
Journal of Artificial Intelligence Research 71 (2021) 89-119 Submitted 01/2021; published 05/2021

Efficient Local Search based on Dynamic Connectivity
Maintenance for Minimum Connected Dominating Set

Xindi Zhang zhangxd@ios.ac.cn
Bohan Li libohan19@mails.ucas.ac.cn
Shaowei Cai shaoweicai.cs@gmail.com
State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences
Beijing, China
School of Computer Science and Technology
University of Chinese Academy of Sciences
Beijing, China

Yiyuan Wang yiyuanwangjlu@126.com

School of Computer Science and Information Technology

Northeast Normal University, China

Key Laboratory of Applied Statistics of MOE

Northeast Normal University, China

Abstract

The minimum connected dominating set (MCDS) problem is an important extension
of the minimum dominating set problem, with wide applications, especially in wireless net-
works. Most previous works focused on solving MCDS problem in graphs with relatively
small size, mainly due to the complexity of maintaining connectivity. This paper explores
techniques for solving MCDS problem in massive real-world graphs with wide practical im-
portance. Firstly, we propose a local greedy construction method with reasoning rule called
1hopReason. Secondly and most importantly, a hybrid dynamic connectivity maintenance
method (HDC+) is designed to switch alternately between a novel fast connectivity main-
tenance method based on spanning tree and its previous counterpart. Thirdly, we adopt a
two-level vertex selection heuristic with a newly proposed scoring function called chrono-
safety to make the algorithm more considerate when selecting vertices. We design a new
local search algorithm called FastCDS based on the three ideas. Experiments show that
FastCDS significantly outperforms five state-of-the-art MCDS algorithms on both massive
graphs and classic benchmarks.

1. Introduction

With a series of computational challenges brought by the rapid increase of massive data in
recent years, most existing algorithms become ineffective when solving NP-hard problems
on massive data sets. Thus, in the last decade, many researchers devoted their efforts
to developing new algorithms to deal with massive real-world graphs. In this paper, we
consider an interesting graph theory problem, namely the minimum connected dominating
set (MCDS) problem, and propose a series of effective techniques focusing on solving MCDS
problem in massive graphs.

c©2021 AI Access Foundation. All rights reserved.

Zhang, Li, Cai, & Wang

Given an undirected connected graph G = (V,E), a set D ⊆ V is called a dominating
set if each vertex in V either belongs to D or is adjacent to at least one vertex in D. The
minimum dominating set (MDS) problem is to find a dominating set with the minimum
number of vertices in the given graph. An important generalization of MDS is the MCDS
problem, whose goal is to find a MDS that forms a connected subgraph in the given graph.
An important application of MCDS problem is to generate a virtual backbone in wireless
networks (Yu et al., 2013) such as mobile ad hoc networks (Al-Karaki & Kamal, 2008),
wireless sensors networks (Misra & Mandal, 2009) and vehicular ad hoc networks (Chin-
nasamy et al., 2019). Specifically, MCDS problem plays a significant role in broadcast
routing (Cheng et al., 2006; Ni et al., 1999; Wu & Dai, 2003), power managing (Chen et al.,
2002; Deb et al., 2003) and fiber optical networks (Chen et al., 2010; Sen et al., 2008). In
addition, MCDS problem has also lots of applications in many other fields, such as system
biology (Milenković et al., 2011) and aviation network (Li et al., 2020b). Moreover, MCDS
problem is equivalent to the maximum leaf spanning tree problem (Lucena et al., 2010;
Fernau et al., 2011; Binkele-Raible & Fernau, 2012; Solis-Oba et al., 2017).

1.1 Previous Works

It is well known that MCDS problem is NP-hard (Kann, 1992). Several exact algo-
rithms (Fomin et al., 2008; Simonetti et al., 2011; Fan & Watson, 2012; Gendron et al.,
2014) and approximation algorithms (Cheng et al., 2003; Ruan et al., 2004; Khuller &
Yang, 2019) have been designed for MCDS problem. For example, the improved 1-hop and
2-hop local information greedy algorithms were proposed in (Khuller & Yang, 2019), with
approximation ratio of H(∆G) + 2

√
H(∆G) + 1 and H(2∆G + 1) + 1 respectively, where H

is the harmonic function and ∆G is the maximum degree in the graph. Nevertheless, these
algorithms are either too time-consuming or have poor performance in practice, especially
in the context of massive graphs.

Because of its NP-hardness, much of the research effort in the past decade concerned
with solving MCDS problem has focused on heuristic algorithm aiming to obtain a good
solution within a reasonable time. Two algorithms called MCDS/SA and MCDS/TS based
on simulated annealing and tabu search were proposed (Morgan & Grout, 2007). Hedar
and Ismail designed a simulated annealing algorithm with stochastic local search for MCDS
problem (Hedar & Ismail, 2012). Later, Jovanovic and Tuba designed an ant colony op-
timization algorithm with a so-called pheromone correction strategy (Jovanovic & Tuba,
2013). A greedy random adaptive search procedure that incorporated a local search pro-
cedure based on a greedy function and tabu search was described (Li et al., 2017). Wu
et al. used a restricted swap-based neighborhood to improve the tabu search procedure,
resulting in the RNS-TS algorithm (Wu et al., 2017). Two meta-heuristics based on ge-
netic algorithms and simulated annealing were designed to solve MCDS problem (Hedar
et al., 2019). Li et al. presented a multi-start local search algorithm called MSLS based
on three mechanisms including a vertex score, configuration checking, and vertex flipping
(Li et al., 2019). Finally, a meta-heuristic algorithm called ACO-RVNS (Bouamama et al.,
2019) was proposed, based on ant colony optimization and reduced variable neighborhood
search. Moreover, ACO-RVNS has also been applied to weighted version of MCDS problem.
Experiments showed that, for classic graphs with fewer than 5000 vertices, RNS-TS, MSLS,

90

Efficient Local Search for Minimum Connected Dominating Set

and ACO-RVNS obtained similar state-of-the-art performance, while the performance of
these algorithms was different on solving massive graphs.

1.2 Contributions

Previous MCDS algorithms have made progress in solving classic graphs, but these algo-
rithms still cannot handle massive graphs with millions of vertices. In this work, we focus
on solving MCDS problem on massive graphs and propose an efficient local search algorithm
called FastCDS. The main technical contributions of this paper are as follows.

First, we propose a construction algorithm based on reasoning rule called 1hopReason.
According to simple preprocessing, vertices are divided into three sets, including a set of
vertices that are contained in each feasible solution, a set of vertices that are not contained in
any optimal solution, and the third set consisting of the remaining vertices. The 1hopReason
algorithm constructs a solution according to the reasoning rule which exploits the different
parts of vertices.

The second idea, which is also the most important contribution of this work, concerns
with the connectivity maintenance. For combinatorial optimization problem with connec-
tivity constraint, a key factor to the performance is the connectivity maintenance method,
especially when the graphs are large. Previous connectivity maintenance methods make
the algorithm explore rather large parts of the search space, but they become futile when
faced with very large search space. To overcome this issue, we propose a novel tree-based
connectivity maintenance (TBC for short) method, inspired by spanning trees. Compared
to previous counterparts, the TBC method has very low complexity, while limiting the
algorithm to explore a relatively small part of the search space. To obtain a balance
between diversification and intensification, we design the a hybrid dynamic connectivity
maintenance method (HDC) method to dynamically switch between previous connectivity
maintenance methods and TBC during the search process. Furthermore, HDC is enhanced
by reconstructing spanning tree when the algorithm falls into local minima for certain time,
resulting in HDC+ method.

Finally, we designed a two-level vertex selection heuristic. By defining a new vertex
property called safety, which takes into account the difference among dominated vertices
and the diversity of solution, we propose a novel vertex scoring function called chrono-safety
based on different scoring functions including the safety property and history information
of vertices. Comparing to previous MCDS algorithms which only use one scoring function,
the proposed two-level vertex selection rule uses the chrono-safety scoring function as a
supplement of traditional scoring function to make itself more considerate.

Extensive experiments are carried out to evaluate FastCDS on classic benchmarks used
in previous literature and on massive graphs from real-world applications. Experimental
results indicate that FastCDS outperforms five state-of-the-art MCDS heuristic algorithms
on most instances, and confirm the effectiveness of our proposed strategies.

This paper is an extended and improved version of a conference paper (Li et al., 2020a),
where a local search algorithm for MCDS problem called NuCDS is proposed. The HDC
method and the safety-based vertex selection heuristic (Li et al., 2020a) have been presented
in the conference version of this article. The new contributions in this article are summarized
as follows:

91

Zhang, Li, Cai, & Wang

• A new effective construction method called 1hopReason;

• An improved version of HDC method called HDC+;

• A two-level vertex selection method with the optimized chrono-safety scoring function;

• More experiments to evaluate the performance of our algorithm, comparing it with
five state-of-the-art algorithm, including NuCDS;

• Comprehensive assessment for each strategy.

1.3 Paper Organization

Some preliminary knowledge is introduced in Section 2. In Section 3, we propose an effi-
cient construction method with reasoning rule called 1hopReason. In Sections 4 and 5, we
describe the two main ideas in the local search process, including the connectivity mainte-
nance method HDC+ and the two-level vertex selection heuristic with chrono-safety as the
secondary scoring function. We describe the FastCDS algorithm in Section 6. Experimental
results and further analyses are presented in Section 7. Finally, we give some concluding
remarks in Section 8.

2. Preliminaries

In this section, we introduce the basic definitions and notations that will be used in this
paper, and then we briefly overview two strategies adopted in FastCDS, called two-level
configuration checking and best from multiple selection.

2.1 Basic Definitions and Notation

An undirected graph G = (V,E) consists of a vertex set V and an edge set E. For an
edge e = {u, v}, vertices u and v are the endpoints of the edge. The distance between two
vertices u and v, denoted by dist(u, v), is the number of edges in a shortest path from u to
v. For vertex v, its ith level neighborhood is Ni(v) = {u|dist(u, v) = i}, and its ith level
closed neighborhood is Ni[v] = Ni(v) ∪ {v}. We denote Nk(v) =

⋃k
i=1 Ni(v). Also, the

ith level neighborhood and the closed neighborhood of a vertex set S ⊆ V are defined as
Ni(S) =

⋃
v∈S Ni(v) \ S and Ni[S] =

⋃
v∈S Ni[v], respectively. The first level neighborhood

symbol N1 is usually denoted as N . The degree of a vertex v in G, denoted as d(v),
is defined as |N(v)|. For the given graph G, ∆G is the corresponding maximum degree.
G[S] = (VS , ES) is a subgraph in G induced by S such that VS = S and ES consists of all
the edges in E whose endpoints are in S.

An undirected graph G = (V,E) is connected when it has at least one vertex and there
is a path between every pair of vertices. For the given graph G, a clique C of G is a subset
of V where each pair of vertices in C is adjacent.

Definition 1 Given an undirected connected graph G, a vertex in G is an articulation
vertex iff removing it, together with the edges connected to it, disconnects the graph. The
articulation vertex set of G is denoted as A(G).

92

Efficient Local Search for Minimum Connected Dominating Set

Given a graph G = (V,E), for a vertex set D ⊆ V , a vertex v ∈ V is dominated
by D if v ∈ N [D], and is non-dominated otherwise. If D dominates all vertices, then D
is a dominating set, and if its induced subgraph is also connected then it is a connected
dominating set. For a given graph G, the aim of the minimum connected dominating set
(MCDS) problem is to find the connected dominating set D with the smallest size.

During the search process, we use D ⊆ V to denote a candidate solution. If the algorithm
only considers vertices in the Ni(D) to be moved (i.e. added into or removed from the
candidate solution), then we say that it uses i-hop information.

2.2 Two-Level Configuration Checking

Configuration checking (CC) (Cai & Su, 2011) is a strategy aiming to handle the cycling
problem in local search, i.e., revisiting a candidate solution that has been visited recently.
It can be briefly described as below. The configuration of a vertex v refers to the states
(being selected or not) of all its neighboring vertices. If the configuration of v remains the
same as the last time it was removed from the candidate solution, then v is forbidden to
be added into the candidate solution. Typically, CC is implemented with a Boolean array
ConfChange whose size equals the number of vertices in the given graph.

A variant of CC named two-level configuration checking (CC2) was proposed to improve
a local search algorithm for MWDS (Wang et al., 2017). In CC2, the configuration of a
vertex v is defined to be a vector consisting of states of vertices in N2(v). A vertex is
considered configuration-changed, if the value of any bit of the vector has changed. The CC2

strategy forbids any vertex to be added into the candidate solution if it is not configuration-
changed since its last removal from the candidate solution.

The CC2 strategy works as follows.
Updating rules:

1. At the beginning of the local search, for each vertex v, ConfChange[v] is set to 1;

2. When vertex v is removed (from current candidate solution), ConfChange[v] is reset
to 0 , and ConfChange[u] is set to 1 for all u ∈ N2(v);

3. When vertex v is added (into current candidate solution), ConfChange[u] is set to 1
for all u ∈ N2(v).

Using rule: When choosing an added vertex v, CC2 forbids any vertex to be added into
the candidate solution if its configuration has not been changed, i.e., ConfChange[v] = 0.

2.3 Best from Multiple Selection Heuristic

Local search algorithms usually need to pick an element (e.g., a vertex or variable) from
a candidate set. For solving large instances, a commonly used heuristic is the best from
multiple selection (BMS) heuristic (Cai, 2015), which is a probabilistic sampling method.

To gain a balance between the quality of the selected element and the time complexity
of selection process, BMS randomly chooses k elements from a given candidate set, and
then returns the best one according to a selection rule, where k is a parameter. BMS has
been proved with theoretical basis that it can return an excellent quality element on large
scale instances.

93

Zhang, Li, Cai, & Wang

3. An Effective Construction Algorithm for MCDS with Reasoning Rule

In order to handle massive sparse graphs, it is essential to efficiently construct a high-
quality initial solution for local search algorithm. We propose a simple and efficient greedy
algorithm based on reasoning rules for constructing a feasible solution as the initial solution
of local search.

3.1 The Reasoning Rule

Proposition 1 Given a simple incomplete graph G = (V,E), a vertex v is not contained
in any optimal solution of MCDS if its closed neighborhood N [v] forms a clique.

Proof: Let Dopt be an arbitrary optimal solution of MCDS problem for graph G, and
v be a vertex such that its closed neighborhood N [v] forms a clique C. Supposing that
v ∈ Dopt, since Dopt is connected and v connects only to vertices in C, there must be at
least one vertex u ∈ C \ {v} in Dopt. Since v is dominated by u, Dopt \ v is also a connected
dominating set, which contradicts with the assumption that Dopt is an optimal solution.
Thus, v 6∈ Dopt. �

For a given graph G = (V,E), the set of vertices V is divided into three sets Vin, Vout

and Vcand.

• Vin consists of all articulation vertices of G calculated by Tarjan’s algorithm (Hopcroft
& Tarjan, 1973) , i.e., Vin = A(G). These vertices exist in each feasible solution;

• Vout denotes a vertex set containing vertices from any clique C ⊆ V , which only con-
nect to vertices in C according to the Proposition 1. These vertices are not contained
in any optimal solution;

• Vcand = V \ (Vin ∪ Vout) is the remaining vertex set.

Vertices in Vin and Vout are fixed in and excluded from optimal solutions, respectively.
By excluding the vertices in Vout and forcing to select vertices in Vin for construction, the
solution will be constructed from a reduced subset of V . Here, we propose a corresponding
reasoning rule as follows.

Reasoning Rule for Construction: When picking vertex to construct an initial
solution, the vertices in Vout should not be chosen to be added and the vertices in Vin

should be selected with higher priority than those in Vcand.

3.2 The 1hopReason Method

Based on the reasoning rule above, we propose a novel construction algorithm named
1hopReason, to generate a high-quality initial solution. The psuedo-code of 1hopReason is
shown in Algorithm 1. The 1hopReason algorithm contains a preprocessing method to ob-
tain three vertex sets (lines 1–6) and a local greedy construction method using the reasoning
rule for construction (lines 7–14).

At the beginning, Tarjan’s algorithm (Hopcroft & Tarjan, 1973) is used to obtain an
articulation vertex set A(G) as Vin(line 1), while Vout, Vcand and D are initialized to ∅ (line
2). In lines 3–6, Vout and Vcand are generated iteratively by examining the vertices in V \Vin.

94

Efficient Local Search for Minimum Connected Dominating Set

Algorithm 1: Construction Method with Reasoning

Input: Graph G = (V,E)
Output: A connected dominating set D

1 Vin := A(G) obtained by using Tarjan’s algorithm;
2 Vcand := Vout := D := ∅;
3 for ∀v ∈ V \ Vin do
4 if G[N [v]] is a clique then
5 Vout := Vout ∪ {v};
6 else Vcand := Vcand ∪ {v} ;

7 vadd := argmaxv∈Vcand∪Vin d(v);
8 D := D ∪ {vadd};
9 while D is not a feasible solution do

10 if N(D) ∩ Vin 6= ∅ then
11 vadd :=a random vertex in N(D) ∩ Vin;

12 else
13 vadd := argmaxv∈N(D)∩Vcand

scorecons(v);

14 D := D ∪ {vadd};
15 return D;

During each iteration, the algorithm checks whether N [v] is a clique1 (line 4), and if this is
the case, then the vertex is added to Vout (line 5). If N [v] is not a clique, v is put into Vcand

(line 6). To accelerate the generating process, if the algorithm finds a vertex v satisfying the
condition, i.e., G[N [v]] is a clique, all vertices with the same degree as v in this clique are
put into Vout as they meet the condition as well, and the other vertices in N [v] are directly
put into Vcand. Besides, vertices that have been already assigned to Vout or Vcand will no
longer be visited. The complexity of lines 3–6 is O(

∑
v∈V

∑
i∈N [v] d(i)) = O(|V | ×∆2

G).

The construction process starts from a set D containing a vertex with the maximum
degree (lines 7–8). At each step, it takes all 1-hop information into account using the
reasoning rule. Specifically, if there exists a vertex vadd in N(D) ∩ Vin, the algorithm will
choose it first (lines 10–11). Otherwise, the algorithm picks a vertex v in N(D)∩Vcand with
the largest scorecons(v), which means the number of newly dominated vertices by adding
v, breaking ties randomly (Cai, Hou, Wang, Luo, & Lin, 2020) (line 13). The complexity
of lines 7–14 is O(|V | ×∆G). Figure 1 gives an example for the construction method.

4. Hybrid Dynamic Connectivity Maintenance Method

In order to handle the performance bottleneck caused by maintaining connectivity in MCDS
problem, we introduce a hybrid dynamic connectivity maintenance method (HDC+ for
short). After reviewing two main previous connectivity maintenance methods, we propose
our novel tree-based connectivity maintenance method, and finally introduce the HDC+

1. It is implemented by checking whether the degree in the induced subgraph G[N [v]] of each vertex in
N [v] are all equal to |N(v)|. The complexity for checking a vertex v is O(

∑
i∈N [v] d(i)).

95

Zhang, Li, Cai, & Wang

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6
𝑣7𝑣8

𝑣9 𝑣10 𝑣11

Figure 1: An example of the construction method. Firstly, the vertices set V is divided
into three sets, namely Vin, Vout and Vcand, coloring red, green and white respectively.
All articulation vertices are selected into Vin. There are 5 cliques(vertex set {v1, v3, v4},
{v2, v4, v5}, {v8, v9}, {v7, v10} and {v7, v11}) where at least one vertex could be selected into
Vout according to Proposition 1. Then, the algorithm will choose v4, with the maximum
degree, as the first vertex of D. After that, v7 is selected because it is the only vertex in
N(D)∩ Vin. For the next step, v6 is chosen randomly from {v3, v6} because they maximize
the number of newly dominated vertices. After selecting v8, D becomes a feasible solution.

method. For convenience of discussions on complexity, we will use notations m = |VD| and
n = |ED|, where G[D] = (VD, ED) is the induced subgraph of current candidate solution
D.

4.1 Previous Connectivity Maintenance Methods

Before introducing HDC+, we review two previous methods to handle the connectivity
constraint, namely the substraction-based and addition-based methods.

The substraction-based method (SUB for short) is used by previous state-of-the-art
MCDS algorithms such as RNS-TS (Wu et al., 2017). Moreover, SUB is applied to solve
the weighted version of MCDS problem (Dagdeviren, Aydin, & Cinsdikici, 2017). In order
to keep the connectivity of candidate solution D, during each iteration of local search, the
algorithm maintains the candidate removal vertex set, defined as candRemoval(D)=D \
A(G[D]). The traditional approach to computing A(G[D]) is called Tarjan’s algorithm
(Hopcroft & Tarjan, 1973). It works as follows: depth first search (DFS for short) is used
to determine whether the child vertex of a vertex u can access the ancestor vertex of u
without passing through u.2 If so, then u is not an articulation vertex, and otherwise it is
an articulation vertex. The complexity of the substraction-based method is O(m + n).

The addition-based method has two versions. The first version, used in ACO-RVNS
(Bouamama et al., 2019) and in MCDS/TS (Morgan & Grout, 2007), works as follows:
during each iteration, the algorithm starts from an empty candidate solution D, and iter-
atively adds a vertex from N(D) to D until D becomes a feasible solution. The second
version, used in GRASP (Li et al., 2017) and MSLS (Li et al., 2019), works as follows:
the algorithm allows removing articulation vertices of D, so D may become disconnected.
Thus, before vertex u is selected to be added, DFS is used to calculate the number of con-

2. The child vertex of u is the vertex visited directly after u, while father and ancestor vertices of u are the
vertices visited directly and indirectly before u by DFS.

96

Efficient Local Search for Minimum Connected Dominating Set

nected subgraphs of D that v ∈ N(u) belongs to, and the vertex with the largest number
is preferred. The complexity of both versions is O(m).

The complexity of the above two methods is at least O(m). This makes algorithm
time-consuming when applied to massive graphs, hindering the performance on massive
graphs.

4.2 Tree-Based Connectivity Maintenance Method

To lower the time complexity of connectivity maintenance, we present a novel tree-based
connectivity maintenance (TBC for short) method, which is inspired by spanning trees.

For this purpose, we first introduce the definitions of a spanning tree and a leaf vertex.
Given a connected graph G = (V,E), a spanning tree T = (V ′, E′) is defined as a connected
subgraph of G with V ′ = V , E′ ⊆ E, without any cycles. Given a spanning tree T =
(V ′, E′), a vertex v ∈ V ′ is called a leaf vertex if dT (v) = 1, where dT (v) denotes the degree
of v in T , and the leaf set is defined as LS(T) = {v|dT (v) = 1, v ∈ V ′}.

Proposition 2 Given a spanning tree T = (V ′, E′) and its corresponding leaf set LS(T)
of graph G = (V,E), LS(T) is a subset of V \A(G).

Proof: For any vertex v ∈ LS(T), after removing v and relevant edges through v from T ,
the remaining graph is still a spanning tree of G[V \{v}]. So G[V \{v}] remains connected,
which means that v is not an articulation vertex of G, inducing that v ∈ V \ A(G). Thus,
we can conclude that LS(T) ⊆ V \A(G). �

Based on the definition and proposition above, we describe TBC as follows. Given a
candidate solution D, a spanning tree T of G[D] and its corresponding leaf set LS(T) are
maintained during the search process. Each vertex v ∈ LS(T) is allowed to be removed
from D. All other vertices are forbidden to be removed. In contrast to the previous
substraction-based method, given a current solution D, TBC calculates an approximate
candRemoval(D) = LS(T), which is a subset of D \ A(G[D]). In order to dynamically
update candRemoval(D), three updating rules of TBC are described as follows.

Construction Rule: Both T and LS(T) with respect to G[D] are constructed accord-
ing to the candidate solution D by using breadth first search. The construction method is
to set a randomly picked vertex in D as the root of T at first, and to iteratively expand T
by a randomly picked vertex in current LS(T) until all vertices have been visited. When a
vertex v is picked, for each vertex u ∈ (N(v)∩D) \T , v is set to the father vertex of u, and
u is added to T and the LS(T) should be updated accordingly.

Removing Rule: When vertex v is selected to be removed, its father vertex u needs
to be found. If dT (u) = 2, meaning that u becomes a leaf vertex after removing v, LS(T) =
LS(T) \ {v} ∪ {u}. Otherwise, LS(T) = LS(T) \ {v}.

Adding Rule: When vertex v is added to the candidate solution D, one vertex
u ∈ N(v) ∩ T needs to be selected as the father vertex of v. In order to render larger
candRemoval(D), we prefer not to select a leaf vertex in LS(T), and thus we pick the
vertex u with the maximum dT (u) among ∀u ∈ N(v) ∩ T . If u is a leaf vertex, LS(T) =
LS(T) \ {u} ∪ {v}, else LS(T) = LS(T) ∪ {v}. Lastly, v is set as the child of u in T .

The complexity of the construction rule used to construct and reconstruct the spanning
tree is O(m + n). When adding a vertex v based on the Adding Rule, N(v) has to be

97

Zhang, Li, Cai, & Wang

v1

v2

v3 v4

v5

v6

v7

v8 v9

v10

D={v6,v7,v8,v9,v10}
LS(T)={v6,v7,v10}

Remove v10 Add v1

D={v6,v7,v8,v9}
LS(T)={v6,v7,v9}

D={v1,v6,v7,v8,v9}
LS(T)={v1,v7,v9}

v1

v2

v3

v5

v6

v7

v8 v9

v10

v4

v1

v2

v3
v4

v5

v6

v7

v8 v9

v10

Figure 2: An example of the TBC method. (The solid nodes denote those vertices in the
candidate solution D, while the solid edges compose the spanning tree T of G[D].)

searched to update T and LS(T), which has a complexity of O(∆G). When removing a
vertex v based on the Removing Rule, only the father vertex of v needs to be searched
to update T and LS(T), which has a complexity of O(1). To make the TBC method more
comprehensive, we present its example in Figure 2 regarding to removing v10 and then
adding v1.

4.3 The HDC Method and Its Improved Version HDC+

For large graphs, TBC is substantially faster than previous connectivity maintenance meth-
ods. However, since TBC does not consider all candidate removal vertices, it may miss
some high-quality options. As an extreme example, a candidate solution D with a vertex
v ∈ D such that D \ {v} is also a connected dominating set. However, TBC does not
consider this option if v is not a leaf vertex of the current spanning tree. In contrast, the
substraction-based method using Tarjan’s algorithm potentially considers more options for
removal because it accurately determines the complete candidate removal vertex set, but
its complexity is higher.

In order to take profit from the respective advantages of both methods, a balance must
be achieved between the complexity and the accuracy of determining the candidate removal
vertex set. We propose a heuristic called hybrid dynamic connectivity maintenance method
(HDC) to switch between the two methods. Furthermore, we proposed an improved version
called HDC+, by reconstructing the spanning tree when falling into local minima for certain
steps.

We first define four parameters as below: 1) parameter NoImpr denotes the maximum
number of steps without improving the candidate solution, where NoImpr ∈ [MinNoImpr,
MaxNoImpr]; 2) parameter MinNoImpr denotes the minimum value of NoImpr, and it
is also adopted as the absolute value of the change on NoImpr in each step; 3) parameter
MaxNoImpr denotes the maximum number of steps using the current connectivity main-
tenance method; 4) parameter reconsGap denotes the number of non-improving steps in
order to activate a tree reconstruction process.

Considering the difference of complexity between the two connectivity maintenance
methods, two sets of parameters are respectively set for SUB and TBC.

Algorithm 2 gives a formal description of the HDC and HDC+ heuristics. stepNoImpr
and stepOneCon denote the number of non-improving steps and the number of steps adopt-
ing one current connectivity maintenance method, respectively.

98

Efficient Local Search for Minimum Connected Dominating Set

Algorithm 2: the HDC+ heuristic

Input: the current solution D
Output: candidate removal vertex set candRemoval(D)

1 if stepNoImpr > NoImpr||stepOneCon > MaxNoImpr then
2 if curMethod==SUB then
3 curMethod :=TBC;
4 construct a spanning tree T based on Construction Rule;

5 else curMethod :=SUB ;
6 update NoImpr by some tricks;
7 stepOneCon := 0, stepNoImpr := 0;

8 if curMethod==TBC then
/* HDC does not contain lines 9-10 */

9 if stepNoImpr%reconsGap == reconsGap− 1 then
10 reconstruct the spanning tree T based on Construction Rule;

11 candRemoval(D) := LS(T);

12 else
13 compute A(G[D]) based on Tarjan’s algorithm;
14 candRemoval(D) := D \A(G[D])

15 return candRemoval(D);

When the candidate solution has not been improved for NoImpr iterations or the cur-
rent method has been used for MaxNoImpr iterations (line 1), the algorithm switches from
the current connectivity maintenance method to the other one (lines 2–5). In particular,
after switching to TBC, a spanning tree T of D and its corresponding leaf set LS(T) need
to be constructed (line 4). After the switching operation, NoImpr needs to be updated
(line 6). Specifically, if stepNoImpr > NoImpr, then the algorithm increases NoImpr by
MinNoImpr so that it can search more exhaustively for better candidate solutions. Oth-
erwise, if stepOneCon > MaxNoImpr, the algorithm decreases NoImpr by MinNoImpr
in order to accelerate the search. Both stepNoImpr and stepOneCon should be reset to
0 (line 7). If the current method is TBC and the reconstruction condition is satisfied (line
9), then the spanning tree T will be reconstructed (line 10), which is the main difference
between HDC and HDC+ heuristics. Lastly, the algorithm uses the selected connectivity
maintenance method to calculate the candidate removal vertex set candRemoval(D) and
returns it (lines 8–15).

5. Two-Level Vertex Selection Heuristic

Local search algorithms typically use scoring functions to choose an operation to execute in
each step. In this section, we introduce a two-level vertex selection heuristic for local search
MCDS algorithms. While the primary scoring function for vertex selection is commonly
used for MCDS problem, we propose a secondary scoring function to break ties when the
vertices have the same value of the primary function. Note that we use an incremental
evaluation method, which is the same as FastDS (Cai et al., 2020), for our scoring function.

99

Zhang, Li, Cai, & Wang

5.1 The Primary Scoring Function

In the context of the MCDS problem, a scoring function is used to choose a vertex u ∈ D
for removal and a vertex v ∈ N(D) for addition. Our algorithm adopts the frequency based
scoring function (Wang et al., 2017) as the primary function for this purpose.

For each vertex v ∈ V , the frequency of v is denoted as freq[v], which measures the
number of steps that the vertex is not dominated. It can be simply calculated: in the
beginning, freq[v] = 1 for ∀v ∈ V ; then, at the end of each iteration of local search,
freq[v] = freq[v] + 1 for each non-dominated vertex v ∈ V . The frequency based scoring
function, denoted as score, is defined as follows:

score(v) =

{ ∑
u∈C1

freq[u], v /∈ D

−
∑

u∈C2
freq[u], v ∈ D

where C1 is the set of non-dominated vertices that would become dominated by adding
v to D (the current candidate solution), and C2 is the set of dominated vertices that would
become non-dominated by removing v from D.

5.2 The Chrono-Safety Function

In addition to considering the score value, we also observe that some dominated vertices are
more “endangered” than others, which means that they may become non-dominated more
easily. An extreme case is where a vertex is only dominated by one vertex (either by itself or
by one of its neighbors). Such vertices may become non-dominated due to one exchanging
step. Based on this consideration, we define the safety of vertices, taking into account the
differences among dominated vertices. We first give the definition of the domination degree.

Definition 2 Given a connected graph G = (V,E) and a candidate solution D, the domi-
nation degree of vertex v is defined as dd(v) = |N [v] ∩D|, for each vertex v ∈ V .

This means that a vertex v with dd(v) = k is dominated by k vertices. Thus, the larger
the domination degree, the safer the corresponding vertex. We define a property of vertices
named safety. The safety of a vertex v, denoted as sf(v), is dd(v) if v /∈ D, or −dd(v) if
v ∈ D. Note that we introduce a negative sign for the case v ∈ D just for the convenience
that in both cases we always prefer larger safety value.

The safety-based ideas are inspired by the concept of subscore for the SAT problem (Cai
& Su, 2013) which considers the satisfaction degree of clauses. Moreover, as far as we know,
it is the first time that the definition of safety is applied to solve a graph optimization
problem.

Besides safety, we also consider the additional property of vertex (i.e., age) to break ties
for the sake of diversification. The age of a vertex v is defined as the number of steps since
v was last chosen. The default value of age for those vertices never chosen before are set
to CurStep, where CurStep is the number of current steps during local search. During the
search process, the algorithm prefers to select a vertex with larger age value for diversity.

Combining the two factors above, namely safety and age, our secondary scoring function
is defined as the chrono-safety of a vertex v, denoted as cs(v).

cs(v) =

{
age(v)× sf(v), v /∈ D
(CurStep− age(v))× sf(v), v ∈ D

100

Efficient Local Search for Minimum Connected Dominating Set

In the above cs function, age dominates the selection strategy if there exist candidate
vertices which have not been chosen for a relatively long time. Meanwhile, safety dominates
the selection strategy if vertices in candidate selection set are all recently chosen. Note that
by introducing CurStep for the case v ∈ D, we always prefer larger cs for both adding and
removal.

5.3 Vertex Selection Rule in Our Algorithm

As introduced in Section 2, the BMS heuristic is a common technique in picking a good-
quality element from a large candidate set, which is usually used in local search for large
combinatorial optimization instances. In this work, we employ a variant of BMS, which
gives higher priority to the important vertices (those in Vin and Vout) by giving them higher
probability when sampling. By using the score function as the primary scoring function
and the chrono-safety function as the secondary function, we design a two-level vertex
selection heuristic based on BMS for our local search algorithm. It can be described as
below.

Vertex Selection Rule: Sample the given candidate set for k times. A vertex in
Vin (resp. Vout) is sampled twice when picking vertex to add (resp. remove). Return the
sampled vertex v with the greatest score(v), breaking ties by preferring the one with the
greatest cs(v). In our work, the BMS parameter k is set to 100.

In our algorithm, we employ the novel vertex selection rule to decide which vertices
to be added or removed. To avoid visiting previous candidate solutions, we use the CC2

strategy (Wang et al., 2017) in the adding process, and use the tabu strategy (Glover &
Laguna, 1998) recording the adding operations to prevent removing a just added vertex
for the next tt iterations. In our work, tt = 3. There exist an extreme case that all
sampled vertices are forbidden by tabu or CC2 strategies. For this case, the algorithm picks
a random vertex from the sampled vertices. In contrast to previous BMS versions which
mainly focus on adjusting the k value, the novelty mind of our BMS strategy is to optimize
the sample procedure by giving a higher probability for special vertices. Specifically, the
selection probability of vertices in Vin and Vout is twice that of vertices in Vcand.

6. A New Local Search Algorithm for MCDS Problem

Based on HDC+ and the chrono-safety vertex selection heuristic, we develop a local search
algorithm for the MCDS problem called FastCDS. The pseudo-code of FastCDS is shown
in Algorithm 3.

In the beginning, FastCDS initializes score, sf and age (line 1), and sets curMethod =
TBC which means that the TBC method is selected as the initial connectivity maintenance
method (line 2). The non-improvement step stepNoImpr and the number of steps used by
the current connectivity maintenance method stepOneCon are both set to 0 (line 2). Then,
the algorithm constructs the initial candidate solution D using the proposed 1hopReason
method (line 3). According to the construction rule, the algorithm builds a spanning tree
T of D (line 4), and then the candidate removal vertex set candRemoval(D) is initialized
as LS(T) (line 5).

During the local search procedure (lines 6–19), the algorithm first uses the HDC+
heuristic to update candRemoval(D) (line 7). If D is a feasible solution, which means that

101

Zhang, Li, Cai, & Wang

Algorithm 3: the FastCDS algorithm

Input: An undirected graph G = (V,E), the cutoff time
Output: An obtained best solution D∗

1 initialize score(v), sf(v) and age(v), for ∀v ∈ V ;
2 curMethod :=TBC, stepNoImpr := stepOneCon := 0;
3 D := 1hopReason(G), D∗ := D;
4 build a spanning tree T according to Construction Rule;
5 candRemoval(D) := LS(T);
6 while elapsed time < cutoff do
7 candRemoval(D) := HDC+(D);
8 if D is a connected dominating set then
9 D∗ := D, stepNoImpr := 0;

10 select a vertex u from candRemoval(D) using Vertex Selection Rule;
11 D := D \ {u};
12 if curMethod==TBC then update T and LS(T) according to Removing Rule;
13 continue;

14 select a vertex u from candRemoval(D) using Vertex Selection Rule;
15 D := D \ {u};
16 select a vertex v from N(D) ∩N(G \N [D]) using Vertex Selection Rule;
17 D := D ∪ {v};
18 if curMethod==TBC then update T and LS(T) according to Removing and

Adding Rules;
19 stepNoImpr++, stepOneCon++;

20 return D∗;

the algorithm has already found a connected dominating set of size |D|, D∗ is updated to
D and stepNoImpr is set to 0 (line 9). Then, the algorithm continues to find a solution
of size (|D| − 1), i.e., by removing a vertex v from D using the vertex selection rule (lines
10–11). If the algorithm selects the TBC method as the current connectivity maintenance
method, the corresponding spanning tree T and its leaf set LS(T) should be updated based
on the removing rule (line 12).

If D is an infeasible solution, the algorithm tries to exchange two vertices (lines 14–17),
i.e., removing a non-tabu vertex u chosen from candRemoval(D) via the vertex selection
rule, and then adding a vertex v ∈ N(D)∩N(G\N [D]) to D via the CC2 strategy and the
selection rule, where G \N [D] is the non-dominated vertex set and N(D) contains vertices
maintaining connectivity. Finally, the algorithm needs to update T , LS(T), stepOneCon,
and stepNoImpr accordingly (lines 18–19). When the time limit is reached, the best so-
lution found (D∗) will be returned. The complexity of each iteration in the local search
process is O(|D|) or O(∆G) when using SUB or TBC methods respectively.

Moreover, we make use of a trick for the HDC+ heuristic. If |D| < 100 (that is, if the
complexity of the SUB method is acceptable), using TBC becomes trivial and thus we only
use the SUB method under such circumstance.

102

Efficient Local Search for Minimum Connected Dominating Set

6.1 The Differences Between FastCDS and NuCDS

An early version of FastCDS called NuCDS has been published in the conference version
(Li et al., 2020a). There are three main differences between FastCDS and NuCDS.

• FastCDS adopts an effective construction algorithm based on the reasoning rule
namely 1hopReason to generate an initial solution, while NuCDS uses the previous
greedy construction algorithm mentioned in (Khuller & Yang, 2019).

• FastCDS improves HDC method proposed in NuCDS, resulting in the HDC+ method.
Specifically, when falling into the local minima for certain steps, HDC+ will recon-
struct the spanning tree to diversify the search space.

• FastCDS and NuCDS use different selection rules. They combine the age property
with safety in different manners. Also, FastCDS assigns different selection priorities
to different candidate vertices in Vin, Vout and Vcand.

7. Experimental Evaluation

In this section, we carry out extensive experiments to evaluate the effectiveness of FastCDS.
We first introduce the benchmarks, the experiment setup and reporting methodology, so
that the readers can understand the experimental parts more easily.

7.1 Benchmarks and Experiment Methodologies

For our experiments, we adopt several popular benchmarks, mainly divided into two groups,
including classic benchmarks and massive graphs. We divide classic benchmarks into five
groups: the instances of the maximum leaf spanning tree problem (Lucena et al., 2010), bus
power flow test cases3 , random geometric graphs (Jovanovic & Tuba, 2013), and random
graphs from (Erdem et al., 2009) and from (Bouamama et al., 2019). In total, 121 classic
instances are considered to evaluate the performance of FastCDS.

We also evaluated the algorithms on massive graphs, including massive real-world graphs
from the Network Data Repository (NDR) (Rossi & Ahmed, 2015) and Stanford Large
Network Dataset Collection (SNAP)4, as well as large instances from the 10th DIMACS
implementation challenge (DIMACS10)5. As in previous work (Lin et al., 2017), we only
report the results on graphs from the SNAP and DIMACS10 benchmarks with at least
30,000 vertices (with the exception of a few cases with fewer vertices). Directed edges are
considered as undirected edges if the instance is directed, and the maximal connected com-
ponent is chosen if the instance is disconnected, so all instances are undirected connected.
We do not report the results on graphs from the NDR benchmark with fewer than 100,000
vertices or fewer than 1,000,000 edges. Hence, we picked 22, 31 and 65 instances from SNAP,
DIMACS10, and NDR benchmarks respectively, leading to totally 118 massive graphs.

3. http://labs.ece.uw.edu/pstca
4. http://snap.stanford.edu/data
5. https://www.cc.gatech.edu/dimacs10/

103

Zhang, Li, Cai, & Wang

Parameter Domain Chosen value

MinNoImpr for SUB {100,1000} 100
MinNoImpr for TBC {10000,100000,1000000} 100000
MaxNoImpr for SUB {2,5,10}×MinNoImpr for SUB 2 ×MinNoImpr for SUB
MaxNoImpr for TBC {2,5,10}×MinNoImpr for TBC 10 ×MinNoImpr for TBC
NoImpr for SUB {1,2,5}×MinNoImpr for SUB 1 ×MinNoImpr for SUB
NoImpr for TBC {1,2,5}×MinNoImpr for TBC 2 ×MinNoImpr for TBC
reconsGap {500,1000} 500

Table 1: Parameter tuning for the preliminary experiments.

We compare FastCDS with five state-of-the-art heuristic algorithms: MSLS (Li et al.,
2019), ACO-RVNS (Bouamama et al., 2019), ACO-efficient6, RNS-TS (Wu et al., 2017)
and NuCDS (Li et al., 2020a). The codes of all competitors were kindly provided by the
authors. RNS-TS was implemented in Java while FastCDS and the other competitors were
implemented in C++ and complied by g++ with ‘-O3’. Data structures of all competitors
were modified to handle massive graphs. All experiments were run on a server with Intel
Xeon Platinum 8153 @2.00GHz with 512GB RAM under Centos 7.7.1908.

All algorithms were executed 10 times on each instance independently. The cutoff time
was set to 1000 seconds for the classic benchmarks, and 3600 seconds for massive graphs.

The following information is reported: the best size (min), the average size (avg) of the
solutions found over the 10 runs. The best min and avg found among the algorithms are
shown in bold. If an algorithm fails to find a solution within the time limit, the results
are marked as ’N/A’. We report the number of instances that get the best solution and the
best average solution by #min and #avg. We also list the #feasible information, denoted
as the number of instances that a solver can find a feasible solution.

In preliminary experiments, we tried different parameters, and we found that HDC+ is
not very sensitive to parameter settings. The tried parameter values and chosen values are
presented in Table 1.

7.2 Results on Classic Benchmarks

Most instances of classic benchmarks are so easy that all algorithms obtain the same solution
quality very quickly. We ignore these easy instances, but report the average run time when
all algorithms obtain the same minimal and average values in Figure 3, which shows the
effectiveness of FastCDS. From this figure, FastCDS is more effective than its competitors,
while performing a little worse than NuCDS on a few easy instances which can be solved
less than 0.1 second. The results of the remaining 55 classic instances are shown in Table 2.
FastCDS obtains better solutions than NuCDS, MSLS, ACO-efficient, ACO-RVNS and
RNS-TS on 16, 32, 36, 22 and 29 instances respectively, while FastCDS fails to match the
solutions obtained by some competitors only on 5 instances. Among the instances where
FastCDS generates a solution with the same value as the best competitor, FastCDS obtains
better average size on 35 instances with only 3 exceptions.

6. The authors would like to thank Christian Blum, the author of ACO-RVNS, for providing the improved
version called ACO-efficient, which is specialized for massive graphs and performs better than ACO-
RVNS on most large instances.

104

Efficient Local Search for Minimum Connected Dominating Set

Instance
FastCDS NuCDS MSLS ACOe ACO RNS

min avg min avg min avg min avg min avg min avg

v150 d10 14 14 14 14 14 14.6 14 14.6 14 14.5 14 14
ieee 300 bus 129 129 130 130.9 129 129.2 129 129.2 129 129 129 129
n1000 200 r100 38 38 38 38 39 39.6 39 39.1 38 38.2 38 38.5
n1000 200 r110 34 34 34 34 34 34.1 34 34.1 34 34 34 34
n1000 200 r120 29 29 29 29 29 30.3 30 30.2 29 29 29 29
n1000 200 r130 26 26 26 26 26 26.8 26 26.7 26 26 26 26
n1000 200 r140 23 23 23 23 23 23.1 23 23.4 23 23 23 23
n1000 200 r150 21 21 21 21 21 21.1 21 21.1 21 21 21 21
n1000 200 r160 19 19 19 19 19 19.6 36 36.3 19 19 19 19.1
n1500 250 r130 49 49 49 49 49 50 49 49.7 49 49.1 49 49
n1500 250 r140 43 43 43 43.7 44 44.3 44 44 43 43.9 43 43.9
n1500 250 r150 40 40 40 40 41 41.6 41 41.6 40 40.7 40 40.1
n1500 250 r160 36 36 36 36 37 37.7 36 36.3 36 36 36 36
n2000 300 r200 41 41 41 41.5 43 43.1 42 42.5 42 42.1 41 41.6
n2000 300 r210 38 38 38 38 38 38.6 38 38.5 38 38 38 38
n2000 300 r220 35 35 35 35 36 36.3 35 36 35 35.1 35 35
n2000 300 r230 33 33 33 33 34 34.8 34 34.5 33 33 33 33.2
n2500 350 r200 59 59.4 60 60 61 61.3 61 62.3 60 60.7 60 60.3
n2500 350 r210 54 54 54 54.9 56 57 57 58.2 55 56.1 55 56
n2500 350 r220 51 51 51 51.1 52 54.3 54 54.7 51 52.7 51 51.4
n2500 350 r230 48 48 49 49.1 50 50.6 50 51.7 48 49.5 49 49
n3000 400 r210 74 74 74 74 74 76.3 76 76.6 74 75.5 75 75.1
n3000 400 r220 69 69.2 70 70 71 71.9 71 71.6 70 70.8 70 70.3
n3000 400 r230 64 64 64 64.8 66 67 65 67.1 65 65.9 65 65.1
n3000 400 r240 60 60 60 60.9 61 62.5 62 62.8 61 61.7 61 61.2
n600 100 r110 14 14 14 14 14 14.5 14 14.6 14 14 14 14
n700 200 r100 22 22 22 22 22 22.5 22 22.9 22 22 22 22
n700 200 r110 20 20 20 20 20 20 20 20.5 20 20 20 20
n700 200 r120 17 17 17 17 17 17 17 17.8 17 17 17 17
n700 200 r70 38 38 38 38.1 39 39.6 39 39 38 38.1 38 38.5
n700 200 r80 32 32 32 32 33 33 33 33 32 32 32 32
n1000 ep0007 179 179.4 179 179 191 194 187 189 185 186.6 189 190.7
n1000 ep0014 98 98.9 98 98 105 105.5 104 105.3 101 103.1 103 105.3
n1000 ep0028 59 59.6 59 59.9 62 62.5 62 62.8 61 62.8 63 63.6
n1000 ep0056 36 36.3 37 37 37 37 37 37.8 37 37.8 38 38.2
n1000 ep0112 21 21.6 22 22 22 22 22 22 22 22 22 22.1
n1000 ep0224 12 12 12 12.5 12 12 12 12.7 12 12 12 12.2
n1000 r0048 276 276.7 275 277.3 276 276.5 275 275.2 275 275.8 280 283.7
n1000 r0070 127 127.3 125 126.7 125 125 128 129.3 127 128.4 132 134.4
n1000 r0100 60 60.8 61 61.8 62 62.4 64 65.4 64 65.4 65 66.1
n1000 r0140 31 31.2 32 32.3 33 33 33 33.3 32 32.9 34 34.6
n1000 r0207 15 15 15 15.1 16 16 16 16.2 15 15.7 16 16.6
n1000 r0308 7 7 7 7 7 7 7 7 7 7 7 7.7
n5000 ep0007 275 276.3 264 265.6 277 277.4 277 278.2 277 278.2 392 424.8
n5000 ep0014 161 162.3 163 164.2 161 162.1 164 164.2 165 166.2 206 220
n5000 ep0028 95 95 94 94 95 95.1 96 96 95 95.8 121 25.8
n5000 ep0056 54 54.9 56 56 55 55 55 55.6 56 56.1 76 100
n5000 ep0112 31 31 32 32 31 31.4 31 31.9 31 31.7 2707 2934
n5000 ep0224 17 17 18 18 17 17 17 17 17 17.1 3888 4045
n5000 r0048 270 270.3 268 270 275 275.8 280 284.6 280 284.6 319 336.1
n5000 r0070 126 126 127 128.4 133 133.4 132 136.4 132 136.2 147 150.3
n5000 r0100 62 62 63 64.4 68 68.42 70 71.5 72 72.5 74 78.2
n5000 r0140 32 32.4 33 33.2 36 36.71 37 37.4 36 36.9 39 41
n5000 r0207 15 15.4 16 16 17 17 18 18.9 16 16.8 2099 2797.3
n5000 r0308 7 7 7 7.6 8 8.28 9 9.5 8 8 3652 3876

Table 2: Results of FastCDS, NuCDS, MSLS, ACO-efficient, ACO-RVNS and RNS-TS on
classic benchmarks. To save space, we denote ACO-efficient, ACO-RVNS and RNS-TS as
ACOe, ACO and RNS.

7.3 Results on Massive Benchmarks

Table 3 compares FastCDS with its competitors on massive graphs, and shows the sum-
marized results. The detailed results can be found in Tables 4 and 5. And we report the

105

Zhang, Li, Cai, & Wang

0 . 0 0 1 0 . 0 1 0 . 1 1 1 0 1 0 0
0 . 0 0 1

0 . 0 1

0 . 1

1

1 0

1 0 0

 N u C D S v s . F a s t C D S
 R N S - T S v s . F a s t C D S
 A C O - R V N S v s . F a s t C D S
 A C O - e f f i c i e n t v s . F a s t C D S
 M S L S v s . F a s t C D STh

e r
un

 tim
e o

f fi
ve

 co
mp

eti
tor

s (
s)

T h e r u n t i m e o f F a s t C D S (s)

1 X
1 0 X

1 0 0 X

Figure 3: Average running time of FastCDS and competitors. The chosen instances are
very easy that all algorithms obtain the same solution quality very quickly.

Benchmark FastCDS NuCDS MSLS ACOe ACO RNS

DIMACS10(22)
#feasible 22 22 16 15 11 12
#min 19 4 4 3 1 0
#avg 20 4 2 1 0 0

SNAP(31)
#feasible 31 31 14 15 5 4
#min 28 5 1 1 1 0
#avg 29 3 1 1 0 0

NDR(65)
#feasible 65 61 15 18 2 10
#min 59 10 2 2 1 0
#avg 60 7 0 0 0 0

Table 3: Summarized results of FastCDS, NuCDS, MSLS, ACO-efficient, ACO-RVNS and
RNS-TS on DIMACS10, SNAP and NDR benchmarks.

time (in seconds) when finding the min cost in column time. FastCDS significantly out-
performs all competitors. FastCDS obtains the best solution on 106 instances, and it is the
only algorithm that can solve all these 118 instances within the time limit. In addition,
we need to point out an error in our previous work (Li et al., 2020a) that we mistakenly
took 4 instances which cannot be initialized within the time limit as solvable instances.
Among all those solvable instances, the best solution values obtained by FastCDS are on
average 2.26%, 2.64%, 3.0%, 2.79% and 79.08% smaller than those found by NuCDS, MSLS,
ACO-efficient, ACO-RVNS, and RNS-TS, respectively. The excellent results of FastCDS
on massive graph are mainly attributed to the effectiveness of our proposed strategies.

106

Efficient Local Search for Minimum Connected Dominating Set

Instance
FastCDS NuCDS MSLS ACOe ACO RNS

min avg time min avg time min avg min min min

Amazon0302 47458 47580.1 1.62 45815 45992.6 3190.61 48225 48625.6 47969 N/A N/A
Amazon0312 51096 51153.9 1731.2 52077 52257.8 3522.06 N/A N/A N/A N/A N/A
Amazon0505 53029 53069.3 1632.52 54041 54125.7 3582.33 N/A N/A N/A N/A N/A
Amazon0601 46978 47012.6 1900.63 47963 48195.4 3275.92 N/A N/A N/A N/A N/A
Cit-HepPh 3223 3225.1 3350.13 3263 3270 3508.45 3395 3407.2 3363 3417 31018
Cit-HepTh 3177 3178.8 1177.47 3197 3204.7 2998.91 3289 3303.3 3264 3320 24036
cit-Patents 686740 686969.8 86.58 734910 735877.2 2683.82 N/A N/A N/A N/A N/A
Email-EuAll 2368 2368 1.07 2371 2371 5.45 2368 2368.6 2368 2373 224163
p2p-Gnutella04 2267 2267 0.99 2268 2270 2297.17 2294 2295.6 2270 2279 6526
p2p-Gnutella24 5468 5468 1.25 5471 5471 10.68 5475 5477.1 5469 5470 23819
p2p-Gnutella25 4556 4556 0.76 4558 4558 4.18 4561 4562.7 4556 4557 19467
p2p-Gnutella30 7226 7226 5.82 7229 7229 55.23 7238 7240.5 7229 7231 34578
p2p-Gnutella31 12672 12672.1 134.54 12674 12674.4 267.24 12677 12678.7 12677 12683 61061
Slashdot0811 14989 14989 1.54 14990 14990 37.81 14993 14994.5 14994 N/A 76148
Slashdot0902 16159 16159 35.61 16160 16160 138.27 16170 16173.81 16169 N/A 81006
soc-Epinions1 16667 16667 290.36 16667 16667 77.64 16668 16668.8 16671 N/A 74677
web-BerkStan 30887 30898 2266.24 30967 30984.4 3542.31 31308 31332.3 N/A N/A N/A
web-Google 86882 86905.4 3079.25 86963 86992.3 3582.44 N/A N/A N/A N/A N/A
web-NotreDame 25565 25586.2 2.21 25664 25665.8 824.37 25406 25462 25686 25641 N/A
web-Stanford 11553 11557.2 1888.73 11581 11586.6 2351.61 11541 11600.3 11706 11742 N/A
WikiTalk 35038 35038 8.86 35038 35038 132.11 N/A N/A N/A N/A N/A
Wiki-Vote 1101 1101 0.09 1101 1101 0.48 1101 1101 1101 1101 3093

333SP 1186502 1186858.1 36.97 1233397 1233545.2 125.82 N/A N/A N/A N/A N/A
as-22july06 2059 2059 0.05 2059 2059 1.67 2059 2059 2059 2059 19917
audikw1 10319 10432.7 2112.62 11092 11146.7 3411.03 N/A N/A 11864 N/A N/A
belgium 1207728 1207843.7 26.78 1201674 1201683.8 20.68 N/A N/A N/A N/A N/A
cage15 581885 582174.7 206.46 680979 684575.2 800.59 N/A N/A N/A N/A N/A
caidaRo*erLevel 47922 47935.1 2363.89 47994 48002.8 3394.37 48361 48707.8 48422 N/A N/A
citatio*iteseer 49494 49502.5 3148.56 49659 49696.8 3286.72 50488 51109 50434 N/A N/A
cnr-2000 24748 24751.6 3303.93 24780 24788.9 2374.51 25177 25190.5 24880 N/A N/A
coAutho*iteseer 38104 38108 2088.81 38123 38128.9 2630.0 38203 38453.8 38265 N/A N/A
coAuthorsDBLP 48774 48779.3 3101.11 48809 48820.5 2482.52 49103 49141.5 48963 N/A N/A
cond-mat-2005 5119 5119 21.46 5125 5127 345.32 5165 5169.3 5168 5175 33782
coPaper*iteseer 34465 34494.6 3443.34 34781 34813.7 3575.36 N/A N/A N/A N/A N/A
coPapersDBLP 45745 45773.6 3328.96 46392 46483.9 3546.35 N/A N/A N/A N/A N/A
ecology1 358317 360050.6 8.02 400020 403547.3 3599.42 N/A N/A N/A N/A N/A
eu-2005 34206 34217.7 3424.09 35146 35157.8 3320.62 N/A N/A N/A N/A N/A
G n pin pout 13481 13530.8 713.19 14280 14339.6 3361.24 15124 15154.4 15040 15351 N/A
in-2004 86863 86872.2 2944.51 86847 86876.4 2247.82 N/A N/A N/A N/A N/A
kron g5*-logn16 3886 3886 2.99 3886 3886.1 84.85 3888 3889.2 3887 N/A 53980
ldoor 33436 33494.5 40.08 34086 34177.7 3571.83 N/A N/A N/A N/A N/A
luxembourg 101673 101695 3558.5 101552 101562.6 3577.45 102284 102305.8 101968 N/A 113387
prefere*achment 8356 8359.1 3479.18 8544 8563.9 3240.6 9100 9116.3 9022 9155 N/A
rgg n 2 17 s0 22518 22604.3 346.27 23146 23193.6 3570.98 23631 23662.3 23621 N/A N/A
rgg n 2 19 s0 83791 83863 5.45 84063 84288.9 3585.14 N/A N/A N/A N/A N/A
rgg n 2 20 s0 158867 158937.8 11.69 162289 163454.6 3541.92 N/A N/A N/A N/A N/A
rgg n 2 21 s0 302163 302389.6 24.72 316284 318593.7 3599.47 N/A N/A N/A N/A N/A
rgg n 2 22 s0 576770 577023.8 48.17 620372 623562.6 3580.18 N/A N/A N/A N/A N/A
rgg n 2 23 s0 1103096 1103648.3 110.17 1199201 1199450 140.13 N/A N/A N/A N/A N/A
rgg n 2 24 s0 2115143 2115679.2 238.57 2325926 2326036.3 430.99 N/A N/A N/A N/A N/A
smallworld 13785 13839.9 197.25 14355 14481 649.51 15354 15374.6 15609 15646 N/A
uk-2002 1160524 1160612.8 1708.24 1184688 1184715.3 288.93 N/A N/A N/A N/A N/A
wave 15744 15861.3 226.38 16285 16365.8 3582.3 17504 17547.8 17792 N/A N/A

Table 4: Results of FastCDS, NuCDS, MSLS, ACO-efficient, ACO-RVNS and RNS-TS on
DIMACS10 and SNAP benchmarks.

Two reasons accounting for why competitors cannot output feasible solutions on some
instances are as follows: 1) The construction processes of MSLS, ACO and ACO-efficient
have a complexity of O(|V |2). They are essential parts of multi-restart and ACO framework,
so we reserve them; 2) The complexity of each step is O(|V |2) in RNS, often trapping in
the first iteration. Because |V | of some instances reaches to 107, competitors fail to output
a feasible solution.

107

Zhang, Li, Cai, & Wang

Instance
FastCDS NuCDS MSLS ACOe ACO RNS

min avg time min avg time min min min min

bn-huma*on 1-bg 4212 4218.3 3337.39 4417 4511.6 3598.07 4683 4692 N/A N/A
bn-huma*on 2-bg 3345 3353.4 3595.88 3454 3487.5 3462.56 3836 3704 N/A N/A
ca-coau*rs-dblp 45745 45773.6 3099.34 46392 46493.6 3396.21 N/A N/A N/A N/A
ca-dblp-2012 50997 51003.4 1399.86 51015 51029.6 2479.22 51072 51193 N/A 316258
ca-holl*od-2009 51503 51599.9 3598.88 53062 53259.8 3589.33 N/A N/A N/A N/A
channel*00-b050 580856 581204.2 76.14 653869 654154 879.59 N/A N/A N/A N/A
dbpedia-link 1533532 1533536.7 3520.33 N/A N/A N/A N/A N/A N/A N/A
delaunay n22 1125248 1125473 166.83 1188266 1188358.1 102.31 N/A N/A N/A N/A
delaunay n23 2250110 2250432.9 689.43 2368743 2376193.4 2900.29 N/A N/A N/A N/A
delaunay n24 4507091 4507747.8 188.48 4866995 4867078.2 158.46 N/A N/A N/A N/A
friendster 649542 649555.4 1056.58 659802 659919.8 1170.39 N/A N/A N/A N/A
hugebub*s-00020 11431627 11475735.4 3059.0 12438068 12554344.1 3234.79 N/A N/A N/A N/A
hugetrace-00010 6510298 6510786.9 284.69 7014767 7119364.1 2857.97 N/A N/A N/A N/A
hugetrace-00020 8631122 8633275.2 1717.65 9493668 9514712.4 356.83 N/A N/A N/A N/A
inf-europe osm 43987750 43992418.2 3599.73 43785238 43785337 3543.52 N/A N/A N/A N/A
inf-germany osm 9547995 9549133.5 3590.4 9497412 9497590.6 2771.98 N/A N/A N/A N/A
inf-roadNet-CA 969870 970396.2 35.4 1015787 1015838.3 13.67 N/A N/A N/A N/A
inf-roadNet-PA 535031 535677.6 17.75 539827 546456.7 3599.86 N/A N/A N/A N/A
inf-road-usa 14250176 14256927.6 3594.54 14395692 14395784.3 223.37 N/A N/A N/A N/A
rec-dating 11739 11740.5 3312.85 11745 11747.1 3306.1 11748 11754 N/A N/A
rec-epinions 9067 9067.3 2013.69 9080 9084 2762.39 N/A 9100 N/A N/A
rec-lib*eti-dir 12956 12958.9 3354.25 12977 13001.4 3497.2 N/A 13031 N/A N/A
rgg n 2 23 s0 1103096 1103648.3 110.17 1199201 1199450 140.13 N/A N/A N/A N/A
rgg n 2 24 s0 2115143 2115679.2 238.57 2325926 2326036.3 430.99 N/A N/A N/A N/A
rt-retw*t-crawl 82910 82916.1 3446.08 83117 83120 3338.63 N/A N/A N/A N/A
sc-ldoor 33384 33447.5 40.73 34151 34205.4 3531.43 N/A N/A N/A N/A
sc-msdoor 14673 14728.1 462.77 15071 15101.8 3432.13 15279 15391 N/A N/A
sc-pwtk 8471 8512.7 111.41 8757 8802.1 3451.43 8819 8931 N/A N/A
sc-rel9 120681 121304.9 3546.2 124320 125264.9 3599.17 N/A N/A N/A N/A
sc-shipsec1 10631 10729 607.79 10937 10998.8 2380.66 11791 11954 N/A 13766
sc-shipsec5 13283 13694.4 3042.98 13811 13921.5 2143.77 14839 15082 N/A 176869
soc-buzznet 128 128 9.9 128 128 38.79 128 128 N/A 99847
soc-delicious 57662 57666.9 1106.46 57685 57688.3 3037.08 N/A N/A N/A 535742
soc-digg 70626 70637.9 3596.03 70654 70664.9 3596.29 N/A N/A N/A N/A
soc-dogster 27216 27218.4 3340.64 27284 27291.1 2614.78 27359 27391 N/A N/A
socfb-A-anon 204650 204656.5 2767.83 206186 206809.1 3499.2 N/A N/A N/A N/A
socfb-B-anon 190246 190252.2 124.78 192419 193223.6 2588.29 N/A N/A N/A N/A
socfb-uci-uni 1237712 1237862.4 3453.03 1542814 16666186.3 3033.06 N/A N/A N/A N/A
soc-flickr 105687 105694.6 23.83 105659 105664.5 3210.59 N/A N/A N/A 513557
soc-flickr-und 296567 296575.6 169.68 297000 297280 3577.6 N/A N/A N/A N/A
soc-flixster 91544 91544.2 1807.06 91545 91545.6 47.51 N/A N/A N/A N/A
soc-FourSquare 60980 60981.7 3502.39 60979 60982 2853.2 N/A N/A N/A 638426
soc-lastfm 67424 67424 5.88 67429 67429 558.08 N/A N/A N/A N/A
soc-livejournal 842865 842897.3 1295.58 854550 854557.4 152.82 N/A N/A N/A N/A
soc-liv*-groups 1101690 1101710.4 3595.97 N/A N/A N/A N/A N/A N/A N/A
soc-LiveMocha 1424 1424 85.51 1425 1426.9 2979.29 1430 1454 1476 103049
soc-ljo*al-2008 1061607 1061692.4 1962.46 1071978 1071990.7 347.33 N/A N/A N/A N/A
soc-orkut-dir 94975 95380.6 3576.63 100708 101023.3 3570.36 N/A N/A N/A N/A
soc-orkut 113264 114206.2 3597.64 120762 120854.1 3583.99 N/A N/A N/A N/A
soc-pokec 214958 215137.4 3594.25 221800 222244.3 3592.73 N/A N/A N/A N/A
soc-sinaweibo 201399 201399 510.02 N/A N/A N/A N/A N/A N/A N/A
soc-twi*r-higgs 14961 14965.9 2689.14 15164 15183.6 3378.36 15335 15375 N/A N/A
soc-youtube 101716 101723.4 3235.94 101657 101663.7 3584.01 N/A N/A N/A 495497
soc-you*be-snap 235634 235641.4 85.2 235575 235598.8 2952.14 N/A N/A N/A N/A
tech-as-skitter 197800 197843.5 3463.31 199864 200270.5 3598.07 N/A N/A N/A N/A
tech-ip 153 153.6 2615.95 153 153.9 2790.7 N/A 170 N/A N/A
twitter mpi 567536 567543 1313.45 N/A N/A N/A N/A N/A N/A N/A
web-arabic-2005 20646 20648.6 410.96 20663 20670.9 676.52 20737 20730 N/A 162433
web-baidu-baike 273145 273159.2 428.08 273824 274001.6 3590.9 N/A N/A N/A N/A
web-it-2004 34548 34548.1 7.15 34549 34549.3 132.54 34551 34557 N/A N/A
web-uk-2005 1728 1728 10.62 1728 1728 1.62 1728 1728 1728 N/A
web-wik*dia2009 394301 394339.1 288.63 396303 397633.5 3598.67 N/A N/A N/A N/A
web-wik*-growth 117956 118043.8 3591.71 118964 118976.4 1243.04 N/A N/A N/A N/A
web-wik*ia link 190180 190191.4 1050.96 190982 191063.83 2848.3 N/A N/A N/A N/A
wikiped*link en 212242 212243.1 150.98 212242 212257.7 2807.97 N/A N/A N/A N/A

Table 5: Results of FastCDS, NuCDS, MSLS, ACO-efficient, ACO-RVNS and RNS-TS on
NDR benchmarks.

108

Efficient Local Search for Minimum Connected Dominating Set

7.4 Effectiveness of Proposed Strategies

As shown in Table 6, six modified versions of FastCDS are proposed to verify the effec-
tiveness of each strategy of our algorithm on massive graphs. We compare FastCDS with
FastCDS1 to show the effectiveness of chrono-safety, with FastCDS2 and FastCDS3 to
show the effectiveness of HDC+. Moreover, we compare FastCDS with FastCDS4 to show
the effectiveness of the novel age and safety combination method, and with FastCDS5 to
show the effectiveness of reconstruction method in HDC+, and with FastCDS6, where all
vertices are in Vcand, to show the effectiveness brought by the partition of vertices (i.e.,
Vin, Vout and Vcand). Meanwhile, when compare with FastCDS2, which only uses SUB,
FastCDS improves the average best solution by 9753.77 on massive graphs. The results of
comparisons are shown in Table 7.

In addition, in our previous work, The HDC method of NuCDS improves the average
best solution by 17.285% on massive graphs when comparing with its modified version which
only uses SUB, while for FastCDS the number is 0.928% when compared with FastCDS2,
mainly because the initial solution of FastCDS is much better than that of NuCDS, which
confirms the effectiveness of 1hopReason.

FastCDS1 FastCDS2 FastCDS3 FastCDS4 FastCDS5 FastCDS6

HDC+ + - - + - +
HDC - - - - + -
only-SUB - + - - - -
only-TBC - - + - - -
safety - - - + - -
chrono-safety - + + - + +
Partition + + + + + -

Table 6: Six modified versions of FastCDS, where ”+” indicates that the version uses the
corresponding strategy while ”-” means not.

Benchmark vs.FastCDS1 vs.FastCDS2 vs.FastCDS3 vs.FastCDS4 vs.FastCDS5 vs.FastCDS6

DIMACS10(22)
#Better 8 11 6 11 19 7
#Worse 2 2 1 3 0 5

SNAP(31)
#Better 22 26 7 14 27 18
#Worse 6 2 7 14 2 7

NDR(65)
#Better 32 58 24 43 52 42
#Worse 21 0 10 13 4 9

Table 7: Comparing FastCDS with 6 modified versions on massive graphs. #Better and
#Worse represent respectively the number of instances where FastCDS achieves better and
worse results.

7.5 Further Comparison of Different Construction Algorithms

In this subsection, we carry out experiments to compare our construction algorithm, 1ho-
pReason, with 3 construction algorithms, namely 1 hop∗, 2 hop∗ and 1hopNoReason. Specif-
ically, 1hop∗ and 2hop∗ denote the improved 1-hop and 2-hop local greedy algorithms
(Khuller & Yang, 2019) respectively, which are the state-of-the-art local information greedy

109

Zhang, Li, Cai, & Wang

Instance |V | |E| 1hopReason 1hopNoReason 1hop* 2hop*

|Vin| |Vout| min avg time min avg time min min

Amazon0302 262111 899792 7371 18283 48321 48378.4 1.44 48818 48843.5 0.98 61616 67775
Amazon0312 400727 2349869 17981 37365 54686 54722.1 2.88 56034 56081.1 2.67 72796 77667
Amazon0505 410236 2439437 19307 40088 56568 56624.8 2.95 57966 58022.5 2.82 75152 77311
Amazon0601 403364 2443311 12541 32057 50682 50712 3.45 51773 51788.2 2.69 67116 72354
Cit-HepPh 34401 420784 1169 1995 3433 3444.6 0.41 3498 3509.6 0.4 4510 3949
Cit-HepTh 27400 352021 1316 2039 3349 3358.1 0.34 3426 3431.3 0.34 4225 3952
cit-Patents 3764117 16511740 407793 709062 700525 700605 31.13 723239 723345.2 24.42 917079 924107
Email-EuAll 224832 339925 2223 202193 2371 2371.8 0.39 2373 2374.4 0.36 3175 4641
p2p-Gnutella04 10876 39994 1757 2484 2295 2297.4 0.04 2416 2429 0.04 3321 2653
p2p-Gnutella24 26498 65359 5147 10994 5473 5475.1 0.07 5585 5592.9 0.07 8005 6149
p2p-Gnutella25 22663 54693 4273 9324 4561 4563.3 0.06 4660 4673.8 0.06 6670 5063
p2p-Gnutella30 36646 88303 6888 16499 7231 7231.9 0.1 7374 7380.4 0.09 10513 8429
p2p-Gnutella31 62561 147878 12252 28806 12676 12677.8 0.16 12853 12880.9 0.16 18210 14359
Slashdot0811 77360 469180 13832 30164 14998 14999.3 0.48 15029 15032 0.47 20129 15254
Slashdot0902 82168 504230 14363 30855 16175 16178 0.54 16220 16223.1 0.49 21230 16530
soc-Epinions1 75877 405739 15936 41046 16677 16677.2 0.4 16703 16705.7 0.39 22109 16883
web-BerkStan 654782 6581871 12977 145874 31373 31396.7 19.4 31501 31519.7 6.34 37170 37065
web-Google 855802 4291352 59794 333051 88026 88049.6 5.7 89048 89078.1 4.43 112411 107650
web-NotreDame 325729 1090108 21780 183085 25630 25654 1.33 25744 25762.7 1.1 33005 29004
web-Stanford 255265 1941926 5458 50670 11777 11792 2.94 11818 11831.7 1.86 14063 13813
WikiTalk 2388953 4656682 34281 1842442 35042 35042 7.16 35042 35042 5.0 47596 40781
Wiki-Vote 7066 100736 1030 2471 1101 1101.3 0.09 1104 1104.4 0.09 1519 1106

333SP 3712815 11108633 0 8 1202378 1202555.8 13.96 1202112 1202539.5 12.52 1367950 1390253
as-22july06 22963 48436 1870 11927 2059 2060.2 0.06 2062 2063.1 0.05 2859 2346
audikw1 943695 38354076 0 2658 12147 12186 37.9 12159 12189.6 35.58 15988 19373
belgium 1441295 1549970 211952 52575 1216936 1217055.1 3.09 1217159 1217234.9 2.1 1260193 1206836
cage15 5154859 47022346 0 128 586757 586947.2 59.72 586749 586959.7 52.16 695138 1154163
caidaRo*erLevel 190914 607610 30228 52004 48669 48682.7 0.73 48977 48997.6 0.68 61017 53648
citatio*iteseer 268495 1156647 31071 49457 50491 50502.9 1.36 51237 51279.6 1.35 65702 61691
cnr-2000 325557 2738969 19545 126537 25003 25019.8 4.64 25174 25184.1 2.56 31275 36180
coAutho*iteseer 227320 814134 29867 145237 38298 38306 0.91 38743 38752.7 0.93 50459 40728
coAuthorsDBLP 299067 977676 38269 184302 48983 48989.9 1.46 49426 49436.7 1.12 66052 51728
cond-mat-2005 36458 171734 3049 19107 5200 5203.3 0.17 5262 5267.1 0.17 7033 5543
coPaper*iteseer 434102 16036720 10951 180347 36014 36027 15.54 36326 36341.1 15.44 45830 39529
coPapersDBLP 540486 15245729 16301 231168 48218 48229.1 14.9 48770 48785.3 14.22 61921 53475
ecology1 1000000 1998000 0 0 359585 361515.6 2.43 359585 361515.6 2.24 454883 424932
eu-2005 862664 16138468 24873 126473 34782 34797.7 23.7 34911 34932.6 15.21 43921 52841
G n pin pout 99995 501198 53 54 15414 15437.6 0.68 15404 15430.8 0.51 19280 24187
in-2004 1353703 13126172 66448 521664 87562 87576.6 19.21 88044 88054.9 12.56 109688 112797
kron g5*-logn16 55319 2456070 3251 8604 3888 3889.2 2.45 3897 3899.4 2.3 5223 3896
ldoor 952203 22785136 0 0 34665 34713.8 22.32 34665 34713.8 21.15 41290 47529
luxembourg 114599 119666 22426 3948 102257 102287.6 0.15 102248 102302.7 0.14 105146 101870
prefere*achment 100000 499985 0 0 9171 9196.3 0.54 9171 9196.3 0.51 12441 10122
rgg n 2 17 s0 131067 728750 25 704 23657 23709.3 0.77 23688 23716.6 0.72 28144 28649
rgg n 2 19 s0 524280 3269760 47 1274 84655 84700.7 3.73 84639 84672.9 3.48 100599 105553
rgg n 2 20 s0 1048572 6891617 54 1723 160652 160803.3 7.34 160688 160801.9 6.99 190501 201899
rgg n 2 21 s0 2097142 14487992 54 2267 306238 306395.4 16.22 306182 306444.4 15.83 363352 389032
rgg n 2 22 s0 4194299 30359197 65 2908 585191 585364.1 32.47 585139 585434.4 34.46 694961 751498
rgg n 2 23 s0 8388601 63501390 53 246 1120430 1120729.8 70.24 1120661 1120823.1 68.06 1329443 1449467
rgg n 2 24 s0 16777215 132557200 68 232 2150059 2150502.1 144.87 2150017 2150374.3 142.7 2550995 2806078
smallworld 100000 499998 0 0 15771 15821.1 0.57 15771 15821.1 0.51 19543 26632
uk-2002 18459128 261556721 773160 3049470 1175517 1175713.3 263.63 1185305 1185487.3 253.68 1469643 1568781
wave 156317 1059331 0 13 18060 18149 1.25 18118 18171.3 1.07 23233 29430

Table 8: Results of 1hopReason, 1hopNoReason, 1hop*, 2hop* on DIMACS10 and SNAP
benchmarks.

algorithms with the best approximation ratio as far as we know. 1hopNoReason is the
modified version of 1hopReason which does not use reasoning rule for construction, mean-
ing that Vin and Vout are empty sets. All construction algorithms are executed 10 times
on each instance. For the sake of fairness, heap is adopted by all competitor algorithms to
speed up the construction.

In Tables 8 and 9, |V | and |E| are reported to indicate the size of instances, and the
size of V G

in and V G
out are also listed. The best solutions found by each construction method,

110

Efficient Local Search for Minimum Connected Dominating Set

Instance |V | |E| 1hopReason 1hopNoReason 1hop* 2hop*

|Vin| |Vout| min avg time min avg time min min

bn-huma*on 1-bg 197084 42103873 613 8616 4797 4814.4 40.26 4847 4856.6 38.66 5976 8144
bn-huma*on 2-bg 160336 22783120 568 9987 3791 3803 21.5 3850 3860.3 20.92 4781 8155
ca-coau*rs-dblp 540486 15245729 16301 231168 48218 48229.1 15.69 48770 48785.3 14.43 61921 53475
ca-dblp-2012 317080 1049866 39811 195028 51209 51215.8 1.46 51689 51705.2 1.22 68844 53974
ca-holl*od-2009 1069126 56306653 20467 642608 53771 53793.9 60.44 55009 55036.9 54.22 71798 56429
channel*00-b050 4802000 42681372 0 0 590396 590597.3 58.29 590396 590597.3 45.96 679238 940553
dbpedia-link 11609793 78613912 1512635 7582394 1533650 1533658.2 105.66 1534805 1534816.2 98.0 1991671 N/A
delaunay n22 4194304 12582869 0 47285 1141669 1141798.4 16.77 1141562 1141734.7 15.47 1361120 1418675
delaunay n23 8388608 25165784 0 94442 2283135 2283952.3 36.56 2283640 2283943.6 29.67 2710218 2837288
delaunay n24 16777216 50331601 0 188843 4567254 4567611.7 66.28 4567261 4567572.8 63.69 5432219 5675019
friendster 8556203 45604593 592852 4031990 650511 650519.2 67.41 654727 654769.9 67.37 862952 989617
hugebub*s-00020 21198119 31790179 0 0 11598117 11599292.1 56.02 11598117 11599292.1 48.16 12636584 14234612
hugetrace-00010 12057441 18082179 0 0 6591721 6592692.4 33.97 6591721 6592692.4 25.86 7185088 8137047
hugetrace-00020 16002413 23998813 0 0 8744667 8744932.1 36.62 8744667 8744932.1 32.5 9531885 10773517
inf-europe osm 50912018 54054660 11007317 2065091 44158122 44159527.7 96.04 44165763 44166335.4 92.25 45556355 43964376
inf-germany osm 11548845 12369181 2375511 660034 9616166 9616649.8 21.03 9618270 9618837.9 17.85 10027719 9541824
inf-roadNet-CA 1957027 2760388 326965 321923 986843 987074 3.83 992660 993239.9 3.54 1168170 1110911
inf-roadNet-PA 1087562 1541514 193743 191185 544514 544612 2.75 548360 548647 1.99 647236 616481
inf-road-usa 23947347 28854312 6229607 4818270 14507920 14508553.8 44.61 14537554 14538737.6 42.88 16423355 14893036
rec-dating 168791 17351416 10378 20464 11748 11749.8 17.57 11778 11781.9 17.38 15410 11779
rec-epinions 755200 13396042 6778 30927 9084 9087.3 34.6 9117 9118.4 14.13 11904 15651
rec-lib*eti-dir 220970 17233144 10564 20974 12992 12994.3 17.7 13151 13160.1 18.27 17238 13155
rgg n 2 23 s0 8388601 63501390 53 246 1120430 1120729.8 70.24 1120661 1120823.1 68.06 1329443 1449467
rgg n 2 24 s0 16777215 132557200 68 232 2150059 2150502.1 144.87 2150017 2150374.3 142.7 2550995 2806078
rt-retw*t-crawl 1112702 2278852 77400 773235 82956 82960.8 4.11 83019 83025.3 2.8 109538 131970
sc-ldoor 909537 20770807 0 0 34598 34661.2 20.54 34598 34661.2 19.41 41374 48090
sc-msdoor 404785 9378650 0 0 15423 15466.9 9.18 15423 15466.9 8.72 18327 20760
sc-pwtk 217883 5653217 18 93 8813 8979.7 5.35 8789 8965.4 5.23 9975 12261
sc-rel9 5921786 23667162 0 2 158048 158529.9 36.27 158048 158530 31.48 220689 405256
sc-shipsec1 139995 1705212 0 62 12155 12192.5 1.73 12159 12201.8 1.62 14576 21730
sc-shipsec5 178573 2197367 0 295 15399 15439.1 2.37 15421 15446.4 2.19 18591 26750
soc-buzznet 101163 2763066 39 8097 132 133.8 3.16 135 136.4 2.57 173 1764
soc-delicious 536108 1365961 53076 309216 57775 57781.1 1.78 57951 57956.3 1.48 76965 68871
soc-digg 770799 5907132 63693 379778 70829 70837.3 6.63 71227 71246.4 6.08 90818 87239
soc-dogster 426485 8543321 13253 37257 27393 27399.5 12.56 27530 27537.6 10.11 34984 29199
socfb-A-anon 3097165 23667394 186402 1783133 204879 204882.1 30.61 206312 206339.2 27.77 275096 249953
socfb-B-anon 2937612 20959854 178642 1777796 190413 190418.7 26.53 191257 191275.7 25.4 254291 241333
socfb-uci-uni 58790782 92208195 915979 39475684 1239451 1239543 136.35 1243296 1243365.2 120.12 1514103 18346561
soc-flickr 513969 3190452 97890 304640 105784 105788 3.59 106182 106193.4 3.21 136308 107996
soc-flickr-und 1624992 15476835 275157 972024 296837 296842.6 16.95 297890 297909 17.37 378457 306204
soc-flixster 2523386 7918801 91286 1615516 91546 91546 10.01 91546 91546 9.17 124228 113666
soc-FourSquare 639014 3214986 58726 342998 61016 61018.5 3.75 61303 61316.7 3.26 79552 61349
soc-lastfm 1191805 4519330 66834 604661 67425 67425.3 5.44 67454 67455.4 5.45 90697 74812
soc-livejournal 4033137 27933062 660655 1213284 846856 846882.8 40.32 862214 862378.1 32.11 1128679 884565
soc-liv*-groups 7489073 112305407 1039658 3620344 1101915 1101918.4 158.97 1102911 1102921.7 133.38 1417605 N/A
soc-LiveMocha 104103 2193083 698 7852 1467 1469.7 2.28 1484 1488 2.06 1986 1489
soc-ljo*al-2008 5363186 49514271 860018 1720984 1065003 1065026.6 64.84 1080167 1080302.6 60.41 1396969 1106565
soc-orkut-dir 3072441 117185083 40467 87972 101751 101811.2 124.95 105883 105952.8 122.7 136434 124974
soc-orkut 2997166 106349209 41581 85067 121367 121427.3 133.63 125751 125867.1 107.87 162252 139548
soc-pokec 1632803 22301964 122070 195110 220918 220937.7 26.98 228058 228129.6 25.23 300407 239208
soc-sinaweibo 58655820 261321018 201218 27497010 201399 201399 350.06 201402 201402 273.82 264134 N/A
soc-twi*r-higgs 456293 12508249 6600 29555 15354 15362.5 17.33 15491 15505.5 13.37 20163 20265
soc-youtube 495957 1936748 89466 199594 101945 101954.9 2.44 102318 102330.7 2.17 130689 108693
soc-you*be-snap 1134890 2987624 223409 650530 235911 235919.8 4.17 236319 236327.8 3.54 299557 248405
tech-as-skitter 1694616 11094209 111350 345469 200977 200995.2 14.75 202533 202571.9 12.11 251664 243606
tech-ip 2250498 21643497 1 46 175 176.2 166.44 173 176.2 21.97 226 177
twitter mpi 9807184 99904238 537894 5126770 567900 567908.9 163.61 568435 568444.5 108.52 730280 N/A
web-arabic-2005 163598 1747269 17652 111666 20785 20795.4 1.88 20850 20858.9 1.64 26850 22773
web-baidu-baike 2107689 16996139 225464 574133 273548 273556.6 33.82 274845 274853.9 21.34 360969 302009
web-it-2004 509338 7178413 34127 447051 34550 34552 6.93 34599 34607.1 6.8 47188 34714
web-uk-2005 129632 11744049 1728 127904 1728 1728 10.63 1728 1728 10.39 2391 1728
web-wik*dia2009 1864433 4507315 314637 799224 396023 396043.1 6.49 398744 398789.2 5.79 511756 442291
web-wik*-growth 1870521 36532421 70473 128331 118937 118952 64.11 119924 119938.6 43.72 154510 122836
web-wik*ia link 2787609 86753367 139648 256867 190989 190997.9 100.65 192855 192877.2 89.16 244728 210971
wikiped*link en 3369169 31022996 209132 1379366 212250 212251.1 34.63 212566 212571.8 32.16 275693 245210

Table 9: Results of 1hopReason, 1hopNoReason, 1hop*, 2hop* on NDR benchmarks.

111

Zhang, Li, Cai, & Wang

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 1 0 2 0 3 0
0 . 0 0 0
0 . 0 0 5
0 . 0 1 0
0 . 0 1 5
0 . 0 2 0
0 . 0 2 5
0 . 0 3 0
0 . 0 3 5
0 . 0 4 0
0 . 0 4 5
0 . 0 5 0

Th
e p

erc
en

tag
e o

f V
in

an
d V

ou
t in

V

M a s s i v e g r a p h s

 V o u t
 V i n

Figure 4: The percentage of the number of Vin and Vout.

min, and the average size (avg) of the solutions found by 1hopReason and 1hopNoReason
over 10 runs are reported. We also report the average time (in second) of 1hopReason
and 1hopNoReason, time, to show the slight time overhead brought by calculating |V G

in |
and |V G

out|. We report the detailed results on DIMACS10, NDR and SNAP here and the
experimental results of all massive graphs are summarized in Table 10.

Moreover, we report the percentage of Vin and Vout in V on 118 instances in Figure 4.

The results are summarized as follows.

• 1hopReason and 1hopNoReason can find better solution than 1hop∗ and 2hop∗ on
almost all instances, indicating the effectiveness of our greedy construction method
for massive graph.

• 1hopReason shows an overwhelming advantage over 1hopNoReason, confirming the
effectiveness of the reasoning rule. The size of Vin and Vout and the comparison of
time between 1hopReason and 1hopNoReason indicate that a considerable number of
fixed vertices can be calculated within a short time for most instances. We observe
that the reasoning method does not necessarily work if it meets some instances where
only few vertices can be fixed.

• The Figure 4 indicates that the fixed vertices account for a large portion of all the
vertices, thus significantly affecting the local search.

112

Efficient Local Search for Minimum Connected Dominating Set

Benchmark
1hopReason 1hopNoReason 1hop* 2hop*

#min #avg time #min #avg time #min #avg #min #avg

DIMACS10(22) 22 22 3.45 1 1 2.44 0 0 0 0
SNAP(31) 22 24 24.73 11 9 23.14 13 14 2 2
NRD(65) 59 58 46.24 13 14 39.01 0 0 3 3

Table 10: Summarized results of 1hopReason, 1hopNoReason, 1hop*, 2hop* on DIMACS10,
SNAP and NDR benchmarks.

Benchmark avg(|V |) avg(|E|) IoU Pick IoU TBC

DIMACS10 473156.09 2099769.55 0.007 0.703
SNAP 2258488.06 22850623.58 0.005 0.489
NDR 6394792.03 32477015.62 0.012 0.433

Table 11: Different IoU on massive benchmarks. avg(|V |) and avg(|E|) denote the average
number of vertices and edges in each benchmark.

7.6 Further Analysis to HDC+ Effectiveness

As stated in Section 4.3, the intuition of HDC+ is to take profit from respective advantages
of TBC and SUB. Experimental results show that HDC+ is quite effective for massive
graphs. We observe that the vertices picked in SUB and TBC significantly differ from each
other, which provides an explanation to the success of HDC+ mechanism. In this subsection,
extensive experiments are conducted to statistically confirm our observation. FastCDS is
executed once and the cutoff time is set to 10000 seconds for the HDC+ analysis.

Given two vertex sets S1 and S2, S1∩S2
S1∪S2

is denoted as intersection-over-union (IoU)
(Rezatofighi et al., 2019), which is adopted in Table 11 to analyse the performance of
HDC+. Since TBC and SUB have same search space of adding vertices, we only consider
the removing vertex set.

For IoU Pick, S1 is the picked vertex set of one SUB process, and S2 is the picked vertex
set of its following TBC process. Since the picked vertex set of TBC is much larger than
that of SUB, for the sake of comparison, the former set only consists of top k1 vertices
selected in TBC with the the greatest pickf

7 value, where k1 is the number of vertices
chosen in SUB. For IoU TBC, S1 and S2 are the removed vertex sets for two consecutive
TBC processes truncated by one SUB process. In Table 11, IoU Pick and IoU TBC are
exhibited in the form of mean value among the benchmark. Observed from the results, we
can obtain that:

• IoU Pick indicates that vertices picked in SUB significantly differ from those in the
following TBC. For further analysis, vertices picked in SUB and TBC are sorted in
descending order according to pickf . The top 20 vertices picked by SUB, which are the
most frequently chosen ones, rank on average 34110.65 among those vertices picked
by TBC. The above result ignores vertices not picked in TBC. For the top 20 vertices
picked in SUB with greatest pickf , there are on average 16.42 of them not chosen by

7. pickf (v) is used to denote the frequency that vertex v is chosen when using one connectivity method.

113

Zhang, Li, Cai, & Wang

the following TBC. The results show that SUB and TBC focus on different vertices,
resulting in diversifying the search space.

• IoU TBC indicates that the vertices chosen in two consecutive TBC processes trun-
cated by SUB differ from each other. Moreover, IoU TBC decreases as the size of
input graph grows. The results show that HDC+ mechanism significantly diversifies
the search space, particularly when solving massive graphs.

We further analysed the steps of SUB and TBC. The experiment is carried out on
DIMACS10, SNAP and NDR with the cutoff time of 3600 seconds. The average execution
steps of SUB and TBC are 19652.45 and 43576123.07, respectively. The average number
of switching between the SUB and TBC is 91.88. The average run-time for SUB and TBC
are 204.39 seconds and 3382.34 seconds, respectively. TBC takes up the main proportion
of time. SUB accounts for 0.045% steps, while it takes 5.700% time, which confirms the
efficiency of TBC heuristic.

7.7 Critical Difference Analysis

2 3 4 5
CD

FastCDS
NuCDS

ACO_RVNS

MSLS
RNS_TS
ACO_efficient

(a) classic benchmarks

1 2 3 4 5 6
CD

FastCDS
NuCDS

ACO_efficient

MSLS
ACO_RVNS
RNS_TS

(b) DIMACS10

1 2 3 4 5 6
CD

FastCDS
NuCDS

ACO_efficient

MSLS
ACO_RVNS
RNS_TS

(c) SNAP

1 2 3 4 5
CD

FastCDS
NuCDS

MSLS

ACO_efficient
RNS_TS
ACO_RVNS

(d) NDR

Figure 5: Critical difference plots about FastCDS, NuCDS, MSLS, ACO-efficient, ACO-
RVNS, RNS-TS on each benchmark.

114

Efficient Local Search for Minimum Connected Dominating Set

In this subsection, we evaluate the statistical differences between the considered algo-
rithms on each benchmark. First, Friedman Test (Friedman, 1937) was conducted with a
null-hypothesis that all the algorithms are equivalent in terms of the performance. After
the null-hypothesis was rejected, all pairwise comparisons were performed using Nemenyi
post-hoc test. Finally, the results are shown in Figure 5 in the form of critical difference
diagram (Garcia & Herrera, 2008). Note that we use a package of R called scmamp (Calvo
& Santafé, 2016), which can be found at https://github.com/b0rxa/scmamp. The top line
in the diagram is the axis on which it plot the average ranks of algorithms, and the lower the
ranks, the better the algorithm. The critical difference is shown above each sub-figure and
the algorithms that are not significantly different with significant level of 0.05 are connected.
From Figure 5, FastCDS outperforms other competitors on each benchmark.

8. Conclusion

We proposed three new algorithmic components for MCDS problem, namely the reason-
ing based construction, the hybrid dynamic connectivity maintenance heuristic and the
two-level vertex selection heuristic. An efficient local search algorithm named FastCDS
was developed based on the three components. Extensive experiments were conducted to
evaluate the performance of FastCDS. Experiments showed that FastCDS could outperform
other state-of-the-art algorithms on almost all the instances, and confirmed the effectiveness
of three components.

For future work, we found that our proposed framework designed for solving MCDS
problem is not suitable for the weighted version through simple adjustments. Thus, we
plan to further study the minimum weight connected dominating set problem, which is a
generalization of MCDS problem. Inspired by the success of HDC+, we plan to apply it to
other combinatorial optimization problem with connectivity constraint on massive graphs.
Additionally, we would like to design a new algorithm for dynamic graphs which support
incremental solving, rather than static graphs for the adaption of network applications in
real time, such as the application of finding backbone in ever-changing wireless networks.

Acknowledgments

Shaowei Cai and Yiyuan Wang are corresponding authors. We would like to thank the
anonymous referees for their helpful comments. This work was supported by Beijing
Academy of Artificial Intelligence (BAAI), Youth Innovation Promotion Association, Chi-
nese Academy of Sciences [No. 2017150], NSFC Grant 61806050, and the Fundamental
Research Funds for the Central Universities 2412020FZ030.

References

Al-Karaki, J. N., & Kamal, A. E. (2008). Efficient virtual-backbone routing in mobile ad
hoc networks. Computer Networks, 52 (2), 327–350.

Binkele-Raible, D., & Fernau, H. (2012). An exact exponential-time algorithm for the
directed maximum leaf spanning tree problem. Journal of Discrete Algorithms, 15,

115

Zhang, Li, Cai, & Wang

43–55.

Bouamama, S., Blum, C., & Fages, J.-G. (2019). An algorithm based on ant colony optimiza-
tion for the minimum connected dominating set problem. Applied Soft Computing,
80, 672–686.

Cai, S. (2015). Balance between complexity and quality: Local search for minimum vertex
cover in massive graphs. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, pp. 747–753. AAAI Press.

Cai, S., Hou, W., Wang, Y., Luo, C., & Lin, Q. (2020). Two-goal local search and inference
rules for minimum dominating set. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1467–1473. ijcai.org.

Cai, S., & Su, K. (2011). Local search with configuration checking for SAT. In IEEE
23rd International Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca
Raton, FL, USA, November 7-9, 2011, pp. 59–66. IEEE Computer Society.

Cai, S., & Su, K. (2013). Local search for boolean satisfiability with configuration checking
and subscore. Artificial Intelligence, 204, 75–98.

Calvo, B., & Santafé, G. (2016). scmamp: Statistical comparison of multiple algorithms in
multiple problems. R J., 8 (1), 248.

Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless
networks, 8 (5), 481–494.

Chen, S., Ljubić, I., & Raghavan, S. (2010). The regenerator location problem. Networks:
An International Journal, 55 (3), 205–220.

Cheng, X., Ding, M., Du, D. H., & Jia, X. (2006). Virtual backbone construction in multihop
ad hoc wireless networks. Wireless Communications and Mobile Computing, 6 (2),
183–190.

Cheng, X., Huang, X., Li, D., Wu, W., & Du, D.-Z. (2003). A polynomial-time approxima-
tion scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks: An International Journal, 42 (4), 202–208.

Chinnasamy, A., Sivakumar, B., Selvakumari, P., & Suresh, A. (2019). Minimum connected
dominating set based rsu allocation for smartcloud vehicles in vanet. Cluster Com-
puting, 22 (5), 12795–12804.

Dagdeviren, Z. A., Aydin, D., & Cinsdikici, M. (2017). Two population-based optimiza-
tion algorithms for minimum weight connected dominating set problem. Applied Soft
Computing, 59, 644–658.

Deb, B., Bhatnagar, S., & Nath, B. (2003). Multi-resolution state retrieval in sensor net-
works. In Proceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications, 2003., pp. 19–29. IEEE.

Erdem, E., Lin, F., & Schaub, T. (Eds.). (2009). Proceedings of 10th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning, Vol. 5753 of Lecture Notes
in Computer Science.

116

Efficient Local Search for Minimum Connected Dominating Set

Fan, N., & Watson, J.-P. (2012). Solving the connected dominating set problem and power
dominating set problem by integer programming. In International conference on com-
binatorial optimization and applications, pp. 371–383.

Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., & Rossmanith, P.
(2011). An exact algorithm for the maximum leaf spanning tree problem. Theoretical
Computer Science, 412 (45), 6290–6302.

Fomin, F. V., Grandoni, F., & Kratsch, D. (2008). Solving connected dominating set faster
than 2 n. Algorithmica, 52 (2), 153–166.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the american statistical association, 32 (200), 675–701.

Garcia, S., & Herrera, F. (2008). An extension on” statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons.. Journal of machine learning
research, 9 (12).

Gendron, B., Lucena, A., da Cunha, A. S., & Simonetti, L. (2014). Benders decomposition,
branch-and-cut, and hybrid algorithms for the minimum connected dominating set
problem. INFORMS Journal on Computing, 26 (4), 645–657.

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization,
pp. 2093–2229. Springer.

Hedar, A.-R., & Ismail, R. (2012). Simulated annealing with stochastic local search for
minimum dominating set problem. International Journal of Machine Learning and
Cybernetics, 3 (2), 97–109.

Hedar, A.-R., Ismail, R., El-Sayed, G. A., & Khayyat, K. M. J. (2019). Two meta-heuristics
designed to solve the minimum connected dominating set problem for wireless net-
works design and management. Journal of Network and Systems Management, 27 (3),
647–687.

Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: efficient algorithms for graph manipula-
tion. Communications of the ACM, 16 (6), 372–378.

Jovanovic, R., & Tuba, M. (2013). Ant colony optimization algorithm with pheromone
correction strategy for the minimum connected dominating set problem.. Comput.
Sci. Inf. Syst., 10 (1), 133–149.

Kann, V. (1992). On the approximability of NP-complete optimization problems. Ph.D.
thesis, Royal Institute of Technology Stockholm.

Khuller, S., & Yang, S. (2019). Revisiting connected dominating sets: An almost optimal
local information algorithm. Algorithmica, 81 (6), 2592–2605.

Li, B., Zhang, X., Cai, S., Lin, J., Wang, Y., & Blum, C. (2020a). Nucds: An efficient
local search algorithm for minimum connected dominating set. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp.
1503–1510.

Li, J., Wen, X., Wu, M., Liu, F., & Li, S. (2020b). Identification of key nodes and vital
edges in aviation network based on minimum connected dominating set. Physica A:
Statistical Mechanics and its Applications, 541, 123340.

117

Zhang, Li, Cai, & Wang

Li, R., Hu, S., Gao, J., Zhou, Y., Wang, Y., & Yin, M. (2017). Grasp for connected
dominating set problems. Neural Computing and Applications, 28 (1), 1059–1067.

Li, R., Hu, S., Liu, H., Li, R., Ouyang, D., & Yin, M. (2019). Multi-start local search
algorithm for the minimum connected dominating set problems. Mathematics, 7 (12),
1173.

Lin, J., Cai, S., Luo, C., & Su, K. (2017). A reduction based method for coloring very large
graphs.. In IJCAI, pp. 517–523.

Lucena, A., Maculan, N., & Simonetti, L. (2010). Reformulations and solution algorithms
for the maximum leaf spanning tree problem. Computational Management Science,
7 (3), 289–311.

Milenković, T., Memǐsević, V., Bonato, A., & Pržulj, N. (2011). Dominating biological
networks. PloS one, 6 (8), e23016.

Misra, R., & Mandal, C. (2009). Minimum connected dominating set using a collabora-
tive cover heuristic for ad hoc sensor networks. IEEE Transactions on parallel and
distributed systems, 21 (3), 292–302.

Morgan, M., & Grout, V. (2007). Metaheuristics for wireless network optimisation. In
AICT, pp. 15–15.

Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., & Sheu, J.-P. (1999). The broadcast storm problem in
a mobile ad hoc network. In Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, pp. 151–162. ACM.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Gen-
eralized intersection over union: A metric and a loss for bounding box regression. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 658–666.

Rossi, R. A., & Ahmed, N. K. (2015). The network data repository with interactive graph
analytics and visualization. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pp. 4292–4293.

Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., & Ko, K.-I. (2004). A greedy approximation
for minimum connected dominating sets. Theoretical Computer Science, 329 (1-3),
325–330.

Sen, A., Murthy, S., & Bandyopadhyay, S. (2008). On sparse placement of regenerator
nodes in translucent optical network. In IEEE GLOBECOM 2008-2008 IEEE Global
Telecommunications Conference, pp. 1–6. IEEE.

Simonetti, L., Da Cunha, A. S., & Lucena, A. (2011). The minimum connected dominat-
ing set problem: Formulation, valid inequalities and a branch-and-cut algorithm. In
International Conference on Network Optimization, pp. 162–169. Springer.

Solis-Oba, R., Bonsma, P., & Lowski, S. (2017). A 2-approximation algorithm for finding a
spanning tree with maximum number of leaves. Algorithmica, 77 (2), 374–388.

Wang, Y., Cai, S., & Yin, M. (2017). Local search for minimum weight dominating set
with two-level configuration checking and frequency based scoring function. Journal
of Artificial Intelligence Research, 58, 267–295.

118

Efficient Local Search for Minimum Connected Dominating Set

Wu, J., & Dai, F. (2003). Broadcasting in ad hoc networks based on self-pruning. Interna-
tional Journal of Foundations of Computer Science, 14 (02), 201–221.

Wu, X., Lü, Z., & Galinier, P. (2017). Restricted swap-based neighborhood search for the
minimum connected dominating set problem. Networks, 69 (2), 222–236.

Yu, J., Wang, N., Wang, G., & Yu, D. (2013). Connected dominating sets in wireless ad
hoc and sensor networks–a comprehensive survey. Computer Communications, 36 (2),
121–134.

119

