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Abstract

Statistical modeling of outcomes based on a patient’s presenting symptoms (symptoma-
tology) can help deliver high quality care and allocate essential resources, which is especially
important during the COVID-19 pandemic. Patient symptoms are typically found in un-
structured notes, and thus not readily available for clinical decision making. In an attempt
to fill this gap, this study compared two methods for symptom extraction from Emergency
Department (ED) admission notes. Both methods utilized a lexicon derived by expanding
The Center for Disease Control and Prevention’s (CDC) Symptoms of Coronavirus list.
The first method utilized a word2vec model to expand the lexicon using a dictionary map-
ping to the Unified Medical Language System (UMLS). The second method utilized the

©2021 AI Access Foundation. All rights reserved.



Silverman, et al.

expanded lexicon as a rule-based gazetteer and the UMLS. These methods were evaluated
against a manually annotated reference (f1-score of 0.87 for UMLS-based ensemble; and
0.85 for rule-based gazetteer with UMLS). Through analyses of associations of extracted
symptoms used as features against various outcomes, salient risks among the population of
COVID-19 patients, including increased risk of in-hospital mortality (OR 1.85, p-value <
0.001), were identified for patients presenting with dyspnea. Disparities between English
and non-English speaking patients were also identified, the most salient being a concerning
finding of opposing risk signals between fatigue and in-hospital mortality (non-English: OR
1.95, p-value = 0.02; English: OR 0.63, p-value = 0.01). While use of symptomatology for
modeling of outcomes is not unique, unlike previous studies this study showed that models
built using symptoms with the outcome of in-hospital mortality were not significantly dif-
ferent from models using data collected during an in-patient encounter (AUC of 0.9 with
95% CI of [0.88, 0.91] using only vital signs; AUC of 0.87 with 95% CI of [0.85, 0.88] using
only symptoms). These findings indicate that prognostic models based on symptomatol-
ogy could aid in extending COVID-19 patient care through telemedicine, replacing the
need for in-person options. The methods presented in this study have potential for use in
development of symptomatology-based models for other diseases, including for the study
of Post-Acute Sequelae of COVID-19 (PASC).

1. Introduction

Due to the strain and episodic shortage of clinical resources during the COVID-19 pandemic,
in some instances clinicians have had to triage patients based on available resources (e.g.,
ICU beds, ventilators, personal protective equipment, dialysis, etc.) to manage the influx
of new cases. To address this challenge, clinicians need accurate tools to allocate essential
medical resources to patients who need them most, primarily those at high risk for mortality.
Prognostic modeling can help identify patients at higher risk for mortality and better inform
clinicians’ treatment decisions, thus potentially improving outcomes by allocating resources
efficiently.

Patients seeking clinical treatment for COVID-19 usually exhibit symptoms and are
concerned about their prognosis and need for medical support. As it pertains to COVID-19,
understanding future prognosis is far more critical than the initial diagnosis. When properly
constructed, prognostic models can improve patient outcomes by guiding care decisions
(Croft et al., 2015; Wynants et al., 2020). Statistical and deep learning prognostic models
offer potential answers to the limitations of current outcome predictions in clinical settings.
A study from the Wuhan, Hubei, and Guangdong provinces in China showed that a deep
learning model could identify COVID-19 patients upon admission who are at greater risk
for critical illness. In this study, Liang et al. (2020) constructed a Deep Learning Survival
Cox model that performed statistically better than a standard LASSO Cox model using
ten variables. However, Liang et al.’s (2020) study limitations included a lack of important
predictors, such as lab results and vital signs, and it did not perform as strongly in predicting
hospitalization compared to the other models. In another study, Wollenstein-Betech et al.
(2020) illustrated that logistic regression and support vector machines (SVMs) accurately
predicted hospitalization, mortality, need for ICU, and use of ventilator, with respective area
under the receiver operating characteristic curve (AUC) of 0.75, 0.70, 0.64, and 0.86 for each
outcome. Their study included models that tracked the disease progression by measuring
variables such as the development of pneumonia, which significantly increased the accuracy
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of the models for ICU admittance, mortality, and ventilator use. This potentially offers
real-time prognostic implications.

Despite these advances in prognostic models, there is room for improvement in patient
outcomes. Furthermore, all these models utilize structured data, including labs, medi-
cations, comorbidities, etc. In this study, we outline methodologies that utilize Natural
Language Processing (NLP) for clinical concept mapping to a well-defined lexicon and the
Unified Medical Language System (UMLS) to extract information about patient symp-
tomatology exhibited at the time of Emergency Department (ED) presentation. While the
presented methodologies may be generalizable to a variety of acute and chronic conditions,
we explore the potential incremental benefit of clinical NLP concept extraction specifically
to the use-case of symptomatology for acute COVID-19.

2. Background & Significance

The application of NLP-derived symptomatology in clinical practice can provide valuable
insight into disease progression for improving treatment decisions. Examples of how symp-
tomatology can improve clinical outcomes are presented below, with specific attention to
the COVID-19 pandemic. In order to be successful, however, there are several obstacles
that need to be addressed.

2.1 Symptomatology

There are significant gaps in NLP’s broad use for various clinical and research applications.
In primary care, general practitioners may have difficulty diagnosing illness from a set of
common symptoms due to significant overlap between syndromes. For example, fatigue
is a common symptom among many diseases and in isolation may not provide significant
predictive power towards one diagnosis over another. When evaluated with other present-
ing symptoms, an overall diagnosis and prognosis of a particular disease becomes much
clearer. Additional testing is then required to progress further towards the likely diagnosis
and prognosis. However, with advances in computing power and machine-learning algo-
rithms, as well as the ubiquity of the electronic health record (EHR), certain constellations
of symptoms may carry significant predictive power that can be overlooked by clinicians;
especially non-specific symptoms such as fatigue. Here, evidence-based patient manage-
ment could be valuable. On this frontline in health care, a renewed emphasis on symptom
epidemiology has potential to improve treatment decisions by focusing on evidence-based
outcomes, rather than diagnosis (Rosendal et al., 2015). This strategy could simplify the
process of differential diagnosis in primary care.

Use of symptoms mapped to UMLS concepts has been studied in the non-COVID-
19 domain for use in predictive modeling of colorectal cancer. Hoogendoorn et al. (2016)
showed that model performance was significantly better when using UMLS mapped concepts
as predictors when mined from general practitioner and consultation notes. In another
study, Stephens et al. (2020) developed predictive models for influenza that used UMLS-
driven NLP methods to extract symptoms from unstructured notes from ambulatory care
visits. This strategy significantly improved data quality by reducing the frequency of false
negatives for predicted outcomes and reducing non-random missing data. In this case, the
UMLS-driven NLP model outperformed the basic LASSO regression model with an AUC
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of 0.71. In the area of surgical complication detection, models incorporating NLP-derived
surgical site infection text indicators accelerated the manual process of detecting surgical
site infection for data abstractors (Skube et al., 2020). These examples demonstrate the
capacity of symptomatology-based modeling algorithms to improve diagnosis and prognosis.

2.1.1 COVID-19

Numerous studies have examined the manifestations of COVID-19 symptomatology. In a
meta-analysis of 14 studies across data from various countries, researchers found there were
32 symptoms across multiple organ systems. These symptoms differ from those released by
organizations, including WHO, United States CDC, NHS, China CDC, Institut Pasteur,
and Mayo Clinic (Champika et al., 2020). Given the wide range of reported symptoms,
clinicians would benefit from knowing which symptoms indicate the greatest risk of severe
infection or mortality.

In the United Kingdom the study by Abdulaal et al. (2020) utilized a neural network
to create a prognostic model for mortality of COVID-19 patients upon admission. The
model specifically used predictors of demographics, comorbidities, smoking history, and
symptomatology to predict patient mortality with 86.25% accuracy and an AUC of 90.12%.
Relatedly, a study of COVID-19 symptomatology in Wuhan found that fatigue and expec-
toration showed linear associations with COVID-19 severity, but the study did not have
a large sample size and did not examine associations with outcomes such as mortality (Li
et al., 2020).

Our study aims to improve and expand on the use of symptomatology in prognostic
models with focus on associations between predictors. To achieve this, we evaluated two
methods for automated extraction of symptoms from Emergency Department (ED) admis-
sion notes: The first used ensembling of UMLS-based NLP classifiers; while the second used
a rule-based lexical gazetteer (hereafter ”Hybrid COVID Symptoms Gazetteer”) that
included terms from the UMLS.

2.1.2 Implications

Use of NLP methods for mining of a patient’s presenting symptoms has other practical
implications. At various times and locations during the pandemic, restrictions on move-
ment, lack of personal protective equipment, or clinic closures made in-person clinical visits
difficult for many patients. During and since these challenges, telemedicine has become
an increasingly vital tool for patient care, particularly for COVID-19. With a prognostic
model based on symptomatology, COVID-19 patients could safely isolate at home and also
receive informed treatment from clinicians, replacing the need for other in-person options
that might jeopardize the well-being of health care workers and patients.

A meta-analysis by Hincapié et al. (2020) consisting of 43 studies found while some
health care systems have implementation issues, the potential benefits of telemedicine ex-
pansion are enormous, especially in areas where there are insufficient clinical resources.
Another study by Andrews et al. (2020) found there was high satisfaction with telemedicine
for both patients and health care workers, and that both groups were open to continuing
telemedicine delivery methods after the pandemic. Lastly, telemedicine has the potential
to redefine a billable medical service if telemedical consultations prove adept at treating
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COVID-19 patients. Improvement of remote medical services has potential beyond COVID-
19, especially for communities lacking a robust health care infrastructure.

2.1.3 Obstacles

An important consideration is that patient symptoms are not always part of the structured
EHR, and thus not readily available for near real-time analysis (Pakhomov et al., 2008).
This can be addressed through use of appropriate NLP methods for extraction of symptoms
from unstructured clinical text within the EHR, such as ED admission or outpatient (OP)
notes.

Another major issue involves inconsistent documentation of symptoms, especially for
non-English speakers. Among COVID-19 patients, not speaking English has been found to
be independently associated with worse outcomes (Ingraham et al., 2021). A major goal
of this study is to show the presented NLP methods have the potential to give insight into
this issue by providing data necessary for examining mechanisms behind this association.

2.2 NLP Methods

An overview of NLP methods used in this study is presented below. These methods provide
a flexible framework for mining terms and concepts, such as symptoms, that may not be
easily accessible to clinicians, with the goal of improving patient care. These methods are
described throughout Section 3 with application to the symptomatology of COVID-19.

2.2.1 UMLS and Information Extraction

The UMLS Metathesaurus was developed by the United States’ National Library of Medicine
(NLM, 2009) as a knowledge-driven resource to identify biomedical concepts that associate
multiple terms from multiple source vocabularies into a single concept unique identifier
(CUI). The UMLS contains the Semantic Network for mapping CUIs into a set of broad
subject categories, or Semantic Groups and Types. The Semantic Network provides con-
sistent categorization of UMLS concepts into high-level groupings (e.g., findings, disorders,
procedures, etc.) (Bodenreider, 2020). The UMLS consists of over 4 million distinct con-
cepts organized by 15 semantic groups, 133 semantic types, and 54 semantic relationships
(He et al., 2017).

UMLS is designed to allow for a broad range of applications, including standardization
of the information extraction (IE) process. Use of UMLS for IE originally focused on
identifying biomedical concepts in biomedical literature and later broadened to clinical
text (Aronson, 2001; Aronson & Lang, 2010). To utilize UMLS for IE, groups of words
in unstructured text that correspond to UMLS concepts must be identified using Named
Entity Recognition (NER). Once identified, candidate named entities (NEs) can be mapped
to UMLS CUIs and then extracted for conceptual indexing (Reátegui & Ratté, 2018).

Use of NER with mapping to UMLS concepts has been investigated in many clinical
studies that leveraged ensembling techniques for combining multiple NLP classifiers to im-
prove overall performance. Finley et al. (2017) assessed medical acronym disambiguation
with UMLS lookup using a majority vote ensemble to improve overall performance, and Kuo
et al. (2016) compared ensembling methods for extraction using categorized UMLS concepts
for improved identification of patient cohorts. Lastly, Bompelli et al. (2020) showed ensem-
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bles of output from NLP annotation systems can provide a modest performance increase
over individual NLP annotation systems for tasks involving UMLS mapping that were novel
for those systems.

2.2.2 Lexical Gazetteer

A gazetteer is a dictionary of terms derived from a given lexicon (a.k.a., vocabulary).
Gazetteers that use a defined set of rules (a.k.a., rule-base) for lookup of terms within
text have been successfully used in many domains as an alternative to more sophisticated
NLP annotation systems for classification, NER and IE. For example, Nguyen and Patrick
(2014) demonstrated the use of a gazetteer for classification of radiology reports into re-
portable and non-reportable cancer cases. Liu et al. (2013) successfully used a gazetteer
to select cohorts of heart failure and peripheral arterial disease patients from unstructured
clinical notes. Gazetteer lexicons are highly targeted through construction by domain ex-
perts, especially when combined with appropriate lexical rules (Elkin et al., 2008) and have
been shown to work very well with continuous maintenance (Couto, Campos, & Lamurias,
2017). Furthermore, gazetteer lexicons provide a simpler alternative to UMLS-based NLP
pipelines through ease of adaptation and modification of linguistic constructs for improve-
ment in matching of relevant terms (Meystre & Haug, 2005). Gazetteers and their rule-bases
can easily be deployed together as a standalone tool using containerization technologies such
as Docker, or the rule-base alone can be deployed as part of an existing infrastructure such
as that developed by the Open Health NLP (OHNLP) consortium for the National COVID
Cohort Collaborative (N3C) based on the work of Wen et al. (2019).

2.2.3 Word Embeddings & Query Expansion

Word embeddings use data-driven techniques to produce distributed semantic representa-
tions of words through training over a large corpus of text (Mikolov et al., 2013a). In
Mikolov et al.’s (2013b) word2vec implementation, words within a corpus are assigned to
vector values that represent semantic representations between words. This allows word2vec
to be used as a tool for identifying other words within the corpus that closely match the
vector values of the target set of words. A common measure for assessing similarity between
vector embeddings is the cosine distance, where the cosine of the angle between two vectors
is computed using linear algebra.1 Other similarity measures include the Jaccard and Dice
measures (Ljubesic et al., 2008). For this study we used the cosine distance measure.

Query expansion is a procedure used in IE, in which semantically similar terms to the
original target set of words are identified using models such as word2vec. Query expansion
helps better identify relevant documents within a corpus, thus increasing overall document
retrieval coverage (viz., sensitivity) (Aklouche et al., 2018; Bursi et al., 2006). In two
separate studies Silverman et al. (2019) and Tignanelli et al. (2020) showed that simple
ensemble methods produced marked increases in both precision and recall compared to
individual NLP annotation systems for determining if appropriate treatment was provided
in prehospital care. This was achieved by using a predefined clinical lexicon for query
expansion using a word2vec model trained by Pakhomov et al. (2016). Similarly, Fan et al.
(2019) trained a word2vec model on clinical notes to expand dietary supplement vocabulary

1. This determines if the vectors are pointing in the same direction.
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by finding corresponding misspellings and brand names, which helped retrieve more relevant
documents.

2.3 Our Contribution

This study compared two methods used at our institution for extraction of symptoms de-
rived from a lexicon based on the guidelines listed for Symptoms of Coronavirus published
by the United States’ Center for Disease Control’s division of National Center for Immu-
nization and Respiratory Disease (CDC, 2020). The first used standard ”out-of-the-box”
clinical NLP annotation systems to map extracted symptoms to a dictionary of UMLS con-
cepts derived from this lexicon. The second, developed by Sahoo and Silverman (2020)
specifically for this study, used the Hybrid COVID Symptoms Gazetteer in tandem
with the UMLS. All NLP annotation systems used in this study performed roughly the
same in terms of extraction performance in our baseline experiments. However, results
indicate the Hybrid COVID Symptoms Gazetteer significantly outperforms the other
NLP annotation systems in terms of document processing run-time. Unlike other rule-
based gazetteers existing in the literature, the Hybrid COVID Symptoms Gazetteer
presented in this study was unique in that it also leveraged the UMLS.

To demonstrate the utility of these methods, extracted symptoms were employed to cre-
ate features for use in prognostic modeling and analysis of associations. The methodologies
presented in this study allow for a more consistent and efficient categorization of symptoms
through automation in comparison to manual extraction methods that use clinical abstrac-
tors as described by Abdulaal et al. (2020) and others. Furthermore, the Hybrid COVID
Symptoms Gazetteer leveraged in this study has potential for use in real-time clinical
decision support (CDS). At the time this study was conducted, these methods had not been
applied to mining patient symptoms for acute COVID-19, nor have they been presented in
detail to allow ease of replication.

This study shows that use of extracted symptoms in clinical analytics can be easily
used as a tool to assess patient risk. Furthermore, results of this study indicate patient
symptomatology has potential to serve as a proxy for tests involving direct patient contact.
Unlike previous studies, the goal of this study is not to show how various models can be
improved through use of symptoms, but how use of reported symptoms can be very effective
for general clinical decision making.

3. Data & Methods

For this study, we used a NLP pipeline that employed two methods for extraction of present-
ing symptoms from unstructured ED admission notes using a lexicon derived from the CDC
Symptoms of Coronavirus. The pipeline utilized the lexicon, an ensemble of ”out-of-the-
box” clinical NLP annotation systems, and a Hybrid COVID Symptoms Gazetteer.
Extraction performance across all NLP annotation systems used in this study was compared
to a manually annotated reference set of notes (hereafter referred to as ”manually annotated
reference”) to assess gaps in the lexicon. Run-time performance between ”out-of-the-box”
clinical NLP annotation systems and the Hybrid COVID Symptoms Gazetteer was
also assessed. Extracted symptoms were then used as features for examining associations
with various clinical outcomes. These methods were rapidly implemented by Silverman
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et al. (2020) at our institution to address the need for quick extraction methods for ob-
taining patient presenting symptoms to augment data for a registry of COVID-19 positive
patients.

3.1 Clinical Data

Data used in this study were collected from M Health Fairview, which is an integrated
healthcare delivery system affiliated with the University of Minnesota, composed of 12
hospitals and services in the ambulatory and post-acute settings. Annually, there are over
368,000 ED visits within the network. Between 9 and 30% of those cases are annually
admitted as inpatients.

Between March 1, 2020 and December 17, 2020 there were a total of 19,924 ED visits
for 10,110 unique patients confirmed as COVID-19 positive within the M Health Fairview
network. All patients that did not opt out of research and were seen in the ED within
a window of up to 14 days prior to the return of a positive COVID-19 test result were
included in this study. Patients diagnosed as OPs and then presented to an ED following
their diagnosis were excluded from this study, since our interest was in evaluating presenting
symptoms.2 For patients with multiple ED visits within this window, we used the first
(i.e., index) visit. Only data for patients older than 18 years of age were considered, thus
reducing the cohort to 5,006 patients. Use of these data for this study was approved by
our Institutional Review Board. Table 1 highlights demographics for the population in this
study.

Demographics Frequency

Gender Male 2,449 (48.92%)
Female 2,557 (51.08%)

Race White 2,605 (52.04%)
Black 942 (18.82%)
Asian 477 (9.53%)
Hispanic 427 (8.53%)
Declined 472 (9.43%)
Other 83 (1.66%)

Language English Speaking 3,678 (73.47%)
Non English Speaking 1,328 (26.53%)

Age (Years) 18-40 1,404 (28.05%)
41-54 1,025 (20.48%)
55-64 777 (15.52%)
65-79 1,084 (21.65%)
80 or more 716 (14.3%)

Table 1: Demographics of patients participating in the study.

2. This study was conducted prior to the implementation of rapid Polymerase Chain Reaction (PCR)
testing, with results, on average, available 24-72 hours after the test was given in the ED. Thus, these
criteria ensured that all patients presenting initially to the ED with COVID-19 were included.
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3.1.1 Discrete and Unstructured Data

The following discrete data were made available through the M Health Fairview EHR: de-
mographics, labs, vitals taken at the ED visit, home medications taken for at least 3 months
prior to the ED visit, and comorbidities identified using ICD-10 codes, (for architecture, see
”Files” in Figure 1). A set of automated scripts performed the following tasks (for architec-
ture, see ”Pre-processing/ETL” in Figure 1): data extraction, transformation and loading
(ETL) of the data to the COVID-19 patient registry (for architecture, see ”COVID-19 Pa-
tient Registry” in Figure 1). Unstructured admission notes from the ED were also made
available. Notes were processed using the methods described below in Sections 3.3 and 3.4
to extract the symptoms used in the analyses described in Section 3.6 and then added to
the COVID-19 patient registry. The COVID-19 patient registry was part of the M Health
COVID-19 AI Pipeline, as described by Silverman et al. (2020).

Figure 1: High level view of the architecture of the NLP portion of the M Health COVID-19
AI pipeline.
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3.2 CDC Symptoms of Coronavirus

The CDC’s (2020) guidelines listed for “People with COVID-19 have had a wide range of
symptoms reported – ranging from mild symptoms to severe illness” (hereafter referred to
as ”CDC’s guidelines”) were used to create the lexicon employed in this study as described
below. As of September 1, 2020, these included:

◦ Cough

◦ Shortness of breath or difficulty breathing (dyspnea)

◦ Fatigue

◦ Muscle or body aches (aches)

◦ Headache

◦ New loss of taste or smell

◦ Sore throat

◦ Congestion or runny nose

◦ Nausea or vomiting

◦ Diarrhea

◦ Fever or chills

3.2.1 Lexicon of Covid-19 Symptoms

A specialized lexicon of 164 terms based on the CDC’s guidelines was created using equiv-
alent medical terminology, abbreviations, synonyms, allied symptoms, alternate spellings
and misspellings. This lexicon was iteratively derived by four board certified clinicians (two
critical care [CT, ML], one emergency [MP], and one pulmonary fellow [NI]). Terms in this
lexicon (hereafter referred to as “164 derived COVID-19 symptoms”) were used to extract
the symptoms used in our study. Each of the derived 164 terms were clustered under one
of the main 11 symptoms in the CDC’s guidelines (as outlined in Section 3.2). Please see
Online Appendix 1 for the 164 derived COVID-19 symptoms and their clustering strategy
(hereafter referred to as ”acute CDC symptoms”).

3.2.2 Query Expansion of 164 Derived Covid-19 Symptoms

For this study, the word2vec model trained by Pakhomov et al. (2016) on a corpus of clinical
notes from encounters at M Health Fairview between 2010 and 2014, was used for expansion
of the 164 derived COVID-19 symptoms described in Section 3.2.1. This word2vec model
was trained with embeddings having up to four word sequences by using the word2phrase
tool, allowing for query expansion of phrases.

Terms in the list of 164 derived COVID-19 symptoms were mapped to the UMLS using
MetaMap to get the CUI and its preferred term.3

3. The following MetaMap options were used for this task:
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The UMLS preferred term was used to query for the top 100 semantically similar terms
to the preferred term using the Gensim most similar method (Řeh̊uřek, 2016) to interface
with the word2vec model.

The query expansion strategy used in this study is described below in Figure 2.

For a given parent symptom:

If parent symptom has UMLS mapping:

If semantically similar terms exist for parent symptom:

if cosine distance >= 0.75 AND terms have UMLS mapping:

Then select terms

Else:

If cosine distance < 0.75 and terms have UMLS mapping:

Then select top two terms with UMLS mapping

Else:

If semantically similar terms do not exist for parent symptom:

Then select the parent term

Else:

pass

Else:

pass

next parent symptom

Figure 2: Hierarchical rules for query expansion.

The final set of mapped UMLS concepts associated with symptoms was further reviewed
by three board certified clinicians (ML, NI, MP) to ensure concepts were appropriately
clustered by acute CDC symptoms. This final set of concepts was made available as a
dictionary of CUIs for use in the UMLS-based portion of the NLP Pipeline described below
in Section 3.3. For a complete catalogue of the UMLS expansion of the clustered acute CDC
symptoms used to create this dictionary (hereafter referred to as “UMLS-based symptom
cluster”) please see Online Appendix 2, and for an example of a query expansion using these
rules, please see Appendix B.

3.3 NLP Pipeline: UMLS-based Concept Extraction

The NLP portion of the M Health COVID-19 AI Pipeline (described in Section 3.1.1;
hereafter referred to as ”NLP Pipeline”) was used for annotating and extracting acute CDC
symptoms from ED admission notes (for overall architecture, see Figure 1). Two extraction
methods were explored: The first described below used symptoms mapped to CUIs using the
UMLS-based symptom cluster as described above in Section 3.2.2. The second, described

(a) Evaluation score threshold of 900;

(b) Limited to the set of semantic types: fndg, sosy, dsyn, patf ;

(c) Query term processing only;

(d) Use of concept gaps; and

(e) Ignore word order (Lang, 2016).
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below in Section 3.4, extracted acute CDC symptoms (described in Section 3.2.1) using the
rule-base of the Hybrid COVID Symptoms Gazetteer by including additional UMLS
terms.

3.3.1 NLP Pipeline: NLP-ADAPT-KUBE

ED admission notes were annotated for CUIs using the NLP Artifact Discovery and
Preparation Toolkit for Kubernetes (NLP-ADAPT-KUBE). NLP-ADAPT-KUBE
was developed by The Natural Language Processing/Information Extraction Program (the
NLP/IE Program) at the University of Minnesota to automate document annotation at
medium to large scale (Finzel & Silverman, 2019). NLP-ADAPT-KUBE uses Docker
containerization for ease of repeatable deployment and automation of processes, and Ku-
bernetes to control processes across multiple compute nodes (Boettiger, 2015; Dikaleh
et al., 2017). For this study, we used the Unstructured Information Management Archi-
tecture (UIMA) Collection Processing Management (CPM) file reader implementation of
NLP-ADAPT-KUBE, which was designed for medium-scale annotation tasks. This imple-
mentation allows each UIMA annotation processing engine to read text files from disk, and
to write processed annotations back to disk as UIMA XML Metadata Interchange Common
Analysis System (CAS XMI) formatted files (Ferrucci & Lally, 2004).

NLP-ADAPT-KUBE includes the following UIMA-based annotation systems (for-
merly referred to as ”out-of-the-box” clinical NLP annotation systems): the BioMed-
ical Information Collection and Understanding System (BioMedICUS); the
Clinical Language Annotation, Modeling, and Processing Toolkit (CLAMP);
the Clinical Text Analysis and Knowledge Extraction System (cTAKES); and
MetaMap (with UIMA adapter) (Savova et al., 2010; Aronson, 2001; Soysal et al., 2018;
Knoll, 2019) (for architecture, see ”NLP-ADAPT-KUBE” in Figure 1).

3.3.2 UMLS Concept Extraction

Methods for mapping of concepts representing COVID-19 symptoms to the UMLS as ex-
tracted from ED notes by the UIMA-based annotation systems are presented below, along
with a description of the extraction process. Lastly, an overview of how extracted symptoms
were transformed into features for use in our statistical analyses is given.

3.3.3 Semantic Type Mapping

When UIMA-based annotation systems in NLP-ADAPT-KUBE provided their own notion
of “semantic type,” output was constrained using these system-specific categories. In cases
where individual systems provided UMLS Semantic Types but no bespoke semantic groups,
we relied on the Semantic Type Mappings and Semantic Groups developed by NLM (2018).
This strategy, as illustrated in Figure 3, enabled a comprehensive hierarchical mapping of
semantic types to the semantic group Disorders for use in this study. At the top level is
the UMLS semantic group Disorders that best aligned with the semantic types available in
individual systems found within NLP-ADAPT-KUBE.
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Figure 3: Hierarchical mapping of semantic types to Disorders semantic group to allow for
UIMA-based annotation system extraction.

3.3.4 Extraction Overview

ED admission notes were pre-processed to convert all text to ASCII encoding as required by
MetaMap and then added to the NLP Data Mart (for architecture, see ”NLP Data Mart”
in Figure 1). For this study, default pipelines for all UIMA-based annotation systems were
used. UMLS concept annotations were made for both positive and negative mentions at the
sentence-level for each ED admission note (see Table 2 for the UIMA annotation types used
by each individual UIMA-based annotation system for both positive and negative mentions).
Once ED admission notes were annotated and output written back to disk, a custom script
developed by Silverman (2020b) that utilized the library dkpro-cassis (developed by Klie
and Castilho (2020)) was used to extract and transform each CAS XMI annotation object
to Python lists, which were then loaded into a PostgreSQL database (for architecture,
see ”NLP Data Mart” and ”Control/ETL” in Figure 1).

Annotations written to the NLP Data Mart were then filtered by the semantic group
Disorders using the semantic type mapping described in Section 3.3.3 (for architecture, see
”Post-processing” in Figure 1) and processed to disambiguate UMLS concepts when a given
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span of text had multiple candidate concepts assigned to it.4, 5 Finally, all disambiguated
concepts for a patient ED encounter were aggregated by the particular UIMA-based anno-
tation system, CUI, and negation status (i.e., polarity).

System Positive Mention Negative Mention
BioMedICUS biomedicus.v2.UmlsConcept biomedicus.v2.Negated

CLAMP
edu.uth.clamp.ClampNameEntityUIMA
(where assertion = ’present’)

edu.uth.clamp.ClampRelationUIMA
(where assertion = ’absent’)

cTAKES
org.apache.ctakes.DiseaseDisorderMention &
org.apache.ctakes.SignSymptomMention
(where polarity = 1)

org.apache.ctakes.DiseaseDisorderMention &
org.apache.ctakes.SignSymptomMention
(where polarity = -1)

MetaMap org.metamap.uima.ts.Candidate org.metamap.uima.ts.Negation

Table 2: UIMA annotation types used in this study; with both positive and negative men-
tions for each UIMA-based annotation system.

3.3.5 Ensembling of Annotation Output

The NLP-Ensemble-Explorer framework developed by Silverman (2020a) was used with
annotations produced by the UMLS-based portion of the NLP pipeline to create an ensem-
ble of annotation output. NLP-Ensemble-Explorer was developed for evaluating NLP
annotation system performance for NER and IE.6, 7

In this study, we used a Boolean combination of UIMA-based annotation system output
from NLP-ADAPT-KUBE as an ensemble (hereafter referred to as “Boolean ensemble”)
to extract UMLS concepts. NLP-Ensemble-Explorer uses the logical ∨ operator to
represent a union set operation (or ∪); and the logical ∧ operator to represent an intersection
set operation (or ∩).8 Boolean expressions in NLP-Ensemble-Explorer are represented
as a binary tree and evaluated using the parse tree algorithms provided by Miller and
Ranum (2013). For an example evaluation of a Boolean combination parse tree please see
Appendix C.

For this study, the Boolean ensemble (((BioMedICUS ∧ cTAKES) ∧ MetaMap)∨
CLAMP) was used to merge UMLS concepts extracted by individual UIMA-based anno-
tation systems from ED notes (for architecture, see ”Post-processing” in Figure 1). This
ensemble was previously optimized for NER with respect to the f1-score in experiments
conducted by the NLP/IE Program on a similar manually annotated reference set of notes

4. The following hierarchical rules were implemented in our pipeline for concept disambiguation: a) Select
the candidate concept associated with the longest overlapping span; b) If multiple candidate concepts
were assigned to text spanning the same length, then use the highest likelihood score assigned to a can-
didate concept (NB : the only UIMA-based annotation system with no likelihood scoring was cTAKES);
c) If there is no longest span of text and no tie-breaker likelihood score, concepts were randomly shuffled
with the top concept assigned to the span of text.

5. NB : For the UIMA-based annotation systems used in this study, only MetaMap had word sense dis-
ambiguation available for filtering out ambiguous mappings to the UMLS (NLM, 2020)

6. NLP-Ensemble-Explorer works with any NLP annotation system architecture.
7. Source code is available here: https://github.com/nlpie/nlp-ensemble-explorer/blob/polarity/

ensemble_explorer/extract_ensemble.py.
8. The equivalence of logical and set theoretic operators is given by the rules of logical conjunction and

disjunction of sets (Plisko, 2014a, 2014b)
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on the Disorders semantic group from M Health Fairview (precision: 0.44, recall: 0.61,
f1-score: 0.51) and for the 2010 i2b2 Veteran’s Affairs challenge set as described by Uzuner,
South, and Duvall (2011) (i2b2) (precision: 0.83, recall: 0.97, f1-score: 0.90). This ensemble
also performed almost as well as the top performing ensemble combinations for NER on
the Multi-source Integrated Platform for Answering Clinical Questions (MiPACQ) corpus
described by Albright et al. (2013) (precision: 0.53, recall: 0.84, f1-score: 0.66).

3.3.6 UMLS-Based Features Derived From Extracted Acute CDC Symptoms

CUIs representing acute CDC symptoms obtained from the ensembled output described in
Section 3.3.5 were abstracted from the sentence to the document-level (where each document
represents an ED admission note). Each note was labeled accordingly with its polarity to
account for whether that CUI had at least one positive (+1) or at least one negative (-1)
mention within that note - independent of the specific sentence-level mention. Labeling of
each note was thus treated as a multi-label classification task.

The UMLS-based symptom cluster described in Section 3.2.2 was used as a dictionary
to map CUIs within a UMLS-based symptom cluster to the set of extracted symptoms
associated with each note. Rules used to create features from the acute CDC symptoms
were meant to capture the possibility that there were both positive and negative mentions
of different symptoms within a given UMLS-based symptom cluster. Thus, if a positive
mention of a CUI within a UMLS-based symptom cluster was found within a note in a
particular sentence-level mention, a value of 1 would be assigned to that feature (with ‘ p’
as a suffix). Similarly, if a negative mention within the same symptom cluster was found
within that note in another sentence-level mention, a value of 1 would be assigned to that
feature (with ‘ n’ as a suffix). If there were no positive or negative mentions for all CUIs
within a symptom cluster a value of 0 would be assigned appropriately to the ‘ p’ and ‘ n’
features. See Table 3 for example feature output.

cdc fever p cdc fever n cdc cough p cdc cough n ed encounter date

0 0 1 1 1/3/2020

1 0 0 0 8/20/2020

1 0 0 1 12/1/2020

Table 3: Example UMLS-based features.

The final set of extracted acute CDC symptoms with negation status was made available
as features (hereby referred to as ”UMLS-based features”) for use in the COVID-19 Patient
Registry for use in research, analytical applications and CDS (for architecture, see ”NLP
Features” in Figure 1 and ”UMLS-based Features” in Figure 4).
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Figure 4: Architecture of NLP feature creation.

3.4 NLP Pipeline Architecture: Hybrid COVID Symptoms Gazetteer

In contrast to the UMLS-based portion of the NLP pipeline, we explored a hybrid NLP
annotation system that used gazetteer rule-based lookup with the lexicon of 164 derived
COVID-19 symptoms in conjunction with the UMLS.

3.4.1 Hybrid COVID Symptoms Gazetteer

The gazetteer used for this study was the lexicon of 164 derived COVID-19 symptoms. The
gazetteer lookup developed by Sahoo and Silverman (2020) uses spaCy’s PhraseMatcher
class to add the lexicon of 164 derived COVID-19 symptoms to a blank spaCy model
(Gillißen, 2020). A manifest of ED admission notes was used to define a set of files (i.e., ED
notes) that were read in by a spaCy matcher instance to return any mention of symptoms
in the lexicon. In addition, the span of the text containing the symptom mention was also
returned. Output was then lemmatized word by word to convert the text to its base form
(e.g., the base form of “vomiting” is “vomit”).

The scispaCy en core sci lg model, described by Neumann et al. (2019), was used for
phrase detection through use of a knowledge base. To improve the phrase detection per-
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formance of the gazetteer, the scispaCy EntityLinker was added to the pipeline. En-
tityLinker links to a UMLS knowledge base to provide NE disambiguation. EntityLinker
performed a string overlap-based search on NEs, comparing them with concepts in the
UMLS knowledge base using an approximate nearest neighbor search. Terms in the lexi-
con that did not map to the UMLS knowledge base were then added through a rule-based
lookup using EntityRuler.9

A few examples of rule based lookup, including coverage in lexicographic variations are
given here:

◦ pattern: [‘LEMMA’: ‘can’, ‘LEMMA’: ‘not’, ‘LEMMA’: ‘breathe’], variations covered:
can’t breathe, cannot breathe

◦ pattern: [‘LEMMA’: ‘high’, ‘LEMMA’: ‘temperature’], variations covered: high tem-
perature, higher temperature

Pizarro’s (2021) implementation of NegEx (negspaCy) for detection of negating terms
was the final stage of the Hybrid Symptom Gazetteer’s pipeline. A set of features
(hereby referred to as ”gazetteer-based features”) was then created using rules similar to
those described above in Section 3.3.6. (For architecture, see ”NLP Features” in Figure 1
and ”Gazetteer-based Features” in Figure 4.)

3.5 Extraction Performance and Run-Time Analysis

A description of the creation of the expert-curated manually annotation reference set of
notes used in this study, along with their overall characteristics is discussed Section 3.5.1.
Performance metrics for comparison of acute CDC symptom extraction for all NLP anno-
tation systems used in this study with the expert-curated manually annotated reference are
described in Section 3.5.2. Details of a run-time analysis for the UIMA-based annotation
systems and the Hybrid COVID Symptoms Gazetteer are also provided in Section
3.5.3.

3.5.1 Expert-curated Manually Annotated Reference

A small manually annotated reference consisting of 46 randomly-selected ED admission
notes from March 3rd through December 18th was created to assess baseline performance
and correctness of our classification to acute CDC symptom labels. Labels for acute CDC
symptoms were assigned across all notes using the rules outlined in Section 3.3.6 for cap-
turing the possibility that there both positive and negative mentions within an acute CDC
symptom cluster. Manual review of the notes was conducted by a board certified surgical
critical care trauma attending surgeon with informatics training (CT) at our institution.
The annotator had experience treating well over 250 COVID-19 positive patients and was
blinded to the results of each NLP annotation system used in this study.

3.5.2 Extraction Performance Comparison of NLP Annotation Systems

Annotations produced by each NLP annotation system used in this study were compared
against the manually annotated reference. For each acute CDC symptom and its negation

9. Source code is available here: https://github.com/nlpie/covid_symptom_gazetteer/tree/hybrid
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status, the measure of accuracy (percentage of correctly labeled instances) was calculated.
We also calculated the weighted micro-average for positive predictive value (precision), sen-
sitivity (recall) and harmonic mean (f1-score) for each symptom and all symptoms together.

3.5.3 Run-Time Comparison of NLP Annotation Systems

Each UIMA-based annotation system and the Hybrid COVID Symptoms Gazetteer pro-
cessed the same set of 3,000 ED notes, which were randomly selected from the pool of
19,924 total ED notes described in Section 3.1, to give an estimate of NLP annotation
system run-time. Performance tests were serially executed in a Kubernetes workflow to
ensure equal access to operating system resources. Each NLP annotation system ran as a
single Docker container/Kubernetes pod on the same Azure VMWare with configu-
rations listed in Appendix A.

3.6 Statistical Analysis

Associations of the UMLS-based features (described in Section 3.3.6) with clinical outcomes
were assessed using logistic regression for binary classification and negative binomial regres-
sion for outcomes involving counts. The dependent variables of interest were in-hospital
mortality, hospital admission, ventilation, respiratory complications, liver complications,
development of venous thromboembolism (VTE), development of atrial fibrillation, infec-
tious complications, and hospital readmission. Additionally, a binary composite outcome
was developed and coded as positive if a patient had an all-cause in-hospital mortality, re-
quired ICU admission or mechanical ventilation, or required a hospital length of stay greater
than 7 days.

All models were risk-adjusted to account for patient-level baseline demographics (age,
sex at birth, race/ethnicity, English vs non-English speaking), the Elixhauser comorbidity
index, as described by Moore et al. (2017) and implemented by Stagg (2015), and the most
aberrant vital signs within the first 24 hours of hospital admission. Imputation was deemed
unnecessary given the low rate of missing data (< 4%) (see Table D.1 in Appendix D for
prevalence of missing data).

Odds ratios were used to measure associations between the UMLS-based features and
the dependent outcomes, as described above. Odds ratios (OR) greater than one were
associated with an increased risk of developing the outcome, while OR less than one were
associated with a decreased risk of developing the outcome. A significance value of p <
0.05 was used. To ascertain documentation practices in the ED, this same methodology
was applied to assess differences in associations between English and non-English speakers
for the outcomes of in-hospital mortality, hospital admission, and the composite outcome,
as described above.

Lastly, model outcome differences was examined using multiple logistic regression with
vital signs alone and the UMLS-based features alone for the outcomes of in-hospital mor-
tality and hospital admission. The prognostic value of symptomatology alone compared to
vital signs alone, as well as the marginal addition to risk prediction models utilizing demo-
graphics and comorbidity burden were tested, and the characteristics of various models that
might represent different clinical practice environments are described. For a comparison of
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the effect of extraction methods on model performance these models were also run using
the gazetteer-based features.

4. Results

Results for documentation practices in the ED for COVID-19 patients are presented in
Section 4.1. In Section 4.2, results for the NLP annotation system extraction and run-time
performance analyses, as outlined in Sections 3.5.2 and 3.5.3, are presented. Lastly, in
Section 4.3 results of the analyses of associations described in Section 3.6 are presented.

4.1 Prevalence of Acute CDC Symptoms

COVID-19 positive patients who were seen in the ED within the window defined in Section
3.1 and those also admitted to hospital had presenting symptoms summarized in Tables 4
and 5, respectively.

Symptoms Negative mention No mention Positive mention

Cough 63 (1.26%) 2,688 (53.70%) 2,255 (45.05%)
Fever 1,372 (27.41%) 897 (17.92%) 2,737 (54.67%)
Dyspnea 1,952 (38.99%) 521 (10.41%) 2,533 (50.60%)
Fatigue 174 (3.48%) 3,111 (62.15%) 1,721 (34.38%)
Aches 455 (9.09%) 3,377 (67.46%) 1,174 (23.45%)
Headaches 823 (16.44%) 2,947 (58.87%) 1,236 (24.69%)
Loss of taste or smell 192 (3.84%) 4,446 (88.81%) 368 (7.35%)
Sore throat 787 (15.72%) 3,500 (69.92%) 719 (14.36%)
Rhinitis congestion 828(16.54%) 3,428 (68.48%) 750 (14.98%)
Diarrhea 1,500 (29.96%) 2,551 (50.96%) 955 (19.08%)
Nausea vomiting 1,095 (21.87%) 2,511 (50.16%) 1,400 (27.97%)

Table 4: Summary of extracted acute CDC symptoms for 5,006 COVID-19 positive patients
seen in the ED (using Boolean ensemble for extraction of symptoms described in
Section 3.3.5).

4.2 Performance Evaluation

Section 4.2.1 presents results of the performance of the symptom extraction methods using
metrics described in Section 3.5.2. Each clinical annotator system used in this study is
compared to the manually annotate reference standard described in Section 3.5.1. This was
done primarily to understand where future tuning of these systems was required. In Section
4.2.2 we present results of a run-time analysis of these systems as described in Section 3.5.3
to gauge potential for use in near real-time extraction of symptoms from clinical notes.

4.2.1 Acute CDC Symptom Extraction Performance

Performance of extraction for acute CDC symptoms along with their corresponding negation
status was assessed against the manually annotated reference (described in Section 3.5.1)
for the Boolean ensemble, individual UIMA-based annotation systems and the Hybrid
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Symptoms Negative mention No mention Positive mention

Cough 32 (1.49%) 1,258 (58.43%) 863 (40.08%)
Fever 569 (26.43%) 471 (21.88%) 1,113 (51.70%)
Dyspnea 689 (32.00%) 253 (11.75%) 1,211 (56.25%)
Fatigue 57 (2.65%) 1,175 (54.58%) 921 (42.78%)
Aches 188 (8.73%) 1,606 (74.59%) 359 (16.67%)
Headaches 391 (18.16%) 1,444 (67.07%) 318 (14.77%)
Loss of taste or smell 67 (3.11%) 2,011 (93.40%) 75 (3.48%)
Sore throat 293 (13.61%) 1,705 (79.19%) 155 (7.20%)
Rhinitis congestion 324 (15.05%) 1,620 (75.24%) 209 (9.71%)
Diarrhea 560 (26.01%) 1,153 (53.55%) 440 (20.44%)
Nausea vomiting 424 (19.69%) 1,125 (52.25%) 604 (28.05%)

Table 5: Summary of extracted acute CDC symptoms for 2,153 COVID-19 positive patients
seen in the ED and admitted to hospital (using Boolean ensemble for extraction
of symptoms described in Section 3.3.5).

COVID Symptoms Gazetteer. Accuracy and weighted micro-average scores of perfor-
mance metrics (described in Section 3.5.2) were calculated over all acute CDC symptoms
and are given in Table 6.

NLP Annotation System Accuracy
Weighted Micro-Average
Precision Recall f1-score

BioMedICUS 0.77 0.80 0.77 0.78
CLAMP 0.86 0.86 0.86 0.86
cTAKES 0.82 0.85 0.82 0.83
MetaMap 0.85 0.86 0.85 0.85
Boolean Ensemble 0.87 0.87 0.87 0.87
Hybrid COVID Symptoms
Gazetteer 0.85 0.88 0.85 0.85

Table 6: Extraction performance of Boolean ensemble, Hybrid COVID Symptoms
Gazetteer and individual UIMA-based annotation systems on the manually an-
notated reference over all acute CDC symptoms.

A similar analysis was also done for the Boolean ensemble, individual UIMA-based
annotation systems and the Hybrid COVID Symptoms Gazetteer, for each acute CDC
symptom, as shown in Figure 5.

4.2.2 NLP Annotation System Run-Time

The following run-times were recorded for each individual NLP annotation system to process
the same set of 3,000 ED notes (as described in Section 3.5.3):

◦ Hybrid COVID Symptoms Gazetteer: 1,913.80 seconds

◦ BioMedICUS: 2,445.33 seconds

448



Extraction of COVID-19 Symptoms

Figure 5: Acute CDC Symptom extraction performance evaluation of Boolean ensemble,
Hybrid COVID Symptoms Gazetteer and individual UIMA-based annota-
tion systems on the manually annotated reference over all symptoms. The x-axis
represents the performance metric used and the y-axis represents the percentage
value.
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◦ cTAKES: 7,719.43 seconds

◦ CLAMP: 24,621.30 seconds

◦ MetaMap: 81,328.53 seconds

4.3 Statistical Analysis

Section 4.3.1 presents results of the analysis for all clinical outcomes described above in
Section 3.6. Section 4.3.2 presents results of the analysis as described above with specific
focus on English versus non-English speakers, as described above in 3.6. Lastly, Section 4.3.3
presents results of our analysis of model outcome differences with a comparison between
symptom extraction methods, as described above in 3.6.

4.3.1 Associations of the Acute CDC Symptoms Across All Outcomes

An examination of the associations of the UMLS-based features across the outcomes of
in-hospital mortality, hospital admission and readmission, ventilation, and the composite
outcome, as described in Section 3.6, found the following acute CDC symptoms were of
importance: aches was associated with reduced risk for the composite outcome (OR 0.72,
p-value = 0.01); cough was associated with increased risk for ventilation (OR 1.58, p-value
= 0.01); dyspnea was associated with increased risk for in-hospital mortality (OR 1.85,
p-value < 0.001), ventilation (OR 2.50, p-value < 0.001), and the composite outcome (OR
1.31, p-value = 0.003); both headaches (OR 0.68, p-value < 0.001) and sore throat (OR
0.70, p-value = 0.01) were associated with reduced risk of hospital admission.

Next, associations of the UMLS-based features and various complications, including
respiratory complications, liver complications, VTE, atrial fibrillation, infectious compli-
cations, and hospital readmission indicated the following acute CDC symptoms were of
importance: The presence of aches (OR 0.70, p-value = 0.03), cough (OR 0.72, p-value =
0.01), or headaches (OR 0.65, p-value = 0.01) was associated with reduced risk of infec-
tious complications; the presence of dyspnea (OR 1.63, p-value < 0.001) or fever (OR 1.49,
p-value = 0.01) was associated with increased risk of respiratory complications, and nausea
and vomiting was associated with increased risk of atrial fibrillation (OR 2.42 p-value =
0.04); diarrhea was associated with reduced risk of VTE (OR 0.73, p-value = 0.05) while
dyspnea was associated with increased risk of VTE (OR 1.60, p-value < 0.001). Results are
given in Table 7.

4.3.2 Associations For English Versus Non-English Speaking Between Acute
CDC Symptoms and Outcomes

An examination of the associations of the UMLS-based features across the outcomes of
in-hospital mortality and hospital admission, grouped by English and non-English speaking
populations, revealed that the presence of aches was associated with a reduced risk of
the composite outcome in both populations (non-English speaking [OR 0.63, p-value =
0.05]; English speaking [OR 0.76, p-value = 0.04]). Dyspnea was associated with increased
risk for the composite outcome for both groups (non-English speaking [OR 1.58, p-value
= 0.02]; English speaking [OR 1.24, p-value = 0.04]). Dyspnea was also associated with
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symptom aches cough diarrhea dyspnea fatigue fever headaches nausea/vomiting rhinitis/congestion sore throat taste/smell loss

outcome

Vent NS 1.58 NS 2.49 NS NS NS NS NS NS NS

Composite Outcome 0.72 NS NS 1.31 NS NS NS NS NS NS NS

Mortality NS NS NS 1.85 NS NS NS NS NS NS NS

Readmission NS NS NS NS NS NS NS NS NS NS NS

ED Count NS NS NS NS NS NS NS NS NS NS NS

Inpatient NS NS NS NS NS NS 0.68 NS NS 0.70 NS

infectious Complications 0.70 0.72 NS NS NS NS 0.65 NS NS NS NS

Liver Complications NS NS NS NS NS NS NS NS NS NS NS

Respiratory Complications NS NS NS 1.63 NS 1.49 NS NS NS NS NS

Cardiovasc Complications NS NS NS NS NS NS NS NS NS NS NS

Afib Complications NS NS NS NS NS NS NS 2.23 NS NS NS

VTE Complications NS NS 0.73 1.60 NS NS NS NS NS NS NS

Renal Complications NS NS NS NS NS NS NS NS NS NS NS

P-value < 0.05

P-value < 0.01

P-value < 0.001

Table 7: Significant odds ratios for UMLS-based features versus outcomes for all patients.
The composite outcome was defined as having any of the following outcomes occur:
in-hospital death, admission requiring ICU or need for mechanical ventilation, or
hospital length of stay > 7 days.

increased risk of mortality (OR 1.98, p-value < 0.001) and hospital admission (OR 1.29,
p-value = 0.01) in the English speaking population but was not significant for the non-
English speaking population. Fatigue was associated with increased risk of both in-hospital
mortality (OR 1.95, p-value = 0.02) and hospital admission (OR 1.74, p-value < 0.001)
for non-English speakers. In contrast, for English speakers, fatigue was associated with
reduced risk of in-hospital mortality (OR 0.63, p-value = 0.01). Fever was associated with
reduced risk of in-hospital mortality (OR 0.64, p-value = 0.03) and hospital admission (OR
0.80, p-value = 0.04) in English speakers only. Similarly, headaches (OR 0.68, p-value =
0.002) and sore throat (OR 0.55, p-value < 0.001) were found to be associated with reduced
risk of hospital admission, while nausea and vomiting were associated with reduced risk of
in-hospital mortality (OR 0.57, p-value = 0.03) for only the English speaking group. All
other associations were not significant. Results are given in Table 8.

4.3.3 Effect of Acute CDC Symptoms

Multiple logistic regression models using only UMLS-based and gazetteer-based features
derived from acute CDC symptoms (as discussed in Sections 3.3.6 and 3.4, respectively),
were compared to a model using only vital signs to determine the effect on the outcome
of hospital admission. There was no difference between the models using the symptoms;
however, both models were significantly different when compared to the model using vital
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aches cough diarrhea dyspnea fatigue fever headaches nausea/vomiting rhinitis/congestion sore throat taste/smell loss
outcome
Composite Outcome non-English 0.63 NS NS 1.58 NS NS NS NS NS NS NS
Composite Outcome English 0.76 NS NS 1.24 NS NS NS NS NS NS NS
Mortality non-English NS NS NS NS 1.95 NS NS NS NS NS NS
Mortality English NS NS NS 1.98 0.63 0.64 NS 0.57 NS NS NS
Inpatient non-English NS NS NS NS 1.74 NS NS NS NS NS NS
Inpatient English NS NS NS 1.29 NS 0.80 0.68 NS NS 0.55 NS

P-value < 0.05
P-value < 0.01
P-value < 0.001

Table 8: Significant odds ratios for UMLS-based features versus outcomes for the population
of English versus non-English speakers. Composite outcome was defined as having
any of the following outcomes occur: in-hospital death, admission requiring ICU
or need for mechanical ventilation, or hospital length of stay > 7 days.

signs. Symptoms alone did not result in any significant difference between all models on
the outcome of in-hospital mortality. Results for all models are presented in Table 9. In all
cases, age, sex at birth, and the Elixhauser comorbidity index have an outsized effect on
outcomes and are thus used as base predictors in all models. For output from this analysis
please see Online Appendix 3.

Model
Hospital Admission In-Hospital Mortality
AUC ROC 95% CI AUC ROC 95% CI

Without symptoms 0.89*** (0.88, 0.90) 0.90 (0.88, 0.91)
Without vitals
(UMLS-based features) 0.84*** (0.83, 0.85) 0.87** (0.85, 0.88)
Without vitals
(Gazetteer-based
features) 0.84*** (0.83, 0.85) 0.86** (0.84, 0.88)

Table 9: AUC ROC with 95% confidence intervals. *** denotes statistically significant dif-
ferences between models ”Without symptoms“ and “Without vitals;” (NB : For In-
hospital mortality, there is no difference between the UMLS-based and Gazetteer-
based models as denoted by **).

5. Discussion of Results

Key findings based on extraction of acute CDC symptoms across the population of patients
defined in Section 3.1 are given below. Section 5.1 presents a qualitative assessment of
symptoms extracted among those seen in the ED and those admitted to hospital, with focus
on how these are documented by providers. Section 5.2 highlights the overall extraction
performance of the Boolean ensemble, each individual UIMA-based annotation system and
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the Hybrid COVID Symptoms Gazetteer, with focus on gaps in the extraction task,
and ends with a discussion of our run-time analysis. Lastly, Section 5.3 presents some
surprising findings with respect to the analysis of associations described in Section 4.3.

5.1 Prevalence of Documented Acute CDC Symptoms

As seen in Tables 4 and 5 in Section 4.1, there is a large degree of variability in proportion
between acute CDC symptom occurrence and symptom documentation rates. For the entire
population examined in this study, the presence or absence of taste and smell loss was not
documented approximately 88% of the time, while dyspnea was not documented approxi-
mately 10% of the time. While EHR use and documentation practices are known to differ
(Lanham et al., 2013; Pakhomov et al., 2008), practices during the current pandemic differ
significantly from everyday practice. The immediate pivot by the healthcare and scientific
community was impressive and brought about new information that was disseminated very
rapidly (Ingraham & Tignanelli, 2020). Despite these efforts and CDC recommendations
that specific symptoms should be used to assess COVID-19, documentation of these symp-
toms was varied. While it is not possible to know if the documentation accurately reflects
the actual clinical encounter, the use of documentation to convey information to other
healthcare providers remains critical. Thus, improving documentation practices during a
pandemic is an area for further investigation.

5.2 NLP Annotation Systems Extraction Performance Evaluation

Results in Table 6 in Section 4.2.1 indicate all NLP annotation systems used in this study
have close values for precision and recall, with the exception of BioMedICUS (which had
the lowest recall value). Table 6 shows the Hybrid COVID Symptoms Gazetteer
had highest precision and thus minimized occurrence of false positives over all acute CDC
symptoms and their negation status. On the other hand, the Boolean ensemble had the
highest recall and was thus best at not missing ED notes classification to appropriate acute
CDC symptom labels (viz., reducing false negatives). The ability to minimize false negatives
is extremely important in clinical practice, since ideally an NLP annotation system should
be able to detect the presence of all symptom mentions. This is the ideal for running
diagnostic screening tests.

A comparison between Table 6 and Figure 5 was done to determine how each acute
CDC symptom affected extraction performance. An analysis of the overall weighted micro-
average f1-score for each NLP annotation system with respect to the system’s f1-score for
each symptom was done to give insight into how NLP annotation systems were affected by
each acute CDC symptom in terms of overall weighted micro-average f1-score. A few top
symptoms that reduced the overall f1-score for each given system are listed in Table 10.

Examination of Table 10 and Figure 5 indicates that cdc dyspnea n had a consistently
low f1-score for all NLP annotation systems used in this study. A manual audit of a few notes
with positive or negative mention of dyspnea in the manually annotated reference, but with
no mention in the Boolean Ensemble (shown in Table 11), revealed limitations in the query
expansion process with potential for loss of relevant concepts due to the query expansion
rules presented in Figure 2. There was also potential for an increase in false negatives for
the Hybrid COVID Symptoms Gazetteer, since the UMLS version implemented for
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System Top symptoms

BioMedICUS
cdc cough n, cdc dyspnea p, cdc dyspnea n,
cdc nausea vomiting p, cdc nausea vomiting n

CLAMP
cdc cough p, cdc cough n, cdc fatigue p,
cdc dyspnea n

cTAKES
cdc dyspnea p, cdc dyspnea n,
cdc nausea vomiting p

MetaMap cdc dyspnea p, cdc dyspnea n

Boolean ensemble cdc cough n, cdc dyspnea n

Hybrid COVID Symptoms
Gazetteer cdc dyspnea p, cdc dyspnea n

Table 10: List of acute CDC symptoms that reduced the overall weighted micro-average
f1-score for all NLP annotation systems.

the knowledge base was not the fully licensed version (which includes several important
lookup sources, including SNOMED CT).

Results presented in Figure 5 also indicate that all NLP annotation systems used
in this study had f1-scores of approximately 80% or more for the following acute CDC
symptoms: cdc fatigue n; cdc fever n; cdc aches p and cdc aches n; cdc headaches p and
cdc headaches n; cdc taste smell loss p and cdc taste smell loss n; cdc sore throat n; and
cdc rhinitis congestion p and cdc rhinitis congestion n. Thus, these symptoms aligned well
with the manually annotated reference.

It should be noted that the manually annotated reference used in this study may not
be representative of the entire population of patients seen in the ED, and thus, results from
this evaluation cannot be generalized. However, when used as a baseline for evaluating
potential gaps in our lexicon, this allowed for rapid modification to the lexicon as needed
for our production NLP pipeline. To truly gauge extraction performance of NLP annotation
systems used in this study for the general task of symptom extraction, further investigation
with a larger manually annotated reference is warranted.

It is noteworthy that the NLP pipeline used by Stephens et al. (2020), which utilized
MetaMap Lite, successfully identified the presence of acute CDC symptoms at 0.89 pre-
cision against a set of 20 notes annotated for 200 symptoms. However, symptoms for 14
cases could not be determined. Also of note, the Boolean ensemble performed generally
higher compared to all other NLP annotation systems for classifying the full set of positive
and negative mentions for all acute CDC symptoms as reported in Table 6 and Figure 5.
While it has yet to be determined if the differences between NLP annotation systems are
significant, this is consistent with previous research which shows the benefit of Boolean en-
semble combinations, especially when combined with query expansion of terms (Silverman
et al., 2019; Finley et al., 2017; Kuo et al., 2016; Tignanelli et al., 2020).

Lastly, although the Hybrid COVID Symptoms Gazetteer was in experimental
stages at the time of this study it had a comparable f1-score to the other NLP annotation
systems and was much faster for extraction as seen in Section 4.2.2. The Hybrid COVID
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Manually
Annotated
Reference

Boolean
Ensemble

COVID
Symptoms
Gazetteer

Phrases present in the
notes

Explanation

1 0 0

‘Acute respiratory failure’,
‘Hypoxia’, ‘Acute
respiratory failure with
hypoxia’, ‘Pneumonia’

Phrases undetected
by Boolean Ensemble
and Hybrid COVID Symptoms
Gazetteer

1 0 1 ‘Shortness of breath’

Phrases undetected
by Boolean Ensemble
but detected by
Hybrid COVID Symptoms
Gazetteer

1 1 0 ‘Difficulty breathing’

Phrases undetected
by Hybrid COVID Symptoms
Gazetteer but
detected by
Boolean Ensemble

Table 11: Examples of false negatives for positive or negative mentions of dyspnea as re-
turned by Boolean Ensemble and Hybrid COVID Symptoms Gazetteer
along with explanations.

Symptoms Gazetteer was 1.28 times faster than BioMedICUS; 4.03 times faster than
cTAKES; 12.87 times faster than CLAMP; and 42.50 times faster than MetaMap.

5.3 Statistical Analysis

In Section 5.3.1 we discuss critical implications based on results of the analyses of associa-
tions against key clinical outcomes presented in Section 4.3.1. In Section 5.3.2 we discuss
how results presented in Section 4.3.2 implicate that being a native English speaker may
be associated with decreased risks from acute COVID-19 compared to non-native speakers.
Lastly, in Section 5.3.3 we discuss how model differences presented in Section 5.3.3 can be
exploited to provide streamlined point of care.

5.3.1 Associations of Acute CDC Symptoms Across All Outcomes

In this study, we were able to determine multiple associations between acute CDC symptoms
and patient outcomes using the methods described in Section 3.6 with results presented in
Section 4.3.1. As expected, cough and dyspnea were associated with a 58% and 150%
increased risk of being placed on mechanical ventilation, respectively. These symptoms
are likely indicative of the known pulmonary pathology and manifestations of COVID-
19 (Ingraham et al., 2020a). On the other hand, aches were associated with 28% lower
risk of the composite outcome; and headaches and sore throat were associated with lower
risk of hospital admission. These less specific symptoms may represent a different disease
phenotype versus a difference in the progression of the disease, depending on when the
patient presented to the emergency room. Similar trends were seen in regard to developing
complications. Dyspnea remained a prominent risk factor for respiratory complications,
which is not surprising.
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Less intuitive findings include how aches, cough, and headaches are associated with lower
risk of developing infectious complications. Further study is need to clarify this. Lastly,
there are other associations that are intuitive and may serve to denote high risk patients in
certain settings. For example, nausea and vomiting were found to be associated with atrial
fibrillation, likely due to their association with electrolyte abnormalities. Given the risk of
atrial fibrillation in the ICU and its sequelae, knowing a patient is at high risk for developing
atrial fibrillation from the ED can better prepare providers for possible complications during
the patient’s hospital admission (Bosch et al., 2018). It should be noted that contrary to
results in this study, others, including Ramachandran et al. (2020), have reported there
was no association between gastrointestinal symptoms and poor outcomes in COVID-19
patients. While these analyses were not meant to infer causality, they may still shed light
on ways to further improve prognostic models and highlight areas that warrant further
investigation. During a pandemic where any insight into a disease is invaluable, knowledge
of which symptoms are associated with adverse outcomes could save lives in areas where
resources are scarce and appropriate triage is critical.

5.3.2 Associations For English Versus Non-English Speaking Between Acute
CDC Symptoms and Outcomes

Disparate outcomes among minority populations in COVID-19 are well documented, and
have gained much attention throughout the COVID-19 pandemic (Eisner et al., 2011;
Laster Pirtle, 2020; Harlem & Lynn, 2020; Mendy et al., 2020; Meneses-Navarro et al.,
2020; Ransing et al., 2020; Turner-Musa et al., 2020; Wang & Tang, 2020). Newer data
are finding that language barriers are likely contributing factors. Ingraham et al. (2021)
found that non-English speaking was significantly associated with increased risk of severe
disease and need for hospitalization, across patients with confirmed COVID-19 disease, de-
spite controlling for race and neighborhood-level socioeconomic status. Since a goal of this
study was to assess acute CDC symptoms and their association with patient outcomes, the
effect of primary language on these associations was a logical extension of this analysis.

In this study, using the methods described in Section 3.6 with results presented in
Section 4.3.2, we showed that symptoms with similar associations in both English and
non-English speaking models, such as aches and dyspnea, were associated with reduced
and increased risk of the composite outcome, respectively. In contrast, there were multiple
significant associations found in the English speaking model that were not significant in the
non-English speaking model.

Most concerning were the findings with opposing positive and negative risk for the same
outcome. Fatigue was associated with a 37% lower risk of mortality in English speaking
patients, while fatigue was associated with a 95% increased risk of mortality in those without
English as their primary language. For non-English speakers, failure to collect symptoms
is a major issue, given the dearth of significant results. These results support accounting
for primary language, given the differences in models. Much of the signal may be from the
lack of ability to collect symptoms and will contribute to the limitations of any model using
symptoms.

Lastly, disparities in documented symptomatology between English and non-English
speakers may be due to less accurate history collection with non-English speakers. This
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is notable especially during the COVID-19 pandemic, since interpreters are not physically
present in the room: this can limit communication when compared to face-to-face encoun-
ters (Locatis et al., 2010). Leveraging a standardized and more sophisticated method of
obtaining and documenting symptomatology may reduce this disparity and improve deliv-
ery.

5.3.3 Effect of Acute CDC Symptoms

Abdulaal et al. (2020) constructed a lexicon of symptoms and comorbidities for use in their
predictive model for COVID-19. In contrast, the predictive models evaluated by Stephens
et al. (2020) for influenza expanded on the EHR symptoms using the UMLS. Both studies
illustrate the utility of symptoms for improving predictive modeling, whether through a
carefully constructed lexicon or using the UMLS. Our study leveraged both lexicon-derived
and UMLS-derived symptom data in the Hybrid COVID Symptoms Gazetteer to
capture the strengths of both strategies.

Using the methods described in Section 3.6 with results presented in Section 4.3.3, we
showed for the outcome of in-hospital mortality the symptoms-only model (both for the
Boolean ensemble and the Hybrid COVID Symptoms Gazetteer) was not significantly
different from the vitals-only model. The observation that a symptoms-only inventory could
be used for risk prediction and prognostication strongly supports the use of telemedicine for
COVID-19 triage, which could decrease the need for in-person evaluations and the resources
and risks associated with these evaluations. This could provide clinicians with a powerful
tool to make informed treatment decisions based on reported symptoms to help optimize
both clinical resources and patient outcomes. Given that a clinical encounter is more than
a symptom inventory, it would be premature to state that a patient symptom inventory
would perform equivalently, though this remains an exciting area for future investigation.

It should be noted that predictions for being admitted to hospital were improved through
the use of vital signs over both models using only symptoms. Further exploration across all
outcomes is thus warranted.

5.4 Limitations

This study had multiple strengths, including a large number of patients, a well-characterized
cohort and definitive outcomes. However, there were several limitations noted below.

5.4.1 Generalizability

The major limitation of this study is generalizability. Data collected for this study were
from a single regional healthcare network and only included patients seen in the ED who
tested positive for acute COVID-19. Also of note, the population of patients in this study
were predominantly white, although the presented methods have potential to be used in
health care networks with more diverse populations of patients.

Also, our study only focused on the symptomatology associated with the CDC’s guide-
lines for acute COVID-19. As noted by Champika et al. (2020), there are notable symptoms
not found in any of the major symptoms of acute COVID-19 catalogued by the United
States/China CDC, WHO, etc. We are thus exploring ways to systematically expand the
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lexica for both acute COVID-19 and PASC. To help facilitate this, methods from this study
are also being extended to OP clinical settings to conduct longitudinal monitoring of PASC.

Of note, due to the way the testing window was defined for inclusion into this study (as
discussed in Section 3.1 and elaborated in Footnote 2), a large share of COVID-19 positive
patients were missed in this study. However, since December 2020, with the introduction
of rapid PCR testing, we have expanded this window to ± 14 days of COVID-19 diagnosis,
thus expanding our cohort.

5.4.2 Manually Annotated Reference

Baseline performance analysis of the extraction methods used in the study was carried out
on a small corpus of 46 randomly selected ED notes, as described in Section 3.5.1, meet-
ing inclusion criteria outlined in Section 3.1. These notes were manually annotated by a
single rater and served as a reference to compare against how the 4 UIMA-based annota-
tion systems, their Boolean combination ensemble, and the Hybrid COVID Symptoms
Gazetteer examined in this study, each labeled for the acute CDC symptoms in our lex-
icon and dictionary with negation status. While this approach would not be sufficient to
generalize extraction performance over the entire corpus, it allowed for quick assessment of
alignment of NLP-based methods with manual annotations, as well as rapid identification
for the presence of possible disagreements and gaps in the different methods of symptom
annotation and extraction. Use of a limited set of notes for baseline NLP annotation sys-
tem performance evaluation has been implemented in other similar studies (Stephens et al.,
2020; Tignanelli et al., 2020). To address issues of generalizability and validity we are in
the process of creating a larger reference set of ED admission and general OP notes being
annotated by multiple raters for acute COVID-19 and PASC symptoms.

5.4.3 NLP Methods

We did not explore the performance of other Boolean combinations for extraction of acute
CDC symptoms derived from annotations generated by NLP-ADAPT-KUBE (of which
there were 302 total possibilities10). While results for the Boolean combination used in
this study were encouraging, and while this ensemble was the top performing Boolean
combination in other experiments as outlined in Section 3.3.5, there is the possibility that
other Boolean combinations could outperform this one. We plan to assess these ensembles
against an expanded manually annotated reference to evaluate how the symptom extraction
performance and model associations are affected. To this end, we are currently performing
experiments using NLP-Ensemble-Explorer to examine the general behavior of Boolean
ensemble combinations.

The rule-based lookup portion of the Hybrid COVID Symptoms Gazetteer also has
potential to add a very large source of terms and phrases that could have been implemented
into its lexicon. For example, terms that met the criteria for our query expansion, as defined

10. Given four NLP annotation systems with two Boolean operations, this is computed by taking into account
associativity, logical equivalence and the number of different ways n + 1 factors can be completely
parenthesized as determined by the Catlan number. See Enumerative Combinatorics: Volume 2 by
Richard P. Stanley.
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in Section 3.2.2, but did not have a UMLS mapping are a potential source of more terms
for the lexicon of COVID-19 symptoms.

While the Hybrid COVID Symptoms Gazetteer minimized the occurrence of false
positives, there was a notable exception missed in our initial implementation. Since nega-
tions were determined by a preset span of text from the negating term, some negated terms
were overlooked and thus mislabeled as a positive mention. As an example, the Hybrid
COVID Symptoms Gazetteer detected a positive mention instead of a negative mention
for ”wheezing” in the following sentence: ”Patient denies fever, myalgias, nausea, vomiting,
abdominal pain, dysuria, hematuria, numbness and tingling, leg pain, difficulty walking,
headache, visual disturbance, wheezing, and any other symptoms at this time.” This was
because the span of the text containing ”wheezing” was not associated with the word ”de-
nies,” which negates the mention for ”wheezing.”

We plan on addressing this issue by using sentence boundary detection. Furthermore,
use of the UMLS as a knowledge base without any filtering by Semantic Types has the
potential to mislabel text. To address this, we have designed a new version of the COVID
Symptoms Gazetteer with more general rules for negation, and also without use of UMLS,
as discussed in (Sahoo et al., 2021).

Lastly, regarding the lexicon used in this study, the word2vec model used for query
expansion was trained on general patient notes and may not include syntactic nuances found
in ED admission notes. To address this, we plan on fine tuning a transformer model like
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019))
using ED admission and OP notes. The fine-tuning process would include weak supervision
of the BERT model for NER using few acute COVID-19 and PASC symptoms to extract
additional symptoms.

5.4.4 Run-Time of NLP Annotation Systems

Use of the UIMA-based annotation systems in NLP-ADAPT-KUBE for large-volume real-
time extraction of symptoms from notes is inefficient, both in terms of resource utilization
and processing time. While Stephens et al. (2020) used MetaMap Lite for near real-
time extraction of symptoms, it had several issues making it less than ideal candidate for
real-time extraction of notes as discussed in Section 5.2.

MetaMap on its own performed comparably to the Boolean ensemble and the Hybrid
COVID Symptoms Gazetteer for extraction of acute CDC symptom (as shown in Table
6 and Figure 5 under Section 4.2.1). However, based on the results of our run-time evaluation
in Section 4.2.2, MetaMap took about 22 hours to process 3,000 notes. To consider using
any of the default pipelines for any of the UIMA-based annotation systems for large-volume
real-time extraction of symptoms they would need to be scaled across multiple compute
nodes using a queuing system, like that used in the UIMA-AS implementation of NLP-
ADAPT-KUBE (Finzel et al., 2020).

In comparison to the UIMA-based systems, the Hybrid COVID Symptoms Gazetteer
is a good contender for large-volume real-time extraction of symptoms from notes, as shown
in the NLP annotation system run-time results presented in Section 4.2.2. The Hybrid
COVID Symptoms Gazetteer was 1.28 times faster than the next fastest UIMA-based
annotation system (BioMedICUS) and 42.50 times faster than the slowest UIMA-based
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annotation system (MetaMap). Furthermore, scaling of the Hybrid COVID Symptoms
Gazetteer across multiple nodes is much simpler to implement, since each instance can
work off of its own manifest of files to process, compared to the need to implement a queuing
system for the UIMA-based annotation systems (thereby increasing implementation com-
plexity). The simple architecture of the Hybrid COVID Symptoms Gazetteer, and its
extraction performance compared to UIMA-based systems, along with its speed make it a
viable tool for sites needing high volume, near real-time extraction from clinical notes.

5.5 Potential Barriers

While our study indicates the use of symptomatology in CDS systems holds promise, poten-
tial barriers exist. An important aspect of this study was analysis of symptomatology-based
models in the evaluation of non-English speaking patients. This observation is particularly
important, since lack of English proficiency has been shown to increase the risk of mor-
tality and developing severe COVID-19 (Ingraham et al., 2021). English proficiency likely
plays a significant role in the clinician’s understanding of the patient’s presenting symp-
toms, thus influencing treatment decisions. Knowing whether an interpreter is available
for an encounter could potentially lead to more conclusive results for our model. While
it may be reasonable to assume most patients received some degree of interaction with
a qualified interpreter, given the quick adaptation to incorporating video conferencing to
most patient care rooms throughout the hospital system, the lack of data regarding the
interaction remains a source of potential bias in our analyses. In tying ED admission notes
to a well-defined lexicon or ontology (viz., the UMLS), the goal is to help clinicians break
through some of these language barriers and make well-informed treatment decisions, likely
through the assistance of interpreters. However, as noted in Section 5.3, restrictions dur-
ing the COVID-19 pandemic limited use of interpreters during clinical encounters. In the
future, mobile applications may be able to circumvent this barrier and assist clinicians by
collecting data of various predictors, including symptoms, without being affected by lan-
guage barriers, since these applications could be created in multiple languages (Stephens
et al., 2020).

Finally, COVID-19 has exposed disparities in health literacy, particularly in terms of
medical misinformation and politicization of response to the virus (Ingraham & Tignanelli,
2020; Ingraham et al., 2020b; Skilton, 2020). In this environment, the use of symptomatol-
ogy could bypass health illiteracy by using the common language of symptoms to capture
critical data for at-risk patients and simplify treatment decisions by leveraging symptoms
for screening through an equitable platform across all languages.

6. Future Work

Methods presented in this study were developed quickly in response to the COVID-19
pandemic. Evaluation of the methods employed using these tools thus constituted a baseline
approach to allow quick extraction of acute COVID-19 symptoms for use in this study. For
the task of acute CDC symptom extraction there is currently no state-of-the-art. We
describe the tools, methods and use cases on which we are currently focusing to fill this
niche.

460



Extraction of COVID-19 Symptoms

6.1 Gazetteer

Generation of specialized lexicons is a costly endeavor. For this study, development of the
164 derived COVID-19 symptoms described in Section 3.2.1 occurred over the course of four
weeks and went through several iterations before full agreement about the completeness and
correctness of terms in the lexicon was reached. To minimize valuable subject matter expert
time involved in lexicon creation, and to increase yield of terms, we are currently exploring
use of BERT models as noted in Section 5.4.3 for lexicon generation. Preliminary results
from experiments using weak supervision and only 40 acute COVID symptoms to fine-tune
BERT, for the purpose of NER, yielded approximately 320 unique COVID-19 symptoms
from a set of 10,000 clinical notes for patients with COVID-19. While still in experimental
stages, we have yet to validate the generated lexicon using BERT for extraction of COVID-
19 symptoms on an expanded reference set of manually annotated notes.

To reduce the processing time even further, we have implemented a version of the
COVID-19 Symptoms Gazetteer that utilizes all available cores without use of the
UMLS (to reduce potential for false negatives as noted in Section 5.4.3). Experimental
results for run-time, resource utilization and symptom extraction performance for acute
COVID-19 are provided by Sahoo et al. (2021). Lastly, we are exploring use of a messaging
queue to replace the need for a manifest list of files to process, which will allow for very
high-throughput processing of documents at scale across multiple compute nodes. The
potential of a custom lexical gazetteer both in terms of performance and processing time
also motivates us to experiment on the benefits of using a gazetteer for diseases other than
COVID-19. To this end, we are looking at ways to use domain-specific gazetteer-enhanced
modules for improving NER models across disparate corpora as outlined by Liu et al. (2019).

Finally, we are examining the behaviour of combining the 4 UIMA-based annotation
systems in NLP-ADAPT-KUBE and the Hybrid COVID Symptoms Gazetteer as
a Neural Network (NN) ensemble. Preliminary results for the NN ensemble produced a
weighted micro-average f1-score of 0.93 over all the acute CDC symptoms on the manually
annotated reference, which was 0.06 higher than the f1-score for the Boolean ensemble used
in this study.

6.2 Manually Annotated Reference

At the time of this study, the only reference of clinical notes manually annotated for acute
CDC symptoms available to us was the set of notes described in Section 3.5.1. As noted
above in Section 5.4.2, we are creating a larger and more comprehensive manually annotated
reference. A major issue is that the creation of a manually annotated reference is a costly
process in terms of time and resources. Use of weakly-supervised models trained using
labeling functions created by subject matter experts have been shown to speed up this
process to create annotated reference sets that are comparable to hand-labeled ones (Ratner
et al., 2020). We are thus exploring the use of weak-supervision using Snorkel to assist
in creating an expanded annotated reference set of annotated notes (Yang et al., 2019).
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6.3 Symptomatology Use Cases

This study has shown the benefit of using extracted symptoms for acute COVID-19 from un-
structured clinical encounter narratives for CDS. Several avenues of inquiry we are currently
investigating are listed below.

Treatment of COVID-19 patients requires urgency to mitigate potential harm, includ-
ing (a) initiation of anticoagulation to prevent thrombo-embolic disease, and (b) ensuring
appropriate isolation procedures are established as soon as possible. Establishing a relation-
ship between timing of care and symptomatology opens up several avenues of investigation,
including care quality.

Symptomatology will substantially aid in identifying an accurate representation of an
index encounter leading to a hospital stay. This includes collecting data that are poorly
documented, such as confusion or altered mentation, along with other important diagnostic
information at the point of care. Comparing a clinician’s decision at the index encounter
with the final diagnosis has the potential to open up multiple avenues of investigation into
diagnostic decision making, atypical presentations, and error.

Finally, diagnostic uncertainty is a highly understudied area in clinical care delivery. For
a subset of the COVID-19 population, use of symptomatology for clinical prediction will
help identify patients with an uncertain diagnosis or prognosis. Comparing quality of care
delivery and healthcare utilization between patients where there is demonstrable uncertainty
and where there is not may help illustrate an important component of healthcare costs and
patient safety. Flagging patients with an uncertain diagnosis may reduce potential for errors
in diagnostic reasoning and trigger additional data collection to improve prognostication in
real-time.

Furthermore, the investigation and understanding of the PASC remains in its infancy
(Al-Aly et al., 2021). Given PASC is largely a symptoms-based diagnosis, it serves as an
ideal platform to further leverage the methods presented in this study.

7. Conclusion

This study demonstrates that NLP methods for extraction of acute COVID-19 symptoms
using the UMLS and a rule-based gazetteer offer potential to enhance clinical prognosis
for various outcomes related to COVID-19. It also shows that clusters of symptoms for
COVID-19 carry significant predictive power. Our results indicate that symptomatology-
based prognostic models offer clinicians a potentially powerful tool that could facilitate
telemedicine encounters, replacing the need for other in-person options that might jeopardize
the well-being of health care workers and patients. The methods presented in this study
have potential for diseases beyond acute COVID-19, including PASC, and other acute and
chronic conditions. While this study has identified potential barriers (i.e., primary language)
for how clinicians currently collect symptoms, it also offers solutions to circumvent these
barriers. Most importantly, we have shown that evidence-based management of symptoms
has potential to improve outcomes.
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Appendix A. Configuration for NLP Annotation System Run-Time
Analysis:

◦ Architecture: x86 64

◦ CPUs: 8 cores

◦ Thread(s) per core: 1

◦ Core(s) per socket: 1

◦ Socket(s): 8

◦ Model name: Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz

◦ Operating System (OS): Ubuntu 18.04.4 LTS (Bionic Beaver)

◦ RAM: 64 GB

◦ Platform: Azure VMWare

Appendix B. Example Query Expansion

The following example illustrates the steps used in the query expansion:

1. Start with the term “cough” from the list of 164 derived COVID-19 symptoms.
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2. Mapping “cough” to the UMLS produces the CUI: C1961131 and the preferred term:
”cough.”

3. Using the preferred term “cough” generate the top 100 semantically similar terms (in
Table B.1 below we display only the top 11)

4. Mapping the semantically similar terms from step 3 to the UMLS we get the results
below in Table B.2.

Semantically similar terms Cosine distance

dry cough 0.9200
congestion 0.8729
coughing 0.8582
nonproductive 0.8484
nonproductive cough 0.8398
uri symptoms 0.8363
productive cough 0.8327
wheezing 0.8317
sore throat 0.8244
non productive 0.8211
non productive cough 0.8156

Table B.1: Top 11 semantically similar terms to the parent term “cough”.

Mapped Cui Mapped preferred term

C0850149 dry cough
C0700148 congestion
C0010200 coughing
No UMLS mapping nonproductive
C0850149 dry cough
No UMLS mapping uri symptoms
C0239134 productive cough
C0043144 wheezing
C0031350 pharyngitis
No UMLS mapping non productive

Table B.2: Top 11 semantically similar terms mapped to UMLS.

Appendix C. Example Binary Tree Expansion of Boolean Combination

As an example of how Boolean ensembles merge annotation output, the tree representation
of arbitrary sets A, B, and C with the merge operation ((A ∩ B) ∪ C) is given in Figure
3. Starting from the bottom, we traverse the leaves of the tree. If the leaf is a set (in the
case of A or B) we look to the leaf’s parent for an operation. A’s parent is an intersection
operation node, which consumes both a left and a right leaf (A and B) as operands and
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combines all common elements between both sets A and B as an intersection. Included in
Figure C.1 is the sub-expression (A ∩ B), which is the result of the intersection operation
and which will be a leaf for future operations. In this simple case, there is only one parent
node remaining, a union operation node. This union consumes two leaves — (A ∩ B) and
the remaining leaf (C), to produce the final expression ((A ∩ B) ∪ C), which combines
all elements between both sets (A ∩ B) and C as a union. The merged set for the given
Boolean expression is thus complete.

Figure C.1: Tree representation of Boolean expression.
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Appendix D. Prevalence of Data used in Associations Analysis

Variable Missing Total Percent Missing

Inpatient 0 5,006 0.0000
Readmission 0 5,006 0.0000

age raw 0 5,006 0.0000
elixsum 0 5,006 0.0000

race 0 5,006 0.0000
Non Englis∼g 0 5,006 0.0000

male 0 5,006 0.0000
SBP min24h 130 5,006 2.6000

Temp max24h 145 5,006 2.9000
RR max24h 192 5,006 3.8400
HR max24h 121 5,006 2.4200

cdc aches3 0 5,006 0.0000
cdc fatigue3 0 5,006 0.0000

cdc fever3 0 5,006 0.0000
cdc cough3 0 5,006 0.0000

cdc dyspnea3 0 5,006 0.0000
cdc headac∼3 0 5,006 0.0000
cdc taste ∼3 0 5,006 0.0000
cdc sore t∼3 0 5,006 0.0000
cdc rhinit∼3 0 5,006 0.0000

cdc nausea∼3 0 5,006 0.0000
cdc diarrh∼3 0 5,006 0.0000

Table D.1: Data prevalence.11

11. Variable definitions:

◦ Inpatient: Binary variable determining if admitted to hospital

◦ Readmission: Binary variable determining if readmitted to hospital

◦ age raw: Age as float at time of encounter

◦ elixsum: Elixhauser comorbidity index (described in Section 3.6)

◦ race: Coded race/ethnicity

◦ Non-English: Binary variable determining if Non-English speaker

◦ SBP min24h: Systolic Blood Pressure 24h Min (mmHg)

◦ Temp max24h: Temperature 24h Max (F°)

◦ RR max24h: Respiratory Rate 24h Max (breaths/min)

◦ HR max24h: Heart Rate 24h Max (beats/min)

◦ cdc *: Acute COVID-19 symptoms
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