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Abstract

This paper studies the existence of pure Nash equilibria in resource graph games, a
general class of strategic games succinctly representing the players’ private costs. These
games are defined relative to a finite set of resources and the strategy set of each player
corresponds to a set of subsets of resources. The cost of a resource is an arbitrary function
of the load vector of a certain subset of resources. As our main result, we give complete
characterizations of the cost functions guaranteeing the existence of pure Nash equilibria
for weighted and unweighted players, respectively.

For unweighted players, pure Nash equilibria are guaranteed to exist for any choice of
the players’ strategy space if and only if the cost of each resource is an arbitrary function
of the load of the resource itself and linear in the load of all other resources where the
linear coefficients of mutual influence of different resources are symmetric. This implies in
particular that for any other cost structure there is a resource graph game that does not
have a pure Nash equilibrium.

For weighted games where players have intrinsic weights and the cost of each resource
depends on the aggregated weight of its users, pure Nash equilibria are guaranteed to exist
if and only if the cost of a resource is linear in all resource loads, and the linear factors of
mutual influence are symmetric, or there is no interaction among resources and the cost is
an exponential function of the local resource load.

We further discuss the computational complexity of pure Nash equilibria in resource
graph games showing that for unweighted games where pure Nash equilibria are guaranteed
to exist, it is coNP-complete to decide for a given strategy profile whether it is a pure Nash
equilibrium. For general resource graph games, we prove that the decision whether a pure
Nash equilibrium exists is Σp

2-complete.

1. Introduction

Multi-agent systems are characterized by the intricate interplay of the different and some-
times conflicting self-interests of a large number of independent individuals. In order to
study the effects of selfish behavior on the overall state of these systems game-theoretic solu-
tion concepts are used, most notably the concept of Nash equilibrium. Important questions
for the analysis of multi-agents systems are, thus, under which conditions Nash equilibria
exist and how they can be computed. For systems with a large number of players (as they
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frequently appear in multi-agent systems modelling economic, traffic, or telecommunication
applications), the representation of the games becomes an important issue. For illustration,
consider a system with n agents, each with m strategies. Encoding the payoffs of each agent
in each of the mn strategy profiles requires the encoding of nmn rational numbers which is
impractical even for modest sizes of n and m. Fortunately, for many multi-agents systems
that arise from practical applications, the agents’ payoffs have additional structure that
allows for a succinct representation of the payoffs. Examples include extensive form games
(Kuhn, 1953), congestion games (Rosenthal, 1973), graphical games (Kearns, Littman, &
Singh, 2001; Ortiz, 2020), games in graphical normal form (Gottlob, Greco, & Scarcello,
2005), action graph games (Jiang, Leyton-Brown, & Bhat, 2011), and local effect games
(Leyton-Brown & Tennenholtz, 2003). These representations also often allow for a faster
computation of mixed Nash equilibria (Blum, Shelton, & Koller, 2006).

A general class of games that includes several of the specific classes of games above is
the class of resource graph games introduced by Jiang, Chan, and Leyton-Brown (2017). In
a resource graph game, we are given a finite set N = {1, . . . , n} of players and a finite set
R = {1, . . . ,m} of resources. The strategy set available to player i is a set Xi ⊆ {0, 1}m
with a succinct representation.1 Given a strategy profile x = (x1, . . . ,xn) with xi ∈ Xi

for i ∈ N , let x =
∑

i∈N xi ∈ Rm≥0 denote the configuration profile representing the total
number of players using each resource in strategy profile x. Then, the private cost of player i
is defined as

πi(x) = x>i c(x) =
∑
r∈R

xi,r cr(x) for all i ∈ N,

where c : Rm≥0 → Rm is an arbitrary function and xi,r indicates whether resource r occurs in
player i’s strategy. For most applications, the function c : Rm≥0 → Rm itself has a succinct
representation of the following form. For each resource r, let Br ⊆ R be an arbitrary subset
of resources (possibly also containing r). Interpreting Br as the local neighborhood of r,
assume that the function c : Rm≥0 → Rm, x 7→ (c1(x), . . . , cm(x)) has the property that for
every resource r ∈ R the cost cr depends only on the configuration profile of the resources
in Br, i.e., cr(x) = cr(y) for all x,y ∈ Rm≥0 with xs = ys for all s ∈ Br. If |Br| ≤ k for

all r ∈ R, then the function c can be encoded by mnk numbers since it suffices to specify
for each resource r the value of cr(x) as a function of the nk possible load vectors of the
resources in Br. A graphical illustration of such a game is obtained by the graph that has
the vertex set R and a directed edge from s to r if and only if s ∈ Br, hence, the name
resource graph games.

For illustration, consider the following example.

Example 1 (Unweighted resource graph game). There are two players N = {1, 2} and eight
resources r1, r2, . . . , r8. Player 1 has the strategy set X1 = {x1,x

′
1} with x1 = 1{r1,r2,r5}

and x′1 = 1{r3,r4,r8} where for a subset S ⊆ R, 1S denotes the indicator vector of set S

in RR. The strategy set of player 2 is X2 = {x2,x
′
2} with x2 = 1{r2,r4,r6} and x′2 =

1{r1,r3,r7}; see Figure 1a for an illustration. We assume that the cost function of every
resource r is of the form cr(x) = xr +

∑
s∈Br

xs = 2xr +
∑

s∈Br\{r} xs, and that for every

1. Jiang et al. consider a polytopal representation, but also other representations, e.g., in terms of combi-
natorial structures are possible.
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(a) Graphical representation

x2 x′2
x1 10, 14 14, 11
x′1 13, 11 15, 14

(b) Bimatrix representation of the unweighted game

x2 x′2
x1 13, 44 21, 40
x′1 16, 38 20, 46

(c) Bimatrix representation of the weighted game

Figure 1: Graphical and bimatrix representations of the resource graph game of Example 1.

resource r ∈ R, the neighborhood Br contains the resource r itself and all resources s ∈ R
for which an arc (s, r) is shown in Figure 1a. It is straightforward to verify that we obtain
the bimatrix game with private costs shown in Figure 1b. For illustration, we compute the
private costs for strategy profile (x1,x2). This strategy profile yields the configuration profile
x = x1 + x2 = (1, 2, 0, 1, 1, 1, 0, 0)>. The corresponding cost vector is

c(x1 + x2) =
(
2xr1 + xr3 , 2xr2 + xr1 + xr6 + xr7 , 2xr3 + xr7 + xr8 , 2xr4 + xr7 + xr8 ,

2xr5 + xr3 + xr7 , 2xr6 + xr1 + xr2 + xr5 , 2xr7 + xr3 , 2xr8 + xr3 + xr4
) (1)

= (2, 6, 0, 2, 2, 6, 0, 1)>.

The resulting private costs are

π1(x1,x2) = x>1 c(x1 + x2) = (1, 1, 0, 0, 1, 0, 0, 0)>(2, 6, 0, 2, 2, 6, 0, 1) = 10,

π2(x1,x2) = x>2 c(x1 + x2) = (0, 1, 0, 1, 0, 1, 0, 0)>(2, 6, 0, 2, 2, 6, 0, 1) = 14.

From the bimatrix representation in Figure 1b it is easy to see that (x1,x
′
2) is a pure Nash

equilibrium of the game.

We also consider a generalization of resource graph games where each player i has an
intrinsic weight wi ∈ R>0 and the strategy of player i is of the form Xi = {wixi : xi ∈ Yi}
where Yi ⊆ {0, 1}m is arbitrary.2 For illustration, consider the following example.

Example 2 (Weighted resource graph game). Reconsider the unweighted resource graph
game from Example 1 except that the players’ weights are w1 = 1 and w2 = 2, respectively,

2. For this generalization, the bound on the encoding of the cost function for the unweighted case does
no longer apply in general. However, when player weights are integer and |Br| ≤ k for each of the m
resources, the cost function can be encoded with mwk numbers, where w =

∑
i∈N wi.

187



Harks, Klimm & Matuschke

i.e., X1 = {x1,x
′
1} with x1 = 1{r1,r2,r5} and x′1 = 1{r3,r4,r8} and X2 = {x2,x

′
2} with

x2 = 2 · 1{r2,r4,r6} and x′2 = 2 · 1{r1,r3,r7}. It is straightforward to verify that we obtain
the bimatrix game with private costs shown in Figure 1c. For illustration, we compute the
private costs for strategy profile (x1,x2). This strategy profile yields the configuration profile
x = x1 + x2 = (1, 3, 0, 2, 1, 2, 0, 0)>. The corresponding cost vector is computed as in (1)
and is equal to

c(x1 + x2) = (2, 9, 0, 4, 2, 9, 0, 2)>.

The resulting private costs are

π1(x1,x2) = x>1 c(x1 + x2) = (1, 1, 0, 0, 1, 0, 0, 0)>(2, 9, 0, 4, 2, 9, 0, 2) = 13,

π2(x1,x2) = x>2 c(x1 + x2) = (0, 2, 0, 2, 0, 2, 0, 0)>(2, 9, 0, 4, 2, 9, 0, 2) = 44.

From the bimatrix representation in Figure 1c it is easy to see that the game does not have
a pure Nash equilibrium.

Below, we illustrate classes of games that are special cases of resource graph games. We
start with the class of unweighted congestion games introduced by Rosenthal (1973) as a
model for road traffic and for production with demand-dependent costs. The generalization
of unweighted congestion games to weighted players is proposed by Milchtaich (1996).

Example 3 (Congestion games). When the neighborhood of each resource r contains only
r, i.e., Br = {r} for all r ∈ R, the cost of each resource depends only on the number of
players using it. We then obtain the class of unweighted congestion games as a special case
of unweighted resource graph games and the class of weighted congestion games as a special
case of weighted resource graph games.

Another example of a subclass of resource graph games is the class of local effect games as
introduced by Leyton-Brown and Tennenholtz (2003). Compared to unweighted congestion
games, they are less general in terms of the players’ strategies since only singleton strategies
are allowed; in terms of the cost structure on the resources, they are more general since the
cost of a resource may also depend on the load of other resources. We call a resource graph
game a singleton game, if |{r ∈ R : xi,r > 0}| = 1 for all xi = (xi,r)r∈R ∈ Xi and all i ∈ N .

Example 4 (Local effect games). Local effect games are singleton unweighted resource
graph games, where for every resource r, there is a function fr : R≥0 → R and for every
pair of resources r, s ∈ R such that s ∈ Br, there is a function fr,s : R≥0 → R such that
cr(x) = fr(xr) +

∑
s∈Br

fs,r(xs) .

The following class of action graph games is a generalization of local effect games. They
are introduced by Jiang et al. (2011) and generalize local effect games as they allow an
arbitrary functional dependence of the cost of a resource on the load of all other resources,
yet, they are a subclass of resource graph games. Jiang et al. discuss applications in mod-
elling location games, congestion games, and anonymous games, but the class of games is
universal as any strategic game can be represented as an action graph game. Thompson
and Leyton-Brown (2017) show how to use action graph games to compute equilibria in
position auctions.
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Example 5 (Action graph games). The class of action graph games is equivalent to the
class of singleton unweighted resource graph games, i.e., it contains all unweighted resource
graph games in which |{r ∈ R : xi,r > 0}| = 1 for all xi = (xi,r)r∈R ∈ Xi and all i ∈ N .

Finally, we mention that the interdependence of costs of resources on the loads of other
resources has a long history in non-atomic traffic models. Dafermos (1971) proposes the
use of such cost structures to model the dependencies of the travel times on opposing
directions of a two-lane road and on road segments leading to a common crossing. We
obtain the following class of congestion games with non-separable costs as the natural
atomic counterpart of the non-atomic traffic models with non-separable costs considered in
the traffic literature (Dafermos, 1971, 1972; Smith, 1979).

Example 6 (Unweighted network congestion games with non-separable costs). These games
are resource graph games, where the set of resources R corresponds to the set of edges of a
road network. For every player i, the strategy set Xi corresponds to the (indicator vectors)
of the edge set of all paths between a source node si and a target node ti in the road network.

In the examples discussed above, a mixed Nash equilibrium is guaranteed to exist
due to Nash’s theorem (Nash, 1950). However, as discussed, e.g., by Jiang and Leyton-
Brown (2007), pure Nash equilibria are more favorable as a solution concept as they are
easier to implement in practice. For the subclass of local effect games, there is a com-
plete characterization of the cost structures that admit a potential function in all games by
Leyton-Brown and Tennenholtz (2003). The existence of a potential function is sufficient for
the existence of a pure Nash equilibrium (Monderer & Shapley, 1996b), but not necessary.
In this paper, we are interested in identifying maximal conditions on the cost functions that
guarantee the existence of pure Nash equilibria in the larger class of resource graph games.

1.1 Our Results

We study the existence of pure Nash equilibria for resource graph games with respect to the
non-separable cost structures. This structure inherent to resource graph games distinguishes
them from congestion games, where costs are separable in that the cost at each resource
only depends on the load of that resource, and for which the existence of Nash equilibria is
well-understood. We call a non-empty set C of cost functions consistent, if every resource
graph game with cost functions from C admits a pure Nash equilibrium. We only require a
natural condition on C, namely that C is closed under composition. This means that for any
two functions c1, c2 ∈ C, where c1 = c2 is allowed, acting on disjoint resource sets R1 and R2

with |R1| = m1 and |R2| = m2, respectively, the cost function c1⊕ c2 : Rm1+m2
≥0 → Rm1+m2

defined as c1⊕ c2 = (c1, c2) also belongs to C. This property naturally arises by composing
two disjoint subsets R1 and R2 so that the cost structure within each set of the disjoint union
is given by c1 and c2, and there is no interaction between the loads and costs of resources
contained in the two different sets. For an intuitive interpretation of this condition for
resource graph games played on graphs, see Example 7.

In Section 3, we study the consistency for unweighted resource graph games. Specifi-
cally, we show in Theorem 1 that a composition-closed set C of cost functions is consistent
if and only if for each c ∈ C, c : Zm≥0 → Rm with m ∈ N, there are arbitrary func-

189



Harks, Klimm & Matuschke

tions f1, . . . , fm : Z≥0 → R and a symmetric matrix A ∈ Rm×m such that

c(x) =
(
f1(x1), . . . , fm(xm)

)>
+Ax (2)

for all load vectors x ∈ Zm≥0 (except for the irrelevant cost on empty resources). Our result
implies in particular that every resource graph game with this cost structure has a pure
Nash equilibrium. This generalizes a result of Leyton-Brown and Tennenholtz (2003) who
show that for the special case of local effect games with this cost structure, a pure Nash
equilibrium exists. Our characterization also implies that for every other cost function c̃
that does not adhere to this form, there is an unweighted resource graph game with costs
defined by c̃ that does not have a pure Nash equilibrium. For the proof of this result, we
construct several highly symmetric resource graph games that allow to derive functional
equations on the set of consistent cost functions that combined leave cost functions of the
form above as the only possibility.

In Section 4, we study the consistency for weighted resource graph games, providing a
full characterization of the cost functions that are consistent for these games. Specifically, we
show in Theorem 2 that a composition-closed set C of continuous cost functions is consistent
if and only if one of the following two cases holds:

(i) There is a common constant φ ∈ R such that for each c ∈ C, c : Rm≥0 → Rm with
m ∈ N there are vectors a,b ∈ Rm such that

c(x) =
(
a1 exp(φx1) + b1, . . . , am exp(φxm) + bm

)>
; (3)

(ii) For each c ∈ C, c : Rm≥0 → Rm with m ∈ N, there is a symmetric matrix A ∈ Rm×m
and vector b ∈ Rm such that

c(x) = Ax + b. (4)

Again, our characterization implies that for any other cost function c̃ there is a weighted
resource graph game with costs defined by c̃ that does not have a pure Nash equilibrium.
For the proof of this result, it is insightful to notice that the class of weighted resource
graph games contains both the class of unweighted resource graph games and the class of
weighted congestion games as subclasses. Harks and Klimm (2012) show that weighted
congestion games are guaranteed to have a pure Nash equilibrium if and only if either
all cost functions are affine or all cost functions are exponential as in (3). This allows
to essentially restrict the search space for cost functions that are consistent for resource
graph games to those functions that are either exponential or affine after removing all
interdependencies of the costs of resources on the loads of other resources. Combining
this insight with our characterization for unweighted resource graph games, then allows to
establish the characterization for weighted resource graph games.

In Section 5, we discuss the computational complexity of pure Nash equilibria in resource
graph games. We first show that for unweighted resource graph games that are guaranteed
to have a pure Nash equilibrium as they satisfy (2), it is coNP-complete to decide for a
given strategy profile whether it is a pure Nash equilibrium. This holds even for single
player games where the strategy set of the player corresponds to the set of s-t-paths in a
graph where the resources are associated with the edges, and where |Br| ≤ 1 for all r ∈ R.
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The reduction actually only uses affine cost functions as in (4) so that this hardness trivially
carries over to unweighted and weighted resource graph games with these costs. For general
unweighted resource graph games, we show that the problem to decide whether a given
resource graph game has a pure Nash equilibrium is Σp

2-complete. This hardness result
holds for two-player games where the strategy set of each player i corresponds to the set of
si-ti-paths in a graph, |Br| ≤ 1 for all r ∈ R, and all cost functions are linear. It is interesting
to contrast this hardness result with a result of Gottlob et al. (2005), who show that it is
Σp
2-complete whether a strategic game has a strong Nash equilibrium. While their result

concerns stability against coordinated deviations of groups of players with polynomially
large strategy sets, our hardness result concerns stability against single-player deviations
for a player with an exponentially large strategy set.

1.2 Significance

When designing multi-agent systems, stability is a major concern. As a consequence, sys-
tem designers are interested in implementing systems that have at least one pure Nash
equilibrium. However, our Σp

2-completeness result for the problem to decide whether a pure
Nash equilibrium exists, makes it unlikely that this problem can be solved in reasonable
time for large instances, even with techniques tailored to solve NP-complete problems such
as SAT-solving or integer programming. This issue provides additional justification to stick
with cost structures that guarantee the existence of pure Nash equilibria which we com-
pletely characterize for both unweighted and weighted players. As our proofs reveal, in
addition to guaranteeing the existence of pure Nash equilibria, these cost functions actually
yield the existence of a weighted potential function; see Monderer and Shapley (1996b)
for a definition. Weighted potential games have additional desirable properties, e.g., my-
opic improvement steps or fictitious play converge to an equilibrium (Monderer & Shapley,
1996a).

1.3 Related Work

As discussed in Example 3, unweighted congestion games are a subclass of resource graph
games. Rosenthal (1973) shows that every unweighted congestion game with separable costs
has a pure Nash equilibrium. Milchtaich (1996) proposes two generalizations of unweighted
congestion games. In the first generalization, called weighted congestion games, each player
has a weight and the cost of each resource depends on the aggregated weight of its users. In
the second generalization, called congestion games with player-specific costs, every player
has an individual cost function for each resource. Both generalizations alone still admit a
pure Nash equilibrium for singleton congestion games, but the combination of both may
fail to have a pure Nash equilibrium, even for singleton games. The positive result for
singletons is generalized by Ackermann, Röglin, and Vöcking (2009) to games where the
strategy set of each player corresponds to the set of bases of a matroid. Weighted congestion
games with general strategy spaces may fail to have a pure Nash equilibrium (Goemans,
Mirrokni, & Vetta, 2005; Libman & Orda, 2001), but have a pure Nash equilibrium for
affine costs or exponential costs (Harks & Klimm, 2012; Harks, Klimm, & Möhring, 2011;
Fotakis, Kontogiannis, & Spirakis, 2005; Panagopoulou & Spirakis, 2006). Local effect
games are introduced by Leyton-Brown and Tennenholtz (2003) who show that a pure Nash
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equilibrium exists when the mutual influence of different resources on the cost is linear and
symmetric. Dunkel and Schulz (2008) show that for these games the computation of a pure
Nash equilibrium is PLS-complete. They also show that for both local effect games with
non-linear mutual effects and weighted congestion games with arbitrary cost functions, it
is NP-hard to decide whether a pure Nash equilibrium exists. The PLS-completeness of
computing a pure Nash equilibrium in unweighted congestion games with affine costs due
to Ackermann, Röglin, and Vöcking (2008) carries over to the weighted case.

The class of action graph games is introduced by Bhat and Leyton-Brown (2004) and
Jiang et al. (2011) as a generalization of local-effect games. They show that every strategic
game can be represented as an action graph game. Daskalakis, Schoenebeck, Valiant, and
Valiant (2009) give a fully polynomial-time approximation scheme (FPTAS) for computing
an approximate mixed equilibrium in action graph games with constant degree, constant
treewidth, and a constant number of agent types. They also give several hardness results
for games that violate one of these requirements. Jiang and Leyton-Brown (2007) show
that for symmetric action graph games played on a graph of bounded treewidth, it can be
decided efficiently whether a pure Nash equilibrium exists while the problem is NP-hard to
decide in general.

Resource graph games are introduced by Jiang et al. (2017) as a further generalization of
action graph games. Chan and Jiang (2018) give an FPTAS for computing an approximate
Nash equilibrium in resource graph games with a constant number of player types and
further restrictions on the strategy sets.

Congestion games with non-atomic players where the load of one resource has an impact
on the cost of another resource are usually called congestion games with non-separable
costs. They are first proposed by Dafermos (1971, 1972). She shows that the equilibrium
condition can be formulated as an optimization problem, if the Jacobian of the cost function
is symmetric. This condition is reminiscent of one the conditions that we identify as a
necessary condition for the existence of a pure Nash equilibrium in Lemma 3. Smith (1979)
provides a variational inequality for the non-symmetric case. Perakis (2007) studies the
price of anarchy of non-atomic congestion games with linear non-separable costs of the
form c(x) = Ax + b.

2. Preliminaries

For an integer k ∈ N, let [k] := {1, . . . , k}. Let N = [n] be a finite set of n players and
R = [m] be a finite set of m resources. For each player i, the set of strategies available to
player i is an arbitrary set Xi ⊆ {0, 1}m. We call x = (x1, . . . ,xn) with xi ∈ Xi for all
i ∈ N a strategy profile and X = X1 × · · · ×Xn the strategy space. We use standard game
theory notation; for a strategy profile x ∈ X, we write x = (xi, x−i) meaning that xi is the
strategy that player i plays in x and x−i is the partial strategy profile of all players except i.
Every strategy profile x = (x1, . . . ,xn) ∈ X induces a load vector x =

∑
i∈[n] xi ∈ Rm≥0. For

a set S ⊆ R = [m], we denote by 1S the indicator vector of set S in Rm. We are further
given a cost function c : Rm≥0 → Rm. Intuitively, the function c maps a load vector x ∈ Rm≥0

to a cost vector c(x) ∈ Rm, i.e., c(x) = (c1(x), . . . , cm(x))> and for a resource r ∈ R the
cost experienced by players using r when the congestion vector is x is cr(x). A resource
graph game is a strategic game G = (N,X, (πi)i∈N ) where the private cost of player i in
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strategy profile x ∈ X is defined as

πi(x) = x>i c(x) =
∑
r∈R

xi,r cr(x), (5)

with xi,r denoting the rth component of xi.
We also consider a generalization of resource graph games to weighted players. In a

weighted resource graph game, every player i ∈ N has a weight wi ∈ R>0. The strategy
set of player i is then defined as Xi = {wi yi : yi ∈ Yi} where Yi ⊆ {0, 1}m is arbitrary.
Compared to unweighted resource graph games, in a weighted resource graph game, the set
of vectors in the strategy of player i is multiplied with the scalar wi. The weighted resource
graph game is then the strategic game G = (N,X, (πi)i∈N ) where πi(x) = x>i c(x) for x ∈ X
with x =

∑
i∈[n] xi as before (note that each xi ∈ Xi has entries in {0, wi} and thus the

load vector x specifies the total weight on each resource).
A strategy profile x ∈ X is a pure Nash equilibrium, if πi(x) ≤ πi(yi, x−i) for all i ∈ N

and yi ∈ Xi. For a non-empty set of cost functions C, we are interested in establishing
conditions on C that ensure that every resource graph game with cost functions from C
admits pure Nash equilibria.

As a mild technical assumption on C, we will require that the set C is closed under
composition of cost functions. Intuitively, this composition allows to arbitrarily embed
several cost functions from C, defined on distinct resource sets, in a common larger resource
set, thus composing arbitrary games whose cost structure locally consists of functions from C
as building blocks; see Example 7 below. To make this formal, we say that C is closed under
composition if for any c, c′ ∈ C with c : Rm≥0 → Rm and c′ : Rm′

≥0 → Rm′
, also the function

c⊕ c′ : Rm+m′

≥0 → Rm+m′

≥0 defined as c⊕ c′(x,y) = (c(x), c′(y)) is also contained in C. This
is an intuitive property of a set of functions C for the following reasons. The cost functions
c, c′ each define a cost structure on sets of resources R, R′ with |R| = m and |R′| = m′.
The cost function c ⊕ c′ : Rm+m′

≥0 → Rm+m′
then defines a cost structure on the disjoint

union of R and R′, where the cost structure within each set of the disjoint union is given
by c or c′, and there is no interaction between the loads and costs of resources contained
in the two different sets. In particular, for any k ∈ N and any c ∈ C, c : Rm≥0 → Rm, the

k-fold disjoint union c⊕ · · ·⊕ c : Rkm≥0 → Rkm is contained in C. In the following, we denote

the k-fold disjoint union of c by ck.
For a set C of cost functions as above, we say that C is consistent for unweighted resource

graph games, if for every c ∈ C, we have that every unweighted resource graph game with
costs given by c has a pure Nash equilibrium. Recall that when c : Rm≥0 → Rm with
m ∈ N, then every unweighted resource graph game with costs given by c has m resources.
Consistency for weighted resource graph games is defined analogously.

Example 7. To illustrate the concept of composition introduced above, suppose we are
interested in modeling road networks as resource graph games. Such a network consists of
individual road segments and junctions. For simplicity, assume each road segment consists
of a single lane in each direction and each junction is a four-way intersection without left
turns. A single road segment then can be modeled by two resources representing the opposing
lanes. The travel time on each lane is a function c : R2 → R2 of the load on the lane itself
and the opposing lane (e.g., traffic on the opposing lane prevents overtaking) as proposed
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r2

(a) Opposing lanes
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r2
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r6r7
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(b) Four-way intersection

(c) Network composed of opposing lanes and four-way junctions

Figure 2: Illustration of composition of cost functions.

by (Dafermos, 1971); see Figure 2 (a). Similarly, a four-way junction without left turns
can be modeled by 8 resources (each representing a possible combination of entry and exit
from the junction), with the travel times for passing the junction determined by a function
c : R8 → R8 modeling turn priority; see Figure 2 (b). For both the cost functions at road
segments and junctions, we may impose assumptions, limiting the respective cost functions
to certain classes of 2- and 8-dimensional functions respectively, which we include in the
set C. An entire road network, with multiple road segments and junctions can be modeled
by composing multiple functions from C to obtain a resource set of size 2`+8`′, where ` and
`′ is the number of road segments and crossings, respectively; see Figure 2 for an example
of such a network with ` = 1 and `′ = 2. Assuming that C is closed under composition,
it thus contains the cost functions of all possible road networks that are built in this way.
Determining under which conditions C is consistent corresponds to finding out conditions
on the cost functions for road segments and junctions that guarantee the existence of a pure
Nash equilibrium for any resource graph game played on any road network constructed in
this way.

3. Resource Graph Games with Unweighted Players

In this section, we consider unweighted resource graph games. Since in such a game, the
load on each resource is a nonnegative integer, it is without loss of generality to assume
that the domain of all cost functions is the non-negative integer lattice, that is, they are of
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the form c : Zm≥0 → Rm for some m ∈ N. Our main result gives a complete characterization
of consistency for unweighted resource graph games.

Note that, if a particular resource is not used by any player in a given strategy profile,
then no player experiences the cost at that resource for the corresponding load vector.
Thus this value is irrelevant for the definition of the game. We therefore say that two cost
functions c and c′ are equivalent if cr(x) = c′r(x) for all r ∈ R and all x ∈ Rm≥0 with xr > 0.
Using this notion of equivalence, we can state our characterization.

Theorem 1. Let C be a set of cost functions that is closed under composition. Then the
following two statements are equivalent:

(i) C is consistent for unweighted resource graph games.

(ii) For each c ∈ C with c : Zm≥0 → Rm for some m ∈ N, there are functions f1, . . . , fm :
Z≥0 → R and a symmetric matrix A ∈ Rm×m such that c is equivalent to the cost
function c′ defined by

c′(x) =
(
f1(x1), . . . , fm(xm)

)>
+Ax. (6)

In particular, the set C∗ of all cost functions of the form (6) is (up to equivalence) the
unique maximal set of cost functions that is closed under composition and consistent for
unweighted resource graph games.

We subdivided the proof of both directions in the following subsections.

3.1 Proof of Theorem 1: (ii). ⇒ (i).

We first prove that statement (ii). of Theorem 1 implies consistency of C. Observe that
any composition of functions of form (6) is again of form (6). It is thus sufficient to show
existence of a pure Nash equilibrium for any unweighted resource graph game with a cost
function of this form.

Lemma 1. Let G be an unweighted resource graph game on m resources with cost function

c : Rm≥0 → Rm given by c(x) =
(
f1(x1), . . . , fm(xm)

)>
+Ax, where f1, . . . , fm : Z≥0 → R

are arbitrary functions and A ∈ Rm×m is a symmetric matrix. Then G has a pure Nash
equilibrium.

Proof. The proof uses an exact potential function that, for the special class of local-
effect games, coincides with the potential function given by Leyton-Brown and Tennen-
holtz (2003). Fix an arbitrary unweighted resource graph game G whose cost is determined
by c ∈ C and an arbitrary strategy profile x ∈ X. Consider the process of adding the players
to the game in order 1, . . . , n and let us sum their private costs. In the following, we write
x≤i =

∑
j∈N :j≤i xj for the load vector of players up to i. Let P (x) be the sum of the private

costs of the players added to the game when adding them in order 1, . . . , n. We define the

function f : Zm≥0 → Rm as f(x) =
(
f1(x1), . . . , fm(xm)

)>
and obtain

P (x) =
∑
i∈N

x>i

[
f(x≤i) + Ax≤i

]
.
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We have

∑
i∈N

x>i f(x≤i) =
∑
r∈R

xr∑
k=1

fr(k)

as well as ∑
i∈N

x>i Ax≤i =
∑
i∈N

x>i A
( ∑
j∈N :j≤i

xj

)
=

1

2

∑
i∈N

∑
j∈N

x>i Axj +
1

2

∑
i∈N

x>i Axi

=
1

2
x>Ax +

1

2

∑
i∈N

x>i Axi,

where for the second equation we used the symmetry of A. We obtain

P (x) =
∑
r∈R

xr∑
k=1

fr(k) +
1

2
x>Ax +

1

2

∑
i∈N

x>i Axi.

This shows that P (x) is invariant under a reordering of the players. Next, consider a
deviation of an arbitrary player. Since P (x) is invariant under a reordering of the players,
it is without loss of generality to assume that player n deviates. We obtain

P (yn, x−n)− P (x) = y>n

[
f(x≤n−1 + yn) + A(x≤n−1 + yn)

]
− x>n

[
f(x≤n) + A(x≤n)

]
= πn(yn, x−n)− πn(x).

We conclude that P is an exact potential function. Monderer and Shapley (1996b) show that
finite exact potential games admit a pure Nash equilibrium. Since G was chosen arbitrarily,
the result follows.

3.2 Proof of Theorem 1: (i). ⇒ (ii).

In the following, we show that statement (ii). of Theorem 1 is a necessary condition for the
consistency of C. We prove this by constructing for any given c ∈ C a family of different
resource graph games whose cost functions are 4-fold compositions of c. All these games
will have the following symmetry property, which we will use to establish that c is indeed
of the form (6).

Definition 1. Let α, β ∈ R. We say a game G = (N,X, (πi)i∈N ) is (α, β)-symmetric for
players i, j ∈ N , if for any strategy profile x ∈ X, the following two statements are fulfilled:

(i) {πi(x), πj(x)} = {α, β}.

(ii) There are yi ∈ Xi and yj ∈ Xj such that πi(yi, x−i) = πj(x) and πj(yj , x−j) = πi(x).
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Note that α and β in the above definition do not depend on the strategy profile x, but
rather that (i) for the same α and β must hold for all x. The following lemma shows a key
property for (α, β)-symmetric games.

Lemma 2. If a game G is (α, β)-symmetric for players i, j ∈ N and admits a pure Nash
equilibrium, then α = β.

Proof. Let x ∈ X be a pure Nash equilibrium for G. Because G is (α, β)-symmetric for i and
j, there are are yi ∈ Xi and yj ∈ Xj such that πi(yi, x−i) = πj(x) and πj(yj , x−j) = πi(x).
Because x is a pure Nash equilibrium, we obtain

πi(x) ≤ πi(yi, x−i) = πj(x) ≤ πj(yj , x−j) = πi(x)

and hence πi(x) = πj(x). Note that (α, β)-symmetry of G further implies {α, β} =
{πi(x), πj(x)} and therefore α = β.

We proceed to prove a first functional equation that needs to be satisfied for a set
of consistent cost functions that is closed under composition. The equation states that a
discrete version of the Jacobian of the cost function must be symmetric. For the proof, we
construct a suitable (α, β)-symmetric game.

Lemma 3. Let C be closed under composition and consistent for unweighted resource graph
games. Then, for all c ∈ C, c : Zm≥0 → Rm with m ∈ N, we have

cr(x + 1{r,s})− cr(x + 1r) = cs(x + 1{r,s})− cs(x + 1s)

for all r, s ∈ [m] and all x ∈ Zm≥0.

Proof. Let c ∈ C, r, s ∈ [m] with r 6= s, let x ∈ Zm≥0 be arbitrary. Since C is closed under

composition, we have that c4 : Z4m
≥0 → R4m is also contained in C. Consider the following

game with 4m resources and cost function c4. For k ∈ [4] and t ∈ [m] we denote the k-th
copy of resource t by tk. For each original resource t ∈ [m], there are xt dummy players
whose only strategy is

∑
k∈[4] 1tk . In addition there are two players 1 and 2 with strategy

sets X1 = {1{r1,s2}, 1{r3,s4}} and X2 = {1{r2,s3}, 1{r4,s1}}. See Figure 3 for a depiction of
the strategy space.

Let x−{1,2} be the unique strategy profile of the dummy players. Note that there are
only four strategy profiles, these are:

x(1,1) = (1{r1,s2},1{r2,s3}, x−{1,2}), x(1,2) = (1{r1,s2},1{r4,s1}, x−{1,2}),

x(2,1) = (1{r3,s4},1{r2,s3}, x−{1,2}), x(2,2) = (1{r3,s4},1{r4,s1}, x−{1,2}).

Define α = cr(x + 1{r,s}) + cs(x + 1s) and β = cr(x + 1r) + cs(x + 1{r,s}).

Noting that x
(1,1)
r1 = xr + 1, x

(1,1)
s1 = xs, x

(1,1)
r2 = xr + 1, x

(1,1)
s2 = xs + 1, x

(1,1)
r3 = xr, and

x
(1,1)
s3 = xs + 1, we obtain

π1(x(1,1)) = c4
r1(x(1,1)) + c4

s2(x(1,1)) = cr(x + 1r) + cs(x + 1{r,s}) = β,

π2(x(1,1)) = c4
r2(x(1,1)) + c4

s3(x(1,1)) = cr(x + 1{r,s}) + cs(x + 1s) = α.
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x1 x′1x2
x′2

r1

s1

r2

s2

r3

s3

r4

s4

Figure 3: Game constructed for the proof of Lemma 3, respectively. Each clique represents
a copy of the resource set (resources other than r, s and dummy players are omitted). Player
1 chooses among strategies x1 and x′1, player 2 chooses among strategies x2 and x′2.

Similarly, one can verify that

π2(x(1,1)) = π2(x(2,2)) = π1(x(1,2)) = π1(x(2,1)) = α and

π1(x(1,1)) = π1(x(2,2)) = π2(x(1,2)) = π2(x(2,1)) = β.

Hence the above game is (α, β)-symmetric for players 1 and 2. Since C is consistent, the
thus defined game has a pure Nash equilibrium and we conclude α = β by Lemma 2, which
completes the proof of the lemma.

The following two lemmas establish that the discrete Hessian of each cr for r ∈ [m] must
be diagonal. For the proof of these two lemmas, we use the symmetry of the Jacobian shown
in Lemma 3 together with suitably constructed (α, β)-symmetric games. More specifically,
the first lemma shows that for a consistent cost function c the discrete difference

cr(x + 1s)− cr(x)

is invariant under (i) adding 1r to both arguments, or (ii) adding 1s to both arguments of
the discrete difference.

Lemma 4. Let C be closed under composition and consistent for unweighted resource graph
games. Then, for all c ∈ C, c : Zm≥0 → Rm with m ∈ N, the following two functional

equations are satisfied for all r, s ∈ [m] with r 6= s and all x ∈ ZR≥0 with xr > 0:

(i) cr(x + 1s)− cr(x) = cr(x + 1{r,s})− cr(x + 1r) and

(ii) cr(x + 1s)− cr(x) = cr(x + 2 · 1s)− cr(x + 1s).

Proof. Let c ∈ C, c : Zm≥0 → Rm, r, s ∈ [m] with r 6= s, and y ∈ Zm≥0 with yr > 0

be arbitrary. Since C is closed under composition, the function c4 : Z4m
≥0 → R4m is also

contained in C. Consider the following game with 4m resources and cost function c4. For
k ∈ [4] and t ∈ [m], we denote the k-th copy of resource t by tk. For each original resource
t ∈ [m] \ {r}, there are yt dummy players whose only strategy is

∑
k∈[4] 1tk . There also are

yr − 1 dummy players for resource r whose only strategy is
∑

k∈[4] 1rk . In addition there
are two players 1 and 2 with strategy sets

X1 =
{
1{r1,s1,r2}, 1{r3,r4,s4}

}
and X2 =

{
1{r1,r3,s3}, 1{r2,s2,r4}

}
.
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x1 x′1

x2x′2

r1

s1
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r3

s3

r4

s4

Figure 4: Game constructed for the proof of Lemma 4. Each clique represents a copy of the
resource set (resources other than r, s and dummy players are omitted). Player 1 chooses
among strategies x1 and x′1, player 2 chooses among strategies x2 and x′2.

See Figure 4 for a depiction of the strategy space. Again, this game has only four strategy
profiles

x(1,1) = (1{r1,s1,r2},1{r1,r3,s3}, x−{1,2}), x(1,2) = (1{r1,s1,r2},1{r2,s2,r4}, x−{1,2}),

x(2,1) = (1{r3,r4,s4},1{r1,r3,s3}, x−{1,2}), x(2,2) = (1{r3,r4,s4},1{r2,s2,r4}, x−{1,2}),

where we again denote by x−{1,2} the unique strategy profile of all dummy players. We
define

α = cr(y + 1{r,s}) + cs(y + 1{r,s}) + cr(y) and

β = cr(y + 1s) + cs(y + 1s) + cr(y + 1{r,s}).

Recalling the that there are yr − 1 dummy players on rk and ys dummy players on sk
for k ∈ [4] by construction, we observe that x

(1,1)
r1 = yr + 1, x

(1,1)
s1 = ys + 1, x

(1,1)
r2 = yr,

x
(1,1)
s2 = ys, x

(1,1)
r3 = yr, and x

(1,1)
s3 = ys + 1. Hence, we obtain

π1(x(1,1)) = c4
r1(x(1,1)) + c4

s1(x(1,1)) + c4
r2(x(1,1))

= cr(y + 1{r,s}) + cs(y + 1{r,s}) + cr(y) = α,

π2(x(1,1)) = c4
r1(x(1,1)) + c4

r3(x(1,1)) + c4
s3(x(1,1))

= cr(y + 1{r,s}) + cr(y + 1s) + cs(y + 1s) = β.

Similarly, we verify that

π1(x(1,1)) = π1(x(2,2)) = π2(x(1,2)) = π2(x(2,1)) = α and

π2(x(1,1)) = π2(x(2,2)) = π1(x(1,2)) = π1(x(2,1)) = β.

Hence the above game is (α, β)-symmetric for players 1 and 2.
By consistency of C, the game must have a pure Nash equilibrium and thus α = β by

Lemma 2. Subtracting the first and third term of α and the second term of β on both sides
yields

cs(y + 1{r,s})− cs(y + 1s) = cr(y + 1s)− cr(y). (7)
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Applying Lemma 3 to the left-hand side of (7) yields

cr(y + 1{r,s})− cr(y + 1r) = cr(y + 1s)− cr(y),

which proves (i) when choosing y = x.
Applying Lemma 3 with x = y − 1r to the right-hand side of (7) instead, yields

cs(y + 1{r,s}) − cs(y + 1s) = cs(y + 1s)− cs(y − 1r + 1s).

This is equivalent to (ii) with the roles of r and s swapped, when choosing y = x+1r−1s.

The next lemma shows that for a consistent cost function c the discrete difference

cr(x + 1s)− cr(x)

is also invariant under adding 1t with t /∈ {r, s} to both arguments of the discrete difference.

Lemma 5. Let C be closed under composition and consistent for unweighted resource graph
games. Then, for all c ∈ C, c : Zm≥0 → Rm with m ∈ N we have

cr(x + 1s) − cr(x) = cr(x + 1{s,t}) − cr(x + 1t)

for all r, s, t ∈ [m] with r, s, t pairwise distinct and all x ∈ Zm≥0 with xr > 0.

Proof. Let c ∈ C, c : Zm≥0 → Rm, m ∈ N be arbitrary, let r, s, t ∈ [m] be pairwise distinct,
and let x ∈ Zm≥0 with xr > 0. Let x′ = x − 1r. Consider the following game with 4m

resources and cost function c4. For k ∈ [4] and u ∈ [m], we denote the k-th copy of resource
u by uk. For each resource u ∈ [m], there are x′u dummy players whose only strategy is∑

k∈[4] 1uk . In addition there are two players 1 and 2 with strategy sets

X1 =
{
1{r1,s2,t2}, 1{s3,t3,r4}

}
and X2 =

{
1{s1,t1,r3}, 1{r2,s4,t4}

}
.

See Figure 5 for a depiction of the strategy space. As in the proof of the two previous
lemmas, the game has only four strategy profiles:

x(1,1) = (1{r1,s2,t2},1{s1,t1,r3}, x−{1,2}), x(1,2) = (1{r1,s2,t2},1{r2,s4,t4}, x−{1,2}),

x(2,1) = (1{s3,t3,r4},1{s1,t1,r3}, x−{1,2}), x(2,2) = (1{s3,t3,r4},1{r2,s4,t4}, x−{1,2}),

where x−{1,2} denotes the unique strategy profile of the dummy players. Along the same
lines as before, one can check that

π1(x(1,1)) = π1(x(2,2)) = π2(x(1,2)) = π2(x(2,1)) = α and

π2(x(1,1)) = π2(x(2,2)) = π1(x(1,2)) = π1(x(2,1)) = β,

where

α = cr(x
′ + 1{r,s,t}) + cs(x

′ + 1{s,t}) + ct(x
′ + 1{s,t}) and

β = cr(x
′ + 1r) + cs(x

′ + 1{r,s,t}) + ct(x
′ + 1{r,s,t}).
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Figure 5: Game constructed for the proof of Lemma 5. Each clique represents a copy of the
resource set (resources other than r, s, t and dummy players are omitted). Player 1 chooses
among strategies x1 and x′1, player 2 chooses among strategies x2 and x′2.

Hence, the game is (α, β)-symmetric for players 1 and 2.
By consistency of C the game must have a pure Nash equilibrium and thus α = β by

Lemma 2. By subtracting the second term of α and the first and third term of β from both
sides we obtain

cr(x
′ + 1{r,s,t}) −

(
ct(x

′ + 1{r,s,t})− ct(x′ + 1{s,t})
)︸ ︷︷ ︸

= cr(x′+1{r,s,t})−cr(x′+1{r,s})

− cr(x′ + 1r)

= cs(x
′ + 1{r,s,t}) − cs(x

′ + 1{s,t})︸ ︷︷ ︸
= cr(x′+1{r,s,t})−cr(x′+1{r,t})

.

Applying the identities indicated above, which follow from Lemma 3, and then using x′ =
x− 1r yields cr(x + 1s)− cr(x) = cr(x + 1{s,t})− cr(x + 1t).

Given the form of the discrete Hessian established in Lemmas 4 and 5, we conclude now
that the influence of the load on a resource s on the cost of some other resource r must be
linear. This is formalized in the following lemma, which follows by inductively applying our
previous results.

Lemma 6. Let C be closed under composition and consistent for unweighted resource graph
games. Then, for all c ∈ C, c : Zm≥0 → Rm with m ∈ N we have

cr(x + 1s)− cr(x) = cr(y + 1s)− cr(y)

for all r, s ∈ [m] with r 6= s and all x,y ∈ Zm≥0 with xr, yr > 0.

Proof. Let c ∈ C, c : Zm≥0 → Rm, r, s ∈ [m] with r 6= s, and x,y ∈ Zm≥0 with xr, yr > 0 be
arbitrary. We show the lemma by induction on k =

∑
r′∈R |xr′ − yr′ |. If k = 0, then x = y

and the claim is trivially fulfilled. Thus assume k > 0. Without loss of generality, there is
t ∈ R with xt > yt. Let x′ := x− 1t. Note that x′r > 0. Indeed, if r = t then x′r ≥ yr > 0.
If, on the other hand, r 6= t, then x′r = xr > 0. Thus, Lemma 4 and Lemma 5 can be
applied to x′. We distinguish three cases for t.

Case t = r: In this case, x = x′ + 1r. We obtain

cr(x + 1s)− cr(x) = cr(x
′ + 1{r,s})− cr(x′ + 1r) = cr(x

′ + 1s)− cr(x′).

where the second equality follows from Lemma 4.
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Case t = s: In this case, x = x′ + 1s. We obtain

cr(x + 1s)− cr(x) = cr(x
′ + 2 · 1s)− cr(x′ + 1s) = cr(x

′ + 1s)− cr(x′).

where the second equality follows from Lemma 4.

Case t ∈ R \ {r, s}: In this case, x = x′ + 1t. We obtain

cr(x + 1s)− cr(x) = cr(x
′ + 1{s,t})− cr(x′ + 1t) = cr(x

′ + 1s)− cr(x′).

where the second equality follows from Lemma 5.
In either case, cr(x+1s)−cr(x) = cr(x

′+1s)−cr(x′), which is equal to cr(y+1s)−cr(y)
by the induction hypothesis because

∑
r′∈R |x′r′ − yr′ | < k.

Combining Lemmas 3 and 6, we observe that the interaction effects of distinct resources
in the cost function c must be linear and symmetric and thus condition (6) is indeed
necessary for consistency. This is formalized in the following lemma, which completes the
proof of Theorem 1.

Lemma 7. Let C be closed under composition and consistent for unweighted resource graph
games. Then, for all c ∈ C, c : Zm≥0 → Rm with m ∈ N there are m functions f1, . . . , fm :
Z≥0 → R and a symmetric matrix A ∈ Rm×m such that c is equivalent to the function c′

defined by c′(x) = (f1(x1), . . . , fm(xm))> + A x for all x ∈ ZR≥0.

Proof. For r ∈ R define fr : Z≥0 → R by fr(x) = cr(x · 1r) for all x ∈ Z≥0. The matrix
A ∈ Rm×m = (ar,s)r,s∈[m] is defined as

ar,s =

{
cr(1{r,s})− cr(1r) if r 6= s,

0 otherwise.

Note that ar,s = as,r and, hence A is symmetric by Lemma 3.
Let x ∈ Zm≥0 and r ∈ [m] with xr > 0. We denote by Ar,· the r-th row of the matrix A.

We show that cr(x) = fr(xr) +Ar,·x by induction on k =
∑

s∈R\{r} xs. For k = 0 the claim
is true by definition of fr. Thus assume k > 0 and let s ∈ R \ {r} with xs > 0. We obtain

cr(x) = cr(x− 1s) + cr(1{r,s})− cr(1r)
= fr(xr) + Ar,·(x− 1s) + ar,s

= fr(xr) + Ar,·x

where the first identity follows from Lemma 6 and the second identity follows from the
induction hypothesis and the definition of ar,s.

4. Resource Graph Games with Weighted Players

In this section, we establish necessary and sufficient conditions for consistency when each
player i ∈ N imposes a weight wi ∈ R≥0 on the resources in their strategy. The charac-
terization reveals two possible cases: A consistent set of cost functions either contains only
affine functions with a symmetric Jacobian, or the cost functions of individual resources are
exponential and separable (i.e., there is no interaction among distinct resources).
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Theorem 2. Let C be a set of continuous cost functions that is closed under composition.
Then C is consistent for weighted resource graph games if and only if one of the following
two statements is fulfilled:

(i) For each c ∈ C with c : Rm≥0 → Rm for some m ∈ N there is a symmetric matrix
A ∈ Rm×m and a vector b ∈ Rm such that c(x) = Ax + b.

(ii) There is φ ∈ R such that for all c ∈ C with c : Rm≥0 → Rm there are a,b ∈ Rm such
that cr(x) = ar exp(φxr) + br for all r ∈ [m] and all x ∈ Rm≥0.

The two distinct cases arise due to the fact that weighted congestion games are a special
case of weighted resource graph games, namely where the cost of each resource r depends
on the load of r only, i.e., Br = {r} for all r ∈ R. For these games, Harks and Klimm (2012)
provided a characterization that shows that consistent sets contain only affine or only ex-
ponential cost functions. In the following, we prove the sufficiency and necessity of either
of the two conditions.

4.1 Proof of Theorem 2: (i) or (ii) ⇒ Consistency of C

We show sufficiency of conditions (i) or (i) in Theorem 2, respectively, for the consistency
of C. If condition 2 is fulfilled, then any weighted resource graph game with cost function
c ∈ C is a weighted congestion game with exponential costs. For these games, the existence
of pure Nash equilibria has been established by Theorem 5.1 of Harks and Klimm (2012). It
is therefore sufficient to show that condition 1 of Theorem 2 is also sufficient for consistency.
The following lemma establishes the sufficiency of condition 1, following the same lines as
the proof of Lemma 1.

Lemma 8. Let G be a weighted resource graph game on m resources with cost function
c : Rm≥0 → Rm given by c(x) = Ax + b, where A ∈ Rm×m is a symmetric matrix and
b ∈ Rm is a vector. Then G has a pure Nash equilibrium.

Proof. Fix an arbitrary weighted resource graph game G whose cost is determined by c ∈ C
and an arbitrary strategy profile x ∈ X. As in the proof of Lemma 1, let P (x) be the sum
of the private costs of the players when adding them to the game in order 1, . . . , n. We
again write x≤i =

∑
j∈N :j≤i xj for the load vector of the players up to i. We then obtain

P (x) =
∑
i∈N

x>i

[
Ax≤i + b

]
.

Similarly to the proof of Theorem 1, we calculate∑
i∈N

x>i Ax≤i =
∑
i∈N

x>i A
( ∑
j∈N :j≤i

xj

)
=

1

2

∑
i∈N

∑
j∈N

x>i Axj +
1

2

∑
i∈N

x>i Axi

=
1

2
x>Ax +

1

2

∑
i∈N

x>i Axi,
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as in the unweighted case where we again used the symmetry of A. We obtain

P (x) =
1

2
x>Ax +

1

2

∑
i∈N

x>i

[
Axi + 2b

]
.

This shows that P is independent of the ordering of the players and the remainder of the
proof is similar to Lemma 1.

4.2 Proof of Theorem 2: Consistency of C ⇒ (i) or (ii)

We now prove the necessity of the conditions given in Theorem 2. By a slight adaptation of
the constructions in Section 3, we obtain the following stronger version of Lemmas 3 and 6
for cost functions that are consistent for weighted players.

Lemma 9. Let C be closed under composition and consistent for weighted resource graph
games. Then, for all c ∈ C, c : Rm≥0 → Rm with m ∈ N the following functional equations
are satisfied:

(i) cr(x + ε · 1{r,s})− cr(x + ε · 1r) = cs(x + ε · 1{r,s})− cs(x + ε · 1s) for all r, s ∈ R and
all x ∈ Rm≥0 and all ε > 0 and

(ii) cr(x + ε · 1s) − cr(x) = cr(y + ε · 1s) − cr(y) for all r, s ∈ R with r 6= s and all
x,y ∈ Rm≥0 with xr, yr > 0 and all ε > 0.

Proof (Sketch). We follow the same constructions used to establish Lemmas 3, 4, 5, and
6. However, we set w1 = w2 = ε and adjust the weights of the dummy players for each
resource such that the load on the resource equals the corresponding coordinate of x.

The following lemma follows from the characterization of consistent functions for weighted
congestion games with separable cost functions due to Harks and Klimm (2012).

Lemma 10. Let C be a set of continuous functions that is closed under composition and
consistent for weighted resource graph games. Then, for all c ∈ C, c : Rm≥0 → Rm with
m ∈ N one of the following statements is true:

(i) For all S ⊆ R and all z ∈ Rm≥0 there are aS,z, bS,z ∈ R such that
∑

r∈S cr(z + λ1S) =
aS,zλ+ bS,z for all λ ≥ 0.

(ii) There is φ ∈ R such that for all S ⊆ R and all z ∈ Rm≥0 there are aS,z, bS,z ∈ R such
that

∑
r∈S cr(z + λ1S) = aS,z exp(φλ) + bS,z for all λ ≥ 0.

Proof. Let c ∈ C, c : Rm≥0 → Rm with m ∈ N be arbitrary. For S ⊆ R and z ∈ Rm≥0 define
cS,z : R≥0 → R by cS,z(λ) =

∑
r∈S cr(z + λ1S). Let C′ = {cS,z : S ⊆ R, z ∈ Rm} be the

set of all functions arising in this way. We show that any weighted congestion game with
separable cost functions on k resources where each resource has a cost function c′ ∈ C′ is
isomorphic to a weighted resource graph game with cost function ck on km resources. Since
C is closed under composition, the function ck is contained in C, and, hence, consistency of
C for weighted resource graph games implies the consistency of C′ for weighted congestion
games. A set of continuous functions is consistent for weighted congestion games if and
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only if it contains only affine functions (as described in case (i) of the lemma) or it contains
only exponential functions (as described in case (ii) of the lemma) (Harks & Klimm, 2012,
Theorem 5.1). Hence the lemma follows from the following construction.

Consider any weighted congestion game G′ with arbitrary player set N ′, weights w′i
for each i ∈ N ′, strategies X ′i = {wi · xi : xi ∈ Yi} with Yi ⊆ {0, 1}k, and resource set
R′ = {r′1, . . . , r′k} such that for all r ∈ R′ the cost function c′r : R≥0 → R of resource r is of
the form c′r = cS,z for some S ⊆ R and z ∈ RR≥0. In what follows, we construct an isomorphic

weighted resource graph game G with player set N , mk resources, and cost function ck.
For j ∈ [k] let Sj ⊆ R and zj = (zj,1,, . . . , zj,m) ∈ Rm≥0 be such that c′rj = cSj ,zj . We define
N = N ′∪{(r, j) : r ∈ R, j ∈ [k]}, i.e., the set of players N of G contains the player set N ′ of
the original congestion game plus mk additional dummy players. Each dummy player (r, j)
can only play strategy 1rj where rj is the j-th copy of resource r ∈ [m]. That dummy player
has a weight w(r,j) = zj,r. Each normal player i ∈ N ′ has the same weight wi = w′i as in the
original congestion game. For each strategy x′i ∈ X ′i of player i in the original congestion
game, there is a strategy xi ∈ Xi that arises from x′i by replacing each resource rj ∈ R′ by
the set of resources Sj ⊆ R, i.e., Xi = {

∑
j∈[k] x

′
i,j 1Sj : x′i = (x′i,1, . . . , x

′
i,k) ∈ X ′i}. Thus,

there is a one-to-one correspondence between strategy profiles x′ for G′ and strategy profiles
x of G and it is easy to see that by construction, the private cost of player i ∈ N ′ is the
same for x′ in G′ and the corresponding profile x in G.

Equipped with Lemmas 9 and 10, we can show that the impact of the load of resource s
on the cost of resource r needs to be linear and symmetric. In addition, the impact is
non-existent if case (i) of Lemma 10 does not hold. This is formalized in the following
lemma.

Lemma 11. Let C be a set of continuous functions that is closed under composition and
consistent for weighted resource graph games. Then, for all c ∈ C, c : Rm≥0 → Rm with
m ∈ N and all r, s ∈ [m] with r 6= s there is ar,s = as,r such that

cr(z + λ1s)− cr(z) = ar,sλ

for all z ∈ Rm≥0 with zr > 0 and all λ ≥ 0. Moreover, if case (i) of Lemma 10 does not hold,
then ar,s = 0 for all r, s ∈ R.

Proof. Let c ∈ C, c : Rm≥0 → Rm with m ∈ N be arbitrary. Let r, s ∈ [m] with r 6= s and let
z ∈ Rm≥0 with zr > 0. Applying Lemma 9 (i) to rewrite cs(z + λ1{r,s}) we obtain

cr(z + λ1{r,s}) + cs(z + λ1{r,s})︸ ︷︷ ︸
h0(λ)

= cr(z + λ1{r,s}) + cr(z + λ1{r,s})− cr(z + λ1r) + cs(z + λ1s)

= cr(z + λ1r)︸ ︷︷ ︸
h1(λ)

+ cs(z + λ1s)︸ ︷︷ ︸
h2(λ)

+2
(
cr(z + λ1{r,s})− cr(z + λ1r)︸ ︷︷ ︸

h4(λ)

)

for all λ ≥ 0. We apply Lemma 10 to the expressions h0(λ), h1(λ), h2(λ) and distinguish
two cases.
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If we are in case (i) of Lemma 10, then all three expressions are affine functions of λ
and we conclude that also h4 must be affine in λ, i.e., there are az, bz ∈ R such that

cr(z + λ1{r,s})− cr(z + λ1r) = azλ+ bz.

By part (i) of Lemma 9, we observe that this equality also holds (for the same values of az
and bz) when swapping the roles of s and r. Applying part (ii) of Lemma 9, we observe
that az and bz are independent of z. Letting λ approach 0, continuity of cr implies that
bz = 0.

If we are in case (ii) of Lemma 10, then all three expressions are exponential functions
of the form a exp(φλ)+ b for some φ ∈ R and we conclude that also h4 must be of this form,
i.e., there is a′, b′ ∈ R such that cr(z+λ1{r,s})−cr(z+λ1r) = a′ exp(φλ)+b′. Applying part
(ii) of Lemma 9, we conclude that a′ = b′ = 0, thus proving the statement of the lemma for
this case.

We are now ready to establish the necessity of condition 1 or 2 of Theorem 2, concluding
the proof of the theorem.

Lemma 12. Let C be a set of continuous functions that is closed under composition and
consistent for weighted resource graph games. Then, one of the following statements is true:

1. For each c ∈ C with c : Rm≥0 → Rm for some m ∈ N there is a symmetric matrix
A ∈ Rm×m and a vector b ∈ Rm such that c(x) = Ax + b.

2. There is φ ∈ R such that for all c ∈ C with c : Rm≥0 → Rm there are a,b ∈ Rm such
that cr(x) = ar exp(φxr) + br for all r ∈ [m] and all x ∈ Rm≥0.

Proof. Let c ∈ C, c : Rm≥0 → Rm with m ∈ N be arbitrary. By Lemma 11, for all r, s ∈ [m],
there is ar,s such that cr(z + λ1s)− cr(z) = ar,sλ for all z ∈ Rm≥0 with zr > 0 and all λ ≥ 0.

Let r1, . . . , rm be an arbitrary ordering of the resources in R with rm = r. Defining x(0) = x
and x(i) = x(i−1) − xri · 1ri for i ∈ [m] we obtain

cr(x) = cr(xr · 1r) +

m−1∑
i=1

cr(x
(i−1))− cr(x(i))

= cr(xr · 1r) +
∑

s∈R\{r}

ar,s(xs − 1).

In case (i) of Lemma 10, we conclude that cr(xr · 1r) is an affine function of xr. This
implies that there is a symmetric matrix A ∈ Rm×m and a vector b ∈ Rm such that
cr(x) = Ar,·x + br for all r ∈ R and all x ∈ Rm≥0 with xr > 0. Since C is closed under
composition, all functions c ∈ C have this property thus we retrieve case 1 of Lemma 12.

In case (ii) of Lemma 10, we conclude that cr(xr · 1r) is an exponential function of xr.
By Lemma 11, we than have that ar,s = 0 and we thus obtain that cr(x) = ar exp(φxr) + br
for all r ∈ [m] for some constant ar, br, φ ∈ R. As C is closed under composition, this implies
that all functions c ∈ C have this property, and we retrieve case 2 of Lemma 12.
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5. The Complexity of Pure Nash Equilibria in Resource Graph Games

In this section, we discuss the computational complexity of decision problems that arise in
the context of pure Nash equilibria in resource graph games. First, we consider games that
satisfy the requirements of Theorem 1 and, thus, always have a pure Nash equilibrium. We
show that even though a pure Nash equilibrium always exists, it is coNP-complete to decide
for a given game and a given strategy profile x whether x is a pure Nash equilibrium. This
holds even for games with a single player, in which the strategy set of the player corresponds
to the edge set of the sets of path between two designated vertices s in t in a graph where
the edges are associated with the resources, and in games where the cost of each resource
depends only on the load of one (other) resource. We note that this hardness result is in
contrast to the subclasses of action graph games or local effect games. For these games,
every strategy of every player is a singleton. This yields a simple polynomial algorithm
deciding whether a given strategy profile x is a pure Nash equilibrium. The algorithm
computes for every player i and every alternative strategy yi the private cost πi(yi, x−i).
If for one πi(yi, x−i) < πi(x), then x is not a pure Nash equilibrium. If no such profitable
deviation is found, then x is a pure Nash equilibrium. For resource graph games, this
algorithm is finite, but not necessarily polynomial, since the set of strategies of each player
may be exponential in the size of the instance.

Theorem 3. It is coNP-complete to determine whether a given strategy profile of a resource
graph game G is a pure Nash equilibrium. This holds even when G satisfies any number of
the following properties:

1. G has only a single player;

2. the cost function c fulfills the requirements of Theorem 1;

3. X1 = {1S : S is an s-t-path} for a given directed graph with edge set R;

4. |Br| = 1 for all r ∈ R.

Proof. Membership in the class coNP is clear since when x is not a pure Nash equilibrium,
then there is a player i and an alternative strategy yi ∈ Xi such that πi(yi, x−i) < πi(x).
This inequality can be checked in polynomial time, thus, yi is a polynomial certificate for
x not being a pure Nash equilibrium.

To show that the problem is coNP-hard, we reduce from Forbidden-Pairs-s-t-Path,
which is known to be NP-hard (Gabow, Maheshwari, & Osterweil, 1976). Given a digraph
G = (V,E), two nodes s, t ∈ V , and a collection of edge pairs {e1, e

′
1}, . . . , {ek, e′k}, it is

NP-hard to decide whether there exists an s-t-path P such that |P ∩ {ei, e′i}| ≤ 1 for all
i ∈ [k]. Given an instance of Forbidden-Pairs-s-t-Paths, we construct a resource graph
game as follows. We add an additional edge e0 from s to t with cost ce0(x) = xe0 for all
x ∈ RE , and let R = E ∪ {e0}. For every edge e ∈ E and x ∈ RR, we define

ce(x) =


xe′i if e = ei for some i ∈ [k],

xei if e = e′i for some i ∈ [k],

0 otherwise.
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The game has a single player whose strategy space corresponds to the set of s-t-paths in
G. It is easy to see that player 1 has a strategy of cost 0 if and only if there exists a path
avoiding all forbidden pairs, and that all other strategies cost at least 1. As a consequence,
the strategy x1 = 1e0 where player 1 uses edge e0 only is a pure Nash equilibrium if and
only if there is no path avoiding all forbidden pairs, showing the claimed result.

We proceed to show that in games that do not satisfy the requirements of Theorem 1,
the decision whether a pure Nash equilibrium exists is Σp

2-complete. This implies that this
problem lies at the second level of the polynomial hierarchy and, thus, cannot be contained
in NP, unless the polynomial hierarchy collapses. The upshot of this result is that this
decision problem is considerably harder than NP-complete problems.

Theorem 4. It is Σp
2-complete to determine whether a given resource graph game G has

a pure Nash equilibrium. This holds even when G satisfies any number of the following
properties:

1. G has only two players;

2. c is affine linear, i.e., c(x) = Ax + b with A ∈ R|R|×|R|, b ∈ R|R|≥0;

3. Xi = {1S : S is an si-ti-path} for every player i for a given directed graph with edge
set R.

Proof. The class Σp
2 contains the problems of the form where an existential quantification

is followed by a universal quantification over a polynomially bounded and polynomially
decidable relation. The existence of a pure Nash equilibrium can be phrased exactly like
this since it asks for a strategy profile x such that for all strategy profiles y = (yi, x−i) for
some i ∈ N and yi ∈ Xi, we have πi(y) ≥ πi(x). The latter condition can be checked in
polynomial time thus putting the problem to decide the existence of a pure Nash equilibrium
in Σp

2.

To show that the problem is also complete for this class, we reduce from 2-Quantified
3-DNF-Satisfiability. In the problem, we are given two disjoint sets Y 1 = {y1

1, . . . , y
1
n}

and Y 2 = {y2
1, . . . , y

2
n} of Boolean variables, and a Boolean formula φ over Y 1 ∪ Y 2 in

disjunctive normal form where each of the conjunctive clauses consists of exactly three
distinct literals. The computational problem to decide whether there is an assignment of
the variables y1

1, . . . , y
1
n such that for all assignments of the variables y2

1, . . . , y
2
n the formula

φ(y1
1, . . . , y

1
n, y

2
1, . . . , y

2
n) is true is Σp

2-complete as shown by Stockmeyer (1977).

Instead of working with the Boolean formula in disjunctive normal form, we work with
the negation ψ(y1

1, . . . , y
1
n, y

2
1, . . . , y

2
n) = ¬φ(y1

1, . . . , y
1
n, y

2
1, . . . , y

2
n). From the disjunctive

normal form of φ, a conjunctive normal form of ψ can be obtained in linear time.

We proceed to construct a two-player game that has a pure Nash equilibrium if and
only if a given instance of 2-Quantified 3-DNF-Satisfiability has a solution, thus
proving the theorem. In the construction, the resources will correspond to edges of the
graph depicted in Figure 6.

We first describe the resources and strategies of the first player. That player will essen-
tially control the variables y1

1, . . . , y
1
n of the Boolean formula.
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s1 . . . t1

. . .

. . .

. . .

. . .

r1out

r11,1

r̄11,1

r11,m

r̄11,m

r1in

r1n,1

r̄1n,1

r1n,m

r̄1n,m

s2 . . . t2r2in

. . .

. . .

. . .

. . .

. . .

. . .

r2out

r21,1,1

r21,1,3

r21,1,2

r21,m,1

r21,m,3

r21,m,2

r2m,1,1

r2m,1,3

r2m,1,2

r2m,m,1

r2m,m,3

r2m,m,2

Figure 6: Construction for the proof of Σp
2-hardness.

For each variable y1
i , i ∈ [n] and clause j ∈ [m] we introduce two resources r1

i,j and

r̄1
i,j . Resources r1

i,j model the setting of variable y1
i to true and resources r̄1

i,j model the

setting of variable y1
i to false. Furthermore, we introduce two additional resources r1

in and
r1

out. The strategy set of player 1 corresponds to the edge sets of all s1-t1-paths of the
graph in Figure 6. Every s1-t1-path contains either the in-resource r1

in or the out-resource
r1

out. The path containing the out-resource does not contain any further resources. All
paths containing the in-resource correspond to a truth assignment of the variables Y 1 in
the following way. Each such path for every variable y1

i , i ∈ [n] contains either the resources
r1
i,j for all j ∈ [m] (interpreted as setting y1

i = true) or contains the resources r̄1
i,j for all

j ∈ [m] (interpreted as setting y1
i = false).

We proceed to explain the strategy of player 2 and the resources contained in it. Let
(zj,1 ∨ zj,2 ∨ zj,3) with j ∈ [m] be a clause of ψ. It is without loss of generality to assume
that no variable appears multiple times in the literals for a clause. We introduce 3m literal
resources r2

j,1,1, . . . , r
2
j,m,1, r2

j,1,2, . . . , r
2
j,m,2, and r2

j,1,3, . . . , r
2
j,m,3. Furthermore, also player 2

has an in-resource r2
in and an out-resource r2

out. The strategy set of player 2 corresponds to
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the edge sets of all s2-t2-paths of the graph in Figure 6. Every s2-t2-path contains either
the in-resource r2

in or the out-resource r2
out. The path containing the out-resource does not

contain any further resources. Every path containing the in-resource contains for every
clause j ∈ [m] one set of literal resources r2

j,j′,k for all j′ ∈ [m] and some k ∈ [3].

The variable resources r1
i,j and r̄1

i,j have cost cr1
i,j

(x) = cr̄1
i,j

(x) = 0 for all i ∈ [n], j ∈ [m],

and x ∈ NR.

We next define the costs for the literal resources. The cost functions on the literal
resources depend on whether the corresponding literal belongs to a variable in Y 1 or Y 2.
We set

cr2
j,j′,k

(x) =


xr1

i,j
if zj,k = ¬y1

i for some i ∈ [n],

xr̄1
i,j

if zj,k = y1
i for some i ∈ [n],∑

k′∈[3]:zj,k=¬zj′,k′
xr2

j′,j,k′
otherwise

for all j, j′ ∈ [m], k ∈ [3], and x ∈ NR. The intuition behind these cost functions is that the
cost of the literal edges r2

j,1,k, . . . , r
2
j,m,k corresponding to literal zj,k are increased if either

the corresponding variable is controlled by player 1 and player 1 chooses the other variable
assignment for that variable, or the variable is controlled by player 2 and the player chooses
a conflicting literal edge for another clause. Further note that in the latter case, for every
resource r2

j,j′,k with zj,k not corresponding to a variable in Y 1, there is at most one k′ ∈ [3]
such that zj,k = ¬zj′,k′ since every variable appears at most once per clause. Finally, we set
cr2

out
(x) = 1, cr2

in
(x) = 2xr1

out
, cr1

in
(x) = 2xr2

in
, and cr1

out
(x) = 1/2 for all x ∈ NR. Note that

|Br| ≤ 1 for all r ∈ R.

We claim that the thus defined game has a pure Nash equilibrium if and only if there
is an assignment of the variables y1

1, . . . , y
1
n such that for all assignments of the variables

y2
1, . . . , y

2
n, we have that ψ(y1

1, . . . , y
1
n, y

2
1, . . . , y

2
n) is false.

Let us first assume that such an assignment exists. Let T ⊆ Y 1 be the subset of variables
of player 1 that are set to true in such an assignment. Let

x1 = 1r1
in

+
∑
i∈T

1r1
i

+
∑

i∈[n]\T

1r̄1
i

be the corresponding strategy. Further, consider the strategy of player 2 that uses the
out-resource, i.e.,

x2 = 1r2
out
.

We proceed to show that (x1,x2) is a pure Nash equilibrium. Player 1 obviously has no
profitable deviation from (x1,x2) as her private cost is 0 and all costs are non-negative. For
player 2, we have π2(x1,x2) = 1, so if there is a strategy y2 ∈ X2 with π2(x1,y2) < 1, then
it must be the case that player 2 uses r2

in in y2. This, implies that for each clause j ∈ [m],
player 2 uses one of the sets of literal resources {rj,1,kj , . . . , rj,m,kj} for some kj ∈ [3]. Since
there is no satisfying assignment, player 2 must then use either a set of literal resources
{rj,1,k, . . . , rj,m,k} associated with a variable of player 1 that player 1 did not set accordingly
(incurring a cost of m), or player 2 must have conflicting assignments for a variable in Y 2
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(incurring a cost of 2). In either case, y2 is not a profitable deviation for player 2 and,
hence, (x1,x2) is a pure Nash equilibrium.

Next, let us assume that such an assignment does not exist, i.e., for all assignments
of the variables in Y 1, there is an assignment of the variables in Y 2 that satisfies ψ. We
proceed to show that in this case, the game does not have a pure Nash equilibrium. For a
contradiction, let us assume that (x1,x2) is a pure Nash equilibrium and let us first consider
the case that player 1 uses resource r1

in in x1. For every variable i ∈ [n], player 1 chooses
either all resources r1

i,j for all j or all resources r̄1
i,j for all j and the strategy of player 1 can

be interpreted as an assignment of the variables in Y 1. For every such assignment, there is
an assignment of the variables in Y 2 such that ψ is satisfied, i.e., for each clause j ∈ [m]
there is a literal zj,kj with kj ∈ [3] satisfying ψ. Consider the corresponding strategy

x2 = 1r2
in

+
∑
j∈[m]

∑
j′∈[m]

1rj,j′,kj

of player 2. By construction, π2(x1,x2) = 0. Since resource r2
out incurs a cost of 1 for

player 2, strategies x2 with x2,r2
in

= 1 are the only candidates for a pure Nash equilibrium

(x1,x2). However, since x2,r2
in

= 1, player 1 has a cost of 2 on resource r1
in making it

profitable to switch to r1
out while keeping the rest of the strategy. This shows that there is

no pure Nash equilibrium with x1,r1
in

= 1.

Next, consider the case that x1,r1
out

= 1. In that case, we have that any strategy of

player 2 using r2
in has a cost of at least 2 while the strategy x2 = 1r2

out
has a cost of 1. We

conclude that player 2 is not using r2
in. In that case, however, player 1 could switch from

r1
out to any of the paths containing r1

in, obtaining a cost of 0. We conclude that also in this
case, a Nash equilibrium does not exist.

6. Conclusion

In this paper, we gave a complete characterization of a set of consistent cost maps C having
the property that any resource graph game with cost maps contained in C admits pure Nash
equilibria. We complemented our characterizations by several hardness results regarding
the equilibrium existence problem in terms of recognizing a strategy profile as pure Nash
equilibrium or to decide their existence. Our characterizations require that C is closed under
composition, that is, for any two cost maps c, c′ ∈ C we have c⊕c′ ∈ C. While quite natural,
this assumption allows to construct examples used for proving the only if direction of our
characterization. It is an interesting open question to give a complete characterization
of consistency of cost functions without this assumption. Another interesting research
direction is to consider restricted strategy spaces such as matroids or other graph structures
and derive alternative characterizations of consistency of cost functions.
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