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Abstract
In contrast to conventional (single-label) classification, the setting of multilabel classification

(MLC) allows an instance to belong to several classes simultaneously. Thus, instead of selecting
a single class label, predictions take the form of a subset of all labels. In this paper, we study an
extension of the setting of MLC, in which the learner is allowed to partially abstain from a pre-
diction, that is, to deliver predictions on some but not necessarily all class labels. This option is
useful in cases of uncertainty, where the learner does not feel confident enough on the entire label
set. Adopting a decision-theoretic perspective, we propose a formal framework of MLC with par-
tial abstention, which builds on two main building blocks: First, the extension of underlying MLC
loss functions so as to accommodate abstention in a proper way, and second the problem of optimal
prediction, that is, finding the Bayes-optimal prediction minimizing this generalized loss in expecta-
tion. It is well known that different (generalized) loss functions may have different risk-minimizing
predictions, and finding the Bayes predictor typically comes down to solving a computationally
complexity optimization problem. In the most general case, given a prediction of the (conditional)
joint distribution of possible labelings, the minimizer of the expected loss needs to be found over a
number of candidates which is exponential in the number of class labels. We elaborate on proper-
ties of risk minimizers for several commonly used (generalized) MLC loss functions, show them
to have a specific structure, and leverage this structure to devise efficient methods for computing
Bayes predictors. Experimentally, we showMLC with partial abstention to be effective in the sense
of reducing loss when being allowed to abstain.

1. Introduction

In statistics and machine learning, classification with abstention, also known as classification with a
reject option, is an extension of the standard setting of classification, in which the learner is allowed
to refuse a prediction for a given query instance; research on this setting dates back to early work
by Chow (1970) and Hellman (1970) and remains to be an important topic till today, most notably
for binary classification (Bartlett and Wegkamp, 2008; Cortes et al., 2016; Franc and Prusa, 2019;
Grandvalet et al., 2008). For the learner, the main reason to abstain is a lack of certainty about the
corresponding outcome— refusing or at least deferring a decision might then be better than taking
a high risk of a wrong decision.

Nowadays, there are many machine learning problems in which complex, structured predictions
are sought (instead of scalar values, like in classification and regression). For such problems, the idea
of abstaining from a prediction can be generalized toward partial abstention: Instead of predicting
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the entire structure, the learner predicts only parts of it, namely those for which it is certain enough.
This idea has already been realized, for example, for the problem of label ranking, where predictions
appear in the form of total orders of a set of class labels (Cheng et al., 2010, 2012).

Another important example is multilabel classification (MLC), in which an outcome associated
with an instance is a labeling in the form of a subset of an underlying reference set of class labels;
that is, the output space is the power set of that reference set (Tsoumakas et al., 2009; Zhang and
Zhou, 2014). MLC problems naturally occur in a variety of fields, such as text categorization (Hayes
andWeinstein, 1990; Lewis, 1992), music categorization (Trohdis, 2008), semantic scene classifica-
tion (Boutell et al., 2004), protein function classification Elisseeff and Weston (2001), or functional
genomics and text categorization (Zhang and Zhou, 2006). In this paper, we study an extension of
the setting of MLC, in which the learner is allowed to partially abstain from a prediction, that is, to
deliver predictions on some but not necessarily all class labels (or, more generally, to refuse commit-
ting to a single complete prediction). Although MLC has been studied extensively in the machine
learning literature in the recent past, there is surprisingly little work on MLC with abstention so
far—a notable exception is the work of Pillai et al. (2013), to which we shall return in Section 8.

Prediction with abstention is typically realized as a two-stage approach. First, the learner deliv-
ers a prediction that provides information about its uncertainty. Then, taking this uncertainty into
account, a decision is made about whether or not to predict, or on which parts. In binary classifica-
tion, for example, a typical approach is to produce probabilistic predictions and to abstain whenever
the probability is close to 1∕2, which is considered as the case of maximal uncertainty. We adopt a
similar approach, in which we rely on probabilistic MLC, i.e., probabilistic predictions of labelings.
More specifically, we follow the decision-theoretic approach, in which the problem is formalized as
finding the Bayes-optimal prediction (BOP), that is, the prediction that minimizes the expected loss,
where the expectation is taken with respect to the given probability distribution on the labeling space
(Dembczyński et al., 2012; Waegeman et al., 2014; Ye et al., 2012).

Of course, the BOP does not only depend on the probability distribution on labelings, but also on
the underlying loss function used to assess multilabel predictions. Moreover, it is well known that
different loss functions may call for different BOPs, and the corresponding optimization problem
of finding the BOP can be computationally demanding (Dembczyński et al., 2012). In the most
general case, it requires the expectation to be computed over 2K candidate predictions, where K is
the number of class labels. Fortunately, by exploiting structural properties of the BOP, this candidate
set can be significantly reduced, at least under certain assumptions. In this paper, we exploit the
property of (conditional) label independence (Dembczyński et al., 2012), which, roughly speaking,
stipulates that the probability of label co-occurrence is the product of the individual probabilities
of occurrence. For many common MLC loss functions, we show that, under this assumption, the
number of candidate predictions can be reduced from exponential to quadratic in K . Based on
theoretical results of this kind, we devise efficient algorithms for Bayes-optimal prediction in the
setting of MLC with partial abstention.

The organization of the paper is as follows. In the next section, we briefly recall the setting of
multilabel classification. The generalization toward MLC with partial abstention is then introduced
and formalized in Section 3. Instantiations of this setting for various MLC loss functions are stud-
ied in Sections 4–7, and related work is discussed in Section 8. Finally, experimental results are
presented in Section 9, prior to concluding the paper in Section 10.

This paper is an extension of an earlier conference version (Nguyen and Hüllermeier, 2020),
in which the setting of MLC with partial abstention has originally been introduced and studied for
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selected loss functions. The current version is more comprehensive in a number of ways, especially
regarding the class of loss functions covered and the experimental evaluation. All formal results in
this paper (lemmas, propositions, remarks, corollaries) are stated without proofs, which are deferred
to the appendix.

symbol/acronym meaning
 , x instance space, instance
, �k label space, label
Λ(x) subset of labels associated with x
 , y labeling space, labeling vector
∗ space of partial predictions
K number of labels
J⋅K indicator function
[n] set {1,… , n} of natural numbers
p(y |x) probability of labeling y given x
pk = pk(1 |x) marginal probability of relevance for label �k
 training data
ŷ = h(x) labeling predicted by MLC classifier h for x
 hypothesis space
A(ŷ), D(ŷ) abstention set, prediction set
l, L MLC loss function, extended loss function
f performance metric (defined on confusion matrix)
g function to penalize abstention
E expected value
� permutation representing a label ranking ��(1) ≻… ≻ ��(K)
�(i) index of the label on position i of the ranking �
�−1(j) position of the label �j in the permutation �
BOP Bayes-optimal prediction
DTA decision-theoretic approach
CMDP confusion matrix-derived performance measures
CLI conditional label independence
BR binary relevance learning

Table 1: Notation and acronyms

2. Multilabel Classification

In this section, we provide a formal description of the MLC problem and introduce the notation used
throughout the paper.

2.1 General Setting

Let  denote an instance space, and let  = {�1,… , �K} be a finite set of class labels. We assume
that an instance x ∈  is (probabilistically) associated with a subset of labels Λ = Λ(x) ∈ 2. The
subset Λ(x) is often called the set of relevant labels, while the complement  ⧵ Λ(x) is considered
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as irrelevant for x; alternatively, we say that the labels in Λ(x) occurred (for x), whereas those in the
complement did not. We identify a set Λ of relevant labels with a binary vector y = (y1,… , yK ),
where yk = J�k ∈ ΛK1. By  = {0, 1}K we denote the labeling space, i.e., set of possible labelings.

We assume observations to be realizations of independently and identically distributed (i.i.d.)
random variables generated according to a probability distribution p on  ×  , i.e., an observation
y = (y1,… , yK ) is the realization of a corresponding random vectorY = (Y1,… , YK ). We denote by
p(Y |x) the conditional distribution ofY givenX = x, and by pk(Yk |x) the corresponding marginal
distribution of Yk:

pk(b |x) ..=
∑

y∈∶yk=b
p(y |x) . (1)

Moreover, we denote by pk ..= pk(1 |x) the probability of relevance of the label �k.
Given training data in the form of a finite set of observations

 =
{

(xn, yn)
}N
n=1 ⊆  ×  , (2)

drawn independently from p(X,Y), the goal in MLC is to learn a predictive model in the form of a
multilabel classifier h, which is a mapping  ⟶  that assigns a (predicted) label subset to each
instance x ∈  . Thus, the output of a classifier h is a vector

h(x) =
(

ℎ1(x),… , ℎK (x)
)

∈ {0, 1}K . (3)
Predictions of this kind will also be denoted as ŷ = h(x) = (ŷ1,… , ŷK ).

To evaluate the performance of a multilabel classifier h, an MLC loss function
l ∶  ×  ⟶ ℝ+ (4)

is needed, which compares a prediction h(x)with a ground-truth labeling y. The prediction accuracy
of h is measured in terms of its risk, that is, its expected loss

R(h) ..= E
[

l(Y,h(X))
]

= ∫ l(y,h(x)) d P(x, y) ,

where P is the joint probability measure on  ×  characterizing the underlying data-generating
process. Therefore, the Bayes-optimal (risk-minimizing) classifier is given by

h∗ ..= argmin
h∈

R(h) , (5)

where  ⊆  is the hypothesis space, i.e., the class of functions from which a predictor can be
chosen. A common approach to learning the Bayes-optimal classifier (5) is based on the principle
of empirical loss minimization (sometimes also called empirical utility maximization, if predictions
are assessed in terms of a utility instead of a loss function), which essentially comes down to finding
the hypothesis with the smallest empirical risk, i.e., average loss on the training data:

ĥ ..= argmin
h∈

1
N

N
∑

n=1
l(yn,h(xn)) .

1. J⋅K is the indicator function, i.e., JAK = 1 if the predicate A is true and = 0 otherwise.
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To prevent the learner from overfitting the training data, the empirical risk is often augmented by a
regularization term.

As an alternative, a decision-theoretic approach (DTA) can be used, in which a hypothesis in
the form of a mapping from instances x ∈  to predictions y ∈  is not learned directly, but in a
more indirect way (Pillai et al., 2017; Waegeman et al., 2014; Ye et al., 2012). More specifically,
the training data is used to learn a probabilistic predictor, which, given a query instance x, predicts
a probability distribution p(⋅ |x) on the set of labelings  . The Bayes-optimal prediction (BOP) is
then given by the expected loss minimizer

ŷ = ŷ(x) ∈ argmin
ȳ∈

E
(

l(y, ȳ)
)

= argmin
ȳ∈

∑

y∈
l(y, ȳ)p(y |x) . (6)

Note that the BOP (6) is defined in a pointwise way, i.e., it is computed for each x individually.
Theoretically, a (global) hypothesis h ∶  ⟶  can of course be constructed by setting h(x) ..=
ŷ(x) for all x ∈  , although the mapping thus obtained is not guaranteed to have any specific
structure (i.e., it is normally not an element of a “simple” hypothesis space ).

2.2 MLC Loss Functions

In the literature, various loss functions have been proposed for multilabel classification. Simple
(though commonly used) examples are the Hamming loss

lH (y, ŷ) ..=
K
∑

k=1
Jyk ≠ ŷkK , (7)

and the subset 0/1 loss
lS(y, ŷ) ..= Jy ≠ ŷK . (8)

Both losses generalize the standard 0∕1 loss in binary classification, albeit in a very different way:
While Hamming counts the number of labels on which a prediction is wrong, subset 0∕1 is an “all or
nothing” loss that merely checks whether the entire label combination is predicted correctly or not.

Another commonly used loss function (or actually utility function) is the F-measure, i.e., the
harmonic mean of precision and recall, which is well-known from information retrieval (Decubber
et al., 2018; Lewis, 1995). More specifically, the f�-measure is computed as

f�(y, ŷ) =
(1 + �2)

∑K
k=1 ŷk yk

∑K
k=1 ŷk + �2

∑K
k=1 yk

, (9)

where � is a parameter that controls the influence of precision and recall; a common choice is � = 1,
giving the same weight to both. The F-Measure is specifically motivated by the strong imbalance
between positive (relevant) and negative (irrelevant) labels that is quite common for multilabel data:
the number of positive labels is often very small compared to the overall number of labels. As a
consequence, even the (uninformed) “all negative” prediction ŷ = 0may have a very small Hamming
loss. To perform well in terms of the F-measure, however, being correct on the negative labels is
not enough; instead, the predictor has to be correct on the positive labels, too.

The F-measure is an example of the so-called confusion matrix-derived performance (CMDP)
measures (Luque et al., 2019a,b; Powers, 2011), which can be expressed as functions of the four
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primitives of the confusion matrix, the true positives (tp), false positives (fp), false negatives (fn),
and true negatives (tn):

tp =
K
∑

k=1
ykŷk , fn =

K
∑

k=1
yk(1 − ŷk) , (10)

fp =
K
∑

k=1
(1 − yk)ŷk , tn =

K
∑

k=1
(1 − yk)(1 − ŷk) .

Table 2 lists a number of important special cases of such measures, i.e., functions of the form
f ∶ ℕ40 ⟶ [0, 1] . (11)

Note that all measures in Table 2 are expressed as accuracy (“higher is better”) measures. However,
because they are all normalized and assume values in the unit interval, they can easily be turned into
associated loss functions lf by setting lf (y, ŷ) ..= 1 − f (y, ŷ).

# Measure Definition
1 F-measure f� =

(1+�2)tp
(1+�2)tp+�2fn+fp

2 Recall/sensitivity fRec =
tp

tp+fn
3 Specificity fSpe =

tn
tn+fp

4 Precision fPre =
tp

tp+fp
5 Negative predictive value fNeg =

tn
tn+fn

6 Jaccard index fJac =
tp

tp+fn+fp
7 Geometric mean fGeo =

√

fRec ⋅ fSpe
8 Informedness fInf = (fSpe+fRec)∕2
9 Markedness fMar =

(

fNeg+fPre
)

∕2

Table 2: Commonly used confusion matrix-derived accuracy measures

An alternative to predicting label subsets ŷ ∈  is to make predictions in the form a ranking of
the labels �k, that is, a total order specified by a permutation � of [K] ..= {1,… , K} such that �(i) is
the index of the label on position i of the ranking, and �−1(j) the position of the jtℎ label �j . Thus,
a permutation � encodes the ranking

��(1) ≻ ��(2) ≻⋯ ≻ ��(K) . (12)
Typically, such rankings are obtained by sorting the labels in decreasing order according to their
(predicted) probabilities pk = pk(1 |x), i.e., � is such that �−1(i) > �−1(j) implies pi ≤ pj . The
rank loss then counts the number of incorrectly ordered label-pairs, that is, the number of pairs �i, �j
such that �i is ranked worse than �j although �i is relevant while �j is irrelevant:

lR(y, �) =
∑

(i,j)∶yi>yj

q
�−1(i) > �−1(j)

y
,

or equivalently,
lR(y, �) =

∑

1≤i<j≤K
Jy�(i) = 0 ∧ y�(j) = 1K .
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2.3 Label Dependence

The goal of classification algorithms in general is to capture dependencies between input features
and the target variable. In MLC, dependencies may not only exist between the features and each
target, but also between the targets Y1,… , YK themselves. The idea to improve predictive accuracy
by capturing such dependencies is a driving force in research on multilabel classification.

In this regard, a distinction between unconditional and conditional independence between labels
can be made (Dembczyński et al., 2012). In the first case, the joint distribution p(Y) in the labeling
space factorizes into the product of the marginals p(Yk), i.e.,

p(Y) = p1(Y1) × p2(Y2) ×⋯ × pK (YK ) , (13)
whereas in the latter case, the factorization

p(Y |x) = p1(Y1 |x) × p2(Y2 |x) ×⋯ × pK (YK |x) (14)
holds conditioned on x, for every instance x. Equivalently, the property of conditional label inde-
pendence (CLI) can also be expressed as follows:

p(y |x) =
K
∏

k=1
pykk (1 − pk)

1−yk , (15)

where pk = pk(1 |x) denotes the marginal relevance probability of label �k. Thus, unconditional
independence is a kind of global independence, whereas conditional independence is an indepen-
dence locally restricted to a single point in the instance space. If the equality in (13) does not hold
(for example due to a hierarchical dependence structure on the label space), we also speak of label
dependence. Likewise, a case of conditional label dependence is a case where (14) is violated.

As it turns out, there is a close connection between label dependence and the decomposability
of loss functions: A decomposable loss can be expressed in the form

l(y, ŷ) =
K
∑

k=1
lk(yk, ŷk) (16)

with suitable binary loss functions lk ∶ {0, 1}2 ⟶ ℝ, whereas a non-decomposable loss does not
permit an additive representation of that kind. It can be shown that, to produce optimal predictions
ŷ = h(x) minimizing expected loss (6), knowledge about the marginals pk(Yk |x) is enough in the
case of a decomposable loss (such as Hamming), but not in the case of a non-decomposable loss
(Dembczyński et al., 2012). Instead, if a loss is non-decomposable, higher-order probabilities are
needed, and in the extreme case even the entire distribution p(Y |x) (like in the case of the subset
0∕1 loss). For example, one easily verifies that the BOP (6) for the subset 0∕1 loss is given by the
joint mode of the distribution p(⋅ |x), i.e.,

ŷ ∈ argmax
ȳ∈

p(ȳ |x) , (17)

whereas the optimal prediction for the Hamming loss is given by themarginalmode (ŷ1,… , ŷK )with
ŷk ∈ argmax

ȳk∈{0,1}
p(ȳk |x) . (18)
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On an algorithmic level, this means that MLC with a decomposable loss can be tackled by what is
commonly called binary relevance (BR) learning (i.e., learning one binary classifier for each label
individually), whereas non-decomposable losses call for more sophisticated learning methods that
are able to take label-dependencies into account.
Example 1. Consider a multilabel classification problem with three labels, and suppose the fol-
lowing conditional distribution on labelings p(y |x) to be given (with positive probability for five
labelings and 0 for all others):

y = (y1, y2, y3) p(y |x)
(0, 0, 0) 1∕4
(1, 1, 1) 3∕16
(0, 1, 1) 3∕16
(1, 0, 1) 3∕16
(1, 1, 0) 3∕16

According to (17), the BOP for the subset 0∕1 loss is given by ŷ = (0, 0, 0), while the BOP for the
Hamming loss is ŷ = (1, 1, 1) according to (18).

3. MLC with Partial Abstention

In our generalized setting of MLC with abstention, which is introduced in this section, the classifier
is allowed to produce partial predictions

ŷ = h(x) ∈ ∗ ..= {0, ⊥, 1}K , (19)
where ŷk = ⊥ indicates an abstention on the label �k; we denote by

A(ŷ) ⊆ [K] ..= {1,… , K} and D(ŷ) ..= [K] ⧵ A(ŷ)

the set of indices k for which ŷk = ⊥ and ŷk ∈ {0, 1}, respectively, that is, the indices on which the
learner abstains and decides to predict.

Note that a partial prediction ŷ can be associated with a set-valued prediction Ŷ ⊆  , namely
the set of consistent instantiations (extensions) of ŷ:

Ŷ =
{

y ∈  |∀i ∈ D(ŷ) ∶ yi = ŷi
}

. (20)
Thus, we can look at a partial prediction as both an element of ∗ (a vector with entries 0, 1, and
⊥) and a subset of  . The set (20) can be seen as a kind of confidence set, namely a set of candidate
labelings that is supposed to cover the ground-truth labeling y. This reflects a main motivation for
an MLC classifier to (partly) abstain, namely to guarantee its “reliability” in cases of uncertainty.

Although we will not pursue this direction further in this paper, let us note that, in principle, one
may even allow the learner to predict any subset Ŷ ⊆  , not only subsets that have a representation
(20). This might be important, for example, in the case of dependencies between labels. For instance,
the learner may wish to express that the labels �i and �j are either both relevant or both irrelevant
(i.e., yi and yj are either both 0 or both 1). Obviously, while a partial prediction (20) is a very
compact representation of a subset Ŷ ⊆  in terms of a vector ŷ, the representation of arbitrary
subsets is a non-trivial problem, because a simple enumeration will not be feasible in general.
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3.1 Risk Minimization

To evaluate a partially abstaining multilabel classifier, a generalized MLC loss function
L ∶  × ∗ ⟶ ℝ+ (21)

is needed, which compares a partial prediction ŷ with a ground-truth labeling y. Given a loss of that
kind, and assuming a probabilistic prediction for x, i.e., a probability p(⋅ |x) on the set of labelings
 , the problem of finding the BOP (minimizing expected loss) comes down to finding

ŷ ∈ argmin
ȳ∈∗

E
(

L(y, ȳ)
)

= argmin
ȳ∈∗

∑

y∈
L(y, ȳ) ⋅ p(y |x) . (22)

The concrete form of this optimization problem as well as its difficulty depend on several choices,
including the underlying MLC loss function l and its extension L. It is clear that explicitly solving
(22) as a combinatorial optimization problem is even more challenging than solving the optimization
problem in the standard setting of MLC (6), since the expectation needs to be computed over |∗

| =
3K instead of 2K candidate predictions.

3.2 Generalized Loss Functions

On the basis of a standard MLC loss l, a generalized loss function (21) can be derived in different
ways, also depending on how to penalize the abstention. Further below, we propose a generalization
based on an additive penalty. Before doing so, we discuss some general properties that might be of
interest for generalized losses.
3.2.1 PROPERTIES OF GENERALIZED MLC LOSSES
As a first property, we should expect a generalized loss L to reduce to its conventional version l in
the case of no abstention. In other words,

L(y, ŷ) = l(y, ŷ)

whenever ŷ is a complete prediction, i.e., an element of  . Needless to say, this is a property that
every generalized loss should obey.

Another reasonable property is monotonicity, which requires an appropriate “appreciation” of
abstention. More specifically, it appears natural to require that the loss should only increase (or at
least not decrease) in any of the following cases:
(D1) turning a correct prediction on a label �k into an incorrect prediction,
(D2) turning a correct prediction on a label �k into an abstention,
(D3) turning an abstention into an incorrect prediction.
Definition 1 (Monotonicity). A generalized loss L is monotonic if it only increases (or at least not
decreases) in any of the cases D1, D2, D3.

This reflects the following chain of preferences: a correct prediction is better than an abstention,
which in turn is better than an incorrect prediction. More formally, for a ground-truth labeling y and
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a partial prediction ŷ1, let C1, A1 ⊆  denote the subset of labels on which the prediction is correct
and on which the learner abstains, respectively, and define C2, A2 ⊆  analogously for a prediction
ŷ2. Then

(C2 ⊆ C1) ∧
(

(C2 ∪ A2) ⊆ (C1 ∪ A1)
)

⇒ L(y, ŷ1) ≤ L(y, ŷ2) . (23)
Yet another interesting property is what we call uncertainty-alignment. Intuitively, when producing
a partial prediction, an optimal prediction rule is supposed to abstain on the most uncertain labels.
Definition 2 (Uncertainty-Aligned). Consider a generalized loss function L and a prediction ŷ
which, for a query x ∈  , is a risk-minimizer (22). Moreover, denoting by pk = pk(1 |x) the
(marginal) probability that label �k is relevant for x, it is natural to quantify the degree of uncer-
tainty on this label in terms of

uk = 1 − 2|pk − 1∕2| = 2min(pk, 1 − pk) , (24)
or any other function symmetric around 1∕2. We say that ŷ is uncertainty-aligned if

∀ i ∈ A(ŷ), j ∈ D(ŷ) ∶ ui ≥ uj . (25)
Thus, a prediction is uncertainty-aligned if the following holds: Whenever the learner decides

to abstain on label �i and to predict on label �j , the uncertainty on �j cannot exceed the uncertainty
on �i. Or, stated differently, if a learner abstains on �i, and �j is a label on which it is even more
uncertain, then it should also abstain on �j . We then call a loss function L uncertainty-aligned if
it admits an uncertainty-aligned BOP, i.e., if it guarantees the existence of an uncertainty-aligned
risk-minimizer, regardless of the probability p = p(⋅ |x).

As a relaxation of uncertainty-alignment, we further introduce the notion of semi-uncertainty-
alignment.
Definition 3 (Semi-Uncertainty-Aligned). A prediction is semi-uncertainty-aligned if the following
generalization of (25) holds:

∃ � ∈ [0, 1] ∀ i ∈ A(ŷ), j ∈ D(ŷ) ∶ |pi − �| ≤ |pj − �| . (26)
Obviously, (25) is recovered as a special case for � = 1∕2. In (26), the reference point � can be any

value in the unit interval. This value is not supposed to be known, only to exist, and may also depend
on the underlying probability distribution p. Note that (26) is equivalent to the following condition:
After sorting the labels according to their marginal probabilities, the prediction set is obtained by
abstaining on the “middle part”. More precisely, suppose the labels are sorted in decreasing order
of their marginal probabilities pk, resulting in a ranking � of the form (12). Then, a prediction ŷ is
of the form

ŷk =

⎧

⎪

⎨

⎪

⎩

1 if �−1(k) ≤ l
⊥ if l < �−1(k) < r
0 if r ≤ �−1(k)

,

where l, r ∈ {0, 1,… , K + 1} are indices such that l < r. In other words, a prediction is specified
by a decision set

D(ŷ) = ⟪l, r⟫ ..= {1,… , l} ∪ {r,… , K} (27)
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in the form of a union of “boundary positions”. Again, we call a loss function L semi-uncertainty-
aligned if it admits a semi-uncertainty-aligned BOP, i.e., if it guarantees the existence of a semi-
uncertainty-aligned risk-minimizer with a decision set of the form (27), regardless of the underlying
probability p = p(⋅ |x).
3.2.2 ADDITIVE PENALTY FOR ABSTENTION
Consider the case of a partial prediction ŷ and denote by ŷD the projections of ŷ to the entries in
D(ŷ). As a natural extension of the original loss l, we propose a generalized loss of the form

L(y, ŷ) = l(yD, ŷD) + g(A(ŷ)) , (28)
with l(yD, ŷD) the original loss on that part on which the learner predicts and g(A(ŷ)) a penalty for
abstaining on the label subset A(ŷ). The latter can be seen as a measure of the loss of usefulness of
the prediction ŷ due to its partiality, i.e., due to having no predictions on A(ŷ).

An important instantiation of (28) is the case where the penalty is a counting measure, i.e., where
g only depends on the number of abstentions:

L(y, ŷ) = l(yD, ŷD) + g
(

|A(ŷ)|
)

. (29)
A special case of (29) in turn is to penalize each abstention ŷk = ⊥with the same constant c ∈ [0, 1],
which yields

L(y, ŷ) = l(yD, ŷD) + |A(ŷ)| ⋅ c . (30)
Of course, instead of a linear function g, more general penalty functions are conceivable. For exam-
ple, a practically relevant penalty is a concave function of the number of abstentions: Each additional
abstention causes additional cost, so g is monotone increasing in |A(ŷ)|, but the marginal cost of ab-
stention is decreasing. An example of a concave penalty function (that we shall use later on) is

L(y, ŷ) = l(yD, ŷD) +
|A(ŷ)| ⋅K ⋅ c
K + |A(ŷ)|

. (31)

3.3 Inferring Bayes-Optimal Predictions

Adhering to the decision-theoretic approach, and assuming probabilities p(y |x) to be made avail-
able by an MLC predictor h for a given query instance x, our main interest in the setting of MLC
with partial abstention is finding Bayes-optimal predictions, i.e., predictions minimizing a general-
ized MLC loss L in expectation. To facilitate the readability of the technical exposition that will
follow in the subsequent sections, let us provide a short outline and summary of the main contents
of these sections:

• The generalization (28) is generic and can be used to extend any MLC loss function to the
setting of MLC with partial abstention. As a first attempt, we shall focus on the natural case
(29), where the penalty only depends on the number of labels on which the learner abstains.

• We show that, for different types of MLC loss functions, the Bayes-optimal prediction for
the generalization (29) is semi-uncertainty-aligned or even uncertainty-aligned. As already
said, this property implies a specific structure of an optimal prediction, namely a prediction
set of the form (27), which in turn allows for finding a BOP in an efficient way: Instead of
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checking the entire (exponentially large) set of candidate labelings, one only needs to find the
right “middle part”, i.e., the indices l and r in (27), after sorting the labels �k according to
their marginal probabilities pk. Therefore, the number of candidates reduces from exponential
to quadratic.

• The case of uncertainty-alignment, with known reference point � = 1∕2, admits an even more
efficient approach: After sorting the labels �k in increasing order according to their calibrated
uncertainties |pk − 1∕2|, the abstention set corresponds to the top of the sorted list, and can
hence be found in linear time.

• We start with the case of decomposable losses (Section 4), for which we show that a BOP can
be found efficiently, regardless of whether the labels are (conditionally) independent or not.

• For the case of non-decomposable losses, we have to make an assumption of CLI (15). Under
this assumption, we show that the optimal predictions for the generalization (29) of the rank
loss (Section 5), the subset 0/1 loss (Section 6), and a family of CMDP measures (Section
7) are all semi-uncertainty aligned. As explained above, this allows us to devise efficient
algorithms.

4. The Case of Decomposable Losses

We start with the general case of decomposable losses in the sense of (16), where lk(0, 1) and
lk(1, 0) are not necessarily equal. For any d = 0,… , K , denote by

∗
d
..= {

ȳ ∈ ∗
| |D(ȳ)| = d

} (32)
the set of labelings with exactly d decided (positive or negative) labels andK−d abstentions. We can
decompose the optimization problem (22) into an inner and an outer minimization task as follows:

ŷd ..= argmin
ȳ∈∗

d

E (L(y, ȳ)) , (33)

ŷ ..= argmin
ȳ∈{ŷ0,…,ŷK}

E (L(y, ȳ)) . (34)

Proposition 1. Let � be a permutation that sorts the labels in increasing order of the label-wise
expected loss

sk ..= min
ȳk∈{0,1}

E(lk(yk, ȳk)) = min
ȳk∈{0,1}

∑

y∈
lk(yk, ȳk)p(y |x)

= min
ȳk∈{0,1}

lk(1 − ȳk, ȳk)(pk)1−ȳk(1 − pk)ȳk

= min
{

(1 − pk)lk(0, 1), pklk(1, 0)
}

,

i.e., the permutation � is such that

s�(1) ≤ s�(2) ≤… ≤ s�(K) . (35)
If the loss l is decomposable in the sense of (16), a BOP

ŷ ∈ argmin
ȳ∈∗

E (L(y, ȳ)) = argmin
0≤d≤K

E
(

l(y, ŷd)
)

+ g(K − d) (36)
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of the generalization (29) is given by the partial prediction ŷd with
ŷdk = argmin

ȳk∈{0,1}
E
(

lk(yk, ȳk)
)

, (37)

on the index set D(ŷd) = {k ∈ [K] |�−1(k) ≤ d}.

As shown by the previous proposition, a BOP for a decomposable loss can easily be found in
time O(K log(K)), which is the time needed to obtain the sorting (35) of the labels according to the
scores sk. Given this sorting, the optimal prediction of size d can be found without further searching,
as it is always given by the d labels with lowest scores. Therefore, the optimal prediction set along
with the prediction itself can be produced in linear time, simply by finding the optimal size d of the
prediction set according to (36), i.e., by trying each set size d and picking the best.

As a consequence of Proposition 1, we obtain the following result for the generalized Hamming
loss (29) .
Corollary 1. Let � be a permutation that sorts the labels in increasing order of the degree of un-
certainty (24). In the case of the generalized Hamming loss (29), a BOP

ŷ ∈ argmin
ȳ∈∗

E
(

LH (y, ȳ)
)

= argmin
0≤d≤K

E
(

lH (y, ŷ
d)
)

+ g(K − d) (38)

is given by the prediction ŷd with

ŷdk = argmin
ȳk∈{0,1}

E
(

lk(yk, ȳk)
)

= argmin
ȳk∈{0,1}

(pk)1−ȳk(1 − pk)ȳk (39)

on the index setD(ŷd) = {k ∈ [K] |�−1(k) ≤ d}. This prediction can be found in timeO(K log(K)).

Corollary 2. The generalized Hamming loss (29) is uncertainty-aligned. In the case of the gener-
alized Hamming loss (30), the BOP is given by (39) with

D(ŷd) = {k ∈ [K] | min
{

pk, 1 − pk
}

≤ c} .

Thus, a BOP of the generalized Hamming loss (30) can easily be found in time O(K), simply by
comparing min{pk, 1 − pk} to the cost value c.
Remark 1. The generalized Hamming loss (29) is monotonic, provided g is non-decreasing and
such that g(k + 1) − g(k) ≤ 1, ∀ k ∈ [K − 1].

5. The Case of Rank Loss

As already said, in the case of the rank loss, we assume predictions in the form of rankings (12)
instead of labelings. The rank loss then counts the number of incorrectly ordered label-pairs, that
is, the number of pairs �i, �j such that �i is ranked worse than �j although �i is relevant while �j
is irrelevant:

lR(y, �) =
∑

1≤i<j≤K
Jy�(i) = 0 ∧ y�(j) = 1K . (40)
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Thus, given that the ground-truth labeling is distributed according to the probability p(⋅ |x), the
expected loss of a predicted ranking � is

E
(

lR(y, �)
)

=
∑

y∈
lR(y, �)p(y |x) =

∑

1≤i<j≤K
p�(i),�(j)(0, 1 |x) , (41)

where pu,v denotes the pairwise marginal probabilities
pu,v(a, b) = pu,v(a, b |x) =

∑

y∈∶yu=a,yv=b
p(y |x) . (42)

In the following, we first recall the BOP for the rank loss as introduced above and then generalize it
to the case of partial predictions. We use the following notation: For a labeling y, let s(y) = ∑K

k=1 ykbe the number of relevant labels, and c(y) = s(y)(K − s(y)) the number of relevant/irrelevant label
pairs (and hence an upper bound on the rank loss).

As shown by Dembczyński et al. (2012), a BOP ranking �, i.e., a ranking minimizing (41), is
provably obtained by sorting the labels �k in decreasing order of the marginal probabilities pk, i.e.,
according to their probability of being relevant. Thus, a BOP � is such that

p�(1) ≥ p�(2) ≥… ≥ p�(K) . (43)
To show this result, let �̄ denote the reversal of �, i.e., the ranking that reverses the order of the labels.
Then, for each pair (i, j) such that yi > yj , either � or �̄ incurs an error, but not both. Therefore,
c(y) = lR(y, �) + lR(y, �̄), and

lR(y, �) − lR(y, �̄) = 2lR(y, �) − c(y) . (44)
Because c(y) is a constant that does not depend on �, minimizing lR(y, �) (in expectation) is equiv-
alent to minimizing the difference lR(y, �) − lR(y, �̄). For the latter, the expectation (41) becomes

E
(

lR(y, �) − lR(y, �̄)
)

=
∑

y∈

(

lR(y, �) − lR(y, �̄)
)

p(y |x) (45)

=
∑

1≤i<j≤K

(

p�(i),�(j)(0, 1) − p�(i),�(j)(1, 0)
)

=
∑

1≤i<j≤K

(

p�(j) − p�(i)
)

=
∑

1≤i≤K
(2k − (K + 1)) p�(k) ,

where the transition from the first to the second sum is valid because
pu,v(0, 1) − pu,v(1, 0) = pu,v(0, 1) + pu,v(1, 1) − pu,v(1, 1) − pu,v(1, 0)

= pv(1) − pu(1) = pv − pu .

From (45), it is clear that a BOP ranking � is defined by (43).
To generalize this result, let us look at the rank loss of a partial prediction of fixed size d ∈ [K],

i.e., a ranking of a subset of d labels. To simplify notation, we identify such a prediction, not with
the original set of indices of the labels, but the positions of the corresponding labels in the sorting
(43). Thus, a partial prediction of size d is identified by a set of indices Dd = {k1,… , kd} such
that k1 < k2 < … < kd , where k ∈ Dd means that the label ��(k) with the ktℎ largest probability
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p�(k) in (43) is included. According to the above result, the optimal ranking �Dd
on these labels is

the identity, and the expected loss of this ranking is given by
E
(

lR(y, �Dd
)
)

=
∑

1≤i<j≤d
p�(ki),�(kj )(0, 1) . (46)

Lemma 1. Assuming CLI in the sense that pi,j(yi, yj) = pipj , the generalized rank loss (29) is semi-
uncertainty-aligned. Thus, the Bayes-optimal prediction is a partial prediction with decision set of
the form

Dd = Dd(ŷ) = ⟪l, r⟫ ..= {1,… , l} ∪ {r,… , K} , (47)
where 0 ≤ l < r ≤ K + 1 (and d = K − r + l + 1).

According to the previous lemma, an optimal d-selection Dd leading to an optimal (partial)
ranking of length d is always a “boundary set” of positions in the ranking (43). The next lemma
establishes an important relationship between optimal selections of increasing length.
Lemma 2. Let Dd = ⟪l, r⟫ be an optimal d-selection (47) for d ≥ 2. At least one of the extensions
⟪l + 1, r⟫ or ⟪l, r − 1⟫ of Dd is an optimal (d + 1)-selection.

Thanks to the previous lemma, a BOP of the generalized rank loss (29) can be constructed quite
easily (in timeO(K log(K)). First, the labels are sorted according to (43). Then, an optimal decision
set is produced by starting with the boundary set ∅ and increasing this set in a greedy manner.
Proposition 2. ABOP ranking of the generalized rank loss (29) can be constructed in timeO(K log(K))
using Algorithm 1.

Algorithm 1 BOP of the generalized rank loss
1: Input: marginal probabilities (p1,… , pK ) = ℎ(x), penalty function g
2: Sort p ..= {

p1, p2,… , pK
} in decreasing order: p�(1) ≥ p�(2) ≥… ≥ p�(K)

3: D0 ..= ∅, E0 ..= g(K)
4: K2

..= ⟪1, K⟫, l ..= 1, r ..= K , E2 = E(lR(y, �K2
)) + g(K − 2)

5: for d = 3 to K do
6: Kl

..= ⟪l + 1, r⟫, Kr
..= ⟪l, r − 1⟫

7: if E(lR(y, �Kl
)) < E(lR(y, �Kr

)) then
8: Dd

..= Kl, l ..= l + 1, Ed ..= E(lR(y, �Kl
)) + g(K − d)

9: else
10: Dd

..= Kr, r ..= r − 1, Ed ..= E(lR(y, �Kr
)) + g(K − d)

11: end if
12: end for
13: d = argmind∈{0,2,…,K} Ed
14: Output: the ranking �Dd

Remark 2. The generalized rank loss (29) is not uncertainty-aligned.
Because a prediction is a (partial) ranking instead of a (partial) labeling, the property of mono-

tonicity as defined in Section 3.2 does not apply in the case of rank loss. Although it would be
possible to generalize this property, for example by looking at (in)correctly sorted label pairs instead
of (in)correct labels, we refrain from a closer analysis here.
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6. The Case of Subset 0/1 Loss

In the following, we show that under the assumption (15) of conditional label independence, the
BOP of the generalized subset 0∕1 loss LS (29) can be constructed in time O(K log(K)) given the
marginal probabilities pk, k ∈ [K].
Proposition 3. Let � be a permutation that sorts the labels in increasing order of the degree of
uncertainty (24). In the case of generalized subset 0∕1 loss (29), a BOP

ŷ ∈ argmin
ȳ∈∗

E
(

LS(y, ȳ)
)

= argmin
0≤d≤K

E
(

lS(y, ŷ
d)
)

+ g(K − d) (48)

is given by
ŷdk = argmin

ȳk∈{0,1}
(pk)1−ȳk(1 − pk)ȳk , (49)

on the index set D(ŷd) = {k ∈ [K] |�−1(k) ≤ d}.

Thus, a BOP for the generalized subset 0∕1 loss (29) can be found in time O(K log(K)), simply
by sorting the labels according to the uncertainty degrees uk, and then finding the optimal size d of
the prediction according to (48). Also, the generalized 0∕1 loss (29) is uncertainty-aligned.

7. The Case of Confusion Matrix-Derived Accuracy Measures

As already mentioned, performance measures f derived from the confusion matrix are mostly ac-
curacy measures instead of loss functions. However, because they are typically normalized to the
unit interval, they can be turned into loss functions by setting l(y, ŷ) = 1 − f (y, ŷ). Thus, the
problem of finding a BOP (22) for a generalized loss (29) can be expressed equivalently in terms of
the generalization F of the measure f :

ŷ ∈ argmax
ȳ∈∗

E
(

F (y, ȳ)
)

= argmax
ȳ∈∗

∑

y∈
F (y, ȳ) ⋅ p(y |x) (50)

= argmax
ȳ∈∗

∑

y∈
f (yD, ȳD) ⋅ p(y |x) − g

(

|A(ȳ)|
)

,

where
F (y, ȳ) = f (yD, ȳD) − g

(

|A(ȳ)|
)

. (51)
Moreover, the optimization problem (50) can again be decomposed into an inner and an outer max-
imization as follows:

ŷd ..= argmax
ȳ∈∗

d

E (F (y, ȳ)) , (52)

ŷ ..= argmax
ȳ∈{ŷ0,…,ŷK}

E (F (y, ȳ)) . (53)

Note that many commonly used confusion matrix-derived accuracy measures, including the ones
given in Table 2, satisfy the following properties.
Definition 4 (Monotonic Accuracy Measure). A confusion matrix-derived accuracy measure f is
monotonic if it is
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(D4) monotone increasing in tp and tn,

(D5) monotone decreasing in fp and fn.

Thus, in the following, we restrict ourselves to accuracymeasures that are monotonic in the sense
of Definition 4.

7.1 Monotonicity

From now on, we write f (tp, fn, fp, tn) and f (y, ŷ) exchangeably. Furthermore, we introduce the
following shorthand notation:

fVS (y, ŷ) = f (tp + vtp, fn + vfn, fp + vfp, tn + vtn) , (54)
where S ⊆ {tp, fn, fp, tn} is the set of quantities that are modified and V ⊆ {vtp, vfn, vfp, vtn} is the
set of corresponding values added to the original quantities. For example, we write

f−1,+1fn,tn (y, ŷ) = f (tp, fn − 1, fp, tn + 1) .

Proposition 4. Let f be anyMLC accuracy measure f of the form (11) that is monotonic in the sense
of Definition 4. Let g be a non-decreasing function of |A(ŷ)|. The generalized accuracy measure F
of the form (51) is monotonic in the sense of Definition 1 if and only if

g(|A(ŷ)| + 1) − g(|A(ŷ)|) ≤ min
(

f−1fp (yD, ŷD), f
−1
fn (yD, ŷD)

)

− f (yD, ŷD) , (55)
for any pair (y, ŷ) ∈  × ∗.

The condition (55) simply means the the reward for turning an incorrect prediction on a label �k
into an abstention should be at least as high as the cost of doing an extra abstention. In particular,
the generalization (51) of an accuracy measure f of the form (11) does not satisfy the condition
(55) if g is a strictly monotone increasing function of |A(ŷ)| and either fp or fn is not taken into
account when computing f . Examples include recall/sensitivity, specificity, precision, and negative
predictive value. In such a case, there is at least one pair (y, ŷ) ∈  × ∗ such that

f (yD, ŷD) = min
(

f−1fp (yD, ŷD), f
−1
fn (yD, ŷD)

)

.

7.2 General Structure of BOPs

Let � be a permutation that sorts the labels in decreasing order of the marginal probabilities pk,
k ∈ [K]. Assuming CLI in the sense of (15), Lewis (1995) showed that the original f� has a BOP
of the form

ŷk = J�−1(k) ≤ tK, k ∈ [K] , (56)
where t ∈ {0, 1,… , K} is a threshold. The following remark shows that this characterization holds
as long as f is an MLC accuracy measure satisfying (D4) and (D5) as given in Definition 4.
Remark 3. Let � be a permutation that sorts the labels in decreasing order of the marginal proba-
bilites pk, k ∈ [K]. Assume CLI in the sense of (15), and let f be an MLC accuracy measure of the
form (11) that is monotonic in the sense of Definition 4. Then, for any (ŷ, k) ∈  × [K], we have the
following properties:
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(R1) E (f (y, ŷ)) is monotone increasing in pk if ŷk = 1;

(R2) E (f (y, ŷ)) is monotone decreasing in pk if ŷk = 0.

Furthermore, f has a BOP of the form (56).
Thus, a BOP of the accuracy measure f can be constructed following a procedure similar to the

case of f� (Chai, 2005; Jansche, 2007; Ye et al., 2012). First, the labels are sorted according to their
marginal probabilities. Then, we evaluate all possible thresholds t and find the one maximizing the
expected value of f . Obviously, the computation of this expectation essentially amounts to comput-
ing the expected value E (f (y, ŷ)). If this can be accomplished in time O(�(K)), then the overall
complexity is upper-bounded by O(K�(K)), because there are O(K) possibilities for the threshold.
Note that this result holds for a wide range of MLC losses and accuracy measures including those
presented in the Table 2.

In the following, we show that if f is anMLC accuracymeasure satisfying (D4) and (D5) given in
Definition 4, then its generalization (51) is semi-uncertainty-aligned, i.e., F has a BOP with decision
set of the form (27).
Lemma 3. Let � be a permutation that sorts the labels �k in decreasing order of their marginal
probabilities pk = pk(1 |x). Let f be anMLCaccuracymeasure of the form (11), which is monotonic
in the sense of Definition 4. Furthermore, assume CLI in the sense of (15). Then, for any d ∈
{0, 1,… , K}, the solution ŷd of the inner maximization (52) is a decision set of the form ⟪l, r⟫ with
d = K − r + l + 1.

Proposition 5. Given the assumptions of Lemma 3, the generalization (51) of f has a BOP ŷ with
decision set of the form D(ŷ) = ⟪l, r⟫.

Thanks to this result, a BOP of the generalized accuracy measure F can be constructed following
a procedure similar to the case of the rank loss. First, the labels are sorted according to their marginal
probabilities. Then, we evaluate all possible partial predictions ŷ with decision sets of the form
⟪l, r⟫, and find the one for which the expected value of F is maximal. Obviously, the computation
of this expectation essentially amounts to computing the expected value E (

f (yD, ŷD)
). If this can

be accomplished in time O(�(K)), then the overall complexity is upper-bounded by O(K2�(K)),
because there are O(K2) possibilities for the decision set.

7.3 BOP for the F-Measure and Jaccard Measure

In the following, we show that, by exploiting specific properties of MLC accuracy measures, this
complexity can even be reduced further. A representative example is the F� measure, for which the
computation of E (

f�(yD, ŷD)
) requires time O(K2) (Decubber et al., 2018; Ye et al., 2012). How-

ever, for finding the BOP of F� , an algorithm of complexityO(K3) instead ofO(K4) can be devised,
essentially by (re-)computing the expectations E (

f�(yD, ŷD)
) in a clever way using dynamic pro-

gramming (Decubber et al., 2018; Waegeman et al., 2014). A similar result can be shown for the
Jaccard measure.
Lemma 4. Given a query instancex, assumemarginal probabilities pk, k ∈ [K], are made available
by an MLC predictor h. Let � be the permutation that sorts the labels in decreasing order of these
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probabilities. Denote by

Q(l, l1) ..= p

( l
∑

k=1
y�(k) = l1

|

|

|

x

)

, (57)

P (r′, r′1)
..= p

( K
∑

k=r
y�(k) = r′1

|

|

|

x

)

, (58)

where r′ ..= K + 1 − r. Thus, Q(l, l1) is the probability to find l1 positives among the first l labels,
and P (r′, r′1) the probability to have r′1 positives among the last r ones. Assuming CLI in the sense
of (15), the quantities Q(l, l1), 0 ≤ l1 ≤ l ≤ K , and P (r′, r′1), 0 ≤ r′1 ≤ r′ ≤ K , can be determined
in time O(K2).

The quantities Q(l, l1) and P (r′, r′1) will be used when computing BOPs of F� and FJac in the
following propositions.
Proposition 6. Suppose the assumptions of Lemma 4 to hold. A BOP of the generalized accuracy
measure F� can be found in time O(K3) using Algorithm 2.

Algorithm 2 Determining a BOP of the generalized measure F�
1: Input: marginal probabilities p = (p1, p2,… , pK ), penalty g(⋅), �
2: p ⟵ sort(p) s.t. p1 ≥ p2 ≥… ≥ pK
3: compute Q⟵ using Lemma 4
4: F�(0, K + 1)⟵ 1 − g(K)
5: l0 ⟵ 0, r0 ⟵ K + 1
6: for l = 1 to K do
7: for i = 0 to K do
8: initialize S(l, i)⟵ 1

l�−2+i
9: end for
10: F�(l, K + 1)⟵ �′

∑l
l1=0

l1Q(l, l1)S(l, l1) − g(K − l)
11: for r = K to l + 1 do
12: for i = 0 to K − l − r′ do
13: S(l, i)⟵ prS(l, i + 1) +

(

1 − pr
)

S(l, i)
14: end for
15: F�(l, r)⟵ �′

∑l
l1=0

l1Q(l, l1)S(l, l1) − g(r − l − 1)
16: end for
17: rl ⟵ argmaxr F�(l, r) , F�(ŷl)⟵ F�(l, rl)
18: end for
19: l∗ ⟵ argmaxl F�(ŷ

l)
20: Output: a BOP ŷ ..= ŷl

∗

rl∗

Another well-known measure in MLC is the Jaccard measure

fJac(y, ŷ) =
tp

tp + fn + fp
=

∑K
k=1 ykŷk

∑K
k=1 yk +

∑K
k=1 ŷk −

∑K
k=1 ykŷk

. (59)
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Under the assumption of label independence, a BOP for fJac can be found in time O(K2) (Quevedo
et al., 2012; Waegeman et al., 2014).
Proposition 7. Under the assumption of CLI in the sense of (15), a BOP for the generalized Jaccard
measure FJac can be found in time O(K3) using Algorithm 3.

Algorithm 3 Determining a BOP of the generalized measure FJac
1: Input: marginal probabilities p = (p1, p2,… , pK ), penalty g(⋅)
2: p ⟵ sort(p) s.t. p1 ≥ p2 ≥… ,≥ pK
3: compute Q⟵ using Lemma 4
4: FJac(0, K + 1)⟵ 1 − g(K)
5: l0 ⟵ 0, r0 ⟵ K + 1
6: for l = 1 to K do
7: for i = l to K do
8: initialize S(i)⟵ 1

i9: end for
10: FJac(l, K + 1)⟵ S(l)

∑l
l1=0

l1Q(l, l1) − g(K − l)
11: for r = K to l + 1 do
12: for i = l + r′ to K do
13: S(i)⟵ prS(i) +

(

1 − pr
)

S(i − 1)
14: end for
15: FJac(l, r)⟵ S(l + r′)

∑l
l1=0

l1Q(l, l1) − g(r − l − 1)
16: end for
17: rl ⟵ argmaxr FJac(l, r) , FJac(ŷl)⟵ FJac(l, rl)
18: end for
19: l∗ ⟵ argmaxl FJac(ŷl)
20: Output: a BOP ŷ ..= ŷl

∗

rl∗

8. Related Work

In spite of extensive research on multilabel classification in the recent past, there is surprisingly little
work on abstention in MLC. A notable exception is an approach by Pillai et al. (2013). The authors
follow the principle of empirical utility maximization and focus on the f� measure as a performance
metric. More specifically, they tackle the problem of optimizing the f� measure on a subset of label
predictions, subject to the constraint that the effort formanually providing the remaining labels (those
on which the learner abstains) does not exceed a pre-defined value fmax. The decision whether or
not to abstain on a label is guided by two thresholds on the predicted degree of relevance, which are
tuned in a suitable manner.

More precisely, Pillai et al. (2013) assume that MLC with partial abstention can be implemented
in the form of a generalized thresholded scoring classifier, which means that

ŷk = ℎk(x; tkl , t
k
r ) =

⎧

⎪

⎨

⎪

⎩

1 if sk(x) > tkr (x)
⊥ if tkl (x) ≤ sk(x) ≤ tkr (x)
0 if sk(x) < tkl (x)

, (60)
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where sk(⋅) is a (real-valued) scoring function provided by an MLC classifier and tkl (x) ≤ tkr (x) ∈ ℝ
are thresholds. Associating each classifier h(⋅; t) with its parameters

t =
(

t1l , t
1
r , t

2
l , t

2
r ,… , tKl , t

K
r
)

,

the problem of risk minimization comes down to finding the optimal thresholds t on the training data
, i.e.,

t̂ ∈ argmax
t∈ℝ2K

∑

(x,y)∈
f�(yD, ŷD)

s.t. ∑

(x,y)∈
f (yA, ŷD) ≤ fmax ,

where ŷ = h(x; t) and f (yA, ŷD) is the cost for manually providing the labels on A(y).
More indirectly related is work on uncertainty in multilabel classification. In particular, Park and

Simoff (2015) propose a modification of the entropy measure to quantify the uncertainty of an MLC
prediction, and show that this measure correlates with the accuracy of the prediction. Hence, they
conclude that it could be used as ameasure of acceptance (and hence rejection) of a prediction. While
the focus here is on the uncertainty of a complete labeling y, Destercke (2015) and Antonucci and
Corani (2017) quantify the uncertainty in individual predictions yk using imprecise probabilities and
so-called credal classifiers, respectively. Again, corresponding estimates can be used for the purpose
of producing more informed decisions, including partial predictions.

In most of the cases analyzed in this paper, an optimal prediction policy is to sort the labels ac-
cording to their (predicted) probability of relevance, and to abstain on those labels in the middle, i.e.,
to predict only on those labels exceeding a certain upper threshold or remaining below a lower thresh-
old on the probability. Therefore, our methods are in a sense also related to methods for threshold
optimization in standard MLC (although our thresholds are not fixed but defined implicitly through
the optimal size of the abstention set). Indeed, even in standardMLC, the optimal probability thresh-
old for predicting positive is not necessarily 1∕2. Instead, tuning the threshold separating between
positive and negative predictions, perhaps even in a label-wise manner, may improve accuracy (Fan
and Lin, 2007; Jasinska et al., 2016).

9. Experiments

In this section, we present an empirical analysis that is meant to show the effectiveness of our ap-
proach to prediction with abstention. To this end, we perform experiments on a set of standard
benchmark data sets from the MULAN repository2 (cf. Table 3), following a standard 10-fold cross-
validation procedure. Binary relevance (BR) learning and ensembles of classifier chains (ECC) are
employed as the MLC classifiers on these data sets. In addition, we perform experiments on an im-
age data set, on which we train ensembles of convolutional neural networks. The data set consists
of 2, 000 natural scene images, where the class labels are desert, mountains, sea, sunset and trees3.
Because training deep networks is much more complex, we conduct a 3-fold (instead of a 10-fold)
cross-validation procedure.
2. http://mulan.sourceforge.net/datasets.html
3. https://www.lamda.nju.edu.cn/data_MIMLimage.ashx?AspxAutoDetectCookieSupport=1.
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# NAME # INST. # FEAT. # LAB.
1 CAL500 502 68 174
2 EMOTIONS 593 72 6
3 SCENE 2407 294 6
4 YEAST 2417 103 14
5 MEDIAMILL 43907 120 101
6 NUS-WIDE 269648 128 81
Table 3: Data sets used in the experiments

9.1 Experimental Setting

In the following, we describe the MLC classifiers used in experiments and the comparison criteria.
9.1.1 BR
Given our assumption of label independence, simple BR learning is in principle well justified for
training MLC classifiers.4 Besides, please note that we are first of all interested in analyzing the
effectiveness of abstention, and less in maximizing overall performance. Indeed, all competitors
essentially only differ in how the conditional probabilities provided by the learner are turned into a
(partial) MLC prediction. Note that BR can be instantiated with different base learners. We perform
experiments with two variants of BR, namely with logistic regression (in its default setting in sklearn,
i.e., with regularisation parameter set to 1) as the base learner (BR+LR) and with support vector
machines, using Platt-scaling (Lin et al., 2007; Platt, 1999) to turn scores into probabilities, as a
base learner (BR+SVM).
9.1.2 ECC
As a state-of-the-art MLC method that is highly competitive in terms of predictive performance
and able to take label dependencies into account, we additionally include ECC5 (Read et al., 2011,
2021). Following the suggestion by Read et al. (2011), we learn MLC classifiers h1,… ,hM via
classifier chains over a (randomly chosen) set of M permutations of the labels. More specifically,
each classifier chain hm produces predictions in the form of scores in [0, 1]K , which can be seen
as dependent marginal probabilities, i.e., marginal probability estimates which to some extent take
label dependence into account. For each �k, the final marginal probability produced by the ECC is
then obtained by the arithmetic mean

p̄k =
1
M

M
∑

m=1
pk,m , (61)

where pk,m is the score produced by the ensemble member hm. Similar to the case of BR, we perform
experiments with two variants of ECC, again using logistic regression (ECC+LR) and support vector
machines (ECC+SVM) as base learners. The cardinality M of the ECCs is set to 50. For further
technical details, we refer to (Nguyen et al., 2020).
4. For an implementation in Python, see http://scikit.ml/api/skmultilearn.base.problem_

transformation.html.
5. For an implementation in Python, see http://scikit.ml/api/skmultilearn.problem_transform.cc.html.
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9.1.3 CONVOLUTIONAL NEURAL NETWORKS
Ensembles of 5VGG16-based convolutional neural network classifiers (EVGG16) 6 are employed in
the experiments on the image data set. The network consists of a VGG16-based encoder (pretrained
on ImageNet) whose layers are freezed, except the last convolutional block. Moreover, we add a fully
connected classification layer head including a 128-neuron hidden dense layer and the 5-neuron
classification head. The networks are trained using SGD with Nesterov momentum (lr = 10−6,
momentum = 0.9) for 100 epochs. The loss is binary cross-entropy for multi-label classification.
The input images are resized to 128 × 128 × 3. Detailed model summary with parameter sizes are
given in Appendix F. Similar to the case of ECC, each classifier produces predictions in the form
of scores in [0, 1]K , which can be seen as marginal probabilities. For each �k, the final marginal
probability produced by the EVGG16 is then obtained by the arithmetic mean (61).
9.1.4 COMPARISON CRITERIA
We compare the performance of reliable classifiers, which are allowed to abstain in cases of uncer-
tainty, to the conventional classifier that makes full predictions (MLC) as well as the cost of full
abstention (ABS), i.e., the classifier that always abstains on all labels— these two serve as base-
lines that MLC with abstention should be able to improve on. A reliable classifier is obtained as a
risk-minimizer of the extension (29) of the MLC loss, instantiated by the penalty function g and the
constant c. Two such instantiations are considered for (30) and (31):

• SEP with linear penalty g1(a) = a ⋅ c, and
• PAR with concave penalty g2(a) = (a ⋅K ⋅ c′)∕(K + a).

The performance of a classifier is evaluated in terms of the average loss. Besides, we compute the
average abstention size |A(ŷ)|∕K .

We conduct experiments for five MLC losses: Hamming loss, rank loss, subset 0/1 loss, F1-
measure, and Jaccard measure. Note that with the same cost of abstention c, the cost of making full
abstention given by g1 is twice the one given by g2. To better visualize the effectiveness of partial
abstention (compared to full abstention), the cost of abstention (horizontal axis) is chosen according
to the cost of full abstention. Thus, the actual c′ is twice the one given in the figures. For Hamming
loss, c ∈ [0.05, 0.5] and c′ ∈ [0.1, 1]. In the case of the rank loss, c ∈ [0.1, 1] and c′ ∈ [0.2, 2], and
for subset 0∕1 loss, c ∈ [0.25∕K, 2.5∕K] and c′ ∈ [0.5∕K, 5∕K]. Finally, c ∈ [0.1∕K, 1∕K] and
c′ ∈ [0.2∕K, 2∕K] for the F1-measure and Jaccard measure. The cost of doing abstention varies
mainly due to the range of the MLC loss. For example, the cost in the case of the F1-measure should
be smaller than the one of Hamming loss, since the F1-measure (9) takes values in [0, 1], while the
Hamming loss (7) takes values in [0, K].

9.2 Results

In the following, we summarize the results for the case of BR+LR and ECC+LR. Similar results for
BR+SVM and ECC+SVM are given in Appendix E.

– The results illustrated in Figure 1 clearly confirm our expectations. The Hamming loss under
partial abstention is often much lower than the loss under full prediction and full abstention,

6. For an implemetation in Python, see https://github.com/julilien/MLCAmazonFromSpace.
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Figure 1: Experimental results in terms of average Hamming loss (in percent), which is plotted in

percent of the maximal lossK , and abstention size (in percent) for g1(a) = a ⋅ c (SEP) and
g2(a) = (a ⋅K ⋅ c)∕(K + a) (PAR), as a function of the cost of abstention.
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Figure 2: Experimental results in terms of average rank loss LR and abstention size for g1(a) = a ⋅ c

(SEP) and g2(a) = (a ⋅K ⋅ c)∕(K + a) (PAR), as a function of the cost of abstention.
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Figure 3: Experimental results in terms of average Subset 0/1 loss LS (in percent) and abstention

size (in percent) for g1(a) = a ⋅c (SEP) and g2(a) = (a ⋅K ⋅c)∕(K+a) (PAR), as a function
of the cost of abstention.
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Figure 4: Experimental results in terms of average F1 (in percent) and abstention size (in percent)

for g1(a) = a ⋅ c (SEP) and g2(a) = (a ⋅K ⋅ c)∕(K + a) (PAR), as a function of the cost of
abstention.
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Figure 5: Experimental results in terms of average Jaccard measure FJac (in percent) and abstention

size (in percent) for g1(a) = a ⋅c (SEP) and g2(a) = (a ⋅K ⋅c)∕(K+a) (PAR), as a function
of the cost of abstention.
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Figure 6: Experimental results for EVGG16 on the natural scene image data set.
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a. Average gain b. Average abstention size
Figure 7: Experimental results in terms of average gains and average abstention sizes (in percent)

as functions of the predictive score of the conventional classifiers.
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showing the effectiveness of the approach. When the cost c increases, the loss increases while
the abstention size decreases, with a convergence of the performance of SEP and PAR to the
one of MLC at c = 0.5 and c′ = 1, respectively.

– Similar results are obtained in the case of rank loss (cf. Figure 2), except that convergence to
the performance of MLC is slower (i.e., requires lager cost values c and c′, especially on the
data set CAL500). This is plausible, because the cost of a wrong prediction on a single label
can be as high as K − 1, compared to only 1 in the case of Hamming loss.

– Results for the subset 0/1 Loss, F1-measure, and Jaccard measure are illustrated in Figure 3,
4, and 5, respectively. Again, the results are very similar to those presented above.

– Also quite similar are the results obtained for EVGG16 on the natural scene image data set
(cf. Figure 6).

Ideally, a reliable classifier should be more cautious on difficult data sets, on which the conven-
tional classifier is likely to fail (Nguyen et al., 2018; Yang et al., 2014). In such cases, one should
expect to observe a stronger tendency to abstain. We conducted a meta-analysis on the experimental
results to verify this ability of our methods. For each configuration, i.e., a combination of data set,
MLC loss, and MLC classifier, we average the gains (defined by the difference between the loss of
the reliable classifier and the conventional classifier) and the abstention sizes over the tests for the
different costs of abstention. For each MLC loss, we have 21 configurations with various levels of
loss for the conventional classifiers in total. When considering the average gains and average ab-
stention sizes as functions of the loss (accuracy) of the conventional classifier, we expect to see an
increasing (decreasing) trend. The results illustrated in Figure 7 clearly confirm our expectation for
all five MLC losses.

10. Conclusion

This paper presents a formal framework of MLC with partial abstention, which builds on two main
building blocks: First, the extension of an underlying MLC loss function so as to accommodate
abstention in a proper way, and second, the problem of optimal prediction, that is, minimizing this
loss in expectation.

We instantiated our framework for several MLC losses which are important and commonly used
loss functions in multilabel classification, including the Hamming loss, the rank loss, the subset 0/1
loss, and a family of confusion matrix-derived accuracy measures. We elaborated on properties of
risk-minimizers, showed them to have a specific structure, and devised efficient methods to pro-
duce optimal predictions. Experimentally, we showed these methods to be effective in the sense of
reducing loss when being allowed to abstain.

While we showed that a BOP of any decomposable loss can be found efficiently, regardless of
whether the labels are (conditionally) independent or not, we have to make the assumption of con-
ditional label independence when working with non-decomposable losses. An obvious direction for
future work is to extend our formal framework toward non-decomposable losses under the assump-
tion of possible label dependencies.
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Appendix A. Proofs for Section 4 (Decomposable Losses)

Proof of Proposition 1. Let � be the permutation sorts the labels in increasing order of the label-
wise expected losses, i.e., s�(1) ≤⋯ ≤ s�(K), where

sk = min
ȳk∈{0,1}

E(lk(yk, ȳk)) = min
ȳk∈{0,1}

∑

y∈
lk(yk, ȳk) ⋅ p(y |x)

= min
ȳk∈{0,1}

∑

y∈
lk(1 − ȳk, ȳk)(pk)1−ȳk(1 − pk)ȳk

= min
(

(1 − pk)lk(0, 1), pklk(1, 0)
)

.

The problem of finding BOP of the generalized loss (29) can be expressed as
ŷ = argmin

ȳ∈∗
E (L(y, ȳ)) = argmin

0≤d≤K
E
(

l(yD, ŷ
d
D)
)

+ g(K − d) .

It is easy to check that, ∀ d = 0, 1,… , K , ŷd is specified by the index set
D(ŷd) ..= {k ∈ [K] |�−1(k) ≤ d} , and, ŷdk = argmin

ȳk∈{0,1}
E(lk(yk, ȳk)) ,∀k ∈ D(ŷd)

since, ∀ ȳ ∈ ∗
d , we have constant penalty g(K − d) and

E
(

l(yD, ȳD)
)

=
∑

k∈D(ȳ)

(

∑

y∈
lk(yk, ȳk) ⋅ p(y |x)

)

=
∑

k∈D(ȳ)
lk(1 − ȳk, ȳk)(pk)1−ȳk(1 − pk)ȳk

≥
∑

k∈D(ȳ)
min

ȳk∈{0,1}
lk(1 − ȳk, ȳk)(pk)1−ȳk(1 − pk)ȳk =

∑

k∈D(ȳ)
sk

≥
d
∑

i=1
s�(i) =

∑

k∈[K] |�−1(k)≤d
sk = E

(

l(yD, ŷ
d
D)
)

.

The second inequality holds because replacing any i ≤ d by i′ > d cannot decrease s�(i).
Proof of Corollary 1. The proof is obvious because in the case of Hamming loss, the degrees of
uncertainty

uk = 2min(pk, 1 − pk) = 2 min
ȳk∈{0,1}

E(lk(yk, ȳk)) = 2sk.

Thus, sorting the labels in increasing order of the degrees of uncertainty uk (24) is equivalent to
doing so with the label-wise expected losses sk. To this end, the proof of Corollary 1 is carried out
consequently from the proof of Proposition 1.
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Proof of Corollary 2. It is easy to verify that the extension (29) of the Hamming loss is uncertainty-
aligned since its risk-minimizers are always of the form (39).

In the following, we show that the BOP of the generalized Hamming loss (30) can be found
simply by abstaining those labels with min(pk, 1 − pk) > c and the predictions on the remainder
D(ŷ) are

ŷk = argmin
ȳk∈{0,1}

(pk)1−ȳk(1 − pk)ȳk . (62)

The expected loss of the generalized Hamming loss (30) associated to ȳ ∈ ∗ is
E
(

LH (y, ȳ)
)

=
∑

y∈
LH (y, ȳ) ⋅ p(y |x) =

∑

k∶ȳk=0
k∈D(ȳ)

pk +
∑

k∶ȳk=1
k∈D(ȳ)

(1 − pi) + |A(ȳ)| ⋅ c

=
∑

k∶ȳk=0
k∈D(ȳ)

pk +
∑

k∶ȳk=1
k∈D(ȳ)

(1 − pk) +
∑

k∈A(ȳ)
c .

Finding the BOP is thus equivalent to solving the following optimization problem:

ŷ = argmin
ȳ∈∗

E
(

LH (y, ȳ)
)

= argmin
ȳ∈∗

(

∑

k∶ȳk=0
pk +

∑

k∶ȳk=1
(1 − pk) +

∑

k∶ȳk=⊥
c

)

.

Thus to minimize the expected loss, we should abstain all the index k ∈ [K] s.t c < min(pk, 1 − pk)
and return an optimal d-prediction D(ŷ) ..= {k|c > min(pk, 1 − pk)}. The proof of Corollary 2 is
completed by predicting the labels on D(ŷ) according to (62).
Proof of Remark 1. For a seek of simplicity, let us denote by a ..= |A(ŷ)| the number of abstained
labels in ŷ. We start with the general setting that if

g(a) − g(a − 1) ∈ [0, 1], ∀a ∈ [K] , (63)
the generalized Hamming loss (29) is monotonic.

Let us consider two predictions ŷ and ŷ′, s.t, for a given k ∈ [K], we have
{

lH (yk, ŷk) ≺ lH (yk, ŷ′k), and
lH (yi, ŷi) = lH (yi, ŷ′i), if i ≠ k,

where lH (yk, ŷk) can be: lincorrect (am incorrect prediction), lcorrect (a correct prediction), and
labstention (an abstention). The preference relation ≺ is defined s.t, lincorrect ≺ labstention ≺ lcorrect.

We proceed by considering three possible combinations of the relation lH (yk, ŷk) ≺ lH (yk, ŷ′k).The number of abstention in ŷ′ can be either a′ ∈ {a − 1, a, a + 1}.
- lincorrect ≺ lcorrect: in this case, we have a′ = a and D(ŷ′) = D(ŷ). It is clear that L(y, ŷ) ≥
L(y, ŷ′) since

LH (y, ŷ) =
∑

j∈D(ŷ)
i≠k

lH (yk, ŷk) + 1 + g(a) ≥
∑

j∈D(ŷ′)
i≠k

lH (yi, ŷi) + g(a) = LH (y, ŷ
′) .
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- lincorrect ≺ labstention: in this case, we have a′ = a+1 andD(ŷ′) = D(ŷ) ⧵ {k}. We can easily
validate that LH (y, ŷ) ≥ LH (y, ŷ

′) using the following analysis. Since g(a + 1) ≤ 1 + g(a),
thus

LH (y, ŷ) =
∑

i∈D(ŷ)
i≠k

lH (yi, ŷi) + 1 + g(a) ≥
∑

i∈D(ŷ′)

lH (yi, ŷi) + g(a + 1) = LH (y, ŷ
′) .

- labstention ≺ lcorrect: in this case, we have a′ = a−1 andD(ŷ′) ⧵ {i} = D(ŷ). It is not difficult
to see that LH (y, ŷ) ≥ LH (y, ŷ

′). Since g(a) ≥ g(a − 1), thus
LH (y, ŷ) =

∑

i∈D(ŷ)
lH (yi, ŷi) + g(a) ≥

∑

j∈D(ŷ′)
i≠k

lH (yi, ŷi) + 0 + g(a − 1) = LH (y, ŷ
′) .

Appendix B. Proofs for Section 5 (Rank Loss)

Proof of Lemma 1. Let Dd = {k1,… , kd} specify a partial prediction of size d, and let yd be the
labeling restricted to the selected labels. Since c(y) = s(y)(K − s(y)), then

E(c(yd)) = E
((

∑

1≤i≤d
y�(ki)

)(

d −
∑

1≤i≤d
y�(ki)

))

= E
(

d

(

∑

1≤i≤d
y�(ki)

))

− E
⎛

⎜

⎜

⎝

(

∑

1≤i≤d
y�(ki)

)2
⎞

⎟

⎟

⎠

= d
∑

1≤i≤d
E(y�(ki)) −

∑

1≤i,j≤d
E(y�(ki)y�(kj ))

= (d − 1)
∑

1≤i≤d
E(y�(ki)) −

∑

1≤i≠j≤d
E(y�(ki)y�(kj ))

= (d − 1)
∑

1≤i≤d
p�(ki) −

∑

1≤i≠j≤d
p�(ki)p�(kj ) ,

where we exploited that (yi)2 = yi and the assumption of (conditional) independence as made in
the proposition.

According to (44) and (45), we can write the expected loss of a ranking �Dd

E
(

lR(y, �Dd
)
)

= 1
2
E
((

lR(y, �Dd
) − lR(y, �̄Dd

)
))

+ 1
2
E(c(y))

= 1
2

(

∑

1≤i≤d
(2i − (d + 1))p�(ki) + (d − 1)

∑

1≤i≤d
p�(ki) −

∑

1≤i≠j≤d
p�(ki)p�(kj )

)

=
∑

1≤i≤d
(i − 1)p�(ki) −

∑

1≤i<j≤d
p�(ki)p�(kj )

=
∑

1≤i<j≤d
p�(kj )(1 − p�(ki)) . (64)
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Next, we show that the expression (64) is minimized by a selection of the form (47), i.e.,
Kd = ⟪l, r⟫ = {1,… , l} ∪ {r,… , K} ,

where d = K − r + l + 1, as stated in the lemma. To this end, note that the derivative of (64) with
respect to u is given by

�u =
∑

i<u
(1 − p�(ki)) −

∑

j>u
p�(kj ) .

Thus, recalling that p�(1) ≥ p�(2) ≥⋯ ≥ p�(K), we can conclude that (64) can be reduced (or at least
kept equal) if, for some u ∈ {1,… , d},

(i) �u ≤ 0 and u − 1 ∉ Kd ,
(ii) �u ≥ 0 and u + 1 ∉ Kd ,

namely by replacing u with u− 1 in Dd in case (i) and replacing u with u+ 1 in case (ii). Let us call
such a replacement a “swap”.

Now, suppose that, contrary to the claim of the lemma, an optimal selection is not of the form (47)
and cannot be improved by a swap either. Then we necessarily have a situation where b1, b2,… , bu ∈
Dd is a block of consecutive indices such that b1 − 1 ∉ Dd and bu + 1 ∉ Dd . Moreover, let l′ be
the largest index in Dd smaller than b1 and r′ the smallest index in Dd bigger than bu. Since a swap
from b1 to b1 − 1 is not valid,

�b1 =
∑

k≤l′
(1 − p�(ki)) −

(

p�(b2) +…+ p�(bu) +
∑

j≥r′
p�(kj )

)

> 0 .

Likewise, since a swap from bu to bu + 1 is not valid,

−�bu = −
∑

i≤l′
(1 − p�(ki)) −

u−1
∑

j=1
(1 − p�(bj )) +

∑

j≥r′
p�(kj ) > 0 .

Summing up these two inequalities yields
p�(b1) − p�(bu) > u − 1 ,

which is a contradiction.

Proof of Lemma 2. We proceed under the assumption that pk ∉ {0, 1}, ∀k ∈ [K]. LetDd = ⟪l, r⟫
be an optimal d-selection (47) for d ≥ 2. Since Dd is an optimal d-selection, neither a replacement
from l to r− 1 nor a replacement from r to l+ 1 onDd reduces the expected loss. Denote by �dl and
�dr the derivative of E

(

lR(y, �Dd
)
)

with respect to l and r, thus,

�dl =
∑

i≤l−1
(1 − p�(i)) −

∑

r≤j
p�(j) ≤ 0 , (65)

�dr =
∑

i≤l
(1 − p�(i)) −

∑

r+1≤j
p�(j) ≥ 0 . (66)
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Lemma 1 implies that there is an optimal (d + 1)-selection Kd+1 = ⟪l′, r′⟫. Denote by �l′ and
�r′ , the derivative of E

(

lR(y, �Kd+1
)
)

with respect to l′ and r′, thus

�d+1l′ =
∑

i≤l′−1
(1 − p�(i)) −

∑

j≥r′
p�(j) ≤ 0 ,

�d+1r′ =
∑

i≤l′
(1 − p�(i)) −

∑

j≥r′+1
p�(j) ≥ 0 .

Now, suppose that, contrary to the claim of the lemma,
(

⟪l′, r′⟫ ≠ ⟪l + 1, r⟫
)

∧
(

⟪l′, r′⟫ ≠ ⟪l, r − 1⟫
)

.

Thus, Kd+1 has 2 following possible forms: (i) (l < l′) ∧ (r < r′) or (ii) (l′ < l) ∧ (r′ < r).
The proof of Lemma 2 is completed by showing that both (i) and (ii) lead to the contradiction.
- (l < l′) ∧ (r < r′): it is not difficult to see that

(

∑

i≤l
(1 − p�(i)) ≤

∑

i≤l′−1
(1 − p�(i))

)

∧

(

−
∑

r+1≤j
p�(j) ≤ −

∑

r′≤j
p�(j)

)

.

Furthermore, the equality can not occur in both inequalities at the same time, otherwise
(l = l′ − 1) ∧ (r + 1 = r′)⇒ r − l = r′ − l′ .

Thus, �dr < �d+1l′ ≤ 0, that contradicts (66).
- (l′ < l) ∧ (r′ < r): it is not difficult to see that

(

∑

i≤l−1
(1 − p�(i)) ≥

∑

i≤l′
(1 − p�(i))

)

∧

(

−
∑

r≤j
p�(j) ≥ −

∑

r′+1≤j
p�(j)

)

.

Furthermore, the equality can not occur in both inequalities at the same time, otherwise
(l − 1 = l′) ∧ (r = r′ + 1) ⇒r − l = r′ − l′ .

Thus, �dl > �d+1r′ ≥ 0, that contradicts (65).

Proof of Proposition 2. Lemma 1 implies that K2
..= ⟪1, K⟫ is an optimal 2-selection. At each

iterative d = 3,… , K , Alg. 1 iteratively looks for the optimal d-selection which is either the exten-
sions ⟪l+1, r⟫ or ⟪l, r−1⟫ of the optimal (d−1)-selectionKd−1

..= ⟪l, r⟫ as claimed in the lemma
2. The BOP is simply the optimal d-selection minimizing the generalized rank loss in expectation.
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d D(ŷd) E(�Dd
) g(K − d) Ed

0 ∅ 0 c ⋅ 4 c ⋅ 4
2 {1, 4} 0.03 c ⋅ 2 0.03 + c ⋅ 2
3 {1, 2, 4} 0.17 c 0.17 + c
4 {1, 2, 3, 4} 0.47 0 0.47

Table 4: BOP rank information

Proof of Remark 2. The proof is carried out with a counter example. Let K = 4 and x be a query
instance with the conditional probabilities and the corresponding degrees of uncertainty

px = (0.9, 0.8, 0.7, 0.3) , ux = (0.2, 0.4, 0.6, 0.6) .

The generalized rank loss (29) is specified by g(|A(ŷ)|) ..= |A(ŷ)| ⋅ c. The information given by
running the algorithm 1 is presented in Table 4. Let the cost of abstention c ∶= 0.03, thus the BOP
rank is {1, 4}. The BOP is clearly not uncertainty-aligned since we include the 4tℎ label with the
degree of uncertainty of 0.6 while abstain the second label with degree of uncertainty of 0.4.

Appendix C. Proofs for Section 6 (Subset 0/1 Loss)

Proof of Proposition 3. Let � be the permutation that sorts the labels in increasing order of the
degree of uncertainty (24). It is easy to check that, ∀ d = 0, 1,… , K , ŷd is specified by the index set

D(ŷd) ..= {k ∈ [K] |�−1(k) ≤ d} ,

and ∀ k ∈ D(ŷd)
ŷdk = argmin

ȳk∈{0,1}
p1−ȳkk (1 − pk)ȳk .

Note that, ∀ ȳ ∈ ∗
d , we have constant penalty g(K − d) ..= g(|A(ȳ)|). Thus

E
(

lS(yD, ȳD)
)

= 1 − p(ȳ |x) = 1 −
∏

k∈D(ȳ)
pȳkk (1 − pk)

1−ȳk ,

≥ 1 −
∏

k∈D(ȳ)
max

ȳk∈{0,1}
pȳkk (1 − pk)

1−ȳk

≥ 1 −
∏

k∈D(ŷd )

max
ȳk∈{0,1}

pȳkk (1 − pk)
1−ȳk

= E
(

l(yD, ŷ
d
D)
)

.

The second inequality holds because replacing any k ∈ D(ŷd) by k′ ∈ [K] ⧵D(ŷd) increase

min
ȳk∈{0,1}

p1−ȳkk (1 − pk)ȳk ,
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or equivlently decreases
max

ȳk∈{0,1}
pȳkk (1 − pk)

1−ȳk .

The proof is complete by the fact that ∀ k ∈ [K], the optimal prediction is
ŷdk = argmax

ȳk∈{0,1}
pȳkk (1 − pk)

1−ȳk

= argmin
ȳk∈{0,1}

p1−ȳkk (1 − pk)ȳk .

Appendix D. Proofs for Section 7 (Confusion Matrix-derived Accuracy Measures)

Proof of Proposition 4. The monotonicity introduced in Definition 1 can be rewritten for the gen-
eralization F (29) of an accuracy measure f as follows: F should only increase (or at least not
decrease) in the following cases
(D1) turning an incorrect prediction on a label �k into a correct prediction,
(D2) turning an abstention on a label �k into a correct prediction,
(D3) turning an incorrect prediction on a label �k into an abstention.

We first show that (D1) and (D2) are always ensured given g is a non-decreasing function of
|A(ŷ)|. Once this is done, the proof is reduced to determining the conditions under which (D3) is
(not) satisfied.

- (D1) Turning an incorrect prediction into a correct prediction either means correcting a false
positive or a false negative. Let us remind that, for any pair (y, ŷ) ∈  × ∗, we have that

F (y, ŷ) = f (yD, ŷD) − g(|A(ŷ)|).

Thus, in the first case, F (y, ŷ) is replaced by
f+1,−1tp,fp (yD, ŷD) − g(|A(ŷ)|) ,

in the second case by
f+1,−1tn,fn (yD, ŷD) − g(|A(ŷ)|) .

In both cases, the value of the measure F increases i.e.,
f (yD, ŷD) − g(|A(ŷ)|) ≤ min

(

f+1,−1tp,fp (yD, ŷD), f
+1,−1
tn,fn (yD, ŷD)

)

− g(|A(ŷ)|) ,

since (D4) and (D5) of Definition 4 ensure that
f (yD, ŷD) ≤ min

(

f+1,−1tp,fp (yD, ŷD), f
+1,−1
tn,fn (yD, ŷD)

)

.
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- (D2) Turning an abstention into a correct prediction either means adding a true positive or a
true negative while reducing the size of the abstention set by 1. In the first case, F (y, ŷ) is
replaced by

f+1tp (yD, ŷD) − g(|A(ŷ)| − 1) ,

in the second case by
f+1tn (yD, ŷD) − g(|A(ŷ)| − 1) .

In both cases, the value of the measure F increases i.e.,
f (yD, ŷD) − g(|A(ŷ)|) ≤ min

(

f+1tp (yD, ŷD), f
+1
tn (yD, ŷD)

)

− g(|A(ŷ| − 1) ,

since g is a non-decreasing function of |A(ŷ| and f is monotone increasing in tp and tn.
(⇒) We are going to show that if F (29) is monotonic in the sense of Definition 1, then the

following condition is satisfied:
g(|A(ŷ)| + 1) − g(|A(ŷ)|) ≤ min

(

f−1fp (yD, ŷD), f
−1
fn (yD, ŷD)

)

− f (yD, ŷD) ,

for any pair (y, ŷ) ∈  × ∗. Since (D1) and (D2) are always ensured given g is a non-decreasing
function of |A(ŷ)|, it remains to determine the conditions under which (D3) is satisfied. Turning an
incorrect prediction into an abstention either means subtracting a false positive or a false negative
while increasing the size of the abstention set by 1. In the first case, F (y, ŷ) is replaced by

f−1fp (yD, ŷD) − g(|A(ŷ)| + 1) ,

in the second case by
f−1fn (yD, ŷD) − g(|A(ŷ)| + 1) .

In both cases, the monotonicity of F as given by (29) implies that the value of the measure F should
increase. Thus,

f (yD, ŷD) − g(|A(ŷ)|) ≤ min
(

f−1fp (yD, ŷD), f
−1
fn (yD, ŷD)

)

− g(|A(ŷ)| + 1) ,

or equivalently,
g(|A(ŷ)| + 1) − g(|A(ŷ)|) ≤ min

(

f−1fp (yD, ŷD), f
−1
fn (yD, ŷD)

)

− f (yD, ŷD) .

(⇐) To this end, we show that if
g(|A(ŷ)| + 1) − g(|A(ŷ)|) ≤ min

(

f−1fp (yD, ŷD), f
−1
fn (yD, ŷD)

)

− f (yD, ŷD)

for any pair (y, ŷ) ∈  × ∗, then (D3) is satisfied, which in turn implies that F (29) is monotonic
in the sense of Definition 1. This is obvious, because the above condition on f and g ensures that
turning an incorrect prediction into an abstention (i.e., either subtracting a false positive or a false
negative while increasing the size of the abstention set by 1) increases the value of the measure F
as defined in (29).
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Proof of Remark 3. Assume the marginal probabilities pk to be given, and (conditional) indepen-
dence of label probabilities in the sense of (15) to hold. Let f be an MLC accuracy measure which
is a monotone function of tp, tn, fp and fn as described in Remark 3. We start by showing that, for
any partial prediction ŷ ∈  and any index k ∈ [K],
(R1) E (f (y, ŷ)) is monotone increasing in pk if ŷk = 1;
(R2) E (f (y, ŷ)) is monotone decreasing in pk if ŷk = 0.
To this end, fix some k ∈ [K] and denote by y−k ..= (y1,… , yk−1, yk+1,… , yK ) the labeling induced
from y ∈  by removing the ktℎ element. Moreover, we introduce the shorthand notation

�(y) ..=
∏

k∈[K]
pykk (1 − pk)

1−yk .

- (R1) Let −k ..= {y−k | y ∈ }. We consider the case where ŷk = 1. We can separate the
cases y ∈  with yk = 1 from those with yk = 0, which yields

E (f (y, ŷ)) =
∑

y∈∶yk=1
f (y, ŷ)p(y |x) +

∑

y∈∶yk=0
f (y, ŷ)p(y |x)

=
∑

y−k∈−k

pk�(y−k)f+1tp (y−k, ŷ−k) +
∑

y−k∈−k

(1 − pk)�(y−k)f+1fn (y−k, ŷ−k) .

Because f is monotone increasing in tp and monotone decreasing in fn, we have
f+1tp (y−k, ŷ−k) ≥ f+1fn (y−k, ŷ−k) .

Thus, E (f (y, ŷ)) is monotone increasing in pk.
- (R2) We consider the case where ŷk = 0. Separating the cases y ∈  with yk = 1 from those
with yk = 0, we have

E (f (y, ŷ)) =
∑

y∈∶yk=1
f (y, ŷ)p(y |x) +

∑

y∈∶yk=0
f (y, ŷ)p(y |x)

=
∑

y−k∈−k

pk�(y−k)f+1fp (y−k, ŷ−k) +
∑

y−k∈−k

(1 − pk)�(y−k)f+1tn (y−k, ŷ−k) .

Because f is monotone increasing in tn and monotone decreasing in fp, we have
f+1fp (y−k, ŷ−k) ≤ f+1tn (y−k, ŷ−k) .

Thus, E (f (y, ŷ)) is monotone decreasing in pk.
We prove the second part of the remark by contradiction. So, contrary to the claim, suppose that f
has no BOP of the form (56). Then, there are indices i, j s.t. ŷi = 1, ŷj = 0, and pj > pi. However,
since E (f (y, ŷ)) is an increasing function of pi and a decreasing function of pj according to (R1)
and (R2), it is at least not decreasing when replacing i by j. This contradicts the assumption.
Proof of Lemma 3. Note that for any ŷ ∈ ∗

d , A(ŷ) = K − d is a constant. Therefore, E (F (y, ŷ))
is increasing (decreasing) iff E

(

f (yD, ŷD)
) is increasing (decreasing).

Using Remark 3, we can easily verify that for any partial prediction ŷ ∈ ∗ and any index
k ∈ D(ŷ),
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(R3) E
(

f (yD, ŷD)
) is monotone increasing in pk if ŷk = 1;

(R4) E
(

f (yD, ŷD)
) is monotone decreasing in pk if ŷk = 0.

Thus, for any i, j ∈ D(ŷd) s.t. ŷi = 1, ŷj = 0, we should have pi > pj . Otherwise, swapping the
predictions on yi and yj increases E

(

f (yD, ŷD)
), which leads to a contradiction. Now, suppose

that, contrary to the claim of the lemma, the solution ŷd of the inner maximization (52) cannot be
expressed by a decision set of the form ⟪l, r⟫. Then, for the optimal solution, we have at least one
of the following cases:

(i) ∃i ∈ D(ŷd), j ∈ A(ŷd) s.t. ŷi = 0, ŷj = ⊥, and pj < pi,
(ii) ∃i ∈ D(ŷd), j ∈ A(ŷd) s.t. ŷi = 1, ŷj = ⊥, and pj < pi.

The proof is completed by showing that both (i) and (ii) lead to a contradiction:
(i) Suppose ŷi = 1, ŷj = ⊥, and pj > pi. According to (R3), E (

f (yD, ŷD)
) is an increasing

function of pi. Therefore, this value does at least not decrease when swapping the predictions
on yi and yj , which is a contradiction.

(ii) Suppose ŷi = 0, ŷj = ⊥, and pj < pi. According to (R4), E (

f (yD, ŷD)
) is a decreasing

function of pi. Therefore, this value does at least not decrease when swapping the predictions
on yi and yj , which is a contradiction.

Proof of Proposition 5. The proof is obvious and immediately follows from the previous lemma,
because the BOP is given by the optimal partial prediction in ∗

d̂
, where

d̂ ..= argmax
d=0,1,…,K

E
(

F (y, ŷd)
)

.

Proof of Lemma 4. To compute Q(l, l1), 0 ≤ l1 ≤ l ≤ K , we employ a K × (K + 2) matrix Q,
with l1 = −1, 0… , K + 1 and l = 1,… , K , and update it via dynamic programming (similar to the
procedure discussed by Decubber et al. (2018) using double indexing, with l1 = −1, 0… , l + 1).

At the beginning, all elements of Q are initialized by 0, except the first row:
Q(1, ⋅) =

(

0, 1 − p(1), p(1), 0,… , 0
)

.

We then iteratively update the rows l = 2, 3,… , K of Q in a dynamic programming style:
Q(l, l1) = p(l)Q(l − 1, l1 − 1) +

(

1 − p(l)
)

Q(l − 1, l1) ,

with l1 = 0, 1,… , l.
Let r′ ..= K + 1 − r and

P (r′, r′1)
..= p

( K
∑

k=r
y�(k) = r′1

|

|

|

x

)

.
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We can compute P (r′, r′1), 0 ≤ r′1 ≤ r′ ≤ K , in a way similar to the computation of Q(l, l1). We
employ a K × (K + 2) matrix P , with r′1 = −1, 0,… , K + 1, and r′ = 1, 2,… , K . At the beginning,
all elements are initialized by 0, except the first row:

P (1, ⋅) =
(

0, 1 − p(K), p(K), 0,… , 0
)

.

We then iteratively update the rows r = 2, 3,… , K via dynamic programming:
P (r′, r′1) = p(r)P (r

′ − 1, r′1 − 1) +
(

1 − p(r)
)

P (r′ − 1, r′1) ,

with r′1 = 0, 1,… , r′.

Proof of Proposition 6. Let � be the permutation sorts the labels in decreasing order of themarginal
probabilities pk, and assume CLI in the sense of (15). In the following, we show that a BOP of the
generalized measure F� (29) can be constructed in timeO(K3). Denoting by �′ ..= 1+�−2 and using
the shorthand notation

S�(l, l1, r′) ..=
r′
∑

r′1=0

P (r′, r′1)

l�−2 + l1 + r′1
,

the expectation of the generalized measure F� of ŷlr is

F�(l, r) =
l
∑

l1=0

r′
∑

r′1=0

�′l1Q(l, l1)P (r′, r′1)

l + �2(l1 + r′1)
− g(r − l − 1)

= �′
l
∑

l1=0
l1Q(l, l1)

r′
∑

r′1=0

P (r′, r′1)

l�−2 + l1 + r′1
− g(r − l − 1)

= �′
l
∑

l1=0
l1Q(l, l1)S(l, l1, r′) − g(r − l − 1) .

S�(l, l1, r′) can be computed recursively as follows:

S�(l, l1, r′) = p�(r)
r′
∑

r′1=1

p
(

∑K
k=r+1 y�(k) = r

′
1 − 1|x

)

l�−2 + l1 + r′1
+
(

1 − p�(r)
)

r′−1
∑

r′1=0

p
(

∑K
k=r+1 y�(k) = r

′
1|x

)

l�−2 + l1 + r′1

= p�(r)
r′−1
∑

r′1=0

p
(

∑K
k=r+1 y�(k) = r

′
1|x

)

l�−2 + (l1 + 1) + r′1
+
(

1 − p�(r)
)

r′−1
∑

r′1=0

p
(

∑K
k=r+1 y�(k) = r

′
1|x

)

l�−2 + l1 + r′1

= p�(r)S(l, l1 + 1, r′ − 1) +
(

1 − p�(r)
)

S�(l, l1, r′ − 1) ,

with the boundary conditions

S�(l, l1, 0) =
1

k�−2 + l1
,∀(l, l1) .
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Altogether, we end up to the implementation given in Algorithm 2, which has time complexity
O(K)3.

Proof of Proposition 7. Using the shorthand notation

SJac(l, r′) ..=
r′
∑

r′1=0

P (r′, r′1)
l + r′1

,

the expectation of the generalized measure FJac of ŷlr is

FJac(l, r) =
l
∑

l1=0

r′
∑

r′1=0

l1Q(l, l1)P (r′, r′1)
l + r′1

− g(r − l − 1)

=
l
∑

l1=0
l1Q(l, l1)

r′
∑

r′1=0

P (r′, r′1)
l + r′1

− g(r − l − 1)

=
l
∑

l1=0
l1Q(l, l1)SJac(l, r′) − g(r − l − 1)

= SJac(l, r′)
l
∑

l1=0
l1Q(l, l1) − g(r − l − 1) .

SJac(l, r′) can be computed recursively as follows:

SJac(l, r′) = p(r)
r′
∑

r′1=1

p
(

∑K
k=r+1 y�(k) = r

′
1 − 1|x

)

l + r′1
+
(

1 − p�(r)
)

r′−1
∑

r′1=0

p
(

∑K
k=r+1 y�(k) = r

′
1|x

)

l + r′1

= p�(r)
r′−1
∑

r′1=0

p
(

∑K
k=r+1 y�(k) = r

′
1|x

)

(l + 1) + r′1
+
(

1 − p�(r)
)

r′−1
∑

r′1=0

p
(

∑K
k=r+1 y�(k) = r

′
1|x

)

l + r′1

= p�(r)SJac(l + 1, r′ − 1) +
(

1 − p�(r)
)

SJac(l, r′ − 1) ,

with the boundary conditions

S(l, 0) = 1
l
,∀l .

Altogether, we end up to the implementation given in Algorithm 3, which has time complexity
O(K)3.

Appendix E. Additional Experiments

In addition to the experiments which presented in Section 9, we also conduct experiments with
BR+SVM and ECC+SVM. Note that the standard SVMs do not provide probabilistic predictions,
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we train the parameters of an additional sigmoid function to map the SVM outputs into probabilities
(Lin et al., 2007; Platt, 1999) using an internal five-fold cross validation. Similar results (to the ones
presented in Section 9) are given for the Hamming loss (c.f. fig. 8), rank loss (c.f. fig. 9), Subset
0/1 Loss (c.f. fig. 10), F1-measure (c.f. fig. 11) and Jaccard Measure (c.f. fig. 12).

Appendix F. Deep Neural Network Training

Details of the parameter setting for the VGG16-based convolutional neural network classifier are
given in Figure 13.
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Figure 8: Experimental results in terms of average Hamming loss (in percent), which is plotted in

percent of the maximal lossK , and abstention size (in percent) for g1(a) = a ⋅ c (SEP) and
g2(a) = (a ⋅K ⋅ c)∕(K + a) (PAR), as a function of the cost of abstention.
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Figure 9: Experimental results in terms of average rank loss LR and abstention size for g1(a) = a ⋅ c

(SEP) and g2(a) = (a ⋅K ⋅ c)∕(K + a) (PAR), as a function of the cost of abstention.
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Figure 10: Experimental results in terms of average Subset 0/1 loss LS (in percent) and abstention

size (in percent) for g1(a) = a ⋅ c (SEP) and g2(a) = (a ⋅ K ⋅ c)∕(K + a) (PAR), as a
function of the cost of abstention.
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Figure 11: Experimental results in terms of average F1 (in percent) and abstention size (in percent)

for g1(a) = a ⋅ c (SEP) and g2(a) = (a ⋅ K ⋅ c)∕(K + a) (PAR), as a function of the cost
of abstention.
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Figure 12: Experimental results in terms of average Jaccard measureFJac (in percent) and abstention

size (in percent) for g1(a) = a ⋅ c (SEP) and g2(a) = (a ⋅ K ⋅ c)∕(K + a) (PAR), as a
function of the cost of abstention.
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Figure 13: Parameter setting for the VGG16-based convolutional neural network.
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