return G

The approach is presented in algorithm 2. It takes as input a set of initial states S0
and a set of failure states Sfail, a discrete cell size δ, a refinement factor γ, a maximum
number of segments per iteration Nmax, and the number of samples per cell K. A set of
candidate trajectories T is initialized to the empty set (line 2). On each iteration, a graph
G is constructed with edges (Ci, Cj , xij), where xij is the disturbance that transformed
the system from a state si ∈ Ci to a state sj ∈ Cj (line 4). An initially empty graph is
constructed as follows:

• Some starting cells are sampled by sampling states in the initial set S0, finding the
corresponding cell, and adding the cell to a queue Q (line 13).
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• On each iteration, a cell C is popped off the queue and K states are sampled uniformly
at random from within C (line 16). Then, a disturbance is randomly sampled for each
state (line 17).

• Each sampled state si is simulated forward one timestep based on the corresponding
random disturbance xi (line 19), resulting in a new state snew in cell Cnew (line 20).

• To ensure the search focuses on promising regions of the state space, the edge (C,
Cnew, xi) is only added to the graph if Cnew is in the set of candidate trajectories T
(line 21). On the first iteration, when the set of candidate trajectories is empty, all
edges are added.

Once the graph is constructed, it is searched for candidate trajectories that connect cells
in the initial set to cells in the failure set (line 5). If no candidate trajectories are found, then
the algorithm failed. Each candidate trajectory in T is simulated from its starting state
using the disturbance applied at each segment to get an actual trajectory (line 8). The
actual trajectory will not match that candidate trajectory, since the candidate trajectory is
made up of disjoint segments. If the actual trajectory is a counterexample, then return it,
otherwise, reduce the grid size by a factor of γ (line 10) and repeat the procedure.

5.3 Las Vegas Tree Search

Las Vegas tree search (LVTS) (Ernst, Sedwards, et al., 2019) is a tree-based falsification
algorithm based on two ideas:

1. The disturbance trajectory x should only be discretized in time as finely as it needs
to be.

2. The system is more likely to be falsified by extreme values of the disturbance space
than less extreme values.

To achieve the first goal, the disturbance trajectory is constructed piecewise from distur-
bances of different durations. Longer duration disturbances can be implemented as a rep-
etition of a disturbance. Let the notation x[`] indicate that x is applied ` times. In LVTS,
the set of possible disturbances at each step is discretized and represented by the set Y and
the probability of selecting disturbances x[`] is P (x[`]). To achieve the second goal, P is
defined to favor disturbances with more extreme. LVTS (algorithm 3) takes as input Y , P ,
cost function c, and safety threshold ε.

The algorithm proceeds by growing a tree of disturbance trajectories x. Each unfinished
disturbance trajectory x has associated with it a set of explored disturbances (initialized to
the empty set in line 2) and a set of unexplored disturbances (initialized to the set of all
possible segments Y in line 3). For each iteration of the algorithm, a trajectory is stochas-
tically expanded by sampling a new disturbance from P (line 7) and then concatenating
it to the current trajectory (line 8). If the new disturbance has not been explored before,
it is removed from the unexplored set (line 10) and a lower and upper bound on the cost
is computed from the function CostBounds. If the cost function is the robustness, then
the bounds can be computed by the method of Dreossi et al. (2015). If the upper bound is
lower then the safety threshold, then a counterexample is found and returned (line 13). If
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Algorithm 3 Las Vegas tree search.
1: function LVTS(Y , P , c, ε)
2: explored(x) ← ∅ for all x
3: unexplored(x) ← Y for all x
4: loop
5: x← ∅
6: while unexplored(x) 6= ∅ or explored(x) 6= ∅
7: Sample x from P (x)
8: xnew ← [x x]
9: if x ∈ unexplored(x)

10: unexplored(x)← unexplored(x) \ {x}
11: c, c ← CostBounds(f(xnew))
12: if c < ε
13: return xnew

14: if c > ε
15: break 4
16: explored(x)← explored(x) ∪ {x}
17: x← xnew

the lower bound is greater than the safety threshold, then a counterexample is not possible
for this disturbance trajectory and the algorithm restarts (line 15).

Disturbance segments are grouped by an integer ` ∈ {1, . . . , `max} that controls the
duration of the segment. For duration `, the set Y` is given by

Y` = {x[`] | xi = xi,min + αi,j(xi,max − xi,min)}, (33)

where xi is the ith component of the disturbance space and xi,min and xi,max are the mini-
mum and maximum values of that component. The factor

αi,j = (2j + 1)/2bi (34)

for any integer j < (2`max−` − 1)/2 and b1 + . . . + bn = 1. The construction of these
sets ensures that segments with larger values of ` have longer duration and more extreme
disturbance values. The full set of segments Y is the union of all the Y` up to a maximum
level of refinement `max:

Y =

`max⋃
`=1

Y` (35)

The segment sampling distribution P ensures that disturbances with larger values of
` and lower costs are chosen more often. The distribution is constructed implicitly by
assigning a weight to each level of refinement

w` =
|unexplored(x) ∩ Y`|+ |explored(x) ∩ Y`|

2`max−`|Y`|
(36)

and choosing ` with probability w`/
∑`max

k=1 wk. The weight is constructed to favor lower
values of ` (due to the exponential factor in the denominator) until the number of unexplored
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edges goes to zero without finding many plausible trajectories (note that the explored set
only increases if the trajectory remains plausible for falsification). Once the refinement level
is selected, one of the following four options is selected uniformly at random:

1. Sample x from unexplored(x) ∪ Yl.

2. Sample x from explored(x) ∪ Yl.

3. Choose the x from explored(x) ∪ Yl that minimizes the cost of [x x].

4. Choose the x from explored(x) ∪ Yl that minimizes the cost of [x x x′] for all x′ ∈
explored([x x]).

Option 1 ensures exploration over the unexplored set, while options 2–4 increasingly exploit
knowledge of trajectories with low costs.

6. Reinforcement Learning

The algorithms presented in this section are based on techniques from reinforcement learn-
ing. We present variants of Monte Carlo tree search and deep reinforcement learning.

6.1 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is an online planning algorithm for sequential decision
making that has seen success for long time-horizon problems (Silver et al., 2016), making it
useful for safety validation (Delmas et al., 2019; Julian et al., 2020; Lee et al., 2020; Moss
et al., 2020; Wicker et al., 2018; Zhang et al., 2018). Monte Carlo tree search uses online
planning to determine the best actions to take from a starting state to maximize reward.
A search tree is maintained over all of the paths tried as well as an estimate of the value
function at each step. Each iteration in MCTS consists of four steps:

1. Selection: Starting from the root of the search tree, disturbances are selected sequen-
tially until reaching a leaf node, with the goal of choosing disturbances that are more
likely to lead to high reward.

2. Expansion: Once the algorithm arrives at a leaf node, a new disturbance is chosen,
and a node is added to the tree with zero visits.

3. Rollout: The value of the new node is estimated by running a simulation from the
new node while choosing disturbances according to a rollout policy until the episode
terminates or the finite planning horizon is reached.

4. Backpropagation: The value of the new node is used to update the value of all of its
ancestors in the tree.

These four steps are repeated until a stopping criterion is met such as computational
budget, wall-clock time limit, or a threshold for the reward of the best solution found so
far. At that point, the best trace can be returned, or, for longer time-horizon problems,
the best candidate disturbance is selected and the process restarts, possibly retaining the
subtree associated with the selected disturbance.
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In problems where there is a discrete state or observation space, it makes sense to main-
tain separate state and disturbance nodes so if a state is repeated, the corresponding node
in the tree can be reused, increasing the ability of the algorithm to reuse prior informa-
tion. In most safety validation problems, however, the state space of the simulator will
be continuous (or unavailable to the algorithm entirely), in which case the same state will
rarely be sampled twice. To save memory, it is common to only include disturbance nodes
in the search tree, which is equivalent to setting the state equal to the concatenation of all
disturbances that led to it (st = x1:t).

The discrete nature of nodes in the search tree are incompatible with a continuous
disturbance space X. Delmas et al. (2019) discretize the disturbance space into a small
number of discrete disturbances that are representative of the continuous space. As an
alternative to discretization, when adding a new node to the tree, Lee et al. (2020) sample
a new disturbance xt from a known distribution over disturbances by selecting a random
seed uniformly at random and using it to produce disturbances from p(x).

Zhang et al. (2018) combined MCTS with global optimization, using MCTS for explo-
ration of the disturbance trajectory space and global optimization for refinement of the
disturbance trajectories. The disturbance space is first discretized into L1× . . .×Ln equal-
sized regions. Each node in the tree represents one of the regions in the disturbance space
denoted Bt. When a new node is added to the tree at depth d, its value is estimated by
solving the following constrained optimization problem:

max
x

E

[∑
t

γtR(st, xt)

]
s.t. x1 ∈ B1, . . . , xd ∈ Bd.

(37)

This approach can be combined with progressive widening (Chaslot et al., 2008; Coulom,
2007) when the disturbance space is large. Instead of randomly sampling a new region,
optimization can be used to find the optimal region to expand. When adding a new dis-
turbance at depth d + 1, solve eq. (37) with the added constraint that xd+1 exists in the
set of regions that have yet to be expanded. For ease of optimization, that subset may be
further restricted to its convex subset (Zhang et al., 2018). Once the MCTS budget is spent,
traces with high reward can be found by solving the constrained optimization problem of
the highest performing branch of the tree.

The use of optimization for each new node of the search tree increases the computational
cost of the algorithm. Zhang et al. (2018) note that balancing the computational budget be-
tween optimization iterations and tree expansions is critical to the success of this approach.
They compare simulated annealing (SA) (Abbas et al., 2013), Globalized Nelder-Mead
(GNM) (Luersen & Le Riche, 2004), and covariance matrix adaptation evolution strategy
(CMA-ES) (Hansen & Ostermeier, 1996) for the global optimization algorithms. It is noted
that since CMA-ES has a built-in exploration strategy, it sees less improvement when com-
bined for MCTS than SA and GNM. GNM, on the other hand, does not have an exploration
strategy (beyond probabilistic restarts) and therefore sees a significant improvement with
MCTS.
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6.2 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a category of reinforcement learning that uses deep
neural networks to represent the value function V (s), the state-action value function Q(s, x),
or the policy π(s). DRL has shown state-of-the-art results in playing Atari games (Mnih et
al., 2015), playing chess (Silver et al., 2017), and robot manipulation from camera input (Gu
et al., 2017). In recent years, different DRL techniques have been applied to falsification
and most-likely failure analysis (Akazaki et al., 2018; Behzadan & Munir, 2019; Corso et al.,
2019; Koren et al., 2018; Koren & Kochenderfer, 2019, 2020; Kuutti et al., 2020; Qin et al.,
2019).

DRL algorithms are broadly split between value-function approaches, where the neural
network is used to represent the value function, and policy search approaches, where the
neural network represents the policy. There are advantages and disadvantages to both, and
several algorithms are discussed below. The reader is referred to the original papers for
implementation details.

If the disturbance space X is discrete, then the deep Q-network (DQN) (Mnih et al.,
2015) algorithm can be used for falsification (Akazaki et al., 2018; Qin et al., 2019). In
DQN, the optimal Q-function is estimated by a neural network that takes as input the state
s and outputs a value for each discrete disturbance. Disturbances are selected greedily as

x = argmax
x

Q(s, x) (38)

with probability 1 − ε and chosen at random with probability ε to encourage exploration.
The parameters of the Q-network are updated to minimize the mean squared error between
the current value and a target

Qtarget(s, x) = r(s, x) + γmax
x′

Q(s′, x′). (39)

Since the target value greedily selects the highest value disturbance, the Q-network can be
trained on any sample of a state, disturbance, and reward (a feature known as off-policy
learning). Many implementations of DQN therefore maintain a replay buffer that stores
previous (s, x, r, s′) tuples which are repeatedly used to update the network parameters.
This reuse of data makes DQN a relatively sample-efficient algorithm. The main drawback
of DQN is that it is incompatible with large or continuous disturbance spaces.

For large or continuous disturbance spaces, the policy itself is represented by a neural
network (with parameters θ) that takes the state as input and either outputs a disturbance
directly (e.g. x = πθ(s)) or outputs parameters of a distribution from which a disturbance
can be sampled (e.g. for a normal distribution [µ, σ2] = πθ(s) and x ∼ N (µ, σ2)). The
policy is optimized to produce higher rewards using the policy gradient method (Sutton et
al., 2000). Policy gradient methods can suffer from high variance and can be unstable during
optimization. To improve optimization stability, an approach known as trust region policy
optimization (TRPO) (Schulman et al., 2015) restricts the amount a policy can change at
each step. TRPO has previously been used for falsification of autonomous vehicles (Corso
et al., 2019; Koren et al., 2018; Koren & Kochenderfer, 2019).

Another drawback of policy gradient methods is their inability to learn off-policy. With-
out data reuse, these methods can require a large number of simulations to converge. Newer

402



Algorithms for Black-Box Safety Validation

approaches combine policy gradient methods with value function methods to create the
actor-critic paradigm, which can perform well on problems with continuous disturbance
spaces while also using previous simulation data to improve sample efficiency. Actor-critic
methods use two neural networks, one for the policy (the actor network) and one for the
value function (the critic network) and come in several varieties. Advantage actor critic
(A2C) was used for falsification by Kuutti et al. (2020). Its more scalable counterpart,
asynchronous advantage actor critic (A3C), was used by Akazaki et al. (2018). Behzadan
and Munir (2019) use another actor-critic method known as deep deterministic policy gra-
dient (DDPG) combined with Ornstein-Uhlenbeck exploration (Lillicrap et al., 2016).

One potential drawback of using DRL for black-box falsification is the requirement for
a simulator that can be observed after each disturbance is applied. In practice, high-fidelity
simulators may be large, complex software projects, so it may be difficult to access the true
simulator state at each timestep, whereas getting the results or only some partial data on
the final state may be easier. Koren and Kochenderfer (2019) developed a DRL technique
(also used by Corso et al. (2019)) that does not require access to the simulator state. The
technique uses a recurrent neural network (RNN) with long-short term memory (LSTM)
layers as the policy (Hochreiter & Schmidhuber, 1997). The RNN maintains a hidden state
akin to the state of the simulator that is used to make future decisions. The input to
each layer is the previous disturbance and the initial state of the simulation, allowing the
approach to generalize across initial conditions.

The advantages of DRL and tree search methods can be combined in an approach
called go-explore (GE) (Ecoffet et al., 2019), which has been effective for hard-exploration
problems with long time horizons and no reward shaping. GE has two phases, a tree search
exploration phase, and a DRL robustification phase. While the original version of GE uses
the state of the simulator when building the tree and training the robust policy, Koren
and Kochenderfer (2020) modified the algorithm to use the history of disturbances instead,
reducing the access requirements of the simulator.

7. Importance Sampling Algorithms

This section summaries algorithms for estimating the probability of failure based on im-
portance sampling. Algorithms include the cross-entropy method, multilevel splitting,
classification-based importance sampling, and state-dependent importance sampling.

7.1 Cross-Entropy Method

The cross-entropy method iteratively learns the optimal importance sampling distribution
from a family of distributions q(x; θ) parameterized by θ (see De Boer et al. (2005) for
an overview and Rubinstein and Kroese (2013) for a deeper examination). The optimal
distribution parameters θ∗ are found by minimizing the KL-divergence between a proposal
distribution q(x; θ) and the optimal distribution q∗(x), i.e.

θ∗ = argmin
θ

DKL(q
∗(x) ‖ q(x; θ)), (40)
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where DKL calculates the KL-divergence. Equation (40) can be cast as a stochastic opti-
mization problem as

θ∗ ≈ argmax
θ

1

N

N∑
i=1

[
1{c(xi) < ε} p(xi)

q(xi;ϕ)
log q(xi; θ)

]
, (41)

where ϕ is any set of parameters and xi are sampled from q(x;ϕ). Equation (41) can be
solved analytically when the family of algorithms is in the natural exponential family (i.e.
normal, exponential, Poisson, gamma, binomial, and others), and the solution corresponds
to the maximum likelihood estimate of the parameters (De Boer et al., 2005).

For an iterative solution to finding θ∗, the initial parameters θ0 are chosen so that
q(x; θ0) is close to p(x). Then, for k = 0, 1, . . .

1. Set ϕ = θk.

2. Draw samples {x1, . . . ,xN} from q(x;ϕ).

3. Solve eq. (41) for θk+1.

One major challenge to this approach is the rarity of failure events. If all samples have
c(x) > ε, then P̂fail = 0 and the algorithm may not converge to the optimal proposal
distribution. One solution is to adaptively update the safety threshold ε at each iteration.
At iteration k, a safety threshold εk and a rarity parameter ρ is chosen so that the fraction
of samples that have c(x) < εk is ρ. The parameter ρ is also known as the quantile level
and is often set in the range ρ = [0.01, 0.2] (Y. Kim & Kochenderfer, 2016; O’Kelly et al.,
2018).

The cross-entropy method has been used to estimate the probability of failure for aircraft
collision avoidance systems (Y. Kim & Kochenderfer, 2016) and autonomous vehicles (Z.
Huang et al., 2017; O’Kelly et al., 2018; D. Zhao et al., 2016). Typically, probability distri-
butions in the natural exponential family are used (Y. Kim & Kochenderfer, 2016; O’Kelly
et al., 2018; D. Zhao et al., 2016) so that cross-entropy updates can be performed analyti-
cally. Z. Huang et al. (2017) propose a method for using piecewise exponential distributions
for more flexibility while retaining the ability to compute updates analytically. Sankara-
narayanan and Fainekos (2012) discuss piecewise uniform distributions over the disturbance
space, and techniques for factoring the space to reduce the number of parameters needed.

7.2 Multilevel Splitting

Multilevel splitting (Kahn & Harris, 1951) is a non-parametric approach to estimating the
optimal importance sampling distribution. Rather than relying on an explicit probability
distribution (as in the cross-entropy method), multilevel splitting relies on Markov chain
Monte Carlo (MCMC) estimation and scales better to larger dimensions (Botev & Kroese,
2008). It has been applied to the estimation of probability of failure of autonomous driving
policies with a large number of parameters (Norden et al., 2019).

The idea of multilevel splitting is to define a set of threshold levels ∞ = ε0 > ε1 > . . . >
εK = ε and assume that the probability of failure can be computed as a Markov chain of
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the form

P (c(x) < ε) =
K∏
k=1

P (c(x) < εk | c(x) < εk−1). (42)

Given enough levels (i.e. a large enough K), each conditional probability

Pk = P (c(x) < εk | c(x) < εk−1) (43)

is much larger than P (c(x) < ε) and can therefore be computed efficiently with basic Monte
Carlo methods. Algorithm 4 outlines the algorithm. At iteration k, N samples of x are
sorted by their cost function (line 8) and used to estimate the conditional probability Pk

(line 10). The total probability is updated based on the Markov assumption (line 11). All
samples with c(x) > εk are discarded, and the remaining samples are resampled to get back
up to N samples (line 12). Those samples perform a random walk of M steps using a kernel
T (x′ | x) (line 13). The process repeats until the level reaches the true safety threshold.
The choice of levels εk can be done adaptively (Cérou & Guyader, 2007) by selecting a rarity
parameter ρ such that ρN samples are kept at each iteration (line 9).

Algorithm 4 Adaptive multilevel splitting.
1: function MulitlevelSplitting(p, N , M , T , c, ε)
2: Pfail ← 1
3: k ← 1
4: ε0 =∞
5: Sample {x1, . . . ,xN} from p(x)
6: while εk > ε
7: k ← k + 1
8: Sort {x1, . . . ,xN} by c(xi)
9: εk ← max(c(xρN ), ε)

10: Pk ← 1
N

∑N
i=1 1{c(xi) < εk}

11: Pfail ← PfailPk

12: Resample {x1, . . . ,xN} from {x1, . . . ,xρN}
13: Random walk M steps using T (x′ | x) for each {x1, . . . ,xN}
14: return Pfail

7.3 Classification Methods

Supervised learning can be used to classify disturbances as safe or unsafe. That classification
can then be combined with importance sampling to estimate the probability of failure of the
system. Supervised learning often requires observing more than one example of a failure,
so these approaches are most applicable when failures can be found relatively easily. One
approach is to use a space-filling sampling plan for the disturbance (Z. Huang et al., 2018)
to ensure good coverage of the disturbance space, but this fails to scale to high dimensions.
Another approach is to use previous versions of the system that are far less safe (Uesato
et al., 2019). Known as a continuation approach, this technique is well suited to black-
boxes that have learned behavior. During the learning process, the system will fail more
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easily (but in related ways) to the version that is ultimately being tested. Therefore, earlier
versions of the system can be used for classification of disturbances.

One way to combine supervised learning with importance sampling was explored by Z.
Huang et al. (2018). They built a proposal distribution centered on the boundary between
safe and unsafe disturbances. If q(x; θ) is a proposal distribution with parameters θ, then
they search for the point x∗ in the set of failures that maximizes the probability of the
proposal distribution:

x∗ = argmax
x

1{c(x) < ε}q(x; θ) (44)

Then, they adjust the parameters of the proposal distribution such that the mean is located
at x∗. This approach has shown to construct an efficient proposal distribution when the
unsafe set is convex (Sadowsky & Bucklew, 1990). In practice, it is unlikely that the set
is convex, but a linear boundary between safe and unsafe examples can be constructed
using the support vector machine (SVM) algorithm (Suykens & Vandewalle, 1999) if the
disturbance space is lifted to a higher dimension through a mapping φ(x).

Once a boundary is found, the choice of distribution q determines the feasibility of
computing x∗. One approach is to represent q by a mixture of K Gaussians with weights
α:

qGMM(x;µi, σi) =

K∑
i=1

αiN (x;µi, σi) (45)

The optimal mean for each Gaussian model x∗
i is determined separately and the proposal

distribution is reconstructed by

q∗GMM(x;x∗
i , σi) =

K∑
i=1

αiN (x;x∗
i , σi). (46)

Note that a Gaussian mixture model (GMM) can be obtained in the lifted space q̃GMM(φ(x))
and then reduced to the true disturbance space by integrating over the extra dimensions.
The approach is outlined in algorithm 5.

Algorithm 5 Classification-based importance sampling.
1: function ClassificationImportanceSampling(p, M , φ, c, ε)
2: Sample {x1, . . . ,xM} from p(x) and fit a GMM q̃GMM(φ(x);µi, σi)
3: Sample {x1, . . . ,xN} and compute {1{c(x1) < ε}, . . . ,1{c(xN ) < ε}}
4: Lift the disturbances by computing {φ(x1), . . . , φ(xN )}
5: Apply SVM on pairs {(φ(x1),1{c(x1) < ε}), . . . , (φ(xN ),1{c(xN ) < ε})}
6: Determine the optimal points φ∗i
7: Construct q̃∗GMM(φ(x);φ∗i , σi)
8: Marginalize to q∗(x)
9: return EstimateProbability(p, q∗)

An alternative approach by Uesato et al. (2019) uses supervised learning to estimate
the probability of failure P̂fail(x) for a disturbance x, and therefore does not make the
assumption that failures are deterministic given x. The function P̂fail(x) can be represented
using a neural network or some other model and is trained on failure examples which may
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come from weaker versions of the system. The optimal importance sampling distribution
was proven to be

q∗(x) =

√
P̂fail(x)p(x)

Ep

[√
P̂fail(x)

] , (47)

which can be sampled from using rejection sampling.

7.4 State-Dependent Importance Sampling

While most importance sampling approaches focus on the entire space of disturbance trajec-
tories, a sequential decision making framework can be used to find the optimal importance
sampling policy q(x | s) for a simulation state s (Chryssanthacopoulos et al., 2010; Corso
et al., 2020). For a Markovian system and simulator, the optimal importance sampling
policy is given by

q(x | s) = p(x | s)Pfail(s
′)

Pfail(s)
, (48)

where s′ is deterministically reached after disturbance x is applied in state s. The probability
of failure Pfail(s) can be estimated through the approximate solution of the Bellman equation

Pfail(s) =


1 if s ∈ Sfail
0 if s /∈ Sfail, s ∈ Sterm∑

a p(x | s)Pfail(s
′) otherwise,

(49)

where Sterm is the set of terminal states that are not failure states. Local approximation
dynamic programming and Monte Carlo policy evaluations are two successful approaches
for solving eq. (49) (Corso et al., 2020).

8. Problem Decomposition Techniques

One of the most significant challenges to overcome for the safety validation of autonomous
systems is that algorithms often scale poorly to large disturbance spaces and state spaces.
A common approach to dealing with scalability is the use of decomposition approaches to
simplify a larger problem into more tractable subproblems. For a survey of decomposition
approaches in MDPs see the survey of Daoui et al. (2010). Decomposition approaches that
rely on the factorization of the transition function (Guestrin et al., 2003) are not applicable
due to the black-box assumption, but techniques that generalize over the state and action
spaces could be applied to safety validation. This section will present two approaches that
have been used for decomposing the falsification problem into more manageable subproblems
to accelerate finding counterexamples.

8.1 State Space Decomposition

The approach presented by Corso et al. (2020) involves decomposing the simulator state
and disturbance spaces into independent components, and finding failures for each com-
ponent. Originally done in the context of multiple distinct actors in a simulated driving
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environment, this approach can be used with any simulation that has components that can
be simulated individually. To separate the state space into M different components, define
a decomposition operator D such that

{s(1), . . . , s(M)} = D(s) (50)

and the disturbance space X(i) associated with the state s(i) is smaller than the full dis-
turbance space (i.e. |X(i)| < |X|). For each subproblem, solve for a policy that finds
counterexamples

x(i) = π(i)(s(i)) (51)

and then combine the policies with a fusion function F such that

x = F (π(1), . . . , π(M))(s). (52)

An approach for solving the subproblems that is amenable to policy fusion is approxi-
mate dynamic programming (see section 7.4). In that case, the subproblem policy is defined
by computing the probability of failure for each state component P (i)

fail. The fusion function
can then apply simple arithmetic operations (like mean, max, or min) to arrive at a joint
policy

P̃fail(s) = F
(
P

(1)
fail (s

(1)), . . . , P
(1)
fail (s

(m))
)

(53)

x =
p(x | s)Pfail(s

′)

Pfail(s)
, (54)

where s′ is the deterministic state reached after applying disturbance x at state s.
If the fusion function is simple, then it may not capture the joint interactions between

multiple disturbance components (Corso et al., 2020). To address this problem, a global
correction factor can be learned from the full simulation. The estimate probability of failure
is given by

Pfail(s) ≈ P̃fail(s) + δPθ(s). (55)

The correction factor δPθ is trained using rollouts {s1, . . . , sN} from the full simulation
and minimizing the difference between the estimate P̃θ(si) and the actual discounted return
G(si) where

G(si) = 1{sN ∈ Sfail}
∏N

t=i p(xt | st−1)

π(xt | st−1)
. (56)

This approach has been shown to increase the number of failures found in a complex driving
environment with a large disturbance space (Corso et al., 2020).

8.2 Compositional Approach with Machine Learning Components

The approach of Dreossi et al. (2019) is applicable when the system contains a machine-
learned component that performs classification (such as a neural network based perception
system). Knowing something about the structure of the system makes this approach gray-
box, but due to the prevalence of ML components, it is still widely applicable.

The algorithm is performed with the following steps:
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• The ML component of interest f(x) is partitioned from the rest of the system and
environment. The ML component, which has a large disturbance space, is replaced
with an idealized abstraction with a much smaller input space.

• The simulator with the idealized ML component is separated into two versions: 1)
f+(x) where the ML component behaves as well as possible (i.e. classifying all inputs
correctly), and 2) f−(x) where the ML component behaves poorly.

• For each version of the simulator, a traditional falsification algorithm is used to par-
tition the disturbance space into the regions that satisfy the specification safe(x) and
regions of failures fail(x). The notation safe(x)± indicates the safe disturbance set for
f±(x). Similar notation is used for the failure set.

• To find counterexamples that were caused by the ML component, find falsifying ex-
amples in the set safe(x)+\safe(x)−. The set safe(x)− is removed because no failure is
possible in this region even with the ML component functioning as poorly as possible.
This part of the disturbance space is referred to as the region of interest.

• Finally, use a separate analyzer (possibly white-box) to identify the high-dimensional
inputs that lead to failures (i.e. misclassifications) in the region of interest.

This approach has been able to find counterexamples in a neural network perception system
used by an autonomous vehicle (Dreossi et al., 2019). A similar approach by Julian et al.
(2020) uses a white-box neural network analyzer combined with Monte Carlo tree search to
find failure trajectories of an image-based control system.

9. Applications

Autonomous cars and aircraft are two major application domains of black-box safety vali-
dation methods. While there are a variety of scenarios within these application domains,
a common underlying principle is that of miss distance as a reward heuristic. For most
scenarios, it is possible to use some sort of distance metric to measure how close the system
came to a failure during the scenario. This distance is then used to allow optimization
to find counterexamples. The autonomous vehicles and aircraft application domains are
covered in more detail below.

9.1 Autonomous Driving

Within the field of autonomous driving, there are multiple scenarios that are commonly
used for testing:

Lane-Following. Lane-following is one of the most common examples in the autonomous
vehicle field, and has been used to test systems ranging from full-stack systems (O’Kelly
et al., 2018) to systems with ideal perception (Behzadan & Munir, 2019) to systems that are
not fully autonomous like advanced driver-assistance systems (ADAS) (Koschi et al., 2019).
The system under test tries to maintain a desired speed in the current lane and may (Tuncali
& Fainekos, 2019) or may not (Kuutti et al., 2020) have the ability to change lanes. The goal
is often to find collisions, most commonly rear-end collisions. Scenario variations include
both highway driving (Norden et al., 2019) and local road driving (Tuncali et al., 2019).
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Intersection Scenarios. In an intersection scenario, the system under test approaches
a stoplight (Tuncali et al., 2019), stop sign (Abeysirigoonawardena et al., 2019), cross-
walk (Koren et al., 2018), or other form of intersection and must proceed through without
a failure. Failures can include collisions with pedestrians (Koren & Kochenderfer, 2020)
or other vehicles (Tuncali et al., 2019). Failures may also include violations of traffic
laws (Kress-Gazit & Pappas, 2008) or other rule-sets, such as those designed to prevent
at-fault collisions (Hekmatnejad et al., 2020).

Lane Change Scenarios. Lane change scenarios can involve the test vehicle initiating
a lane change or reacting to one (Qin et al., 2019; D. Zhao et al., 2016). Existing work
has considered ADAS and other driver aid systems (Z. Huang et al., 2018). Failure modes
include rear-end collisions as well as side collisions caused by turning into an occupied lane.

Platooning Vehicles. Hu et al. (2000) present a platooning scenario, where a number
of cars are following a lead car while keeping a specific trailing distance. The vehicles are
subjected to various stochastic disturbances arising from road conditions, wind conditions,
or the presence of human operators. The goal of the system is to minimize the time that
platoon vehicles spend in “chasing” mode, where they attempt to catch up to the vehicle
ahead. The system fails when any of the vehicles gets too far from or too close to the leading
vehicle.

Within these applications, researchers have developed domain specific techniques to im-
prove performance. The most common approach is to use miss distance, the physical dis-
tance between the test vehicle and other vehicles in the simulation, as a reward heuristic
to allow easier optimization (Koren & Kochenderfer, 2020). Miss distance is also the un-
derlying principle for robust semantics of temporal formulas when applied to autonomous
vehicles (Zhang et al., 2018). Some work has been done on identifying situations where a
collision is imminent instead of the collision itself, sometimes called “unsafe states” (Koschi
et al., 2019) or “boundary cases” (Tuncali & Fainekos, 2019) since these regions may be
easier to find.

9.2 Autonomous Flying and Aircraft Collision Avoidance

Black-box validation techniques have also been applied to aircraft in multiple ways:

Flight Control Software. Delmas et al. (2019) present an application where the con-
troller must keep an aircraft in steady flight in response to disturbances such as wind or pilot
inputs. Failures include reduced flight quality, autopilot disengagements, and overshoots
of expert-defined thresholds. A second application is presented by Ernst, Arcaini, et al.
(2019), where an F-16 controller performs automatic maneuvers to avoid ground collisions.
Validation algorithms search for violations of a minimum altitude from various initial con-
ditions. Julian et al. (2020) perform safety validation on a neural network controller with
camera inputs for aircraft taxiing.

Collision Avoidance. There are several examples of applications to collision avoidance
problems for aircraft. Lee et al. (2020) validate the next-generation aircraft collision avoid-
ance system (ACAS X), which makes recommendations to pilots to avoid mid-air collisions.
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The system may or may not coordinate its recommendations with the other aircraft. A fail-
ure occurs when the aircraft pass too close to one another, known as a near mid-air collision
(NMAC). Esposito et al. (2004) validate a control system that guides a group of planes from
an initial location to a final destination in the presence of stochastic wind disturbances. A
failure in this case is a collision between any two aircraft.

Flight Path-Planning. Systems are given a mission, which is a series of waypoints that
the system must navigate (Moss et al., 2020; Tuncali et al., 2018), or a target location and
keep-out zones along the path (Lee et al., 2019). Falsifying trajectories may be different
mission parameters or disturbances during mission execution, such as wind and sensor noise.
Failures occur when the system enters areas defined as off-limits, collides with an obstacle,
or produces a software error. X. Yang et al. (2020) validate scheduling and trajectory
planning for urban air mobility and package delivery systems.

9.3 General Systems

Black-box safety validation has also been applied to systems that are not tied specific
applications such as hybrid systems, neural network controllers and planning algorithms.

Hybrid Systems. Algorithms for black-box safety validation have also been applied to a
number of hybrid systems outside of autonomous driving and autonomous aircraft. Hoxha
et al. (2015) present an automatic transmission system model, which is widely used as a
benchmark problem in the literature. The system under test selects a gear based on throttle
and brake inputs as well as state information such as current engine load and car speed.
Failure events include violations of speed thresholds and changing gears too often. Jin et al.
(2014) present another widely used benchmark problem from the automotive field. The
system is an abstract fuel controller for an automotive powertrain. The controller receives
inputs such as fuel-flow measurements and throttle and must output a fuel command.
Failures may be either steady-state, such as the violation of an air-to-fuel ratio, or transient,
such as pulses that violate a settling-time constraint.

Non-automotive systems have also been considered as well. J. Kim et al. (2005) analyze
a thermostat model under various environmental conditions and test whether the heater
will be active for longer than a certain proportion of time. Schuler et al. (2017) present a
simplified model of a wind turbine, which attempts to generate as much power as possible
based on the current wind speed. Failures are violations of safety criteria, which include
violations of thresholds on tower base moment and rotor speed.

Controllers. Systems with neural network controllers have also become common case
studies for validation techniques. Yaghoubi and Fainekos (2019) test a steam condenser
controlled by a recurrent neural network (RNN). The system modulates steam flow rate
based on energy balance and cooling water mass balance. A failure occurs when the pressure
falls outside the acceptable range. Yaghoubi and Fainekos (2019) also present a generalized
non-linear system controlled by a feed-forward neural network. A failure is defined as a
constraint on the reference signal value. Ernst, Arcaini, et al. (2019) study a neural network
controlled magnet levitation system. The controller takes a reference position as input and
attempts to move the magnet to track the given reference position. A failure occurs if the
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magnet does not stabilize to a position close enough to the reference position within some
time limit.

Planning Modules. Falsification of planning modules is common among the autonomous
vehicle and aircraft applications, but there are examples in other domains as well. J. Kim et
al. (2005) present a hovercraft navigation application. The validation task tests whether the
hovercraft can successfully navigate to some goal region while subjected to stochastic wind
disturbances. Similarly, Zhang et al. (2018) validate a free-floating robot system that must
navigate to a desired target location. Fehnker and Ivani (2004) present a generalization
of this task, where an agent is moving in a discrete 2D environment, sometimes called a
gridworld task. In their formulation, there are states that must be reached and states that
must be avoided. A violation of either constraint is considered a failure.

10. Existing Tools

Implementations of various safety validation algorithms have been made available as tools
for others to use. The existing tools range from open-source academic-based toolboxes
to closed-source commercial software. A detailed survey that includes falsification tools
is provided in (Kapinski et al., 2016). Each of the tools described in this section cre-
ate falsifying disturbance trajectories to a system given a set of system requirements that
should be satisfied. Certain tools also perform most-likely failure analysis and failure prob-
ability estimation. Many of the existing tools interface with the MATLAB programming
language/environment to stress industry standard Simulink models. The tools surveyed
in this section focus on black or gray-box testing of cyber-physical systems and although
some of these tools include additional functionality, this section focuses on features of the
safety validation components. A brief overview of the existing safety validation tools will
be discussed and their benefits and restrictions will be highlighted.

10.1 Academic Tools

Many of the existing safety validation tools are products of academic research and released
as experimental prototypes. Although these tools are prototypes, several have matured
enough to gain wide-spread usage and acceptance (Diwakaran et al., 2017; Dreossi et al.,
2015; Tuncali et al., 2018; Zhang et al., 2019; Zutshi et al., 2014). Two particular falsification
tools have become benchmark standards in the field: S-TaLiRo (G. Fainekos et al., 2019)
and Breach (Donzé, 2010). Both are open-sourced MATLAB toolboxes for optimization-
based falsification. While most of the tools are open-sourced, two other tools referenced
in the falsification literature are not publicly available but still discussed. Although their
respective papers indicate how to recreate their work, none of those tools have code or
executables available online. The following collection is organized into optimization-based
and reinforcement learning-based tools.

10.2 Optimization-based Tools

The tools in this section employ a standard optimization-based technique to search for
counterexamples. Section 4 outline the approaches implemented by the following tools.
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S-TaLiRo. S-TaLiRo (Systems Temporal Logic Robustness) (Y. Annapureddy et al.,
2011; G. Fainekos et al., 2019) is a simulation-based MATLAB toolbox for temporal logic
falsification of non-linear hybrid systems. S-TaLiRo parameterizes the disturbance space
to reformulate the falsification problem as an optimization problem. S-TaLiRo instructs
the user to specify system requirements in temporal logic formulas and then constructs
the optimization cost function to minimize a global robustness metric. Various optimiza-
tion techniques are included in the S-TaLiRo toolbox, such as simulated annealing (de-
scribed in section 4.1), genetic algorithms (described in section 4.2), stochastic optimization
with adaptive restarts (described in section 4.3), the cross-entropy method (described in
section 7.1), and uniform random sampling. S-TaLiRo is designed to analyze arbitrary
MATLAB functions or Simulink/Stateflow models. S-TaLiRo is open-source and available
under the GNU General Public License (GPL).1

Specific add-ons to S-TaLiRo have been implemented that extend the core falsifica-
tion functionalities. These add-ons generally provide other solution methods or provide
additional simulation environments that interface with S-TaLiRo.

Breach. Breach (Donzé, 2010; Dreossi et al., 2019) is a simulation-based MATLAB tool-
box for falsification of temporal logic specifications for hybrid dynamical systems, similar
to S-TaLiRo. Breach uses optimization-based techniques including simulated annealing
(described in section 4.1), genetic algorithms (described in section 4.2), globalized Nelder-
Mead (Luersen & Le Riche, 2004), and CMA-ES (Hansen & Ostermeier, 1996). The user-
defined system requirements are input using temporal logic formulas. These requirements,
i.e. specifications, are used to construct a cost function to be minimized based on a ro-
bustness metric. Breach is designed to test arbitrary MATLAB functions and Simulink
models and includes a MATLAB graphical user interface (GUI) that gives the user access
to the input parameter sets, temporal logic formulas, and trajectory visualizations. Breach
is open-source and available under the BSD license.2

RRT-Rex. RRT-Rex (Rapidly-exploring Random Tree Robustness-guided Explorer)
(Dreossi et al., 2015) is a MATLAB falsification tool that focuses on coverage given a com-
putational budget. A Simulink model and user-defined requirements written in temporal
logic are taken as input. RRT path planning algorithms are used to search the disturbance
space for falsifying cases, guided by a combined state space coverage metric and a robust-
ness satisfaction metric. Section 5 discusses the RRT approach in detail. RRT-Rex is not
currently publicly available.

10.3 Reinforcement Learning-Based Tools

As a direct replacement to optimization algorithms, reinforcement learning can be used
as the central idea behind searching for falsifying trajectories. The following tools imple-
ment reinforcement learning algorithms as solvers for the falsification problem. Sections 6.1
and 6.2 describe the reinforcement learning algorithms implemented in the tools.

FalStar. FalStar (Zhang et al., 2018) is a prototype Scala tool for falsification of cyber-
physical systems that interfaces with MATLAB through a Java API. FalStar uses re-

1. https://sites.google.com/a/asu.edu/s-taliro
2. https://github.com/decyphir/breach
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inforcement learning combined with optimization techniques to generate counterexamples.
Techniques include Monte Carlo tree search with stochastic optimization as described in sec-
tion 6.1 and adaptive Las Vegas tree search (aLVTS) as described in section 5.3. FalStar
requires a Simulink model as input and uses the above techniques to generate counterex-
amples to the temporal logic specifications. FalStar can also interface directly with the
Breach toolbox to use the available solvers implemented in Breach. FalStar is open-source
and available under the BSD license.3

falsify. falsify (Akazaki et al., 2018) is a prototype simulation-based falsification tool that
uses deep reinforcement learning. Common among the academic tools, falsify can interface
directly with MATLAB functions and Simulink models. Implementing a robustness-guided
approach, falsify defines the reward as a convex function of the robustness, as described
in section 6. This robustness-guided reward function is used by two deep reinforcement
learning algorithms implemented in falsify: asynchronous advantage actor critic (A3C) and
double deep-Q network (double DQN), both described in section 6.2. The falsify tool is not
currently publicly available.

AST Toolbox. The AST Toolbox (Adaptive Stress Testing Toolbox) (Koren et al., 2018)
is a Python toolbox for safety validation, which includes falsification and most-likely failure
analysis. The AST Toolbox uses reinforcement learning to find the most likely failures of
black-box systems. Two reinforcement learning techniques used as solvers are included:
Monte Carlo tree search (described in section 6.1) and deep reinforcement learning (de-
scribed in section 6.2). The AST Toolbox is built on top of two popular reinforcement
learning packages, namely, OpenAI Gym (Brockman et al., 2016) and Garage.4 Building
off of these packages gives the user access to widely used reinforcement learning benchmark-
ing problems.

To test a system, users must provide the definitions for three basic interfacing functions.
These interfacing functions allow the tool to interact with the black-box system or simulator.
The interface defines how to initialize the system, how to step the system forward (returning
indications of found failures or a real-valued measure of distance to a failure), and finally
a means to determine if the system is in a terminal state. While the implementation
of the interface is restricted to Python, the user can call out to existing executables or
other languages from within Python. As an example, Python can interface with MATLAB
through the MATLAB Engine API for Python.5 The AST Toolbox is open-source and
available under the MIT license.6

Two related toolboxes, called AdaptiveStressTesting.jl (Lee et al., 2020) and POMDP-
StressTesting.jl (Moss et al., 2020), follow a similar paradigm as the AST Toolbox but are
implemented in the Julia programming language (Bezanson et al., 2017). Julia can in-
terface directly with many other programming languages,7 and notably, Julia can interface
with MATLAB through the MATLAB.jl package.8 AdaptiveStressTesting.jl9 and POMDP-

3. https://github.com/ERATOMMSD/falstar
4. https://github.com/rlworkgroup/garage
5. https://www.mathworks.com/help/matlab/matlab-engine-for-python.html
6. https://github.com/sisl/AdaptiveStressTestingToolbox
7. https://github.com/JuliaInterop
8. https://github.com/JuliaInterop/MATLAB.jl
9. https://github.com/sisl/AdaptiveStressTesting.jl
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StressTesting.jl10 are open-source and available under the Apache License Version 2.0 and
the MIT license, respectively.

10.4 Commercial Tools

Certain techniques for safety validation of cyber-physical systems have become available
as commercial toolboxes. This section briefly describes these commercially available tools
relating to black-box safety validation.11

Reactis. Reactis (Reactive Systems Inc., 2013) is a simulation-based MATLAB tool from
Reactive Systems for falsification of Simulink models. Reactis has three components: Re-
actis Tester, Reactis Simulator, and Reactis Validator. The Reactis Tester controls the
generation of falsifying trajectories. It uses a patented technique called guided simulation
which uses proprietary algorithms and heuristics to generate trajectories to maximize cov-
erage for falsification. Then, the Reactis Simulator runs the system under test given the
purposed falsifying trajectory. The last component, the Reactis Validator, uses proprietary
techniques to search for violations of user-defined model specifications. Reactive Systems
also has a version of Reactis for C (Reactive Systems Inc., 2011) that has analogous Reactis
components for systems developed in the C programming language. Reactis is commercially
available through Reactive Systems, Inc.12

TestWeaver. TestWeaver (Junghanns et al., 2008) is a simulation-based falsification tool
from Synopsys. TestWeaver uses proprietary search algorithms to generate falsifying trajec-
tories while maximizing coverage. User-defined system requirements and worst-case quality
indicators are used to guide the search. Extensive knowledge of the underlying system may
be required to provide useful worst-case quality indicators, which may limit the application.
TestWeaver can interface with other simulation frameworks to control the disturbance tra-
jectories via libraries in Simulink, Modelica, Python, and C. TestWeaver is commercially
available through Synopsys, Inc.13

TrustworthySearch API. TrustworthySearch API (Norden et al., 2019) is a risk-based
falsification and probability estimation framework from Trustworthy AI. TrustworthySearch
API is general for black-box validation of systems and has applications in autonomous ve-
hicle safety validation. The tool uses a proprietary sequential importance sampling and
sequential Monte Carlo approach. A version of the probabilistic-based approach was shown
using adaptive importance sampling techniques described in section 7. Importance sam-
pling is a stand-in for traditional optimization algorithms used to search the disturbance
space for falsification. The use of a proposal distribution biased towards rare failure events
ensures that these low probability events are sampled more frequently. Adaptive multilevel
splitting (AMS), described in section 7.2, is implemented to estimate this biased distribu-
tion from data. Along with falsification, the tool can also perform failure event probability
estimation, unlike other commercially available products and most academic tools. To es-
timate the failure probability, the probability from the biased distribution is reweighted

10. https://github.com/sisl/POMDPStressTesting.jl
11. The authors are not affiliated with any of the companies.
12. https://www.reactive-systems.com/
13. https://www.synopsys.com/verification/virtual-prototyping/virtual-ecu/testweaver.html
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according to the likelihood from the original unbiased distribution. Although specific to au-
tonomous vehicle safety validation, we include TrustworthySearch API to highlight recent
advancements of black-box safety validation tools. TrustworthySearch API is commercially
available through Trustworthy AI, Inc.14

10.5 Toolbox Competition

An academically-driven friendly competition for systems verification, called ARCH-COMP,
has been held annually since 2017 (Ernst, Arcaini, et al., 2019). One category within the
competition is the falsification of temporal logic specifications for cyber-physical systems.
Falsification researchers compare their tools against common benchmark problems and use
the competition to track state-of-the-art falsification tools.

As detailed in their 2019 report (Ernst, Arcaini, et al., 2019), S-TaLiRo, Breach, Fal-
Star, and falsify participated in the most recent competition. Six benchmark problems
from the literature were used to evaluate each tool. The tools were evaluated based on
their falsification rate and statistics on number of simulations required to find a falsifying
trajectory. The outcome of the 2019 competition showed that falsify had the most success,
only requiring a single simulation (after training) in certain benchmark problems. A no-
table emphasis on repeatability of results was made during this recent competition. For
future competitions, we suggest a comparison metric for tool runtime to help assess relative
computational timing complexities. Continuing to mature the competition as more falsi-
fication methods arise will help drive discussion around falsification tool design decisions.
The competition’s benchmarks and results are available online.15

10.6 Tools Discussion

The available tools can be categorized based on which aspects of the safety validation pro-
cess they implement, as described in section 2.3: falsification, most-likely failure analysis,
and failure probability estimation. Note that all of the available tools perform falsifica-
tion as their core task. In the context of the safety validation problem, the academic
tools S-TaLiRo, Breach, FalStar, RRT-Rex, and falsify are falsification-only tools. As
for commercial tools, Reactis and TestWeaver also fall into the falsification-only category.
TrustworthySearch API is the only commercial tool that also preforms failure probability
estimation and the AST Toolbox is the only academic tool that preforms most-likely failure
analysis. A full comparison is outlined in table 1.

As for solution techniques, the tools S-TaLiRo and Breach take a standard optimization-
based approach, while RRT-Rex reformulates the falsification problem to solve it using
path planning algorithms. The AST Toolbox and falsify are based on reinforcement learn-
ing and FalStar combines reinforcement learning and global optimization techniques for
further refinement of the disturbance trajectory search. Common among all of the tools
is an interface to MATLAB, with a particular emphasis on testing Simulink models. This
is evident in the survey and can be attributed to an industrial emphasis on the use of
MATLAB/Simulink models for prototyping. A common component specific to academic
falsification-only tools is the use of temporal logic to specify system requirements—encoded

14. http://trustworthy.ai/
15. https://gitlab.com/goranf/ARCH-COMP
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Table 1: Black-box Safety Validation Tools
Safety Validation Problem

Tool Falsification
Most-Likely

Failure
Probability
Estimation Technique Source

S-TaLiRo (Y. Annapureddy et al., 2011) † * X · · Optimization Open
Breach (Donzé, 2010) * X · · Optimization Open
RRT-Rex (Dreossi et al., 2015) † X · · Path Planning Closed
FalStar (Zhang et al., 2018) † * X · · Optimization, RL Open
falsify (Akazaki et al., 2018) † * X · · Reinforcement Learning Closed
AST Toolbox (Koren et al., 2018) X X · Reinforcement Learning Open
Reactis (Reactive Systems Inc., 2013) X · · Proprietary Commercial
TestWeaver (Junghanns et al., 2008) X · · Proprietary Commercial
TrustworthySearch API (Norden et al., 2019) X · X Importance Sampling Commercial
* Competed in ARCH-COMP 2019 (Ernst, Arcaini, et al., 2019).
† Accepts system specification in temporal logic (STL or MTL).

in signal temporal logic (STL) or metric temporal logic (MTL). Although expressive, re-
quiring the strict usage of a temporal logic to encode system requirements could also limit
the applicability of these tools. With a common goal of ensuring that safety-critical systems
are in fact safe, the availability of these tools allows users to provide feedback given their
specific use-cases and experience. Continued tool and technique development is further
encouraged by academically-driven competitions such as ARCH-COMP (Ernst, Arcaini,
et al., 2019).

11. Conclusion

With the rapid increase of safety-critical autonomous systems operating with humans, it
is important that we develop robust testing procedures that can ensure the safety of these
systems. Due to the high level of system complexity, we generally need black-box validation
strategies to find failures of the autonomous system. This work described the problems
of falsification (where a single failure example is searched for), most-likely failure analysis
(where the most likely failure is searched for), and failure probability estimation (where we
seek a good estimate of the likelihood of failure).

With these goals defined, we outlined a wide array of algorithms that have been used
to accomplish these tasks. Global optimization, path planning, and reinforcement learning
algorithms have been used to find falsifying examples, while importance sampling methods
have been used to estimate the probability of failure even when it is close to zero. To
address the problem of scalability, we described approaches for decomposing the safety
validation problem into more manageable components. We gave a brief overview of the
main applications for black-box safety validation including autonomous driving and flight.
Finally, we provided an overview of the existing tools that can be used to tackle these
validation tasks.
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