
Journal of Artificial Intelligence Research 72 (2021) 69-97 Submitted 01/2021; published 09/2021

Finding the Hardest Formulas for Resolution

Tomáš Peitl tomas.peitl@uni-jena.de
Institute of Computer Science, Friedrich Schiller University Jena
Ernst-Abbe-Platz 2,
07743 Jena, Germany

Stefan Szeider sz@ac.tuwien.ac.at

Institute of Logic and Computation, TU Wien

Favoritenstraße 9-11,

1040 Wien, Austria

Abstract

A CNF formula is harder than another CNF formula with the same number of clauses
if it requires a longer resolution proof. In this paper, we introduce resolution hardness
numbers; they give for m = 1, 2, . . . the length of a shortest proof of a hardest formula on
m clauses. We compute the first ten resolution hardness numbers, along with the corre-
sponding hardest formulas. To achieve this, we devise a candidate filtering and symmetry
breaking search scheme for limiting the number of potential candidates for hardest for-
mulas, and an efficient SAT encoding for computing a shortest resolution proof of a given
candidate formula.

1. Introduction

Resolution is a fundamental proof system that can be used to certify the unsatisfiability of
a propositional formula in conjunctive normal form (CNF). What makes resolution partic-
ularly interesting is that the length of a shortest resolution proof of a given CNF formula
(called the resolution complexity of the formula) provides an unconditional lower bound
on the running time of modern SAT solvers (Pipatsrisawat & Darwiche, 2009).1 Since
we know that there are classes of unsatisfiable CNF formulas (such as the formulas based
on the Pigeon Hole Principle) with exponential resolution complexity (Haken, 1985), we
have an exponential lower bound on worst-case running time. Propositional proof complex-
ity (Urquhart, 1995) studies resolution complexity, focussing mainly on asymptotic analysis.
In this paper, we investigate resolution complexity in exact, rather than asymptotic terms.
As the central object of our study, we define the resolution hardness numbers (hm)m≥1 to
denote the highest resolution complexity of a formula with m clauses, taking some inspira-
tion from the famous Busy-Beaver numbers.2 In contrast to the Busy-Beaver numbers, the
resolution hardness numbers are in principle computable, however, the search space grows
rapidly with m, and so a practical computation is challenging already for relatively small
values of m.

1. More precisely, resolution complexity provides a lower bound on the running time of conflict-driven clause
learning (CDCL) (Silva & Sakallah, 1996), on which modern SAT solvers are based. Supplemental solving
techniques may prevail against the resolution lower bound.

2. The n-th Busy-Beaver number gives the longest run of a terminating Turing machine with two symbols
and n states on an empty tape (Rado, 1962; Michel, 2019).

©2021 AI Access Foundation. All rights reserved.

Peitl & Szeider

As our main contribution, we compute the first ten resolution hardness numbers. In
order to do so, we have to efficiently generate sets of formulas χ(m), for m = 1, . . . , 10,
which contain at least one hardest formula, and compute their resolution complexity. We
obtain our results by the combination of two techniques:

1. A candidate filtering and symmetry breaking search scheme for limiting the number
of potential candidate formulas with m variables whose resolution complexity is hm.

2. An efficient SAT encoding for computing the resolution complexity of a given candi-
date formula.

In our search scheme, we reduce the candidate formulas to a certain class of minimally
unsatisfiable (MU) formulas that obey additional structural constraints. We model these
formulas by suitable graphs, and generate these graphs modulo isomorphisms by a special
adaptation of the Nauty graph symmetry package (McKay & Piperno, 2014).

This still leaves us with a large number of formulas whose resolution complexity we
must determine algorithmically. For this task, following a recent trend in tackling combi-
natorial problems using SAT and CSP methods (Heule, Kullmann, & Marek, 2016; Heule,
2018; Codish, Miller, Prosser, & Stuckey, 2019), we devised an efficient SAT encoding that
produces a CNF formula shorts(F), for a given candidate formula F and integer s, which
is satisfiable if and only if F admits a resolution proof of length ≤ s. We determine the
resolution complexity of F by feeding shorts(F) to a SAT solver with various choices of s.
Encoding resolution proofs is a common theme in propositional proof complexity (Pudlák,
2003; Atserias & Bonet, 2004), was used with the goal of deploying local search for unsatisfi-
ability (Prestwich & Lynce, 2006), and recently, an encoding has been proposed specifically
for the computation of shortest proofs (Menćıa & Marques-Silva, 2019). We do take some
inspiration from these previous works, but make crucial novel adaptations tailored towards
minimally unsatisfiable formulas. Furthermore, we introduce a symmetry-breaking scheme
that fully breaks all symmetries resulting from permuting the clauses in a proof.

In addition to the values of the resolution hardness numbers, we can draw a more detailed
map of the hardest formulas with a particular number of variables and a particular number
of clauses. Our theoretical results reveal the significance of regular saturated minimally
unsatisfiable (RSMU) formulas, which are unsatisfiable formulas that (i) become satisfiable
by adding any further literal to any clause, and (ii) where each literal appears in at least
two clauses. As a by-product of our computations, we obtain a catalog of RSMU formulas
with a small number of variables and clauses, which may be of independent interest in the
research on minimal unsatisfiability. For instance, the computed formulas’ structure can
possibly be used to come up with infinite sequences of hard formulas, which can lead to
tighter general bounds.

An alternative but not very interesting object of study would be νn, the highest resolu-
tion complexity of formulas with n variables. It is not hard to see by induction on n that
every unsatisfiable formula on n variables has a resolution refutation of length ≤ 2n+1 − 1
and that indeed νn = 2n+1−1, witnessed by the formula which contains all possible clauses
of width n.

After some preliminaries, we discuss the theory that allows us to reduce the search space
in Section 3. Sections 4 and 5 are devoted to our SAT encoding of the shortest resolution

70

Finding the Hardest Formulas for Resolution

proof problem and the novel symmetry breaking techniques. We discuss implementation
details in Section 6, followed by a detailed analysis of our results in Section 7, and conclude
with a summary and some directions and open questions in Section 8. The paper is an
extended version of our CP paper (Peitl & Szeider, 2020), augmented with the following
additions:

• a discussion of the existence of hardness numbers at the beginning of Section 3;

• Lemma 2, and thanks to it a simplified proof of Lemma 3;

• Algorithm 1 for brute-force testing of saturated minimal unsatisfiability;

• a more detailed exposition of the encoding and symmetry breaking;

• and a significantly extended analysis of the results including several new figures.

2. Preliminaries

Graphs. We assume familiarity with standard notions of graph theory, including those of
(un)directed graphs, acyclicity, and in- and out-degree of a vertex—we refer to the standard
graph theory handbook (Diestel, 2012). All graphs considered, directed or undirected, do
not contain any self-loops or parallel edges.

Formulas. We consider propositional formulas in conjunctive normal form (CNF) rep-
resented as sets of clauses. We assume an infinite set var of (propositional) variables. A
literal ` is a variable x or a negated variable ¬x; we write lit := {x,¬x | x ∈ var }. For a
literal ` we write ` := ¬x if ` = x, and ` := x if ` = ¬x. For a set C of literals, we define
C := { ` | ` ∈ C }; we say C is tautological if C ∩ C 6= ∅. A finite non-tautological set of
literals is a clause; a finite set of clauses is a (CNF) formula. The empty clause is denoted
by �. We write CNF(n,m) for the class of all CNF formulas on n variables and m clauses,
and CNF(m) =

⋃∞
n=0 CNF(n,m). For a clause C, we put var(C) = { var(`) | ` ∈ C }, and

for a formula F , var(F) =
⋃

C∈F var(C). Similarly, we put lit(F) := var(F) ∪ var(F). An
assignment is a mapping τ : var(F)→ {0, 1}. A formula F is satisfiable if there is a satis-
fying assignment, i.e., a mapping τ : var(F) → {0, 1} such that every clause of F contains
either a literal x with τ(x) = 1 or a literal ¬x with τ(x) = 0; otherwise it is unsatisfiable.
A formula is minimally unsatisfiable (MU) if it is unsatisfiable, but every proper subset is
satisfiable.

Resolution Proofs. If C1∩C2 = {`} for clauses C1, C2 and a literal `, then the resolution
rule allows the derivation of the clause D = (C1 ∪ C2) \ {`, `}; D is the resolvent of the
premises C1 and C2, and we say that D is obtained by resolving on `. Let F be a formula
and C a clause. A sequence P = L1, . . . , Ls of clauses (proof lines) is a resolution derivation
of Ls from F if for each i ∈ {1, . . . , s} at least one of the following holds.

1. Li ∈ F (“Li is an axiom”);

2. Li is the resolvent of Lj and Lj′ for some 1 ≤ j < j′ < i (“Li is obtained by
resolution”).

71

Peitl & Szeider

We write |P | := s and call s the length of P . If Ls is the empty clause, then P is a resolution
refutation (also resolution proof ; we use these terms interchangably) of F . A line Li in a
resolution derivation may have different possible “histories.” Li may be the resolvent of
more than one pair of clauses preceding Li, or Li may be both an axiom and obtained from
preceding clauses by resolution, etc. In the sequel, however, we assume that an arbitrary
but fixed single history is associated with each considered resolution derivation. Thus, with
a proof P we can associate the directed acyclic graph (proof DAG) G(P) whose vertices are
the proof lines, and which has an arc from Li to Lj if there is Lk, i, k < j, such that Lj is
the resolvent of Li and Lk. For a DAG G and vertex v, we write din(v) and dout(v) for the
in- and out-degree of v in G. In any proof DAG G(P), the in-degree of each axiom vertex
is 0, while each resolvent has in-degree 2.

It is well known that resolution is a complete proof system for unsatisfiable formulas;
i.e., a formula F is unsatisfiable if and only if there exists a resolution refutation of it (Davis
& Putnam, 1960). The resolution complexity or resolution hardness h(F) of an unsatisfiable
formula F is the length of a shortest resolution refutation of F (for satisfiable formulas we
define h(F) := −∞). For a nonempty set C of formulas, we define h(C) = supF∈C h(F).

Isomorphisms of Formulas. Two formulas F and F ′ are isomorphic if there exists a
bijection ϕ : lit(F) → lit(F ′) such that for each literal ` ∈ lit(F) we have ϕ(`) = ϕ(`) and
for each C ⊆ lit(F) we have C ∈ F if and only if ϕ(C) ∈ F ′. For instance the formulas
F = {{x, y}, {x, y}, {y}}, and F ′ = {{z, w}, {z, w}, {w}} are isomorphic.

Obviously, two isomorphic formulas have the same properties concerning satisfiability,
minimal unsatisfiability, and resolution proof length. For a set C of formulas, we define Iso(C)
to be an inclusion-maximal subset of C such that no two elements of Iso(C) are isomorphic.
In other words, Iso(C) contains exactly one representative from each isomorphism class.

For sets S, S′, T , we write T = S] S′ if T = S ∪ S′ and S ∩ S′ = ∅. A 2-graph is an
undirected graph G = (V,E) together with a partition of its vertex set into two disjoint
subsets V1] V2 = V . Two 2-graphs G = (V1] V2, E) and G′ = (V ′1] V ′2 , E′) are isomorphic
if there exists a bijection ϕ : V1] V2 → V ′1] V ′2 such that v ∈ Vi if and only if ϕ(v) ∈ V ′i ,
i = 1, 2, and {u, v} ∈ E if and only if {ϕ(u), ϕ(v}} ∈ E′.

The clause-literal graph of a formula F is the 2-graph G(F) = (V1] V2, E) with V1 =
lit(F), V2 = F , and E = { {x, x} | x ∈ var(F) } ∪ { {C, `} | C ∈ F, ` ∈ C }. We refer to the
edges {x, x } as variable edges.

For instance, the formulas F and F ′ mentioned above give rise to the following two
isomorphic clause-literal graphs.

V1:
x x y y

V2:
{x, y} {x, y} {y}

V1:
z z w w

V2:
{z, w} {z, w} {w}

The following statement is easy to verify.

Proposition 1. Two formulas are isomorphic if and only if their clause-literal graphs are
isomorphic (as 2-graphs).

72

Finding the Hardest Formulas for Resolution

3. Theoretical Framework

We define the m-th resolution hardness number as the highest resolution complexity among
formulas with m clauses:

hm = max
F∈CNF(m)

h(F) = h(CNF(m)). (1)

We will also write H(m) = {F ∈ CNF(m) | h(F) = hm } for the set of hardest formulas
with m clauses.

Our general approach to computing hm is to generate algorithmically a subset χ(m) ⊆
CNF(m) of candidate hardest formulas of which at least one is guaranteed to have hardness
hm (i.e., χ(m) ∩H(m) 6= ∅), and then compute shortest proof lengths of every formula in
χ(m) using the encoding described in Sections 4 and 5; the maximum hardness found is
hm. Naturally, we could just look at all formulas with m clauses, i.e. χ(m) = CNF(m), but
that would be prohibitive, and so we want to restrict the size of χ(m) as much as possible.
Accordingly, in this section we discuss various formula properties that allow us to restrict
the candidate set χ(m).

Before we proceed with that, we should spare a word on whether hm is even well-defined,
i.e., whether the maximum taken in Equation 1 is finite. This is not a priori clear, since a
formula with m clauses can have an unbounded number of variables, and so CNF(m) is, in
fact, infinite. The infinitude, however, comes only from the ability to cram an unbounded
number of variables into a single clause, which, as we shall show, cannot result in infinitely
increasing hardness. The notion that is useful here is that of the lean kernel of a formula.
Sparing ourselves a formal definition, all we need is that every unsatisfiable formula has a
unique lean kernel, and it has the following key properties.

Lemma 1 (Corollary 3.8 (Kullmann, 2000c), Lemma 3.7 (Kullmann, 2000a)). Let F be an
unsatisfiable formula. Then, there is a subset L(F) ⊆ F (namely the lean kernel) with the
following properties:

• every resolution refutation of F uses only clauses from L(F); and

• L(F) has more clauses than variables.

Lemma 1 in particular implies that h(F) = h(L(F)), because F and L(F) have the
same refutations. Hence, the maximum in Equation 1 can just as well be taken over lean
kernels of formulas from CNF(m). But there is only a finite number of lean kernels with
≤ m clauses, because their number of variables is bounded by their number of clauses, and
so the maximum is indeed well defined and finite.

Having cleared the question of their existence, we begin by showing the unsurprising
basic fact that the resolution hardness numbers form an increasing sequence.

Lemma 2. hm+1 ≥ hm + 2.

Proof. Let F ∈ H(m), let x 6∈ var(F) be a fresh variable. LetG = {{x}}∪{C∪{x} | C ∈ F}.
Since F = G|x, any proof of G can be used to obtain a proof of F of the same or smaller
size. Since G \ {{x}} is not unsatisfiable, every proof of G contains the axiom {x}, and
consequently at least one resolvent of that axiom. Hence, by restricting by x, the proof
loses at least two clauses—the axiom, and at least one resolution step that used it. The
statement of the lemma follows.

73

Peitl & Szeider

Lemma 3. All formulas in H(m) are minimally unsatisfiable.

Proof. Let F ∈ H(m), and let F ′ ⊆ F be minimally unsatisfiable. Because F ′ ⊆ F , every
proof of F ′ is also a proof of F , and thus hm = h(F) ≤ h(F ′) ≤ h|F ′|. By monotonicity of
the hardness sequence, established by Lemma 2, we thus have m ≤ |F ′|. Since F ′ ⊆ F , this
means F ′ = F , and by extension that F is minimally unsatisfiable.

Lemma 3 means that from now on we can restrict our attention to minimally unsat-
isfiable formulas. An easy counting argument gives us a very simple lower bound for the
hardness of minimally unsatisfiable formulas.

Lemma 4. Let F be a minimally unsatisfiable formula with m clauses. Then h(F) ≥ 2m−1.

Proof. Consider the proof DAG G(P) of a shortest proof P of F . Because F is minimally
unsatisfiable and P is a shortest proof, we know that every line L ∈ P , axiom or derived,
other than the final empty clause, is used in some resolution step, and hence∑

1≤i≤|P |

dout(Li) ≥ |P | − 1.

On the other hand, every resolution step has exactly two premises, and the m axioms have
no premises, so ∑

1≤i≤|P |

din(Li) = 2(|P | −m).

The statement follows from the fact that the sum of in- and out-degrees must be equal in
any directed graph.

A formula is saturated minimally unsatisfiable (SMU) if it is unsatisfiable and adding
a literal to any of its clauses makes it satisfiable. Every saturated minimally unsatisfiable
formula is minimally unsatisfiable, since adding a literal whose variable is not yet present
in the formula to a clause has the same effect as deleting the clause.

Example 1. Let F = {{x, y}, {x}, {y}}. It is easy to see that F is unsatisfiable, but
removing any clause makes it satisfiable—in other words F is minimally unsatisfiable. But F
is not saturated; we can add the literal y to the clause {x} and the resulting formula
F ′ = {{x, y}, {x, y}, {y}} is still (minimally) unsatisfiable. F ′, though, cannot be extended
any further this way: adding either x or x to the clause {y} does make the formula satisfiable.
Thus, F ′ is saturated minimally unsatisfiable.

Lemma 5. H(m) contains a saturated minimally unsatisfiable formula.

Proof. Let F be an arbitrary formula in H(m) (H(m) cannot be empty by definition).
By Lemma 3, F is minimally unsatisfiable. Assume now that F is not saturated, and
we can add to some clause C of F a literal `, obtaining an unsatisfiable formula F ′. We
claim that h(F ′) ≥ h(F) = hm. Take a shortest proof P of F ′. Delete ` from the axiom
C ∪ {`} in P and propagate this deletion through P to other clauses. This way, we obtain
a sequence P ′ of clauses, which contains as a subsequence a resolution proof of F . Hence
indeed h(F ′) ≥ h(F) = hm, and so F ′ ∈ H(m).

74

Finding the Hardest Formulas for Resolution

Saturated minimally unsatisfiable formulas have two key properties that make them
suitable for our purpose: they are the hardest of minimally unsatisfiable formulas; and they
have a well studied structure we can exploit.

3.1 Saturated Minimal Unsatisfiability and Singular Literals

A literal ` is called r-singular in a formula F if there is exactly one clause in F that
contains `, and there are exactly r clauses in F that contain `. A literal is singular in F if
it is r-singular for some r ≥ 0 (Szeider, 2004). We also say a literal is ≥ r-singular if it is
r′-singular for some r′ ≥ r.

We denote by MU(n,m) the class of minimally unsatisfiable formulas with n vari-
ables and m clauses, and by SMU(n,m) ⊆ MU(n,m) the subclass consisting of satu-
rated formulas. RSMU(n,m) denotes the subclass of SMU(n,m) containing only formulas
without singular variables. We call such formulas regular. We also use the shorthand
SSMU(n,m) = SMU(n,m) \ RSMU(n,m).

Consider a formula F and a variable x of F . Let DPx(F) denote the formula obtained
from F after adding all possible resolvents that can be obtained from clauses in F by
resolving on x and removing all clauses in which x occurs (Szeider, 2004). We say that
DPx(F) is obtained from F by Davis-Putnam reduction or short DP-reduction on x (Davis
& Putnam, 1960). For an in-depth study of DP-reduction, particularly with respect to
minimal unsatisfiability, we refer to a work of Kullmann and Zhao (Kullmann & Zhao, 2013).
We will mainly use DP-reduction in the opposite direction, starting with a formula F and
generating a formula F ′ such that F = DPx(F ′). We then say that F ′ has been obtained
from F by DP-lifting.3

The following result by Kullmann and Zhao (2013, Lemma 12) establishes an important
link between DP-reduction on a singular variable and saturated minimal unsatisfiability.

Lemma 6 (Kullmann & Zhao, 2013). Let F be a formula and x an r-singular literal of F
such that C0 is the only clause of F containing x and C1, . . . , Cr are the only clauses of F
containing x. Then F ∈ SMU(n,m) if and only if the following three conditions hold:

1. DPx(F) ∈ SMU(n− 1,m− 1),

2. C0 \ {x} =
⋂r

i=1Ci \ {x}, and

3. for every C ′ ∈ F \{C0, . . . , Cr} there is some literal ` ∈ C0 \{x} which does not belong
to C ′.

We will turn Lemma 6 into an algorithm that performs DP-lifting. The task we need
to accomplish is the following: given a formula F , generate all formulas F ′ such that F =
DPx(F ′) for a fresh variable x 6∈ var(F). Lemma 7, a direct consequence of Lemma 6, shows
that in the context of saturated minimally unsatisfiable formulas, DP-lifting is uniquely
determined by a (suitable) subset of the clauses of the lifted formula. Hence, it is sufficient
to go through all subsets of F , and generate the corresponding unique lifting for each, if
there is any.

3. The formula G used in the proof of Lemma 2 was DP-lifted from F .

75

Peitl & Szeider

Lemma 7. Let m > n ≥ 1 and let F ′ ∈ SMU(n−1,m−1). Each formula F ∈ SSMU(n,m)
which can be obtained from F ′ by DP-lifting on a singular literal x of F , can be generated by
selecting r clauses C ′1, . . . , C

′
r ∈ F ′ such that

⋂r
i=1C

′
i 6⊆ C for any C ∈ F \{C ′1, . . . , C ′r}, and

replacing them by the r+1 clauses C0, . . . , Cr where Ci = C ′i∪{x} and C0 =
⋂r

i=1C
′
i∪{x}.

The next lemma is useful when we know hm−1, have a lower bound on hm, and want to
show that a formula F containing singular literals does not require longer proofs than our
current bound on hm, without laboriously computing a shortest proof of F .

Lemma 8. Let F ∈ MU(n,m) with an r-singular variable. Then h(F) ≤ hm−1 + r + 1.

Proof. We perform DP-reduction on the r-singular variable using r+ 1 axioms, then refute
the resulting formula on m− 1 remaining clauses.

The deficiency δ(F) of a formula F is defined as |F | − |var(F)|. By a lemma attributed
to Tarsi (Aharoni & Linial, 1986), all minimally unsatisfiable formulas have a positive
deficiency. That means that a minimally unsatisfiable formula with a fixed number of
clauses cannot have too many variables. It is easy to see that it cannot have too few variables
either: for each clause there must be an assignment that falsifies it while satisfying every
other clause, whence we infer that the number of assignments bounds the number of clauses.
Putting the two inequalities together yields Lemma 9.

Lemma 9 (Aharoni & Linial, 1986). Let F be a minimally unsatisfiable formula. Then
log2 |F | ≤ |var(F)| < |F |.

The structure of saturated minimally unsatisfiable formulas of deficiencies 1 and 2
is well understood (Kleine Büning & Kullmann, 2009). In particular, it is known that
for m > 1, each F ∈ SMU(m − 1,m) has a 1-singular literal. It is also known that
|Iso(RSMU(m− 2,m))| = 1 for m ≥ 4 (Kleine Büning, 2000, m ≥ 4 because otherwise,
there are no minimally unsatisfiable formulas of deficiency 2). We pick the unique repre-
sentative F2

m for Iso(RSMU(m− 2,m)), which consists of the clauses (n = m− 2)

{x1, x2}, . . . , {xn−1, xn}, {xn, x1}, {x1, . . . , xn}, {x1, . . . , xn}.

Thanks to their simple structure, we can determine the resolution hardness of both
SMU(m− 1,m) and RSMU(m− 2,m) formulas without any computation.

Proposition 2. For every m ≥ 1, h(SMU(m− 1,m)) = 2m− 1.

Proof. Apart from the formula {�}, every formula from SMU(m−1,m) contains a 1-singular
variable (Davydov, Davydova, & Kleine Büning, 1998, Theorem 12), so the statement fol-
lows by induction from Lemma 8 (upper bound) and Lemma 4 (lower bound).

Proposition 3. For every m ≥ 4, h(RSMU(m− 2,m)) = h(F2
m) = 3m− 5.

Proof. F2
m consists of binary strict Horn clauses (BSH —one negative and one positive

literal) and the full positive and full negative clause. Resolving any pair of BSH clauses
produces a BSH clause again. Resolving a BSH clause with a positive (negative) clause
produces a positive (negative) clause which is at most one literal shorter. Hence, to get to a

76

Finding the Hardest Formulas for Resolution

positive (negative) unit clause, one must shorten the full positive (negative) clause at least
n− 1 = m− 3 times. In total, we have m axioms plus 2(m− 3) shortening steps plus a final
resolution step, altogether 3m− 5 proof lines. It is easy to see that such a proof exists for
every m.

Propositions 2 and 3, together with Lemma 9, give us a refined lower bound for hm.

Corollary 1. For m ≤ 3, hm = 2m− 1. For m ≥ 4, hm ≥ 3m− 5.

Proof. Form ≤ 3 Lemma 9 rules out formulas with deficiency higher than 1, showing h1 = 1,
h2 = 3, and h3 = 5 by Proposition 2. The rest is a direct consequence of Proposition 3.

In order to determine hm for m ≥ 4, we will need to generate a set χ(m) that contains at
least one formula from H(m), and then compute its shortest proof. The results so far show
that χ(m) = Iso(SMU(n,m)) is a good candidate. We will compute the sets Iso(SMU(n,m))
for n = dlog2(m)e, . . . ,m− 1, and test for each F ∈ Iso(SMU(n,m)) its resolution hardness
h(F) using the SAT encoding, which we describe in Sections 4 and 5.

We split the computation of Iso(SMU(n,m)) into two parts. We first generate the
set Iso(RSMU(n,m)) for dlog2(m)e ≤ n < m. Due to Proposition 1, we can do this by
enumerating non-isomorphic 2-graphs, which correspond to clause-literal graphs of formulas
in RSMU(n,m). We can limit ourselves to 2-graphs G = (V1] V2, E) where |V1| = 2n
and |V2| = m, and where every vertex in V1 has exactly one neighbor in V1 and at least
two neighbors in V2. We use a tailor-made adaptation of the graph symmetry package
Nauty (McKay & Piperno, 2014) to enumerate such graphs; further details can be found in
Section 6.

If n and m are such that 2n−1 < m − 1, we know there cannot be any formulas in
SSMU(n,m) because singular DP-reduction would turn them into minimally unsatisfi-
able formulas on n − 1 variables with 2n−1 < m − 1 clauses, but no such formulas ex-
ist by Lemma 9. Hence, in those cases RSMU(n,m) = SMU(n,m), and we already have
Iso(SMU(n,m)). From these starting points, we repeatedly apply Lemma 7 to every formula
in Iso(SMU(n,m)) to obtain Iso(SSMU(n+1,m+1)). Together with Iso(RSMU(n+1,m+1))
we then obtain Iso(SMU(n+ 1,m+ 1)).

The rationale for splitting the computation of SMU(n,m) into two pieces is the following.
Enumerating non-isomorphic clause-literal graphs by Nauty for given parameters n and m is
one of the bottlenecks in the process. We often need to enumerate a significantly larger set
than SMU(n,m). Therefore, we need to prune the enumeration phase as much as possible.
When focusing on regular formulas, we can introduce additional bounds for Nauty, which
significantly speed up the search. Applying Lemma 7 afterwards inductively to the rather
small set SMU(n,m) is computationally affordable (as long as the set SMU(n,m) remains
reasonably small, which it does in our cases).

Since we are interested only in SMU formulas, but it is difficult to generate only SMU
formulas directly, we will have to resort to generating a superset and filtering for saturated
minimal unsatisfiability. We will now present two approaches to accomplish this.

The first, which we used early on, uses multiple calls to a SAT solver on different
formulas—and our goal is to show how these only loosely related SAT calls can be recast
as solving the same formula with different assumptions.

77

Peitl & Szeider

The second approach is based on brute force, and we employed it after realizing that
the overhead of constructing even a single SAT instance is too prohibitive (for details see
Section 6). Here, we will show how a single pass through the set of assignments of a formula
can determine saturated minimal unsatisfiability, if we keep track of the right information.

3.2 Testing SMU Using a SAT Solver

Testing saturated minimal unsatisfiability of a formula F by definition requires testing satis-
fiability of a number of formulas constructed by making small changes to F . Re-initializing
a SAT solver with different formulas for different tests is expensive, and therefore it is de-
sirable to pack as many SAT calls closely together either by adding clauses incrementally or
by using assumptions. While testing minimal unsatisfiability incrementally without solving
multiple different formulas is relatively straightforward (via clause selector variables), it is
not immediately clear how to do the same for saturation. We devised an algorithm that
decides saturated minimal unsatisfiability using assumption-based calls to a SAT solver
without the need to solve multiple different formulas. As a bonus, the formula for the
saturation test contains all the clauses of the formula used for the minimality test, so both
tests can proceed incrementally. The following lemma is the basis for our algorithm (a
satisfiability test precedes the saturation test in our implementation, so it is safe to assume
that the tested formula is unsatisfiable).

Lemma 10. Let F be an unsatisfiable formula, C a clause of F , and x 6∈ C a literal. The
formula E = F ∪ {C ∪ {x}} \ {C}, where the clause C was extended with the literal x, is
unsatisfiable if and only if the formula G = F ∪ {{x}} \ C is unsatisfiable.

Proof. If E is unsatisfiable, so is G, because every clause in G is a subset of some clause
in E. Conversely, assume E is satisfiable with the assignment τ . Because τ satisfies F \{C},
and F is unsatisfiable, τ must falsify C, and so it must satisfy x. Hence, it satisfies G.

Lemma 10 gives rise to the following algorithm: for all C ∈ F and every literal x 6∈ C,
check whether F ∪ {{x}} \ {C} is unsatisfiable. If at least one of these formulas is unsatis-
fiable, the clause C can be extended with x preserving unsatisfiability, meaning that F is
not saturated; otherwise F is saturated. This can be implemented in an assumption-based
fashion with a single formula by augmenting every clause of F with a fresh selector variable
to obtain F ∗ = {C ∪ {sC} | C ∈ F }, and querying satisfiability of the formulas F ∗[τC,x]
for C ∈ F, x 6∈ C, where τC,x(sC) = 0, τC,x(sD) = 1 for D 6= C, and τC,x(x) = 1, using
assumptions.

3.3 Testing SMU by Brute Force

Motivated by the observation that the process described in Subsection 3.2, and in fact just
constructing F ∗ and loading it into the SAT solver, still takes up most of the time, we devised
a brute-force algorithm that is much more efficient for a large number of tiny formulas.
Algorithm 1 runs through all assignments τ of a formula F explicitly and calculates the set of
clauses falsified by τ in order to check that F is unsatisfiable in the first place. Additionally,
for every clause C, the algorithm keeps track of the set of critical assignments—the ones
that falsify only C. Given all this information, saturated minimal unsatisfiability can be

78

Finding the Hardest Formulas for Resolution

decided easily: minimal unsatisfiability boils down to the existence of a C-critical assignment
for every clause; asking whether some clause C can be extended with a literal l while
maintaining unsatisfiability is the same as making sure that adding the literal l will not
turn any C-critical assignment into a satisfying one (a non-critical assignment remains
falsifying). Correctness of Algorithm 1 follows from Lemma 11.

Lemma 11. Let F be an unsatisfiable formula. For a clause C ∈ F , let C−1 denote the
set of C-critical assignments. Then

1. F is minimally unsatisfiable if, and only if, for every clause C ∈ F , C−1 6= ∅;

2. F is saturated minimally unsatisfiable if, and only if, for every clause C ∈ F and
every variable x 6∈ var(C), there are C-critical assignments τ0, τ1 ∈ C−1 such that
τ0(x) 6= τ1(x);

Proof. 1. follows by definition. For 2. assume F is not saturated minimally unsatisfiable.
This is iff there is a clause C and a variable x 6∈ var(C) such that wlog G := F ∪(C∪{x})\C
is unsatisfiable. Consider a C-critical assignment τ (in F). Since τ cannot satisfy C ∪ {x}
(then it would satisfy G), we must have τ(x) = 0. Hence, this is further equivalent to the
fact that all critical assignments have the same value at x.

4. Encoding for Shortest Resolution Proofs

This section gives the details of our SAT encoding computing the shortest resolution proof
of an input formula. We aim to encode the following question.

Given a formula F with the clauses (axioms) A1, . . . , Am and var(F) = {x1, . . . , xn},
does there exist a resolution refutation of F of length at most s? i.e., does there exist a
sequence P = L1, . . . , Ls of s lines (clauses), such that each Li is either some axiom Aj or
a resolvent of two previous Li′ , Li′′ , i

′, i′′ < i, and Ls is empty? We denote this problem by
SHORT(F, s).

It is easy to see that SHORT(F, s) is coNP-hard (s given in binary): since each unsatis-
fiable formula F with n variables has a resolution refutation of length at most 2n+1− 1, we
have UNSAT(F) = SHORT(F, 2n+1 − 1). Therefore, using a SAT-based approach is indeed
justified. On the other hand, membership in NEXPTIME can easily be seen as well: guess a
refutation of length s and verify that it is correct. The precise complexity of SHORT(F, s) is
an open problem—our intuition, based on our inability to construct a deterministic single-
exponential-time algorithm for SHORT(F, s), is that it might be NEXPTIME-complete.

The basic idea of our encoding is to have variables pos[i, v] and neg[i, v] that determine
whether v and v occur in Li, and variables arc[i, j], which hold the information about the
structure of the resolution steps in the proof. Together, these variables fully determine a
candidate resolution proof sequence P . We additionally use auxiliary variables to express
certain constraints more succinctly. Table 1 lists the core variables used by the encoding.

We drew inspiration from a similar encoding recently proposed by Marques-Silva and
Menćıa (2019, henceforth referred to as MSM), but made improvements afforded by the fact
that we focus on minimally unsatisfiable formulas. One of the strongest points of MSM, enu-
merating minimal correction subsets (MCSes, i.e., inclusion-minimal sets of clauses whose

79

Peitl & Szeider

Algorithm 1 Deciding saturated minimal unsatisfiability in one pass through the set of
assignments.

1: procedure IsSMU(F)
2: crit = ∅ . the set of clauses which have critical assignments
3: for C ∈ F do
4: for x ∈ var(F) do
5: max val[C][x] = 0 . maximal value of x in C-critical assignments
6: min val[C][x] = 1 . minimal value of x in C-critical assignments
7: end for
8: end for
9: for τ : var(F)→ {0, 1} do

10: Z(τ) = {C ∈ F | τ(C) = 0}
11: if Z(τ) = ∅ then
12: return False . satisfiable
13: end if
14: if Z(τ) = {C} then
15: crit ∪= {C}
16: max val[C] ∨= τ
17: min val[C] ∧= τ
18: end if
19: end for
20: if crit 6= F then
21: return False . not minimal
22: end if
23: for C ∈ F do
24: for x ∈ var(F) \ var(C) do
25: if max val[C][x] = min val[C][x] then
26: return False . not saturated, can extend C with a literal on x
27: end if
28: end for
29: end for
30: return True

31: end procedure

80

Finding the Hardest Formulas for Resolution

deletion renders the formula satisfiable) in a preprocessing step, becomes trivial for mini-
mally unsatisfiable formulas: the MCSes are precisely all singletons by definition of minimal
unsatisfiability. Instead, we require that all axioms are used in the proof.

On the other hand, we extend the encoding with powerful symmetry breaking con-
straints. These constraints, explained in detail in Section 5, completely break all symme-
tries resulting from different permutations of the same sequence of clauses, and as such,
they constitute a valuable standalone theoretical contribution. Moreover, thanks to this
additional symmetry breaking, we were able to compute shortest proofs of many formulas,
for which MSM failed to produce an answer in our experiments. This symmetry breaking
uses further auxiliary variables, which are introduced in Section 5.

Another novelty of our encoding is the capacity to reject a partially constructed proof
early based on a counting argument involving the number of times a clause is used in
resolution steps, similarly to Lemma 4. We give the details at the end of this section.

variable meaning how many

pos[i, v] v ∈ Li O(ns)
neg[i, v] v ∈ Li O(ns)
piv[i, v] v is the pivot variable for the resolvent Li O(ns)

ax[i, j] Li = Aj O(ms)
isax[i] ∃j : Li = Aj O(s)
arc[i, j] Li is a premise of Lj O(s2)

upos[i, v] v occurs in at least one premise of Li O(ns)
uneg[i, v] v occurs in at least one premise of Li O(ns)
poscarry[i, j, v] v ∈ Li and Li is a premise of Lj O(ns2)∗

negcarry[i, j, v] v ∈ Li and Li is a premise of Lj O(ns2)∗

Table 1: Core variables used by the shortest-proof encoding. The symbol v is understood
to range over V := var(F), while the symbols i, j range over the set {1, . . . , s} with
i < j, except for ax[i, j], where j ranges over {1, . . . ,m} instead. The ∗-marked
terms are asymptotically dominating (n ≤ m ≤ s).

In the following subsections, we list the clauses of the encoding, using complex Boolean
expressions where convenient, and implicitly assuming that those are translated into a

81

Peitl & Szeider

logically equivalent CNF in the natural way, as follows:

x ≤ y : x ∨ y
x ≥ y : x ∨ y

x = y1 ∧ · · · ∧ yk :

k∧
i=1

(
x ∨ yi

)
∧ (x ∨ y1 ∨ · · · ∨ yk)

x = y1 ∨ · · · ∨ yk :
k∧

i=1

(
x ∨ yi

)
∧ (x ∨ y1 ∨ · · · ∨ yk)

k∧
i=1

xi →
l∨

j=1

yj : x1 ∨ · · · ∨ xk ∨ y1 ∨ · · · ∨ yl

k∨
i=1

xi →
l∧

j=1

yj :
k∧

i=1

l∧
j=1

(xi ∨ yj)

Sometimes we write pos|neg to save space, meaning that the surrounding expression
should be interpreted twice, with pos and neg substituted. We will also use cardinality
constraints of the form

∑
x∈X xMk, M ∈ {≤,≥,=}, which can be encoded using an arbitrary

CNF cardinality-constraint encoding. We use the sequential counter (Sinz, 2005), which
seemed to perform best in our tests, but our implementation allows to pass the cardinality
encoding to be used as a parameter (see Section 6 for more details).

4.1 Definitions

Definition of isax[i, j]: the i-th clause is the j-the axiom if it contains precisely its literals.

∧
1≤i≤s
1≤j≤m

ax[i, j]→

 ∧
v∈Aj

pos[v, i]
∧

v∈Aj

neg[v, i]
∧

v 6∈var(Aj)

pos[v, i] ∧ neg[v, i]

 ,

The i-th clause is an axiom (isax[i]) if it is some axiom according to the constraint above.

∧
1≤i≤s

isax[i] =
∨

1≤j≤m
ax[i, j]

 ,

The “carry” variables help us simplify reasoning around how literals are carried between
clauses; {pos|neg}carry[i, j, v] captures the conjunction of the facts that a v-literal appears
in the i-th clause and that the i-th clause is a premise of the j-th clause.∧

1≤i,j≤s
v∈V

{pos|neg}carry[i, j, v] = {pos|neg}[i, v] ∧ arc[i, j],

Through carries, we capture the union of the two premises of a resolution step.∧
1≤j≤s
v∈V

(
u{pos|neg}[j, v] =

∨
1≤i<j

{pos|neg}carry[i, j, v]

)
,

82

Finding the Hardest Formulas for Resolution

The pivot variable is defined as a variable that appears in both polarities in the union of
premises. In a later constraint, we will enforce the uniquness of a pivot.∧

1≤i≤s
v∈V

piv[i, v] = upos[i, v] ∧ uneg[i, v].

4.2 Essential Constraints

The final clause is empty:
∧

v∈V pos[i, v] ∧ neg[i, v].

Axioms have no incoming arcs:
∧

1≤i<j≤s isax[j]→ arc[i, j].

Clauses are non-tautological:
∧

1≤i≤s
v∈V

pos[i, v] ∨ neg[i, v].

Non-pivot literals are retained after resolution.∧
1≤i≤s;v∈V

piv[i, v] ∧ u{pos|neg}[i, v]→ {pos|neg}[i, v]

No new literals are introduced into resolvents.∧
1≤i≤s;v∈V

isax[i] ∧ {pos|neg}[i, v]→ u{pos|neg}[i, v]

Every resolvent has a pivot:
∧

1≤i≤s

(
isax[i]→

∨
v∈V piv[i, v]

)
, and the pivot is unique:∧

1≤i≤s
v 6=v′∈V

piv[i, v] ∨ piv[i, v′]. Every clause has exactly two premises

∧
3≤j≤s

∑
1≤i<j

arc[i, j] = 2

4.3 Redundant Constraints

If we search for the proof by iteratively incrementing the bound s, we know that every
clause must be used: ∧

1≤i<s

∨
i<j≤s

arc[i, j].

In that case, we know no proof shorter than s exists, and so every clause but the last is
non-empty: ∧

1≤i<s

(∨
v∈V

pos[i, v] ∨ neg[i, v]

)
.

Axioms do not have pivots:
∧

1<i≤s
v∈V

isax[i] → piv[i, v]. We require that the axioms are

placed at the beginning of the proof
∧

1≤i<s isax[i + 1] → isax[i], and in the same order

as they appear in the original formula
∧

1≤i≤s;1≤j1≤j2≤m ax[i, j2] ∨ ax[i+ 1, j1]. Hence, Aj

can appear no later than as Lj , expressed by the unit clauses ax[i, j] for 1 < i ≤ s and
1 ≤ j ≤ min(i − 1,m). When considering only MU formulas, we can omit the above and
directly place all axioms at the start in a fixed order:

∧m
i=1 ax[i, i]

∧s
i=m+1 isax[i].

83

Peitl & Szeider

4.4 Counting the In- and Out-Degrees

Consider the proof DAG G(P) defined in Section 2. Using the redundant constraints from
above and assuming minimal unsatisfiability of F , we will show how one can place an
additional redundant constraint on the proof DAG structure. The goal of this constraint is
to discover early that a partially constructed proof DAG cannot be extended to a full DAG,
and reject it. This feature is based on the simple identity

∑
v∈V dout(v) =

∑
L∈V din(v),

which holds in every directed graph G = (V,E), and which we already used in the proof
of Lemma 4 in order to establish a lower bound on the length of a proof of a minimally
unsatisfiable formula.

The core idea is that we know the in-degrees, and so the total number of arcs there must
be in a proof DAG, and we also know that every clause except the last has an outgoing
arc. Suppose A is a partial assignment of arcs in a proof of length s, i.e., A is a sub-
DAG of a proof DAG with s vertices, and suppose A has k(A) arcs, and t(A) vertices with
out-degree 0. We know that in any proof DAG that extends A, each of the t(A) clauses
except the last will have at least one outgoing arc; so any extension of A must have at least
k(A)+ t(A)−1 arcs. But at the same time, any extension of A must have 2(s−m) arcs (for
the m axioms of in-degree 0 and s−m resolvents of in-degree 2); we reach a contradiction if
k(A) + t(A)− 1 > 2(s−m). Our goal now, is to produce a constraint that will perform this
reasoning and enforce for every partial arc assignment A that k(A) + t(A)− 1 ≤ 2(s−m).
The main challenge is to capture the value of t(A); the rest can be achieved via a cardinality
constraint.

To capture the value of t(A), we introduce the notion of an extra arc: for a clause Li ∈ P
with multiple outgoing arcs to clauses Lj1 , . . . , Ljk , j1 < · · · < jk, we say that the arcs to
Lj2 , . . . , Ljk are extra (this includes symmetry breaking: the single non-extra arc is the one
with the lowest index). Let e(A) be the number of extra arcs in the partial proof DAG A.
It can be seen that k(A) + t(A) − 1 = e(A) + s − 1: starting from the k(A) arcs in A,
add t(A)− 1 non-extra arcs going out of the clauses with out-degree 0, for a total of s− 1
non-extra arcs and e(A) extra arcs (no new extra arcs were added). Hence, the inequality
k(A) + t(A) − 1 ≤ 2(s −m) can be rewritten as e(A) ≤ s − 2m + 1. If we can keep track
of the number of extra arcs, we can simply encode this as a cardinality constraint. We
define the variables exarc[i, j], whose meaning is that arc[i, j] is an extra arc, and enforce
the cardinality constraint on them.∧

1≤i<j<k≤s
arc[i, j] ∧ arc[i, k]→ exarc[i, k];

∑
1≤i<j≤s

exarc[i, j] ≤ s− 2m+ 1.

This cardinality constraint ensures that a partial proof does not have too many extra
arcs, and there is enough “arc budget” left to add at least one arc to every clause that does
not yet have one. Since the cardinality constraint alone is unsatisfiable if the right-hand
side is negative, we obtain Lemma 4 as a special case.

5. Symmetry Breaking

Consider the proof DAG G(P) of a resolution proof P . Any proof P is simply a topological
sort of its DAG G(P). If two sequences P1 and P2 share the same DAG G(P1) = G(P2) = G,

84

Finding the Hardest Formulas for Resolution

then P1 and P2 are essentially the same proof. Our aim now is to make sure that for each
candidate proof DAG G, exactly one topological sort is accepted by the encoding.

A directed acyclic graph can be topologically sorted by repeatedly picking and deleting
from G a source vertex, i.e., one with no incoming arcs, as the next vertex in the resulting
topologically sorted sequence. In the event that several sources are available, any one can
be picked, which is why a given DAG, in general, has many topological sorts. We define a
canonical topological sort of a given DAG G in the following way. Let ≤∗ be an arbitrary
total order on the vertices of G. The canonical topological sort of G is the topological sort
that results from always picking the greatest source vertex under ≤∗. The idea for this
symmetry breaking is due to Schidler and Szeider (2020) who introduced it in a different
context; Fichte, Hecher, and Szeider (2020) further studied this technique under the name
LexTopSort.

To verify that a given sequence P is the canonical topological sort of G(P), we need to
check that for every pair of vertices Li, Lj , i < j, if Lj was a source already at the time
when Li was inserted, then Lj ≤∗ Li. We can check whether Lj was a source simultaneously
with Li by checking that there is no arc (Lk, Lj) with i ≤ k. This is the role of the variables
sim[i, j].

We also need to reason about the order ≤∗ on clauses. We define the following order on
the literals x1 < x1 < · · · < xn < xn, and order clauses of the proof lexicographically based
on this order: Li <

∗ Lj if there is a literal l ∈ Lj such that l 6∈ Li and {l′} ∩ Li = {l′} ∩ Lj

for all l′ < l. We represent ≤∗ using the variables geq[i, j, l], which say that, when restricted
to literals up to position l, the clause Lj is a superset of Li. Here we are using the trick to
encode a lexicographic ordering where we relax the condition that the previous bits are equal
to the condition that they are greater than or equal, exploiting the fact that the opposite
inequality has been enforced on the previous bits already (Lemma 10.7.1, Sakallah, 2009).

∧
1≤i<j≤s

geq[i, j, x1] = (pos[i, x1] ≤ pos[j, x1])

∧
1≤i<j≤s
1<k≤n

geq[i, j, xk] = geq[i, j, xk−1] ∧ (pos[i, xk] ≤ pos[j, xk])

∧
1≤i<j≤s
1≤k≤n

geq[i, j, xk] = geq[i, j, xk] ∧ (neg[i, xk] ≤ neg[j, xk])

Definition of sim: for 1 ≤ i < s, sim[i, i+ 1] = arc[i, i+ 1], and

∧
1≤i<j−1≤s

sim[i, j] = sim[i+ 1, j] ∧ arc[i, j].

85

Peitl & Szeider

The following constraint enforces that the sequence is the canonical topological sort (for
resolvents only, the order of axioms is handled differently—see Section 4).∧

1≤i<j≤s

(
sim[i, j] ∧ ax[i]

)
→ (pos[i, x1] ≥ pos[j, x1])

∧
1≤i<j≤s
1≤k≤n

(
sim[i, j] ∧ ax[i] ∧ geq[i, j, xk]

)
→ (neg[i, xk] ≥ neg[j, xk])

∧
1≤i<j≤s
1≤k<n

(
sim[i, j] ∧ ax[i] ∧ geq[i, j, xk]

)
→ (pos[i, xk+1] ≥ pos[j, xk+1])

The last set of unit clauses ensures that a superclause of a previously derived clause should
never be derived. ∧

1≤i<j≤s
geq[i, j, xn]

Finally, Theorem 1 summarizes the properties of our encoding.

Theorem 1. Let F be a propositional formula on n variables and m clauses and let
shorts(F) be the formula defined in Sections 4 and 5. Then the following statements hold:

1. the size of shorts(F) is O(max(n,m, s)3) variables and clauses; (s can be exponential
in the input length). For MU formulas we have n < m ≤ s, i.e., size O(s3);

2. shorts(F) is satisfiable if and only if F has a resolution refutation of length s in which
every clause is used to derive the empty clause;

3. any model of shorts(F) can naturally be interpreted as a sequence of clauses P that
constitutes a valid resolution proof of F ;

4. P is the canonical topological sort of G(P).

Theorem 1 gives rise to a simple algorithm. Start with s = 1, and increment s by one
while shorts(F) is unsatisfiable. As soon as shorts(F) becomes satisfiable, s is the length
of a shortest resolution refutation of F , and the refutation itself can be extracted from a
model of shorts(F). An improvement is possible for MU formulas, by starting not at s = 1,
but s = 2m− 1, as described in Section 4.

6. Experimental Setup

In this section, we describe how we performed our computations; Section 7 afterwards is
devoted to a discussion of the results we obtained. We will refer to formulas and graphs
interchangeably throughout these two sections, saying for instance that a graph is minimally
unsatisfiable. In such cases, it is understood that we are using the correspondence between
formulas and graphs sketched in Section 3, and implicitly mean the corresponding object.

To generate Iso(RSMU(n,m)), we run a modified version of the genbg utility from the
graph automorphism package Nauty (McKay & Piperno, 2014), provided to us by Brendan
McKay, which enumerates isomorph-free 2-graphs. The modification is that the graphs

86

Finding the Hardest Formulas for Resolution

generated are not bipartite as in genbg, but V1 induces a matching, i.e., the graph is a clause-
literal graph as defined in Section 2. We run genbg with the parameters -cAtd3:2 2n m

and a custom filtering routine that catches some satisfiable and non-minimal formulas early.
The meaning of our parameter settings is: we are interested in connected (-c) triangle-
free (-t) 2-graphs G = (V1] V2, E), such that V1 has 2n vertices (the literals) whose
minimum degree is 3 (every literal should occur at least twice, plus the edge between the
two literals of a variable), and V2 has m vertices (the clauses) with minimum degree 2 (a
unit clause would imply a singular literal, so we can skip such graphs), and such that no
two neighborhoods of vertices from V2 are one subset of the other (-A). This gives us a set
S(n,m) of graphs that contains Iso(RSMU(n,m)), and such that all graphs in S represent
formulas without tautological clauses (triangle-freeness), without singular literals (degree
bounds), and without subsumed clauses (-A). Hence it remains to filter the output of genbg
for saturated minimal unsatisfiability.

Our filtering subroutine takes a partially constructed graph and tries to determine that it
cannot be extended to an unsatisfiable or a minimally unsatisfiable formula. A partial graph
corresponds to a formula with some clauses already fixed, and others left yet undetermined.
We count the number of satisfying assignments of a partial graph, and using the fact that
Nauty adds clauses in increasing order of size, we can trivially lower-bound the number of
satisfying assignments of the final formula.

Lemma 12. If F has at least µ satisfying assignments, and each clause in G has width at
least ω, then F ∪G has at least µ−2n−ω|G| satisfying assignments, where n = |var(F ∪G)|.

Because the clauses come in increasing order, we can put ω = maxC∈F |C|, and when we
are generating n-variable, m-clause formulas, we know both n and also that |G| = m− |F |.
Thus, if the number µ− 2n−ω(m− |F |) is positive, we can immediately discard the current
branch of the search (all descendants of F). Similarly, if a partially constructed formula is
already unsatisfiable, we know that the final formula will not be minimally unsatisfiable,
and we can discard as well. This pruning is critical as without it the vast majority of graphs
generated would be satisfiable, causing most of the work to go to waste. As an example,
without our filtering routine, for n = 5 and m = 9, out of the total more than 9 billion
generated graphs, fewer than 0.05% were unsatisfiable.

The pruning described in Lemma 12 as well as SMU filtering both require solving SAT,
or even counting models. In early stages of our work, we used a SAT solver for that purpose
(CryptoMiniSAT via its C API; Soos, Nohl, & Castelluccia, 2009), resorting to a lower
bound based on clause sizes instead of counting models exactly (any formula F trivially has
at least 2|var(F)| (1−∑C∈F 2−|C|

)
models), and using Lemma 10 for SMU testing. However,

we have since found out that using brute force (going through all assignments explicitly)
instead of a SAT solver is much more efficient in these cases, and also allows exact model
counting at no extra cost. Nauty encodes sets via their characteristic vectors, and the
vectors in turn are represented by the bits of an unsigned int. In our case, we work with
small sets (clauses on < 32 literals), which means both a full assignment and a clause can
fit into one CPU word. Operations such as determining whether an assignment satisfies
a given clause conveniently reduce to a single CPU instruction, and the entire process is
extremely cache friendly. This stands in contrast with the cumbersomeness of having to
construct a SAT-solver-friendly representation of the graph output by Nauty, where a huge

87

Peitl & Szeider

chunk of the time is wasted. Checking satisfiability and counting satisfying assignments is
trivial by brute force, for testing saturated minimal unsatisfiability we use Algorithm 1. For
an example of the kind of speedup obtained, consider generating SMU(4, 8), which takes 150
seconds with the SAT-solver-based method, while the brute-force method finishes in under
a second. We do not report more detailed comparisons, because as we gradually switched
to the improved version for larger values of n and m, we left the slower versions behind.

Once we have generated Iso(RSMU(n,m)), which is equal to Iso(SMU(n,m)) for values
of n,m where MU(n− 1,m− 1) is empty, we use Lemma 7 to compute SMU(n+ 1,m+ 1).
Whenever we have computed SMU(n + 1,m + 1), we simply run our encoding on every
formula, incrementally increasing the proof length bound s, and compute all shortest proofs.

We implemented the encoding and the iterative search for a shortest proof in Python
using the PySAT framework (Ignatiev, Morgado, & Marques-Silva, 2018). Our tool allows
the user to choose their favorite SAT solver—among the ones included in PySAT, or indeed
any other that they have installed. Similarly, the user can specify which CNF cardinality
encoding (among the ones implemented in PySAT) to use within our encoding. Since these
parameters can be expected to have a significant impact on performance, before we started
our experiments, we performed a grid search through all pairs of SAT solver (the ones
in PySAT + Kissat and CryptoMiniSAT 5.8) and cardinality encoding, using a randomly
sampled set of RSMU(8), RSMU(9), SSMU(8), and SSMU(9) formulas, 32 of each kind.
From this training phase we concluded that the configuration with CaDiCaL 4 and sequential
counter performed best, and we used it throughout the rest of the experiment.

We note that any training process is bound to be imperfect, because the whole workflow
suffers from aggressively heavy-tailed behavior. It is easy to parallelize the computation of
shortest proofs across different formulas, and it is even possible to parallelize the individual
shorts(F) queries for one given formula. However, as we illustrate in the next section
in Figure 3, this only helps so much, because the bulk of the computation rests in the
optimality queries for a tiny set of the hardest formulas. In order to scale beyond our
current results, a cube-and-conquer (Heule, Kullmann, & Biere, 2018) approach to solve
the hardest queries may be called for. Apart from fully automated cubing algorithms,
another promising option is to exploit the high-level structure of our problem—search for
a (proof) DAG. A partitioning of the set of candidate DAGs into subsets of roughly equal
size which can be expressed succinctly as a set of cubes could in theory bring close to linear
speedups. Coming up with such a partitioning appears quite non-trivial; but it also looks
like something that might be within the reach of followup work.

Our encoding (Peitl & Szeider, 2021b) and our catalog of SMU formulas (Peitl & Szeider,
2021a), including the data from our computation, are publicly available.

7. Results

In this section we present and explore in detail the results of our computation. We begin
with the analysis of the hardness sequence and the finer structure of hardness in SMU
formulas.

Table 2 lists the length of the longest shortest proof required by an SMU(n,m) formula,
and, by taking the maximum in each column, also values of hm. In particular, we obtain

4. https://fmv.jku.at/cadical

88

https://fmv.jku.at/cadical

Finding the Hardest Formulas for Resolution

n\m 1 2 3 4 5 6 7 8 9 10

0 1 (1) - - - - - - - - -
1 - 3 (1) - - - - - - - -
2 - - 5 (1) 7 (1) - - - - - -
3 - - - 7 (2) 10 (1) 11 (3) 13 (1) 15 (1) - -
4 - - - - 9 (3) 13 (1) 15 (1) 19 (1) 20 (1) 21 (5)
5 - - - - - 11 (6) 16 (1) 18 (3) 22 (1) 25 (1)
6 - - - - - - 13 (11) 19 (1) 22 (3) 26 (3)
7 - - - - - - - 15 (23) 22 (1) 25 (24)
8 - - - - - - - - 17 (46) 25 (1)
9 - - - - - - - - - 19 (98)

Table 2: Values of h(SMU(n,m)),i.e., the lengths of the longest shortest proof required by
a saturated minimally unsatisfiable formula with n variables and m clauses, and in
parentheses the number of formulas in SMU(n,m) that require resolution proofs
of length h(SMU(n,m)). For all 3 ≤ n ≤ 9 and n + 2 ≤ m ≤ 10, we found that
all hardest SMU(n,m) formulas are regular, except for SMU(7, 10), which also
contains 19 singular formulas. All formula counts are modulo isomorphisms. By
Proposition 2, h(H(m− 1,m)) = 2m− 1, and so no computation is necessary. By
Lemma 9, there are no minimally unsatisfiable formulas in the areas marked by -.

the first ten resolution hardness numbers:

(hm)m≥1 = 1, 3, 5, 7, 10, 13, 16, 19, 22, 26, . . .

Since all deficiency-1 formulas have the same hardness, the corresponding numbers in
parentheses in Table 2 give the number of SMU(m− 1,m) formulas modulo isomorphisms.
This is Sequence A001190 of the Online Encyclopedia of Integer Sequences (http://oeis.org/
A001190), and indeed the correspondence of deficiency-1 saturated minimally unsatisfiable
formulas to rooted binary trees is known (Kullmann, 2000b). However, deficiency-1, and
indeed singular SMUs in general, are not too interesting from the hardness standpoint; for
m ≥ 5, all formulas with maximum hardness hm are regular. The numbers of RSMU
formulas with a given number of variables and clauses are shown in Table 3.

It is known that every MU(n,m) formula has a proof of length at most 2m−n−1n +
m (Kleine Büning & Kullmann, 2009, Section 11.3), and, along with the existence of formu-
las which require superpolynomially long proofs (Haken, 1985), this implies that maximum
hardness cannot forever be attained by formulas of any bounded deficiency m − n. Our
computations reveal that m = 10 is the tipping point where formulas of deficiency 2 “drop
out of the race,” as there is no longer a hardest formula of deficiency 2, see Table 2. Up to
isomorphism, there are exactly three hardest formulas for m = 10, all of which are of defi-
ciency 4. Below, we show the clause-literal graphs of all these and other hardest formulas
for each number of clauses m ≤ 10. The label h(Fn,m,i) = s indicates the formula belongs
to SMU(n,m) and requires a resolution proof of length s; i is an identifier to distinguish
formulas with the same number of variables and clauses.

89

http://oeis.org/A001190
http://oeis.org/A001190

Peitl & Szeider

n\m 1 2 3 4 5 6 7 8 9 10

0 1
1 0
2 0 1
3 0 1 3 1 1
4 0 1 14 59 87 96
5 0 1 45 755 5664
6 0 1 92 5928
7 0 1 154
8 0 1
9 0

Table 3: Iso(RSMU(n,m)) counts, i.e., the numbers of non-isomorphic regular saturated
minimally unsatisfiable formulas with n variables and m clauses. There are no
minimally unsatisfiable formulas in the blank areas by Lemma 9.

m = 1, 2, 3: up to isomorphism, there exists exactly one hardest formula with 1, 2 or 3
clauses, requiring a resolution proof of length 1,3, and 5, respectively.

h(F0,1,1) = 1 h(F1,2,1) = 3 h(F2,3,1) = 5

m = 4: up to isomorphism, there exist exactly 3 hardest formulas with 4 clauses, which are
saturated minimally unsatisfiable and require a resolution proof of length 7. Two of them
have deficiency 1 and are singular, one has deficiency 2 and is regular (and so it is F2

4).

h(F3,4,1) = 7 h(F3,4,2) = 7 h(F2,4,1) = 7

m = 5, 6, 7: up to isomorphism, there exists exactly one hardest formula with 5, 6 or 7
clauses which is saturated minimally unsatisfiable. It is always the respective unique reg-
ular deficiency 2 formula F2

m, and it requires a resolution proof of length 10, 13, and 16,
respectively. The clause-literal graphs of these, and in fact all F2

m formulas are planar, but
here we chose to draw them with crossings in order to highlight the cycle which contains all
variable edges. Interestingly, other regular formulas with hardness hm do not have planar
clause-literal graphs (as verified with Nauty’s planarg).

90

Finding the Hardest Formulas for Resolution

h(F3,5,1) = 10 h(F4,6,1) = 13 h(F5,7,1) = 16

m = 8: up to isomorphism, there exist exactly two hardest formulas with 8 clauses which
are saturated minimally unsatisfiable. One of them has deficiency 2 and is F2

8 , the other has
deficiency 4. Both are regular and require a resolution proof of length 19. F4,8,1 stands out
among the hardest formulas with an unusually large automorphism group—48 elements.

h(F4,8,52) = 19 h(F6,8,1) = 19

m = 9: up to isomorphism, there exist exactly five hardest formulas with 9 clauses which
are saturated minimally unsatisfiable. One of them has deficiency 2 and is F2

9 , three have
deficiency 3, and one has deficiency 4. All five formulas are regular and require a resolution
proof of length 22. F6,9,1 and F6,9,2 stand out among the hardest formulas, being the only
ones with an automoprhism group of size 1—without non-trivial automorphisms.

h(F5,9,1) = 22 h(F7,9,1) = 22

h(F6,9,1) = 22 h(F6,9,2) = 22 h(F6,9,3) = 22

m = 10: up to isomorphism, there exist exactly three hardest formulas with 10 clauses
which are saturated minimally unsatisfiable. All have deficiency 4 and require a resolution
proof of length 26. We point out that these three formulas are drawn symmetrically around

91

Peitl & Szeider

 0

 500

 1000

 1500

 2000

 19 20 21 22 23 24 25 26

N
u
m

b
er

 o
f
fo

rm
u
la

s

Hardness

RSMU(4, 10)
RSMU(5, 10)
RSMU(6, 10)
RSMU(7, 10)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 0 1 2 3 4 5 6 7 8 9 10 11

H
a
rd

n
es

s

Number of Clauses

F
re

q
u
en

cy

Figure 1: Left: hardness distribution among regular saturated minimally unsatisfiable for-
mulas with 10 clauses and 4-7 variables. Right: hardness distribution over all
saturated minimally unsatisfiable formulas on ≤ 10 clauses.

the vertical center line. Apart from F2
m, these are the only hardest formulas that can be

drawn in such a way—symmetrically and with a cycle containing all variable edges drawn as
a geometric circle. We calculated these drawings (and the non-existence for other graphs)
with MiniZinc (Nethercote et al., 2007; Stuckey et al., 2014).

h(F6,10,1) = 26 h(F6,10,2) = 26 h(F6,10,3) = 26

The resolution hardness numbers and the corresponding hardest formulas are at the
extreme end of the hardness distribution, i.e., the detailed picture of how many formulas
with a given number of clauses and hardness there are. Figure 1 shows the distributions
of hardness: within RSMU(10), broken down by the number of variables (RSMU(8, 10) is
omitted, as it only contains one formula with hardness 25 by Lemma 3); and overall in each
set SMU(m) for m ≤ 10.

It is intuitively clear even without extensive analysis that as formulas grow in the number
of clauses, they get harder, at least in the worst case. Is, however, the same true when we
fix the number of clauses, and vary formula length—the number of literal occurrences in F

92

Finding the Hardest Formulas for Resolution

(i.e.,
∑

C∈F |C|)? Figure 2 answers this question negatively for RSMU(10)—there appears
to be no correlation between length and hardness.

RSMU(4,10)

 34 35 36

 19

 20

 21

H
ar

d
n
es

s

F
re

q
u
en

cy

RSMU(5,10)

 32 33 34 35 36 37 38 39 40

 19

 20

 21

 22

 23

 24

 25

F
re

q
u
en

cy

RSMU(6,10)

 28 30 32 34 36 38 40 42

Length

 19

 20

 21

 22

 23

 24

 25

 26

H
ar

d
n
es

s

F
re

q
u
en

cy
RSMU(7,10)

 30 32 34 36 38 40 42 44

Length

 21

 22

 23

 24

 25

F
re

q
u
en

cy

Figure 2: Regular saturated minimally unsatisfiable formulas on 10 clauses broken down
by formula length and hardness. The frequency says how many formulas of the
given kind there are. The rather trivial case of deficiency two is, again, omitted.

One could naturally ask why we stopped the computation at m = 10, and whether we
could not continue to higher values. Figure 3 shows the running time needed to compute
shortest proofs as a function of their length, on a 10-core 2.40GHz Intel Xeon E5-2640 v4.
Experimentally, it appears that with each increment in formula hardness, computing a
shortest proof becomes roughly 5 times harder. Moreover, as illustrated on the three hardest
formulas, the bulk of the time is spent on the last query shorth(F)−1(F). Based on the
arguably likely assumption that h11 ≥ h10 + 3, and the fitted curve (computed using SciPy
and NumPy, Virtanen et al., 2020; Harris et al., 2020), we can estimate it will take over a
year of CPU time to compute a shortest proof of one of the next hardest formulas. This work
will be difficult to parallelize, as most of it is concentrated in solving the last query. Clever
parallelization, for instance using cube-and-conquer, thus appears necessary to tackle h11.

Generating formulas with 11 clauses is also a significant challenge. Even though Nauty
provides built-in parallelization facilities, the number of graphs that need to be enumerated
still grows very fast and algorithmic improvements will probably be necessary in order to

93

Peitl & Szeider

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

ti
m

e
(s

)

h(F)

CPU time to compute a shortest proof of given length

exponential fit 1.5 × 5.4
h(F)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 19 20 21 22 23 24 25 26

ti
m

e
(s

)

proof length

F6,10,1

F6,10,2

F6,10,3

Figure 3: Left: time to compute a shortest proof depending on its length. Boxes show
quartiles, whiskers extend to 1.5 × the interquartile range. Right: for the hardest
10-clause formulas, the distribution of solving time among the shorts(F) queries.
Over 80% of the work is spent on the optimality query; in two cases over 90%.

obtain SMU(11). One promising example is to detect early on partial graphs that cannot
be extended to a saturated minimally unsatisfiable formula, similarly to how we check for
graphs that cannot be extended to an unsatisfiable formula. This is left for future work.

8. Conclusion

We conducted an extensive computational investigation into resolution hardness. First,
we developed theoretical foundations that allowed us to pinpoint classes of formulas of
maximum resolution hardness. Then, using a tight graph representation of formulas and
carefully tuned generation procedures, we computed all candidates for hardest formulas for
up to ten clauses. With this information, and using a SAT encoding for the computation
of shortest resolution proofs targeted towards minimally unsatisfiable formulas and with
powerful novel symmetry breaking, we calculated the first ten resolution hardness numbers.
Our results indicate that regular saturated minimally unsatisfiable formulas achieve the
highest hardness. It remains as an interesting theoretical question whether the hardest
formulas are always regular.

Acknowledgments

This research was supported by the FWF (projects P32441 and J-4361) and by the WWTF
(project ICT19-065). Special thanks to Brendan McKay for modifying Nauty’s genbg for
our purpose. A preliminary version of this paper appeared at CP (Peitl & Szeider, 2020).

94

Finding the Hardest Formulas for Resolution

References

Aharoni, R., & Linial, N. (1986). Minimal non-two-colorable hypergraphs and minimal
unsatisfiable formulas. J. Combin. Theory Ser. A, 43, 196–204.

Atserias, A., & Bonet, M. L. (2004). On the automatizability of resolution and related
propositional proof systems. Inf. Comput., 189 (2), 182–201.

Codish, M., Miller, A., Prosser, P., & Stuckey, P. J. (2019). Constraints for symmetry
breaking in graph representation. Constraints An Int. J., 24 (1), 1–24.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. J. of
the ACM, 7 (3), 201–215.

Davydov, G., Davydova, I., & Kleine Büning, H. (1998). An efficient algorithm for the
minimal unsatisfiability problem for a subclass of CNF. Ann. Math. Artif. Intell., 23,
229–245.

Diestel, R. (2012). Graph Theory, 4th Edition, Vol. 173 of Graduate texts in mathematics.
Springer.

Fichte, J. K., Hecher, M., & Szeider, S. (2020). Breaking symmetries with RootClique and
LexTopSort. In Simonis, H. (Ed.), Proceedings of CP 2020, the 26rd International
Conference on Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science. Springer Verlag. this volume.

Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39, 297–
308.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Ŕıo, J., Wiebe, M., Peterson,
P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke,
C., & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362.

Heule, M. J. H. (2018). Schur number five. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pp. 6598–6606.

Heule, M. J. H., Kullmann, O., & Biere, A. (2018). Cube-and-conquer for satisfiability. In
Hamadi, Y., & Sais, L. (Eds.), Handbook of Parallel Constraint Reasoning, pp. 31–59.
Springer International Publishing, Cham.

Heule, M. J. H., Kullmann, O., & Marek, V. W. (2016). Solving and verifying the Boolean
Pythagorean Triples problem via cube-and-conquer. In Creignou, N., & Berre, D. L.
(Eds.), Theory and Applications of Satisfiability Testing - SAT 2016 - 19th Interna-
tional Conference, Bordeaux, France, July 5-8, 2016, Proceedings, Vol. 9710 of Lecture
Notes in Computer Science, pp. 228–245. Springer Verlag.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2018). PySAT: A Python toolkit for pro-
totyping with SAT oracles. In SAT, pp. 428–437.

95

Peitl & Szeider

Kleine Büning, H. (2000). On subclasses of minimal unsatisfiable formulas. Discr. Appl.
Math., 107 (1–3), 83–98.

Kleine Büning, H., & Kullmann, O. (2009). Minimal unsatisfiability and autarkies. In Biere,
A., Heule, M. J. H., van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability,
Vol. 185 of Frontiers in Artificial Intelligence and Applications, chap. 11, pp. 339–401.
IOS Press.

Kullmann, O. (2000a). An application of matroid theory to the SAT problem. Tech. rep.
TR00–018, Electronic Colloquium on Computational Complexity (ECCC).

Kullmann, O. (2000b). An application of matroid theory to the SAT problem. In Fifteenth
Annual IEEE Conference on Computational Complexity, pp. 116–124. See also TR00-
018, Electronic Colloquium on Computational Complexity (ECCC), March 2000.

Kullmann, O. (2000c). Investigations on autark assignments. Discr. Appl. Math., 107 (1-3),
99–137.

Kullmann, O., & Zhao, X. (2013). On Davis-Putnam reductions for minimally unsatisfiable
clause-sets. Theoretical Computer Science, 492, 70–87.

McKay, B. D., & Piperno, A. (2014). Practical graph isomorphism, {II}. Journal of Symbolic
Computation, 60 (0), 94 – 112.

Menćıa, C., & Marques-Silva, J. (2019). Computing shortest resolution proofs. In Oliveira,
P. M., Novais, P., & Reis, L. P. (Eds.), Progress in Artificial Intelligence, 19th EPIA
Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3-
6, 2019, Proceedings, Part II, Vol. 11805 of Lecture Notes in Computer Science, pp.
539–551. Springer.

Michel, P. (2019). The busy beaver competition: a historical survey. arXiv preprint,
math.LO(0906.3749).

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007).
Minizinc: Towards a standard cp modelling language. In Bessière, C. (Ed.), Principles
and Practice of Constraint Programming – CP 2007, pp. 529–543, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Peitl, T., & Szeider, S. (2020). Finding the hardest formulas for resolution. In Simonis,
H. (Ed.), Principles and Practice of Constraint Programming - 26th International
Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020, Proceedings,
Vol. 12333 of Lecture Notes in Computer Science, pp. 514–530. Springer.

Peitl, T., & Szeider, S. (2021a). Saturated Minimally Unsatisfiable Formulas on up to Ten
Clauses. Zenodo. https://doi.org/10.5281/zenodo.3951545.

Peitl, T., & Szeider, S. (2021b). short.py: Encoding for the shortest resolution proof. Zenodo.
https://doi.org/10.5281/zenodo.3951549.

Pipatsrisawat, K., & Darwiche, A. (2009). On the power of clause-learning SAT solvers with
restarts. In Gent, I. P. (Ed.), Principles and Practice of Constraint Programming -
CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal, September 20-
24, 2009, Proceedings, Vol. 5732 of Lecture Notes in Computer Science, pp. 654–668.
Springer Verlag.

96

Finding the Hardest Formulas for Resolution

Prestwich, S. D., & Lynce, I. (2006). Local search for unsatisfiability. In Biere, A., &
Gomes, C. P. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2006,
9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
Vol. 4121 of Lecture Notes in Computer Science, pp. 283–296. Springer.

Pudlák, P. (2003). On reducibility and symmetry of disjoint NP pairs. Theor. Comput.
Sci., 295, 323–339.

Rado, T. (1962). On non-computable functions. Bell System Technical Journal, 41 (3),
877–884.

Sakallah, K. A. (2009). Symmetry and satisfiability. In Biere, A., Heule, M., van Maaren,
H., & Walsh, T. (Eds.), Handbook of Satisfiability, Vol. 185, pp. 289–338. IOS Press.

Schidler, A., & Szeider, S. (2020). Computing optimal hypertree decompositions. In Blel-
loch, G., & Finocchi, I. (Eds.), Proceedings of ALENEX 2020, the 22nd Workshop on
Algorithm Engineering and Experiments, pp. 1–11. SIAM.

Silva, J. P. M., & Sakallah, K. A. (1996). GRASP - a new search algorithm for satisfiability.
In International Conference on Computer-Aided Design (ICCAD ’96), November 10-
14, 1996, San Jose, CA, USA, pp. 220–227. ACM and IEEE.

Sinz, C. (2005). Towards an optimal CNF encoding of Boolean cardinality constraints. In
van Beek, P. (Ed.), Principles and Practice of Constraint Programming - CP 2005,
11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceed-
ings, Vol. 3709 of Lecture Notes in Computer Science, pp. 827–831. Springer Verlag.

Soos, M., Nohl, K., & Castelluccia, C. (2009). Extending SAT solvers to cryptographic
problems. In Kullmann, O. (Ed.), Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July
3, 2009. Proceedings, Vol. 5584 of Lecture Notes in Computer Science, pp. 244–257.
Springer.

Stuckey, P., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The minizinc challenge
2008-2013. AI Magazine, 35, 55–60.

Szeider, S. (2004). Minimal unsatisfiable formulas with bounded clause-variable difference
are fixed-parameter tractable. J. of Computer and System Sciences, 69 (4), 656–674.

Urquhart, A. (1995). The complexity of propositional proofs. Bull. of Symbolic Logic, 1 (4),
425–467.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Lar-
son, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., & SciPy 1.0 Contributors
(2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Na-
ture Methods, 17, 261–272.

97

	Introduction
	Preliminaries
	Theoretical Framework
	Saturated Minimal Unsatisfiability and Singular Literals
	Testing SMU Using a SAT Solver
	Testing SMU by Brute Force

	Encoding for Shortest Resolution Proofs
	Definitions
	Essential Constraints
	Redundant Constraints
	Counting the In- and Out-Degrees

	Symmetry Breaking
	Experimental Setup
	Results
	Conclusion
	References

