
Journal of Artificial Intelligence Research 71 (2021) 925-951 Submitted 12/2020; published 08/2021

Evaluating Strategic Structures in Multi-Agent Inverse
Reinforcement Learning

Justin Fu justinjfu@eecs.berkeley.edu
University of California, Berkeley
Department of Electrical Engineering & Computer Science
Berkeley, CA, 94720, USA

Andrea Tacchetti atacchet@google.com

Julien Perolat perolat@google.com

Yoram Bachrach yorambach@google.com

DeepMind

6 Pancras Square

London, N1C 4AG, United Kingdom

Abstract

A core question in multi-agent systems is understanding the motivations for an agent’s
actions based on their behavior. Inverse reinforcement learning provides a framework for
extracting utility functions from observed agent behavior, casting the problem as finding
domain parameters which induce such a behavior from rational decision makers. We show
how to efficiently and scalably extend inverse reinforcement learning to multi-agent settings,
by reducing the multi-agent problem to N single-agent problems while still satisfying
rationality conditions such as strong rationality. However, we observe that rewards learned
naively tend to lack insightful structure, which causes them to produce undesirable behavior
when optimized in games with different players from those encountered during training.
We further investigate conditions under which rewards or utility functions can be precisely
identified, on problem domains such as normal-form and Markov games, as well as auctions,
where we show we can learn reward functions that properly generalize to new settings.

1. Introduction

Game theory provides a general framework for predicting the behaviors of agents who interact
with each other. It has found application as a powerful tool in analyzing the behavior of
agents in contexts ranging from economics, robotics and human-robot interaction (Huang
et al., 2019), to biology and social interaction. As game theory primarily concerns itself with
predicting behavior when the agent’s objectives are known, a natural question to ask is the
inverse problem: how can we infer the motivations of an agent by observing its behavior?
This problem setting is known as multi-agent inverse reinforcement learning (MAIRL) (Yu
et al., 2019), inverse game theory (IGT) (Kuleshov & Schrijvers, 2015), or the inverse
equilibrium problem (Waugh et al., 2011).

There are numerous reasons why one may wish to solve the inverse problem. The first
and foremost is simply given by the problem statement itself - we wish to build models of
other agents for the sake of understanding their motivations. This is an especially important

©2021 AI Access Foundation. All rights reserved.

Fu, Tachetti, Perolat, & Bachrach

Figure 1: A standard multi-agent inverse reinforcement learning approach (left) interleaves a
game-theoretic multi-agent solver with reward learning. In contrast, our approach
(right) breaks down the problem into N simpler single-agent problems, which still
results in an accurate approximation to solving the original problem.

problem to consider when one must interact with other agents, either adversarially (such as
when competing over constrained resources) or cooperatively. A second reason is for the
purpose of designing objectives for games such that desired behavior emerges when agents
behave rationally. In multi-agent systems, unexpected and complex behavior may arise even
when the rules of a game are very simple. Thus, if one has a desired outcome in mind,
inverse game theory can be used to construct a game automatically via data-driven means,
rather than through extensive human engineering. An example of such an application in the
field of economics is mechanism design, which focuses on engineering incentive structures
such that rational play results in the desired behavior.

Inverse game theory promises to recover utility functions that explain an observed set of
behaviors. The typical assumption made is that agents are rational, and play to a solution
concept or equilibrium where all players do not wish to deviate unilaterally from their current
strategy. Constructing a general-purpose algorithm for the inverse game theory is difficult,
due to the non-uniqueness of equilibria and the difficulty of computing them. A common
formulation is to assume one is given behavior from a single equilibrium (Waugh et al., 2011;
Song et al., 2018), but in general, an infinite number of games (including those that are not
trivially equivalent) are compatible with a single equilibrium. From the algorithmic side,
without enumerating all possible equilibria resulting from a utility or reward function, it
is difficult to even determine if a correct solution has been found. Thus, much work has
been concentrated in specific problem settings where the equilibrium is unique (Athey &
Nekipelov, 2010; Song et al., 2018).

Our contributions are two-fold. First, we propose a simple approach for the inverse
Nash equilibrium concept by showing a reduction of the problem to single-agent inverse
reinforcement learning for Markov and Normal form games. This reduction approach
can provide significant computational benefits since we do not need to run potentially
expensive algorithms to solve for equilibria in N-player games. Our result also does not
require restrictive assumptions such as the game admitting to a unique equilibrium, but our
strongest result imposes additional constraints on the dynamics of the game. While the
solutions found satisfy technical criteria for inverse equilibrium problems, we argue that
due to ambiguity, rewards recovered in this way do not (in some particular sense) capture
the full understanding of the game. We introduce a formal metric for game understanding
and discuss special cases of unambiguous games where our approach can be used to recover
reward functions uniquely, which includes important domains such as auctions. We evaluate
our machinery on a classic game theory domain, a physics-based adversarial game, and a

926

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

Algorithm Game Setting Solution Concept Func. Approx.

IESAR (ours) Markov Nash Yes

MA-AIRL (Yu et al., 2019) Markov LSBRE Yes

(Lin et al., 2019) Markov Various No

(Natarajan et al., 2010) Markov Cooperative Game No

(Waugh et al., 2011) Normal-Form Correlated Yes

(Bestick et al., 2013) Normal-Form Correlated Yes

(Kuleshov & Schrijvers, 2015) Normal-Form Correlated No

Table 1: A comparison of our method against prior works in multi-agent inverse reinforcement
learning and inverse game theory. The final column, labeled “Func. Approx”, refers
to whether the method allows learning utility functions representable by function
approximators.

larger-scale simulated auction experiment where we show our method can extract accurate
valuations for several popular auction mechanisms.

Our paper is structured as follows: Section 3 discusses relevant background from game
theory and reinforcement learning. Section 4 introduces and analyzes our algorithm for
multi-agent inverse reinforcement learning based on reducing the multi-agent problem to
N instances of single-agent inverse reinforcement learning. Section 5 introduces the notion
of player-agnostic rationality and discusses the effects and potential solutions to ambiguity
in the multi-agent inverse reinforcement learning problem. Section 6 discusses practical
instantiations of the IESAR concept in three distinct domains: a classic normal-form game,
a continuous state space adversarial game, and valuation inference for several auction
mechanisms.

2. Related Work

Reinforcement learning (RL) relates to methods that allow intelligent agents to learn to
take actions in an environment so as to maximize their cumulative reward based on past
experience; as opposed to supervised learning, RL does not require labelled input/output
pairs, but rather focuses on tailoring the agent policy based on the rewards obtained in past
interactions in the environment (Sutton & Barto, 2018). RL has been extensively studied in
multi-agent settings, where multiple learners interact in the same environment (Hu et al.,
1998; Busoniu et al., 2008).

Multi-agent reinforcement learning and related techniques have been applied across a
very large spectrum of environments, ranging from board games (Tesauro, 1994; Silver et al.,
2016; Moravcik et al., 2017; Brown & Sandholm, 2018; Jaderberg et al., 2019; Anthony et al.,
2020; Gray et al., 2020) and computer games (Mnih et al., 2015; Vinyals et al., 2019; Berner
et al., 2019), simulations of economic settings and social dilemmas (Leibo et al., 2017; Lerer
& Peysakhovich, 2017; Hughes et al., 2020; Zheng et al., 2020), negotiation (Lewis et al.,
2017; Bachrach et al., 2020), and simulated or real-world multi-robot systems (Yang & Gu,
2004; Kober et al., 2013; Stone et al., 2005; Banarse et al., 2019; Liu et al., 2019; Baker
et al., 2019).

927

Fu, Tachetti, Perolat, & Bachrach

Inverse reinforcement learning (IRL) concerns itself with the inference of the reward
functions of a Markov decision process (MDP), typically based on observed behavior (Ng &
Russell, 2000). 1

A popular framework for IRL is maximum entropy IRL (Ziebart et al., 2008; Ziebart,
2010). Since MaxEnt IRL is probabilistic in nature, it is able to accommodate sub-optimal
demonstrations, and the MaxEnt principle disambiguates between multiple optimal policies
arising from the same reward function. This framework has been applied successfully in high-
dimensional continuous control problems (Ho & Ermon, 2016; Fu et al., 2017). Additionally,
we argue for the learning of “robust” rewards which preserve performance as the parameters
of the problem change, a concept which is explored in IRL by Amin et al. (2017) and Fu
et al. (2017).

Inverse game theory. Within the context of game-theoretic and multi-agent settings, in-
verse game theory (Kuleshov & Schrijvers, 2015) and the inverse equilibrium problem (Waugh
et al., 2011; Bestick et al., 2013) present general formulations for inferring utilities in normal
form games using linear programming. In particular, these methods assume the agents
rationalize to a correlated equilibrium, and Waugh et al. (2011) further adopts the MaxEnt
principle to disambiguate among correlated equilibria that rationalizes observed behavior.

Multi-agent IRL (MAIRL) generalizes IGT from normal form games to Markov games
(Natarajan et al., 2010; Lin et al., 2017; Yu et al., 2019; Lin et al., 2019). Lin et al.
(2019) studies MAIRL for a variety of solution concepts, including the popular Nash and
correlated equilibrium solution concepts. Yu et al. (2019) propose gradient-based algorithms
for the inverse LSBRE (logistic stochastic best-response equilibrium) problem with function
approximation, but requires that the game admits to a unique equilibrium.

One focus of our applications is within the field of auctions. Recent work has proposed
using deep reinforcement learning for optimizing bidding strategies in sponsored search
problems (Zhao et al., 2018). Additionally, the inverse game theory problem has been
studied extensively in auctions. Athey and Nekipelov (2010) study a model of sponsored
search auctions where the equilibrium is unique, and propose an estimator for the valuations
of individual agents. Nekipelov et al. (2015) studies the case of no-regret learning solution
concept as an alternative to Nash equilibrium formulations. Mechanism design (Myerson,
1983) concerns itself designing the incentives of an auction such that desired behavior, such
as truthfulness, arises. Similar approaches, where game design is cast as an optimization
problem, have been discussed in other contexts such as for voting games (De Keijzer et al.,
2014), combinatorial auctions (Fotakis et al., 2018), and general trading games (Larsen &
Zhang, 2018). Automated mechanism design (Sandholm, 2003) casts mechanism design as
an optimization problem, where payoff structures can be found via constrained optimization
or inferred from data (Vorobeychik et al., 2007; Tacchetti et al., 2019).

3. Preliminaries

In this section, we introduce our notation and prerequisite concepts in game theory and
reinforcement learning.

1. IRL focuses on understanding or inferring agent motive and goals based on their observed behavior,
which is a crucial component of building cooperative intelligent systems (Hadfield-Menell et al., 2016;
Kretzschmar et al., 2016; Dafoe et al., 2020).

928

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

3.1 Reinforcement Learning

An infinite-horizon Markov decision process (MDP) is defined by the tuple (S,A, T , R, γ, ρ0),
where S and A denote the state and action spaces, T (s′|s, a) denotes the transition
distribution,R ∈ R denotes a reward function, γ ∈ (0, 1) denotes a discount factor, and ρ0(s)
denotes the initial state distribution.

The goal of forward reinforcement learning (RL) is typically to find a policy π(a|s) that
maximizes the expected future returns. We overload notation, and use R(π) to denote the
returns of a policy π under reward function R:

R(π) = Eρ0,π,T [

∞∑
t=0

γtR(st, at)] (1)

A policy π∗ is optimal if it achieves the maximum returns, R(π∗) = maxπ R(π).

We use the notationM\R = (S,A, T , γ, ρ0) for an MDP without a reward function. We
can view solving the RL problem on an MDP M\R as mapping from a reward function R
to a set of optimal policies, RL : R → P(Π), where P(Π) denotes the power set over policies.
Therefore, for any optimal policy π∗ for a reward function R, we can write π∗ ∈ RL(R).

3.2 Inverse Reinforcement Learning

The inverse reinforcement learning (IRL) problem selects rewards for which demonstrated
behavior is optimal. Formally, we denote an IRL algorithm as IRL(π), which is a function
that maps policies π back to a set of reward functions {R ∈ R : R(π) = maxπ′ R(π′)}. If π
is optimal under reward R∗, we use the notation R∗ ∈ IRL(π).

A common use-case of IRL, known as apprenticeship learning (Abbeel & Ng, 2004), aims
to imitate a policy by optimizing a reward function obtained via IRL. We can use the notion
of utility-matching to enforce that an inverse RL algorithm leads to good apprenticeship
learning under the forward RL problem:

Definition 3.1. Let π∗ denote the behavior policy. An RL and IRL algorithm are ε-
utility matching with respect to an MDP M\R and reward class R if for all π ∈ RL(R̂),
R̂ ∈ IRL(π∗),

max
R∈R
|R(π)−R(π∗)| ≤ ε

Utility matching eliminates many trivial solutions which technically solve the IRL problem
- for example, the constant zero reward would be optimal for any behavior policy, but an
algorithm that outputs the zero reward would not satisfy ε-utility matching in general. In
fact, many IRL algorithms are constructed to ensure utility matching. A popular approach
is feature matching (Abbeel & Ng, 2004), which provides a sufficient condition under which
the learned policy will achieve similar returns to the behavior policy under any linear reward
function. MaxEnt (Ziebart, 2010) approaches have been shown to be equivalent to a form
of divergence minimization between the occupancy measures of the behavior and learned
policies (Neu & Szepesvari, 2007; Ho & Ermon, 2016), which also guarantees utility matching
under a broader class of reward functions.

929

Fu, Tachetti, Perolat, & Bachrach

3.3 Markov Games

A Markov game is an extension of an MDP to the multi-agent scenario. An N-player Markov
game, like an MDP, is defined by the tuple (S,A1:N , T , R1:N , γ, ρ0). Here, each player
or agent has its own action space Ai and reward function Ri(s, a1:N), and the transition
function T (s′|s, a1:n) depends on the actions taken by all agents. As a notational shorthand,
we use a−i or π−i to denote the set of actions or policies of the N − 1 players other than
player i. A normal-form game can be viewed as a single-step Markov game without state,
or a multi-agent, multi-armed bandit problem - that is, it is defined as a tuple of action sets
and rewards for each player, (A1:N , R1:N), and policies (or strategies) πi(ai) are distributions
over the action set.

As each agent has its own reward function, the concept of optimality is not well-defined.
Instead, the typical aim in game-theoretic scenarios is to find equilibria defined by a solution
concept, which represent joint strategies at which agents cannot unilaterally improve their
performance. A popular solution concept is the Nash equilibrium, defined as a set of joint
policies π1:N such that for all πi:

Eπi,π−i [
∞∑
t=0

γtRi(st, at,1:N)] ≥ max
πi

Eπi,π−i [
∞∑
t=0

γtRi(st, at,1:N)]− ε (2)

The amount of slack, ε, is also referred to as the regret of the strategy profile π1:N with
respect to R1:N , denoted as Reg(π1:N |R1:N) (Waugh et al., 2011). The regret quantifies
how far away players are from a perfect equilibrium. The traditional Nash equilibrium is
obtained when ε = 0, and when ε > 0, the equilibrium is often referred to as an approximate
ε-Nash equilibrium.

3.4 Inverse Equilibria and Strong Rationality

The goal of the inverse equilibrium problem is to find a set of utility or reward functions R̂1:N

for which observed behavior is at an equilibrium. We denote the expert or behavior strategies
that produce the observed behavior as πE . The analogous concept to utility-matching in
the inverse equilibrium problem is known as strong rationality, which likewise eliminates
spurious solutions.

First, we assume that demonstration behavior comes from rational players, which are
defined as players who prefer joint strategies with lower regret, meaning that they will try
to play to perfect equilibria with ε = 0, if possible.

We define the external regret of an agent, with respect to other players and a reward
function, as:

Reg(πi|π−i, Ri) = Ri(πi,π−i)−max
πi

Ri(πi,π−i) (3)

We define the “regret” of a joint strategy as the maximum external regret over all players:

Reg(π1:N , R1:N) = max
i

[
Ri(πi,π−i)−max

πi
Ri(πi,π−i)

]
(4)

If the regret of the joint strategy is ε, then the players are at an ε-Nash equilibrium.

Strong rationality can then be defined as:

930

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

Algorithm 1 Inverse Equilibrium Single-Agent Reduction (IESAR) Method

Input: Demonstration samples σ̂ ∼ πE1:N

(Markov Games) Estimate πE1:N from σ̂.
for player i = 1 to N do

Solve the single agent IRL problem with a utility-matching IRL method
R̂i = IRL(πEi |πE−i)

end for
return R̂1:N

Definition 3.2 (Strong Rationality (Waugh et al., 2011)). For a joint strategy π1:N to be
ε-strongly rational, its regret must be no greater than that of the expert policies πE1:N under
any set of reward functions within the reward class R by an ε amount:

max
R1:N∈RN

Reg(π1:N , R1:N)− Reg(πE1:N , R1:N) ≤ ε

4. From Inverse Equilibria to Inverse Reinforcement Learning

The formal problem setting we are concerned with is the following: given a distribution
over joint strategies πE (the expert behavior), we wish to find a set of reward or utility
functions R1:N that induces an equilibrium π̂ that matches or is close to πE . Our approach,
which we refer to as the inverse equilibrium single-agent reduction (IESAR) method,
is to construct inverse equilibria for πE by breaking down the problem into n separate,
single-agent IRL problems, one for each agent, while holding the other agents fixed to the
demonstrations. In this section, we introduce several theoretical results justifying why this
approach is valid. First, we establish that the demonstrations form an equilibrium under
the learned reward for any Markov game. Second, we show a stronger condition that for
normal form games, rational behavior under the learned rewards is strongly rational, and
that it is an equilibrium under the original rewards that produced the demonstrations.

Pseudocode for the method is shown in Alg 1. For Markov games, as one cannot simulate
rollouts or trajectories through the reduced single-agent game (typically necessary to solve
the IRL problem) without knowledge of the other player’s policies, an additional step is
needed to estimate each players’ policies through a procedure such as behavioral cloning.

4.1 Analysis

We analyze our method by showing a utility-matching result, similar to Definition 3.1, for
the multi-agent case.

First, we begin by defining the notion of an induced MDP. From the perspective of a
single player, if all other players’ strategies are held fixed, then the Markov game reduces to
an MDP.

Definition 4.1 (Induced MDP). Consider a Markov game (S,A1:N , T , R1:N , γ, ρ0) with N
players. Let Mπ−i denote the MDP for player i holding the other player’s strategies, π−i,

931

Fu, Tachetti, Perolat, & Bachrach

fixed. Then, Mπ−i is an MDP defined by the tuple (S,Ai, T π−i , Rπ−i , γ, ρ0), where

T π−i(s′|s, ai) =
∑
a−i

T (s′|s, a1:N)
∏
j 6=i

πj(aj |s)

Rπ−i(s, ai) = Eπ−i [Ri(s, a1:N)]

Using the notion of induced MDPs, we can rewrite the notion of an ε-Nash equilibrium
as follows.

Definition 4.2. Let RL and IRL problems under an induced MDP be denoted as RL(Ri|π−i)
and IRL(πi|π−i), respectively. Then, a set of policies π1:N are in ε-Nash equilibrium if

∀i, πi ∈ RLε(Ri|π−i)

where RLε denotes the set of policies that are ε-suboptimal (achieving a return of at
least R(π∗i)− ε) for the MDP induced by Ri and π−i.

Before stating our results, we lay out our assumptions.

• First, we assume that the observed equilibrium originates from rational players, as
defined in Sec. 3.4.

• Second, we assume that the RL and IRL algorithms used satisfy the utility matching
property outlined in Def. 3.1 for some ε.

We can now state our reduction result, which states that we can rationalize an equilibrium
by solving a single-agent IRL problem for each player, as long as we have access to an RL
and IRL algorithm that guarantees utility matching:

Theorem 4.1. Let πE denote a joint strategy (typically assumed to be a Nash equilibrium),

and let RL and IRL be ε-utility matching algorithms for the induced MDPs MπE−i . Then the
observed equilibrium πE is also an ε-equilibrium of the learned rewards R̂1:N , where each
reward is the output of a single-agent IRL algorithm holding other players at the observed
equilibrium, R̂i ∈ IRL(πEi |πE−i).

Proof. From the utility matching property, we have that for all i and R, |R(πi,π
E
−i) −

R(πEi ,π
E
−i)| ≤ ε, where πi is the RL solution for the MDP induced by πE−i and R̂i. However,

since πi is optimal for R̂i(π,π
E
−i), the utility matching statement implies that πEi is at most

ε-suboptimal with respect to R̂i(π,π
E
−i):

|R̂(πEi ,π
E
−i)−max

π
R̂(π,πE−i)| ≤ ε

Since this holds true for all players, πE must be an ε-equilibrium of R̂1:N .

To strengthen this result of Theorem 4.1, we can further establish that the equilibrium
found is strongly rational (Waugh et al., 2011), meaning that the regret of the induced
behavior π̂ has regret no greater than the demonstration πE under any reward function
R ∈ R. This condition is similar to the utility matching criteria extended to the multi-agent

932

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

case, but requires a stronger condition in that players cannot influence each other’s dynamics.
This is rarely true in a Markov game, but it is always true in a normal-form game.

To show this result, we require one additional assumption on the expressivity of the
reward class, which is that the class of reward functionsR is inclusive of rewards in all possible
induced MDPs. Formally, let U denote the set of utility functions in the Markov game, and
Π−i denote the class of all possible opponent’s strategies. Then, we require the reward class
to be at least as big as R ⊇ {R : R(si, ai) = Eπ−i [U(si, ai, s−i,a−i)] ∀π−i ∈ Π−i, U ∈ U}.
While this may seem like a technical and restrictive assumption, in practice this may not be
difficult to satisfy:

• In games with linear utility functions, U is a linear function of the states and actions
of the players. Since expectations are also linear, the reward class R is therefore
simply linear functions of (si, ai). Therefore, this assumption would equate to linear
single-agent rewards R with the underlying payoff matrices U being linear.

• One can also simply use a highly expressive function class to represent rewards, such as
neural networks, which will likely encompass the rewards defined by R. In general, the
simpler the reward class used by the IRL method, the easier it will be express R and
satisfy the assumption. While this is not a precise statement, in our experiments in
Sec. 6 we found neural network reward functions to work well empirically for recovering
low-regret equilibria.

Theorem 4.2. Let RL and IRL ε-utility matching. Furthermore, assume the game is a
normal-form game, and the reward class includes all rewards representable as R ⊇ {R :
R(si, ai) = Eπ−i [U(si, ai, s−i,a−i)]}. Then, π̂1:N is 2Nε-strongly rational with respect to
πE, where π̂i ∈ RL(IRL(πEi |πE−i)).

Proof. Unlike Markov games, in normal form games there are no transition dynamics. By
leveraging the reward class assumption, for any π−i,

max
R′∈R

|R′(π̂,π−i)−R′(πE ,π−i)| ≤ ε

This is because we can interpret the other player’s strategies as a parameter of the reward
function in the bandit setting.

We first bound the difference in regret of the equilibrium as follows:

max
R1:N

Reg(π̂1:N , R1:N)− Reg(πE1:N , R1:N)

= max
R1:N

max
i

[
Ri(π̂i, π̂−i)−max

π
Ri(π, π̂−i)

]
−max

i

[
Ri(π

E
i,π

E
−i)−max

π
Ri(π,π

E
−i)
]

≤ max
R1:N

max
i
|Ri(π̂i, π̂−i)−max

π
Ri(π, π̂−i)−Ri(πEi,πE−i) + max

π
Ri(π,π

E
−i)|

≤ max
R1:N

max
i
|Ri(π̂i, π̂−i)−Ri(πEi,πE−i)|︸ ︷︷ ︸

L1

+ |max
π

Ri(π,π
E
−i)−max

π
Ri(π, π̂−i)|︸ ︷︷ ︸

L2

Next, we bound L1 and L2 separately.

933

Fu, Tachetti, Perolat, & Bachrach

For L1, we have

|Ri(π̂1, π̂2, . . . , π̂N)−Ri(πE1, . . . ,π
E
N)|

≤ |Ri(π̂1, π̂2, . . . , π̂N)−Ri(πE1, π̂2, . . . , π̂N) +Ri(π
E

1, π̂2, . . . , π̂N)−Ri(πE1, . . . ,π
E
N)|

≤ ε+ |Ri(πE1, π̂2, . . . , π̂N)−Ri(πE1, . . . ,π
E
N)|

≤ ε+ |Ri(πE1, π̂2, . . . , π̂N)−Ri(πE1,π
E

2, . . . , π̂N)

+Ri(π
E

1,π
E

2, . . . , π̂N)−Ri(πE1, . . . ,π
E
N)|

≤ 2ε+ |Ri(πE1,π
E

2, . . . , π̂N)−Ri(πE1, . . . ,π
E
N)|

. . .

≤ Nε

The inequalities follow because if two reward terms differ in only one agent’s policy, we can
apply the utility-matching assumption for that agent to bound the difference by ε. Initially,
the two rewards R(π̂1, . . . , π̂N) and R(πE1, . . .π

E
N) differ in all N policies, but we can

incrementally change each learned policy π̂i to the demonstration policy πEi one-by-one by
adding and subtracting the same quantity.

For L2, we use the same sequence of inequalities to obtain:

|max
π

Ri(π,π
E
−i)−max

π
Ri(π, π̂−i)|

≤ max
π
|Ri(π,πE−i)−Ri(π, π̂−i)|

≤ (N − 1)ε

Adding L1 and L2 yields:

max
R1:N

Reg(π̂1:N , R1:N)− Reg(πE1:N , R1:N) ≤ (2N − 1)ε ≤ 2Nε

By the definition of strong-rationality, we can conclude that π̂1:N is 2Nε-strongly rational
with respect to πE

Strong rationality allows us to state that the learned behavior π̂1:N is an equilibrium
under the rewards of the expert R1:N .

Corollary 4.2.1. Let πE be an δ-equilibrium of R1:N . Then, π̂1:N is a (2Nε+δ)-equilibrium
of R1:N .

With a guarantee of strong rationality, we can expect the learned behavior to well-
approximate the demonstrations, but the rewards extracted by the algorithm may not be
representative of the ground truth rewards from which the demonstrations were trained,
due to ambiguity. For example, this particular reduction procedure learns a reward that is
constant with respect to the actions of other players, since the rewards learned by a single-
agent IRL algorithm cannot depend on other agents. Thus, in the context of normal-form
games, one can view the algorithm as extracting a single row (or linear combination of
rows) of the entire payoff matrix, corresponding to the strategy played by the opponents at
equilibrium (Fig. 2). However, Thm. 4.1 and Thm. 4.2 show that the learned rewards are
nonetheless non-trivial, in that they are predictive of the expert behavior.

934

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

Figure 2: An example of ambiguity in inverse game theory, and demonstrating the ”row”-
identifying nature of single-agent IRL. The joint demonstration distribution
is shown on the left (p(a1, a2)), for a game with 2 players and 2 actions x, y.
Hypothetical learned rewards inferred for each player are shown on the right (R1

and R2), which infers rewards with the other player’s strategies held to the expert
distribution (in this case, a pure strategy of playing y). However, no matter what
values are selected for the unknown reward values, marked by ?’s, the expert
distribution will always be an equilibrium under R1 and R2.

A final analysis to consider is in the case of Markov games, where our method requires
the ability to simulate the other player’s policies in order to run RL or IRL. As mentioned
previously, one way to address this issue in practice is to run behavioral cloning or another
imitation learning method on the expert data. An important question to ask is how the error,
measured in our case as the total variation distance DTV (π1(·|s)||π2(·|s)), in the imitation
learning process affects the final performance of the algorithm. To analyze this error, the
following bound shows how running IRL on imitated policies π̂E affects the utility matching
assumption when compared to running IRL on the original behavior policies πE :

Theorem 4.3. Let RL and IRL be ε-utility matching for the induced MDPs Mπ̂E−i, the
imitation learning error for each player be bounded as maxsDTV (π̂Ei ||πEi) ≤ c, and the reward
function be bounded as maxs,a1:N R(s, a1:N) ≤ rmax. Then, for all π ∈ RL(IRL(πEi |π̂E−i)),
the degree of utility matching can be bounded as

max
R∈R
|R(π, π̂E−i)−R(πEi ,π

E
−i)| ≤ ε+

2rmaxNc

(1− γ)2

.

Proof. We begin by splitting the error into two terms as follows:

max
R
|R(π, π̂E−i)−R(πEi ,π

E
−i)| ≤ max

R
|R(π, π̂E−i)−R(πEi , π̂

E
−i)|+max

R
|R(πEi , π̂

E
−i)−R(πEi ,π

E
−i)|

The first term is controlled by the utility matching property of RL and IRL and is bounded
by ε. Therefore, we only need to analyze the second term, which is concerned with the
difference in returns from executing πEi under the MDP induced by the imitated policies π̂E−i

935

Fu, Tachetti, Perolat, & Bachrach

versus the original behavior policies πE−i. We can leverage proofs from Janner et al. (2019)
to simplify the analysis. We begin by first bounding the difference in the state distribution
visited by the policies, and then bounding the returns.

Lemma B.1 of Janner et al. (2019) allows us to bound difference in the joint distribution
of states and actions at a time step t by the sum of the individual errors. Let p̂(a1:N,t|st)
denote the action joint distribution under the imitated policies, and p(a1:N,t|st) denote the
action joint distribution under the original behavior policies. Then, we have:

DTV (p̂(a1:N,t|st)||p(a1:N,t|st)) ≤ c(N − 1)

We can then apply Lemma B.2 of Janner et al. (2019) to bound the overall state
distribution at time step t as:

DTV (p̂(st, a1:N,t)||p(st, a1:N,t)) ≤ tc(N − 1)

Next, we let p(s, a1:N) = (1− γ)
∑T

t=0 γ
tp(st, a1:N,t) denote the discounted state-action

marginal distribution.

|R(πEi , π̂
E
−i)−R(πEi ,π

E
−i)| = |

∑
s,a1:N

(p̂(s, a1:N)− p(s, a1:N))R(s, a1:N)|

= |
∑
s,a1:N

(
∑
t

γtp̂(st, a1:N,t)− p(st, a1:N,t))R(st, a1:N,t)|

= |
∑
t

∑
s,a1:N

γt(p̂(st, a1:N,t)− p(st, a1:N,t))R(s, a1:N,t)|

≤
∑
t

∑
s,a1:N

γt|p̂(st, a1:N,t)− p(st, a1:N,t)|R(s, a1:N,t)

≤ rmax

∑
t

∑
s,a1:N

γt|p̂(st, a1:N,t)− p(st, a1:N,t)|

≤ 2rmax

∑
t

∑
s,a1:N

γttc(N − 1)

≤ 2rmaxc(N − 1)

(1− γ)2

Substituting this back into the original error, we have:

max
R
|R(π, π̂E−i)−R(πEi ,π

E
−i)| ≤ ε+

2rmaxc(N − 1)

(1− γ)2

This bound shows that the gap in utility matching introduced by imitation learning
errors is bounded linearly by the number of players in the game, and quadratically in the
horizon. This bound also can be substituted into Thm. 4.1 to characterize the relationship
between the observed equilibrium πE and the learned rewards.

936

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

4.2 On the Choice of RL and IRL Algorithms

IESAR describes a generic procedure that can be used with any RL/IRL algorithm pair that
satisfies the utility matching property (Def. 3.1). There are many potential choices for IRL
algorithms, which we will now discuss.

A major class of IRL algorithms that satisfy utility matching are the so-called feature-
matching approaches (Abbeel & Ng, 2004; Syed & Schapire, 2008). These approaches allow
one to use linear function approximation for problems when the state space is large and
complex enough that a tabular representation of the reward is intractable. Some popular
variants of feature-matching approaches are based around the MaxEnt framework (Ziebart,
2010). Ho and Ermon (2016) show that MaxEnt IRL can be interpreted as matching
occupancy measures (which in turn satisfies the utility-matching property), and (Fu et al.,
2017) propose an extension that allows one to learn rewards represented by differentiable
functions, such as neural networks. These MaxEnt approaches have been demonstrated to
work effectively on continuous, high-dimensional tasks.

5. Predictive Power of Rewards in Novel Settings

Inverse methods are commonly used as “imitation learning” methods where the aim is to
train a policy that replicates some empirical behavior. A question one may ask is: why
not directly imitate the behavior policy, rather than perform an indirect procedure where
one learns rewards and trains a policy on those rewards? One scenario in which one may
wish to learn rewards instead of policies is when one must learn a model of behavior in
one environment, and test the model in a novel environment. In such a scenario, one could
potentially train a policy using a reward in the novel environment, rather than relying on
the policy to generalize to a new task. However, most inverse methods will not produce
desirable results in this setting due to reward ambiguity.

Thm. 4.1 provides a simple procedure that satisfies several conditions of inverse game
theory (such as strong rationality), but also highlights that the problem is under-constrained,
and the algorithm will return one (of potentially infinitely many) rewards which satisfy the
problem conditions. In some sense, the standard criteria for inverse game theory are ”too
loose”, and do not constrain the problem enough to always capture strategic understanding of
an agent’s intentions. We can easily learn utilities that do not reveal the nature of a game. For
example, we can recover a cooperative game when the original game is an anti-coordination
game (see Sec. 6.3), or we can learn a reward function equal to an advantage function which
would then recover the behavior policy when performing RL. Reward ambiguity can be
a problem when one wishes to inspect the learned rewards for the sake of understanding
behavior, but also more importantly, predicting the behavior of an agent when certain
problem parameters change, such as when paired with new agents with different utilities,
such as an agent playing an auction against players different than those seen during training.

We can quantify this concept by extending the notion of rationality to opponents with
changing utilities. This notion of rationality is invariant to transformations of the reward
function which leave behaviors unchanged - for example, values of the reward on dominated
actions.

937

Fu, Tachetti, Perolat, & Bachrach

Definition 5.1 (Player-Agnostic Rationality). Let R = (Ri)i∈{1,...,N} be the estimated
reward and R∗ = (R∗i)i∈{1,...,N} represent the ground truth reward. The estimated reward is
ε-player agnostic if ∀i,∀π−i we have |maxπi Ri(πi,π−i)−maxπi R

∗
i (πi,π−i)| < ε

It is easy to see that a reward that is consistent with strongly rational behavior does not
necessarily satisfy player-agnostic rationality. Take for example the game in Fig. 2, which
satisfies strong rationality no matter what the unknown values are. If we change player 2
to prefer playing action x over y, then there are no constraints on whether player 1 prefers
action x or y.

How can we ensure that a learned reward is player-agnostic? As implied by the definition,
a natural solution is to learn from a dataset where the same agent plays with the same reward
function against different agents. This style of concept has been explored in the field of IRL
in the context of different dynamics (Amin et al., 2017). For the purposes of this paper, we
explore a simpler solution, which is to narrow the reward function class until it is identifiable
from the behavior. In other words, we assume there is an injective mapping from equilibrium
behaviors to the parameters of the reward function. Therefore, in the limit of infinite data,
one will recover the ground-truth reward function and satisfy player-agnostic rationality. An
important class of identifiable games is auctions, which are identifiable from equilibrium
behavior under mild assumptions (i.e. first price and second price auctions (Athey & Haile,
2002), and generalized second price auctions (Athey & Nekipelov, 2010)).

6. Applications

We evaluate our approach on three domains, with the goal of testing whether the single-agent
reduction method is effective in rationalizing expert behavior, and whether in identifiable
games, we can successfully predict behavior. These domains are:

1. A stateful Markov game, to see if learned rewards rationalize the given demonstrations.
We selected the game Keep-Away (Lowe et al., 2017), a continuous space and action
game where an agent navigates to a target and the adversary tries to block the agent.

2. A classic normal-form game, Chicken, to check for strong rationality of learned behaviors
and demonstrate problems with reward ambiguity.

3. First-price, second-price, and generalized second-price (GSP) auctions, to see if we
can accurately infer the parameters of the player’s reward functions (in this case,
valuations), and to study player-agnostic rationality (Section 5) in situations when an
agent must generalize their play against agents that are different from those encountered
during training.

6.1 Practical Algorithm

The single-agent reduction procedure infers utilities by running single-agent IRL for each
agent, while fixing the other agents’ policies to the demonstrations. Therefore in order to
evaluate our method, we need to select an appropriate single-agent IRL procedure to run.
For all of our experiments, we adopt a game-theoretic formulation inspired by Abbeel and Ng

938

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

(2004), Syed and Schapire (2008). We use the following saddle-point optimization problem:

IRL(πE) = argminθ,‖θ‖≤c max
π

Rθ(π)−Rθ(πE)

The output of this procedure is a reward function parameter θ∗. As regularization, we
constrain the 1-norm of the parameter vector for our Chicken, Keep-Away, and neural
network Auction utility experiments, but many other choices are reasonable (Ho & Ermon,
2016).

The game-theoretic formulation describes a saddle-point problem. We implement this
procedure as a coordinate descent algorithm, where we optimize the inner loop (policy
optimization) for N gradient descent steps for every outer loop (reward optimization) gradient
step. For the choice of first-order optimizer, we use Adam (Kingma & Ba, 2015), which is a
common choice for IRL methods (Ho & Ermon, 2016; Fu et al., 2017). The gradients are
straightforward to compute for normal-form games. However, for Markov games, we assume
access to a transition model that it is amenable to the reparameterization trick (the model is
differentiable with respect to the states, actions, and noise that is drawn i.i.d.). We perform
a form of differentiable planning by directly computing the reparameterized gradient of the
returns with respect to the policy. Practically, this is implemented by encoding the dynamics
via an automatic differentiation library. We use a differentiable policy optimizer to simplify
the experimental setup, but we note that our method can accommodate sample-based policy
optimizers, such as model-free and model-based reinforcement learning algorithms if one
chooses to do so.

6.2 Keep-Away

Keep-Away (Lowe et al., 2017; Song et al., 2018) is a continuous state-action game that
involves an agent attempting to reach a landmark, and an adversary trying to push the
agent away. The agent’s and adversary’s rewards are inverse to each other - the agent is
rewarded based on the Euclidean distance to the landmark, and the adversary is penalized
on the same distance (the adversary also has an extra shaping term which encourages it to
be closer to the landmark). A diagram of this game is shown in Fig. 3.

As an evaluation metric, we compute an estimate of the regret of the learned behaviors,
as measured by the ground-truth rewards from which demonstration behavior was generated
from. The regret quantifies how close a behavior is to a Nash equilibrium - having at most ε
regret for all players implies that the behavior is an ε-Nash equilibrium. We estimate regret
by optimizing the policy under the given reward function using gradient descent, and taking
the difference between the returns of the resulting policy and the original policy.

We choose regret as an evaluation metric because in continuous state space problems
such as Keep-Away, it is not obvious how to measure how close a learned reward function is
to the ground truth. Reward functions can be ambiguous, such as under linear and reward
shaping transformations, which makes direct comparison difficult.

6.2.1 Experiment Parameters

We represent each agent’s policy as a 2-layer ReLU neural network that outputs the
parameters of a Gaussian distribution, and each reward as a 2-layer ReLU network which
takes as input the state and both players’ actions.

939

Fu, Tachetti, Perolat, & Bachrach

Figure 3: A diagram of the 2-player Keep-Away game. The agent (green) tries to reach the
landmark (black X), while the adversary (red) tries to keep the agent away.

We obtain demonstrations by running simultaneous gradient descent on each player’s
utility function, and then sampling the behavior from the policies once an equilibrium is
found. While theoretically there is a possibility of orbiting behavior, we did not observe this
to a large extent in practice. The regret of the equilibrium used to collect the demonstrations
is recorded as the “Expert” column in Table 2.

For all methods, we use a learning rate of 10−3 (selected via grid search between 10−4

and 10−1) for both the policy and utility functions. We constrain the norm of the utility
function to c = 100 (selected via grid search between 1 and 1000). In our coordinate descent
procedure, we optimize the inner loop (policy optimization) for 10 steps for each outer loop
(utility optimization) step. We found that increasing the number of inner loop steps to 5 or
10 improved the stability of the algorithm, at the cost of more computation.

For the environment, we used a horizon length of 25 steps to mitigate the cost of
back-propagation through the environment dynamics. The goal location is located at the
origin, (0, 0), and the agents positions are initialized randomly in a uniform box between
[(−1,−1), (1, 1)].

6.2.2 Results and Discussion

Our results are shown in Table 2. We compare our method to two baselines. Cloning
refers to behavioral cloning (Argall et al., 2009), which simply uses least-squares regression
to predict each agent’s actions from the state. We select MA-GAIL as a baseline for a
multi-agent inverse reinforcement learning algorithm. MA-GAIL (Song et al., 2018) is an
extension of the GAIL (Ho & Ermon, 2016) to the multi-agent setting, and can be viewed
as a GAN, where the policy serves as the generator and the reward function is the logits
of a discriminator. We use MA-GAIL rather than MA-AIRL (Yu et al., 2019) as for the
purposes of apprenticeship learning (learning a policy via a learned reward function), the
two methods differ primarily in the architecture of the discriminator. Additionally, the other
methods discussed in Table 1 are not amenable to neural network function approximation.
MA-GAIL requires an equilibrium solver, which we implement as simultaneous gradient

940

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

Expert Random Cloning MA-GAIL IESAR (ours)

Max. Regret 0.011± 0.013 41.3± 9.07 0.032± 0.038 0.033± 0.026 0.067± 0.063

P1 Returns −3.84± 0.049 −37.5± 13.0 −3.87± 0.143 −3.94± 0.022 −6.50± 1.90

P2 Returns 0.045± 0.035 −4.13± 15.9 −0.030± 0.142 0.155± 0.132 −0.122± 1.66

Table 2: Experimental results for the 2-player Keep-Away game. The regret of the equi-
librium found (lower is better), and the returns for each player are reported (P1
returns and P2 returns), with mean and standard deviations over 10 random
seeds. The regret of the expert demonstrations is reported to provide an oracle
lower-bound - we would not expect an agent to perform better than this even if
they perfectly imitated the demonstrations.

ascent on the agent’s individual policies. We use the same differentiable planner as IESAR
to optimize the policy to keep the comparison fair. While this simultaneous gradient ascent
lacks theoretical guarantees compared to an algorithm such as fictitious play, we found little
empirical difference on this particular problem. We note that both MA-GAIL and IESAR
suffer from theoretical deficiencies in this domain - MA-GAIL requires that the game admits
to a unique equilibrium, and IESAR requires that the game has non-interactive dynamics.

We evaluate on two metrics: regret and agent returns. We measure regret by running
additional policy optimization steps after an algorithm has finished training. This suffers
from a potential drawback in that it depends on the performance of the policy optimizer,
so the reported value is approximate. We also include the returns of the agent at the
equilibrium found during training.

We find that all three methods (cloning, MA-GAIL, and IESAR) are able to produce
behavior that achieves regret that is very close to the expert demonstrations themselves.
Thus, we view the final performance of all three methods as roughly equivalent. This is fairly
remarkable in that while IESAR theoretically requires non-interactive games to produce
good behavior, it is still able to produce expert-like behavior in a more general Markov
game.

6.3 Chicken

As an initial experiment to highlight the pitfalls of ambiguity, we consider the game of
chicken, which describes a simple 2-player anti-coordination game. The game models two
drivers approaching a single intersection - each driver may either “swerve” to yield to the
other driver, or go “straight”. Going straight while the other player swerves yields a small
positive reward. However, if both players go straight, then they crash and receive a large
negative penalty. The payoff matrix for Chicken is described as follows:

Swerve Straight

Swerve 0, 0 +1, -1

Straight -1, +1 -10, -10

From this game, we select the (Swerve, Straight) Nash equilibrium to use as a demon-
stration, represented as a joint probability table:

941

Fu, Tachetti, Perolat, & Bachrach

Swerve Straight

Swerve 0 1

Straight 0 0

We run IESAR with a reward that is constant with respect to the other player’s action,
and is restricted to have an L1 norm of 1. We obtain the following learned reward (top) and
learned behavior (bottom):

Swerve Straight

Swerve 0.255, -0.233 0.255, 0.267

Straight -0.245, -0.233 -0.245, 0.267

Swerve Straight

Swerve 0 1

Straight 0 0

As we can see, the solution found has zero regret. However, an obvious ambiguity problem
arises. The inferred game is a cooperative game that does not resemble the original anti-
coordination game, but nevertheless shares the same Nash equilibrium as the demonstrated
behavior. Without placing further assumptions on the game, or providing additional data
(such as specifying a second or third Nash equilibrium), it is difficult to disambiguate the
problem.

6.4 Payoff Inference in Auctions

Our final experiment relates to the problem of inferring valuations in three commonly
used auction mechanisms: sealed-bid first-price, second-price, and generalized second-price
auctions with independently drawn private valuations. In first and second-price auctions,
players bid for a single item, and the winner pays either the highest bid (first-price) or the
second highest bid (second-price). The generalized second-price auction, commonly used for
search engine advertising, has players bid for multiple items. The highest bidding player
wins the most valuable item, and pays the bid of the second-highest bidder. The second
highest bidder wins the second most valuable item, and pays the bid of the third-highest
bidder, and so on until all items are exhausted. In the context of advertising, the “items” are
advertisement slots on a search result page - the slots higher up in a search page are typically
considered more valuable. These auctions can be cast as an extension of normal-form games
known as a Bayesian game.

The second-price auction is a truthful auction, and bidding one’s true valuation is
always a dominant strategy. Therefore, the problem of inferring valuations is somewhat less
interesting. However, first-price and generalized second price (Edelman et al., 2007) are
non-truthful and rational players may find it advantageous to underbid their valuations in an
attempt to pay lower costs. In these auctions, knowing other players’ underlying valuations
may give one a competitive advantage in bidding.

In our experimental setup, we simulate a 4-player auction, where each player’s valuation
is drawn from a Gaussian distribution with a fixed standard deviation of 1.0 and a mean
that varies between 1.0 and 2.0. Each player has a linear policy, and bids bi = αivi, where
vi is the player’s valuation and αi is the learned policy parameter. We do not believe this is

942

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

a restrictive assumption, since for both first-price and second-price auctions, the strategy
at the Bayesian Nash equilibrium is a linear function of the valuation. To obtain training
demonstration data, we perform simultaneous gradient updates for each player against the
aggregate historical play (analogous to fictitious play) until convergence, and then draw
samples from the resulting trained policies. Once presented with the demonstration samples,
we learn a reward function parameterized by a scalar valuation.

6.4.1 Bayesian Game Representation

For our auctions, we use the independent private values (IPV) model, meaning that each
player has a valuation that is independently drawn and unknown to the other agents. Such
an auction is typically formalized as a Bayesian game, where the private valuations are
implemented as an additional type variable τi that is drawn for each player at the start of
each game. The reward function then depends on this parameter τi.

In our experiments, each type variable τi is independently drawn from a unit normal
distribution. Each player’s learnable valuations and policies/strategies are a function of the
type, i.e. vi(τi) and π(τi).

To incorporate types τ in a Bayesian game, we use a slightly modified IRL objective of
the form:

IRL(πE) = argminθ,‖θ‖=c max
π

Eτ [Rθ(π, τ)−Rθ(πE , τE)]

The issue with this formulation is that the types of the demonstrations, τE , are assumed
to be unobserved. To alleviate this problem, we used monotonically increasing policies
to estimate types from demonstrations by inverting the observed bids, τ = π−1(b). All
policies we used are monotonically increasing and linear policies in the bid parameterized as
π(τ) = τew + b, where w and b are the learnable scale and bias parameters. We found that
using invertible policies to estimate types yielded comparable performance to directly using
the true types of the demonstrations.

6.4.2 Soft Payoff Functions

To ensure differentiablity of payoff functions, we use “soft” variants of first-price, second-
price, and generalized second-price auctions by interpreting the bids as logits to a softmax
or ranking distribution that models the probability an agent is selected as a winner. The
original auctions can be recovered by taking the temperature parameter to the limit, β → 0.
For our experiments, we use a temperature of β = 1.

Let Pr(ranki = 1) = ebi/β∑
j e
bj/β

denote the probability of player i of achieving the highest

rank, or winning, the auction with bid bi.
For soft first-price auctions, we use the payoff function:

Ri(b1:N , τi) = (vi(τi)− b(1))Pr(ranki = 1)

Where b(1) denotes the highest bid.
Soft second-price auctions are identical to soft first-price auctions except the cost

paid is that of the second-highest bid b(2) in the auction:

Ri(b1:N , τi) = (vi(τi)− b(2))Pr(ranki = 1)

943

Fu, Tachetti, Perolat, & Bachrach

Soft generalized second-price auctions require modeling a distribution over rankings
of players, rather than simply the winner. We use the Plackett-Luce model for computing
rank probabilities, which can be viewed as a recursive softmax where if a player “wins” a
slot, the player’s bid/logit is removed and the remaining players repeat for the next slot. If
there are J slots in the auction, then the payoff is:

Ri(b1:N , τi) =

J∑
j=1

αj(vi(τi)− b(j+1))Pr(ranki = j)

where αj is the CTR value of slot j. Generally, higher ranked slots have higher CTR values,
to indicate higher desirability.

6.4.3 Results and Discussion

Learning curve results for our valuation inference experiments are shown in Fig. 4, plotted
across coordinate descent steps.

We can see that the learned valuations are fairly accurate across all 3 auction domains,
with the estimated mean valuations for all players approaching the true mean valuations. We
see that in the second-price and GSP domains, the estimated valuations for some players are
overestimated, then underestimated, and eventually converge to the true valuations. This
behavior may be due to our optimization procedure, which runs coordinate descent steps
alternating between the reward function and the player’s policy that may create orbiting
behavior.

Overall, this experiment demonstrates that valuation inference is possible even for
non-truthful auctions such as first-price and GSP auctions.

6.5 Generalization Capabilities of Learned Utilities

Our next experiment evaluates the performance of inverse game theory agents in the context
of playing against new agents. As discussed in Section 5, we believe one of the primary
benefits of using inverse game-theoretic frameworks for modeling behavior (over arguably
simpler methods such as behavioral cloning) is that if the parameters of the game change
(the opponents change their objectives, or the mechanics of the game change), then one can
still hope to recover optimal play in the new game. In this sense, inverse game-theory allows
one to recover a “deeper” understanding of a user’s behavior than simple behavioral cloning,
and has more predictive power in novel settings. To avoid notational confusion, we make
the distinction between the payoff or utility function, versus the valuation, which are often
used interchangeably in auctions literature. The utility function in our terminology refers to
(with minor variations depending on the specific mechanism of the auction) the valuation of
the agent, minus the cost the agent pays, times an indicator function if the agent wins the
auction. In this experiment, we study how we can achieve player-agnostic rationality in an
auction setting by restricting the function class of the payoff function.

We investigate this problem as an extension of our study in auctions, as playing auctions
against different players with different valuations is a common occurrence in practice. We
set up the experiment as follows - the “train” auction is played by 4 players with the same
valuations as our previous experiment (a standard deviation of 1.0, with mean valuations of

944

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

Figure 4: Learning curves for inferring valuations in first-price (top), second-price (middle),
and generalized second-price (bottom) auctions. Means and standard deviations
(shaded regions) are plotted over 10 seeds. The dotted horizontal line represents
the player’s ground truth valuation, and the solid line of the same color represents
the algorithm’s guess of the player’s valuation, varying over algorithm iterations.

945

Fu, Tachetti, Perolat, & Bachrach

Oracle Cloning IESAR-Neural IESAR-Valuation

Train 0.257± 0.005 0.208± 0.055 0.223± 0.026 0.252± 0.010

Transfer 0.464± 0.006 0.386± 0.117 0.366± 0.050 0.458± 0.003

Table 3: Transfer learning results on the auction domain, with mean and standard deviations
of payoffs over 10 random seeds. We observe that a neural utility architecture,
while performing similarly to the valuation architecture during training, performs
poorly when evaluated against new agents. In contrast, the identifiable valuation
architecture preserves performance when playing against new agents.

1.0, 1.33, 1.66, and 2.0). From the perspective of player 1, we then lower the mean valuations
of other players in the “transfer” auction by 1, resulting in mean valuations of 1.0, 0.33,
0.66, and 1.0.

We evaluate several strategies under this setup. “Oracle” refers to the payoff received by
an agent at the Bayesian Nash equilibrium of the game. “Cloning” refers to the performance
of the oracle strategy from the “Train” auction, and directly executing it in the “transfer”
auction. Here, the strategy of the agent is fixed, and we let the opponents play to an
equilibrium. The payoff reported is the payoff of the agent at this equilibrium. Finally, we
report 2 methods that use utility learning. “Neural” refers to the payoff of a strategy using
a learned neural network utility function in the “Train” auction, and “Valuation” refers to
the payoff of a strategy using a learned valuation from the “Train” auction. The “Valuation”
strategy can be viewed as a special case of “Neural”, where the architecture of the utility is
restricted to have a single parameter (the valuation mean). In order to evaluate the method,
we substitute the learned utility for the utility of the agent, and then report the payoff of
the agent at the Bayesian Nash equilibrium against the opponents. Our results (measured
in average payoff, over 5 random seeds) for a first-price auction are shown in Table 3:

From these results, we can see that all methods achieve good performance on the “Train”
task. However, the performance of both the “Cloning” and “Neural” strategies suffer when
evaluated in the “Transfer” auction, whereas the “Valuation” strategy better preserves
performance. The sub-par performance of “Cloning” is expected - as the valuations of
other players are lowered in the transfer domain, the agent should aggressively bid higher
to maximize returns, and therefore keeping the same strategy that performed well in the
“Train” auction is suboptimal. The sub-par performance of the “Neural” strategy likely comes
down to identifiability - inverse game theory learned a utility function which performed
well in the “Train” auction, but did not preserve the semantics of the game outside of the
equilibrium. As a concrete example of this, in our previous experiment in the Chicken
domain, IGT recovered a cooperative game rather than an anti-coordination game. Only in
the “Valuation” strategy is performance preserved, likely because the restricted architecture
of the utility function maintains identifiability of the model, and therefore is still predictive
of agent behavior when the parameters of the game change.

946

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

7. Conclusions and Future Work

In this paper, we have proposed IESAR - a simple, efficient method for extracting utility
functions from demonstrated behavior by effectively reducing the problem to single-agent
inverse reinforcement learning. The reduction produces rewards that rationalize observed
equilibria in Markov games, and additionally satisfies strong rationality in Normal-form
games. IESAR has significant computational advantages in that it does not require solving
an N-player game in the forward part of the algorithm, and only requires running RL.
Moreover, it can operate on games with non-unique equilibria. Our empirical analysis shows
that IESAR produces comparable performance compared to alternative methods that do
require full game-theoretic solvers.

Second, we highlight the importance of player-agnostic rationality in extracting salient
reward functions. We note that utility functions can be ambiguous even under the strong
rationality assumption. While this has little effect on behavior when an agent plays against
the same players as seen during training, if the agent were to optimize the learned utility
against new agents, the behavior could deviate. We show that one way to guarantee that
learned rewards satisfy player-agnostic rationality is to restrict the reward class, and we
demonstrate in auction settings that rewards satisfying strong rationality alone can produce
poor performance when playing against new agents.

There are several limitations to our work that would be interesting directions to study
in future work. First, our method only has strong-rationality guarantees for Normal-form
games. However, our empirical results indicate that IESAR can perform well even in Markov
games. One potential question to study is to analyze what properties of games make IESAR
still an effective algorithm in Markov game scenarios. Developing a general-purpose method
that provides strong rationality guarantees for arbitrary Markov games is still an important
open problem. Additionally, we have been primarily concerned with Nash equilibria in this
work, and other solution concepts could be more relevant for modeling human behavior.
For example, using extensive-form correlated equilibria (Von Stengel & Forges, 2008) could
provide a more computationally feasible problem formulation, as well as potentially be a
more realistic model of human behavior on real demonstrations.

The analysis in our work does not explicitly take into account the sampling error due to
using a finite number of demonstrations, but our analysis includes the study of approximate
equilibria. An interesting theoretical direction to explore would be to study the sample
complexity of IESAR and develop finite-sample bounds.

We also only studied player-agnostic rationality in the context of restricting the reward
class to ensure that the optimal solution is identifiable from observed behavior. One
promising direction for future work is to study how to learn agnostic rewards with more
general function classes, by learning a shared utility across a wide variety of games. This
idea is similar to the concept of repeated inverse reinforcement learning (Amin et al., 2017)
in the single-agent case.

References

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the twenty-first international conference on Machine learning, p. 1.

947

Fu, Tachetti, Perolat, & Bachrach

ACM.

Amin, K., Jiang, N., & Singh, S. (2017). Repeated inverse reinforcement learning. In
Advances in Neural Information Processing Systems, pp. 1815–1824.

Anthony, T., Eccles, T., Tacchetti, A., Kramar, J., Gemp, I., Hudson, T. C., Porcel, N.,
Lanctot, M., Perolat, J., Everett, R., et al. (2020). Learning to play no-press diplomacy
with best response policy iteration. CoRR, abs/2006.04635.

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning
from demonstration. Robotics and autonomous systems, 57 (5), 469–483.

Athey, S., & Haile, P. A. (2002). Identification of standard auction models. Econometrica,
70 (6), 2107–2140.

Athey, S., & Nekipelov, D. (2010). A structural model of sponsored search advertising
auctions. In Sixth ad auctions workshop.

Bachrach, Y., Everett, R., Hughes, E., Lazaridou, A., Leibo, J. Z., Lanctot, M., Johanson,
M., Czarnecki, W. M., & Graepel, T. (2020). Negotiating team formation using deep
reinforcement learning. Artificial Intelligence, 288, 103356.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., & Mordatch, I.
(2019). Emergent tool use from multi-agent autocurricula. In International Conference
on Learning Representations.

Banarse, D., Bachrach, Y., Liu, S., Lever, G., Heess, N., Fernando, C., Kohli, P., & Graepel,
T. (2019). The body is not a given: Joint agent policy learning and morphology
evolution. In AAMAS, Vol. 18, pp. 1134–1142.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer,
Q., Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680.

Bestick, A., Ratliff, L. J., Yan, P., Bajcsy, R., & Sastry, S. S. (2013). An inverse correlated
equilibrium framework for utility learning in multiplayer, noncooperative settings. In
Proceedings of the 2nd ACM international conference on High confidence networked
systems, pp. 9–16. ACM.

Brown, N., & Sandholm, T. (2018). Superhuman ai for heads-up no-limit poker: Libratus
beats top professionals. Science, 359 (6374), 418–424.

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 38 (2), 156–172.

Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R., Leibo, J. Z., Larson, K., &
Graepel, T. (2020). Open problems in cooperative ai. CoRR, abs/2012.08630.

De Keijzer, B., Klos, T. B., & Zhang, Y. (2014). Finding optimal solutions for voting game
design problems. Journal of Artificial Intelligence Research, 50, 105–140.

Edelman, B., Ostrovsky, M., & Schwarz, M. (2007). Internet advertising and the generalized
second-price auction: Selling billions of dollars worth of keywords. American economic
review, 97 (1), 242–259.

948

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

Fotakis, D., Krysta, P., & Ventre, C. (2018). The power of verification for greedy mechanism
design. Journal of Artificial Intelligence Research, 62, 459–488.

Fu, J., Luo, K., & Levine, S. (2017). Learning robust rewards with adversarial inverse
reinforcement learning. In International Conference on Learning Representations.

Gray, J., Lerer, A., Bakhtin, A., & Brown, N. (2020). Human-level performance in no-
press diplomacy via equilibrium search. In International Conference on Learning
Representations.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., & Dragan, A. (2016). Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 3909–
3917.

Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In Advances in neural
information processing systems, pp. 4565–4573.

Hu, J., Wellman, M. P., et al. (1998). Multiagent reinforcement learning: theoretical
framework and an algorithm.. In International Conference on Machine Learning,
Vol. 98, pp. 242–250. Citeseer.

Huang, S. H., Held, D., Abbeel, P., & Dragan, A. D. (2019). Enabling robots to communicate
their objectives. Autonomous Robots, 43 (2), 309–326.

Hughes, E., Anthony, T. W., Eccles, T., Leibo, J. Z., Balduzzi, D., & Bachrach, Y. (2020).
Learning to resolve alliance dilemmas in many-player zero-sum games. In Proceedings
of the 19th International Conference on Autonomous Agents and MultiAgent Systems,
pp. 538–547.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castaneda, A. G.,
Beattie, C., Rabinowitz, N. C., Morcos, A. S., Ruderman, A., et al. (2019). Human-level
performance in 3d multiplayer games with population-based reinforcement learning.
Science, 364 (6443), 859–865.

Janner, M., Fu, J., Zhang, M., & Levine, S. (2019). When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems, pp.
12519–12530.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International
Conference on Learning Representations.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32 (11), 1238–1274.

Kretzschmar, H., Spies, M., Sprunk, C., & Burgard, W. (2016). Socially compliant mobile
robot navigation via inverse reinforcement learning. The International Journal of
Robotics Research, 35 (11), 1289–1307.

Kuleshov, V., & Schrijvers, O. (2015). Inverse game theory: Learning utilities in succinct
games. In International Conference on Web and Internet Economics, pp. 413–427.
Springer.

Larsen, B., & Zhang, A. L. (2018). A mechanism design approach to identification and
estimation. Tech. rep., National Bureau of Economic Research.

949

Fu, Tachetti, Perolat, & Bachrach

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., & Graepel, T. (2017). Multi-agent
reinforcement learning in sequential social dilemmas. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pp. 464–473.

Lerer, A., & Peysakhovich, A. (2017). Maintaining cooperation in complex social dilemmas
using deep reinforcement learning. In arXiv preprint arXiv:1707.01068.

Lewis, M., Yarats, D., Dauphin, Y., Parikh, D., & Batra, D. (2017). Deal or no deal?
end-to-end learning of negotiation dialogues. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 2443–2453.

Lin, X., Adams, S. C., & Beling, P. A. (2019). Multi-agent inverse reinforcement learning
for certain general-sum stochastic games. Journal of Artificial Intelligence Research,
66, 473–502.

Lin, X., Beling, P. A., & Cogill, R. (2017). Multiagent inverse reinforcement learning for
two-person zero-sum games. IEEE Transactions on Games, 10 (1), 56–68.

Liu, S., Lever, G., Merel, J., Tunyasuvunakool, S., Heess, N., & Graepel, T. (2019). Emer-
gent coordination through competition. In International Conference on Learning
Representations.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., & Mordatch, I. (2017). Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural
Information Processing Systems.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518 (7540), 529–533.

Moravcik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D., Bard, N., Davis, T., Waugh, K.,
Johanson, M., & Bowling, M. (2017). Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356 (6337), 508–513.

Myerson, R. (1983). Mechanism design by an informed principal. Econometrica, 51 (6),
1767–97.

Natarajan, S., Kunapuli, G., Judah, K., Tadepalli, P., Kersting, K., & Shavlik, J. (2010).
Multi-agent inverse reinforcement learning. In 2010 Ninth International Conference
on Machine Learning and Applications, pp. 395–400. IEEE.

Nekipelov, D., Syrgkanis, V., & Tardos, E. (2015). Econometrics for learning agents. In
Proceedings of the Sixteenth ACM Conference on Economics and Computation, pp.
1–18.

Neu, G., & Szepesvari, C. (2007). Apprenticeship learning using inverse reinforcement
learning and gradient methods. In Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, pp. 295–302. AUAI Press.

Ng, A. Y., & Russell, S. J. (2000). Algorithms for inverse reinforcement learning.. In
International Conference on Machine Learning.

Sandholm, T. (2003). Automated mechanism design: A new application area for search
algorithms. In International Conference on Principles and Practice of Constraint
Programming, pp. 19–36. Springer.

950

Evaluating Strategic Structures in Multi-Agent Inverse Reinforcement Learning

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of go with deep neural networks and tree search. Nature, 529 (7587), 484–489.

Song, J., Ren, H., Sadigh, D., & Ermon, S. (2018). Multi-agent generative adversarial
imitation learning. In Advances in Neural Information Processing Systems, pp. 7461–
7472.

Stone, P., Sutton, R. S., & Kuhlmann, G. (2005). Reinforcement learning for robocup soccer
keepaway. Adaptive Behavior, 13 (3), 165–188.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Syed, U., & Schapire, R. E. (2008). A game-theoretic approach to apprenticeship learning.
In Advances in neural information processing systems, pp. 1449–1456.

Tacchetti, A., Strouse, D., Garnelo, M., Graepel, T., & Bachrach, Y. (2019). A neural
architecture for designing truthful and efficient auctions. CoRR, abs/1907.05181.

Tesauro, G. (1994). Td-gammon, a self-teaching backgammon program, achieves master-level
play. Neural computation, 6 (2), 215–219.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi,
D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature, 575 (7782), 350–354.

Von Stengel, B., & Forges, F. (2008). Extensive-form correlated equilibrium: Definition and
computational complexity. Mathematics of Operations Research, 33 (4), 1002–1022.

Vorobeychik, Y., Wellman, M. P., & Singh, S. (2007). Learning payoff functions in infinite
games. Machine Learning, 67 (1-2), 145–168.

Waugh, K., Ziebart, B. D., & Bagnell, J. A. (2011). Computational rationalization: The
inverse equilibrium problem. In International Conference on Machine Learning.

Yang, E., & Gu, D. (2004). Multiagent reinforcement learning for multi-robot systems: A
survey. Tech. rep., tech. rep.

Yu, L., Song, J., & Ermon, S. (2019). Multi-agent adversarial inverse reinforcement learning.
In International Conference on Machine Learning, pp. 7194–7201. PMLR.

Zhao, J., Qiu, G., Guan, Z., Zhao, W., & He, X. (2018). Deep reinforcement learning
for sponsored search real-time bidding. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 1021–1030.

Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M., Parkes, D. C., & Socher, R.
(2020). The ai economist: Improving equality and productivity with ai-driven tax
policies. In arXiv preprint arXiv:2004.13332.

Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Ph.D. thesis, Carnegie Mellon University.

Ziebart, B. D., Maas, A., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse
reinforcement learning. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence.

951

