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Abstract

Higher-order proximity preserved network embedding has attracted increasing atten-
tion. In particular, due to the superior scalability, random-walk-based network embedding
has also been well developed, which could efficiently explore higher-order neighborhoods via
multi-hop random walks. However, despite the success of current random-walk-based meth-
ods, most of them are usually not expressive enough to preserve the personalized higher-
order proximity and lack a straightforward objective to theoretically articulate what and
how network proximity is preserved. In this paper, to address the above issues, we present a
general scalable random-walk-based network embedding framework, in which random walk
is explicitly incorporated into a sound objective designed theoretically to preserve arbitrary
higher-order proximity. Further, we introduce the random walk with restart process into
the framework to naturally and effectively achieve personalized-weighted preservation of
proximities of different orders. We conduct extensive experiments on several real-world
networks and demonstrate that our proposed method consistently and substantially out-
performs the state-of-the-art network embedding methods.

1. Introduction

Network embedding, which has recently attracted increasing attention in both academia and
industry, is a general and fundamental technique for representing nodes of the real-word
network as vectors in a low-dimensional space while preserving the inherent properties
and structures of the network (Cui et al., 2019; Goyal & Ferrara, 2018; Cai et al., 2018).
Such embedding vectors can then be used for a variety of network mining tasks, such as
node profiling (classification and clustering) (Sen et al., 2008; Wang et al., 2017), link
prediction (Shi et al., 2015; Wei et al., 2017), similarity search (Sun et al., 2011, 2012; Zhou
et al., 2017), etc.

One basic requirement of network embedding is that the learned vectors of nodes should
preserve the network structures. Along with this direction, many network embedding meth-
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ods are proposed to preserve the first-order proximity which expresses the local pairwise
structure indicated by the observed edges between nodes (e.g., Roweis & Saul, 2000; Belkin
& Niyogi, 2001; Tang & Liu, 2011; Ahmed et al., 2013), or further to preserve the second-
order proximity between a pair of nodes which implies the similarity between their neigh-
borhood structures (e.g., Tang et al., 2015; Wang et al., 2016).

Despite their success, in recent years, more and more works (Cao et al., 2015; Ou et al.,
2016; Yang et al., 2017; Zhang et al., 2018) have demonstrated that, besides the first- and
second- order proximity directly indicated by pairwise edges, the higher-order proximity is
also one of tremendous importance in capturing the underlying structures of the network.

• Different-order proximities describe the network structures from different
levels of scope, which give us much valuable information with different
granularities. Thus, embeddings with the lower-order proximity alone or even any
certain-order proximity do not necessarily perform best on all networks and target
applications (Perozzi et al., 2017; Zhang et al., 2018). For example, in classifica-
tion tasks with coarse-grained classes, the higher-order proximity is likely to be more
helpful than lower-order proximity.

• Real-world networks are usually very sparse, with only a small number of
edges observed. That is, the observed first-order proximity and even second-order
proximity may not be sufficient to reflect the underlying relations between nodes (Tang
et al., 2015). Therefore, to address the network sparsity issue, it is also very important
to incorporate higher-order proximity to capture more available information.

Although many works have been proposed to preserve the higher-order proximity in
network embedding, most of them are developed to explicitly exploit the higher-order prox-
imity matrix by the technique of matrix factorization (e.g., Cao et al., 2015; Ou et al., 2016;
Yang et al., 2017) or deep learning (e.g., Wang et al., 2016; Cao et al., 2016), which are
known to have scalability issues when dealing with large-scale networks (Yang et al., 2017).

To be more efficient, inspired by the Skip-gram algorithm (Mikolov et al., 2013), random-
walk-based network embedding algorithms have also been well developed (Perozzi et al.,
2014; Tang et al., 2015; Grover & Leskovec, 2016; Perozzi et al., 2017; He et al., 2019).
Although these random-walk-based algorithms are known for having superior scalability
for large-scale networks and having the ability for exploring higher-order neighborhood via
multi-hop random walks, there are still some issues:

• They either treat different-order neighborhood equivalently (Perozzi et al., 2014)
which may not be expressive enough to incorporate a personalized combination of
proximities of different orders, or use a somewhat complex second-order biased ran-
dom walk (Grover & Leskovec, 2016) which can be costly when pre-computing its
third-order transition probability hypermatrix (Zhang et al., 2018).

• In essence, these algorithms convert the network embedding problem as the word
embedding problem by treating a node as a word and pre-generating the node “corpus”
via random walks. As a consequence, they have no specific objective to articulate what
and how network proximity is preserved and have no sound theory to estimate the
essential role of random walk playing in network embedding, which also limits their
superiority.
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In this paper, to address the above issues, we present a general scalable Random-Walk-
based Network Embedding framework (called RWNE), in which arbitrary higher-order
proximity of the network can be explicitly preserved with a sound objective carefully de-
signed to simultaneously capture both the local pairwise similarity and the global listwise
equivalence between nodes. More than that, to make the framework efficient and practical
for large-scale networks, we theoretically show that the above objective can be equivalently
optimized by sampling the nodes via the random walk process with the probability propor-
tional to the proximity, which clarifies why and how we can use random walks to preserve
arbitrary user-specified network proximity and reversely explains what and how network
proximity is preserved for an arbitrary user-specified random walk. Further, we introduce
the random walk with restart process to naturally and effectively achieve personalized-
weighted preservation of different-order proximities with an elegant attenuation function
controlled by a personalized teleport probability. Finally, we conduct extensive experiments
on six real-world networks over three classical network mining tasks: multi-label node clas-
sification, node clustering, and link reconstruction. The experimental results demonstrate
that our proposed method consistently and substantially outperforms the state-of-the-art
network embedding methods. To summarize, the main contributions of our work are as
follows:

1. We systematically present a general scalable random-walk-based network embedding
framework RWNE *, in which random walk is efficiently and explicitly incorporated
into a sound objective designed theoretically to preserve arbitrary higher-order prox-
imity.

2. We further introduce the random walk with restart process to practically preserve
the personalized higher-order proximity which naturally weights different-order prox-
imities with an elegant attenuation function controlled by a personalized teleport
probability.

3. We conduct extensive experiments on several real-world networks and demonstrate
that our proposed model consistently and considerably outperforms the state-of-the-
art network embedding methods.

2. Related Work

Network embedding has aroused lots of research interest for a long time (Cui et al., 2019;
Cai et al., 2018; Wang et al., 2019). The earlier network embedding algorithms, also called
graph embedding, are studied as a dimension reduction problem, such as LLE (Roweis &
Saul, 2000), Laplacian eigenmaps (Belkin & Niyogi, 2003), etc. These methods focus on
the first-order proximity which captures the local structure information of the network.

Matrix Factorization. Recently, to sufficiently explore the network structure from
different levels of scope, a bunch of methods has been proposed to preserve the higher-
order proximity in network embedding. Most of these methods are proposed to explicitly
factorize a higher-order proximity matrix, such as GraRep (Cao et al., 2015), HOPE (Ou
et al., 2016), M-NMF (Wang et al., 2017), NetMF (Qiu et al., 2018), AROPE (Zhang et al.,
2018), etc. However, in principle, as the computation and storage of higher-order proximity

*. The datasets and code are released at https://github.com/RingBDStack/RWNE.
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matrices are generally at least O(|V |2) complexity, these matrix-factorization methods often
have efficiency issues when dealing with large-scale networks.

Deep Learning. Besides, deep learning is also studied in preserving higher-order
proximity. For example, SDNE (Wang et al., 2016) first applies a deep auto-encoder to pre-
serve both 1st- and 2nd-order proximity. DNGR (Cao et al., 2016) further uses a stacked
denoising auto-encoder to preserve higher-order proximity. Unfortunately, same as matrix-
factorization methods, these methods also confront efficiency issues. Specially, deep convo-
lution networks are popularly applied on graphs in very recent years (e.g., Kipf & Welling,
2017; Velickovic et al., 2018; Peng et al., 2019), which are studied as supervised/semi-
supervised feature learning models with node attributes/features incorporated. We also
compare with these methods, but it is noteworthy that in this paper we focus on the most
fundamental case that only the network structure information is available.

Random Walk. On the other hand, due to the superior scalability, random-walk-based
network embedding algorithms have also been well developed. A two-step framework is ap-
plied for generating the node embeddings in these methods. First, they perform random
walks on a network to generate node sequences. Then they run the Skip-gram algorithm
over these sequences to generate node embeddings. For example, DeepWalk (Perozzi et al.,
2014) uses uniform random walks to generate node sequences and then runs the Skip-gram
algorithm. The major drawback of DeepWalk is that it treats different-order neighbor-
hoods equivalently and thus maybe not expressive enough to incorporate a personalized
combination of proximities of different orders. node2vec (Grover & Leskovec, 2016) further
generalizes a second-order biased random walk to seek a trade-off between breadth-first
and depth-first graph searches. Although node2vec can incorporate a biased combination
of different-order proximities, it is usually costly for computing the second-order transition
probability hypermatrix of the proposed second-order random walk. Moreover, despite their
success, as introduced in Section 1, there are still some issues. In this paper, instead of the
above two-step framework, we focus on a straightforward framework by explicitly incorpo-
rating random walk into a sound objective designed theoretically to preserve personalized
higher-order proximity.

3. Definitions and Preliminaries

In this section, we first introduce the problem of network embedding, and then formally
define the measures of higher-order proximity to characterize network structures. We first
formalize a network as follows.

Network. A network is defined as a directed graph G=(V,E), where V={v1, v2, · · ·, vn}
is the set of nodes and n is its size, E={ei,j}ni,j=1 is the set of edges. Each edge ei,j is equally
as a linked node pair (vi, vj) and is associated with a weight wi,j > 0, which indicates the
strength of the edge. If there is no observed edge from vi to vj, then wi,j =0. Specially, for
an undirected graph, we have wi,j≡wj,i. For an unweighted graph, we have wi,j∈{0, 1}.

We further denote A∈Rn×n as the adjacency matrix of the network, where each entry
Ai,j=wi,j represents the weight of the edge from vi to vj ; denote D ∈Rn×n as the weight
matrix where each diagonal entry Di,i =

∑n
j=1Ai,j represents the summed “out-weight” of

vi and other entries are zero. Then, Λ=D−1A is the normalized adjacency matrix, i.e., the
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Figure 1: An illustrative network Ge with six nodes.

one-step transition probability matrix for random walks on the network, where the sum of
each row is equal to one.

Example 1 Take a simple graph Ge=(V,E) shown in Figure 1 as an example, with wi,j≡
wj,i=1. As defined above, we have
V = {v0, v1, v2, v3, v4, v5},
E = {e0,1, e0,2, e0,4, e1,0, e1,3, e2,0, e2,3, e3,1, e3,2, e4,0, e4,5, e5,4}.
The adjacency matrix and weight matrix are

A =



0 1 1 0 1 0
1 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 0 0
1 0 0 0 0 1
0 0 0 0 1 0

 , D =



3 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 1

 .

Thus, the normalized adjacency matrix can be calculated as

Λ = D−1A =



0 1/3 1/3 0 1/3 0
1/2 0 0 1/2 0 0
1/2 0 0 1/2 0 0
0 1/2 1/2 0 0 0

1/2 0 0 0 0 1/2
0 0 0 0 1 0

 .

Network Embedding. Given a network G=(V,E), the problem of network embedding
aims to embed the network into a low-dimensional space while preserving the network struc-
tures, i.e., learn a mapping function fG :vi∈V→ri∈Rd, where d�|V | and fG preserves the
relations between nodes.

As defined above, to conduct the embedding, the network structures, i.e., the relations
between nodes, must be preserved as much as possible. In practice, we adopt the following
proximity measures to quantify the network structure information to be preserved in the
embedded space. We first define the first-order proximity as follows.

First-Order Proximity. The first-order proximity is defined to measure the adjacent
structures of a network. For each pair of nodes (vi, vj), if they are linked by an edge, there
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exists positive first-order proximity between them, and the weight wi,j on that edge indicates
the strength of the proximity. If no edge is observed between vi and vj, their first-order
proximity is zero. Further, for all pairs of nodes, there is naturally a first-order proximity
matrix indicated by the adjacency matrix of the network.

In practice, since the weights of edges in a network can diverge over a very wide range,
we use the normalized adjacency matrix (i.e., the one-step transition probability matrix) Λ
as the formal first-order proximity matrix, where each normalized entry Λi,j is the first-order
proximity of node pair (vi, vj), which also represents the transition probability of one-step
random walk from vi to vj . It is necessary to consider the structural characteristics of the
network from local and global perspectives, which has been proved by many researches, such
as feature selection (Liu et al., 2014), semi-supervised classification (Kang et al., 2020b,
2021), clustering (Ren & Sun, 2020; Kang et al., 2020a), etc. The defined first-order
proximity can measure the adjacent structures in both local and global aspects:

• In local aspect, the first-order proximity implies that two nodes are similar if they
are linked by an observed edge. For example, bloggers following each other in a
social network tend to share similar interests; papers citing to each other in a citation
network tend to talk about similar topics.

• In global aspect, the relation between two nodes is also determined by their common
neighbors. For example, people sharing many common friends in a social network are
likely to share similar interest and become friends. That is, even if two nodes are not
directly connected, we can capture their relation through their neighbors.

Specially, we redefine such local similarity between each two nodes (vi, vj) directly de-
termined by their first-order proximity entry Λi,j as the first-order local proximity. By
preserving the first-order local proximity, we are able to characterize the local adjacent
structure of the network.

For further convenience, we here define two vectors: Λi = (Λi,1,Λi,2, · · ·,Λi,|V |), and
Λ·,i = (Λ1,i,Λ2,i, · · ·,Λ|V |,i). More formally, for three nodes vi, vj1 , vj2 , if their first-order
proximities satisfy Λi,j1=Λi,j2 , i.e., vi randomly walks to vj1 and vj2 with the same proba-
bility, then vj1 and vj2 share the equivalent role for vi. Further, if for each one of the entire
node set, vj1 and vj2 always share the equivalent role, i.e., Λ·,j1≡Λ·,j2 , then vj1 and vj2
have an equivalent global structure role in the network. For example, if there are such two
papers that all the papers in the citation network who cite one of them will also cite the
other, the two papers are very probably to talk about the same topic and have the equiv-
alent significance in academia. Therefore, we can capture the global adjacent structure by
preserving such global equivalence between nodes. Specially, we refer to such global equiva-
lence between each two nodes (vj1 , vj2) determined by the similarity of the two vectors Λ·,j1
and Λ·,j2 as the first-order global proximity.

Example 2 For the node v1 and node v2 in Ge, although the two nodes are not directly con-
nected, they should have stronger similarities because they have multiple common neighbors
node v0 and node v3, which can be judged by the first-order global proximity:

Λ·,v1 = Λ·,v2 =
[
1/3 0 0 1/2 0 0

]
.
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Intuitively, it is necessary for network embedding to preserve both the first-order local
proximity and the first-order global proximity. The two proximities characterize the adja-
cent structures of the network in local and global aspects, respectively. However, there are
more non-adjacent structures in the network that cannot be described by first-order prox-
imity. For example, two nodes can be similar even if they neither have a local edge nor a
common neighbor. Actually, in many real-world networks, the adjacent structures observed
are only a small proportion, with many others missing (Tang et al., 2015). That is, the
first-order proximity matrix is usually sparse and thus is not sufficient to capture network
structures. To address the sparsity, the higher-order proximity must be preserved. In fact,
even if two nodes have no edge or neighbor, they can also be related if there is a path (i.e.,
a sequence of directed edges) between them, which could be regarded as a long-distance
“edge”. Therefore, we define the higher-order proximity as follows.

Higher-Order Proximity. The higher-order proximity is defined to measure the long-
distance structures of a network. For each pair of nodes (vi, vj), if they are linked by a
path, i.e., we can walk from vi to vj along several edges, they have a higher-order proximity.
Specially, if the length of the path is k, they have a k-th order proximity; if there is no
k-length path between them, their k-th order proximity is 0.

Similar to the first-order proximity which represents the one-step transition probability,
we can use the probability of walking from vi to vj along paths to represent the strength of
the higher-order proximity. Specially, the k-th order proximity matrix can be computed as

Λk = Λ · Λ . . .Λ︸ ︷︷ ︸
k

, k = 2, 3, · · · , (1)

where each entry Λki,j is the k-th order proximity of node pair (vi, vj), which also represents
the k-step transition probability from vi to vj . Also similar to the first-order proximity, the
k-th order proximity can be further derived as k-th order local proximity and k-th order
global proximity to characterize “k-th order” network structures (i.e., the non-adjacent
relations between nodes linked by k-length paths) in local and global aspects, respectively.
For each pair of nodes (vi, vj), the k-th order local proximity represents their local similarity
directly determined by the entry Λki,j , and the k-th order global proximity represents their

global equivalence determined by the similarity of Λk·,i and Λk·,j .

Example 3 The higher-order proximity matrices of Ge are given here when k equals to 3
and 5, with the case when k equals to 1 shown in Example 1:

Λ3 =



0 1/3 1/3 0 1/3 0
1/2 0 0 5/12 0 1/12
1/2 0 0 5/12 0 1/12
0 5/12 5/12 0 1/6 0

1/2 0 0 1/6 0 1/3
0 1/6 1/6 0 2/3 0

 ,Λ
5 =



0 1/3 1/3 0 1/3 0
1/2 0 0 3/8 0 1/8
1/2 0 0 3/8 0 1/8
0 3/8 3/8 0 1/4 0

1/2 0 0 1/4 0 1/4
0 1/4 1/4 0 1/2 0

 .

For instance, it is directly observed that the node v1 and node v5 are related under the view of
3-rd order proximity and 5-th order proximity, which cannot be captured by the first-order
proximity (adjacency matrix) for the two nodes are not actually connected in the graph.
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Moreover, it can be noticed that the relation is different under Λ3 and Λ5, which indicates
that different higher-order proximity holds different structural semantics.

Note that first-order proximity is the special case of k-th order proximity when k=1. In
this paper, without loss of generality, we use “the higher-order proximity” to represent an
unspecified k-th order proximity with k>1, and use “high-order proximities” to represent
the combination of 1st-, 2nd-, · · · , and k-th order proximities. By preserving these high-
order proximities, we are able to sufficiently characterize both adjacent and long-distance
network structures in both local and global aspects, which is very effective in solving the
sparsity problem and achieving high-quality embeddings.

4. The RWNE Framework

In this section, we present a general scalable embedding framework RWNE for network
embedding and further introduce the optimization method with random walk simulation.

4.1 Problem Formulation

We formulate the normalized adjacency matrix (denoted as A in this section) as the first-
order proximity matrix, which captures the direct neighbor relations between nodes (Tang
et al., 2015; Yang et al., 2017). Specially, such first-order proximity can be alternatively
viewed as the transition probability of a single step of the random walk over the network.
Then, in the probabilistic setting based on random walk, we can easily generalize it to
k-th order proximity Ak (Cao et al., 2015): the transition probability of a random walk
with exactly k steps, which represents the k-hop relations between nodes. As proximities
of different orders explore the relations from different levels of scope, which all can provide
valuable information to guide the embedding, a desirable embedding model for real-world
networks must be capable of preserving a delicate integrated higher-order proximity which
combining the proximities of different orders as follows:

D = β1A+ β2A
2 + · · ·+ βkA

k, k = 1, 2, · · · ,∞, (2)

where βk is the weight to control the prestige of k-th order proximity Ak, and the sum of
all weights

∑k
i=1 βi=1.

Example 4 In the case where k = 5 and β1 = · · · = β5 = 0.2, the integrated higher-order
proximity matrix of Ge is

D =



0.2 0.2 0.2 0.13 0.2 0.07
0.3 0.16 0.16 0.26 0.08 0.04
0.3 0.16 0.16 0.26 0.08 0.04
0.2 0.26 0.26 0.18 0.08 0.02
0.3 0.08 0.08 0.08 0.23 0.22
0.2 0.08 0.08 0.03 0.43 0.17

 .

In the rest of this section, we will systematically present a general scalable random-
walk-based network embedding framework, called RWNE, which is able to effectively and
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efficiently preserve the above integrated higher-order proximity. Without loss of generality,
we first describe the RWNE model to directly preserve a general form of higher-order prox-
imity D with arbitrary weights. Then, we show a superior optimization with random-walk
simulation, which makes the model computationally efficient and scalable for large-scale
networks. We further introduce the random walk with restart process to naturally adjust
the prestige of different-order proximities by a personalized teleport probability. Finally,
we briefly analyze the time complexity of RWNE.

4.2 Preserving Higher-Order Proximity

The higher-order proximity is divided into two parts in our work: the local pairwise simi-
larity and the global listwise equivalence. To preserve both two aspects, we further design
a joint objective function for our model.

4.2.1 Local Pairwise Similarity

Given a higher-order proximity matrix D integrating all orders from the 1-st to the k-th
as defined in Eq. (2), it is straightforward that each entry Dij implies the local pairwise
similarity between each pair of nodes (vi, vj) in view of the integrated relation from different
levels of scope (from 1-hop to k-hop). If Dij > 0, there is a similarity between vi and vj ,
and the larger Dij is, the more similar vi and vj are; If Dij = 0, they have no similarity.
Therefore, we can directly use each entry Dij to constrain the similarity of the embedding
vectors of each pair of nodes (vi, vj). Before that, we first define a normalized cosine distance
as follows, which is used to measure the similarity of the embedding vectors:

sim(i, j) =
1

2
(1 +

vi · vj
‖ vi ‖‖ vj ‖

), (3)

where vi is the embedding vector of node vi. Then, instead of a naive treatment which rigidly
sets Dij as the target similarity and minimizes the error loss between Dij and sim(i, j),
we propose a new loss to measure the similarity cost of each pair of nodes (vi, vj) in the
embedding space:

l(i, j) =

{
−Dij log sim(i, j), Dij > 0

− log(1−sim(i, j)), Dij = 0
. (4)

There are two subtleties in our careful design of Eq. (4). First, though under normalization,
one proximity may have a different weight from one similarity score, which means rather
than treating proximity as the exact target similarity, it can only be concluded that the
larger proximity is, the more similarity is. And that is why we abandon the aforementioned
naive treatment. In our design, we impose a penalty to push vi and vj embedded similarly
and set Dij as the penalty coefficient to guarantee that larger proximity will incur more
penalty and thus generate a stronger push to be similar. Second, there is an exception
that zero proximity expresses the dissimilarity, which is essentially different from positive
proximity. Thus we separate out the zero proximity and set an opposite penalty for it, i.e.,
impose a penalty to push vi and vj embedded dissimilarly.
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Then, by using the loss of Eq. (4) for all pairs of nodes, the objective function to
preserve the local similarity is defined as follows:

Ll =
∑

i,j∈{Dij>0}

(−Dij log sim(i, j)) +
∑

i,j∈{Dij=0}

(−log(1−sim(i, j))) . (5)

Minimizing Eq. (5) pushes the similarity of the embedding vectors of vi and vj towards
1 if proximity Dij is large (the larger the proximity, the stronger the push) and pushes it
towards 0 if Dij = 0. As a result, we preserve the local pairwise similarity between nodes.

4.2.2 Global Listwise Equivalence

In addition to the local similarity, we can extract more information by considering the
relative equivalence. For instance, for three nodes vi, vj , vk with Dij = Dik = Djk = 0.1,
the local similarity between vi and vj may be very weak in view of the strength of Dij .
However, in a relative view, we can conclude that vi and vj is equivalent in vk’s viewpoint,
because they distribute the equal proximity with vk. Further, if for the listwise proximity
distribution Di = (Di,1, Di,2, · · ·, Di,|V |) and Dj = (Dj,1, Dj,2, · · ·, Dj,|V |), vi and vj always
have the above equivalence (i.e., Dik≡Djk for ∀k=1, · · ·, |V |), we can conclude that vi and
vj play an equivalent global structure role in the whole network. We refer to the above
information as the global listwise equivalence. Note that some works (Tang et al., 2015)
extract similar information from first-order proximity. We differentiate them in the aspects
where we provide a more definite meaning and generalize it as a basic attribute of arbitrary
higher-order proximity.

To preserve the global listwise equivalence, we propose a self-supervised component:
the proximity predictor Φ(·), which is a deep architecture composed of multiple nonlinear
functions to predict the proximity distribution of an input node. As shown in Figure 2, for
each node vi, the predictor Φ(·) uses the embedding vector vi as the input and output a |V |-
dimensional distribution Φ(i) ∈ R1×|V |, which is the predicted approximation of proximity
distribution Di. Then, supervised by Di, the predictor Φ(·) is trained to make the output
Φ(i) be close to Di, which means that if we pick two nodes vi and vj with similar proximity
distributions (i.e. Di = Dj), the predictor Φ(·) will be trained to learn similar outputs
(i.e. Φ(i) = Φ(j)) and thus to push the input embedding vector vi and vj to be similar.
Therefore, by modeling the proximity in this way, we can learn similar embeddings for nodes
with similar proximity distributions. That is, we capture the global listwise equivalence
between nodes.

To train the predictor Φ(·), we follow the inspiration of the design in Eq. (4) which
sets the target proximity as a penalty coefficient and separates zero proximity from positive
proximity, and design the loss to measure the prediction cost for each node vi as follows:

g(i) =−Di [Di > 0] log Φ(i)− 1 · [Di = 0] · log(1−Φ(i))

=
∑

j∈{Dij>0}

(−Dij log Φ(i)j) +
∑

j∈{Dij=0}

(−log(1−Φ(i)j)) . (6)

Note that in principle, Φ(·) can be an arbitrarily deep neural network, but as we focus
on the effort of random walk in this paper, we only use a simple single-layer architecture
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Figure 2: An illustration of the framework of RWNE without random walk simulation.

and leave a superior trying as future work. In this setting, the proximity predictor Φ(·) is
defined as

Φ(i) = σ(Wvi), (7)

where W ∈ R|V |×d, V is the nodes set, d is the embedding dimensionality, and σ(·) is the
logistic function.

Finally, by using the loss of Eq. (6) for all nodes, the objective function to preserve the
global equivalence is defined as follows:

Lg =

|V |∑
i

 ∑
j∈{Dij>0}

(−Dij log Φ(i)j) +
∑

j∈{Dij=0}

(−log(1−Φ(i)j))

 . (8)

4.2.3 The Joint Objective

To simultaneously preserve both the local pairwise similarity and the global listwise equiva-
lence provided by the higher-order proximity D, we jointly minimize the following objective
function, which combines Eq. (5) and Eq. (8):

L = γLl + λLg =

|V |∑
i

 ∑
j∈{Dij>0}

Dij`(i, j) +
∑

j∈{Dij=0}

ζ(i, j)

 , (9)

where `(i, j) = −(γ log sim(i, j)+λ log Φ(i)j) is the loss for positive proximity, ζ(i, j) =
−(γ log(1−sim(i, j))+λ log(1−Φ(i)j) is the loss for zero proximity; γ and λ are hyper-
parameters to reflect user’s emphasis.
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4.3 Optimization with Random Walk Simulation

In practice, an accurate computation of Eq. (2) to get the higher-order proximity matrix
D with k ≥ 2 is both time and space consuming. Thus it is undesirable to directly solve
the objective of Eq. (9) due to the efficiency issue, especially for large-scale networks.

To address the above issue, we highlight that D is essentially an integrated probability
matrix combining the transition probabilities of a random walk in 1-st, 2-nd, · · · , k-th step
with corresponding weights β1, β2, · · · , βk, where each entry Dij = β1Aij+β2A

2
ij+· · ·+βkAkij

represents the weighted average hitting probability from vi to vj within a k-steps random
walk. Then, without calculating Eq. (2), we can invent a k-steps “drop-out” random walk
to simulate the probability matrix D: in l-th step (for ∀l = 1, 2, · · ·, k), the walker first
randomly moves from the current node to an adjacent node as a normal random walk, and
then randomly drops out the current-step hitting node with the dropping probability 1−βl.
By this means, the expected hitting probability from vi to vj in k steps is exactly Dij . That
is to say, for each node vi, the above k-steps “drop-out” random walker starting from vi
hits/samples a paired node vj with the probability Dij .

In our carefully designed objective of Eq. (9), the probability Dij is delicately and
theoretically arranged as a weight coefficient. Then, in the probabilistic setting, we can
equivalently treat the probabilistic real weight as a binary weight by node-sampling treat-
ment, with the sampling probability proportional to the original real weight. That is, we can
eliminate the Dij in the first term of Eq. (9) by sampling nodes with the probability Dij ,
which can be simulated by the aforementioned k-steps “drop-out” random walks starting
from vi. Furthermore, for the second term

∑
j∈{Dij=0}ζ(i, j) in Eq. (9), as the matrix D is

usually very sparse with many zero entries, we also leverage an uniform-sampling treatment
to optimize it. Overall, with the node-sampling treatment, the objective function of Eq.
(9) is optimized as

L =

|V |∑
i

(
T∑
t=1

E
j∼{Di,j}

|V |
1

`(i, j) +
T∑
t=1

Ej′∼I/{Di,j′>0}ζ(i, j′)

)

=

|V |∑
i

T∑
t=1

 ∑
j∈p1→k

i

`(i, j) +

|p1→k
i |∑
m=1

Ej′∼I/{p1→k
i }ζ(i, j′)

 ,

(10)

where T is the sampling-frequency/walk-times which can be set as the iteration epochs when
solving the objective by an iterative algorithm (e.g. SGD); p1→k

i is the hitting nodes set in a
k-steps “drop-out” random walk starting from vi; Ej′∼I/{p1→k

i } means an uniform-sampling

with nodes {p1→k
i } excluded. Note that in each walk, as the random walker samples |p1→k

i |
nodes, we also operate uniform-sampling for the equal times to ensure fairness.

The optimized objective of Eq. (10) replaces the expensive computation of higher-order
proximity with random walk simulation, and thus has superior efficiency and scalability,
and can be easily mini-batch-minimized by applying an iterative algorithm. So far, we have
theoretically described a general scalable random-walk-based embedding framework. For
arbitrary user-specified weights {β1, β2, · · · , βk, · · · }, the framework is able to effectively
and efficiently preserve the weighted combination of different-order proximities by deploy-
ing the aforementioned “drop-out” random walk. Reversely, for an arbitrary user-specified
random walk, the framework can also be used by directly minimizing the Eq. (10), However,
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Figure 3: The decline curves of β(t) = (1+α(k−t))(1−α)t

k in different α. The k is set as 100
and each curve is normalized by β(1).

superior to other random-walk models, the framework explicitly clarifies what and how net-
work proximity is preserved in random-walk structure, that is the average hitting/sampling
probability in k steps of the user-specified random walk is just the integrated higher-order
proximity which is theoretically preserved by the objective of Eq. (9).

4.3.1 Random Walk with Restart

Although we have theoretically described the RWNE framework, it is still limited because
there is no principled way to determine desirable weights {β1, β2, · · · , βk, · · · } or random
walks. In general, it is intuitive that the relation/influence over a very long distance can be
very weak, i.e., the prestige of different-order proximity is likely to decay with the distance.
Therefore, instead of a normal random walk widely used in the existing models, we introduce
the random walk with restart (referred to as RWR) process: in each step of a random walk,
the walker can return back to the root with a personalized teleport probability α. The
transition probability of RWR is recurrently formalized as

P k = αI + (1− α)P k−1A, k = 1, 2, · · · , (11)

where P k is the k-th step transition probability matrix of RWR, and P 0 = I is an identity
matrix; A is the single-step transition probability matrix of normal random walk, i.e., the
first-order proximity matrix. Equivalently, we have

P k = (1−α)kAk+

k∑
t=1

α(1−α)k−tAk−t, k = 1, 2, · · · . (12)

Thus, by deploying the RWR process, the integrated higher-order proximity matrix to
be preserved (i.e. the average hitting/sampling probability matrix) in k steps is derived as

D =
1

k

k∑
t=1

P t =

k∑
t=1

(1 + α(k − t))(1− α)t

k
At, (13)
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in which the proximities of different-orders are weighted with a function β(t)=(1+α(k−t))(1−α)t

k .
As Figure 3 shows, β(t) is approximately an exponentially decreasing function of t, since
α<1. Compared with other common decay functions, β(t) holds the following advantages:
(1) The decay rate is first rapid and then slow down as the order t increases, which makes
the influence of extreme-high-order proximity smaller. Considering the natural property
that the higher-order proximity has less influence in most cases, it is thus reasonable to
use β(t) instead of the linear or Gaussian decay functions. (2) The decay rate is naturally
applied to the RWR process and can be freely adjusted by the personalized teleport prob-
ability α, while other exponential decay functions are hard to adapt to the random walk
process with sufficient theoretical basis.

Finally, by deploying the RWR process, RWNE is able to effectively and efficiently
preserve personalized higher-order proximity, as shown in Eq. (13) in which the proximities
of different orders are naturally weighted with an elegant attenuation function controlled
by a personalized teleport probability. The final objective of RWNE by applying the RWR
process is as follows:

L =

|V |∑
i

T∑
t=1

 ∑
j∈rwr1→k

i

`(i, j)+

|rwr1→k
i |∑

m=1

Ej′∼I/{rwr1→k
i }ζ(i, j′)

 , (14)

where rwr1→k
i is the hitting nodes set in a k-steps random walk with restart process starting

from vi; Ej′∼I/{rwr1→k
i } means an uniform-sampling with nodes rwr1→k

i excluded.

4.4 Complexity Analysis

In this section, we discuss the time complexity of RWNE. We use iterative algorithms (e.g.
mini-batch SGD) to minimize the objective function (as shown in Eq. (14)). In each
iteration, we only consider a single root node and deploy a k-steps random walk (with
restart) starting from it to sample k paired nodes. As random walk takes only constant
time in each step (even in a weighted network, we can use Alias sampling (Walker, 1977)
to perform a random walk in O(1) time) and the computation of the loss for each pair
of nodes also takes constant time, we can see that the complexity of each iteration (i.e.,
the complexity of the inner-body in Eq. (14)) is O(k). Then, given the network size |V |
(i.e., the number of nodes) and the iteration epochs T , we can extract that the overall
time complexity of RWNE is O(k · T · |V |), which is linear to the number of nodes in the
network. Therefore, the proposed RWNE model is computationally efficient and scalable
for large-scale networks.

4.5 Model Generalization Analysis

In this section, we extend RWNE model as a general framework, in which many popular net-
work embedding approaches are unified. Under our general framework, it is straightforward
to analyze these methods’ essences or drawbacks.

SpectralClustering (Tang & Liu, 2011). This method computes the d-smallest eigen-
vectors of normalized Laplacian matrix L as d-dimensional network representations, which
essentially is a dimensionality reduction based on Laplacian Eigenmaps. As we also utilize
Laplacian Eigenmaps to embed the local pairwise proximity in RWNE, it is straightforward
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that SpectralClustering is a degraded case of RWNE by directly decompose the first-order
proximity matrix. Actually, all the network embedding approaches based on the decom-
position of adjacent matrix or Laplacian matrix could be substantially regarded as special
cases of RWNE, which only embed the local pairwise structure information of first-order or
higher-order proximity matrix. Comparing with direct matrix decomposition, the RWNE
framework provides a computationally efficient and scalable way to equivalently embed local
pairwise proximity.

DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016). Deep-
Walk transforms a network structure into node sequences by random walks, then treats
the sequences as “corpus” and employs the Skip-gram model for representation learning.
In terms of employing Skip-gram with negative sampling and node-sampling via random
walk, DeepWalk is a special case of RWNE model which only utilizes the global adjacency
proximity between nodes. Similarly, node2vec is also unified into RWNE framework by
using a second-order random walk to adjust the prestige of different order proximities,
which is highly complex and memory-consuming. However, DeepWalk and node2vec are
not direct network embedding methods, as they actually transform the network embed-
ding problem into word embedding problem by preliminarily generating offline “corpus” via
random walks, which will consume plenty of space, and they do not have explicit objec-
tive functions. The proposed RWNE framework do not need to generate a vast “corpus”,
which jointly online walks and trains in each step. Moreover, RWNE framework provides a
substantial theoretical foundation and explicit objective for DeepWalk and node2vec.

LINE (Tang et al., 2015). LINE could be regarded as the first-order case of DeepWalk
but directly uses online edge-sampling in each training step instead of generating offline
“corpus”. Therefore, LINE is also a special case of RWNE model which only characterizes
the first-order proximity.

5. Experiments

In this section, we report the experimental results on six real-word datasets to demonstrate
the effectiveness and efficiency of our proposed model.

5.1 Datasets

Here we use the following six publicly available networks with different scales, the statistics
of which are shown in Table 1.
• Cora (McCallum et al., 2000) is a widely used scientific publication citation network

with 2,708 papers, 5,429 citation links, and 7 categories. The labels represent seven dif-
ferent fields in machine learning research, which are case-based, genetic algorithms, neural
networks, probabilistic methods, reinforcement learning, rule learning, and theory.
• PubMed (Kipf & Welling, 2017) is also a citation network with 19,717 nodes, 44,338

links, and 3 categories.
• DBLP (Perozzi et al., 2017) is a well-known academic collaboration network with

27,199 nodes, 133,664 links, and 4 categories.
• Blogcatalog (Tang & Liu, 2009a) is a social network of bloggers with 10,312 nodes,

333,983 links, and 39 categories. The labels represent the topic categories provided by the
authors.
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Dataset Cora PubMed DBLP Blogcat. Flickr Youtube

# Nodes 2,780 19,717 27,199 10,312 80,513 1,138,499

# Edges 5,429 44,338 133,664 333,983 5,899,882 2,990,443

# Classes 7 3 4 39 195 47

Table 1: Statistics of Datasets.

• Flickr (Tang & Liu, 2009a) is a social network of the contacts between users on the
Flickr website, with 80,513 nodes, 5,899,882 links, and 195 categories. The labels represent
the interest categories of the users.

• Youtube (Tang & Liu, 2009b) is a very large interest network between users on the
YouTube website, with 1,138,499 nodes, 2,990,443 links, and 47 labels. The labels represent
the interest groups subscribed by users of viewers that enjoy common video genres.

5.2 Baseline Methods and Experimental Settings

We compare our RWNE model with the following random-walk-based (DeepWalk, LINE,
and node2vec), matrix-factorization-based (GraRep and HOPE), and deep-learning-based
(SDNE, GCN, and GAT) network embedding methods, with the hyper-parameters setting
listed in Table 2.

• DeepWalk (Perozzi et al., 2014) adopts uniform random walk to capture the contex-
tual information and Skip-gram model to learn node embeddings.

• LINE (Tang et al., 2015) defines loss functions to preserve 1st- and 2nd- order prox-
imity separately. After optimizing the loss functions, it concatenates these embeddings.
We use the suggested version to learn two d/2-dimensional vectors (one for each-order) and
then concatenate them.

• node2vec (Grover & Leskovec, 2016) is generalized from DeepWalk by introducing a
biased random walk.

• GraRep (Cao et al., 2015) factorizes the higher-order proximity matrix via SVD
decomposition to get low-dimensional node representations.

• HOPE (Ou et al., 2016) also preserves higher-order proximity based on generalized
SVD decomposition.

• SDNE (Wang et al., 2016) uses deep auto-encoders to jointly preserve 1st- and 2nd-
order proximity.

•GCN (Kipf & Welling, 2017) is a semi-supervised feature learning model which defines
a convolution operator to directly operate graph-structured data.

• GAT (Velickovic et al., 2018) is a novel neural network architecture that operates
graph-structured data by leveraging masked self-attentional layers.

Experimental Setting. We evaluate the quality of the embedding vectors learned by
different methods on three classical network mining tasks: multi-label node classification,
node clustering, and link reconstruction. To ensure the significance of the results, we repeat
each experiment 10 times and report their mean value and standard deviation value.
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Model Notation Meaning Value

Common

lr learning rate 0.025
d embedding dimension 128
m negative samples 5
T iteration epochs 20,000

DeepWalk

node2vec

wt walk times 10
wl walk length 80
w window size 10
p, q bias parameters of node2vec 0.25

SDNE
α loss weight 1e3
β non-zero elements weight 10
ν regularizer term weight 1e-4

RWNE

γ loss weight 10
λ loss weight 1
α personalized teleport probability 0.3
k walk steps 10

Table 2: Hyperparameters setting.

As shown in Table 2, for the common hyper-parameters, we set learning-rate lr=0.025,
embedding-dimension d=128, negative-samples m=5, and iteration-epochs T=20000 for
all methods. Specially, for DeepWalk and node2vec, we set walk-times wt=10, walk-length
wl= 80, window-size k= 10, and set the bias parameters of node2vec as p= q= 0.25, as
recommended in their papers. For SDNE, we tune its parameters of α, β, ν by using a
grid-search strategy, and get α=103, β=10, ν=10−4. For GCN and GAT, we consistently use
the structural features (i.e. adjacent matrix) as the input features. For other parameters
and other baselines, we use the default settings as shown in their original papers. For our
RWNE model, we set the loss-weight γ=10 and λ=1, the personalized-teleport-probability
α=0.3, the walk-steps (walk-length) k=10. Note that the walk-steps k in our model actually
delimits an upper bound of the order to be preserved which shares a similar meaning with
the window-size in DeepWalk and node2vec.

5.3 Multi-Label Node Classification

For the node classification task, we first learn the node embedding vectors from the full
nodes on each dataset, and then use the embedding vectors as input features for a one-vs-
rest logistic regression classifier, and use both Macro-F1 score and Micro-F1 score as the
metrics for evaluation. We repeat each classification experiment 10 times and randomly
split 50% of the nodes for training and the other 50% for testing. Due to the lack of space,
we report the mean Macro/Micro-F1 scores in Table 3 and Table 4, and report the standard
deviations in Appendix A. Note that we exclude the results of some models on the Youtube
dataset because they either fail to terminate in one week (SDNE) or run out of memory
(GraRep, HOPE, GCN, GAT).
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Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

DeepWalk 0.7970 0.7764 0.5916 0.2649 0.2659 0.3741
LINE 0.7493 0.7454 0.5702 0.2596 0.2582 0.3463
node2vec 0.7970 0.7817 0.5920 0.2677 0.2637 0.3766

GraRep 0.7756 0.7679 0.5683 0.2430 0.2590 –
HOPE 0.6156 0.6357 0.4555 0.2008 0.1904 –

SDNE 0.6879 0.6700 0.5227 0.2130 0.2332 –
GCN 0.7390 0.7113 0.5330 0.1429 0.1568 –
GAT 0.7541 0.7203 0.5513 0.1659 0.1812 –

RWNE 0.8318 0.8067 0.6149 0.2992 0.2910 0.3993

Table 3: The Macro-F1 scores for multi-label node classification.

Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

DeepWalk 0.8085 0.8063 0.6454 0.3922 0.3981 0.4436
LINE 0.7614 0.7551 0.6157 0.3827 0.3739 0.4272
node2vec 0.8074 0.8060 0.6520 0.3965 0.3962 0.4487

GraRep 0.7873 0.7808 0.6284 0.3852 0.3801 –
HOPE 0.6736 0.6478 0.5683 0.3259 0.2935 –

SDNE 0.7311 0.7284 0.6013 0.3520 0.3611 –
GCN 0.7672 0.7591 0.6262 0.2378 0.2493 –
GAT 0.7834 0.7595 0.6387 0.2721 0.2694 –

RWNE 0.8430 0.8289 0.6718 0.4247 0.4157 0.4622

Table 4: The Micro-F1 scores for multi-label node classification.

We can observe that our proposed RWNE model consistently and significantly outper-
forms all the baselines in both metrics on all datasets. For example, on the Cora dataset,
RWNE outperforms them by 0.03–0.22 (relatively 4%–35%) in terms of Macro-F1 score and
by 0.03–0.17 (relatively 4%–25%) in terms of Micro-F1 score; on the BlogCatalog dataset
with the larger size, RWNE also achieves the gains of 0.03–0.16 (relatively 12%–109%) in
terms of Macro-F1 score and 0.03–0.19 (relatively 7%–79%) in terms of Micro-F1 score.

Specially, by only taking random-walk-based methods (DeepWalk, LINE, and node2vec)
into account, we can find that RWNE also consistently improves the classification perfor-
mance by around 0.02–0.08 in both metric scores on all datasets, which clearly demonstrates
that the effectiveness of our proposed novel random-walk-based framework.

More generally, we can find that, by deploying sufficient long-distance random walks,
random-walk-based algorithms (DeepWalk, node2vec, and our RWNE ) can achieve consid-
erable improvements than matrix-factorization-based and deep-learning-based algorithms,
especially on large-scale datasets. Besides, it is worth mentioning that by using the adja-
cent matrix as the input features, the semi-supervised feature learning models (GCN and
GAT) show worse performance than expected, which implies that these models may not be
suitable to exploit a graph with poor attribute features.
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Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

DeepWalk 0.4440 0.2852 0.1811 0.1734 0.3328 0.3093
LINE 0.3516 0.2302 0.1558 0.1672 0.3197 0.2877
node2vec 0.4419 0.2871 0.1850 0.1786 0.3374 0.3088

GraRep 0.4166 0.2587 0.1626 0.1687 0.3202 –
HOPE 0.2986 0.2295 0.1228 0.1387 0.2410 –

SDNE 0.3215 0.1789 0.1385 0.1439 0.2801 –
GCN 0.3607 0.1956 0.1316 0.1134 0.1422 –
GAT 0.3995 0.2078 0.1451 0.1261 0.1895 –

RWNE 0.4683 0.3049 0.1986 0.1953 0.3543 0.3209

Table 5: The NMI scores for node clustering.

Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

DeepWalk 0.7849 0.6033 0.7541 0.2415 0.2737 0.2739
LINE 0.7599 0.5746 0.7183 0.2275 0.2570 0.2458
node2vec 0.8192 0.6177 0.7873 0.2616 0.2883 0.2994

GraRep 0.6944 0.5853 0.7127 0.2298 0.2522 –
HOPE 0.6126 0.4594 0.5909 0.1748 0.1633 –

SDNE 0.7387 0.5511 0.6400 0.1565 0.1817 –
GCN 0.6509 0.4851 0.5581 0.1173 0.1125 –
GAT 0.6991 0.4891 0.5975 0.1243 0.1332 –

RWNE 0.8596 0.6435 0.8209 0.2815 0.3129 0.3167

Table 6: The MAP scores for link reconstruction.

5.4 Node Clustering

For the node clustering task, we use the embedding vectors as the input to a k-means
cluster and evaluate the performance in terms of NMI (Normalized Mutual Information)
score. And also, all the experiments are conducted 10 times, and the mean NMI scores are
shown in Table 5, and the standard deviations are shown in Appendix A.

Overall, the results of node clustering are consistent with the results of node classifica-
tion, and we can reach a similar conclusion as analyzed in Section 5.3. We can see that
the proposed RWNE model consistently and clearly outperforms all the comparative base-
lines on all datasets. For example, on the Cora dataset, RWNE improves the NMI score by
0.02–0.12 (relatively 5%–33%) over random-walk-based models, and by 0.05–0.17 (relatively
12%–57%) over other baseline models; on the BlogCatalog dataset, RWNE improves the
NMI score by around 0.02–0.03 (relatively 9%–17%) over random-walk-based models, and
by around 0.03–0.08 (relatively 15%–72%) over other baseline models.
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5.5 Link Reconstruction

For the link reconstruction task (Wang et al., 2016), we rank pairs of nodes according to their
similarities, i.e. the inner product of two embedding vectors, and then reconstruct/predict
the links for the highest-ranking pairs of nodes. We use the MAP (Mean Average Precision)
metric (Goyal & Ferrara, 2018) to estimate the reconstruction precision. Also, all the
experiments are conducted 10 times, and the mean MAP scores are shown in Table 6, and
the standard deviations are shown in Appendix A.

We can observe that the results of link reconstruction are also consistent with the results
of node classification and node clustering, and we can draw similar conclusions. Overall,
in terms of the MAP scores on all the six datasets, the proposed RWNE consistently and
substantially achieves around 0.02–0.07 improvements over DeepWalk and node2vec, and
around 0.05–0.27 gains over other baselines.

5.6 Parameter Sensitivity

In our model, there exist four important parameters: walk-steps k, personalized teleport
probability α, and loss weight γ and λ. In this section, we illustrate these parameters
sensitivity by the Macro-F1 scores of node classification experiments on the Blogcatalog
dataset. For each experiment, we vary one parameter and fix the others as the default
values (as shown in Section 5.2). The results are shown in Figure 4.

Walk-Steps k. We first examine the effects of increasing the upper bound k of the
order we combine (see the solid line in Figure 4(a)). We can observe that the model will
converge when we consider a large upper bound. Specially, when k<10, the performance
increases as k increases. When k>10, the performance is steady even if we expand k by
several times. Therefore, we can fix k as a reasonably large value in practice, and then we
can easily learn a well-performed model by only tuning the restart probability. In contrast,
the amount of similar hyper-parameters are three in DeepWalk and five in node2vec. The
results prove that our model is very practical to achieve better performance with fewer
hyper-parameters, i.e., the effectiveness and practicality of the proposed model.

Personalized Teleport Probability α. We show the effects of varying the restart
probability α of RWR. As shown in Eq. (13), RWR weights different-order proximities with

a decreasing function β(t)= (1+α(k−t))(1−α)t

k . By varying α, the decreasing rapidity of β(t)
varies as shown in Figure 3. And correspondingly, the experimental results with different
α are shown as the solid line in Figure 4(b). We can observe that the model achieves the
optimal performance when α=0.3. If we vary to a smaller α, the performance also falls
down. Particularly, when α = 0, the model degrades to equivalently treat different-order
proximities similar to DeepWalk. If we choose a bigger α, the prestige of higher-order
proximities will decline.

Loss Weight γ and λ. In addition, Figure 4(c) and Figure 4(d) show the effects of
varying the γ and λ , which are used to weight the losses designed for the pairwise similarity
and the listwise equivalence information provided by higher-order proximity (as introduced
in Section 4.2). We can observe that it is worthwhile to jointly preserve the local similarity
and global equivalence with suitable weights (e.g., γ=10 and λ=1).
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Figure 4: Parameters sensitivity by the Macro-F1 scores of node classification experiments
on the Blogcatalog dataset.
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Figure 5: The scalability of RWNE over different network sizes.
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5.7 Case Study: Scalability

As analyzed in Section 4.4, the proposed RWNE model has superior scalability with linear
complexity. In this section, we further experimentally verify the scalability of RWNE. We
first generate a series of random graphs with different sizes of [1k; 10k; 100k; 1000k; 10000k]
from the Youtube dataset by randomly choosing several nodes and expanding from them to
the fixed size while avoiding isolated nodes, and then apply our method to these synthetic
networks to learn node embeddings. The time consumption is shown in Figure 5. We
can see that the running time grows linearly with the number of nodes, comparable to the
random-walk-based methods (e.g., DeepWalk and node2vec). In the case where the size
of the graph is larger, the proposed model has obvious advantages over the methods with
higher computational complexity (e.g., GCN and GAT). Thus, our method is efficient and
scalable for large-scale networks.

6. Conclusions

In this paper, we present a general scalable random-walk-based network embedding frame-
work RWNE to effectively and efficiently preserve higher-order proximity.

Distinguishing from existing random-walk-based methods, we focus more on an explicit
framework to directly leverage random walk to preserve higher-order proximity with care-
fully designed objective instead of the current two-step approach. We first systematically
design a joint objective to simultaneously capture both the local pairwise similarity and the
global listwise equivalence provided by arbitrary higher-order proximity. Then we leverage
a node-sampling optimization to equivalently eliminate the computation of higher-order
proximity by random walk simulation.

As a result, the random walk is theoretically incorporated into the objective function,
which explicitly clarifies the essential role of random walk playing in higher-order proximity
preserved network embedding.

Further, we also introduce the random walk with restart process to naturally and effec-
tively weigh the proximities of different orders by a personalized teleport probability. We
conduct extensive experiments on several datasets and the results demonstrate the superi-
ority of our model.
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Appendix A. More Results

As mentioned in Section 5, we evaluate the quality of the embedding vectors learned by
different methods on three classical network mining tasks: multi-label node classification,
node clustering, and link reconstruction. Here we report their standard deviation values
which are absent due to the limitation of the page’s width.

In detail, we report the standard deviations of the Micro-F1 scores and the Macro-F1
scores for multi-label node classification in Table 7 and Table 8, the NMI (Normalized
Mutual Information) scores for node clustering in Table 9, and the MAP (Mean Average
Precision) scores for link reconstruction in Table 10.

Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

DeepWalk 0.0034 0.0017 0.0029 0.0030 0.0009 0.0013
LINE 0.0098 0.0030 0.0052 0.0012 0.0078 0.0058
node2vec 0.0041 0.0016 0.0039 0.0023 0.0011 0.0018

GraRep 0.0028 0.0012 0.0018 0.0013 0.0008 –
HOPE 0.0041 0.0022 0.0054 0.0014 0.0009 –

SDNE 0.0203 0.0166 0.0164 0.0023 0.0017 –
GCN 0.0125 0.0073 0.0057 0.0028 0.0026 –
GAT 0.0183 0.0100 0.0087 0.0031 0.0044 –

RWNE 0.0038 0.0023 0.0031 0.0025 0.0012 0.0014

Table 7: The standard deviation of Macro-F1 scores for multi-label node classification.

Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

Deepwalk 0.0027 0.0017 0.0023 0.0019 0.0005 0.0009
LINE 0.0065 0.0036 0.0066 0.0014 0.0018 0.0036
node2vec 0.0035 0.0019 0.0034 0.0026 0.0015 0.0011

GraRep 0.0028 0.0011 0.0019 0.0014 0.0003 –
HOPE 0.0034 0.0025 0.0026 0.0010 0.0006 –

SDNE 0.0169 0.0148 0.0050 0.0048 0.0016 –
GCN 0.0120 0.0036 0.0082 0.0058 0.0021 –
GAT 0.0162 0.0082 0.0095 0.0061 0.0028 –

RWNE 0.0032 0.0017 0.0027 0.0016 0.0009 0.0008

Table 8: The standard deviation of Micro-F1 scores for multi-label node classification.
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Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

Deepwalk 0.0041 0.0053 0.0031 0.0014 0.0013 0.0006
LINE 0.0089 0.0127 0.0118 0.0014 0.0026 0.0017
node2vec 0.0049 0.0064 0.0052 0.0015 0.0014 0.0007

GraRep 0.0090 0.0002 0.0007 0.0014 0.0005 –
HOPE 0.0136 0.0005 0.0024 0.0024 0.0006 –

SDNE 0.0184 0.0143 0.0103 0.0047 0.0024 –
GCN 0.0103 0.0054 0.0041 0.0102 0.0067 –
GAT 0.0180 0.0088 0.0083 0.0133 0.0112 –

RWNE 0.0044 0.0062 0.0038 0.0015 0.0015 0.0008

Table 9: The standard deviation of NMI scores for node clustering.

Dataset Cora Pubmed DBLP Blogcat. Flickr Youtube

Deepwalk 0.0021 0.0015 0.0009 0.0008 0.0064 0.0080
LINE 0.0105 0.0046 0.0035 0.0028 0.0079 0.0085
node2vec 0.0030 0.0021 0.0011 0.0009 0.0078 0.0093

GraRep 0.0006 0.0009 0.0012 0.0009 0.0028 –
HOPE 0.0018 0.0015 0.0015 0.0015 0.0031 –

SDNE 0.0117 0.0114 0.0157 0.0036 0.0088 –
GCN 0.0135 0.0120 0.0159 0.0091 0.0056 –
GAT 0.0130 0.0152 0.0209 0.0124 0.0092 –

RWNE 0.0023 0.0016 0.0021 0.0018 0.0072 0.0078

Table 10: The standard deviation of MAP scores for link reconstruction.
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attention networks. In 6th International Conference on Learning Representations,
ICLR 2018.

262



RWNE

Walker, A. J. (1977). An efficient method for generating discrete random variables with
general distributions. ACM Trans. Math. Softw., 3 (3), 253–256.

Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 1225–1234.

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., & Yang, S. (2017). Community preserving
network embedding. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI 2017, pp. 203–209.

Wang, Y., Yao, Y., Tong, H., Xu, F., & Lu, J. (2019). A brief review of network embedding.
Big Data Min. Anal., 2 (1), 35–47.

Wei, X., Xu, L., Cao, B., & Yu, P. S. (2017). Cross view link prediction by learning noise-
resilient representation consensus. In Proceedings of the 26th International Conference
on World Wide Web, WWW 2017, pp. 1611–1619.

Yang, C., Sun, M., Liu, Z., & Tu, C. (2017). Fast network embedding enhancement via high
order proximity approximation. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, pp. 3894–3900.

Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., & Zhu, W. (2018). Arbitrary-order proximity
preserved network embedding. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2018, pp. 2778–2786.

Zhou, C., Liu, Y., Liu, X., Liu, Z., & Gao, J. (2017). Scalable graph embedding for asym-
metric proximity. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI 2017, pp. 2942–2948.

263


