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Abstract

Recent results have shown that algorithms for learning the optimal commitment in
a Stackelberg game are susceptible to manipulation by the follower. These learning al-
gorithms operate by querying the best responses of the follower, who consequently can
deceive the algorithm by using fake best responses, typically by responding according to
fake payoffs that are different from the actual ones. For this strategic behavior to be suc-
cessful, the main challenge faced by the follower is to pinpoint the fake payoffs that would
make the learning algorithm output a commitment that benefits them the most. While
this problem has been considered before, the related literature has only focused on a sim-
ple setting where the follower can only choose from a finite set of payoff matrices, thus
leaving the general version of the problem unanswered. In this paper, we fill this gap by
showing that it is always possible for the follower to efficiently compute (near-)optimal fake
payoffs, for various scenarios of learning interaction between the leader and the follower.
Our results also establish an interesting connection between the follower’s deception and
the leader’s maximin utility: through deception, the follower can induce almost any (fake)
Stackelberg equilibrium if and only if the leader obtains at least their maximin utility in
this equilibrium.

1. Introduction

Stackelberg games are a simple yet powerful model for sequential interaction among strategic
agents. In such games there are two players: a leader and a follower. The leader commits
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to a strategy, and the follower acts upon observing the leader’s commitment. The sim-
ple sequential structure of the game permits modeling a multitude of important scenarios.
Indicative applications include the competition between a large and a small firm (von Stack-
elberg, 2010), the allocation of defensive resources, i.e., Stackelberg security games (Tambe,
2011; Korzhyk et al., 2011; Fang et al., 2013; Delle Fave et al., 2014; Gan et al., 2015),
the competition among mining pools in the Bitcoin network (Marmolejo-Cossio et al., 2019;
Sun et al., 2020), and the protection against manipulation in elections (Elkind et al., 2021;
Yin et al., 2018).

In Stackelberg games, the leader is interested in finding the best commitment she can
make, assuming that the follower behaves rationally. The combination of such a commit-
ment by the leader and the follower’s rational best response to it leads to a strong Stack-
elberg equilibrium (SSE). In general, the utility that the leader obtains in an SSE is larger
than what she would obtain in a Nash equilibrium of the corresponding simultaneous-move
game (von Stengel & Zamir, 2004). Hence, the leader prefers to commit than to engage in
a simultaneous game with the follower.

In case the leader has access to both her and the follower’s payoff parameters (or,
payoffs, for short), computing an SSE is a computationally tractable problem (Conitzer
& Sandholm, 2006). In practice however, the leader may have limited or no information
about the follower’s payoffs. In order to determine the optimal commitment, the leader
must endeavor to elicit information about the incentives of the follower through indirect
means. This avenue of research has led to a plethora of active-learning-based approaches
for the computation of SSEs (Balcan et al., 2015; Blum et al., 2014; Letchford et al., 2009;
Peng et al., 2019; Roth et al., 2016). Meanwhile, inspired by recent developments in the
ML community regarding adversarial examples in classification algorithms (Lowd & Meek,
2005; Barreno et al., 2010), there has been a stream of recent papers exploring the notion
of adversarial deception in Stackelberg games, whereby the follower uses fake samples to
tamper with the leader’s information acquisition.

Specifically, when the leader learns an SSE by querying the follower’s best responses,
the follower can use fake best responses to change the SSE learned by the algorithm. As
recently explored by Gan et al. (2019b), one particular approach the follower can employ,
termed imitative follower deception, is to imitate best responses implied by payoffs that are
different from the actual ones. The key to the success of such a deceptive behavior is thus
to pinpoint the fake payoffs that could make the leader learn an SSE in which the actual
utility of the follower is maximized. In the scenario studied by Gan et al. (2019b), this
task is trivial for the follower as his choices are limited to a finite set of explicitly given
payoff matrices, whose size is bounded by the size of the problem representation; thus, to
efficiently find out the optimal payoffs, the follower can simply enumerate all possible payoff
matrices and see which one of them leads to the best outcome.

In this paper, we consider the general version of the optimal imitative deception problem,
where the follower is allowed to imitate any payoff matrix, without restrictions on the space
of possible values. This general version has been considered in two very recent papers (Gan
et al., 2019a; Nguyen & Xu, 2019), but only in the specific context of Stackelberg security
games. Besides that, no progress has been made for general Stackelberg games. In this
paper, we aim to fill this gap, by completely resolving this computational problem.
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1.1 Our Contribution

We explore how a follower can optimally deceive a learning leader in Stackelberg games
by misreporting his payoff matrix, and we study the tractability of the corresponding opti-
mization problem. As mentioned above, our objective is to compute an optimal fake payoff
matrix, that leads to the best SSE for the follower. However, unlike the related literature,
we do not impose any restrictions on the space from which the payoffs are selected or on
the type of the game. By exploiting an intuitive characterization of all strategy profiles
that can be induced as SSEs in Stackelberg games, we show that it is always possible for
the follower to compute an optimal payoff matrix in polynomial time, irrespective of the
specific learning algorithm employed by the leader. Furthermore, we strengthen this result
to resolve possible equilibrium selection issues, by showing that the follower can construct
a payoff matrix that induces a unique SSE, in which his utility is maximized up to some
arbitrarily small loss.

Our characterization of inducible strategy profiles establishes an interesting connection
between the follower’s deception and the leader’s maximin utility: through deception, the
follower can induce almost any (fake) SSE if and only if the leader obtains at least her
maximin utility in this equilibrium. Given that the maximin utility is always attainable
without any additional information about the opponent, this means that the follower can
exploit the leader’s lack of information to the maximum degree, despite the leader’s attempts
to learn additional information. This connection to the maximin utility also reflects the
findings of Gan et al. (2019a) on Stackelberg security games, who showed that the optimal
deception in such games is to use fake payoffs that make the game zero-sum, whereby the
leader obtains exactly the maximin utility. In the generic Stackelberg games we study in
this paper, the optimal deception may, but need not always, lead to zero-sum games; hence,
we fully characterize the space of inducible strategy profiles, which requires completely
different techniques.

1.2 Other Related Work

Our paper is related to an emerging line of work at the intersection of machine learning and
algorithmic game theory, dealing with scenarios where the samples used for training learning
algorithms are controlled by strategic agents, who aim to optimize their personal benefit.
Indicatively, there has been recent interest in the analysis of the effect of strategic behavior
on the efficiency of existing algorithms, as well as the design of algorithms resilient to
strategic manipulation for linear regression (Ben-Porat & Tennenholtz, 2019; Chen et al.,
2018; Dekel et al., 2010; Hossain & Shah, 2020; Perote & Perote-Pena, 2004; Waggoner
et al., 2015) and classification (Chen et al., 2019; Dong et al., 2018; Meir et al., 2012; Zhang
et al., 2019).

Beyond the strategic considerations above, our work is also related to the study of query
protocols for learning game-theoretic equilibria. In this setting, as in ours, algorithms for
computing equilibria via utility and best response queries are a natural starting point. For
utility queries, there has been much work in proving exponential lower bounds for random-
ized computation of exact, approximate and well-supported Nash equilibria (Babichenko
& Rubinstein, 2017; Babichenko, 2016; Chen et al., 2017; Goldberg & Roth, 2016; Hart
& Mansour, 2010; Hart & Nisan, 2018), as well as providing query-efficient protocols for
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approximate Nash equilibrium computation in bimatrix games, congestion games (Fearnley
et al., 2015), anonymous games (Goldberg & Turchetta, 2017), and large games (Goldberg
et al., 2019). Best response queries are weaker than utility queries, but they arise natu-
rally in practice, and are also expressive enough to implement fictitious play, a dynamic
first proposed by Brown (1949), and proven to converge by Robinson (1951) for two-player
zero-sum games to an approximate Nash equilibrium. In terms of equilibrium computation,
Goldberg and Marmolejo-Cossio (2018) also provide query-efficient algorithms for comput-
ing approximate Nash equilibria for bimatrix games via best response queries provided one
agent has a constant number of strategies.

Finally, learning via incentive queries in games is directly related to the theory of pref-
erence elicitation, where the goal is to mine information about the private parameters of
the agents by interacting with them (Blum et al., 2004; Lahaie & Parkes, 2004; Zinkevich
et al., 2003; Goldberg et al., 2020). This has many applications, most notably combina-
torial auctions, where access to the valuation functions of the agents is achieved via value
or demand queries (Blumrosen & Nisan, 2007; Conen & Sandholm, 2001; Nisan & Segal,
2006).

2. Preliminaries

A Stackelberg game is a sequential game between a leader and a follower.! The leader
commits to a strategy, and the follower then acts upon observing this commitment. We
consider finite games, in which the leader and the follower have m and n pure strategies
at their disposal, respectively, and their utilities for all possible outcomes are given by the
matrices u”, u”" € R™*". The entries u* (i, j) and u! (i, j) denote the utilities of the leader
and the follower under pure strategy profile (i,j) € [m] x [n], where we use the notation
[k] = {1,...,k} for any positive integer k. We use G = (uX,u’") to denote the Stackelberg
game with payoff matrices u” and u!’; we omit m and n in the tuple as they are clear from
context. The games we consider are general-sum games, with no restriction on the matrices
ul, uf € Rm*n,

The players are allowed to employ mixed strategies, whereby they randomize over actions
in their strategy set. A mixed strategy of the leader is a probability distribution over [m],
denoted by x € A™ ! = {x > 0 : Zie[m} x; = 1}. By slightly abusing notation, we
let ul(x,7) = > iefm] Ti - u(i,§) be the expected wutility of the leader when she plays the

mixed strategy x and the follower plays a pure strategy j. Similarly, we define u’'(x,j) =
Zz‘e[m} x; -u® (i, §) for the follower. For a given mixed strategy x € A™~! of the leader, we
say that a pure strategy j € [n] is a follower best response if uf (x, j) = maXye(p) ulf'(x,0); we
denote the set of all follower best responses to x by BR(x) C [n] and refer to the function
BR as the best response correspondence of the follower, or the BR correspondence. We can
further generalize the follower’s response to be a mixed strategy y € A"~ but this is
unnecessary as will become clear below.

An SSE is the standard solution concept in Stackelberg games. It captures the situation
where the leader commits to a mixed strategy that maximizes her expected utility, while
taking into account the follower’s best response to her commitment. It is assumed that

1. By convention, we will refer to the leader as a female and the follower as a male.
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the follower breaks ties in favor of the leader when he has multiple best responses, and
without loss of generality the best response chosen is always a pure strategy. This optimistic
assumption is justified by the fact that such tie-breaking behavior can often be enforced by
an infinitesimal perturbation in the leader’s strategy (von Stengel & Zamir, 2004). Hence,
in the definition below, we only consider pure strategies of the follower.?

Definition 2.1 (Strong Stackelberg Equilibrium (SSE)). A strategy profile (x, j) is
an SSE of the game G = (ul, uf) if

(x,j) € argmax u®(y,?).
yeA™—1 e BR(y)

Note that the set of SSEs of the game G = (u”, u!") actually only depends on (u”, BR).
Thus, with a slight abuse of notation, we will sometimes also denote the game as G =
(u”, BR), where the preferences of the follower are directly given by a best response corre-
spondence BR (which may or may not correspond to a payoff matrix uf” € R™*"),

2.1 Learning SSEs and Deceptive Follower Behavior

We consider the scenario where the leader has full knowledge of her utility matrix «”, and
aims to compute an SSE by interacting with the follower and gleaning information about uf".
For example, the leader could observe the follower’s best responses in play (akin to having
query access to BR), or observe the follower’s payoffs at pure strategy profiles during play
(akin to having query access to uf" as a function). Hence, this can be cast as the problem of
learning an SSE with a specified notion of query access to information about the follower’s
incentives.

Consider a game G = (u”,u!"). If the follower controls the flow of information to the
leader in this paradigm, he may consider perpetually interacting with the leader as if he
had a different payoff matrix @' (or a different BR correspondence BR), which can make
the leader believe that they are playing the game G = (u, @) (or G = (yL , ER)) This
deceiving power provides the follower with an incentive to act according to G for a judicious
choice of @ (or BR), because the SSEs in G may yield a larger utility (according to uf")
than the SSEs in G. More concretely, the example below shows that the follower can gain an
arbitrarily large benefit by deceiving the leader into playing a different game. The example
also shows that the leader’s utility loss can be arbitrarily bad.

Example 2.2 (Beneficial deception). Let o € [0, 1] and consider the following matrices:

1 0 0 «
w=(o0) =1 3)
Now, suppose that u = R and u = C,, and let z € [0, 1] represent the probability mass
that the leader (row player) places on the first row (her first strategy); thus, 1 — x is the

probability with which she plays her second strategy. Given this mixed strategy of the
leader, the utilities that the follower expects to derive from her two strategies (columns)

2. When mixed strategies of the follower are considered, a strategy profile (x,y) is an SSE if (x,j) is an
SSE (as in Definition 2.1) for all pure strategies j in the support set of y.
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are u’(z,1) = 1 —x and u’'(z,2) = a. Consequently, the first strategy is a best response of
the follower when z € [0,1 — a], and the second one is a best response when z € (1 — «, 1]
(when z = 1 — a, the tie is broken in favor of the leader). With this information, it is clear
that an SSE of the game occurs when the leader chooses x = 1 — « and the follower plays
his first strategy; in fact, this is the unique SSE when o < 1. As a result, the follower’s
utility is vt (1 —a, 1) =

However, for any a < 1, the follower has an incentive to deceive the leader into playing a
game G = (R, Cg) with 8 € («, 1), which will improve his true utility (computed according
to the true payoff matrix C,) in the resulting SSE to uf(1 — 8,1) = 3. The follower can
achieve this by responding to the learning algorithm’s queries optimally according to Cg
(or by misreporting Cg as his payoff matrix in scenarios where this information can be
conveyed directly). This is an improvement by a multiplicative factor of §/«, which can be
arbitrarily large when « approaches 0. Meanwhile, the utility of the leader drops from 1—«
to 1 — 8, which amounts to a multiplicative factor of (1 — «)/(1 — ) and can be arbitrarily
large when [ approaches 1. O

2.2 Inducible Strategy Profiles

The ultimate goal of the follower is to identify the SSE that maximizes his true utility, from
the set of SSEs that he can deceive the leader into learning. We will refer to such SSEs as
inducible strategy profiles. At a high level, the follower’s problem can now be expressed as
the following optimization problem:

r .
max u' (x,7),
x€AM—1] je[n] ( j) (1)

subject to  (x,7) is inducible

This maximum utility for the follower is called the optimal inducible utility. If the maximum
value is never achieved, then for every € > 0, we would like to be able to find an inducible
SSE that achieves a value e-close to the supremum value. We assume that the follower has
full information about the leader’s payoff matrix u” throughout.

As discussed previously, the leader can learn an SSE by querying the best responses of
the follower to particular leader strategies, or by querying more refined information about
the follower’s payoff matrix. Depending on the type of information queried, we can define
various notions of inducible strategy profiles.

In more detail, suppose the leader can only query the best responses of the follower, who
behaves according to some best response correspondence BR : A"~ — 2["] \ {@}. This
interaction between the leader and the follower leads to a game denoted as G = (u BR)
where the only information known is BR (instead of a payoff matrix implying BR) The
definition of BR enforces a best response answer to any possible query. Consequently, the
leader learns an SSE (x,j) € argmax ul(y, £), which yields the following

yeA™=1 (€ BR(y)
notion of BR-inducible strategy profiles.

Deﬁnition 2.3 (BR inducibility). A strategy profile (x, j) is BR-inducible with respect
to u” if there exists a best response correspondence BR : A™~! — 2l"1\ {7} such that t (x,7)
is an SSE of the game G = (u” BR) in which case we say that (x, j) is induced by BR.
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Next, consider the case where the leader can query information about the payoffs of the
follower, who can now behave according to a fake payoff matrix af’. We refer to the SSEs
of the resulting game G = (u”, @’ as payoff-inducible strategy profiles.

Definition 2.4 (Payoff inducibility). A strategy profile (x,j) is said to be payoff-
inducible with respect to ul if there exists @ € R™*" such that (x,j) is an SSE in the
game G = (ul, @""), in which case we say that (x, ) is induced by @F".

Clearly, payoff inducibility is stricter than BR inducibility: for every choice of al’,
the corresponding best response correspondence BR(y) = arg MaXyc|y] @¥ (y, ¢) induces the
same SSEs as @ does.

Note that the above definitions only require an inducible strategy profile to be a verifiable
SSE, with respect to the information about the follower’s incentives (either BR or a!"). It
may happen that the resulting game G has multiple SSEs (e.g., the game in Example 2.2
when o = 1), which gives rise to an equilibrium selection issue. Indeed, in practice, it is not
realistic to assume that the follower has any control over which SSE is chosen by the leader
(who moves first in the game), especially when there are SSEs involving different leader
strategies. To address this, and thus completely resolve the optimal deception problem for
the follower, we introduce an even stricter notion of inducibility on top of payoff inducibility,
which requires 5 to have a unique SSE.

Definition 2.5 (Strong inducibility). A strategy profile (x,7j) is said to be strongly
inducible with respect t0~uL , if there exists a matrix af € R™*" such that (x,j) is the
unique SSE of the game G = (u”, @), in which case we say that (x,j) is strongly induced
by @t

In the next sections, we will investigate solutions to (1) under the inducibility notions
above, from the weakest to the strongest. Our general approach is to decompose (1) into
n sub-problems by enumerating all possible follower responses j € [n]. For each response
7, we solve the corresponding optimization problem presented below, and pick the response
that yields the maximum utility for the follower.

F .
max u (x,7),
Jax out(x, ) @

subject to  (x,j) is inducible

Hence, our problem reduces to solving (2). As a final remark, one may wonder whether
relaxing the follower’s response in (1) (and in the SSE definition) to a mixed strategy
y € A" ! could improve the optimal inducible utility. This is not the case: If a strategy
profile (x,y) is an SSE in C:, then (x,j) should also be an SSE for each pure strategy j in
the support set of y, while u'(x,7) > u(x,y) := D tem) Ve u®’(x,£) should hold for at
least one j in the support set of y.

3. Best Response Inducibility

Let us start our analysis by considering the case in which the leader queries the best re-
sponses of the follower. The aim of the follower is to deceive the leader towards a strategy

513



BirMPAS, GAN, HOLLENDER, MARMOLEJO-Co0Ssio, RAJGOPAL, & VOUDOURIS

profile that is BR-inducible as defined in Definition 2.3. Indeed, if the follower is allowed to
use an arbitrary BR to induce a strategy profile (x, j), he can simply define BR as follows:

Bhiy) = {{j} ify =x

arg min,e i, ul(y,0) ify #x.

Namely, the follower threatens to choose the worst possible response against any leader
strategy y # X, so as to minimize the leader’s incentive to commit to these strategies. This
BR will successfully convince the leader that (x,7) is an SSE of G = (u”, BR) — hence
inducing (x, j) — if the threat is powerful enough, that is, if

ub(x,7) > minul(y,0) forally ¢ A™ L
le(n]

where the left hand side is what the leader obtains by committing to x, and the right hand
side is what she obtains by committing to y # x. Equivalently, this means that

ub(x,j) > M := max minul(y, ), (3)

yeAm=1 e]n]

where M is exactly the leader’s maximin utility. Indeed, (3) is necessary for (x,7) to be
BR-inducible: if on the contrary u’(x,j) < M, then by committing to

y* € arg max min u”(y, ¢),
yeAmfl ZG[?’L}

the leader can obtain (at least) her maximin utility, which will be strictly larger than
uk(x, j).

Thus, condition (3) gives a simple criterion for BR inducibility, as well as the following
LP (linear program) formulation for (2).

F .
max u (x,
(ax - u(x, ) n

subject to  u(x,j) > M

Although simple, the BR defined above may be far from being one that arises from a
choice of @!". Hence, we will next move one step closer to our next goal of studying payoff
inducibility, by imposing a stricter condition on BR, which is necessary (but not sufficient)
for a strategy profile induced by f?j% to also be payoff-inducible. We will show that, in fact,
the extra condition imposed on BR does not compromise its power, and (4) still applies as
a formulation under this stricter notion of BR inducibility. This result will be useful for
analyzing payoff inducibility in Section 4.

3.1 Polytopal BR Correspondence

In a similar vein to Goldberg and Marmolejo-Cossio (2018), we require that, for every
¢ € [n], the set of leader strategies to which £ is a best response is a closed convex polytope,
and the union of all these sets forms a partition of the entire strategy space A™~! (for
example, see the polytope partition of A% in Figure 1). Any best response correspondence
BR satisfying this assumption is called polytopal as is formally defined below.
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Definition 3.1 (Polytopal BR correspondence (Goldberg & Marmolejo-Cossio, 2018)).
A best response correspondence BR : A"~ — 2"\ {&} is polytopal if it also satisfies the
following:

~ 1
e BR ({) is a closed convex polytope for each ¢ € [n], and

e For each k # ¢, either relint(gjfl(k:)) ﬂrelint(gjfl(ﬁ)) =g or B\Ril(k) = B\Eil(ﬁ),
where relint(H) denotes the relative interior of a set H.

Being polytopal is necessary for BR to arise from some payoff matrix. Indeed, the true
best response correspondence BR, which arises from !, is polytopal: Each BR™1(¢) is a
closed convex polytope defined by the hyperplanes uf (y,#) > uf(y, k) for all k € [n] and
the borders of A™~!; in addition, U?ZlBRfl(E) = A™~! and for any ¢ # k, the polytopes
BR7'(¢) and BR™!(k) only intersect at their borders unless (-, ¢) = uf'(-, k). Thus, if the
follower attempts to deceive the leader via a fake BVR, the leader might spot the deception
in case BR is not polytopal. .

It turns out that the following correspondence, which we denote as BRp, is polytopal
and, as we will shortly show, it is in fact as powerful as any best response correspondence:

{7} if y € A"\ Uj(x)
BRp(y) =< {j} Uarg MiNgep)\ {5} ub(y,0) ify € Uj(x) \ Uj(x)
arg minge )\ (3 u” (v, €) if y € Uj(x)

where Uj(x) is the closure of
Uj(x) := {y e AL, uL(y,j) > uL(x,j)} ,

and x is the leader’s strategy that we want to induce.? Intuitively, it is safe for the follower
to respond by playing j against any leader strategy y if u”(y,j) < u”(x,j), in which case
the leader does not strictly prefer commitment y to commitment x. In response to the
other strategies, however, the follower needs to respond differently in order to minimize the
leader’s incentive to commit to these strategies. Therefore, BRp will successfully induce
(x,7) if and only if the following holds:

ub(x,7) > max  min ul(y,0), (5)
yeU; (x) teln\{j}
where we use the convention that max @ = —oo. It is easy to see that BVRP is indeed
~ 1
polytopal: BRp (j) = A™ 1\ Uj(x) is a closed convex polytope, and the same holds for the

sets BY%;I(B) defined by the hyperplanes u”(y, ) < ul(y,k), k € [n] \ {j} and the borders
of U;(x), which further form a partition of U;(x).
The next lemma shows that (5) is in fact equivalent to (3), meaning that BRp is as

powerful as any BR: if (x,7) can be induced by an arbitrary BR then it can also be induced
by BRp.

3. Note that the use of U;(x), instead of the set {y € A™ ' :u"(y,j) > u"(x,j)}, is important: when
ub(y,§) = u(x, ) for all y € A™™!, these two sets define different behaviors.
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0 1 1
ub =11 —-1/2  1/2
1 1/2 —1/2

Figure 1: No payoff matrix @ realizes the polytopal BR correspondence ERP, such that ¢ € B\Ep if
and only if y € Ry, where Ry = {y € A2 1 y; > ya +y3}, Ro = {y € A2 : y1 < yo+y3 and y2 > y3},
and R3 = {y € A? 1 y; <yo+y3 and y2 < y3}.

Lemma 3.2. u”(x,j) > M if and only if u*(x,7) > Maxy oy y Mo (5} U L(y,0).

Proof. Recall that we want to show that u”(x,j) > M if and only if

uf(x,7) > max min ul(y,0) (6)

yeU; (x) Leln]\{s}

where M is the maximin utility of the leader. We show that (6) does not hold if and only
if uf(x,5) < M.

Suppose that (6) does not hold. Then u”(x,j) < Maxy g )mmge[n]\{]}u L(y,0) by
definition, which implies that U;(x) # . By the continuity of mingep, ;3 v L(.,0), there
exists y* € Uj(x) such that

L . : Ly *
u”(x,7) < min u”(y*,£).
( J) Le[n]\{j} ( )

By the definition of U;(x), we also have u(x, j) < ul(y*, 7). Thus,

L . .

j) < 0 < 0) = M.
(x,7) min v “y*,0) ygg@xlgﬁu "y, 0)

u
Conversely, suppose that u”(x,7) < M. Let y* € arg maxXy e am-1 Millgey ul(y, 0).
Thus, M = minyep, u”(y*,¢), and we have

ub(x,5) < M = minw Ly 0 <ub(y*,j)
(S

which implies that y* € U;(x). It follows that M = maxy s mingey, u”(y,f) and thus

uf(x,7) < max minu’(y,f) < max min u”(y,?),

yeU; (x) £€ln] yeU; (x) Leln\{j}

o (6) does not hold. O

We summarize our results from this section in Theorem 3.3. At this point, it might be
tempting to think that with the polytopal constraint imposed, we would also be able to
construct an explicit payoff matrix @ to implement BRp. Unfortunately, this is not true
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as Example 3.4 illustrates. Surprisingly though, in the next section we will show that, even
though we cannot construct a payoff matrix that implements BRp exactly, every strategy
profile (x,j) that is BRp-inducible is in fact also payoff-inducible. We also present an
efficient algorithm for computing a payoff matrix @ to induce such (x, j).

Theorem 3.3. A strategy profile (x,j) is BR-inducible if and only if u”(x,j) > M. The
result holds even if we require the best response correspondence to be polytopal.

Example 3.4. Consider a 3 x 3 game with the leader payoff matrix given in Figure 1.
Let BRp be a polytopal BR correspondence defined by the regions Rj, Rp, and Rz in
Figure 1, such that ¢ € BRp if and only if y € Ry. This best response behavior cannot be
realized by any payoff matrix. To see this, suppose BRp is realized by some ol e R3*3,
Let x = (3,1,0), w = (3,0,%), and z = (3,1,1). We have BRp(z) = {1,2,3} and
B?Bp(w) = {1,3}. This means that

ub(z, 1) = ub(z, 3) =ul(z, 2), and wul(w,1)=u"(w,3)>ul(w,?2).

Since x = 2z—w, by the linearity of the utility function, we then have u*(x, 1) = u*(x,3) <
u®(x,2), which contradicts the fact that BRp(x) = {1,2}. O

4. Payoff Inducibility

In this section, we will show that every strategy profile that can be induced by Bﬁp is also
payoff-inducible, and a corresponding payoff matrix can be efficiently constructed. Recall
that M = maxyecam-1 mingg[, u’(y, ) is the maximin utility of the leader. We will show
the following characterization as one of our key results, which enables us to use the LP in
(4) to efficiently compute a payoff matrix that achieves the optimal inducible utility.

Theorem 4.1. A strategy profile (x,7) is payoff-inducible if and only if u*(x,j) > M.
Furthermore, a matriz @' inducing (x,j) can be constructed in polynomial time.

One direction of the characterization is easy to show. Indeed, if (x,7) is payoff-inducible,
then it is also BR-inducible, and as seen in Section 3, it holds that u*(x,j) > M.

Now consider any profile (x,j) such that ul(x,j) > M. Recall that Uj(x) = {y €
AL ul(y,5) > ul(x,7)}. Without loss of generality, in what follows, we can also
assume that Uj(x) # @: if U;(x) = @, then (x,j) will be an SSE if the follower always
responds by playing j; this can easily be achieved by claiming that j strictly dominates all
other strategies, i.e., by letting @' (7, 7) = 1 and @'(i,£) = 0 for all i € [m] and £ € [n]\ {;}.

We begin by analyzing the following payoff function that forms the basis of our approach.
Let S C [n]\ {j} and pick k € arg min, g ul(x,¢) arbitrarily. For all y € A™~ ! let

—ul(y,0) iftes
a(y,0) =1 —ul(y,k) -1 ifrem\Suyy) (O
—ul(y, k) + a (ub(x,§) —ul(y,j)) if€=j

where a > 0 is a constant. In what follows, we will let BR denote the best response
correspondence corresponding to @', i.e., BR(y) = arg S S @ (y,?). Note that once
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S and « are given, we can compute the payoff matrix corresponding to @ in polynomial
time. Then, the hope is that with appropriately chosen S and «, this payoff matrix will
induce (x, 7). Indeed, @/ has the following nice properties:

i. Strategy j is indeed a best response to x, since, by the choice of & we have

" (x,5) = —ul(x, k) > —minu’(x, ) = max @’ (x, £).
les lesS

ii. Any ¢ € [n]\ (S U {j}) cannot be a best response of the follower as it is strictly
dominated by k, i.e., @' (y,f) < @l (y,k) for all y € A™~L. Thus, BR(y) C S U {j}
for all y € A™~1,

iii. If j is a best response to some y € A™~! then u”(y,j) < u*(x,7). Indeed, j € B\R(y)
implies that

a"(y,j) = maxa (y,0) > a" (y, k).

Len]
Substituting @/ (y,j) = —u*(y, k) + a (u*(x,j) — u"(y,j)) into this inequality and
rearranging the terms immediately gives u’(y, j) g ul(x, j).

iv. If any £ € S is a best response to some y € A™7! then it holds that @f(y,¢) =
max, g @ (y, ), which implies that

ub(y, 0) = minu”(y, ). (8)
r'eS

Therefore, if it also holds for the y in (iv) that

minu”(y, ) < u*(x,j),
el

then by (8) we will have u(y, £) < u*(x,j) for every £ € B\R(y) N S. This, together with
(i) and (iii), will imply that u”(x, j) > uF(y, €) for every £ € BR(y). Therefore, (x, j) will
indeed form an SSE given that j € ER(X) according to (i). We state this observation as
the following lemma.

Lemma 4.2. [fmin, g ul(y, ") < ul(x,j) holds for ally € A™ 1 such that E’Y%(y) NS
@, then the payoff matriz defined by (7) induces (x, 7).

Theorem 4.1 then follows from the following proposition, which we prove in Section 4.1
below.

Proposition 4.3. If ul'(x,j) > M and U;(x) # @, then we can construct 5 C n)\ {7}
and a > 0 in polynomial time, with which the condition of Lemma 4.2 holds for 4! defined

by (7).
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4.1 Proof of Proposition 4.3

The proof relies on Farkas’” Lemma presented below.

Lemma 4.4 (Farkas’ Lemma (Boyd & Vandenberghe, 2014)). Let A € R™*"2 gndb € R™.
Then exactly one of the following statements is true:

1. there exists z € R™ such that Az =b and z > 0;
2. there exists z € R™ such that ATz >0 and b -z < 0.

Consider any strategy profile (x,7) with ul(x,j) > M and U;(x) # @. We begin by
taking care of a simple case, as an immediate corollary of Lemma 4.2.

Corollary 4.5. A matriz @ that induces (x,7) can be constructed in polynomial time if it
holds that

Liy . L
u(x,7) > M_;:= max min u"(y,¥). 9
() 2 Moy = max | min u'(y.0) ©)

Proof. Let S = [n]\ {j}. Then, for every y € A™ 1 we immediately obtain that

L(x,j) > max min u®(y,£) > minu®(y,?)

u )
yeAm—1 ee[n]\{j} (eS8

By Lemma 4.2, the payoff matrix defined by (7) (with, say, @ = 1) then induces (x, j), and
can clearly be computed in polynomial time. O

The more challenging case is when (9) does not hold (e.g., the case with the profile (x, 1)
in Example 3.4). In what follows, we prove Proposition 4.3 by showing that there is still a
choice of S and a that leads to the condition in Lemma 4.2, even when (9) does not hold.
Thus, from now on, we assume that

ub(x,7) < M_;. (10)

We define the following useful components. By Lemma 3.2 and the assumption that
ul(x,§) > M, we know that

uf(x,7) >V := max_ min u®(y,¥). (11)
yeU;(x) Leln]\{s}

Since Uj(x) # @, there exists y* € U;(x) such that

: Ly %
min )=V, 12
Le[n]\{s} &6 (12)

which can be computed efficiently by solving an LP (i.e., maximize y, subject to u < u”(y, £)
for all £ € [n]\ {j} and y € U;(x)). We then let

S={ten\{j}: "y 0)=V}

Before we proceed, we prove two useful technical results.
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Lemma 4.6. v’ (y*,j) = u*(x,j).

Proof. For the sake of contradiction, suppose that u”(y*, j) # u”(x, 7). Since y* € U;(x),
we have that u”(y*, j) > u”(x, 7), so it must be that u”(y*,7) > u*(x, j).
The assumption (10) that u”(x, j) < M_; implies that there exists y € A™~! such that
. L/~ L .
min u”(y,f) > u"(x,7) >V,
ten]\{j} 3.0 (. J)
¢) =V by (12), by the concavity of

where we also use (11). Now that mingep\ ;1 v Ly,
z,0) >V for all z on the segment [y, y*);
*

minge[n]\{]} ul(-,0), it follows that Minge )\ (j} U L(z,
z € A" 1 as A™~is convex. Now that we have u”(y*, j) > u”(x, j) under our assumption,
when z is sufficiently close to y*, we can have u*(z,j) > u”(x,j) and hence, z € U;(x).

This leads to the contradiction that

V= max min ul(y,f)> min ul(z,0) >V O
yeU; (x) teln]\{j} Len]\{5}

Lemma 4.7. mingeg ul(y,0) <V for ally € Uj(x).
Proof. For the sake of contradiction, assume that there exists y € U;(x) such that

. L/~
0>V
minu”(§, £) =

By assumption (10) that ul(x,j) < M_;, we have that there exists z € A™~! such that
minge )\ (5} ul(z,0) > ul(x,j) > V, which immediately yields the following, given that
S C[n]\ {j} by definition:

min u”(z, £) > V.
Les

By definition, u*(y*,¢) = V for all £ € S, which also implies that u”(y*,£) > V for all
t € [n]\ ({s}US) (otherwise, we would have mingep,)\ (j1ut(y=,) < V). Thus, we have

: L % . L/ %
min u )=V and min  u ) > V.
g (™) rerhiyos * Y0

Now consider a point w on the segment (y*,y|. Since y* € Uj(x) and y € Uj;(x),
ie., ub(y*,7) > ul(x, ) and u*(¥,5) > uF(x,7), we have u*(w,j) > u”(x,7) and hence,
w € Uj(x). In addition, by continuity, when w is sufficiently close to y*, we have

min  uf(w,£) > V. (13)
Le[n]\({5}US)

By concavity of the function mingeg u (-, £), since mingeg u”(y, £) > V for both y € {y*,y},
we have

inu” > V. 14
min u (w,0) > V. (14)

Analogously, we can find a point w' € Uj;(x) on the segment (w,z], such that (13) and
(14) hold for w’ while (14) is strict, in particular. Thus, we have

min u(w,¢) >V = max min u”(y,¢)
ee[n)\{7} yEUj(x)Ze[n]\{j}

which is a contradiction as w’ € Uj(x). O
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In what follows, we use the coordinates (y1,...,ym_1) for every point y € A™~! ie.,
we have

m—1
AL = {(ylw--vyml) € Ry : Z yi < 1}-
i=1

Accordingly, we can write the utility function as
uL(y7 g) =8¢y + U'L(m7£)7

where gy € R™™! and its i-th component is g¢; = ul(i,¢) — u¥(m, £); “” denotes the inner
product. Hence, we have

g (y—-yH+V ifeesS

e vyttt e—j

uH(y, 0) =g (y—y*) +u(y*, 0) = {

where u’(y*,¢) = V for all £ € S by the definition of S, and u*(y*,j) = u*(x,j) by
Lemma 4.6. Note that since U;(x) # @, it must be that g; # 0.

We also write the m boundary conditions that define A™~! as e; -y > ;. Namely, for
each i € [m—1], let e; € R™~! be the i-th unit vector and 3; = 0, while e, = (-1,...,—1) €
R™ ! and B, = —1. Thus, A" ! = {y c¢ R""! : e;-y > ; for all i € [m]}. Let

B={iem]: e -y =05}

be the set of boundary conditions that are tight for y*. Note that for any y € A™~! we
have
e -(y—y")>0 foralieB. (16)

We can now prove the following result using Farkas’ Lemma (Lemma 4.4), which allows
us to express —g; as a non-negative linear combination of g,’s and e;’s.

Lemma 4.8. —g; can be expressed as a non-negative linear combination of {g, : £ €
Stu{e;:ie€ B}, ie. —gj =D ycg M8+ D icp i€, where A\ >0 and ju; > 0.

Proof. We use Farkas’ Lemma (Lemma 4.4) and let ny = m — 1 and ng = |S| + |B|. The
columns of A are exactly the vectors {g, : £ € S} U{e; : i € B}. We set b = —g;. Note
that the first alternative of Farkas’ Lemma immediately yields the statement we want to
prove. Thus, we set out to prove that the second alternative cannot hold.

Assume, for the sake of contradiction, that there exists z € R™~! such that ATz > 0
and b-z <0,ie,g-z>0foralll{e S, e-z>0foralliec B,and g;-z > 0.

Then, by picking § > 0 sufficiently small, it holds for y = y* + 0z that:

e By (15), we have the following for all £ € S:
Wy, ) =g (y -y ) +V =gz +V >V
In addition,
uH(y, ) =g (v —¥*) +ut(y" ) = 0gj 2+ ub(x, ) > uF(x, ).
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e y € A" L: For i € B, we immediately obtain that e;-y = e; - (y* +z) > e;-y* = f3;,
which means that these boundary conditions are satisfied. For i € [m]\ B, we know
that e; - y* > 5; and thus by picking § > 0 small enough, we can ensure that e; -y =
e; - y* + 5(91 . Z) > ﬁl

Thus, it follows that y € U;(x) and minges uX(y,¢) > V. But this cannot hold according
to Lemma, 4.7. [

To complete the proof of Proposition 4.3, we express —g; as a non-negative linear
combination of the vectors {gy : £ € S} U{e; : i € B}. By Lemma 4.8 we know that this
is feasible and it is easy to see that we can find the coefficients in polynomial time (e.g.
by solving an LP). We thus obtain —g; = > ,cq \g¢ + > ;g 1i€i, where Ay > 0 for every
¢ €S and p; > 0 for every i € B. Let § = {¢ €S : )X >0} We will argue that S+o.

Now that —g; = > cg Me¢+ > ;e p Hi€i, and we have e;- (y —y*) > 0 for all y € A™~!
and i € B by (16), it follows that, for all y € A™ !, we have

—gi (Y-y) =) Mg (y-y)+ Y miei- (y— )

tes iB

> Mege- (y—v")
tes

=> Mg (y -y, (17)
te8

where the last transition is due to the fact that Ay = 0 for all £ € S\ S , as implied by the
definition of S.

Since Uj(x) # &, consider any y € Uj(x). By definition, this means that u”(y,j) >
ul(x, j), which further implies that g; - (y —y*) > 0 since u’(y,j) = g; - (y —y*) +u*(x, j)
by (15). By (17), we then have

> Age- (y —y") <0,
0es

Hence, S #* .

It remains to show that with the above S and, in particular, a = 1/\; (recall that k €
argmin, g u(x,¢)), the condition in Lemma 4.2 holds, i.e., we prove that min, g ul(y, 0) <
u(x, 7) holds for all y € A™~! such that E?%(y) NS +o. .

For the sake of contradiction, suppose that there exists y € A™~! such that BR(y) N
S # @, but ul(y, ) > ul(x,j) for all £ € S. By (11), we have uX(x,j) > V, and thus
ul(y,0) > V for all £ € 5. Since we have u(y,0) = g;- (y — y*) + V according to (15), it
follows that

g (y-y)>0
for all £ € 5. Using (17) and the fact that k € S by our choice, we then obtain

—gi (y=¥) =) Mg (y—y) = Mg (y —¥)
€S
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By (15), we have
ul(x,7) —ub(y,j) = —g; - (y = ¥).

Recall that it is defined that @* (y, j) = —u’(y, k) +a (u*(x,j) — u’(y,j)) as in (7). Using
the above two equations and (15), we then obtain:

@ (y,j) = —u™(y, k) + o (u"(x,5) — " (y,))
=-—gr (y-y)-V-oagj (y-y)
>V (a —l)gr-(y —y")
=_V.

However, by (7) we also have @' (y,0) = —ul(y,0) if £ € S, which implies that for all
¢ € S it holds that
a(y,j) = =V > —u(y. ) = a"(y,0).

Hence, B\R(y) NS =o , which contradicts our assumption. This concludes the proof of
Proposition 4.3.

5. Robustness with Respect to Equilibrium Selection

As discussed in Section 2, a weakness of BR- and payoff-inducible strategy profiles is that
the resulting games may have multiple SSEs, in which case the follower depends on the
leader to choose the SSE that maximizes his utility. To avoid this, in this section, we turn
our attention to strong inducibility (see Definition 2.5) and attempt to find a payoff matrix
¥ such that § has a unique SSE.

We begin with an example showcasing that, in general, the best strongly inducible profile
can be much worse than the best payoff-inducible profile.

Example 5.1. Consider a 3 x 2 game G = (u”,uf") with the payoff matrices given in
Figure 2. Note that the follower obtains positive utility only by playing his strategy 1.
Now, observe that the SSE (x*,1), x* = (0,0,1) € A2, is payoff-inducible and yields utility
1 for the follower: it can be induced by any payoff matrix in which strategy 1 of the follower
strictly dominates all other strategies. However, such a payoff matrix will also induce other
SSEs, e.g., (y*,1) with y* = (1,0,0) € A2. Indeed, it holds that no profile of the form (y, 1)
can be strongly induced, and thus the optimal utility the follower can obtain at a strongly
inducible profile is 0. To see this, first note that, as seen above, if the follower claims that
strategy 1 is his unique best response for all points in A2, then the SSE is not unique. On
the other hand, if strategy 2 is a best response at some point z € A2, then (y, 1) will not
be an SSE, since for the leader u”(y, 1) < u’(z,2) for any y,z € A2 O

The problem in Example 5.1 stems from the following observation: if the follower reports
a payoff matrix such that strategy 1 is the unique best response for all points in the domain,
then there are multiple SSEs. This can be thought of as a “degenerate” case, since it would
occur with probability 0, if the payoffs of the leader were drawn uniformly at random in
[0,1]. We formalize this as follows.

523



BirMPAS, GAN, HOLLENDER, MARMOLEJO-Co0Ssio, RAJGOPAL, & VOUDOURIS

Y2
1/4 1 1/2 0 1
ul =0 1/3 ulf = [1/2 0
1/4 2/3 1 0 R
x* Yy
0 1

Figure 2: A game where the optimal inducible utility is 1, but the optimal strongly inducible utility
is 0.

Y2
10 1/4 1/3 1 )
ub=[0 1 uf =174 1/2 ROV g
1/2 1/4 1 1/6 g
Ry Y1
x* 1
0 1

Figure 3: A non-max-degenerate game for which the optimal inducible utility cannot be achieved
by any strongly inducible profile.

Definition 5.2 (Max-degeneracy). A leader payoff matrix u”

if there exists j € [n] such that |arg max;c(n, uk (i, 7)| > 1.

is said to be max-degenerate,

We next provide an example showing that even when u” is not max-degenerate, we

cannot hope to exactly achieve the optimal inducible utility via a strongly inducible profile.

Example 5.3. Consider a 3 x 2 game with the leader and follower payoff matrices given
in Figure 3. It is easy to check that u” is not max-degenerate. Now, observe that the
maximin utility of the leader is M = 1/2 and is achieved at the point y* = (3,1,0) € A%
Let x* = (0,0,1) € A%, Since u”(x*,1) = 1/2 > M, it follows that (x*, 1) is payoff-inducible
by Theorem 4.1. Indeed, the partition (R, Ry) of A? in Figure 3 shows how (x*,1) can
be induced. Note that u'(x*,1) = 1, while any profile different from (x*,1) yields utility
strictly less than 1 for the follower. We will now show that (x*,1) cannot be strongly
induced, which implies that any strongly inducible profile gives utility strictly less than 1
to the follower. Indeed, suppose that (x*,1) is induced by some @’ If by @' strategy 1 is
a best response to y*, then (x*,1) cannot be the unique SSE, since u”(x*,1) = u*(y*, 1).
On the other hand, if strategy 2 is the only best response to y*, then there exists some
sufficiently small 6 > 0 such that strategy 2 is also a best response to w* = (% -9, % +4,0)
(see Figure 3). However, this means that (x*,1) cannot be an SSE, since u’(x*,1) = 1/2
and ul(w*,2) = 1/2 + 4. O

As a result, unlike in the previous section, here we cannot hope to solve the problem
exactly. However, the next theorem shows that we can approximate the optimal utility with
arbitrarily good precision.
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Theorem 5.4. If u” is not max-degenerate, then for any e > 0, the follower can strongly
induce a profile (x, 7) that yields the optimal inducible utility up to an additive loss of at most
e. Furthermore, a matriz @' strongly inducing (x,j) can be constructed in time polynomial
in log(1/e) (and the size of the representation of the game).

Proof. Let (x*,7) be a payoff-inducible profile that yields the optimal inducible payoff for
the follower. By Theorem 4.1, such a profile can be computed in polynomial time.
We begin by solving the following LP.

max o
d,x
subject to x € A™! (18)
UF(X,j) > UF(X*7j) — €

u(x,7) = ub(x*,§) + 6

Note that this LP can be solved in time polynomial in log(1/¢). Furthermore, note that the
polytope of feasible points is not empty since § = 0 and x = x* satisfy all the constraints.
Finally, the LP is not unbounded since § can be at most max;cp ul(i, ) — ub(x*, 7).

In the rest of this proof let § and x denote an optimal solution to this LP. Note that
we can in particular assume that x is a vertex of the convex polytope Ps = {y € A™ ! .
ul(y,7) = u*(x*,j) + 0}. Indeed, given a solution §,x to LP (18), if x is not a vertex of
Ps, then we consider the LP

max ' (y, j)
y
subject to y € A™1
ut(y, j) = ut(x",j) + 6

It is known that a solution of an LP that is also a vertex of the feasible polytope can be
computed in polynomial time (Grotschel et al., 1981). Note that in this case the feasible
polytope is exactly Ps. Let y be an optimal solution that is a vertex of Ps. We know that
x € P5 and uf'(x,j) > uf'(x*,j) — ¢, which implies that u*'(y, j) > uf'(x*,j) — . But this
means that 0,y is also an optimal solution to the original LP (18). Thus, by letting x :=y,
we indeed have that x is a vertex of the convex polytope Ps.

Let us first handle the case where 6 = 0 by showing that (x*,j) itself can be strongly
induced. Since § = 0, it follows that U;(x*) = @. Indeed, if there exists y € A™!
with u”(y, ) > ul(x*,j), then there exists y on the segment (x*,y] such that uf (y,;) >
uf’(x*, j) —e (when y is sufficiently close to x*) and u*(y, j) > u”(x*, 7), a contradiction to
the optimality of § = 0. Now, given that U;(x*) = @, we have that u(y, j) < u®(x*,7) for
ally € A™~!. But since u” is not max-degenerate (in the sense of Definition 5.2), it follows
that in fact u’(y,j) < u*(x*,j) for all y € A™~1\ {x*}. Thus, if the follower always best
responds with strategy j, then (x*,j) will be the unique SSE. As seen before, it is easy
to implement this behavior by reporting @’ (i,7) = 1 and @'(i,£) = 0 for all i € [m] and
te ]\ {j}

In the rest of this proof, we consider the case § > 0 and show that (x,j) can be strongly
induced. Since uf'(x,j) > uf'(x*,j) — ¢, this means that at (x,j) the follower achieves the
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optimal inducible utility up to an additive error of €. Using the same notation as in the
proof of Proposition 4.3, we let

B={ic[m]:e  -x=p}

denote the set of boundary conditions of A™~! that are tight for x. Note that since x is a
vertex of the polytope Ps, it follows that B # @. We let h = ). 5 e;. As in the proof of
Proposition 4.3, we have that for all y € A™~! it holds that

=D ei(y—%)>0. (19)
i€B
Furthermore, since x is a vertex of Ps, it follows that for all y € Ps \ {x} there exists i € B
such that e; - (y —x) > 0, and thus

h-(y —x) > 0. (20)

Indeed, if e; - (y —x) = 0 for all i € B for some y € Pj\ {x}, this would contradict the fact
that x is a vertex of Ps (i.e. the unique point in Py for which the boundary conditions in B
are tight).

We are now ready to construct the payoff matrix reported by the follower. Pick an
arbitrary k € arg minge )\ (; ur(x,0). For all y € A™ 1 let

PP Sl A0 if £ € [n]\ {j}
0= {uL(y,k) +a(ub(x,j) —ut(y,j) —h-(y —x) ifl= 2y

where a = (2 MaX;e|[m] MAXpe ] !uL(i, E)‘ +m) /6 > 0. Note that we can compute the payoff
matrix corresponding to this utility function in polynomial time. In the remainder of this
proof, we show that (x,7) is the unique SSE of the game (u”, a!").
Clearly, j is a best response at x, since

A L . L ~F

o (x,7) u”(x, k) [eﬁl]l\r}d}u (x,0) Eer[zl]a\){(j}u (x,0),
by the choice of k.

Next, let us show that if j is a best response at some y € A™ 1\ {x}, then u”(y,j) <

ul(x, 7). Indeed, if j is a best response at y, then in particular @ (y,j) > @ (y, k), which

implies that

H

a(ut(x.j) —u"(y.j)) = - (y —x). (22)
Since h - (y — x) > 0 by (19), and « > 0, it follows that u”(x,j) > u*(y, 7). It remains to
show that u”(x, j) # u”(y, 7). But if u’(x,5) = u”(y,j), then y € Ps\ {x} and so by (20)
we have h - (y — x) > 0, which contradicts (22).
Finally, it remains to show that if £ € [n] \ {j} is a best response at some y € A™ 1,
then it must be that u”(y, ) < u”(x,j): Indeed, if £ € [n] \ {j} is a best response at y,
then in particular @ (y,j) < @ (y, ), which by (21) means that

bx,5) —ut(y, ) < —u"(y,0) + u"(y, k) + h - (y — x)
< —ub(y,0) +ut(y, k) + ||h||2\|Y—XH2
SQmaxmaX|u (i, )+ vVm —1vVm

€[m] '€ln)
ad

a(u

IN
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by the choice of a. Thus, we obtain that u’(x,j) — u’(y,j) < &, which implies that
ul(y,j) > ul(x*,7), ie. y € U;j(x*) (since U;(x*) # @). Since (x*,j) is payoff-inducible,
which means that u”(x*,j) > M, we can use Lemma 3.2 to obtain

ul(x,7) = ub(x*,7) + 0 > uF(x*,5) > min _ul(y,¢) =ul(y,0)
en\{7}

where the last equality comes from the fact that £ is a best response at y, i.e., in particular
@ (y, 0) = maxpep) 5y @ (v, £)- O

6. Conclusion and Future Work

Our work — essentially establishing that the follower can always optimally and efficiently
deceive the leader — demonstrates the power of exploiting information asymmetry in Stack-
elberg games. Indeed, we have shown that the follower can exploit such an asymmetry to
the fullest: any strategy profile can be induced as an SSE as long as it provides the leader
her maximin utility. In particular, our results indicate that there are inherent risks when
the leader uses a learning algorithm to decide on how to commit in a Stackelberg game.
An interesting question that emerges is thus how to design countermeasures to mitigate
the potential loss of a learning leader due to possible deceptive behavior of the follower.
This problem has been studied by Gan et al. (2019b) by using a mechanism design ap-
proach. They proposed that the leader could counteract by committing to a mechanism,
which prescribes a strategy to play for each possible payoff matrix the follower uses. Such
a mechanism admits an easy representation in their model because there is only a finite
number of payoff matrices the follower can use, but this is not the case for our model.

It would also be interesting to explore whether the optimal follower payoff matrix (or a
good approximation thereof) can still be computed efficiently, when additional constraints
are imposed on how much the follower can deviate from his true payoff matrix. Furthermore,
our results rely on having access to the leader’s payoff matrix u”, so it would be interesting
to see whether deception is still possible when partial access to u! is given, or the values
of u” are revealed in an online manner via querying. Finally, another interesting direction
would be to perform empirical analyses to study the average utility gain of the follower, as
well as the average loss of the leader, using both synthetic and real world data.
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