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Abstract

In this paper, we propose a theoretically supported sequential strategy for training
a large-scale Recommender System (RS) over implicit feedback, mainly in the form of
clicks. The proposed approach consists in minimizing pairwise ranking loss over blocks of
consecutive items constituted by a sequence of non-clicked items followed by a clicked one
for each user. We present two variants of this strategy where model parameters are updated
using either the momentum method or a gradient-based approach. To prevent updating
the parameters for an abnormally high number of clicks over some targeted items (mainly
due to bots), we introduce an upper and a lower threshold on the number of updates for
each user. These thresholds are estimated over the distribution of the number of blocks in
the training set. They affect the decision of RS by shifting the distribution of items that
are shown to the users. Furthermore, we provide a convergence analysis of both algorithms
and demonstrate their practical efficiency over six large-scale collections with respect to
various ranking measures and computational time.

©2021 AI Access Foundation. All rights reserved.
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1. Introduction

With the increasing number of online products, there is a surge of interest in the design of
automatic systems — generally referred to as Recommender Systems (RS) — that provide
personalized recommendations to users by adapting to their taste. The study of RS has
become an active area of research these past years, especially since the Netflix Price (Bennett
and Lanning, 2007a). One characteristic of online recommendation is the huge unbalance
between the available number of products and those shown to the users. On the other hand,
bots that interact with the system by providing too much feedback over some targeted items
(Kaur and Goel, 2016). Contrariwise, many users do not interact with the system over the
items that are shown to them. In this context, the main challenges concern the design
of a scalable and accurate online RS in the presence of noise and unbalanced data. These
challenges have evolved in time with the continuous development of data collections released
for competitions or issued from e-commerce (Outbrain Inc., 2016). Recent approaches for
RS (Wang et al., 2020; Yi et al., 2019) now primarily consider feedback, mainly in the form
of clicks that are easier to collect than explicit feedback, which is in the form of scores.
Implicit feedback is more challenging to deal with as they do not depict the preference of
a user over items, i.e., (no) click does not necessarily mean (dis)like (Hu et al., 2008). In
this case, most of the developed approaches are based on the Learning-to-rank paradigm
and focus on leveraging the click information over the unclick one without considering the
sequence of users’ interactions.

In this paper, we propose SAROS, a sequential learning strategy for recommender systems
with implicit feedback that updates model parameters user per user over blocks of items
constituted by a sequence of unclicked items followed by a clicked one. We present two
variants of this strategy. The first approach, referred to as SAROSm, updates the model
parameters at each time a block of unclicked items followed by a clicked one is formed
after a user’s interaction. Parameters’ updates are carried out by minimizing the average
ranking loss of the current model that scores the clicked item below the unclicked ones using
a momentum method (Polyak, 1964; Nesterov, 1983; Nesterov, 2018). The second strategy,
which we refer to as SAROSb, updates the model parameters by minimizing a ranking loss
over the same blocks of unclicked items followed by a clicked one using a gradient descent
approach; with the difference that parameter updates are discarded for users who interact
very little or a lot with the system.

In this paper,

• We propose a unified framework in which we study the convergence properties of
both versions of SAROS in the general case of non-convex ranking losses. This is an
extension of our earlier results (Burashnikova et al., 2019), where only the convergence
of SAROSb was studied in the case of convex ranking losses.

• Furthermore, we provide empirical evaluation over six large publicly available datasets
showing that both versions of SAROS are highly competitive compared to the state-of-
the-art models in terms of quality metrics and, that are significantly faster than both
the batch and the online versions of the algorithm.

The rest of this paper is organized as follows. Section 2 relates our work to previously
proposed approaches. Section 3 introduces the general ranking learning problem that we
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address in this study. Then, in Section 3.3, we present both versions of the SAROS algorithm,
SAROSb and SAROSm, and provide an analysis of their convergence. Section 4 presents exper-
imental results that support our approach. Finally, in Section 5, we discuss the outcomes
of this study and give some pointers to further research.

2. Related Works

Two main approaches have been proposed for recommender systems. The first one, Content-
Based recommendation or cognitive filtering (Pazzani and Billsus, 2007), makes use of
existing contextual information about the users (e.g., demographic information) or items
(e.g., textual description) for the recommendation. The second approach, Collaborative
Filtering, is undoubtedly the most popular one (Su and Khoshgoftaar, 2009), relies on past
interactions and recommends items to users based on the feedback provided by other similar
users.

Traditionally, collaborative filtering systems have been designed using explicit feedback,
mostly in the form of rating (Koren, 2008). However, rating information is non-existent on
most of e-commerce websites and is challenging to collect, and user interactions are often
done sequentially. Recent RS systems focus on learning scoring functions using implicit
feedback to assign higher scores to clicked items than to unclicked ones rather than to
predict the clicks as it is usually the case when we deal with explicit feedback (He et al.,
2016; Rendle et al., 2009; Zhang et al., 2016; Sidana et al., 2021; Moura et al., 2018). The
idea here is that even a clicked item does not necessarily express the preference of a user
for that item, it has much more value than a set of unclicked items for which no action has
been made.

In most of these approaches, the objective is to rank the clicked item higher than the
unclicked ones by finding a suitable representation of users and items in a way that for
each user the ordering of the clicked items over unclicked ones is respected by dot product
in the joint learned space. One common characteristic of publicly available collections
for recommendation systems is the huge unbalance between positive (click) and negative
feedback (no-click) in the set of items displayed to the users, making the design of an efficient
online RS extremely challenging. Some works propose to reweight the impact of positive
and negative feedback directly in the objective function (Pan et al., 2008) to improve the
quality. Another approach is to sample data over a predefined set of interactions before
learning (Liu and Wu, 2016).

Many new approaches tackle the sequential learning problem for RS by taking into ac-
count the temporal aspect of interactions directly in the design of a dedicated model and
are mainly based on Markov Models (MM), Reinforcement Learning (RL), and Recurrent
Neural Networks (RNN) (Donkers et al., 2017). Recommender systems based on Markov
Models, consider a subsequent interaction of users as a stochastic process over discrete
random variables related to predefined user behavior. These approaches suffer from some
limitations, mainly due to the sparsity of the data leading to a poor estimation of the
transition matrix (Shani et al., 2005) and choice of an appropriate order for the model (He
and McAuley, 2016). Various strategies have been proposed to leverage the limitations of
Markov Models, e.g., considering only the last frequent sequences of items and using finite
mixture models (Shani et al., 2005) or combining similarity-based methods with high-order
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Markov Chains (He and McAuley, 2016). Although it has been shown that in some cases,
the proposed approaches can capture the temporal aspect of user interactions, these mod-
els suffer from a high time-complexity and do not pass the scale. Some other methods
consider RS as a Markov decision process (MDP) problem and solve it using reinforce-
ment learning (RL) (Moling et al., 2012; Tavakol and Brefeld, 2014). The size of discrete
actions bringing the RL solver to a larger class of problems is also a bottleneck for these
approaches. Recently many Recurrent Neural Networks (RNN) such as GRU or LSTM have
been proposed for personalized recommendations (Hidasi and Karatzoglou, 2018; Tang and
Wang, 2018; Kang and McAuley, 2018). In this approach, the input of the network is gen-
erally the sequence of user interactions consisted of a single behaviour type (click, adding
to favourites, purchase, etc.) and the output is the predicted preference over items in the
form of posterior probabilities of the considered behaviour type given the items. Fang et al.
recently presented a comprehensive survey of Neural Networks based sequential approaches
for personalized recommendation (Fang et al., 2020). All these approaches do not consider
negative interactions; i.e. viewed items that are not clicked or purchased; and the system’s
performance on new test data may be affected.

Our approach differs from other sequential based methods in the way that the model
parameters are updated, at each time a block of unclicked items followed by a clicked one is
constituted. This update scheme follows the hypothesis that user preference is not absolute
over the items which were clicked, but it is relative with respect to items that were viewed.
Especially, we suppose that a user may not prefer an item in absolute but may click on it
if the item is shown in a given context respectively to other items that were shown but not
have been clicked. For this update scheme we further propose two variants by (1) either
smoothing the parameter updates with the momentum technique; or (2) controlling the
number of blocks per user interaction. That is, if for a given user the number of blocks
is below or above two predefined thresholds found over the distribution of the number
of blocks, parameter updates for the user are discarded. We further provide a proof of
convergence of both variants of the proposed approach in the general case of non-convex
loss functions.

3. Framework and Problem Setting

Throughout, we use the following notation. For any positive integer n, [n] denotes the set
[n] = {1, . . . , n}. We suppose that I = [M ] and U = [N ] are two sets of indexes defined over
respectively the items and the users. Further, we assume that each pair constituted by a
user u and an item i is identically and independently distributed (i.i.d) according to a fixed
yet unknown distribution D. At the end of his or her session, a user u ∈ U has reviewed
a subset of items Iu ⊆ I that can be decomposed into two sets: the set of preferred and
non-preferred items denoted by I+

u and I−u , respectively. Hence, for each pair of items
(i, i′) ∈ I+

u × I−u , the user u prefers item i over item i′; symbolized by the relation i�
u
i′.

From this preference relation a desired output yu,i,i′ ∈ {−1,+1} is defined over the pairs
(u, i) ∈ U × I and (u, i′) ∈ U × I, such that yu,i,i′ = +1 if and only if i�

u
i′. We suppose

that the indexes of users as well as those of items in the set Iu, shown to the active user
u ∈ U , are ordered by time.
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I = [M ] The set of item indexes

U = [N ] The set of user indexes

D joint distribution over users and items

Du conditional distribution of items for a fixed user u

Nt
u Negative items in block t for user u

Πt
u Positive items in block t for user u

Btu = Nt
u tΠt

u Negative and positive items in block t for user u

I+
u The set of all positive items for user u

I−u The set of all negative items for user u

`u,i,i′(ω) Instantaneous loss for user u and a pair of items (i, i′)

L̂u(ω) Empirical ranking loss with respect to user u

L̂u(ω) = 1
|I+u ||I−u |

∑
i∈I+u

∑
i′∈I−u `u,i,i′(ω)

L̂Btu(ω) Empirical ranking loss with respect to a block of items

L̂Btu(ω) = 1
|Πt

u||Nt
u|
∑

i∈Πt
u

∑
i′∈Nt

u
`u,i,i′(ω)

L(ω) Expected ranking loss L(ω) = EDuL̂u(ω)

Table 1: Notation

Finally, for each user u, parameter updates are performed over blocks of consecutive
items where a block Btu = Nt

utΠt
u, corresponds to a time-ordered sequence (w.r.t. the time

when the interaction is done) of no-preferred items, Nt
u, and at least one preferred one, Πt

u.
Hence, I+

u =
⋃
t Πt

u and I−u =
⋃
t Nt

u; ∀u ∈ U . Notation is summarized in Table 1.

3.1 Learning Objective

Our objective here is to minimize an expected error penalizing the misordering of all pairs
of interacted items i and i′ for a user u. Commonly, this objective is given under the
Empirical Risk Minimization (ERM) principle, by minimizing the empirical ranking loss
estimated over the items and the final set of users who interacted with the system:

L̂u(ω)=
1

|I+
u ||I−u |

∑
i∈I+u

∑
i′∈I−u

`u,i,i′(ω), (1)

where, `u,i,i′(.) is an instantaneous ranking loss defined over the triplet (u, i, i′) with

i �
u
i′. Hence, L̂u(ω) is the pairwise ranking loss with respect to user’s interactions and

L(ω) = Eu
[
L̂u(ω)

]
is the expected ranking loss, where Eu is the expectation with respect

to users chosen randomly according to the marginal distribution. As in other studies, we rep-
resent each user u and each item i respectively by vectors Ūu ∈ Rk and Īi ∈ Rk in the same
latent space of dimension k (Koren et al., 2009). The set of weights to be found ω = (Ū , Ī),
are then matrices formed by the vector representations of users Ū = (Ūu)u∈[N ] ∈ RN×k

and items Ī = (Īi)i∈[M ] ∈ RM×k. A common approach is to minimize the above ranking
loss in batch mode with the goal of finding user and item embeddings, so that the dot
product between these representations in the latent space better reflects the preference of
users over items. Other strategies have been proposed to minimize this empirical loss (1),
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among which the most popular one is perhaps the Bayesian Personalized Ranking (BPR)
model (Rendle et al., 2009). In this approach, the instantaneous loss, `u,i,i′ , is the surrogate
regularized logistic loss for some hyperparameter µ ≥ 0:

`u,i,i′(ω) = log
(

1 + e−yu,i,i′ Ū
>
u (Īi−Īi′ )

)
+ µ(‖Ūu‖22 + ‖Īi‖22 + ‖Īi′‖22) (2)

The BPR algorithm proceeds by first randomly choosing a user u, and then repeatedly
selecting two pairs (i, i′) ∈ Iu × Iu. In the case where one of the chosen items is preferred
over the other one (i.e., yu,i,i′ ∈ {−1,+1}), the algorithm then updates the weights using
the stochastic gradient descent method over the instantaneous loss (2).

3.2 Algorithm SAROS

A key point in recommendation is that user preferences for items are largely determined
by the context in which they are presented to the user. A user may prefer (or not) two
items independently of one another, but he or she may have a totally different preference
for these items within a given set of shown items. This effect of local preference is not taken
into account by randomly sampling triplets formed by a user and corresponding clicked
and unclicked items over the entire set of shown items to the user. Furthermore, triplets
corresponding to different users are non uniformly distributed, as interactions vary from one
user to another one, and for parameter updates; triplets corresponding to low interactions
have a small chance to be chosen. In order to tackle these points; we propose to update the
parameters sequentially over the blocks of non-preferred items followed by preferred ones
for each user u. The constitution of sequences of non-preferred and preferred blocks of items
respectively noted as Nt

u and Πut for t ∈ {1, . . . , Bu}, and, two users is shown in Figure 1.
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Figure 1: The horizontal axis represents the sequence of interactions over items ordered
by time. Each update of weights ωtu; t ∈ {1, . . . , Bu} occurs whenever the corre-
sponding sets of negative interactions, Nt

u, and positive ones, Πt
u, exist.

In this case, at each time t a block Btu = Nt
u t Πt

u is formed for user u; weights are
updated by miniminzing the ranking loss corresponding to this block :

L̂Btu(ωtu) =
1

|Πt
u||Nt

u|
∑
i∈Πt

u

∑
i′∈Nt

u

`u,i,i′(ω
t
u). (3)

Note that this is different from session-based recommendations (Wang et al., 2019) in
which each session is also made up of a series of user-item interactions that take place over
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a period of time. However, session-based recommendations approaches capture both user’s
short-term preference from recent sessions and the preference dynamics representing the
change of preferences from one session to the next by using each session as the basic input
unit, which is not the case in our study.

We propose two strategies for the minimization of (Eq. 3) and the update of weights.
In the first one, referred to as SAROSm, the aim is to carry out an effective minimization of
the ranking loss (3) by lessening the oscillations of the updates through the minimum. This
is done by defining the updates as the linear combination of the gradient of the loss of (Eq.
3), ∇L̂Btu(wtu), and the previous update as in the momentum technique at each iteration t :

vt+1
u = µ · vtu + (1− µ)∇L̂Btu(wtu) (4)

wt+1
u = wtu − αvt+1

u (5)

where α and µ are hyperparameters of the linear combination. In order to explicitly take
into account bot attacks – in the form of excessive clicks over some target items – we propose
a second variant of this strategy, referred to as SAROSb. This variant consists in fixing two
thresholds b and B over the parameter updates. For a new user u, model parameters are
updated if and only if the number of blocks of items constituted for this user is within the
interval [b, B].

The pseudo-code of SAROSb is shown in Algorithm 1, starting from initial weights ω0
1

chosen randomly for the first user. The sequential update rule, for each current user u
consists in updating the weights by making one step towards the opposite direction of the
gradient of the ranking loss estimated on the current block, Btu = Nt

u tΠt
u :

ωt+1
u = ωtu −

η

|Nt
u||Πt

u|
∑
i∈Πt

u

∑
i′∈Nt

u

∇`u,i,i′(ωtu) (6)

For a given user u, parameter updates are discarded if the number of blocks (Btu)t for
the current user falls outside the interval [b, B]. In this case, parameters are initialized with
respect to the latest update before user u and they are updated with respect to a new user’s
interactions.

3.3 Convergence Analysis

The proofs of algorithms’ convergence are given under a common hypothesis that the sample
distribution is not instantaneously affected by learning of the weights, i.e. the samples can
be considered as i.i.d. More precisely, we assume the following hypothesis.

Assumption 1. For an i.i.d. sequence of user and any u, t ≥ 1, we have

1. E(u,Btu)‖∇L(ωtu)−∇L̂Btu(ωtu)‖22 ≤ σ2,

2. For any u,
∣∣∣EBtu|u〈∇L(ωtu),∇L(ωtu)−∇L̂Btu(ωtu)〉

∣∣∣ ≤ a2‖∇L(ωtu)‖22

for some parameters σ > 0 and a ∈ [0, 1/2) independent of u and t.
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Algorithm 1 SAROSb: SequentiAl RecOmmender System for implicit feedback

Input: A sequence (user and items) {(u, (i1, . . . , i|Iu|)}Nu=1 drawn i.i.d. from D;
A maximal B and a minimal b number of blocks allowed per user u;
A maximal number of epochs E;

Initialization: Initialize parameters ω0
1 randomly;

for e = 1...E do . Loop over all epochs
for u = 1...N do . Loop over all users u

t← 0; Iu = (i1, . . . , i|Iu|) the sequence of items viewed by the user u;
j ← 1; Nt

u ← ∅; Πt
u ← ∅;

while t ≤ B and j ≤ |Iu| do . Loop over items displayed to user u
while feedback(u, ij) = −1 and j ≤ |Iu| do . While u has a negative feedback on ij

Nt
u ← Nt

u ∪ {i}; j ← j + 1
end while
while feedback(u, ij) = +1 and j ≤ |Iu| do . While u has a positive feedback on ij

if Nt
u 6= ∅ then . If there were negative feedback before the positive ones

Πt
u ← Πt

u ∪ {ij};
end if
j ← j + 1;

end while
if Nt

u 6= ∅ and Πt
u 6= ∅ then . If negative and positive blocks are constituted

ωt+1
u ← ωtu − η

|Nt
u||Πt

u|

∑
i∈Πt

u

∑
i′∈Nt

u

∇`u,i,i′(ωtu);

t← t+ 1; Nt
u ← ∅; Πt

u ← ∅;
end if

end while
if t ≤ b then . If the number of blocks is less than b, do not consider the updates

ωtu ← ω0
u;

end if
if u < N then . Initialize the weights for the next user with the current ones

ω0
u+1 ← ωtu;

else . The next user to the last one in the list of the users, is the first user

ω0
1 ← ωtN ;

end if
end for

end for
Return: The last updated weights;

The first assumption is common in stochastic optimization and it implies consistency
of the sample average approximation of the gradient. However, this assumption is not
sufficient to prove the convergence because of interdependency of different blocks of items
for the same user.

The second assumption implies that in the neighborhood of the optimal point, we have
∇L(ωtu)>∇L̂Btu(ωtu) ≈ ‖∇L(ωtu)‖22, which greatly helps to establish consistency and conver-
gence rates for both variants of the methods. In particular, if an empirical estimate of the
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loss over a block is unbiased, e.g. EBtu∇L̂Btu(ω) = ∇L(ω), the second assumption is satisfied
with a = 0.

The following theorem establishes the convergence rate for the SAROSb algorithm.

Theorem 1. Let ` be a (possibly non-convex) β-smooth loss function. Assume, moreover,
that the number of interactions per user belongs to an interval [b, B] almost surely and
assumption 1 is satisfied with some constants σ2 and a, 0 < a < 1/2. Then, for a step-size
policy ηtu ≡ ηu with ηu ≤ 1/(Bβ) for any user u, one has

min
u: 1≤u≤N

E‖∇L(ω0
u)‖22 ≤

2(L(ω0
1)− L(ω0

u)) + βσ2
∑N

u=1

∑|Bu|
t=1 (ηtu)2∑N

u=1

∑|Bu|
t=1 η

t
u(1− a2 − βηtu(1/2− a2))

. (7)

In particular, for a constant step-size policy ηtu = η = c/
√
N satisfies ηβ ≤ 1, one has

min
t,u
‖∇L(ωtu)‖22 ≤

2

b(1− 4a2)

2(L(ω0
1)− L(ω∗))/c+ βcσ2B√

N
.

Proof. Since ` is a β smooth function, we have for any u and t:

L(ωt+1
u ) ≤ L(ωtu) + 〈∇L(ωtu), ωt+1

u − ωtu〉+
β

2
(ηtu)2‖∇L̂Btu(ωtu)‖22

= L(ωtu)− ηtu〈∇L(ωtu),∇L̂Btu(ωtu)〉+
β

2
(ηtu)2‖∇L̂Btu(ωtu)‖22

Following (Lan, 2020); by denoting δtu = ∇L̂Btu(ωtu)−∇L(ωtu), we have:

L(ωt+1
u ) ≤ L(ωtu)− ηtu〈∇L(ωtu),∇L(ωtu) + δtu〉+

β

2
(ηtu)2‖∇L(ωtu) + δtu‖22

= L(ωtu) +
β(ηtu)2

2
‖δtu‖22 −

(
ηiu −

β(ηtu)2

2

)
‖∇L(ωtu)‖22

−
(
ηtu − β(ηtu)2

)
〈∇L(ωtu), δtu〉 (8)

Our next step is to take the expectation on both sides of inequality (8). According to
Assumption 1, one has for some a ∈ [0, 1/2):(

ηtu − β(ηtu)2
) ∣∣E〈∇L(ωtu), δtu〉

∣∣ ≤ (ηtu − β(ηtu)2
)
a2‖∇L(ωtu)‖22,

where the expectation is taken over the set of blocks and users seen so far.
Finally, taking the same expectation on both sides of inequality (8), it comes:

L(ωt+1
u ) ≤ L(ωtu) +

β

2
(ηtu)2E‖δtu‖22 − ηtu(1− βηtu/2− a2|1− βηtu|)‖∇L(ωtu)‖22

≤ L(ωtu) +
β

2
(ηtu)2‖δtu‖22 − ηtu (1− a2 − βηtu(1/2− a2))︸ ︷︷ ︸

:=ztu

‖∇L(ωtu)‖22

= L(ωtu) +
β

2
(ηtu)2‖δtu‖22 − ηtuztu‖∇L(ωtu)‖22

= L(ωtu) +
β

2
(ηtu)2σ2 − ηtuztu‖∇L(ωtu)‖22, (9)
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where the second inequality is due to |ηtuβ| ≤ 1. Also, as |ηtuβ| ≤ 1 and a2 ∈ [0, 1/2) one
has ztu > 0 for any u, t. Rearranging the terms, one has

N∑
u=1

|Bu|∑
t=1

ηtuz
t
u‖∇L(ωtu)‖22 ≤ L(ω0

1)− L(ω∗) +
βσ2

2

N∑
u=1

|Bu|∑
t=1

(ηtu)2.

and

min
t,u
‖∇L(ωtu)‖22 ≤

L(ω0
1)− L(ω∗) + β

2

∑N
u=1

∑|Bu|
t=1 (ηtu)2σ2∑N

u=1

∑|Bu|
t=1 η

t
uz
t
u

≤ L(ω0
1)− L(ω∗) + β

2

∑N
u=1

∑|Bu|
t=1 (ηtu)2σ2∑N

u=1

∑|Bu|
t=1 η

t
u(1− a2 − βηtu(1/2− a2))

Where, ω∗ is the optimal point. Then, using a constant step-size policy, ηiu = η, and the
bounds on a block size, b ≤ |Bu| ≤ B, we get:

min
t,u
‖∇L(ωtu)‖22 ≤

L(ω0
1)− L(ω∗) + βσ2

2 N
∑N

u=1 η
2
u

b
∑N

u=1 ηu(1− a2 − βηu(1/2− a2))

≤ 4L(ω0
1)− 4L(ω∗) + 2βσ2B

∑N
u=1 η

2

b(1− 4a2)
∑N

u=1 η

≤ 2

b(1− 4a2)

{
2L(ω0

1)− 2L(ω∗)

Nη
+ βσ2Bη

}
.

Taking η = c/
√
N so that 0 < η ≤ 1/β, one has

min
t,u
‖∇L(ωtu)‖22 ≤

2

b(1− 4a2)

2(L(ω0
1)− L(ω∗))/c+ βcσ2B√

N
.

If b = B = 1, this rate matches up to a constant factor to the standard O(1/
√
N) rate of

the stochastic gradient descent.

Note that the stochastic gradient descent strategy implemented in the Bayesian Per-
sonalized Ranking model (BPR) (Rendle et al., 2009) also converges to the minimizer of the
ranking loss L(ω) (Eq. 1) with the same rate.

The analysis of momentum algorithm SAROSmis slightly more involved. We say that
a function f(x) satisfies the Polyak- Lojsievich condition (Polyak, 1963; Lojasiewicz, 1963;
Karimi et al., 2016) if the following inequality holds for some µ > 0:

1

2
‖∇f(x)‖22 ≥ µ(f(x)− f∗),

where f∗ is a global minimum of f(x).

From this definition, we can derive an analysis on the convergence of SAROSm stated
below.
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Theorem 2. Let L(ω) be a (possibly non-convex) β-smooth function which satisfies the
Polyak-Lojasievich condition with a constant µ > 0. Moreover, assume the number of
interactions per user belongs to an interval [b, B] almost surely for some positive b and B,
and Assumption 1 is satisfied with some σ2 and a. Then, for N =

∑N
u=1 |Bu| and a constant

step-size policy ηtu = η with ηβ ≤ 1, one has

L(ωt+1
u )− L(ω∗) ≤ exp(−µηN)(L(ω0

1)− L(ω∗)) +
βσ2η2

2(1− µ/β)
, ηβ ≤ 1.

where the estimation is uniform for all a, 0 ≤ a < 1/2.
In particular, if η = c/

√
N , under the same conditions one has

L(ωtu)− L(ω∗) ≤ exp(−µc
√
N)(L(ω0

1)− L(ω∗)) +
βσ2c2

2(1− µ/β)N
.

Proof. Similarly to the Theorem 1, From Ineq. (9) we have:

L(ωt+1
u ) ≤ L(ωtu) +

β

2
(ηtu)2σ2 − ηtuztu‖∇L(ωtu)‖22

for ztu = 1 − a2 − βηtu(1/2 − a2) > 0. Further, using the Polyak-Lojasievich condition, it
comes:

−ηtuztu‖∇L(ωtu)‖22 ≤ −2µηtuz
t
u(L(ωtu)− L(ω∗)),

and

L(ωt+1
u )− L(ω∗) ≤ L(ωtu)− L(ω∗) +

β

2
(ηtu)2σ2 − 2µηtuz

t
u(L(ωtu)− L(ω∗))

≤ (L(ωtu)− L(ω∗))(1− 2µηtuz
t
u) +

β

2
(ηtu)2σ2

≤
∏
u

∏
t

(1− 2µηtuz
t
u)(L(ω0

1)− L(ω∗)) +
βσ2

2

∑
v≤u

(ηtv)
2
∏
v

∏
t

(1− 2µηtvz
t
v)

Finally, for a constant step-size policy, ηtu = η, one has ztu = z = 1− a2 − βη(1/2− a2)
and

L(ωt+1
u )− L(ω∗) ≤ (1− 2µηz)N (L(ω0

1)− L(ω∗)) +
βσ2η2

2(1− 2µηz)
,

where the last term is given by summing the geometric progression. As βη ≤ 1 and a < 1/2
one has z ≥ 1/2. Thus

L(ωt+1
u )− L(ω∗) ≤ (1− µη)N (L(ω0

1)− L(ω∗)) +
βσ2η2

2(1− µ/β)

≤ exp(−µηN)(L(ω0
1)− L(ω∗)) +

βσ2η2

2(1− µ/β)
, ηβ ≤ 1.

Taking η = c/
√
N for some positive c guarantees a rate of convergence O(1/N). With a

different choice of the step-size policy, rates almost up to O(1/N2) are possible; however,
these rates imply O(1/N) convergence for the norm of the gradient which matches the stan-
dard efforts of stochastic gradient descent under the Polyak-Lojasievich condition (Karimi
et al., 2016).
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4. Experimental Setup and Results

In this section, we provide an empirical evaluation of our optimization strategy on some
popular benchmarks proposed for evaluating RS. All subsequently discussed components
were implemented in Python3 using the TensorFlow library (Abadi et al., 2016). and
computed on Skoltech CDISE HPC cluster ZHORES (Zacharov et al., 2019). We first
proceed with a presentation of the general experimental set-up, including a description of
the datasets and the baseline models.

Datasets. We report results obtained on five publicly available datasets, for the task of
personalized Top-N recommendation on the following collections :

• ML-1M (Harper and Konstan, 2015) and Netflix (Bennett and Lanning, 2007b)
datasets consist of user-movie ratings, on a scale of one to five, collected from a movie
recommendation service and the Netflix company. The latter was released to support
the Netflix Prize competition (Bennett and Lanning, 2007a). For both datasets, we
consider ratings greater or equal to 4 as positive feedback, and others as negative
feedback.

• We get Outbrain dataset from of the Kaggle challenge (Outbrain Inc., 2016) that
consisted in the recommendation of news content to users based on the 1,597,426
implicit feedback collected from multiple publisher sites in the United States.

• Pandor(Sidana et al., 2018b) is another publicly available dataset for online recom-
mendation (Sidana et al., 2018a) provided by Purch1. The dataset records 2,073,379
clicks generated by 177,366 users of one of the Purch’s high-tech website over 9,077
ads they have been shown during one month.

• RecSys’16 is a sample based on historic XING data provided 6,330,562 feedback
given by 39,518 users on the job posting items and the items generated by XING’s
job recommender system.

• Kasandr(Sidana et al., 2017a) dataset (Sidana et al., 2017b) contains 15,844,717
interactions of 2,158,859 users in Germany using Kelkoo’s2 online advertising platform.

Table 2 presents some detailed statistics about each collection. Among these, we report
the average number of clicks (positive feedback) and the average number of items that were
viewed but not clicked (negative feedback). As we see from the table, Outbrain, Kasandr,
and Pandor datasets are the most unbalanced ones in regards to the number of preferred
and non-preferred items. To construct the training and the test sets, we discarded users who
did not interact over the shown items and sorted all interactions according to time-based on
the existing time-stamps related to each dataset. Furthermore, we considered 80% of each
user’s first interactions (both positive and negative) for training, and the remaining for the
test. Table 3 presents the size of the training and the test sets as well as the percentage
of positive feedback (preferred items) for all collections ordered by increasing training size.
The percentage of positive feedback is inversely proportional to the size of the training sets,

1. http://www.purch.com/
2. http://www.kelkoo.fr/
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Data |U| |I| Sparsity Avg. # of + Avg. # of −
ML-1M 6,040 3,706 .9553 95.2767 70.4690
Outbrain 49,615 105,176 .9997 6.1587 26.0377
Pandor 177,366 9,077 .9987 1.3266 10.3632
Netflix 90,137 3,560 .9914 26.1872 20.2765
RecSys’16 39,518 28,068 .9943 26.2876 133.9068
Kasandr 2,158,859 291,485 .9999 2.4202 51.9384

Table 2: Statistics on the # of users and items; as well as the sparsity and the average
number of + (preferred) and − (non-preferred) items on ML-1M, Netflix, Out-
brain, Kasandr and Pandor collections after preprocessing.

attaining 3% for the largest, Kasandr collection. Finally, we have used 10% of the most
recent interactions of users in the training set as validation set for hyperparameter tuning
(see below).

We also analyzed the distributions of the number of blocks and their size for different
collections. Figure 2 (left) shows boxplots representing the logarithm of the number of
blocks through their quartiles for all collections. From these plots, it comes out that the
distribution of the number of blocks on Pandor, Netflix and Kasandr are heavy-tailed
with more than the half of the users interacting no more than 10 times with the system.
Furthermore, we note that on Pandor the average number of blocks is much smaller than
on the two other collections; and that on all three collections the maximum numbers of
blocks are 10 times more than the average. These plots suggest that a very small number
of users (perhaps bots) have an abnormal interaction with the system generating a huge
amount of blocks on these three collections. To have a better understanding, Figure 2
(right) depicts the number of blocks concerning their size on Kasandr. The distribution
of the number of blocks follows a power law distribution and it is the same for the other
collections that we did not report for the sake of space. In all collections, the number of
blocks having more than 5 items drops drastically. As in both variants of SAROS positive
and negative items are not sampled for updating the weights, these updates are performed
on blocks of small size, and are made very often.

Dataset |Strain| |Stest| postrain postest
ML-1M 797,758 202,451 58.82 52.39
Outbrain 1,261,373 336,053 17.64 24.73
Pandor 1,579,716 493,663 11.04 12.33
Netflix 3,314,621 873,477 56.27 56.70
RecSys’16 5,048,653 1,281,909 17.07 13.81
Kasandr 12,509,509 3,335,208 3.36 8.56

Table 3: Number of interactions used for train and test on each dataset, and the percentage
of positive feedback among these interactions.
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Figure 2: (a) Boxplots depicting the logarithm of the number of blocks through their quar-
tiles for all collections. The median (resp. mean) is represented by the band
(resp. diamond) inside the box. The ends of the whiskers represent the minimum
and the maximum of the values. (b) Distributions of negative feedback over the
blocks in the training set on Kasandr.

Compared Approaches. To validate the sequential learning approach described in
the previous sections, we compared the proposed SAROS algorithm3 with the following ap-
proaches.

• MostPop is a non-learning based approach which consists in recommending the same
set of popular items to all users.

• Matrix Factorization (MF) (Koren, 2008), is a factor model which decomposes the
matrix of user-item interactions into a set of low dimensional vectors in the same
latent space, by minimizing a regularized least square error between the actual value
of the scores and the dot product over the user and item representations.

• BPR (Rendle et al., 2009) corresponds to the model described in the problem state-
ment above (Section 3.1), a stochastic gradient-descent algorithm, based on bootstrap
sampling of training triplets, and BPRb the batch version of the model which consists
in finding the model parameters ω = (Ū , Ī) by minimizing the ranking loss over all
the set of triplets simultaneously (Eq. 1).

• Prod2Vec (Grbovic et al., 2015), learns the representation of items using a Neural
Networks based model, called word2vec (Mikolov et al., 2013), and performs next-
items recommendation using the similarity between the representations of items.

• GRU4Rec+ (Hidasi and Karatzoglou, 2018) is an extended version of GRU4Rec (Hidasi
et al., 2016) adopted to different loss functions, that applies recurrent neural network
with a GRU architecture for session-based recommendation. The approach considers
the session as the sequence of clicks of the user and learns model parameters by

3. The source code is available at https://github.com/SashaBurashnikova/SAROS.
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optimizing a regularized approximation of the relative rank of the relevant item which
favors the preferred items to be ranked at the top of the list.

• Caser (Tang and Wang, 2018) is a CNN based model that embeds a sequence of
clicked items into a temporal image and latent spaces and find local characteristics of
the temporal image using convolution filters.

• SASRec (Kang and McAuley, 2018) uses an attention mechanism to capture long-term
semantics in the sequence of clicked items and then predicts the next item to present
based on a user’s action history.

• LightGCN (He et al., 2020) is a graph convolution network which learns user and item
embedding by linearly propagating them on the user-item interaction graph. The final
representations are the weighted sum of the embeddings learned at all layers.

Hyper-parameters of different models and the dimension of the embedded space for the
representation of users and items; as well as the regularisation parameter over the norms of
the embeddings for all approaches were found using grid search on the validation set.

We fixed b and B, used in SAROSb, to respectively the minimum and the average number
of blocks found on the training set of each corresponding collection. With the average
number of blocks being greater than the median on all collections, the motivation here is
to consider the maximum number of blocks by preserving the model from the bias brought
by the too many interactions of the very few number of users. For more details regarding
the exact values for the parameters, see the Table 4.

Parameter ML Outbrain Pandor Netflix Kasandr RecSys’16

B 78 5 2 22 5 22
b 1 2 1 1 1 1

Learning rate .05 .05 .05 .05 .4 .3

Table 4: Hyperparameter values of SAROSb.

Evaluation Setting and Results. We begin our comparisons by testing BPRb, BPR and
SAROS approaches over the logistic ranking loss (Eq. 2) which is used to train them. Results
on the test, after training the models till the convergence are shown in Table 5. BPRb (resp.
SAROS) techniques have the worse (resp. best) test loss on all collections, and the difference
between their performance is larger for bigger size datasets.

These results suggest that the local ranking between preferred and no-preferred items
present in the blocks of the training set reflects better the preference of users than the
ranking of random pairs of items as it is done ine BPR without this sequence information of
viewed but not clicked and viewed and clicked over items in user’s sessions. Furthermore,
as in SAROS updates occur after the creation of a block, and that the most of the blocks
contain very few items (Figure 2 - right), weights are updated more often than in BPR or
BPRb. This is depicted in Figure 3 which shows the evolution of the training error over
time for BPRb, BPR and SAROS on all collections. As we can see, the training error decreases
in all cases and the three approaches converge to the same minimizer of the ranking loss
(Eq. 1). This is an empirical evidence of the convergence of SAROSb and SAROSm, showing
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Dataset Test loss at convergence, Eq. (1)
BPRb BPR SAROSb SAROSm

ML-1M 0.744 0.645 0.608 0.637
Outbrain 0.747 0.638 0.635 0.634
Pandor 0.694 0.661 0.651 0.666
Netflix 0.694 0.651 0.614 0.618
Kasandr 0.631 0.393 0.212 0.257
RecSys’16 0.761 0.644 0.640 0.616

Table 5: Comparison between BPR, BPRb and SAROS approaches in terms of test loss at
convergence.

that the sequence of weights found by the algorithm minimizing (Eq. 3) allows to minimize
the general ranking loss (Eq. 1) as it is stated in Theorems 1 and 2.
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Figure 3: Evolution of the loss on training sets for both BPRb, BPR and SAROS as a function
of time in minutes for all collections.

We also compare the performance of all the approaches on the basis of the common rank-
ing metrics, which are the Mean Average Precision at rank K (MAP@K) over all users defined
as MAP@K = 1

N

∑N
u=1 AP@K(u), where AP@K(u) is the average precision of preferred items of

user u in the top K ranked ones; and the Normalized Discounted Cumulative Gain at rank K
(NDCG@K) that computes the ratio of the obtained ranking to the ideal case and allow to con-

sider not only binary relevance as in Mean Average Precision, NDCG@K = 1
N

∑N
u=1

DCG@K(u)
IDCG@K(u) ,
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where DCG@K(u) =
∑K

i=1
2reli−1

log2(1+i) , reli is the graded relevance of the item at position i;

and IDCG@K(u) is DCG@K(u) with an ideal ordering equals to
∑K

i=1
1

log2(1+i) for reli ∈ [0, 1]

(Schutze et al., 2008).

To estimate the importance of the maximum number of blocks (B) for SAROSb, we
explore the dependency between quality metrics MAP@K and NDCG@K on ML-1M and Pandor
collections (Figure 4). The latter records the clicks generated by users on one of Purch’s
high-tech website and it was subject to bot attacks (Sidana et al., 2018a). For this collection,
large values of B affects MAP@K while the measure reaches a plateau on ML-1M. The choice
of this hyperparameter may then have an impact on the results. As future work, we are
investigating the modelling of bot attacks by studying the effect of long memory in the blocks
of no-preferred and preferred items in small and large sessions with the aim of automatically
fixing this threshold B.
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Figure 4: Evolution of MAP@5 with respect to largest number of allowed blocks, B.

Table 6 presents NDCG@5 and NDCG@10 (top), and MAP@5 and MAP@10 (down) of all ap-
proaches over the test sets of the different collections. The non-machine learning method,
MostPop, gives results of an order of magnitude lower than the learning based approaches.
Moreover, the factorization model MF which predicts clicks by matrix completion is less
effective when dealing with implicit feedback than ranking based models especially on large
datasets where there are fewer interactions. We also found that embeddings found by rank-
ing based models, in the way that the user preference over the pairs of items is preserved in
the embedded space by the dot product, are more robust than the ones found by Prod2Vec.
When comparing GRU4Rec+ with BPR that also minimizes the same surrogate ranking loss,
the former outperforms it in case of Kasandr with a huge imbalance between positive and
negative interactions.

This is mainly because GRU4Rec+ optimizes an approximation of the relative rank that
favors interacted items to be in the top of the ranked list while the logistic ranking loss,
which is mostly related to the Area under the ROC curve (Usunier et al., 2005), pushes up
clicked items for having good ranks in average. However, the minimization of the logistic
ranking loss over blocks of very small size pushes the clicked item to be ranked higher than
the no-clicked ones in several lists of small size and it has the effect of favoring the clicked
item to be at the top of the whole merged lists of items. Moreover, it comes out that SAROS
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NDCG@5 NDCG@10

ML-1M Outbrain Pandor Netflix Kasandr RecSys’16 ML-1M Outbrain Pandor Netflix Kasandr RecSys’16

MostPop .090 .011 .005 .056 .002 .004 .130 .014 .008 .096 .002 .007
Prod2Vec .758 .232 .078 .712 .012 .219 .842 .232 .080 .770 .012 .307

MF .684 .612 .300 .795 .197 .317 .805 .684 .303 .834 .219 .396
BPRb .652 .583 .874 .770 .567 .353 .784 .658 .890 .849 .616 .468
BPR .776 .671 .889 .854 .603 .575 .863 .724 .905 .903 .650 .673

GRU4Rec+ .721 .633 .843 .777 .760 .507 .833 .680 .862 .854 .782 .613
Caser .665 .585 .647 .750 .241 .225 .787 .658 .666 .834 .276 .225
SASRec .721 .645 .852 .819 .569 .509 .832 .704 .873 .883 .625 .605

LightGCN .784 .652 .901 .836 .947 .428 .874 .710 .915 .895 .954 .535
SAROSm .763 .674 .885 .857 .735 .492 .858 .726 .899 .909 .765 .603
SAROSb .788 .710 .904 .866 .791 .563 .874 .755 .917 .914 .815 .662

MAP@5 MAP@10

ML-1M Outbrain Pandor Netflix Kasandr RecSys’16 ML-1M Outbrain Pandor Netflix Kasandr RecSys’16

MostPop .074 .007 .003 .039 .002 .003 .083 .009 .004 .051 .3e-5 .004
Prod2Vec .793 .228 .063 .669 .012 .210 .772 .228 .063 .690 .012 .220

MF .733 .531 .266 .793 .170 .312 .718 .522 .267 .778 .176 .306
BPRb .713 .477 .685 .764 .473 .343 .688 .477 .690 .748 .488 .356
BPR .826 .573 .734 .855 .507 .578 .797 .563 .760 .835 .521 .571

GRU4Rec+ .777 .513 .673 .774 .719 .521 .750 .509 .677 .757 .720 .500
Caser .718 .471 .522 .749 .186 .218 .694 .473 .527 .733 .197 .218
SASRec .776 .542 .682 .819 .480 .521 .751 .534 .687 .799 .495 .511

LightGCN .836 .502 .793 .835 .939 .428 .806 .507 .796 .817 .939 .434
SAROSm .816 .577 .720 .857 .644 .495 .787 .567 .723 .837 .651 .494
SAROSb .832 .619 .756 .866 .732 .570 .808 .607 .759 .846 .747 .561

Table 6: Comparison between MostPop, Prod2Vec, MF, BPRb, BPR, GRU4Rec+, SASRec,
Caser, and SAROS approaches in terms of NDCG@5 and NDCG@10(top), and MAP@5

and MAP@10(down). Best performance is in bold and the second best is underlined.

is the most competitive approach; performing better than other techniques, or, is the second
best performing method over all collections.

5. Conclusion

The contributions of this paper are twofold. First, we proposed SAROS, a novel learning
framework for large-scale Recommender Systems that sequentially updates the weights of
a ranking function user by user over blocks of items ordered by time where each block is
a sequence of negative items followed by a last positive one. The main hypothesis of the
approach is that the preferred and no-preferred items within a local sequence of user inter-
actions express better the user preference than when considering the whole set of preferred
and no-preferred items independently one from another. We presented two variants of the
approach; in the first model parameters are updated user per user over blocks of items con-
stituted by a sequence of unclicked items followed by a clicked one. The parameter updates
are discarded for users who interact very little or a lot with the system. The second variant,
is based on the momentum technique as a means of damping oscillations. The second contri-
bution is a theoretical analysis of the proposed approach which bounds the deviation of the
ranking loss concerning the sequence of weights found by both variants of the algorithm and
its minimum in the general case of non-convex ranking loss. Empirical results conducted
on six real-life implicit feedback datasets support our founding and show that the proposed
approach is significantly faster than the common batch and online optimization strategies
that consist in updating the parameters over the whole set of users at each epoch, or after
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sampling random pairs of preferred and no-preferred items. The approach is also shown to
be highly competitive concerning state of the art approaches on MAP and NDCG measures.
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