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Abstract

The planning domain has experienced increased interest in the formal synthesis of
decision-making policies. This formal synthesis typically entails finding a policy which
satisfies formal specifications in the form of some well-defined logic. While many such logics
have been proposed with varying degrees of expressiveness and complexity in their capacity
to capture desirable agent behavior, their value is limited when deriving decision-making
policies which satisfy certain types of asymptotic behavior in general system models. In
particular, we are interested in specifying constraints on the steady-state behavior of an
agent, which captures the proportion of time an agent spends in each state as it interacts for
an indefinite period of time with its environment. This is sometimes called the average or
expected behavior of the agent and the associated planning problem is faced with significant
challenges unless strong restrictions are imposed on the underlying model in terms of the
connectivity of its graph structure. In this paper, we explore this steady-state planning
problem that consists of deriving a decision-making policy for an agent such that constraints
on its steady-state behavior are satisfied. A linear programming solution for the general case
of multichain Markov Decision Processes (MDPs) is proposed and we prove that optimal
solutions to the proposed programs yield stationary policies with rigorous guarantees of
behavior.

1. Introduction

The proliferation and mass adoption of automated solutions in recent years has led to an
increased concern in the verification, validation, and trust of the prescribed agent behavior
(Schwarting et al., 2018). This motivates the need for traditional techniques which can
yield guarantees of behavior. The study of such techniques has largely been the focus of
areas such as formal synthesis and planning, where it is common to derive decision-making
policies for agents acting in an environment such that some given formal specification is
satisfied. The majority of prior art in this area entails the coupling of some formal logic
with the model of agent-environment dynamics in order to find optimal policies which sat-
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isfy specifications expressed in said logic. Examples include planning with Linear Temporal
Logic (LTL) (Guo & Zavlanos, 2018), probabilistic LTL (PLTL) (Kwiatkowska & Parker,
2013), LTL over finite traces (LTL¢) (Camacho & Mecllraith, 2019), Linear Dynamic Logic
(LDLy¢) (Brafman & De Giacomo, 2019), Computation Tree Logic (CTL) (Pistore et al.,
2014), probabilistic CTL (PCTL) (Song et al., 2015), Signal Temporal Logic (STL) (Lin-
demann & Dimarogonas, 2017), Chance-Constrained Temporal Logic (C2TL) (Jha et al.,
2018), Continuous Stochastic Logic (CSL) (Ayala et al., 2014), pu-Calculus (De Giacomo
et al., 2010), Metric Temporal Logic (MTL) (Zhou et al., 2016), and logic fragments, such
as the Rank-1 Generalized Reactivity (GR[1]) formulas of LTL (Wongpiromsarn et al.,
2011). Formal multi-agent planning has also been explored using Dynamic Epistemic Logic
(Engesser et al., 2017) and Alternating-time Temporal Logic (ATL) (Jamroga, 2004).

The use of the foregoing logics has facilitated the growth of solutions to the aforemen-
tioned planning problems and are a good conduit for verifying, explaining, and yielding
provably correct agent behavior and, consequently, establishing a measure of trust. How-
ever, these logics are either insufficient to reason about the asymptotic behavior that is
captured by the steady-state distribution of the agent as it follows some decision-making
policy, or existing solutions to the corresponding planning problems make strong assump-
tions on the underlying model of the system. Solutions to these challenges have gained
traction in recent years. Indeed, there has been increased interest in what we refer to
as the steady-state planning problem of computing decision-making policies that satisfy
constraints on the resulting steady-state behavior. In particular, progress has been made
in easing the restrictions required on the agent-environment dynamics model, usually ex-
pressed in the form of a Markov Decision Process (MDP), in order to derive a solution
policy. In this paper, we advance the state-of-the-art in steady-state planning by establish-
ing the first solution to steady-state planning in multichain MDPs such that the resulting
stationary policy satisfies constraints imposed on the steady-state distribution of the agent.
Our approach also dissolves assumptions of ergodicity or recurrence of the underlying MDP
which are often made in the literature when reasoning about steady-state distributions.

Steady-state planning has applications in several areas, such as deriving maintenance
plans for various systems, including aircraft maintenance, where the asymptotic failure rate
of components must be kept below some small threshold (Boussemart & Limnios, 2004;
Boussemart, Limnios, & Fillion, 2002). Optimal routing problems for communication net-
works have also been proposed in which data throughput must be maximized subject to
constraints on average delay and packet drop metrics (Lazar, 1983). This includes con-
straints on steady-state network behavior, which include steady-state network frequency
and steady-state phase or timing errors (Skwirzynski, 1981). There is also the potential
of leveraging solutions in the steady-state planning problem space to the design of intelli-
gent space satellites. Indeed, this is an area where the steady-state distribution of debris
following some orbit can be computed to reason about the probability of a satellite collid-
ing with said debris. Such information has been used to determine human-driven control
policies for tasks such as debris mitigation or debris removal (Tian, 2019), sometimes via
remote-controlled robots (Baiocchi, 2010) that are amenable to automated approaches.

The steady-state planning problem has been studied under various names, including
steady-state control (Akshay et al., 2013), average- or expected-reward constrained MDPs
(Altman, 1999), and steady-state policy synthesis (Velasquez, 2019). As pointed out by
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Altman, Boularouk, and Josselin (2019), solutions to this problem often require strong
assumptions on the ergodicity of the underlying MDP. These assumptions facilitate the
search for efficient algorithms by leveraging the one-to-one correspondence between the
optimality of solutions to various mathematical programs and the optimality of policies
derived thereof. This has been studied at length in the works of Derman (1970), Kallenberg
(1983), Puterman (1994), and Altman (1999), who have derived mathematical programs for
discounted, total, and expected reward formulations of constrained MDPs. In particular,
the work of Kallenberg laid the foundation for Markovian control within the context of
multichain constrained MDPs. However, it was noted that deriving optimal policies for the
expected-reward formulation was intractable by their approach and there was no guarantee
of agent behavior in terms of satisfying steady-state constraints.

Summary of contributions. We make four main contributions. First, we introduce
the Steady-State Policy Synthesis (SSPS) problem of finding a policy from a predefined
subset of stationary policies in a multichain MDP that maximizes an expected reward signal
while enforcing asymptotic behavior that is correct-by-construction (Nilsson et al., 2015)
— in the sense that our policies yield provably correct behavior that satisfies the imposed
specifications on the steady-state distribution of the Markov chain induced by said policies.
Our framework generalizes the steady-state planning problems studied by Akshay et al.
(2013) and Velasquez (2019), as we do not impose any restrictions on the underlying MDP.
In particular, we dispense with the strong assumption made by Akshay et al. (2013) about
the ergodicity of the MDP, according to which every deterministic policy necessarily induces
an ergodic Markov chain (i.e., one that is recurrent and aperiodic). In sharp contrast to the
work of Velasquez (2019), we do not restrict our search to stochastic policies that induce
an irreducible Markov chain (i.e., one in which all states form one communicating class).
In general, such a chain may not even exist — normally, many states in a given MDP are
inevitably transient. Our search space consists of subsets of the stationary policies that we
term edge- or class-preserving, which, apart from a transient phase, restrict the long-term
play in the terminal components of the given MDP. We introduce two distinct notions for
class preservation that yield policies with different characteristics. These notions will be
made precise in Section 4.

As our second contribution, we develop a scalable approach to synthesize policies that
provably meet said asymptotic specifications through novel linear programming formula-
tions. While a tractable solution to the SSPS problem has heretofore remained elusive and
existing solutions require an enormous amount of calculations with no provable guarantees
(Kallenberg, 1983), two key ideas underlie our ability to tackle the associated combinato-
rial difficulties. The first idea is the aforementioned restriction of the domain to edge- or
class-preserving policies, which can be provably obtained from solutions to simple linear
programs (LPs). The second idea is to encode constraints on the limiting distributions of
the corresponding Markov chains in formulated LPs, whose solutions yield optimal policies
maximizing the expected average reward while meeting desired asymptotic specifications on
the limit points of the expected state-action frequencies. These LPs are crafted to capture
designated state classifications, absorption probabilities in closed communicating compo-
nents, and recurrence constraints within such components, along with the steady-state
specifications.
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Our third contribution lies in deriving key theoretical results establishing provable per-
formance and behavior guarantees for the derived policies. Contracting or transient MDP
models that use the expected total reward as the optimality criterion are commonplace in
constrained MDPs since optimal stationary policies with regard to this criterion can always
be found via mathematical programming in view of a well-established one-to-one correspon-
dence between stationary policies and feasible solutions to such programs (Altman, 1998;
Feinberg, 2000; Wu & Durfee, 2010; Petrik & Zilberstein, 2009). The notoriously more
difficult and equally important expected average reward criterion is much less understood
considering that such correspondence ceases to exist for general multichain MDPs. In this
paper, we tap into this long-standing dilemma and establish such one-to-one correspondence
for classes of stationary policies that are edge- or class-preserving. Theorems 1, 2, 3 and 4
establish the correctness of linear programs yielding optimal policies from said classes. The
proof of these theorems rest on few intermediate results. In particular, Lemma 3 character-
izes the Markov chains induced by the policies of interest, while Lemma 7 establishes the
feasibility of the steady-state distributions induced by these policies. Lemma 6 gives a suf-
ficient condition for the existence of a one-to-one correspondence between feasible solutions
to the linear programs and the stationary policies derived from these solutions. Theorem 5
establishes an existence condition of policies found on a more relaxed notion of class preser-
vation, which inspires a constructive approach in Algorithm 1 to compute such policies.
Theorem 8 gives a generic sufficient condition for the existence of an optimal stationary
policy meeting the desired specifications beyond class-preserving ones.

As our fourth contribution, we introduce an alternative type of specifications applicable
in transient states. By augmenting our LPs with appropriate constraints, the synthesized
policies provably meet specifications on the expected number of visitations to transient
states simultaneously with the foregoing steady-state specifications on the asymptotic fre-
quency with which recurrent states are visited (Proposition 1).

We verify the theoretical findings of our work using a comprehensive set of numerical
experiments performed in various environments. The results demonstrate the correctness
of the proposed LPs in yielding policies with provably correct behavior and the scalability
of the proposed solutions to large problem sizes.

This article brings in and substantially extends the scope of our recent work (Atia
et al., 2020), which considered policy synthesis over edge-preserving policies. Such policies
constitute only a small subset of the policies considered herein. A particularly appealing
characteristic of the newly introduced policies is their greater ability to avert MDP transi-
tions of low return without violating the asymptotic constraints. In turn, they yield larger
expected rewards relative to their edge-preserving counterparts — in some cases, we show
that this gain can be substantial. Further, we derive general characterizations of optimality
over a larger class of policies obtained in terms of the MDP reward signal. In addition,
this article advances the aforementioned form of transient specifications that a policy can
provably meet together with the steady-state ones. We provide a complete presentation
of the steady-state planning problem through linear programming formulations over differ-
ent families of policies, mathematical analyses establishing correctness of such formulations
with optimality guarantees, and a comprehensive set of numerical experiments in diverse
environments to support the theoretical findings.

1032



STEADY-STATE PLANNING IN EXPECTED REWARD MULTICHAIN MDPs

To the best of our knowledge, this work is the first to allow synthesis of stationary
policies with provably correct steady-state behavior in general multichain MDPs.

Organization: The paper is organized as follows. Notation and preliminaries are covered
in Section 2. Related work in steady-state planning is summarized in Section 3. The SSPS
problem is formalized in Section 4. We describe our linear programming approach and
present the results of our theoretical analysis in Section 5. Transient specifications and
extensions to a larger class of policies are presented in Section 6. Numerical experiments
are presented in Section 7 to validate our approach and demonstrate its scalability to large
problems. Concluding remarks are presented in Section 8. In Appendix A, we present
statements and proof of technical lemmas. The proof of the main results are deferred to
Appendix B.

2. Preliminaries and Notation

We introduce some notation and preliminary definitions used throughout the paper. For
a matrix A, a;; and A(%,j) are used interchangeably to denote the element in its ith row
and j* column. The vectors e and e, denote the vectors (of appropriate dimension) of all
ones, and all zeros except for the s entry, respectively. Given a vector z and index set
V', the vector xy is the vector with entries z,,v € V, where x, is the entry corresponding
to index v. By |S|, we denote the cardinality of a set S. For an integer n > 0, the set
[n] == {1,...,n}, and A\ B denotes the set difference of sets A and B. The symbols 3
and 3! mean “there exists” and “there exists a unique”, respectively, and T is the transpose
operator.

Definition 1 (Markov chain). A Markov chain is a stochastic model given by a tuple
M = (S5,T, ), where S is the state space, T the transition function T : S x S — [0, 1] with
T(s'|s) denoting the probability of transitioning from state s to state s', and 8 : S — [0,1]
the initial state distribution. With slight abuse of notation, the transition function can also
be thought of as a matriz T € [0,1]5XI51 where T(s,s") = T(s'|s). The use of T will be
clear from the context.

Classification of states (Norris, 1997; Privault, 2018): Given a finite Markov chain
M = (S,T, ), we say state s’ is accessible from state s if (T%)(s,s’) > 0, for some t > 0,
where T* is the t—step transition matrix, i.e., if there is a positive probability of transitioning
to state s’ starting from state s in some number of steps. Two states are said to communicate
if they are both accessible from each other. Communication is an equivalence relation which
partitions the Markov chain M into communicating classes such that only members of the
same class communicate with each other. A class is closed if the probability of escaping
the class is zero. A state s € S is said to be transient if, starting from s, there is a non-
zero probability of never returning to s. A set of transient states is termed a transient
set. Non-transient states are called recurrent, that is, state s is recurrent if, starting from
s, the probability of returning to state s after some number of steps is one. A Markov
chain for which there is only one communicating class consisting of the entire state space is
called irreducible, whereas a Markov chain that has a single closed communicating class and
(possibly) some transient states is termed unichain. A state is periodic with period k if any
return to state s must occur in multiples of £ time steps, where k is some integer greater
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than 1. An example illustrating the classification of states in a Markov chain is shown in
Figure 1.

Transience and recurrence describe the likelihood of returning to a state conditioned on
starting from that state, regardless of the initial state distribution 5. Given 3, we also
define an isolated component I as a maximal set of states in M that can never be visited,
that is, 87 = > .c;Bs = 0, where f; is the initial probability of being in state s, and I
cannot be reached from any state in S\ I, i.e., >, ;T(s'[s) = 0,Vs € S\ I. In Figure
1, the set of states {s3,s4} is isolated. The term ‘reachable’ refers to states that are not
isolated.

Definition 2 (Markov decision process (MDP)). An MDP is a tuple M = (S, A, T, R, 3),
in which S denotes the state space, A the set of actions, T : S x Ax S — [0, 1] the transition
function with T'(s'|s, a) denoting the probability of transitioning from state s to state s’ under
action a, R: S x Ax S — R a reward obtained when action a is taken in state s and we
end up in state s', and B : S — [0,1] the initial distribution. By A(s) C A, we denote the
set of actions available in state s.

Definition 3 (Transition graph). We define the transition graph of an MDP M =
(S,A,T,R,3) as the directed graph whose vertex set is the state space S, and in which
there is a directed edge from vertex s to vertex s’ if there exists an action a € A(s) such that
T(s'|s,a) > 0. The transition graph of a Markov chain M = (S, T, 3) is the directed graph
with vertex set S, and which has a directed edge from vertex s to vertex s’ if T(s'|s) > 0.

Definition 4 (Terminal strongly connected component (TSCC)). Consider the transition
graph of a Markov chain or MDP M with state space S and initial distribution 3. A strongly
connected component (SCC) of the digraph is a mazimal subset of vertices C, where for every
pair of vertices s,s' € C, there is a directed path! from s to s' and a directed path from s’ to
s (Tarjan, 1972). A Terminal Strongly Connected Component (TSCC) S’ C S is an SCC
reachable from some initial state s, Bs > 0 and with no outgoing transitions to any state in
S\S". A TSCC'is also called a bottom SSC (Courcoubetis € Yannakakis, 1995). We denote
by ri(M) C S the set of states in the k™" TSCC of M, and by r(M) = Ukepm) rk(M) the
union of all such sets. The complement set is denoted 7(M) := S\ (M), which in the case
of Markov chains is the set of transient or isolated states.

Figure 1 illustrates a Markov chain with two TSCCs (highlighted with two separate
colors).

Definition 5 (Stationary policy). Given MDP M = (S,A,T,R,3), a stationary policy
7:8 = A4 is a mapping of states to probability distributions over the space of actions A,
where A4 is the probability simplex over A. The policy m specifies the conditional probability
m(als) that action a is taken in state s. The set of all stationary policies is denoted Ilg.

1. There is a directed path from node v to node w if it is possible to reach w from v by traversing the
directed edges in the directions in which they point.
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Recurrent
states

Transient states

Isolated (recurrent) component

Pt T T s ﬁs3 = ﬂs4 =0

Figure 1: State classification in a Markov chain with four communicating classes. The set
{s1, 82} is transient, and the sets {s3, s4}, {ss, s6, $7, 8} and {so, $10, 11} are recurrent.
This Markov chain is not irreducible since the states do not belong to one communicating
class. States sg, s19, and s11 are periodic. The set {s3, s4} is isolated since it is not reachable
from states in S\ {s3,s4} and it has zero initial distribution. The components colored in
green and blue are the two TSCCs of the Markov chain, i.e., r1(M) = {s5, s¢, 57,58} and
’1”2(./\/1) = {89, 510, 811}.

states

1
1
1
1
1
1 Recurrent
1
1
1
1
1
1

Definition 6 (Markov chain induced by policy). The tuple M, = (S, Ty, 3) is the Markov
chain induced by a policy 7 in an underlying MDP M = (S, A, T, R, 3), where

To(s'|s) = > T(s'|s,a)m(als) (1)

SEA(s)

Definition 7 (Unichain and multichain MDP). An MDP is called unichain (Puterman,
1994; Altman, 1999) if every stationary deterministic policy induces a Markov chain that is
unichain, that is, consists of exactly one recurrent set and possibly some transient states®.
An MDP is said to be multichain if it is not unichain. See Figure 2 and its caption for an
example.

Definition 8 (Stationary distribution). Given a Markov chain M = (S, T, 3), a stationary
distribution Pr> : S — [0,1] over the state space is any solution to the set of equations
(Norris, 1997)

Pre(s) = Z Pre(s)T(s]s'), Pr*e(s) >0, Vs € S (2)
s'eS
ZPr‘X’(s) =1. (3)

seS

According to the ergodic theorem of Markov chains, the solution to (2) and (3) is unique
if and only if 7" is the transition matrix of a unichain (Gallager, 2013, Chapter 4). If there are

2. This definition does not require the recurrent class to be ergodic (hence aperiodic). Our analysis dispenses
with the aperiodicity precondition as will be clear in the sequel.
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m(ajls)) = m(ayls,) = m(aylss) = 1

(a) Unichain MDP (b) Multichain MDP (¢) Induced Markov chain

Figure 2: (a) Unichain MDP: every deterministic policy induces a Markov chain that has
exactly one recurrent component. (b) Multichain MDP: adding the self-loop to state s3
yields a multichain MDP. For example, the deterministic policy defined by 7(a1|s1) =
m(az|s2) = m(az|ss) = 1 induces the Markov chain in (c¢), which is multichain with two
recurrent components {ss} and {s3}.

multiple recurrent classes, then in general there will be many stationary distributions. For
example, for the Markov chain of Figure 2(c), one can verify that the distribution Pr*°(s;) =
Pr*°(se) = 0,Pr>(s3) = 1 and the distribution Pr*°(s;) = Pr*°(s3) = 0,Pr>(s2) = 1 both
satisfy (2) and (3), thus they are both stationary distributions of the Markov chain. Note
that a stationary distribution may not be representative of the true steady-state behavior
of the system (c.f. Definition 10 and the following example).

Definition 9 (Stationary matrix of a Markov chain). Given a Markov chain M = (S, T, 3),
the stationary matriz T is given by the Cesaro limit® (Puterman, 1994)

= lim — Z T . (4)

n—oo N

Given a finite multichain Markov chain M = (S, T, 8) with transient set F' and recurrent
(i.e., non-transient) components Fy,k € [m], the transition matrix 7' can be expressed in
the canonical form (Puterman, 1994, Appendix A)

T, 0 ... 0 0
0 T .0
T=|: & i (5)
0 0 ... T,y 0
Ly Ly ... L, Z]

where the matrices T} correspond to transitions between states in Ey, L to transitions from
states in F' to states in Ex,k € [m], and Z to transitions between states in F. Similarly,

3. The Cesaro limit always exists and accounts for the non-convergence of powers of transition matrices
of periodic chains. Hence, we do not need a precondition about aperiodicity as our analysis does not
require that T°° = lim,, 00 T".
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we use T g, Lrg, K = 1,...,m, and Z; to denote the corresponding submatrices of the
transition matrix T of the Markov chain M, induced by policy 7. Also (Puterman, 1994;
Kallenberg, 1983),

Ns, s',s € Ey, for some k € [m]
T(s',s) = ¢ Dok s' € F,s € Ey (6)
0 otherwise

where, 15 = limy, 00 % S T(s', s), is the long term proportion of time the chain spends
in s from initial states s’ € Ey, ) . g, s = 1, poy is the absorption probability from the
transient state s’ € F into the recurrent class Ex, k € [m], and > )" | pyp, = 1,Vs' € F.

In this paper, we are interested in the asymptotic behavior of an agent’s policy in an
MDP, as captured by the steady-state distribution of the induced Markov chain defined
next.

Definition 10 (Steady-state distribution). Given an MDP M and policy w, the steady-
state distribution Pr2® : S x A — [0,1] over the state-action pairs, also known as the
occupation measure (Altman, 1999, Chapter 4), is the long-term proportion of time spent
in state-action pair (s,a) as the number of transitions approaches oo, i.e.,

Pr¥(s,a) = lim ! ZPr(St =s,A =al|f,m), se€S,acA(s) (7)
=1

n—oo N

if the limit exists, where S; and A; are the state and action at time t. Also, Pr°(s) =
ZaeA(s) Pre°(s,a) is the steady-state probability of being in state s € S. The steady-state
distribution is a stationary distribution of the Markov chain induced by the policy .

As an example, consider the MDP in Figure 2(b) with 85, = 1,8s, = Bs; = 0. The
steady-state distribution of the policy m(a1|s1) = w(az|s2) = w(az|s3) = 1, which induces
the Markov chain in Figure 2(c), has Pri°(sg,a2) = 1 and 0 otherwise.

Definition 11. Given an MDP M = (S, A, T, R, ) and a set of policies II C Ilg, we define
Pe(Il) := {Pry°|m € 11}

as the set of occupation measures induced by policies in 11, where Pr3° is defined in (7).

Definition 12 (Steady-state specifications and constraints (Velasquez, 2019)). Given an
MDP M = (S,A,T,R,B) and a set of labels L = {Li,...,Ly,,}, where L; C S, a set
of steady-state specifications is given by ®° = {(L;,[li,w])}ity. Given a policy , the
specification (L;, [l;, u;]) € ®F° is satisfied if and only if the steady-state constraint

l; < Z Pr°(s) < wy; (8)

sEL;

is satisfied; that is, if the steady-state probability of being in a state s € L; in the Markov
chain My falls within the interval [l;, u;).
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Definition 13 (Labeled MDP (Velasquez, 2019)). An MDP M = (S,A,T,R, 3, L, ®}°)
augmented with the label set L and specifications ®3° is termed a labeled MDP (LMDP).

Lemma 1. (Kallenberg, 1983, Theorem 4.3.2)(Krass & Vrieze, 2002) Given an MDP M =
(S, A, T,R,3) and policy w € Ilg, the steady-state distribution Pry° := {Pry°(s,a)}s.q of the
Markov chain My is

Pre(s,a) = (8" T°)m(als), s € S,a € A(s) 9)
where T is the Cesaro limit in (4), i.e., T2 = limy, o0 = S0 | TL.

Definition 14 (Expected average reward). Given an MDP M = (S, A, T, R, 3), the ex-
pected average reward R°(B) of a policy w is defined as

RE(B) = Timinf 3 Egn[R(S: A (10)

n—00 ntzl So~p3

where R(s,a) = Y ,.¢T(8'|s,a)R(s,a,s"), and the expectation is w.r.t. the probability
measure induced by the initial distribution 5 and the policy ™ over the state-action trajec-
tories.

It follows from the definition of the expected average reward in (10) and the steady-state
distribution (7) that for a stationary policy 7 (Krass & Vrieze, 2002; Altman, 1999)

RE(B) =) Y Pr(s,a)R(s,a) (11)

s€S acA(s)

where Pr3°(s, a) is given in (9).

The primary focus of this paper in the context of steady-state planning is to find station-
ary policies that maximize the expected average reward (10) while satisfying specifications
®2° on the steady-state distribution (see Definition 12). We restrict the search to certain
classes of stationary policies which will be introduced and defined precisely in Section 4.
Our solution approach to this constrained MDP problem is based on linear programming
formulations, which optimize a linear objective function capturing the expected reward, sub-
ject to linear equality and inequality constraints. Such constraints encode restrictions on
the steady-state distributions induced by policies of interest, as well as desired steady-state
specifications on the long-term frequencies for state-actions pairs. The decision variables
of the LPs correspond to the occupation measures, and policies are obtained from their
optimal solutions. We establish a one-to-one correspondence between optimal solutions of
said LPs and optimal policies of the constrained MDP problem.

3. Related Work

Research related to steady-state planning often comes from the field of average- or expected-
reward constrained MDPs and has its roots in mathematical programming (Bertsekas,
2005). Many solutions proposed in this area utilize linear programming formulations to
derive policies (Altman, 1999). We illustrate these formulations in order of increasing com-
plexity and elucidate the key differences between the formulations in the literature and our
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own. First, let us consider the simple problem of deriving a policy for an agent which seeks
to maximize expected reward without any constraints on its steady-state distribution.

In the unichain MDP case, one may synthesize a policy by solving a linear program (LP)
of the form (Manne, 1960; De Ghellinck, 1960)

Z Z Tsa Z T(s'|s,a)R(s,a,s’) subject to

s€S acA(s) s'eS

Zsza (s | s,a) = Zazsa vs' e S

s€S acA(s) a€A(s (12)
Zsq € [0,1] Vs € S,a € A(s)

)SDIEME

s€S acA(s)

The policy can be derived from the occupation measures given by g, through a simple
calculation. It is worth noting that this combination of occupation measures and linear
programming has enabled significant progress in the area of planning within stochastic
shortest paths MDPs, where several occupation measure heuristics have been defined to find
decision-making policies that maximize the probability of reaching a set of goal states while
satisfying multiple cost constraints (Trevizan, Thiébaux, Santana, & Williams, 2016, 2017;
Trevizan, Thiébaux, & Haslum, 2017; Baumgartner, Thiébaux, & Trevizan, 2018). While
the LP in (12) always produces valid solutions for unichain MDPs, this is not necessarily
the case for multichain MDPs due to the fact that there may be more than one ergodic set
(Puterman, 1994). This issue is rectified by modifying LP (12) to obtain (Denardo & Fox,
1968; Kallenberg, 1983)

Z Z Tsa Z T(s'|s,a)R(s,a,s") subject to

s€S acA(s) s'es

Zme (s' | s,a) = sza vs'e S

SES acA(s) acA(s") (13)
Z Z ysa 3 ‘ S a) Z (xs’a + ys’a) - Bs’ vsl €S

s€S acA(s) a€A(s")

Tsq € [07 1]7 Ysa = 0 Vs € S, a € A(S)

The new ys, variables guide policy formation on the transient states. Both LP (12) and
LP (13) yield stationary stochastic policies. Furthermore, there always exists at least one
optimal deterministic policy, which can easily be derived from the stochastic policy solution
obtained from the LPs (Puterman, 1994).

For producing control policies with steady-state specifications, LPs (12) and (13) are
extended to include linear steady-state constraints on the occupation measures. When
applied to unichain MDPs, the constrained version of LP (12) encounters minor difficulties,
in that there may not be an optimal deterministic policy (Altman, 1999). Nonetheless, the
LP always produces an optimal stochastic stationary policy. In fact, there exists an optimal
policy having at most n;, “randomizations”, i.e. having at most |S| + ny, state-action pairs
with non-zero probability of being selected (Ross, 1989).
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On the other hand, serious issues arise when LP (13) is augmented with steady-state
constraints and solved for multichain MDPs, as described in the pioneering work of Kallen-
berg (1983). In particular, it was shown that there is no one-to-one correspondence between
the feasible solutions of the augmented LP and the stationary policies. Instead, the space of
feasible solutions is partitioned into equivalence classes of various feasible solutions mapping
to the same policy. The key deficiency is that the steady-state distribution of the Markov
chain induced by the synthesized policy does not match the optimal solution to the LP in
general, and so the derived policy does not always meet the steady-state specifications (see
Example 1 in Section 4.1). This issue is not easily remedied, since the optimal solution
may not be achievable by any stationary policy, or identifying such a policy would generally
require combinatorial search. We refer the reader to the paper by Krass and Vrieze (2002)
for an overview.

In order to mitigate the preceding problem of integrating steady-state constraints, vari-
ous assumptions have been made in the literature on the structure of the underlying MDP.
Multichain MDPs are also frequently excluded from the conversation altogether. The as-
sumption that the MDP is ergodic, and therefore every policy induces an ergodic Markov
chain, has been used by Akshay et al. (2013) to ensure that steady-state equations and
constraints on the same are satisfied. This assumption is relaxed to some extent by Ross
(1989), Altman (1999), Feinberg (2009), where unichain MDPs are allowed. The assump-
tion of either an ergodic or a unichain MDP requires that no stationary deterministic policy
induces more than a single recurrent class, thus severely limiting the applicability of these
methods. These assumptions are removed in the recent work of Velasquez (2019), where
neither ergodic nor recurrence assumptions are made on the underlying MDP. However, the
solution proposed therein finds an irreducible Markov chain in the underlying MDP, if one
exists, and is therefore suitable for communicating MDPs where, for any two states s and
s', there exists a deterministic stationary policy such that s can reach s’ in a finite number
of steps (Puterman, 1994). This solution, however, is too restrictive, thus not suitable for
reasoning over general multichain MDPs.

Another approach taken to address these challenges is to simply allow solutions to take
the form of non-stationary policies. In the work of Kallenberg (1983), this is accomplished
by a computationally expensive approach producing a potentially different policy in each
time step. Another approach, proposed by Krass and Vrieze (2002), starts by using one
policy, and then switches to a second “tail” stationary policy. The time at which the switch
occurs is determined by a lottery performed at each time step, and once the switch occurs
the tail policy continues to be used indefinitely (thus the policy is “ultimately” stationary
once the switch occurs). However, this approach has three key limitations. First, the
constraints must take the form of a target frequency vector, which imposes an equality
constraint on the steady-state distribution over all states. Second, the lottery system does
not guarantee that the switch will occur in a finite number of steps, thus the policy is not
guaranteed to be ultimately stationary. Third, the policy depends on a marker to track
whether or not the switch has occurred. This marker is not part of the MDP, and therefore
the MDP machinery must be modified to include a so-called marker-augmented history. As
an alternative, the authors also propose a way to extend the given MDP with additional
states, such that the problem can be solved using a stationary policy applied to the extended
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MDP. However, this approach still cannot produce a stationary policy to solve the original
problem.

While most methods for solving constrained MDPs revolve around the use of math-
ematical programs, some reinforcement learning approaches have also been proposed for
optimizing the average-reward objective and, to a lesser extent, for solving constrained
instances of average-reward MDPs. Some noteworthy examples include the constrained
actor-critic method proposed by Bhatnagar and Lakshmanan (2012), wherein a Lagrangian
relaxation of the problem is used to incorporate steady-state costs into the objective function
being optimized by the constrained actor-critic algorithm. A similar Lagrangian Q-learning
approach is proposed by Lakshmanan and Bhatnagar (2012). Both of these reinforcement
learning methods assume that every Markov chain induced by a policy is irreducible, which
allows only a single recurrent class as with ergodic and unichain assumptions described
earlier. The Lagrangian approach has also been applied to specific stochastic policy linear
programming formulations relevant to aircraft maintenance problems where the asymptotic
failure is to be kept below some small threshold (Boussemart & Limnios, 2004; Boussemart
et al., 2002).

In contrast to the foregoing efforts, our approach is computationally tractable, works
with the most general multichain MDPs, and always produces a stationary policy that
satisfies the given steady-state specifications, if one exists. Additionally, none of the afore-
mentioned methods consider constraints on the expected visits to transient states, as we
are considering in our work.

4. Steady-State Policy Synthesis: Problem Formulation

In this section, we introduce the Steady-State Policy Synthesis (SSPS) problem of finding
a stationary policy from predefined classes of policies (edge- and class-preserving) that
maximizes the expected average reward subject to steady-state specifications. In contrast
to prior work, we do not impose restrictions on the underlying MDP. Before we present our
formulation, we briefly discuss the challenges underlying policy synthesis under the average
reward optimality criterion and demonstrate the limitations of existing formulations in this
context. Subsequently, we specify our search domain of policies and define the SSPS problem
of synthesizing optimal policies from this domain.

4.1 Challenges and Limitations

We motivate this section with a simple example. Suppose an autonomous agent is marooned
on a set of three connected frozen islands as shown in Figure 3. The agent’s goal is to
maximize the amount of time it spends fishing for sustenance while at the same time building
a canoe to escape the islands. The agent has an equal chance of starting in any state
belonging to the larger island of size n x n/2, i.e., we have Bs = 2/n? for each state s in
the island. Once the agent moves to one of the two smaller islands, it is unable to return
to the larger island. One quarter of the land in the small islands contains logs which can
be used to build a canoe, and each of these islands contains one fishing site as well. For
the first small island we have steady-state specifications (Liog1,[0.25,1]), (Liog2, [0.25,1]),
(Lcanoel, [0.05,1.0]) and reward R(-,, Lgsh1) = R(+, -, Lgsn2) = 1. Likewise, the second small
island has steady-state specifications (Lcanoe2, [0.05,1.0]), (Lgisn1, [0.1,1.0]), (Lgshe, [0-1, 1.0])
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Figure 3: LMDP M = (S,A,T,R,ﬁ,L,‘I)%O) with labels Llogl = {834,836,838,543},
Lioga = {s52,555,557,561}, Lcanoel = {533}, Lcanoe2 = {19}, Lfsh1i = {s4s}, Lasnz =
{se4}, steady-state specifications (Liog1,[0.25,1]), (Liog2,[0.25,1]), (Lcanoet,[0.05,1.0]),
(Leanoe2, [0.05,1.0]), (Lgsh1, [0.1,1.0]), (Lgish2,[0.1,1.0]) € ®9°, and rewards R(-,-, Lgsh1) =
R(-,+, Lgsn2) = 1, R(-,-, S\ (Lish1 U Lgsh2)) = 0.

and reward R(-,-, S\ (Lgsh1 U Lgsh2)) = 0. Because the islands are covered in ice, the agent
has a chance of slipping in three possible directions whenever it moves. Specifically, if the
agent attempts to go right (left), it has a 90% chance of transitioning to the right (left),
and there is a 5% chance of transitioning instead to either of the states above or below it.
Similarly, if the agent tries to go up (down), it moves to the states above (below) it with 90%
chance, and to the states to the right and left of it with chance 5% each. This Frozen Island
scenario is motivated by that found in OpenAl Gym’s FrozenLake environment (Brockman
et al., 2016).

For this example, the LP by Velasquez (2019) is infeasible since there exists no policy
that induces an irreducible Markov chain, that is, one where all states in .S belong to one
recurrent class. The LP by Kallenberg (1983) in (13) will return a solution (z,y), from
which the stationary policy 7 := 7(z,y) is computed as follows

Loa s € Ey,a € A(s)
m(als) = q L= s€ Ey\ Ey,a € A(s) (14)
arbitrary otherwise

where z4 := ZaGA(s) Tsay Ys = ZaeA(s) Ysa, By :={s€S:2s>0}and B, :={se€ S:y, >
0}. However, in general the steady-state distribution induced by the policy (14) will not
satisfy the specified constraints. This deficiency is best demonstrated via a simple example.
The reader is also referred to Example 1 by Krass and Vrieze (2002).

Example 1. Consider the MDP in Figure 2(b) with initial probability Bs, = Bs; = 0, Bs, =
1. One feasible solution = of the LP in (13) (Kallenberg, 1983, Program 4.7.6) has xsyq, =
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Unichain MDP Multichain MDP

:,f"'”Feasible solutions Stationary pollcles F easible solutions Stationary p011c1es
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@v

Figure 4: (Left) One-to-one correspondence between the feasible LP solutions and the
stationary policies in unichain MDPs. (Right) Equivalence classes of feasible solutions map
to stationary policies. The steady-state distribution of the Markov chain induced by a policy
need not agree with the LP solution, and could hence fail to meet the LP constraints.

Tssas = 0.5. The policy m in (14) corresponding to x has w(az|s2) = w(az|s3) = 1, hence
Pr2°(se,a2) = 1. Therefore, Pry° # x.

The previous example underscores the main challenge underlying steady-state planning
in constrained Markov decision models with the average reward criterion: solutions to
formulated programs and stationary policies are not in one-to-one correspondence. In other
words, given a feasible LP solution (z,y), the steady-state distribution Pr2° induced by the
policy 7(x,y) derived from that solution is not equal to x in general. As a result, unlike
unichain MDPs (Altman, 1999), steady-state specifications encoded as constraints on the
state-action variables are generally not met by . Figure 5 (Left) illustrates the one-to-
one correspondence between LP solutions and stationary policies found in unichain MDPs.
Figure 5 (Right) illustrates the lack of such correspondence in multichain MDPs, where
instead, equivalence classes of feasible LP solutions (yellow circles) map to the same policy
(Kallenberg, 1983; Puterman, 1994).

4.2 Problem Setup

The previous example motivates the work of this paper in which we develop an approach
to synthesizing policies with provably correct asymptotic behavior based on the notions of
edge preservation and class equivalence. First, we will define sets of policies under which
certain class structures are preserved and give an example of such policies, then define the
SSPS problem of finding an optimal policy from such classes.

Definition 15 (Edge-preserving policies). Given an MDP M, we define the set of Edge-
Preserving (EP) policies 1 gpp as the set of stationary policies that play every action available
at states in the TSCCs r(M) of M and for which r(My) =r(M), i.e.,

Mgp={m € Ug:r(Mz) =r(M) A n(als) >0,Vs € r(M),a € A(s)} . (15)

Hence, for every state s € (M) (see Definition 4), an EP policy assigns a non-zero
probability to every action in A(s), and every state in 7(M) is either transient or isolated
in the Markov chain induced by the policy. For example, the uniform policy which has

1043



ATiA, BECKUS, ALKHOURI, & VELASQUEZ

m(als) = 1/|A(s)|,¥s € S is in IIgp. Note that other policies in IIgp could assign a very
small probability (as long as it is non-zero) to non-rewarding transitions in (M. Using an
open set definition in (15) simplifies the exposition and the subsequent theoretical analysis,
however, it does not guarantee that an optimal policy from the set always exists. We discuss
and analyze variations of the problem formulation to address this issue at length in Section
5.4.4.

Next, we introduce two sets of policies whose definitions rest on two distinct notions of
class preservation.

Definition 16 (Class-preserving policies). Given an MDP M with TSCCs rp(M),k =
1,...,m, we define the set of Class-Preserving (CP) policies llcp as the set of stationary
policies that induce Markov chains with the same TSCCs as those of M, i.e.,

Mep = {m € g : 1(My) = (M) A Yk € [m], r(Mz) = r(M)} . (16)

Note that the condition r(Mjy) = r(M) in Definitions 15 and 16 implies that 7(M)
consists of transient or isolated states in M for any 7 in IIgp or I p. Per (16), a CP policy
preserves the recurrence of all states in the TSCCs of the MDP but, unlike EP policies,
its support need not be the entire set of actions available at said states. Therefore, CP
policies can conceivably achieve larger rewards than EP policies by averting non-rewarding
transitions.

Definition 17 (Class-preserving up to unichain). Given an MDP M with TSCCs rp(M), k =
1,...,m, we define the set of Class-Preserving-up-to-Unichain (CPU) policies lcopy as

Mepy = {7 € g : 1(My) Cr(M) A Yk € [m], N re(Mg) Srp(M)} . (17)

that is, the set of stationary policies that induce Markov chains M, in which the TSCCs
of the MDP M are reachable and unichain (i.e., each contains exactly one non-isolated,
recurrent component) and the recurrent states are a subset of the recurrent states of M
(Recalling that the notation 3! in (17) refers to the existence of a unique set).

This definition captures a more relaxed notion of class preservation than (16) for CP
policies in that it relaxes the requirement that all states in the TSCCs of M be recurrent
and reachable in the Markov chain M induced by the policy 7, to the milder requirement
that in M there exists a unique reachable recurrent class in each of the TSCCs of M.

The aforementioned definitions are best illustrated by an example. Figure 5(b) illustrates
a Markov chain induced by an EP policy, i.e., one that plays every action available in the
TSCCs of the MDP of Figure 5(a) with non-zero probability. As shown, s; is isolated and
s9 is transient — these would both be transient under the uniform policy. The TSCCs of the
induced chain are highlighted with two separate colors. Examples of Markov chains induced
by a CP and a CPU policy are shown in Figure 5(c) and (d), respectively. The Markov
chain of Figure 5(c) has the exact same TSCCs of the MDP and of the Markov chain of
Figure 5(b) induced by the EP policy, with the fundamental difference that the CP policy
is not supported on every action available in the TSCCs (e.g., see the recurrent component
highlighted in blue). By contrast, states ss3, s4, S¢ and s7 are transient in the Markov chain of
Figure 5(d). The set consisting of states s3, s4, S5 is unichain, having exactly one recurrent
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(c) Class-Preserving (d) Class-Preserving up to Unichain

Figure 5: (a) MDP and Markov chains induced by (b) EP, (¢) CP, and (d) CPU policies.
For the MDP, all transitions are deterministic, i.e., T(s'|s,a) € {0,1} indicating if there is
an outgoing edge from s to s’ under action a, the rewards are defined such that R(s5,a3) =
R(sg,a1) = 1 and 0 otherwise, and the initial probabilities are §5, = 0 and 35 = 1/8,Vs € S\
{s1}. The numbers next to the edges of the Markov chains are the conditional probabilities
m(als) of the different actions given the states specifying the policies.
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component (state s5) and two transient states (s3 and s4). Similarly, the set composed of
states sg, 7, Sg, Sg is unichain with one recurrent component (sg and sg9) and two transient
states (sg and s7).

The classes of policies defined in (15), (16) and (17) satisfy the following relations.

Lemma 2. HEp - HCP - HCPU~

We remark that the inclusions in Lemma 2 are generally strict, except for some special
MDPs. Specifically, given a general MDP M, there may exist a policy m € Ilgp for which
r(Mz) = r(M) and w(als) = 0 for some a € A(s),s € r(M), in which case 7 ¢ Ilgp.
Similarly, since a unichain may contain some transient states, Illop is generally a proper
subset of II¢opy.

Problem Definition. We can readily define the class of problems SSPS(II), parametrized
by a predefined set of stationary policies II, of finding a policy in the set II that maximizes
the expected average reward while satisfying a given set of steady-state specifications.

Definition 18 (Steady-state policy synthesis (SSPS)). Given an LMDP M =
(S,A,T,R,3,L,®%°) and a domain of policies II C Ilg, the SSPS(II) problem is to find
an optimal stochastic policy m € 11 that maximizes the expected average reward defined in
(10) and satisfies the steady-state specifications ®7° (Definition 12), i.e.,

00 .
?ear)liz Z Pri°(s,a)R(s,a) subject to
s€S acA(s)

Z Z Pr°(s,a) € [l u], Y(Lg[l,u]) € ®F

s€L; acA(s)

(18)

If the mazimum in (18) cannot be attained over the domain II, we define SSPS(II) as the
problem of finding a policy m € Il that satisfies the specifications ®7° and whose expected
average reward R°(5) > super RS (B) — €, for some arbitrarily small € > 0 (See Section

5.4.4).

In this paper, we present solutions to SSPS(Ilgp), SSPS(II¢p) and SSPS(Ilcpy), where
I in (18) is set to Ilgp, Hcp, and I cpy, respectively®. To this end, we first determine the
TSCCs 7(M) of M and the complement set #(M) using standard techniques from graph
theory (Tarjan, 1972). These are then used to define an LP from which the solution policy
is derived.

5. Linear Programming Based Solutions

In this section, we present our linear-programming-based solution to the SSPS problem
(18) over edge- and class-preserving policies. We formulate linear programs that encode
constraints on the limiting distributions of said policies to solve SSPS(IIgp) and SSPS(Il¢p).
The optimal solutions to the formulated programs provably yield optimal edge- and class-
preserving policies that meet the desired specifications. The encoded constraints are also
at the center of an iterative algorithm described in Section 5.3 to generate CPU policies

4. Our work (Atia et al., 2020) has presented preliminary results for the SSPS(IIgp) problem.
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for SSPS(Il¢py). Our main results on SSPS in edge- and class-preserving policies are
presented in Sections 5.1, 5.2 and 5.3. To simplify the exposition, all proofs are deferred to
the appendix.

We present three main programs. The first, used for the synthesis of optimal EP poli-
cies, is the most constrained as it encodes the requirement that every action in the terminal
components must be played with non-zero probability. While this condition is not neces-
sary in order to ensure one-to-one correspondence between the feasible solutions and the
induced steady-state distributions, it results in a simple program whose solution provably
yields an optimal EP policy that meets the specifications. The second program relaxes
this condition to the milder requirement that every state in the terminal components is
visited infinitely often (which may not require playing every action available), but at the
expense of additional complexity. Specifically, its solution yields an optimal policy that
meets the specifications from the class of CP policies (a superset of EP policies) but uses
more complex flow constraints to encode said requirement. The third program is the least
constrained and is used to synthesize a policy from the larger class of CPU policies. While
its solution is not guaranteed to yield a CPU policy, we derive a characterization of its op-
timal solution, which inspires a greedy algorithm to construct such policy. We augment the
program by iteratively adding constraints until convergence. The algorithm is guaranteed
to converge in a finite number of steps to a (possibly) suboptimal CPU policy that meets
the specifications.

By encoding constraints on the limiting distribution of the Markov chain induced by
a stationary policy derived from an LP solution, the policy is ultimately absorbed in the
TSCCs of the MDP. This restricts the long-term play to the TSCCs, which once reached,
cannot be escaped. By imposing strict positivity on state-action pairs or flow constraints
in the TSCCs, we further ensure that these components are unichain, and in turn, the
long-term frequencies induced by the policy match the solution from which the policy is
generated.

5.1 SSPS(Ilgp) — Synthesis over Edge-Preserving Policies

In this section, we formulate a linear program to solve SSPS(Ilzp) defined in (18), which
seeks to maximize the expected average reward subject to specification constraints over the
class of policies IIgp in (15).

Given MDP M, define Qg to be the set of vectors x, y satisfying

() Dses 2aca(s) Tsal(8' | 8,0) =3 c a5 Tsrar V' €S

(1) X ses 2oaca(s) Ysal (8" | 5,0) =D e aon(@sa + Ysa) = By, Vs €S
(0) D perom) 2aca(s) Tfa =0,

Tsq € [0,1],ysq > 0,Vs € S,a € A(s), f € (M), k € [m]

(19)
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We can readily formulate LP; (20) to synthesize optimal EP policies, which incorporates
two additional constraints beside the constraints in (19).

max Z Z x5 R(s,a) subject to (z,y) € Qo

s€S acA(s)

(LPD) (i) LY Y wea < uy (L, [l wi]) € OF (20)
s€L; acA(s)

(v) xsq >0, Vs €rp(M),k € [m],a € A(s)

Constraints (i) — (i) constrain the limiting distributions of Markov chains induced by the
policies of interest, and are thus part of the constraint set of all programs we formulate in this
work. In particular, they capture the structure of the stationary matrix 7T°° corresponding
to the classifications r(M) and 7(M) (See Definition 4). Constraint (¢) ensures that x is a
stationary distribution (Altman, 1999; Puterman, 1994); constraint (7i), which is described
in (Kallenberg, 1983, Chapter 4) and (Puterman, 1994, Sec 9.3), enforces consistency in
the expected average number of visits y, for any transient state-action pair f € 7#(M),a €
A(f); constraint (7i) preserves the non-recurrence of the states f € 7(M) by forcing zero
steady-state probability. Constraint (iv) encodes the steady-state specifications. The strict
positivity constraint (v) preserves the transitions in the TSCCs to yield EP policies. In
practice, we transform the strict inequalities to bounded ones by introducing an arbitrarily
small constant on the right-hand side, thereby ensuring an optimal solution always exists
(See Section 5.4.4). Enforcing constraints on the occupation measures ensures that, from
any state f € 7(M), the process will be ultimately absorbed into the TSCCs ry(M), k € [m)].
The next theorem guarantees that every feasible solution to LP; yields an EP policy.

Theorem 1. Given an LMDP M, let (z,y) € Q1, where Q1 is the feasible set of solutions
to LPy (20), and let m := w(x,y) be defined as in (14). Then, w € lgp.

We can readily state the following theorem establishing the correctness of LPq. It guarantees
that the policy synthesized from an optimal solution to (20) (if one exists) is not only in

IIgp, but also is optimal among all such policies and meets the steady-state specifications,
i.e., solves SSPS(Ilgp).

Theorem 2. Given an LMDP M = (S, A, T, R, 3,L,®7°), LPy in (20) is feasible iff there
exists a policy m € U gp such that the Markov chain My = (S, Ty, B) satisfies the specifica-
tions ®°. Further, given an optimal solution x*,y* of (20), the policy ™ = m(x*,y*) as
defined in (14) is optimal in the class of policies Ilgp and meets the specifications ®°.

5.2 SSPS(II¢p) — Synthesis over Class-Preserving Policies

The strict positivity constraint (v) of LP; forces the policy to play every action in the
TSCCs of the MDP M (by assigning non-zero probability to every action available), which
may be restrictive and often unnecessary. Indeed, as we show, in order to ensure one-to-one
correspondence between the optimal solutions of a formulated LP and the optimal policies
of the constrained MDP derived from these solutions, it suffices to preserve the recurrence
or the unichain property of these components.
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To address this restriction, we introduce flow constraints in LP5 given in (21) (replacing
constraint (v)) to ensure the recurrence of the components r(M), k € [m], in the induced
chain. It helps to introduce some notation in order to express such constraints. We define
the transition relation of an MDP by T = {(s, s') € SxS|s # s'AJa € A(s),T(s'|s,a) > 0}
(Velasquez, 2019). This corresponds to the graph structure of the MDP. For each TSCC
(M), we further define its graph structure as 75 = T Ny (M) x 7 (M). We can now
add flow constraints in order to ensure that, for the Markov chain induced by the solution
policy, each set 7x(M) remains a recurrent class without necessarily having to take every
action available in that set.

max Z Z Tsa Z T(s'|s,a)R(s,a,s") subject to (z,y) € Qo,

s€S acA(s) s'eS

(i) <Y Y we<u, Y(Li, [li, ui]) € O

seL; aEA(S)

(vi)  fo, 5 = Z T('|si,a)Ts;q Y(si, s') € TreL k € [m]
a€A(s;)
(vi)) fiov = T(sils',a)zeq V(s si) € TF k€ [m)
a€cA(s")
(vitd)  fog < Z T(s'|s,a)Tsq Y(s,s') € Ti k € [m)]
a€A(s)
(LP2)  (iz) fior < Z T(s|s',a)zgq Y(s',s) € Tr k € [m)
a€A(s")
@ Y fes> Y fu Vs € r(M)\ {s:}
(Sl,s)eTrCI (875/)6Trc1
CONNED DI S DR o) Vs € r(M)\ {si}
(s,s’)GTrel (s’,s)GT'el
(i) > fes>0 Vs € (M)
(s,s)eTrel
(zii) Y fE¥ >0 Vs € (M)
(s,8")€T™e!
(aiv) fusr, 13 € [0,1] W(s, ') € T
(21)

The program LPs in (21) is such that every state in (M) can reach and is reachable
from every other state in ri(M). For each k € [m], constraint (vi) induces an initial flow
out of a randomly chosen state s; € r(M) and into its neighbors s, that is proportional
to the transition probability 75 (s'|s;) in the Markov chain induced by the solution policy;
constraint (wviii) establishes the flow capacity between states in a similar manner; (z) ensures
that the incoming flow into every state in (M) is greater than the outgoing flow; finally,
constraint (xi7) ensures that there is incoming flow into every state in rp(M). These
constraints ensure that every state in r; (M) is reachable from s;, whereas constraints (vii),
(iz), (zi), (xiii) address the foregoing in the reverse graph structure of the MDP, thereby
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ensuring that s; is reachable from all states in r;(M). We remark that the feasible set in
(21) is a superset of that in (20) since the flow constraints (vi)—(xiv) are implied by (v),
hence LPs is less-constrained than LP1.

We can readily state the following two theorems establishing the correctness of LPs,
which are the counterparts of Theorem 1 and 2. In particular, Theorem 3 guarantees that
the solution to LPj is a CP policy, while Theorem 4 establishes that the policy (14) derived
from the optimal solution to LP3 in (21) solves SSPS(Il¢p), i.e., is optimal among the class
of CP policies and meets the steady-state specifications.

Theorem 3. Given an LMDP M, let (x,y) € Q2 and 7 be defined as in (14), where Q2 is
the feasible set of solutions to LPy (21). Then, m € ap.

Theorem 4. Given an LMDP M = (S,A,T,R,,L,®%°), the LP in (21) is feasible iff
there ezists a policy m € ep, where llgp is defined in (16), such that the Markov chain
Mz = (S,Tx, B) satisfies the specifications ®7°. Further, given an optimal x*,y* of (21),
the policy w(x*,y*) defined in (14) is optimal in the class of policies Illop and meets the
specifications ®5°.

5.3 SSPS(II¢py) — Synthesis over Class-Preserving up to Unichain Policies

In this section, we discuss policy synthesis over the larger set of policies Ilgpy. We provide
a sufficient condition under which we can identify an optimal policy m € I[Igpy that meets
the specifications. Based on this result, we develop an iterative algorithm to construct a
policy in IIopy that provably meets the desired specifications.

Next, we give a sufficient condition for SSPS(II¢py), characterized in terms of the set
of optimal solutions to LP3 in (22).

LP3 : max Z Z Tsq Z T(s'|s,a)R(s,a,s’) subject to (z,y) € Qo and (i)  (22)
s€S acA(s) s'eS

Note that the feasible set of LP3 is the intersection of the set Qo in (19) and the set of
variables satisfying the steady-state specifications, that is, without the positivity or flow
constraints in (20) and (21), respectively.

Recall that a strongly connected digraph is one in which it is possible to reach any node
starting from any other node by traversing the directed edges in the directions in which
they point. Theorem 5 states that the policy 7 in (14), derived from an optimal solution to
LP3 in (22), solves SSPS(Il¢py) if the directed subgraphs corresponding to the support of
the optimal solution in the TSCCs of M are strongly connected. In Theorem 5, we define
the digraph associated with the support of a given solution x as the graph whose vertices
are all states s with x; > 0 and whose edges correspond to actions a for which x4, > 0.

Theorem 5. Given LMDP M, let Q* be the set of optimal solutions of LPs (22) and
X* = {z: (z,y) € Q for some y}. Given v € X*, let V;F(z) := {s € rg(M) : 25 > 0}
and E; (z) == {(s,a) € rg(M) x A(s) : z5q > 0}. If the directed subgraph (V" (z), E;f (z))
is strongly connected Yk € [m], then the policy 7 in (14) is optimal in the class of policies
[Icpy and meets the specifications in ®5°.

Corollary 1. If the condition in the statement of Theorem 5 holds for all x € X™*, then
LP3 (22) solves SSPS(Ilcpy).
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5.3.1 GENERATION OF POLICIES IN Ilopy

Inspired by Theorem 5, we devise a row-generation-based algorithm to search for a policy
7 € llgpy as shown in Algorithm 1. First, LP3 (22) is solved. If the digraph corresponding
to the support of the obtained solution is strongly connected for each of the TSCCs of
LMDP M, the policy in (14) is computed and the search stops. However, if the solution
does not correspond to a strongly connected digraph in some TSCC, then there must exist
a non-empty set of states with no outgoing edges to the rest of the states in that TSCC.
Hence, for some k € [m] we find a cut, that is, a set of states C' that has no outgoing edges
to the complement set 7, (M) \ C. The constraint in (23) corresponding to this cut is added
to include the edges in the support, where A" = {a € A(s) : T'(s'|s,a) > 0,s" € rx(M)\ C}.
The constraint forces the addition of missing edges across this cut in a greedy manner (by
forcing the sum of the state-action variables corresponding to these edges to be non-zero) to
eventually produce a strongly connected digraph. The process is repeated until a strongly
connected solution is found.

) zw>0 (23)

seC acA’

Algorithm 1 is guaranteed to converge to a (possibly suboptimal) policy in II¢py in a finite
number of steps, since in the worst case (when all edges are included) it will yield a policy
in lIgp C [Igpy under which all edges in the TSCCs of M are retained. The finiteness of
the number of steps is because the number of cuts in the finite MDP is bounded above by
O(maxke[m] 2|’"’€(M)‘). Our experiments have shown that Algorithm 1 converges to a policy
in Il opy after a small number of iterations.

Algorithm 1 Generation of a policy 7 € lleopy

Input: LMDP M with specifications ®7°.
Output: Stationary policy 7 € [Igpy which satisfies ®F°.
Determine the TSCCs ry(M), k € m of M
isSConnected = False, C = {.}, A" ={.}
while isSConnected = False do
Solve LP (22) with constraint (23) to get optimal values x},,ys,,V(s,a) € S x A(s).
Compute the support F; (z*) of each TSCC corresponding to #* (See Theorem 5).
if digraph (V' (z*), E;f (z*)) forms a SCC for every k € [m] then
compute 7 using (14)
isSConnected = True
else
find a cut and update C and A’
end if
end while

5.4 Additional Insights

This section provides additional remarks and examples to shed more light on the linear
programming formulations. The section may be skipped without loss of continuity.
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5.4.1 NON-SURJECTIVE MAPPING

All occupation measures induced by the policies of interest are elements of Qo (19), that
is, Pri¥ € Xo := {z : (z,y) € Qo for some y} if 7 € IIopy, which is affirmed by Lemma 7
stated in Appendix A. However, in general, P> (Ilcpy) C Xo, i.e., the set PP (Ilcpy) is a
proper subset of Xy. In mathematical terms, the mapping (9) between the set of policies
IIopy and the set Xy is injective but non-surjective. In turn, there may exist elements of
X, that are unpaired with policies in IIopy. This is illustrated by the following example.

Example 2. Consider the MDP in Figure 2(b). It is easy to see that x for which s, =
Tsgas = 1/2, Tsya; = Tspay, = Tsgay, = 0 15 in Xo, i.e., x € Xo. However, the only policies in
epy that satisfy Pro°(se, as) + Proc(ss, a2) = 1 are the deterministic policies 7y, ma, which
have mi(az|s2) = 1,m1(az|s3) = 0 (for which state sy is recurrent and s3 is transient) and
ma(ag|s2) = 0,me(az|s3) =1 (for which state s3 is recurrent and sq is transient). However,
PrX (s2,a2) = Prie (s3,a2) = 1. Thus, x ¢ P*(Ilcpy).

5.4.2 INSUFFICIENT CONSTRAINT SET

The set @)y correctly encodes constraints on the limiting distributions of Markov chains
induced by policies in IIopy (with the state classification corresponding to (M) and 7(M)).
However, the lack of one-to-one correspondence between feasible solutions and policies (see
Section 4.1) is not fully resolved by the constraint set (19) without the additional constraints
in (20) or (21). In particular, consider the linear program LP( with feasible set Qg

(LPp) : max Z Z Tsq Z T(s'|s,a)R(s,a,s") subject to (z,y) € Qo (24)

s€S acA(s) s'eS

The steady-state distribution of the policy (14) derived from an optimal solution (z*,y*)
to LPg is generally not equal to z*. In turn, specifications encoded as constraints on the
state-action variables as in (22) will not necessarily be met by the policy. This is best
illustrated via a simple example.

Example 3. Revisit the three-state example of Figure 2(b) and define the rewards R(s1,a1) =
R(s1,a2) = R(s2,a1) = R(s3,a1) = 0, R(s2,a2) = R(s3,a2) = 1 and initial distribu-
tion Bs, = 0,85, = Bsy = 1/2. The MDP has one TSCC such that, r(M) = ri(M) =
{s2,83},7(M) = {s1}. The solution to LPqy in (24) which has 3, = 5., = Tha =

T, = 0,05, = 1/3,2%, 0, = 2/3, Y5 a; = Ysiay = Yisay = 0, Yiya, = 1/6, is optimal (albeit
not unique). However, the policy m := w(z*,y*) has Pry°(s2, a2) = Pri°(ss,as) = 1/2, hence

in general Pr° # x* .

5.4.3 REMARKS ON SSPS(Il¢py)

1) Note that, in the previous example, the derived policy m ¢ Ilgpy. However, if 7 :=
m(x*,y*) € epy, where (z*,y*) is an optimal solution to (22), then 7 will be optimal
over llopy O Il gp i.e., solves SSPS(Ilopy). This follows from the optimality of (z*, y*) and
Lemma 6 in the appendix, which gives a sufficient condition for the existence of a one-to-one
correspondence between the elements of Qg and the steady-state distribution of policy (14).
2) In general, if we dispense with the flow constraints in (21), we have no guarantee that
the TSCCs 7, (M) will be unichain in M, under such 7. For example, M, induced by the
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policy 7 given in Example 3 has 71 (M) = {2}, r2(My) = {3}, i.e., 7 ¢ IIgpy. However, if
the rewards in this example are modified such that R(si,a1) # R(s2,a1) while keeping all
other rewards unchanged, then w € IIgpy. Therefore, under certain sufficient conditions on
the reward vector, LP3 in (22) solves SSPS(Ilcpy).

5.4.4 EXISTENCE OF OPTIMAL POLICIES

Modified LP. The feasible set @ for LP; is not compact given the strict inequalities of
constraint (v) in (20). Therefore, the maximum in (20) may not always be attained on the
set. This can be easily remedied by replacing the strict inequalities with bounded ones via
introducing an arbitrarily small constant € > 0 on the right-hand side. Even when such
requirement is not made explicit, a constant € is dictated by the numerical precision of
the LP solvers. We define LP(¢e) similar to (20), with constraints (v) replaced with the
bounded inequalities in (v)" for some € > 0,

max Z Z xsqR(s,a) subject to (x,y) € Qo, (iv),
LPl(E) s€S acA(s) (25)

() msq > €, Vs € (M), k € [m],a € A(s) .

Theorem 6 stated next is analogous to Theorem 2 with the modified program LP(e);
it establishes that every feasible solution of LPj(e) yields a policy that is in IIgp, and
conversely, for every EP policy that meets the steady-state specifications, there exists an € >
0 such that its steady-state distribution is LPj(e)-feasible. Moreover, the policy obtained
from the optimal solution to LP;(e) solves SSPS(IIgp), that is, its expected average reward
can be made arbitrarily close to the supremum over the set Ilgp as € — 0.

Theorem 6. Given an LMDP M = (S,A,T, R, 3, L, ®?°) and LP1(¢) as in (25), then
(1) The policy m in (14) corresponding to a feasible solution of LP1(€) is in lgp.

(2) If Ir € llgp and ™ meets the specifications ®°, then Je > 0 such that Pry® is a
feasible solution of LP(e).

(3) Let x*,y* be an optimal solution to LPi(€) and 7* := 7w(z*,y*) the corresponding
policy in (14). Then,

i (sup R2(9) - REE(9)) =0 (26)

e—0 r€llpp

A similar result holds for CP policies if the maximum in (21) cannot be attained over
the feasible set by transforming constraints (z)—(ziii) to bounded ones. The generalization
is straightforward, thus omitted for brevity.

Compact policy set — policies with bounded support. The foregoing existence issue
stems from the open set definition of IIgp in (15), a result of which is that an optimal policy
from the set (i.e., one that maximizes the average reward) may not always exist. Therefore,
we introduce a slightly modified definition next, in which we force a lower bound on the

1053



ATiA, BECKUS, ALKHOURI, & VELASQUEZ

values a policy assumes on its support, i.e., require that m(a|s) > d, for some arbitrarily
small constant 6 > 0. We formally introduce the definition of the compact set of policies,
then state a result analogous to Theorem 2 based on this definition for completeness.

Definition 19. Given an MDP M and some small 6, where 0 < § < 1/ max,e, () |A(S)],
we define the set Ilgp(6) C Illgp of EP policies of bounded support as,

gp(8) = {7 € Ug: r(Mz) =r(M) A w(als) >6,Vs € r(M),a € A(s)} . (27)
Theorem 7. Given an LMDP M = (S,A,T,R, 3, L, ®°) and the set lIgp(d) in (27),
(1) The policy m in (14) corresponding to a feasible solution of LP1(0) is in I gp(d).

(2) Let x*,y* be an optimal solution to LP1(5) and R*(d) the average reward of the cor-
responding policy in (14). Then,

li > (3) — R*(5) = 0. 2
iy max RE(B)— R*(6) =0 (28)

According to Theorem 7, every feasible solution to LP;(d) yields a policy in IIgp(d).
Also, the gap between the optimal expected average reward over the set IIgp(d) and the
optimal reward of LP;(d) approaches zero as 6 — 0.

6. Extensions

In this section, we explore extensions beyond class-preserving policies, as well as an alter-
native type of specifications applicable to transient states.

6.1 Beyond Class-Preserving Policies

In this section, we derive an alternative condition given in Theorem 8 under which LPj3 in
(22) is guaranteed to yield a stationary policy whose steady-state distribution meets the
desired specifications. The policy generated need not be in IIgpy. The proof of Theorem 8
follows from the sufficient and necessary optimality conditions of program (22) (Bertsimas
& Tsitsiklis, 1997). The condition is characterized in terms of the rewards vector R =
[R(s,a)],s € S,a € A(s). First, we introduce the following definition.

Definition 20 (Cone of feasible directions). The cone V (z,y), where (x,y) is any feasible
solution to LP (22), is defined as

(v =(h,z) € R2ISIIAI.
Sacas) hsa = Dyes Lacais hoaT (5], a), Vs €S,
Yaca(s)(hsa + 7sa) = Lyes zsal (5], a), Vs € S,
Vz,y) == 2seL; 2uacA(s) sa <0, i € u(z),
ZseLj ZaeA(s) hsa 2 0, j€l(x),
hja =0, Vf € F(M),a € A(f),
hsa > Oa V(S, CL) c n(x)’
Zsa 2 0, V(s,a) € m(y
(29)
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where u(z) = {i : 301, Y qea(s) Tsa = uik,l(z) = {j : ZL D acA(s) Tsa = i}, n(z) =
{(s,a) € r(M) x A(s) : w50 = 0} m(y) = {(s,a) € S x A(s) : ysa = 0}

Theorem 8. Given LMDP M, let (z,y) be a feasible solution of (22). If R = [R(s,a)],s €

S,a € A is an interior point of the dual cone
V*(z,y) = {u e RSl (4 v) <0, for every v e V(z,y)},

where (,) denotes the inner product, then the policy m in (14) meets the specifications ®¢°.
Further, m is the unique optimal policy in the class of policies for which F(M) C #(Myz).

We remark that the policy could be outside of II¢opy, but preserves the transience (or
isolation) of the states in 7(M ). While the statement of Theorem 8 imposes a conservative
assumption on the rewards vector which may be generally hard to verify, it opens up pos-
sibilities for further research on steady-state planning over larger sets of policies (beyond
IIgp, ep and I eopy considered in this paper) — in this case, sets of policies that preserve
the transience of 7(M). Ultimately, one would hope to tackle SSPS(II) for arbitrary sets
of stationary policies II. These are directions for future investigation.

6.2 Transient Specifications

In Definition 12, we introduced specifications on the steady-state distribution. However,
such specifications are only useful in the recurrent sets where states are visited infinitely
often. A transient state f € 7(Mj ) on the other hand will only be visited a finite number
of times, i.e., Pro°(f) = 0 for any stationary policy 7 € IIg. In this section, we present an
alternative specification type which can be applied to transient states.

We first describe a suitable property of transient states against which specifications can
be applied. We then define transient specifications based on this property.

Definition 21 (Expected number of visits (Kemeny & Snell, 1963)). Given an MDP M
and policy 7 € Ilg, the expected total number of times that state f € 7(My) is visited under
policy T is

Cﬂ(f) = gEMW)(I - Zﬂ')_lef . (30)

Definition 22 (Transient specification). Given an MDP and a set of labels L =
{L1,..., Ly, }, where L; C 7(M), a set of transient specifications is given by ¥ =
{(Li, [li, wi]) }oty . Given a policy m, the specification (L;,[l;,wi]) € @Y is satisfied if and
only if ZfeLi Ce(f) € [li,ui]; that is, if the expected number of wvisits to transient states
f € L; in the Markov chain My falls within the interval [l;, u;].

Suppose that we have a set of labels L' over transient states, and a set of transient
specifications <I>tL’"t, We can augment the LMDP found in Definition 12 to incorporate these
transient specifications as follows. Let L be the set of steady-state labels, and let ®3% be
corresponding steady-state specifications. We define a complete set of labels L = (L, L'")
and specifications ®7, = (9%, <I>LtT) and define an LMDP as M = (S, A, T, R, 3, L, ®r).

Our next result regarding y and (, for the transient states gives a sufficient condition
for the policy to meet the transient specification.
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Proposition 1. Given an MDP M, let (x,y) € Qo and 7 as in (14), where Qg is defined
n (19). If # € Hepy, then yg = (x(f) for any state f € 7(M).

We remark that this is analogous to Lemma 6 stated in the appendix, which establishes
that if we have a point (x,y) € Qo for which (14) yields a CPU policy, then Pr2® = z.

Given this characterization, we can augment LP; (20) and LP3 (21) with constraint (zv)
to synthesize policies subject to transient specifications.

(20) L<D Y ysa < wiy (L, [l ui]) € DY (31)
s€L; a€A(s)

7. Numerical Results

In this section, we present a set of numerical results to corroborate the findings of the
theoretical analysis. In Section 7.1, we verify the steady-state behavior of the policies
derived from the proposed LPs using the Frozen Islands example of Figure 3, followed by a
study of their behavior in the presence of additional transient specifications in Section 7.2.
In Section 7.3, we present the results of a study which shows that the empirical steady-
state distributions and average number of state visitations induced by the derived policies
converge to values that meet the desired specifications. In Section 7.4, we evaluate the
average reward achieved by said policies and examine the impact of various restrictions in
their respective LPs on the optimal values of the objective using the Toll Collector example
of Figure 13. A case study is also presented featuring the progress of the iterative Algorithm
1 for generating a CPU policy. A natural generalization of the specifications to the product
space of state-action pairs is presented in Section 7.5. We present two numerical experiments
to support the theoretical findings of Section 5.4.4 in Section 7.6. Finally, we examine the
scalability of the proposed formulations in Section 7.7, where we present the runtime results
for problems with increasing size conducted in various environments.

7.1 Steady-State Specifications

In this section, we demonstrate the correct-by-construction behavior of the policies pro-
posed. As an illustrative example, we first examine the behavior of a policy in IIgp using
the Frozen Island example shown in Figure 3. We run our proposed LP; (20) to calculate
the steady-state distribution Pr2°(s), and show the values for the two TSCCs (the two small
islands) in Figure 6.

The heat map gives insight into the means by which the agent satisfies the specifica-
tions. After the agent enters an island, it spends a large amount of time in states ss3, S3g,
S48, S49, Se1, and sgq, in the sense of asymptotic frequency of visits as given by Pr>°(s).
The agent also frequently visits states s3g and sg; to satisfy the steady-state specifica-
tions (Lieg1,[0.25,1]) and (Liog2, [0.25,1]), respectively. Likewise, to meet specifications
(Lcanoel [0.05,1.0]), (Lcanoe2; [0.05,1.0]) (Lgsn1,[0.1,1.0]), (Lasne, [0.1,1.0]) the agent often
visits states ss3, S49, S48, and Sgq, respectively. In addition to visiting the aforementioned
states to satisfy the constraints, the agent also visits state ssg over 25% of the time to
maximize its expected reward (recall that R(-, -, sag) = R(-,-, s64) = 1).

The right three plots of Figure 7 show the values of Pr2°(s) along with the optimal
values % obtained from LP; (20) for SSPS(Ilgp), LP2 for SSPS(Ilcp), and Algorithm 1 for
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Island 1 Island 2

Figure 6: Heat maps showing the steady-state probabilities Pri°(s) for states s € (M)
belonging to the two T'SCCs of the Frozen Lakes example in Figure 3.
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Figure 7: Example showing that Pr°(s) = z%, s € r(M) for policies in Il gp, [Icp and Ieopy
derived from the proposed LPi,LPs and Algorithm 1, but not for Kallenberg’s and the
discounted case (discount factor v = 0.9999).

SSPS(Il¢py). In each of these, the steady-state distribution matches the one estimated by
the LP for every state. This in fact holds for all state-action pairs as well, i.e., Pr>° =zx*.
This condition is essential to the proof of Theorems 2, 4 and 5 and ensures that the policy
is both optimal and satisfies the steady-state specifications. We calculate the policy cor-
responding to the optimal solution of LP (4.7.6) by Kallenberg (1983) given in (13) with
the additional specification constraints for comparison. As shown in Figure 7 (left), the
derived policy fails to give a steady-state distribution equal to z*. In addition, we obtain a
policy from the solution to LP (3.5) by Altman (1999) of a discounted reward MDP (with
the additional specification constraints) using a discount factor v = 0.9999. As observed
in the second from the left plot of Figure 7, the steady-state distribution of the derived
policy does not match z*. In Table 1, we show the ramifications when Pr2° # z*. For
each specification (L;, [l;,u;]) € ®3°, Table 1 shows the values of eTx"ii = D s, Ts and
Pr°(L;) == ) _ep, Pry(s), demonstrating that all of the specifications are met for the pro-
posed methods. For Kallenberg’s and the discounted formulations, however, although leogl
and r7_ satisfy the specification, the policy yields steady-state distributions Pr7®(Lieg1)
and Pr2°(Lcance1) which violate the specifications (these violations are highlighted with
bold red text). In other words, eTx’icanoel # Pr2°(Lcanoe1) and eszlogl # Pr°(Ligg1) for
the Kallenberg and discounted formulations. The table also shows the optimal reward R*
given by our proposed methods, as well as the expected average reward yielded by the
policy, i.e., RY° == g ZaeA(s) Pr2°(s,a)R(s,a). While R* obtained by Kallenberg’s for-
mulation is larger than that of the EP and CP methods, the proposed LPs produce policies
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SS Specifications Rewards
Method Logs (> 0.25) Canoes (> 0.05) Fish Rods (> 0.1)
Island 1 Island 2 Island 1 Island 2 Island 1 Island 2 R* RX®
xz* Pr> x* Pr> x* Pr> x* Pr> xz* Pr> z* Pr>
CPU 0.25 0.25 0.25 0.25 0.05 0.05 0.05 0.05 0.26 0.26 0.10 0.10 0.3621 0.3621
CP 026 0.26 0.25 0.25 0.05 0.05 0.05 0.05 0.21 0.21 0.14 0.14 0.3605 0.3605
EP 025 0.25 0.25 0.25 0.05 0.05 0.05 0.05 0.25 0.25 0.10 0.10 0.3547 0.3547
Kallenberg 0.25 0.17 0.25 0.36 0.05 0.04 0.05 0.07 026 0.19 0.10 0.14 0.3621 0.3278

Discounted (y =0.999) 0.25 0.04 0.25 0 0.05 0.0037 0.05 0.0013 0.26 0.52 0.10 0.39 0.3576 0.9061
Discounted (y =0.9999) 0.25 0.18 0.25 0.15 0.05 0.03 0.05 0.04 026 035 0.10 0.21 0.3617 0.5530

Table 1: Steady-state specification comparison. Bold red text indicates violated steady-
state specifications. Constraints are specified in the header for each label type.

which yield larger values of R*°. Additionally, as the discount factor v approaches 1, the
discounted reward does not converge to the expected reward. The policies obtained from
the discounted reward formulation achieve larger rewards R*° by violating the steady-state
constraints and spending larger proportions of time in the rewarding fishing sites.

7.2 Synthesis for Transient Specifications

In this section, we demonstrate the behavior of the policies derived subject to transient
specifications following the framework described in Section 6.2. We again compare the
policies derived from our proposed formulations to that of Kallenberg with regard to meeting
such specifications for the Frozen Islands example of Figure 3. The labels over states in
T(M) are set to Liools = {57,513, 523}, Lgas = {510,516}, and Lgupplies = {52,515, 520} as
shown in Figure 9 (left). The agent sets out to collect some tools, fill up enough gas, and
pick up the required fishing supplies before transitioning to one of the smaller islands which
correspond to TSCCs. This is reflected in the transient specifications (Liools, [10, Nir]),
(Lgas, [12, Nix]), (Lsupplies, [15, Nix]) € ®4". These specifications bound the expected total
number of visitations to certain states in 7#(M), where Ny, = 200. Figure 8 presents the
values of the expected total number of times a state s € #(M) is visited under policy m,
denoted by (- (s), along with the optimal values y}, obtained from Kallenberg’s LP, LP;
(20), LPy (21), and Algorithm 1. As shown, the results match the expected number of
visitations for the proposed methods for every state.

For each transient specification (Lj, [l;,u;]) € @, Table 2 shows eTyzL_ =D rern; Uy
and the expected total number of visitations achieved by the policy in corresponding states
Ce(Ly) == ZfeLi Cx(f). As shown, LPq, LP9 and Algorithm 1 yield policies that satisfy the
given specifications, while the policy derived from the Kallenberg LP does not. The last
column shows the expected total number of visitations achieved by the policy on the larger
(transient) island, where (r(F(M)) = 3 rerpn) Gr(f)-

Figure 9 (right) shows a heat map for the expected number of visits to the transient
states, i.e. the large island. The policy is calculated using LP; (20). In addition to
the constraints (Ltools, [10, Ntr)), (Lgas, [12, Nir]), and (Lsupplies, [15, Nir]), we also add the
constraint (F(M) \ (Liools U Lgas U Lsupplies) 5 [0, 10]) to reduce the amount of time spent in
transient states with no resources. As shown, the agent meets the specifications largely by
visiting states si13, sig, and sog to collect tools, gas, and supplies, respectively.
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Figure 8: Example showing that ((s) = y%, s € 7(M) for the proposed methods, but not
for Kallenberg’s formulation.

Large Island (Transient)

Figure 9: Distribution of labels on the large island, Lioois = {57, 513, 523}, Lgas = {510, 516},
and Lgupplies = {52, 515, 529} (left). Heat map showing the expected number of visits ((s)
for states s € 7(M), i.e., the states belonging to the large island in Figure 3 (left).

Transient Specifications (N¢, = 200) Results
Method Tools (>10) Gas (>12) Supplies (> 15)
y* Cr y* Cr y* Cr R* ((T(M))
CPU 19.22  19.22 15.51 15.51 21.15 21.15 0.3621 200
Cp 18.97 1897 1526 15.26 20.67 20.67 0.3607 200
EP 19.32 19.32 15.51 15.,51 21.15 21.15 0.3547 200
Kallenberg 19.34 5.55 15,53 3.95 21.17 5.82 0.3621 56.5

Table 2: Bold red text indicates violated transient specifications. Constraints are specified
in the header for each label type.
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Figure 10: Execution of policy, showing (left) average visits and (right) average reward up
to time n.

7.3 Empirical Study

In this section, we simulate the policies derived from our LPs to show the validity of our
formulations and to further demonstrate the failure of the Kallenberg formulation to yield
optimal rewards and meet specifications.

Let S; and A; denote the state and action, respectively, of the Frozen Island example at
time ¢ assuming policy 7 and initial distribution 5. The average number of visits fr, and
average reward gr, up to time n are defined as

1 sel

Fral =2 Y1l 1) ={ 5 25T (32)
t=1

1 n
g7r,n - 5ZR(St7At7St+1)' (33)

t=1

We take an ensemble average over 5000 paths.

First, we solve LP (4.7.6) of Kallenberg (1983). In Figure 10 (left), the solid green line
shows the average number of visits to the states in Liog1 = {534, 536, 538, 543}, and the hori-
zontal dashed green line indicates the steady-state distribution. The square markers show
the lower bound of the specification on the logs. While the value of fr ,(Liog1) converges
to the steady-state distribution, the policy fails to meet the steady-state specification. This
follows from the fact that Pri® # x*.

Next, we produce an EP policy by executing LP; (20), using no transient specifications.
The average number of visits to the states in Lo is shown as a solid red line in Figure 10
(left). Not only does the average number of visits converge to the corresponding steady-state
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distribution (dashed black line), but the specification is met. We observe similar results for
CP and CPU policies as well.

In Figure 10 (right), the solid green and red lines show the average reward for the
Kallenberg LP and our proposed LP1, respectively. The dashed green line indicates R* for
Kallenberg’s formulation. As can be seen, for similar reasons as before, the average reward
converges to a reward other than that output by the LP. On the other hand, LLP; converges
to the corresponding LP reward R* (black dashed line).

The vertical green and red dashed lines in Figure 10 indicate the average time of entry
into (M) for LP; and Kallenberg’s LP, respectively, where the time of entry ¢, is given
by

¢r =min{n | S, € r(M)}. (34)

In both cases, the agent spends an unduly amount of time in the transient states before
transitioning to a recurrent set, which may be undesirable. To reduce the amount of time
spent in the transient states, we next introduce a transient specification (7(M), [0, Ni|)
and rerun LP;. The constant Ni; is used to control the time of entry into the recurrent
sets. The results are shown for Ny, = 5 (blue lines) and Ny, = 500 (yellow lines). In both
cases, convergence of the average visits to Pr7°(Liog1) occurs at a much faster rate, leading
to a much faster accumulation of reward.

We now comment further on the simulation for Ny, = 5. The policy produced by LP;
separates the first small island into two main subsets. The agent tends to visit state s33
repeatedly after entering the first small island, leading to an above average number of visits
to logl states. This results in an initial “overshoot” of Pry°(Lioe1). This effect is not seen
for Niy = 500 due to the averaging effect of f,(L). Likewise, the policy tends to delay the
entry of the agent into state s4g where rewards are accumulated. This delay is especially
noticeable in gr , for Ni; = 5 due to the logarithmic time scale.

In the same vein, we explore the simulated behavior of our policies in terms of the number
of visits to transient states, where the number of visits hy (L) to states in L C 7(M) up
to time n is defined as

han(L) =Y 1L(Sh). (35)
t=1

In Figure 11, we show the number of visits to the transient states for the same policies as
shown in Figure 10. For the policies produced by LP1, hr »(7(M)) converges to the optimal
Yr(m)- On the other hand, as described in Section 7.2, for the Kallenberg formulation we
have (; # y* and so the derived policy fails to converge to y;f( M)

7.4 Comparison of Policies

Recall that policies in IIgp exercise all transitions in the TSCCs of an MDP. By contrast,
policies in [Iop and Il opy are less restrictive in that they only preserve the state classification
and the unichain property of these components, respectively. In turn, they often yield larger
expected rewards while simultaneously satisfying desired specifications. In this section, we
verify the correctness of such policies and compare their optimal rewards.
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Figure 11: Execution of policy with transient specifications showing the number of visits to
transient states up to time n.

Figure 12 illustrates the Markov chains induced by policies in IIgp, [Iop, and epy,
respectively, for the MDP shown in its first column. The policies are obtained from the
optimal solutions of the corresponding LPs. As observed, the Markov chain induced by the
EP policy (Column 2) contains all transitions in the TSCCs of the underlying MDP. The
self loops of states ss,s5, and sg are missing in the Markov chain induced by the CP policy
without affecting the recurrence of each of the TSCCs. In the case of the Markov chain
induced by the CPU policy, the state s3 is transient in the TSCC {s3, s4, 5}, but all TSCCs
of M remain unichain in the induced Markov chain. That is, each TSCC contains exactly
one recurrent component.

In order to compare the performance of our EP, CP, and CPU policies, we define the
Toll Collector example given by the LMDP M of Figure 13. In this problem, an agent must
choose one of m cities to visit, each of which corresponds to a TSCC of M. The k-th city
consists of ng, k € [m] counties represented as vertices and roads connecting these counties
represented by edges. The roads with toll booths yield a positive reward for collecting a
toll. However, the agent needs to spend some time on roads without toll booths in order to
build them. We consider an instance of the Toll Collector problem for which m = 3 and the
number of states per TSCC ny = n, Vk. To highlight the gap between the optimal rewards of
the different policies, we define the labels Ly = {s € (M) : R(s,a,s’) = 0,Va € A(s),s’ €
rr(M)} and ®F° = (L, [[,1]), respectively, Vk € [m]. As such, per ®¢°, the steady-state
probability of states with no rewardful transitions is forced to be bounded below by [. We
will use this steady-state specification with various values of [ to show that, for lower values
of [, there is a significant gap in expected rewards observed by the various policies. As this
[ value is increased, the gap can be shown to diminish.
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Figure 12: Markov chains induced by the EP, CP, and CPU policies. The first column
shows the underlying MDP M = (S, A, T, R, 3). Transitions designated with circles have
unit reward, otherwise the reward is 0. The initial distribution £ is uniform over S.

® Rewards

Figure 13: Toll Collector problem given by LMDP M = (S, A, T, R, 3, L, ®7°) consisting of
m fully-connected TSCCs 1 (M), k € [m] and 7#(M) = {sg}. The k-th TSCC consists of ny
states. State sg has m actions, each of which leads to one of the m TSCCs with probability
1. For each state s; in rx(M), there are n; — 1 actions, each of which causes a transition
to another state in r (M) with probability 1. The reward function is defined such that, in
each TSCC, there is a positive reward by taking the action that leads from some state s;
to its neighbor s;11 and vice-versa. That is, R(s;,-, Si+1) = R(Si+1,,8;) = 1 for some i.
These rewards are designated with red solid circles in each TSCC. All other rewards are 0.
The initial distribution § is uniform over S. The labels and steady-state specifications are
given by Ly, = {s € rpz(M) : R(s,a,s') = 0,Va € A(s),s" € re(M)} and ®3° = (Ly, [I,1]),
respectively, for all k& € [m)].
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Figure 14: Comparison of EP, CP, and CPU policies for the Toll Collector example. (Left)
Expected reward as function of the total number of states in each TSCC when [ = 0.
(Right) Expected reward as function of the lower bound [ on the steady-state probability
when n = 25.

Figure 14 (left) compares the optimal rewards achieved by the different policies as a
function of the total number of states in the TSCCs (i.e., 3n) when [ = 0. As the number
of states increases, the gap between the average reward of the EP policies and their CP
and CPU counterparts increases. In this scenario, the EP policies incur a quadratic loss
relative to CPU policies since they are forced to exercise all existing transitions equally
and there are O(n?) such transitions in the k-th TSCC. On the other hand, an optimal
CPU policy preserves the unichain property while exercising exclusively the two transitions
with positive reward in each TSCC. A smaller loss is incurred by CP policies since they
are only required to preserve the recurrence of the TSCCs and can thus restrict themselves
to visiting the outer perimeter of each TSCC. In doing so, the CP policies incur a linear
loss when compared to the CPU policies because they must visit every state in a TSCC
infinitely often in order to preserve the recurrent classification of these states.

Figure 14 (right) illustrates the average rewards as a function of the lower bound [ for
the three types of policies when the number of states in each TSCC is n = 25. When [
increases, the average reward gap between the different policies diminishes since the agent
has to spend more time in states with no rewards to meet the desired specifications.

7.4.1 OPERATION OF ALGORITHM 1

In this subsection, we present in detail the operation of the proposed Algorithm 1 to generate
a CPU policy. Consider the LMDP given in Figure 15. For each iteration, LP (22) is solved
and the digraph of the support of the solution in each TSCC is shown (colored nodes). In
the first iteration, for the first TSCC, states s4 and s5 form a SCC, while s3 does not belong
to the support of the solution. For both the second and third TSCCs, all respective states
belong to the support but they do not form a SCC, thus we can find cut(s) (as can be seen
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at the bottom of the figure of the second iteration). In the second iteration, the dotted
edges are added which results in one SCC for the second TSCC (no additional constraints
are needed) but not for the third TSCC. Thus, we consider additional cuts as shown at the
bottom of the figure of the third iteration. In the last iteration, the stopping criteria is met
(the digraph in each of the three TSCCs is strongly connected). The final Markov chain
induced by the CPU policy derived from the solution to the LP of the third iteration is
shown on the right side of Figure 15. States {s3, 4, $5} form a unichain component, states
{s6, s7, 8, S9} form a recurrent component, and states {s1g, S11, S12, S13, S14, S15} belong to
a TSCC where all edges are preserved.

Iteration -1- Iteration -2- Iteration -3-

Final Markov Chain

______ B T T
Added constraints Added constraints Added constraints
TSCCy:{.} TSCCy:{.}, TSCCy:{.},
TSCCy:{.} _{(Sﬂval):} _{(SB:al)r}
° Rewards TSCCs:{.} TSCCy: (9, a3) TSCG: (59, @2)
. (514.«11).} (514, @1),
@ Labels rscen{ (15,02),
TSCCy:
(s11,@1),
(s12,@2)

Figure 15: Illustration of the progress of Algorithm 1 for generating a policy in IIgpy. The
LMDP M = (S, A,T,R, 3, L, ®}°), where S, A, and R are given in the MDP (first column)
and (3 is uniform. labels are Lgola1 = {54,585}, Lgola2 = {S6,57}, Lgolas = {510,511}, and
the steady-state specifications are (Lgolq1, [0.20, 1]),(Lgotd2, [0.10, 1]), (Lgolas, [0.15,1]) (first
column). In each iteration, we illustrate the support of the optimal solution for the TSCCs
of M (middle columns) along with the edges (state-action pairs) for a given cut. After
three iterations, the support of the optimal solution corresponds to SCCs in each of the
TSCCs. Every TSCC of M is a unichain component in the Markov chain M, induced by
the resulting policy (last column).

7.5 Specifications on State-Action Pairs

Up to this point, we have defined steady-state and transient specifications over states.
However, the framework proposed can be used to synthesize policies with provably correct
behavior on the level of state-action pairs as well. As an example, consider the LMDP
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Specifications
Policy Steady-State Transient
Prif(ss,a1) Prif(sg az) Pry(sio,a1) (rlsz,a1)  Gr(7(M))
EP 0.11 0.12 0.20 26.2 50
CPp 0.10 0.12 0.20 31.03 50
CPU 0.11 0.12 0.20 28.82 50

Table 3: The policies meet transient and steady-state specifications on state-action pairs
for the MDP defined in Figure 15.

M= (S, A, T,R,3,L,®) defined in Figure 15 (left). We define labels L = (L*°, L'") over
state-action pairs, i.e., LI’ | = {(s2,a1)}, and Lfg’gldl = {(s4,a1)}, Lg&dg = {(s6,a2)}, and
Loz = {(s10,a1)}. The specifications are given as &1, = (P, ®., ), where the steady-
state specifications are (Lgo)qy,[0.10,1]), (Lgoge, [0-12,1]), and (Lgg g3, [0.20,1]), and the
transient specifications are given as (LI” |, [20,50]). We also set the average total number
of visitations Ni; = 50. Table 3 shows the steady-state distributions Pr;°(s,a) and the
expected number of visitations (. (s, a) for the labeled sets, as well as the total number of
visitations (;(7(M)) to the set 7(M) for EP, CP and CPU policies. As shown, the policies

meet both steady-state and transient specifications defined over the product space S x A.

7.6 Modified LP and Policy Set

Impact of € in LP;(€). In this section, we use the MDP example of Figure 15 to inves-
tigate the impact of the parameter ¢ > 0 on the total reward induced by an optimal EP
policy. In particular, we solve LP;(¢) with descending values of € and compute the optimal
reward R*(e). As shown in Figure 16, R*(€) increases monotonically as we decrease € with
diminishing return, and converges to nearly 0.36 as ¢ — 0. For values of € below 1074,
the change in average reward if we further decrease € is insignificant. Therefore, in our
experiments we have set € = 1074,

0364
0.34 -
0.32 . i
R
0.3- (@ |
0.28 i
026¥ L— P
107 107 10
Constant € > 0

Rewards

Figure 16: Convergence of the average expected reward as we vary the parameter € in (25)
for the MDP example of Figure 15.

Policies with bounded support. Here, we verify the result of Theorem 7. Consider
the example of Fig. 2 where R(s2,a1) = R(s3,a1) = R(s3,a2) = 0.1 and R(s2,a2) = 0.5.
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Recalling that ¢ is a lower bound on the support of the policies in IIgp(d) in (27), we
can show that the optimal average reward over I gp(0) is max ep,p5) Ry = 0.5(1 — 6)% +
0.25(1 — 6) + 0.162, achieved by the policy 7* which has 7*(sa]az) = 7*(s3|a1) = 1 — 4,
and 7*(a1|s2) = 7" (az|s3) = 0. The reward R*(6) of the policy m in (14) obtained from
the optimal solution to LP;(d) in (25) is R*(d) = 0.5 — 1.26, where 7(a1|s2) = 6/(1 — 26),
m(azls2) = (1—9)/(1—20) and 7(a1|s3) = w(az|s3) = 1/2. Fig. 17 shows that the difference
RX — R*(0) — 0 as 6 — 0 as per Theorem 7.

@o.o4—””“‘ | . . -
% ——MaXyerr,, 5 R — R (9)]
% 0.02- -
)]

0 L i i i i i | n T s & "~

107" 102 107 107

Constant 6 > 0

Figure 17: The difference RS — R*(6) — 0 as § — 0, where 7% = argmax,cy,,.(5) [27° and
R*(9) is the reward of the policy obtained from an optimal solution to LP;(d).

7.7 Scalability

We demonstrate the scalability of the proposed formulations using two sets of experiments.
The first set of experiments are performed on a standard desktop with 16GB of RAM using
the Matlab CVX package for convex optimization (Grant & Boyd, 2014, 2008). We also
perform a second set of experiments on a standard desktop of 128GB of RAM using the
commercial CPLEX Optimizer, which provides a higher-precision mathematical solver for
large-scale linear programming.

For the first set of experiments, we experiment with instances of increasing size of
the Toll Collector problem (Figure 13), the Frozen Islands environment (Figure 3) and
random partition graphs from the NetworkX library (Hagberg, Swart, & S Chult, 2008).
The Toll Collector problem uses an MDP with three TSCCs, each of size n, while the
Frozen Islands environment consists of an n x n grid. We also experiment with random
MDPs constructed from n-node directed Gaussian partition graphs generated using the
NetworkX toolbox (Hagberg et al., 2008). For such graphs, the cluster sizes are drawn from
a normal distribution with mean and variance n/5, and two nodes within the same cluster
are connected with probability p;,, while two nodes in different clusters are connected with
probability pyy: (Brandes, Gaertler, & Wagner, 2003). For these partition graphs, the state
space corresponds to the vertex set, the number of actions is equal to the maximum node
outdegree and the transitions are deterministic. The initial distribution is uniform over
the set 7(M) and the rewards are selected such that only the first action from every state
yields a positive reward, i.e., R(s € r(M),a1,-) = 1 and 0 otherwise. An instance of an
MDP constructed from a 40-node Gaussian partition graph is illustrated in Figure 18. The
specifications for the three environments are given in the caption of Table 4.
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For each example, we generate EP, CP and CPU policies using LP1, LPs and Algorithm
1, respectively, and report on the runtime as we increase n. All instances were verified to
meet the given specifications. The results are summarized in Table 4 demonstrating the
scalability of the proposed formulations. As shown, LPs incurs the largest runtime as it
incorporates additional variables in the flow constraints to enforce the recurrence of the

TSCCs.

B Statesin 7(M )
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® Statesin r(M) }3: <
s Ry
w33 "
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Figure 18: A NetworkX random 40-node digraph used to generate a LMDP for the third
example of Table 4.

To further examine the scalability of the LPs underlying the different policies to much
larger problem sizes, additional experiments are conducted using the CPLEX 12.8 solver.
We run simulations of the LP in (22), LP; (with the positivity constraints) and LPs (with
the flow constraints) for random instances of the Frozen Islands problem. The runtime
results are reported in Table 5. For a 64 x 64 and a 128 x 128 grid, LPy (the most complex)
is solved in about 20 seconds and 15 minutes, respectively, demonstrating the effectiveness
of the developed formulations even for MDPs with over ten thousand states.

8. Conclusion

A framework for steady-state policy synthesis in general MDPs was developed to derive
policies that satisfy constraints on the steady-state behavior of an agent. Linear program-
ming solutions were proposed and their correctness proved for classes of edge-preserving and
class-preserving policies. The framework also enables policies that meet specified constraints
on the expected number of times the agent visits transient states. Numerical simulations of
the resulting policies demonstrate that our approach overcomes limitations in the literature.

The article provides the first solution to the highly understudied problem of steady-
state planning over stationary policies in constrained expected average reward multichain
MDPs. The policies derived come with rigorous guarantees on the asymptotic long-term
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Example
Policy Toll Collector, 3n Frozen Lake, n x n Random Gaussian, n
15 30 45 60 75 8x8 12x12 16x16 20 x20 20 40 60 80

EP 05 1.18 24 47 699 196 2.87 5.17 797 061 1.58 234 4.16
CP 116 3.85 837 151 2448 5.08 25.81 108.49 431.38 4.56 5.84 19.06 35.74
CPU 045 087 154 248 3.72 197 4.77 7.6 12.62 4.8 6.74 12.04 17.35

Table 4: Average runtime results (in seconds) for 20 instances of the Toll Collector, Frozen
Islands, and Gaussian partition graphs of increasing problem size n. The Toll Collector
MDP consists of three TSCCs, each of size n. The detailed LMDP parameters are given
in the caption of Figure 13 with a steady-state specification lower bound [ = 0.05. The
three-island problem described in Figure 3 forms an n x n grid. In each of the smaller
islands, logs are randomly distributed over 1/4 of the states and a canoe (fishing rod) is
placed in the top-left (bottom-right) tile. For these experiments, we have the constraints
(Liog1 U Liog2, [0-3,1]), (Leanocet U Leanoe2, [0.05, 1]) and reward function R(:, -, Lggh1 U Lfgh2) =
1,R(+,+, S\ Lgsn1 U Lgshe) = 0. For the Gaussian partition graphs, we define a steady-
state specification (L,[0.05,1]), where L = {s;}, for some s; € r(M). The probability of
intra-cluster connection p;, = 0.9 and the probability of inter-cluster connection pg; is
0.05,0.01,0.01,0.005 for the 20, 40, 60, 80 nodes, respectively.

Frozen Islands Example

LP Size, n X n

8x8 16x16 32x32 64x64 128 x128

LP; (20) 0.0001 0.0017 0.0170 0.1187 20.306
LPy (21)  0.003 0.038 0.595  20.251 933.821
LP3 (22) 0.0001 0.0018 0.0168  0.1553 5.425

Table 5: Average runtime (in seconds) of 20 instances per LP for the three-island problem
described in Figure 3. These islands combined form an n x n grid. In each of the smaller
islands, logs are randomly distributed over 1/4 of the states and a canoe (fishing rod) is
placed in the top-left (bottom-right) tile. For these experiments, we have the constraints
(Liog1 U Liog2, [0.3,1]), (Leanoel U Lcanoe2, [0.05, 1]) and reward function R(-, -, Lsh1 U Lgish2) =
L,R(-,-, S\ Lgsnh1 U Lgsn2) = 0.

behavior of agents. The research findings have bearing on the fields of explainable, safe and
trustworthy AI, where there is increased concern about explaining AI decisions, ensuring
safety constraints are met, and building trust in the behavior of autonomous agents.
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Appendix A. Technical Lemmas

Proof of Lemma 2

Let w € Ilgp. Hence, r(M;) = r(M) according to (15). Consider the set of states ri(M)
in a TSCC of M, for some k € [m]. We will show that this set is also a TSCC of M.
To this end, we first show that they form a SCC in the transition graph of M. Since
7 € Ilgp, then 7(als) > 0,Vs € r(M),a € A(s). Hence, every action a € A(s) available
in state s € (M) is played with non-zero probability. From (1), for a pair of states
s,8" € rp(M), Tr(s'|s) > 0 if Ja € A(s) such that T'(s'|s,a) > 0. Thus, for every directed
path between a pair of nodes in r;(M) in the transition graph of M, there is a similar path
between the same nodes in the transition graph of M, . Therefore, the states r;(M) also
form a SCC in the transition graph of M. Also, the set r;(M) is reachable in M, since
r(M) C r(M,;). Finally, there are no outgoing edges to states in S\ rp(M,) since the
edge set of the transition graph of M, is a subset of the edge set of the transition graph
of M. We conclude that rp(Mz) = rg(M), ¥k € [m]. From the definition of the set of CP
policies in (16), it follows that = € II¢p, proving that IIgp C IIgp. The two conditions in
(16) are special cases of the more general requirements in (17), hence Illop C Ieopy. ]

The following lemma gives a characterization of the Markov chain state classification
induced by a policy (14) derived from a feasible point of the constrained set Qg in (19).

Lemma 3. Given an MDP M, let (z,y) € Qo defined in (19) and © := n(z,y) as in (14).
The following holds for the Markov chain M.

(a) If s € 7(M), then s € F(My), i.e., T(M) C F(Mxz).

(b) If s € reg(M) N E, for some k € [m], then s € r(My). As a consequence, if s €
(M) NF(My), then s € E,, i.e., x5 = 0.

Proof of Lemma 3

First, we show part (a), according to which every state in 7(M) is either transient or isolated
in the Markov chain M induced by a policy of the form (14) derived from a point in Q.
Consider f € 7(M). From constraint (i), we have xy = 0. Thus, from constraint (i),
(14) and the fact that f is only reachable from states in #(M),

vi=Br+ >, Y. yp(fIf )

frer(M) acA(f")

=B+ Y yp Y, T(fIf a)n(alf)

fler(M)  acA(f)

=B+ > ypT(fIf) (36)

frer(m)
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Note that the second equality above follows from the definition of 7 in (14) for a state
f ¢ E,. Two cases arise. If f ¢ E,, then yy = 0. Hence, 5y = 0 and T (f|f') = 0,Vf" € E,,.
Thus, we have shown that every state f in F, N#(M) can only be reached from states in
Fy N7(M), and that all such states have zero initial probability. Thus, every such state is
either isolated or resides in an isolated component. Therefore, f € #(M), where 7(Mj)
consists of transient or isolated states. Now consider the other case where f € E,, i.e.,
ys > 0. Assume, for the sake of contradiction, that f € r(Mj). Hence, f € F, for some
TSCC F (this subsumes the case where f is absorbing with |F| = 1). Then, it must be
that F' C 7(M) since f is not reachable from states S \ 7(M) even under an EP policy.
Summing (36) over the set F', we have

Doyr=D Bty Y yf/ (1)

f'eF frer JEF frer(M
= Bp+ D yf'ZTw G+ Dy (37)
fer FEF(M\F  jEF fler

where the second equality is due to the closure of the set F', implying that > jer T GIfH =1
for f/ € F. It follows that Sy = 0,Vf" € F, and Tr(f|f') = 0,Yf € (F(M)\ F) N E,.
Therefore, F' C 7#(Mj), yielding a contradiction. Hence, f € 7(M,;). We conclude that
(M) C 7(My).

Next, we prove part (b) which states that every state s in a TSCC of M for which
xs > 0 is both recurrent and non-isolated in M. Consider a state s € r (M) N E, for
some k € [m], so s > 0. Assume, for the sake of contradiction, that s € 7(My), i.e., the
state s is either transient or isolated. If s is transient, then the column of the matrix T2°
corresponding to state s is zero. Therefore, from constraint () in (19), we have zs = 0, i.e.,
s ¢ E,, yielding a contradiction. If s € F' for some isolated component F', then

e tys) = Z yraT(s'|f,a)

s'eF s'eF feF acA(f

by summing constraint (ii) over states s’ € F, and using the fact that 8y = 0,Vf € F and
that s’ € F is only reachable from states in the isolated set F. Since Y ., pT(s'|f,a) =
LVf € F,a € A(f), by the closure of F', we get that ), _pzy = 0 by interchanging the
order of the sums, i.e., s € E,, also yielding a contradiction. Hence, s € r(M;).

The second clause of Lemma 3 (b) remains to be proved, i.e., s € rpg(M)N7F(M;) =
xs = 0. Consider s € rig(M)NT7(My). Thus, s ¢ r(My), so it follows from the result we
have just shown that s € #(M)UE,. However, since s € 7, (M) for some k, then s ¢ #(M).
Hence, s € E,. O

Next, we state and prove two lemmas that will be useful in the proof of Lemma 6, which
establishes a sufficient condition for the existence of a one-to-one correspondence between
a feasible point in Qg and the steady-state distribution of the Markov chain induced by the
policy in (14) derived from this solution.

Lemma 4. Given MDP M, if (x,y) € Qq, where Qq is the set of points in (19), then x is
a stationary distribution of the Markov chain My induced by the policy 7 in (14).
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Proof of Lemma 4

First, consider s’ € 7(M), and define Xy := {x : (x,y) € Qo for some y}. Since x € Xy, we
have xg = 0 by constraint (iiz). Also,

Za:ST,T(s'|s) = Z zsTr(s'|s) =0, (38)

seS ser(M)

where the first equality holds since s’ € 7#(M) is only reachable from states s € 7(M)
even when all edges defining possible transitions in the MDP are preserved. Next, consider
s € S\ 7(M). We have

Z Tstq = Z Z Tsa (S/IS,G): Z Z msﬂ(a‘S)T(S,‘S,a)ZZLL‘STW(S S

a€A(s") s€ES a€A(s) SEEg acA(s) ses
(39)

The first equality follows from the fact that x € Xy, the second from the definition of 7 in

(14), and the last from the definition of 77 in (1) and that zs = 0,Vs € S\ E,. Finally,

x e = 1, by summing constraints (i) over all s’ € S. O

Lemma 5. Given an MDP M, let (xz,y) € Qo and 7 := w(x,y) as in (14). If 7 € Hcpy,
then the subvector x,, (\m,) of © must satisfy the following identity for all k € [m]

2 )€ = B aay© T Briatny Pk (40)

where, Prj = [psi], f € F(Mz), is the vector of absorption probabilities from 7(My) into
ri(My) under policy 7.

Proof of Lemma 5

To show (40), note that, since 7 € Ilopy, we have that ry(My) C rg(M), k € [m], where
rp(Mz) C r(Mz) denotes the k-th TSCC of M. Since (z,y) € Qo, by summing constraints
(4i) in (19) over the set 7, (M), we get

Do B= X met X w— ) > Tl a)ya
s€rg(Mz) sETE (M) $ETE(Mr) sE€ETE(Mr) s'€Erp (M )UF(Mz) a€A(s")
(41)

where we used the fact that r;(Mj) is only reachable from states in (M) U7(M;). By
breaking the summation in the last term on the RHS of (41) over states s’ in the union of
the disjoint sets (M) and 7(M;) and interchanging the order of the summations over s
and ¢, the last term in (41) simplifies to

YooY wea Y, TGl + D > Y TGsls a)ysa

s'erg(Max) acA(s’) serp(Mx) s'€F(Mz) s€ry (M) acA(s’)
= Z Yy + Z Ysg! Z Tr(s|s'), (42)
s'€rg(Mar) s'EF (M) sery(Max)
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where the first term on the RHS of the equality (42) follows from the closure of r (M)
(which implies that > .. 1) T'(s]s’,a) = 1 for 8" € rx(My)), and the second term from

the definition of the policy in (14) for states in £, (noting that s’ € #(M,) implies zy = 0).
Replacing (42) in (41), we get that

Z Bs = Z g — Z Ys Z TTI'('S’S/) (43)

s€rg (M) serp(Mx) S'EF(Mr)  s€rE(Ma)

We proceed to further simplify the second term on the RHS of (43). Since z; = 0,Vs €
7(Mxz), it follows from constraint (i) of (19) and (14) that

= Bs+ Z Ys/ Z (a|sT(s]s',a) = Bs+ Z Yo Tr(s|s"), Vs € F(My) . (44)

s'er(Max) acA(s") s'er(Mzy)

In matrix form, this can be rewritten as
_ Ty—1
Yrmy) = (L = Z2 )7 Bray) » (45)

where Z, = [zy,] € [0, 1]FMoIXITM] with 2., := Ty (s|s’). Hence, the second summation
n (43) can be written as

S we Y Telsls) =y Loge = B, (I — Zz) ' Laie, (46)

s'er( M) s€rg(Max)

where L j is the submatrix of T} of transitions from 7(Mj) to r;(M) under policy 7 as
in (5). From (43) and (46),

> =8 pune+ Bl = Zx) ' Lrge. (47)

SETE (M‘/r)

Since the vector P; i, is the scaled (by the inverse of 7,) s-th column of the submatrix of the
matrix 7°° defining transitions from 7(M;) to r,(M;), we have (Feller, 1968; Puterman,
1994),

Prp=(I~Zz)  Loye, (48)

which proves the identity (40) of Lemma 5. O

We can readily state the next Lemma which establishes the aforementioned sufficiency
condition.

Lemma 6. Given an MDP M, let (x,y) € Qo and 7™ = 7(z,y) as in (14). If 7 € Ucpy,
then Pr° =

Before we prove Lemma 6, we remark that this result also holds for policies in IIgp and
IIop since these are subsets of IIgpy per Lemma 2.
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Proof of Lemma 6

We seek to show that the steady-state distribution of the Markov chain M induced by the
policy 7 (14) derived from a feasible point (x,y) € Qo matches x, provided that = is a CPU
policy, where Qg is as defined in (19).

First, we consider the states in 7(M ). We have that Pry°(s) = 0,Vs € 7(Mj) since such
states are either transient or isolated in the Markov chain M, induced by policy 7. Next, we
argue that x5 = 0 for all such states. From Lemma 3 (a), we have that 7(M) C 7(M). For
states s € 7(M), x5 = 0 by constraint (i) in (19). Thus, we have shown that Pr°(s) = x4
for every s € 7(M). Now, consider a state s € 7(Mj ) \ 7(M). The state s must belong to
re(M) N7F(My) for some k € [m], where m is the number of TSCCs in M. Hence, z; =0
by Lemma 3 (b). Therefore, we have argued that x5 = Pry°(s) = 0,Vs € 7(My).

Second, we consider states in r(Mj). According to Lemma 4, x satisfies

Ty (Mp) = Ty (M) Tk T € ] (49)

where T} j, is the submatrix of T; of transitions between states in 7(My). We have also
shown that x,, () satisfies the identity (40) stated in Lemma 5.

Given the definition of Pr2°(s) in Lemma 1 and (6), Pr°(s) = 7 (B;';(M)e + B;EM)PTFJC)‘
Hence,

> Pr(s) = B e + Bl Prak (50)
SET‘}C(MW)

From (40) and (50), we conclude that

Yo PrRs)= ) . (51)
s€rg(Mx) serg(Mar)
The ergodic theorem of Markov chains asserts that the solution to ' 7= 2", where 2Te =
1, > 0, is unique iff T is the transition matrix of a unichain (Gallager, 2013; Altman,
1999). From (49), (50) and (51), we have shown that

ng,r,k = x;, where x,Ie =cg, v >0

for TSCCs k € [m], where x, := &, (A1,), Ck is the RHS of (50), and 37", ¢ = 1. Further,
since w € Ilgpy, every TSCC is a unichain. Hence, by the ergodic theorem, the solution
Ty (M,) tO (49) and (40) is unique for each component r(Mz), k € [m], thus z is equal to
the unique steady-state distribution, i.e., x = Pr3°. O

We also make use of the following lemma in the proof of the converse part of Theorem
2. The lemma establishes that all occupation measures induced by the policies of interest
are (Qo-feasible.

Lemma 7. Given MDP M, let Xo := {x : (x,y) € Qo for some y}, where Qq is as defined
m (19) Then, POO(HCPU) - X().
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Proof of Lemma 7

We show that the steady-state distribution induced by every CPU policy is in Xg. To this
end, let x € P*(Ilgpy), i-e., Im € Lepy : Pry® = x, where Pry?° is as defined in Lemma 1.
Therefore, x is a stationary distribution of the Markov chain M, in which r, (M), k € [m)]
are TSCCs and states 7(M, ) are either transient or isolated. Hence, x| = 2" T}.. Therefore,

Z Tyt = ZZCSTW(S/LS):Z Z xsm(als)T(s'|s,a)

acA(s") ses s€S acA(s)

_Z Z 2T (5']3,a) (52)

s€S acA(s)

where the last equality follows since Pri°(s,a) = Pr2°(s)m(als). Thus, the steady-state
distribution z satisfies constraint (7) in (19). From the definition of II¢py in (17), every
[ € 7(M) is either transient or isolated under . Thus, zz\) := {Pr7°(f, @)} rer(m),a = 0,
satisfying constraint (iii).

The variables ytq, f € F(Mxz),a € A(f), can be set as in (45), i.e., choose ys, =
B;(Mﬂ)(l — Zz)"tegm(alf), f € TF(Mx),a € A(f), where Z, is the submatrix of T} defined
in (5), which satisfies the constraints (ii) as we have already shown in (44). The remaining
variables Ysq,s € ry(My),a € A(s), can now be chosen in terms of xsq,yfq, T (5|5, a) and
B such that the corresponding constraints (ii) are satisfied. Thus, for the given x, we have
shown the existence of a feasible y such that (z,y) € Q. Therefore, z € Xj. O

Appendix B. Proof of Main Theorems
Proof of Theorem 1

Since (z,y) is a feasible point of LPy, we have that (x,y) € Qo per (20). From Lemma
3 (a), T(M) C 7(Myz), thus r(M) D r(M; ). Consider a state s € r(M). Then, s €
rp(M) for some k € [m]|. From the positivity constraint (v) of LP;, we also have that
xs > 0, ie., s € E;. Since s € (M) N E,, it follows that s € r(M;) by Lemma 3
(b). Therefore, r(M) C r(My). We conclude that r(M;) = r(M). From constraint (v),
Zsq > 0,Vs € r(M),a € A(s). Tt follows from the definition of 7 in (14) for states s € E,
that 7(als) > 0,Vs € r(M),a € A(s). We have shown that 7 satisfies both requirements in
(15), hence 7 € Ilgp. O

Proof of Theorem 2

( =) First, we show that if (20) is feasible, then there exists an EP policy that meets the
specifications ®°. Let (z,y) € Q1 denote a feasible solution to (20) and let = be defined
as in (14). By Theorem 1, m € IIgp. By Lemma 2, we also have that = € IIopy. Invoking
Lemma 6, we conclude that Pri°(s,a) = xg4,s € S,a € A(s), i.e., z is equal to the steady-
state distribution of the Markov chain M, induced by policy 7. Since x satisfies constraint
(4v), this implies that M meets the specifications ®7°.

( <) Now, we show the converse, that is, the existence of an EP policy that meets the
specifications implies that LP; in (20) is feasible. Define V' := {x : (iv) and (v) satisfied}.
Thus, we have that X;p, = XNV, where Xip, = {z: (z,y) € Q1 for some y}. Suppose
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dr € Ilgp that satisfies the specifications ®%° as in the statement of Theorem 2. Then
Pr® € P®(Ilgp) is well-defined as in Lemma 1. We have Pr°(s) := (37 T°)s > 0,Vs €
r(Mj), since all such states are recurrent in the Markov chain M. Since © € Igp,
m(als) > 0,Vs € r(M),a € A(s), from (15). Hence, by Lemma 1, Pr>°(s,a) > 0,Vs €
r(M),a € A(s). Therefore, Pr>® € V. Hence, P>*(IIgp) NV is non-empty. Set x5, =
Pr(s,a),s € S,a € A(s). Recall that 7(My ) = 7(M) since m € Illgp, so we have x4, =
Pr°(s,a) = 0,Vs € 7(M). From Lemma 7, P> (Ilgp) C Xy, where we also use the fact that
P>(Ilgp) C P>*(Ilcpy) as a consequence of Lemma 2. The variables ys, can be defined
in terms of x4, T(s'|s,a) and S such that the constraints (ii) are satisfied. Hence, Xp,,
and in turn @1, is non-empty. The optimality of 7* follows from the optimality of (z*,y*),
Theorem 1 and the established equality Pris = x*. O

Proof of Theorem 3

Let f € #(M). From Lemma 3 (a), f € 7#(M;). Now consider s € r(M) for some k € [m)].
As argued earlier, every state in r;(M) is reachable from s given constraints (viii), (z), (xii)
of (21). In addition, s is reachable from all states in (M), which follows from constraints
(vig), (iz), (xi), (wiii). Hence, s € r(My). Therefore, r(M) C r(Mjz). Since we have
already shown that #(M) C 7(M,), we conclude that r(M;) = r(M). Therefore, m € IIop
defined in (16). O

Proof of Theorem 4

The proof follows the same reasoning as that of Theorem 2.

( = ) Let (z,y,f, f*®) € Q2 denote a feasible solution to (21) and let m be defined
as in (14). By Theorem 3, m € IIgp. Invoking Lemma 6 and Lemma 2, we have that
PrX(s,a) = xsq,5 € S,a € A(s), which implies that M, meets the specifications ®3° per
constraint (iv).

( <= ) Define V := {z : (iv) and (vi) — (xiv) satisfied}. Thus, we have that Xpp, =
Xo NV, where Xpp, = {z : (x,y, f, ") € Q2}. Suppose Ir € Ilop that satisfies the
specifications ®¢° as in the statement of Theorem 4. Hence, ry(Mz),k € [m| are the
recurrent components of M. Then, Pry° € P> (Il¢p) is well-defined as in Lemma 1. We
can set x5, = Pri’(s,a) = mw(a|s)Pry°(s) for every s € S,a € A(s). The flow variables in
(vi) - (vit) can be defined in terms of x4, and T'(s|s,a) such that the constraints (x) - (i)
are satisfied. Hence, z € V, i.e., P*(Ilcp) NV is non-empty. By Lemma 7, X1 p, and Q2
are non-empty. The optimality of 7* follows from the optimality of (z*,y*), Theorem 3 and
the established equality Pr>s = z*. O

Proof of Theorem 5

Assume (z,y) € Q*. We have that V,'(z) C rg(M;) for 7 in (14) by Lemma 3 (b).
Further, consider s € ri(M) N E,. By constraint (i) and the definition of 7 in (14),
Tr(s|s') = 0,Vs’ € V;F(z). For the sake of contradiction, assume s € r(M,). Hence,
s € F C rg(M) for some TSCC F of M. Summing constraints (ii) over the set F', we
get that S, = 0,Vs € F and Tr(s|s') =0,s € 7(M),s € F. Hence, s € 7#(My;), yielding a
contradiction. We conclude that V,"(z) = r(My) Nrg(M). Therefore, if for every k € [m]
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we have that the subgraph (V,'(z), E; (z)) is strongly connected, then V" (z) is a SCC
in My, for 7 in (14). Hence, V,"(z) is the unique TSCC ry(My) in the set ri(M), ie.,
7 € [Igpy. The result now follows from Lemma, 6. O

Proof of Theorem 6

(1) Every feasible solution of LP;(e) is also LP;-feasible. Hence, the result follows as an
immediate consequence of Theorem 1.

(2) The proof of part (2) follows the same reasoning as in the proof of the converse of The-
orem 2. Specifically, we have shown that, if 7 € Illgp, then Pr°(s,a) > 0,Vs € r(Mz),a €
A(s). Hence, Je > 0 such that Pr® € V/, where V' := {x : (i) and (v)’ satisfied)}. There-
fore, X1p,(e) := Xo NV’ is non-empty, and in turn LP;(e) is feasible.

(3) Let ¢, — 0,n € N, be a monotonically decreasing sequence, 7 the EP policy in
(14) corresponding to an optimal solution to LP1(ey), and R, := R (8). The sequence
(Rp)nen is monotonically non-decreasing since R,, > R, whenever €, < €,. Further,
from (11), we have that the sequence is bounded above since sup,cyy,, B2°(8) < Tmax,
where rmax = MaxXgegaca(s) R(s,a). Since the sequence (Rp)nen is both increasing and
bounded, it converges to the limit sup,, R,, by the monotone convergence theorem (Royden
& Fitzpatrick, 2010). We are only left to show that sup, R, = sup,cy,, R;°. To this
end, assume for the sake of contradiction that sup,, R, < sup,eq,, Ry°. Since the RHS
of the inequality is the least upper bound on the average reward of EP policies, then for
any 0 > 0,3’ € gp : RS > sup,cyy,, Ry — 0. We can choose § small enough such that

R > sup,, R,,. From part (2) above, 3¢ > 0, such that Pry is LP;(¢’)-feasible for all € < e.
Hence, from the definition of 7, we get that sup,, R, > R, yielding a contradiction. [

Proof of Theorem 7

(1) Let x be LP;(6)-feasible. Since the feasible set for LP1(J) is a subset of the feasible
set of LPq, then m € Ilgp by Theorem 1. Therefore, we only need to verify the bounded
support requirement in (27). For s € r(M), we have that x5, > § > 0,a € A(s), from
constraint (v) in LP1(d). Hence, 7(a|s) = xsq/xs > §. Therefore, m € M gp(9).

(2) Assume 7w € IIgp(d) and meets the specifications ®3°. Noting that IIgp(d) C Ilgp,
then there exists an 0 < e < § such that Pry° is a feasible solution of LPj(e), which
follows from part (2) of Theorem 6. Hence, max cr, (5 B5 (8) < R*(€) since R*(e) is the
optimal value of LP;(€), where € < § is a function of 6. As § — 0, the sequence of rewards
R*(6) is monotonically non-decreasing and bounded above. Hence, as § — 0, the sequence
R*(9) converges to a limit. Every convergent sequence is a Cauchy sequence (Royden &
Fitzpatrick, 2010), i.e., the elements of the sequence become arbitrarily close to each other
as 0 — 0. Hence, R*(¢) — R*(6) — 0, as § — 0. O

Proof of Theorem 8

The cone V(z,y) in (29) is the cone of feasible directions from a feasible point (z,y),
i.e., directions v = (h, z) along which 3\ > 0 such that (z,y) + A(h, z) is feasible. The
sets u(x), l(x), n(x) and m(y) denote the sets of active (upper and lower) specification
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and non-negativity (of state-action variables x and y) constraints, respectively. Since the
rewards vector R is an interior point of the dual cone V*(z,y) designated in the statement of
Theorem 8, moving away from (x,y) along any feasible direction can only reduce the value
of the objective, ie., > g ZaeA(s) R(s,a)hsq < 0. Hence, (z,y) is the unique optimal
solution to (22). We have already shown that the set of occupation measures induced by
policies for which #(M) C #(Mj) is contained in the feasible set of (22). Since 7 in (14)
is one such policy by Lemma 3 (a), we have Pry° = x and 7 meets the specifications ®¢°.
The uniqueness of 7 in this class of policies follows from the established uniqueness of the
optimal solution x. O

Proof of Proposition 1

By Lemma 3, we have that f € 7(M;). If 7 € IIgpy, then the condition of Lemma 6 is
met, and it follows from (45) that y; = ﬂFT(Mﬂ)(I — Zx)Yer = G (f). O
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