
Journal of Artificial Intelligence Research 70 (2021) 1517-1555 Submitted 11/2020; published 04/2021

MADRaS : Multi Agent Driving Simulator

Anirban Santara nrbnsntr@gmail.com
Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, WB, India

Sohan Rudra sohanrudra@iitkgp.ac.in
Department of Mathematics,
Indian Institute of Technology Kharagpur, Kharagpur, WB, India

Sree Aditya Buridi buridiaditya@iitkgp.ac.in
Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, WB, India

Meha Kaushik meha.kaushik@microsoft.com
Microsoft, Vancouver, Canada

Abhishek Naik abhishek.naik@ualberta.ca
Department of Computing Science, University of Alberta,
Alberta, Canada

Bharat Kaul bharat.kaul@intel.com
Parallel Computing Lab, Intel Labs, Intel, Bengaluru, KA, India

Balaraman Ravindran ravi@cse.iitm.ac.in

Robert Bosch Center for Data Science and Artificial Intelligence,

Indian Institute of Technology Madras, Chennai, TN, India

Abstract

Autonomous driving has emerged as one of the most active areas of research as it has
the promise of making transportation safer and more efficient than ever before. Most real-
world autonomous driving pipelines perform perception, motion planning and action in a
loop. In this work we present MADRaS, an open-source multi-agent driving simulator for
use in the design and evaluation of motion planning algorithms for autonomous driving.
Given a start and a goal state, the task of motion planning is to solve for a sequence of
position, orientation and speed values in order to navigate between the states while adhering
to safety constraints. These constraints often involve the behaviors of other agents in the
environment. MADRaS provides a platform for constructing a wide variety of highway and
track driving scenarios where multiple driving agents can be trained for motion planning
tasks using reinforcement learning and other machine learning algorithms. MADRaS is
built on TORCS, an open-source car-racing simulator. TORCS offers a variety of cars
with different dynamic properties and driving tracks with different geometries and surface
properties. MADRaS inherits these functionalities from TORCS and introduces support for
multi-agent training, inter-vehicular communication, noisy observations, stochastic actions,

c©2021 AI Access Foundation. All rights reserved.

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

and custom traffic cars whose behaviors can be programmed to simulate challenging traffic
conditions encountered in the real world. MADRaS can be used to create driving tasks
whose complexities can be tuned along eight axes in well defined steps. This makes it
particularly suited for curriculum and continual learning. MADRaS is lightweight and it
provides a convenient OpenAI Gym interface for independent control of each car. Apart
from the primitive steering-acceleration-brake control mode of TORCS, MADRaS offers a
hierarchical track-position – speed control mode that can potentially be used to achieve
better generalization. MADRaS uses a UDP based client server model where the simulation
engine is the server and each client is a driving agent. MADRaS uses multiprocessing to run
each agent as a parallel process for efficiency and integrates well with popular reinforcement
learning libraries like RLLib. We show experiments on single and multi-agent reinforcement
learning with and without curriculum.

1. Introduction

Inefficient driving habits of humans result in accidents, congestion and environmental pol-
lution. These issues can be addressed efficiently if cars are able to operate autonomously.
Additionally, humans lose hours of productivity in their cars towards their daily commute.
These possibilities have, of late, spurred an unprecedented amount of interest towards self-
driving car technology from researchers around the world.

Although realization of fully autonomous driving seems far flung, some specific low
level tasks pertaining to driving such as adaptive cruise control, lane keep assistance and
parking assistance have already been automated at a production scale in the form of Ad-
vanced Driver-Assistance Systems (ADAS) (Dikmen & Burns, 2016; Minster, Haghighat,
Chu, & Vogt, 2018). Safe, optimal and fast motion planning in complex, multi-modal,
multi-agent, and partially observable environments is the foremost technological challenge
towards achieving full autonomy. Achieving these goals tractably using traditional motion
planning algorithms – like Model Predictive Control, RRT, A∗, and Dijkstra – is only pos-
sible under certain simplifying assumptions on the complexity the environment (LaValle,
2006). On the other hand, Machine Learning based approaches including Reinforcement
Learning (RL) (Sutton & Barto, 2018) and Learning from Demonstration (LfD) (Argall,
Chernova, Veloso, & Browning, 2009) are capable of fast, reactive control under fewer as-
sumptions (Shalev-Shwartz, Shammah, & Shashua, 2016; Bojarski, Yeres, Choromanska,
Choromanski, Firner, Jackel, & Muller, 2017; Sharifzadeh, Chiotellis, Triebel, & Cremers,
2016; You, Lu, Filev, & Tsiotras, 2019). However the training phase of these algorithms
is often data-hungry (Fayjie, Hossain, Oualid, & Lee, 2018; Talpaert., Sobh., Kiran., Man-
nion., Yogamani., El-Sallab., & Perez., 2019) especially for those using highly expressive
and complex models like deep neural networks. RL based methods also require online inter-
action with the environment that entails risk (Shalev-Shwartz & Shashua, 2016; Santara,
Naik, Ravindran, Das, Mudigere, Avancha, & Kaul, 2018). Driving simulators attempt
to address these problems by rendering realistic driving conditions and traffic patterns in
which agents can collect training data many times faster than real time. They also provide
a sandbox environment where the agent can run into catastrophic situations while learning

1518

MADRaS : Multi Agent Driving Simulator

to drive without causing physical damage in the real world.

Real world driving scenarios have a high degree of variability and require the driver
to optimize for multiple – often conflicting – objectives depending on the situation they
are in. Curriculum learning (Bengio, Louradour, Collobert, & Weston, 2009) and contin-
ual learning (Parisi, Kemker, Part, Kanan, & Wermter, 2019) are two families of machine
learning algorithms that are relevant in this case. Curriculum learning provides a way of
learning complex skills efficiently by breaking up the problem into a hierarchy of sub-tasks
and learning to accomplish them in the order of increasing complexity. Continual learning
on the other hand deals with learning to accomplish new tasks without forgetting previously
acquired skills. A simulator for curriculum and continual learning of autonomous driving
agents should be able to create a large variety of driving scenarios with fine-grained control
on their complexities.

Since the early days of autonomous driving research, simulators have been used in the
development of different parts of the perceive-plan-act pipeline (Sulkowski, Bugiel, & Izy-
dorczyk, 2018). Most of these simulators cater to the task of perception. Back in 1989,
the creator of ALVINN, Dean A. Pomerleau, had used a simulator to generate training
images for road detection (Pomerleau, 1989). Thanks to the recent advances in computer
graphics, modern driving simulators and games like Grand Theft Auto – V 1 can render
photo-realistic driving scenes with accurate depiction of illumination, weather and other
physical phenomena. They also simulate real-life sensors that can be used to collect syn-
thetic data from these scenes to augment real-world driving datasets. Recent works (Chen,
Seff, Kornhauser, & Xiao, 2015; Richter, Vineet, Roth, & Koltun, 2016; Richter, Hayder, &
Koltun, 2017; Ros, Sellart, Materzynska, Vazquez, & Lopez, 2016) have demonstrated that
training perception algorithms on these augmented datasets result in better generalization
in the real world that is crucial for safe and reliable autonomous driving. Most notable
open-source driving simulators in this category are CARLA (Dosovitskiy, Ros, Codevilla,
Lopez, & Koltun, 2017), Microsoft AirSim (Shah, Dey, Lovett, & Kapoor, 2018), Deep-
Drive.io and Udacity’s Self Driving Car Simulator (Brown et al., 2018). These simulators
can, in principle, be also used for planning tasks. However, an agent learning to face real
world driving scenarios must learn to be invariant to road geometries, traffic patterns and
vehicular dynamics. These simulators do not offer enough variability along these dimensions
that is necessary to learn the invariances. In a typical driving scene, multiple entities (cars,
buses, bikes, and pedestrians) try to achieve their objectives of getting from one place to
another fast, yet safely and reliably. A simulator for such an environment should provide an
easy way to create arbitrary traffic configurations. The task of negotiating in traffic is akin
to finding the winning strategy in a multi-agent game (Dresner & Stone, 2008). Hence, an
autonomous driving simulator should be able to simulate different varieties of traffic and
support multiple agents learning to negotiate and drive through cooperation and compe-
tition. Among the aforementioned simulators, AirSim, DeepDrive.io and Udacity provide
some preset driving conditions mostly without traffic. They do not provide any straightfor-
ward way to create custom traffic or train multiple agents. CARLA does provide an API for

1. Available online at https://www.rockstargames.com/V/

1519

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

independent control of cars that can be used for multi-agent training and creating custom
traffic cars. However, most of the variability presented by CARLA is in the perceived inputs
and not in the behavioral dynamics of the ego-vehicle or the traffic agents. This motivated
us to develop a dedicated simulator for learning to plan in autonomous driving with a focus
on learning invariances to road geometries, traffic patterns and vehicular dynamics in both
single and multi-agent learning settings.

In this paper we present MADRaS, a M ulti-Agent DRiving S imulator for motion plan-
ning in autonomous driving and demonstrate its ability to create driving scenarios with
high degrees of variability. We present results of training reinforcement learning agents to
accomplish challenging tasks like driving vehicles with drastically different dynamics, ma-
neuvering through a variety of track geometries, navigating through a narrow road avoiding
collisions with both moving and parked traffic cars and making two cars learn to cooperate
and pass through a traffic bottleneck. We also demonstrate how curriculum learning can
help in reducing the sample complexity of some of these tasks. Built on top of the TORCS
platform (Wymann, Espié, Guionneau, Dimitrakakis, Coulom, & Sumner, 2000), MADRaS
uses simplified physics simulation and representative graphics to reduce the computational
overhead for perception and action. It allows for the addition of learning and non-learning
cars to a driving scene to create custom traffic configurations and train multiple agents
simultaneously. Each driving agent gets a high-level object-oriented representation of the
world as observation and an OpenAI gym (Brockman, Cheung, Pettersson, Schneider, Schul-
man, Tang, & Zaremba, 2016) interface for independent control. MADRaS is open source2

and aims to contribute to the democratization of artificial intelligence.

The rest of the paper is organised as follows. Section 2 introduces the theoretical
concepts that guide the organization of MADRaS. Section 3 describes our contributions
in this project in detail. Section 4 presents six experimental studies that highlight the
ability of MADRaS to simulate driving tasks of high variance. Finally, Section 5 concludes
the paper with scopes of future work.

2. Background

In this section, we introduce the concepts of Markov Decision Process (MDP), Markov
Game (MG), Reinforcement Learning (RL) and Episodic Learning that comprise the foun-
dation of MADRaS.

2.1 Reinforcement Learning in Markov Games

Markov Decision Process (MDP) is a mathematical construct that is commonly used in
the artificial intelligence literature to describe an environment in which agents learn to act
(Sutton & Barto, 2018). In a single-agent learning set-up, an MDP can be expressed as a
4-tuple: M = 〈S,A, P,R〉. It consists of a state space S, an action space A, a transition

2. Code available at https://github.com/madras-simulator/MADRaS

1520

MADRaS : Multi Agent Driving Simulator

dynamics function P : S × A× S → [0, 1] that gives the probability distribution over next
states for each action taken in a given state and a reward function R : S × A → R that
qualifies the task at hand. An agent learning to act in this environment receives observa-
tions about the current state and samples actions from its policy π : S × A → [0, 1] which
is a conditional distribution over A given a state in S. The reward function R gives scalar
feedback about these actions that indicate the agent’s progress towards the goal. The agent
optimizes the parameters of its policy to maximize the cumulative reward received from
the environment. This form of learning through trial and error with feedback from the
environment is known as Reinforcement Learning (RL).

In a multi-agent reinforcement learning set up, the environment is described as a Markov
Game (MG) which is a generalization of MDP to capture the interplay of multiple agents
(Littman, 1994; Bu, Babu, De Schutter, et al., 2008; Bowling & Veloso, 2000; Da Silva &
Costa, 2019; Lin, Beling, & Cogill, 2017; Yu, Song, & Ermon, 2019; Lin, Adams, & Beling,
2018). An MG is a tuple 〈S, {αi}ni=1, {Ai}ni=1, P, {Ri}ni=1〉. Here, {αi}ni=1 denotes a set of n
agents that simultaneously learn to act in an environment with state space S and transition
dynamics function P . Ai and Ri denote the set of actions and reward function for agent αi.

2.2 Episodic Learning

In episodic learning (Seel, 2011), an agent’s experience happens in the form of episodes.
Each episode begins with the agent in one of the initial states of the environment. The
state of the environment changes in response to the agent’s actions and the episode ends
when the environment sends a done signal to the agent. In a general multi-agent learning
setting, the environment may send a done signal to each agent separately at different time
steps resulting in different episode lengths for each agent. When the episodes of all the
agents end, the environment resets itself to one of its initial states and starts new episodes
for each agent.

3. MADRaS Simulator

In this section we describe the structure and organization of the MADRaS simulator which
constitutes the main contribution of this paper. The current version of MADRaS is focused
on track driving. Track driving is traditionally used in the automotive world to benchmark
driver skill and car agility. We first present a brief overview of the TORCS simulator and
associated prior works that MADRaS builds upon. Then we describe the new features that
we develop in this project and present a thorough empirical analysis of their relevance in
the context of planning in autonomous driving.

3.1 TORCS Simulator

MADRaS is based on TORCS which stands for The Open Racing Car Simulator (Wymann
et al., 2000). It is capable of simulating the essential elements of vehicular dynamics such
as mass, rotational inertia, collision, mechanics of suspensions, links and differentials, fric-
tion and aerodynamics. Physics simulation is simplified and is carried out through Euler

1521

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Table 1: Comparison of Gym TORCS (Yoshida, 2016) with MADRaS

Feature Gym TORCS MADRaS

scr-server architecture X X
observation noise × X
stochastic outcomes of actions × X
parallel rollout support × X
multi-agent training × X
inter-vehicular communication × X
custom traffic cars × X
domain randomization × X
centralized configuration × X
modular reward and done functions × X
hierarchical action space × X

Figure 1: Architecture of the MADRaS simulation environment. Each double headed arrow
indicates one UDP communication channel between the TORCS server and one of the clients
(traffic or MADRaS agents). The server listens to the ith client through a dedicated port
denoted by pi in the figure. MADRaS assigns these ports in order, first to the traffic agents
and then to the learning agents. The Markov Game terms are also marked in their respective
places of definition in the figure.

1522

MADRaS : Multi Agent Driving Simulator

integration of differential equations at a temporal discretization level of 0.002 seconds. The
rendering pipeline is lightweight and based on OpenGL (Neider, Davis, & Woo, 1993) that
can be turned off for faster training. TORCS offers a large variety of tracks and cars as
free assets that we discuss later in this section. It also provides a number of programmed
robot cars with different levels of performance that can be used to benchmark the perfor-
mance of human players and software driving agents. TORCS was built with the goal of
developing Artificial Intelligence for vehicular control and has been used extensively by the
machine learning community ever since its inception (Li, Song, & Ermon, 2017; Lillicrap,
Hunt, Pritzel, Heess, Erez, Tassa, Silver, & Wierstra, 2019; Loiacono, Prete, Lanzi, & Car-
damone, 2010b; Koutńık, Cuccu, Schmidhuber, & Gomez, 2013; Koutńık, Schmidhuber, &
Gomez, 2014; Onieva, Cardamone, Loiacono, & Lanzi, 2010).

3.2 SCR Server-Client Architecture

The Simulated Car Racing (SCR) Championship (Loiacono, Lanzi, Togelius, Onieva, Pelta,
Butz, Lonneker, Cardamone, Perez, Sáez, et al., 2010a) is an annual car-racing competition
where participants submit controllers for racing in the TORCS environment. It provides a
software patch for TORCS known as scr server (Loiacono, Cardamone, & Lanzi, 2013).
It sets up a UDP based client-server architecture in which the competing cars can operate
independent of one another. The server runs the TORCS simulator. Each client represents
a car that runs as a separate process and communicates with the server through a dedicated
UDP port. The patch also provides a layer of abstraction over TORCS in which each car
has access to an egocentric view of the environment and not the entire game state. The
server polls actions from the clients and updates the game-state every 0.02 seconds of sim-
ulated time. The official build of TORCS supports up to 10 SCR clients at a time but with
modifications like in (Kaushik, Prasad, Krishna, & Ravindran, 2018) the number of clients
can be increased arbitrarily.

3.3 GymTORCS Environment

GymTORCS (Yoshida, 2016) is an OpenAI Gym (Brockman et al., 2016) wrapper for
SCR cars built for use in Reinforcement Learning experiments. It uses a custom library
called Snake Oil to create a client for communicating with the TORCS server through the
scr server interface. Snake Oil also provides plug-ins for automatic-transmission, trac-
tion control and throttle control which can be used to provide different control modes to
the driving agent. GymTORCS is popular in the reinforcement learning community for
experiments on driving tasks (Kaushik et al., 2018; Liu, Siravuru, Prabhakar, Veloso, &
Kantor, 2017; de Bruin, Kober, Tuyls, & Babuška, 2018; Dossa, Lian, Nomoto, Matsubara,
& Uehara, 2019). MADRaS builds on GymTORCS by increasing its stability and ease of
use and adding features like multi-agent training and custom traffic cars.

1523

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

3.4 MADRaS: Multi-Agent Driving Simulator

Having described TORCS and associated prior works that form the foundation of MADRaS,
we now present our contributions in this project. As GymTORCS is pre-dominantly de-
signed for single-agent training, the environment is inherently structured as an MDP. This
restricts its usage for multi-agent training. MADRaS is GymTORCS restructured as an
MG with some added functionalities (see Table 1). Figure 1 describes the architecture
of MADRaS. MADRaS Environment consists of a MADRaS World and a given number of
MADRaS Agents ({αi}i). MADRaS World consists of a TORCS server and a given number
of traffic agents each of which executes an independently configured behavior. The state
space (S) and the transition dynamics (P) of the MG are defined by the MADRaS World.
Each MADRaS Agent αi runs as an SCR Client with a modified Snake Oil interface that
has its own action space Ai and reward function Ri which are independent of the action
spaces and reward functions of the other agents. Unlike GymTORCS, MADRaS Agents
can not reset the TORCS server. This allows for multiple agents to complete their episodes
independently. MADRaS Environment resets its MADRaS World and in turn its TORCS
server when all the agents have terminated their episodes. MADRaS also provides a number
of ways to configure the initial state of the environment for the task at hand. The initial
distance from the start line and position with respect to the track edges can be specified in-
dividually for both the learning cars as well as the traffic agents. Thus MADRaS harnesses
the full potential of the SCR server-client architecture and enables multi-agent training.
We describe the salient features of MADRaS in the remaining part of this section.

3.4.1 Traffic Agents

MADRaS introduces support for adding non-learning traffic agents in the environment that
execute a pre-defined behaviour. These are different from the robot cars that come bundled
with TORCS for benchmarking racing agents. MADRaS provides a base class that can be
used as template to create traffic cars with interesting behavioral patterns and some sample
traffic classes as free assets (see Table 2). The base class also comes equipped with methods
to prevent collision and going out of track. Each traffic agent runs as a parallel process
independent of the learning agent and has an SCR client that talks to the TORCS server
through a dedicated port. MADRaS takes care of the configuration and assignment of a
requisite number of server ports for connecting all the learning and traffic agents properly at
the start of each episode. The number and behavior of traffic agents can be varied between
episodes.

3.4.2 Tracks

One of the major advantages of TORCS as the platform of choice for building MADRaS
is the availability of a large number of tracks with different geometric (see Figure 2) and
surface properties. At the time of writing this paper, TORCS offers 9 oval, 21 road, and 8
dirt tracks. It also offers a software package3 that can be used to create different variants

3. Official track-editor package of TORCS: http://www.berniw.org/trb/download/trackeditor-0.6.2c.
tar.bz2

1524

MADRaS : Multi Agent Driving Simulator

Table 2: Sample traffic agents in MADRaS.

Name Behaviour

ConstVelTrafficAgent Drives at a given speed at a given track-position.

SinusoidalSpeedAgent Varies the speed sinusoidally while driving at a given
track-position.

RandomLaneSwitchAgent Agent switches lanes randomly while driving.

DriveAndParkAgent Agent drives to a given distance and track-position
and parks itself.

ParkedAgent Agent remains parked at a given distance and track-
position throughout.

RandomStoppingAgent Agent halts randomly while driving.

Figure 2: Schematic diagrams of road tracks in TORCS (Wymann et al., 2000).

of these tracks. MADRaS inherits these free assets from the TORCS project. A limitation
of GymTORCS is that a track chosen at the beginning of a training experiment remains
fixed throughout. This often causes the agent to memorize the track resulting in poor
generalization. MADRaS ameliorates this by introducing an option to select a track at the
beginning of each episode. Thus the agent can be exposed to multiple tracks during training.

3.4.3 Car Models

TORCS provides 42 car models with a wide range of dynamic properties. However, Gym-
TORCS only supports a single default car type named car1-trb1. MADRaS is capable of
changing cars at the beginning of each training episode. Thus it makes it possible to train
an agent to drive cars with drastically different dynamic properties. Also, the learning and
traffic agents can be assigned different car types for visual distinction.

1525

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

3.4.4 Modular Configuration

As Reinforcement Learning (RL) is one of the most powerful and actively researched ap-
proaches for robot motion planning, MADRaS has some features tailor-made for that pur-
pose. The exercise of tuning an RL algorithm for a given task usually involves tweaking the
reward function and episode termination (“done”) criteria. It is important to keep accurate
track of these parameters across experiments to be able to arrive at the optimal training
configuration. GymTORCS has particularly poor configurability as it requires the user to
make changes in the Python source code which are difficult to keep track of. The entire
MADRaS environment including the initial state and the reward and done functions are
configurable through a single file named madras config.yml. A copy of this configuration
file can be saved in the training directory for effortless tracking across experiments. Please
refer to Appendix A for a detailed discussion on commonly used configuration variables in
madras config.yml and their functions. Appendix C explains how the initial state can be
configured for each episode.

The reward and done functions are usually composed of multiple parts that try to
capture events like arrival at the goal state, crashes and damages. Modularity of these
definitions in code is essential for fast iteration. MADRaS provides MadrasReward and
MadrasDone base classes as templates for defining the components of the reward and done
functions. Specifying a reward or done function in MADRaS is as simple as listing the
names of their components in the configuration file. Each MADRaS Agent comes with a
reward handler and a done handler that organize the listed components and set up the
corresponding functions. This modular architecture makes it easy to define new reward and
done functions and plug them in and out of experiments easily.

3.4.5 Observation Space

The Snake Oil library of GymTORCS provides a parser for the state information returned
by the TORCS server. These state variables include odometry, range data, obstacle detec-
tion, engine statistics and metadata regarding the position of the ego vehicle relative to the
other cars on the road. Such a high-level representation of the world is common in practical
autonomous driving pipelines (Bansal, Krizhevsky, & Ogale, 2018) as it helps in decou-
pling the perception and planning modules allowing them to be improved independently
and also reduces the sample complexity of machine learning based planning algorithms
(Shalev-Shwartz & Shashua, 2016). Raw visual inputs in the form of a stream of images
are also available. For a full list of state variables please refer to the Simulated Car Race
Championship paper (Loiacono et al., 2013). The observation vector of a MADRaS agent
is composed of a selection of these normalized state variables. For modularity and ease of
configuration, MADRaS provides an observation handler class that can toggle between
different sets of observed variables. The observations can optionally be made noisy to sim-
ulate a partially observed driving scenario.

1526

MADRaS : Multi Agent Driving Simulator

3.4.6 Action Space

The Snake Oil library allows GymTORCS agents to control cars via steering, acceleration
and brake commands. MADRaS inherits this primitive control mode and provides a gener-
alised interface that supports both hierarchical and non-hierarchical controllers. We show
experiments with both kinds of controllers and compare their relative performances in this
paper. The hierarchical controller used in our experiment implements a track-position –
speed control mode. In track-position – speed control mode, a MADRaS agent produces its
desired position with respect to the left and right edges of the track and its desired speed.
A low-level controller takes these non-primitive actions (desires) as inputs and calculates
a sequence of steering, acceleration and brake commands. The architecture of MADRaS
does not restrict the class of low-level controllers. We use a simple PID controller in the
experiments presented in this paper and we plan to add more tuned low level controllers to
the repository in the future.

The PID controller used in our experiments works in feedback mode over a number of time
steps denoted by PID latency. The PID latency controls the relative time scales of the
higher and lower level action spaces. The following is the expression of a PID controller for
control variable u.

u(t) = Kpe(t) +Ki

∫ t

0
e(t′)dt′ +Kd

de(t)

dt
(1)

Kp, Ki and Kd are the constants for the proportional, integral and derivative terms respec-
tively. Appendix B gives a detailed account of the implementation and behavior of the PID
controller. The track-position – speed action space is inspired by (Shalev-Shwartz et al.,
2016), where the authors note that training an RL agent to generate high-level desires while
relegating the low-level implementation of the desires to an analytical controller like PID
significantly reduces real world risk and increases the explainability of the agent’s behavior.
High level actions have also been reported to show better generalizability across vehicular
platforms (Behere & Törngren, 2016). All actions are normalized between −1 and 1 for
ease of optimization of neural network policies. The outcomes of the agent’s actions can op-
tionally be made stochastic. MADRaS implements this stochasticity by adding zero-mean
Gaussian noise to actions before sending them to the TORCS server.

3.4.7 Inter-vehicular Communication

The most salient feature of MADRaS is its support for multi-agent training. The success
of multi-agent learning is contingent on the ability of the agents to communicate among
themselves and plan actions taking into account the states and actions of the other agents
(Lowe, Wu, Tamar, Harb, Abbeel, & Mordatch, 2017). MADRaS provides a highly flexible
framework for inter-vehicular communication through a communication buffer and an agent
mapping function. The agent mapping function allows the user to specify a list of variables
that the ith agent wants to observe from the jth agent. The communication buffer records
these shared variables from the step t− 1 and makes them a part of the agents’ observation

1527

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Table 3: Parameters of the PID controller used in our experiments.

Kp Ki Kd

acceleration PID 10.5 0.05 2.8

steering PID 5.1 0.001 0.000001

vectors at step t.

3.4.8 Curriculum Design for Driving Agents

MADRaS has been designed to provide a playground for reinforcement learning agents to
learn to drive any car on any track in any kind of traffic within the TORCS environment.
In order to construct a driving problem of high variance, MADRaS can present an agent
with a different car to drive in a different track with a different number of traffic cars of
different behaviors chosen randomly or in a given order in every training episode. MADRaS
can also produce additional stochasticity by making the outcome of an action probabilis-
tic. Training deep neural network policies in high variance environments poses a highly
non-convex problem that is difficult to optimize. Curriculum learning (Bengio et al., 2009)
has been shown to be effective in reducing the sample complexity in such problems. Cur-
riculum learning involves training an agent on a sequence of tasks of increasing complexity.
MADRaS is designed with curriculum learning in mind. The complexity of the driving task
in MADRaS can be systematically increased in well defined steps along the following eight
dimensions:

1. Number of learning agents.

2. Number of cars to be presented to the agent to drive.

3. Number of tracks to be presented to the agent to drive.

4. Number of traffic agents.

5. Level of obstructive behavior from the traffic agents.

6. Target speed of the learning agent(s).

7. Degree of stochasticity to action-outcomes.

8. Presence of noise in observations.

In the following section we present a set of experiments to highlight the key features of
MADRaS.

4. Experiments

In this section we present the results of six experiments on single and multi-agent RL
for learning to drive in MADRaS. The purpose of these experiments is to highlight the
features of MADRaS that were discussed in the previous section as an improvement over
GymTORCS.

1528

MADRaS : Multi Agent Driving Simulator

4.1 Experimental Setup

We demonstrate how MADRaS can be used to create a wide variety of driving tasks that
can be addressed by RL. Table 4 presents a brief outline of our experiments and their indi-
vidual motivations. We use the Proximal Policy Optimization (PPO) algorithm (Schulman,
Wolski, Dhariwal, Radford, & Klimov, 2017) for RL in all our experiments. PPO is a trust-
region based local policy optimization algorithm that has been shown to be very effective
in learning policies for continuous control tasks (Andrychowicz, Baker, Chociej, Jozefowicz,
McGrew, Pachocki, Petron, Plappert, Powell, Ray, et al., 2020). We save the comparison of
different RL algorithms on MADRaS tasks for a future paper in the interest of brevity. All
the performance statistics presented in this section are estimated over at least 100 episodes.
All experiments with the track-position – speed action space have a PID latency of 5 time
steps. The reward functions of the RL agents are defined as weighted sums of reward (r)
and penalty (p) components with weights wr and wp, respectively:

agent reward =
∑

r∈rewards

wrr −
∑

p∈penalties
wpp (2)

Some general purpose reward and penalty components that are used in all the experiments
are as follows:

Progress Reward: Progress Reward rewards the agent for making a finite progress
at every time step. We calculate progress relative to a target speed. We reward the agent
proportional to its speed until it reaches the target speed. If the speed goes beyond the
target speed, we do not give the agent any extra reward. This way we prevent the agent
from maximizing its cumulative rewards by running fast and crashing rather than finishing
the race. Let d(t) be the distance (in meters) covered by the agent in the tth time step and
starget denote the target speed in meters per step. Progress reward is given by:

progress reward(t) = min

(
1,

d(t)

starget

)
(3)

Average Speed Reward: Average Speed Reward rewards the agent for maintaining
a high average speed only if it manages to complete a full lap of the track. Suppose the
average speed of the agent for a lap is savg. Average Speed Reward is calculated as:

average reward =
savg
starget

(4)

The Average Speed Reward is also scaled (but not capped) relative to the target speed
starget of the agent.

Angular Acceleration Penalty: This penalty is meant to discourage the agent from
making frequent unnecessary side-wise movements while running down a track. We calculate
a numerical approximation of angular acceleration from the the past 3 recorded values of
the angle between the car’s direction and the direction of the track axis. We scale the
penalty with respect to a reference αreference. Let at−2, at−1, at be three consecutive angles
of the agent. We calculate Angular Acceleration Penalty as:

1529

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

angular accleration penalty(t) =
|at + at−2 − 2at−1|

αreference
(5)

We set αreference to 2.0 in all our experiments.

Turn Backward Penalty: A fixed penalty of −1 if the car turns backwards.

Collision Penalty: A fixed penalty of −1 if the car collides with obstacles or other
cars and incurs a damage.

Apart from these we also use task specific rewards that we define separately in each exper-
iment.

We terminate an episode if one of the following events happen:

• car turns backwards,

• car goes out of track,

• car collides with an obstacle,

• agent fails to complete its task within the maximum allowable duration of an episode,

• agent successfully completes the task at hand.

Unless otherwise stated, we set the learning rate to 5 × 10−5. The policy and value
functions are modelled using fully connected neural networks with 2 hidden layers and 256
tanh–units in each layer. We use the PPO implementation of RLLib (Liang, Liaw, Moritz,
Nishihara, Fox, Goldberg, Gonzalez, Jordan, & Stoica, 2018) for all our experiments for its
stability and support for multi-agent training. The PID parameters used for track-position
– speed control are given in Table 3. Although ideally these parameters must be tuned for
each car and for each speed range, we use the same set of parameters (originally tuned for
medium-low speeds of car1-trb1) everywhere to check if it is possible to teach RL agents
to be robust to imperfections in the low level controller.

The remaining part of this section is dedicated to a detailed discussion of our experi-
ments and major observations4 that can be made from them.

Experiment 1: Generalization across tracks with higher level actions

In our first experiment, we compare two RL agents, one having the high-level track-position
– speed (T-S) control mode and the other having the low-level steer – acceleration – brake (S-
A-B) control mode, on their ability to generalize across multiple driving tracks in MADRaS.
We train the agents to drive car1-stock1 in the Alpine-1 track and evaluate them on the

4. Accompanying video: https://youtu.be/io5mP0HUytY

1530

MADRaS : Multi Agent Driving Simulator

Table 4: Outline of the experiments presented in this paper.

Exp No. Exp Name Motivation

1 Generalization across tracks
with higher level actions

Comparison of primitive and high-level con-
trol modes offered by MADRaS in terms of
generalization and handling.

2 Generalization across vehicu-
lar dynamics through random
car selection

Demonstration of how one of the task-
randomization modes of MADRaS can be
leveraged to train a single agent to drive a
wide range of cars with different vehicular dy-
namics by RL.

3 Curriculum learning for driv-
ing in the Spring track

Showcasing how the complexity of a driving
task in MADRaS can be tuned in well de-
fined steps for designing curricula for learning
agents.

4 Learning under partial ob-
servability and stochastic out-
comes of actions

Learning robust driving policies using the
ability of MADRaS to simulate noisy sensor
and imprecise control scenarios.

5 Learning to drive in traffic Example of how MADRaS’s library of driving
agents with pre-defined behaviors can be used
to simulate a variety of real-world scenarios
for learning to negotiate complex traffic situ-
ations.

6 Learning to navigate safely
through a traffic bottleneck by
multi-agent cooperation and
RL

Demonstration of the inter-vehicular com-
munication architecture and the multi-agent
training infrastructure of MADRaS.

1531

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Table 5: RL training criteria for Experiments 1-3. Please refer to (Loiacono et al., 2013)
for details on the observed variables.

Reward function

Reward Function Component Weightage
Progress Reward 1.0
Average Speed Reward 1.0
Collision Penalty 10.0
Turn Backward Penalty 10.0
Angular Acceleration Penalty 5.0

Observed variables angle, track, trackPos, speedX, speedY,
speedZ

Done criteria One Lap Completed, Time Out, Collision,
Turn Backward, Out of Track

other road tracks. Table 5 lists the observed variables and the components of the reward
and done functions. We set the maximum duration of an episode at 15000 time steps and
the target speed at 100 km/hour. We evaluate the agents in terms of the average fraction
of lap covered in an episode, average speed and successful lap completion rate.

Table 7 presents the results of this experiment. We see that the agent with high-level
track-position – speed (T-S) control generalizes significantly better than the one with low-
level steer – acceleration – brake (S-A-B) control as given by higher average scores. The
low-level S-A-B control mode gives the agent tighter control of the car that can be exploited
to perform maneuvers very specific to the training track in order to navigate the twists and
turns while maintaining a high average speed (see the accompanying video). This results
in the agent overfitting to the training track and it fails to make any significant progress
in some of the test tracks. Implementing a desired track-position and speed may require
different sequences of low-level actions in different tracks. Relegating the low-level control
to a PID controller gives the T-S agent better generalization to track-geometries than the
S-A-B agent.

Experiment 2: Generalization across vehicular dynamics through random car
selection

In our second experiment, we leverage the ability of MADRaS to change the agent’s car
at the beginning of each episode to train a driving policy that generalizes to multiple cars
with significantly different vehicular dynamics. Table 6 gives some physical parameters of
the cars used in this experiment that characterize their handling and dynamics. Heavier
cars with a low centre of gravity e.g. car1-stock1, car3-trb1 and car1-stock2 are more
stable and handle better with less body-roll around tight corners. The variation of torque
with the RPM (Rotations Per Minute) of a car’s engine plays a crucial role in deciding
its dynamics. The torque produced by an engine decides how fast the car can accelerate.
Torque is usually a strong function of engine RPM. While running at a given RPM, a car
can accelerate faster if its engine can produce higher torque at that RPM. Figure 3 gives

1532

MADRaS : Multi Agent Driving Simulator

the torque-RPM curves for the cars used in this experiment. The cars fall in two broad
categories in terms of the overall shape of this curve. Cars with a “∪”-shaped curve e.g.
buggy, baja-bug and 155-DTM have high torque at low (< 1000) and high (> 10000) RPM
and significantly lower values in the middle. The other category of cars e.g. car1-stock1,
car3-trb1 and car1-stock2 have a “hat” (∩)-shaped curve with low torque at low and
high RPM and high values in the middle. When the agent needs high torque to acceler-
ate from a standstill, speed up or climb uphill, it needs to take the engine RPM to the
high-torque zone with a suitable sequence of accelerator inputs. The high-torque zones of
the aforementioned categories of cars are roughly opposite to one another. This makes it
challenging for a driving agent to generalize to both kinds of cars.

We choose the Alpine-1 track for this experiment. The Alpine-1 track is one of the
hardest road tracks of MADRaS with sharp left and right turns and a few stretches of
slippery road. We set the maximum duration of an episode to 20000 time steps and the
target speed to 100 km/hour. We evaluate the agent in terms of average fraction of the lap
covered per episode and average speed.

First, we train two PPO agents to drive car1-stock1 (∩-shaped torque-rpm curve) and
buggy (∪-shaped torque-rpm curve) using the S-A-B control mode. We evaluate them on
five test cars of different dynamic properties. Table 8 presents the results. We see that an
agent trained on a car of one torque-RPM category has difficulty generalizing to the cars of
the other category. While the car1-stock1 agent generalizes to car3-trb1, kc-2000gt and
car1-stock2 with ∩-shaped torque-rpm curves, it fails to drive 155-DTM and baja-bug that
have ∪-shaped torque-rpm curves. The buggy agent on the other hand generalizes fairly to
155-DTM and baja-bug but fails to drive the other three test cars due to mismatch in dy-
namic properties. With a view to aiding in generalization through domain randomization,
we leverage the ability of MADRaS to randomly switch cars between episodes and present
car1-stock1 and buggy to the same agent with equal probability. We observe that this
training strategy brings remarkable generalization across both categories of test vehicles
with significant improvement both in terms of average fraction of lap covered in an episode
and average speed.

Experiment 3: Curriculum learning for driving in the Spring track

In our third experiment, we present a study to demonstrate how the ability of MADRaS to
control the complexity of a driving task in well defined steps can be used to design curricula
for an RL agent to accomplish complex tasks in a sample efficient way. We attempt to
train a PPO agent to drive car1-stock1 on Spring track using the primitive S-A-B action
space. With a length of 22.1 km, Spring is the longest track in TORCS. It has the largest
number of turns with different grades of sharpness, both in the left and right directions. It
also has ramps and declines. The surface texture varies from place to place. These make
it the toughest road track to drive in TORCS. We set the target speed to 100 Km/hr and
maximum episode length to 40000 steps. Figure 4 and Table 9 show the results of this
study. We see that training from scratch on Spring fails to complete one lap of the track

1533

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Table 6: Some physical properties of the cars used in Experiment 2 that play an important
role in determining their vehicular dynamics. “RWD” and “4WD” stand for “Rear Wheel
Drive” and “Four Wheel Drive”, respectively.

Car Name Drive Type Mass (Kg) Height of CG (m)

car1-stock1 RWD 1550.0 0.3

car1-stock2 RWD 1550.0 0.3

155-DTM 4WD 1100.0 0.2

car3-trb1 RWD 1150.0 0.2

kc-2000gt RWD 1200.0 0.25

buggy RWD 650.0 0.45

baja-bug RWD 600.0 0.35

Table 7: Generalization of an agent trained on Alpine-1 to other road tracks (Experiment
1). S-A-B (Steering - Acceleration - Brake) and T-S (Track position - Speed) denote the
control mode used.

Avg. fraction
of lap covered

Avg. Speed Lap comple-
tion rate

S-A-B T-S S-A-B T-S S-A-B T-S

Training Track alpine-1 0.75 0.73 91.89 83.32 0.68 0.58

Test Tracks

aalborg 0.001 0.11 0.10 59.39 0.0 0.0
alpine-2 0.38 0.31 89.95 72.64 0.04 0.0

brondehach 0.001 0.72 0.1 81.01 0.0 0.3
g-track-1 0.001 0.98 0.06 79.42 0.0 0.91
g-track-2 0.002 0.97 0.11 75.99 0.0 0.95
g-track-3 0.001 0.84 0.09 79.90 0.0 0.44
corkscrew 0.0008 0.64 0.06 81.39 0.0 0.0

e-road 0.001 0.94 0.11 85.63 0.0 0.88
e-track-2 0.07 0.39 8.38 75.21 0.0 0.0
e-track-3 0.31 0.68 25.88 77.96 0.03 0.57
e-track-4 0.0005 0.95 0.08 78.41 0.0 0.85
e-track-6 0.0009 0.83 0.09 80.65 0.0 0.58

forza 0.001 0.79 0.08 71.63 0.0 0.70
ole-road-1 0.29 0.40 101.22 78.06 0.0 0.11

ruudskogen 0.97 0.97 100.87 81.15 0.95 0.93
street-1 0.03 0.87 1.76 74.67 0.0 0.67
wheel-1 0.0009 0.95 0.09 78.08 0.0 0.76
wheel-2 0.36 0.81 81.69 81.51 0.0 0.64
spring 0.14 0.29 104.76 82.55 0.0 0.0

Average Scores (Test) 0.14 0.71 27.12 77.64 0.04 0.49

Table 8: Generalization of PPO policies using the S-A-B control mode across vehicles with
different dynamics (Experiment 2). “random” refers to the setting in which the agent is
presented with both car1-stock1 and buggy, each with a probability of 0.5 during training.

Avg. Fraction of Lap Covered Avg. Speed (km/h)
Training Car car1-stock1 buggy random car1-stock1 buggy random

T
e
st

C
a
r
s 155-DTM 0.37 0.05 0.37 104.22 22.71 99.78
car3-trb1 0.002 0.017 0.62 0.12 0.97 58.95
kc-2000gt 0.77 0.013 0.30 80.44 0.71 22.02
car1-stock2 0.001 0.016 0.54 0.09 0.91 50.23
baja-bug 0.35 0.92 0.55 59.45 61.45 54.91

Average Scores 0.30 0.20 0.48 48.86 17.35 57.18

1534

MADRaS : Multi Agent Driving Simulator

(a)

(b)

Figure 3: Variation of torque with engine RPM of cars studied in Experiment 2. (a) Torque-
vs-RPM of the cars that we present our agent to drive during training with equal probability.
(b) Torque-vs-RPM of the cars that we test our agent on.

1535

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Figure 4: Variation of episode reward over iterations of PPO for learning from scratch on
spring compared with first learning on simpler tracks – alpine-1 and corkscrew – and
then fine-tuning on spring (Experiment 3).

Table 9: Curriculum learning results for driving in Spring track (Experiment 3).

Fraction of
lap covered

Average Speed
(km/hr)

Lap comple-
tion rate (%)

Training from scratch 0.18 101.9 0.0

Pre-training in Alpine-1 0.57 103.5 27.0

Pre-training in Corkscrew 0.54 100.6 45.8

even after 2500 iterations. When we use a curriculum of first training on Alpine-1 or
Corkscrew tracks followed by fine-tuning on Spring the agent learns to complete the entire
lap with high success rates and average speed. In our curriculum learning experiments, we
pick the policy that gives the highest mean trajectory reward in the first phase of training
(obtained after 701 iterations in Alpine-1 and 561 iterations in Corkscrew) and use it to
initialize the policy in the second phase. The total number of training iterations and the
total number of training samples for the curriculum learning strategies (considering both
the pre-training and fine-tuning stages) are kept equal to that of training from scratch
for fairness of comparison. For fine-tuning, we choose a learning rate of 1 × 10−6 for the
Alpine-1 policy and 5×10−7 for the Corkscrew policy. We evaluate the agents in terms of
the average fraction of lap covered in an episode, average speed and successful lap completion
rate.

1536

MADRaS : Multi Agent Driving Simulator

Table 10: Results of a single PPO agent learning to drive in traffic by RL. The agent was
trained to drive in the presence of 4 or 5 traffic cars with equal probability (Experiment 5).

Number of traffic
agents

3 4 5 6 7 8 9

Successful task
completion rate

99.5% 98.1% 95.5% 96% 95.5% 95.7% 92.8%

Experiment 4: Learning under partial observability and stochastic outcomes of
actions

In this experiment we compare the performances of PPO agents trained to drive car1-stock1
around the Corkscrew track with and without observation noise under different levels of
stochasticity of the outcome of actions. The training was performed with the primitive S-
A-B action space. Observed variables, episode termination criteria and evaluation metrics
are the same as in Experiment 1. The reward function is the same as in the Experiments
1-3 (see Table 5) with the weightage for angular acceleration penalty increased to 8. As
described in Section 3, stochastic outcomes of actions is implemented by adding zero mean
Gaussian noise to the actions. Figure 5 shows the learning curves. All these agents are
tested in the same track Corkscrew in the presence of both observation noise and 0.5 stan-
dard deviation action noise. Table 11 compares the performance statistics. We observe that
the agents trained in the presence of both observation and action noise perform better than
the others. This demonstrates the ability of MADRaS to serve as a platform for evaluating
the resilience of learning agents to observation noise and environmental stochasticity.

Figure 5: Learning to drive with under partial observability and stochastic outcomes of
actions in Corkscrew track (Experiment 4).

1537

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Table 11: Learning to drive in the corkscrew track with and without observation noise and
different levels of stochasticity in the outcome of actions and evaluation with observation
noise and 0.5 std action noise (Experiment 4).

Avg. Fraction
of Lap Covered

Avg. Speed
(km/hr)

No noise 0.38 52.54

Observation noise 0.19 30.78

Stochastic actions (noise std 0.1) 0.12 29.99

Stochastic actions (noise std 0.5) 0.64 48.67

Observation noise and Stochastic
actions (noise std 0.1)

0.63 48.85

Observation noise and Stochastic
actions (noise std 0.5)

0.68 46.91

Figure 6: Schematic diagram of the environment design for Experiment 5. The task of the
learning agent is to overtake all the traffic cars without colliding with any of them or going
off track.

Experiment 5: Learning to drive in traffic

In this experiment we use the ability of MADRaS to generate custom traffic to train an
agent to navigate through a narrow road without colliding with any traffic car – moving or
parked. Figure 6 shows a schematic diagram of the training environment. We choose the
Aalborg track for this study since it is one of the narrowest tracks of TORCS and further
reduce its width to half resulting in an effective track width of 5m.

The traffic agents used in this experiment are DriveAndParkAgents (see Table 2).
MADRaS positions the traffic cars ahead of the learning car at the start of the race. When
an episode begins, the DriveAndParkAgents start driving at their given target speeds (50
km/hr) towards their given parking locations (specified in terms of distance from the start
of the race and track position) using PID controllers. This way, the learning agent sees
moving cars in the beginning and parked cars towards the end of each episode. This forces
it to learn to avoid collision with both static and moving obstacles. We set the parking

1538

MADRaS : Multi Agent Driving Simulator

Table 12: RL training criteria for Experiment 5. Please refer to (Loiacono et al., 2013) for
details on the observed variables.

Reward function

Reward Function Component Weightage
Progress Reward 1.0
Average Speed Reward 1.0
Collision Penalty 10.0
Turn Backward Penalty 10.0
Angular Acceleration Penalty 1.0
Overtake Reward 5.0
Rank 1 Reward 100.0

Observed variables angle, track, trackPos, speedX, speedY,
speedZ, opponents

Done criteria Rank 1, Time Out, Collision, Turn Backward,
Out of Track

locations of the traffic cars on alternate sides of the road so that the the agent must learn
to turn both left and right to overtake all the traffic cars. We maintain a gap of at least
10m between consecutive parking locations along the length of the road to make sure that
the learning car has enough space to maneuver between the traffic cars. To create variance
in the environment, we randomly vary each parking location within an area of 5m along the
track length and 0.25m along the track width. We also switch the number of traffic cars
between 4 and 5 with equal probability. Changing the number of traffic cars also makes
sure that the learning agent gets initialized in the left and right halves of the track with
equal probability. We use the T-S control mode and set the target speed of the learning
agent to 50 km/h. Table 12 gives the training criteria for this experiment.

The agent gets an Overtake Reward every time it overtakes a traffic agent and Rank
1 Reward at the end of the episode if it manages to overtake all the traffic agents. The
agent is evaluated in terms of the fraction of times it overtakes all the traffic cars successfully.

Table 10 presents the results of this experiment. We observe that the agent learns to
generalize to both fewer and more traffic agents than it encountered during training and
navigate its way through them collision-free with a high success rate. Figure 12 in the
Appendix shows how the instances of the agent colliding and driving off-track reduces as
training progresses while the frequency of it emerging Rank 1 and successfully completing
the episode increases.

Experiment 6: Learning to navigate safely through a traffic bottleneck by
multi-agent cooperation and RL

One of the biggest aspirations of autonomous driving is the avoidance of traffic congestion
through cooperation. In this experiment we utilize the multi-agent training infrastructure
of MADRaS and its framework for inter-vehicular communication to solve a simplified ver-

1539

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Figure 7: Schematic diagram of the multi-agent task studied in Experiment 6. The task for
the two learning agents is to coordinate with each other and pass through the gap between
the parked traffic cars without making any collision. The top row shows an example of
undesirable behavior in which both the agents attempt to pass through the bottleneck at
the same time and result in a collision. The bottom row gives a feasible solution to the
problem in which one of the agents stops or slows down to wait for the other agent to pass
through the gap. Only after the gap is clear does it attempt to pass through – thus avoiding
collision with any of the other cars.

Table 13: Dimensions of cars used in Experiment 6.

Car Model Length (m) Width (m)

Traffic Car car1-trb1 4.52 1.94

PPO Agent-1 car3-trb1 4.55 1.95

PPO Agent-2 car5-trb1 4.67 1.94

sion of this task by multi-agent reinforcement learning.

The training environment consists of two PPO agents and two traffic agents on the
Corkscrew track. The PPO agents communicate their actions to each other at every step.
We park the traffic agents next to each other with a small gap in between that is sufficient
only for one car to pass through. The task of the PPO agents is to pass through the gap
one by one without colliding with each other or with any traffic agent (see Figure 7). Thus
the agents must learn a collaborative strategy in which the agent trying to pass through

Table 14: Curriculum for multi-agent RL in Experiment 6.

Iterations of training Parking Distance (m) Gap Width (m)

1–240 30–40 2.76–4.06

240–300 30–35 2.76–3.46

1540

MADRaS : Multi Agent Driving Simulator

(a) Agent-1 Training Curves

(b) Agent-2 Training Curves

(c) Joint learning Curves

Figure 8: Learning curves for multi-agent training in Experiment 6. The cross symbol
denotes transition point in the agent’s curriculum where the first task ends and the second
task begins.

1541

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Table 15: RL training criteria for Experiment 6. peerActions refers to the actions of the
other learning agent from the previous time step. Please refer to (Loiacono et al., 2013) for
details on the other observed variables.

Reward function

Reward Function Component Weightage
Progress Reward 1.0
Average Speed Reward 1.0
Collision Penalty 10.0
Turn Backward Penalty 10.0
Angular Acceleration Penalty 5.0

Observed variables angle, track, trackPos, opponents, speedX,
speedY, speedZ, peerActions

Done criteria Race Over, Time Out, Collision, Turn Back-
ward, Out of Track

the gap first should be given enough time to pass through completely by the other agent
before it makes its own attempt.

Table 13 gives the cars assigned to the learning and traffic agents and their dimensions.
Both the PPO agents have T-S action space. Table 14 describes the curriculum used for the
training. We randomly vary the parking distance of each traffic car and the gap between
them at the start of each episode for improved generalization. Table 15 gives the details
of the observed variables, reward functions and done criteria. The agents must learn the
following distinct skills to be able to accomplish this task.

• Running forward without going off track.

• Not colliding with each other.

• Not colliding with any of the parked cars.

• Learning to collaborate and pass through the bottleneck one by one.

We jointly evaluate the agents in terms of the rate of successful passage of both the
agents through the traffic bottleneck. Figure 8 shows the individual and joint learning curves
respectively during training. The final evaluation is done over 100 episodes of stochastically
parked agents and the PPO agents demonstrate a joint task completion rate of 83.3%.

5. Conclusion

In this paper we present MADRaS, an open-source Multi-Agent Driving Simulator for
autonomous driving. MADRaS builds on TORCS, a popular car racing platform, and adds
a suite of features like hierarchical control modes, domain randomization, custom traffic,
partial observability, stochastic outcomes of actions and support for multi-agent training.
We present a suite of experiments that illustrate how MADRaS can be used to simulate rich
highway and track driving scenarios of high variance and complexity that are valuable for
autonomous driving research and investigating the robustness and generalization abilities

1542

MADRaS : Multi Agent Driving Simulator

of RL algorithms. We compare primitive and abstract (or, high-level) control-modes at
the task of generalizing to a multitude of driving tracks and observe that the abstract
control-mode achieves superior generalization while the primitive control-mode offers tighter
handling. We learn a policy that generalizes to a wide range of vehicular dynamics simply by
training on two car models from the extreme ends of the spectrum and leveraging MADRaS’s
ability to change the agent’s car in every episode. We use the ability of MADRaS to
inject varying levels of noise into the observation and action spaces to study driving under
stochasticity and partial observability. MADRaS offers a powerful set of tools for simulating
traffic. We present experiments on learning to navigate through static and moving traffic
without colliding or going off track and learning multi-agent cooperation for passing through
traffic bottlenecks safely. We wish to develop features specific to fuel management and
vehicular safety in the future.

Acknowledgements

The authors would like to thank Professor Pabitra Mitra of the Department of Computer
Science and Engineering, IIT Kharagpur for his helpful feedback on the structure of the
paper and Manish Prajapat of ETH Zurich for his useful tips on the implementation of
inter-vehicular communication in MADRaS. The authors would also like to thank Intel
Labs India for incubating the early stage of this project. Anirban Santara’s work in this
project was supported by Google India, under the Google India PhD Fellowship grant,
and Intel Inc. under the Intel Student Ambassador Program. Anirban Santara and Sohan
Rudra contributed equally to this project.

1543

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Appendix A. Configuring MADRaS

The structure of MADRaS focuses on the ease of use and encourages custom modifications.
In this section we describe the configuration variables of MADRaS. All these variables are
specified in the envs/data/madras config.yml file. The ‘yaml’ (or ‘yml’) format provides
a powerful yet convenient way of specifying most data types and basic data structures like
lists and dictionaries.

The madras config.yml file has three sections:

1. Server configuration: In this section contains the global configurations of the
MADRaS environment. Since MADRaS can randomly vary the driving tracks, model
of car for the learning agents, and the number of traffic cars between episodes, these
terms are specified as lists and ranges. The maximum number of cars in the envi-
ronment (including learning and traffic agents) can be specified as max cars and the
minimum number of traffic cars by min traffic cars. The number of learning agents
(Nl) is specified in the “agent configuration” section.

Nl + min traffic cars ≤ max cars

The list of car models to choose for the learning agent can be specified in learning car.
The list of tracks to choose for each episode can be specified in track names. If
randomize env = True the car model, track and the number of traffic agents is cho-
sen randomly for each episode.

2. Agent configuration: The agents section, contains the configurations of the learn-
ing agents. The target speed, pid settings for the low level controller if pid assist

is True, configuration of the observation space (according to the modes in utils/obse-

rvation handler.py), reward function (to be parsed by utils/reward handler.py)
and done function (to be parsed by utils/done handler.py) can be specified indi-
vidually for each agent in this section.

3. Traffic configuration: The traffic section can be used to specify the details of
the traffic agents in the environment. If Nt traffic agents need to be chosen in a
given episode, their configurations will be set to the first Nt elements from the list of
agents in this section. These configurations are parsed by traffic/traffic.py. The
target speed, target lane pos, collision avoidance properties and pid settings of
the traffic cars can be specified here. If the traffic agents need to be parked in certain
locations (specified in terms of their distance from the start line and track position)
of the track before the start of each episode, that can also be specified in this section.

The full list of the configuration variables is available in Tables A1, A2 and A3.

MADRaS supports inter-vehicular communication (IV-Comm) between the learning agents.
The settings for the IV-Comm system can be specified in envs/data/communications.yml.
The user can specify the list of variables (vars) that each learning agent wants to observe
from a list of communicating agents (comms) for a given number of previous time steps
(buff size).

1544

MADRaS : Multi Agent Driving Simulator

Table A1: Server Configuration Parameters

Parameters Description Possible Values

torcs server port
For setting the port of communication
with the TORCS Server.

Z+

max cars Max number of vehicles to be spawned. Z+

min traffic cars Min number of traffic cars to be spawned. Z+

track names
List of tracks on which the simulation
will run.

List of track
names

track limits
Restrict the agent to remain within a given
range of track pos values.

(R,R)

distance to start
Starting distance of the cars from the
start line.

Z+

torcs server config dir
The location of the TORCS server racing
config directory.

Path string

scr server config dir The location of available cars config directory Path string

traffic car The type of car to be used for traffic car name

learning car
List of car models for using as the learning
agent.

List of car
names

randomize env Flag for turning randomization on. boolean

add noise to actions
Flag for adding a small Gaussian Noise to the
actions before sending to the TORCS server.

boolean

action noise std
Specifies the standard deviation of the Gaussian
for the noise addition.

[0, 1]

noisy observations
Toggles the TORCS flag for enabling noisy
observations.

boolean

visualise Flag for setting the display on and off. boolean

no of visualisations To visualize multiple training instances Z+

max steps
Maximum steps that the environment will take
before resetting.

Z+

Appendix B. PID Response

In this section we describe our implementation of the PID controller used for low level control
in our experiments with the track-position – speed control mode of MADRaS. Please note
that this implementation can be easily swapped out for a more sophisticated one by creating
a derived class of PIDController defined in controllers/pid.py. The error function (eTP)
for track-position PID controller is defined as a function of the track-position (TP) and the
angle (θ) that the car’s heading makes with the center line. The output of this controller is
the steer-angle of the vehicle for the current time-step (t) that would bring the car closer
to the desired track-position (TPdesired).

eTP (t) = θ(t− 1)− (TP (t− 1)− TPdesired) ∗ scale (6)

1545

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Table A2: Agent Configuration Parameters

Parameters Description Possible Values

vision
Flag for activating visual input instead of the usual
sensor based one.

boolean

throttle Flag for activating throttle control on and off. boolean

gear change Flag for activating gear control on and off. boolean

client max steps Maximum steps that the client is available to take. Z+ ∪ {−1}
target speed Target speed setting of the agent car. Z+

state dim Dimension of the Observation Space. Z+

normalize actions Toggle to turn on action normalization. boolean

pid assist Toggle to turn on T-S control mode. boolean

pid settings[accel pid] Kp, Ki, Kd for throttle PID. List of floats

pid settings[accel pid] Kp, Ki, Kd for steering PID. List of floats

accel scale Acceleration Scaling. R+

steer scale Steering Scaling. R+

pid latency
Number time-steps the control command sticks
to the server.

Z+

observations[mode] Name of the Observation Class. string

observations[multi flag]

(multi-agent mode only)
Toggle for turning on communication for the
agent i,

boolean

observations[buff size] Specifies the buffer size of action. Z+

observation[normalize] Toggle to tun on observation normalization. boolean

obs min Minimum values for certain observation attributes. dict

obs max Maximum values for certain observation attributes. dict

rewards[name, scale]
List of the Reward classes and a scaling factor of
the rewards.

list of names
and dict

dones Done conditions currently in use. list of dones

Table A3: Common Traffic Configuration Parameters

Parameters Description Possible Values

name Traffic Agent Type, string

target speed Traffic Agent Speed. R+

initial distance Traffic Agent initial distance from start line (range). 2-Tuple of Floats

initial trackpos Traffic Agent initial track-position (range). 2-Tuple of Floats

track len Length of the Current Track. R+

pid settings[accel pid] Kp, Ki, Kd values for acceleration. List of Floats

pid settings[steer pid] Kp, Ki, Kd values for steering. List of Floats

accel scale Acceleration scaling. R+

steer scale Steering scaling. R+

collision time window
Describes the collision region
for the traffic agent

R+

1546

MADRaS : Multi Agent Driving Simulator

Figure 9: Speed control accuracy and convergence of our PID controller at different initial
speeds over time-steps and distance travelled. The PID latency is set to 5. The track used
in this study is the “f-speedway” oval track. The lane-position command is fixed at 0.0
which refers to the center of the track.

1547

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Figure 10: This plot demonstrates the position control accuracy and convergence over time
at different speeds of the PID controller used in our experiments. The track used is the
“f-speedway” oval track and PID latency is set to 5. The plot covers the range of speeds
used in our experiments.

1548

MADRaS : Multi Agent Driving Simulator

Figure 11: This plot demonstrates the position control accuracy and convergence over
distance at different speeds of the PID controller used in our experiments. The track used
is the “f-speedway” oval track and PID latency is set to 5. The plot covers the range of
speeds used in our experiments.

1549

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Figure 12: This plot demonstrates how the causes of episode termination (done reason)
varies as the agent makes progress in training. We observe that collisions and out-of-track
frequencies drop while Rank 1 frequency increases as training progresses. This experiment
was a replica of Experiment 5 with 2 or 3 traffic cars at equal probability.

The error function for the Speed PID controller (eV) is a function of the forward velocity
(V). The output of the controller is the value of acceleration and braking that would bring
the speed closer to the target speed of the vehicle (Vtarget).

eV (t) = (V (t− 1)− Vtarget) ∗ scale (7)

Figure 9, 10 and 11 show the responses of the PID controller used in our experiments with
the high level track-position – speed action space. For testing the controller response over
time, we change the input signal (track-position or speed) every 500 steps and monitor the
output. For testing the controller response over distance, we change the input signal after
the agent has driven every 100 meters for speed control and 400 meters for track-position
control. We use the “f-speedway” oval track for this study. For speed control (Figure 9)
we change the target signal in incremental steps of 10 km/hour from 0 km/hour to 100
km/hour and back to 0 km/hour keeping the track-position input fixed at 0.0, the center
of the track. For position control we increment the signal in steps of 0.4 starting from 0.4
(default initial track-position) towards the extreme left (up to 0.8) and then towards the
extreme right (up to −0.8). We observe that the controller responds faithfully within the
range of speeds and track positions used in our experiments.

Appendix C. Initial State Distribution

The initial state of an episode in MADRaS can be configured in terms of the set of param-
eters listed below. The madras config.yml file has the randomize env flag that can be
enabled to randomly assign values for these parameters at the start of each episode.

1550

MADRaS : Multi Agent Driving Simulator

• Vehicle Model: The model of the car assigned to the learning agent(s) can be
specified using the learning car field. This can also be randomly selected from a
categorical distribution over a list of car models when randomize env = True.

• Number of Traffic Cars: The number of traffic cars can be specified using the
min traffic cars field. When randomize env = True the number of traffic cars is
assigned randomly between min traffic cars and (max cars - (number of learning
agents)).

• Track Position of Traffic Cars: Some traffic cars can be assigned a certain track po-
sition to stick to. For ParkedAgent, it can be specified as the parking lane pos while
for ConstVelTrafficAgent, SinusoidalSpeedAgent and RandomStoppingAgent it
can be specified using the target lane pos field. If randomize env = True the track
position is sampled randomly from a continuous uniform distribution between speci-
fied high and low limits for these parameters.

• Parking Distance of Traffic Agents from the Start line: The distance from
start of ParkedAgent traffic agents can be set using the parking dist from start

parameter. When randomize env = True it is sampled uniformly from a fixed range
specified by high and low values for the same parameter.

1551

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

References

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J.,
Petron, A., Plappert, M., Powell, G., Ray, A., et al. (2020). Learning dexterous in-
hand manipulation. The International Journal of Robotics Research, 39 (1), 3–20.

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning
from demonstration. Robotics and autonomous systems, 57 (5), 469–483.

Bansal, M., Krizhevsky, A., & Ogale, A. (2018). Chauffeurnet: Learning to drive by imitating
the best and synthesizing the worst..

Behere, S., & Törngren, M. (2016). A functional reference architecture for autonomous
driving. Information and Software Technology, 73, 136–150.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–
48. ACM.

Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L., & Muller,
U. (2017). Explaining how a deep neural network trained with end-to-end learning
steers a car..

Bowling, M., & Veloso, M. (2000). An analysis of stochastic game theory for multiagent
reinforcement learning. Tech. rep., Carnegie-Mellon Univ Pittsburgh Pa School of
Computer Science.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). Openai gym..

Brown, A., et al. (2018). Udacity self-driving car simulator. In GitHub Repository https:

// github. com/ udacity/ self-driving-car-sim .

Bu, L., Babu, R., De Schutter, B., et al. (2008). A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 38 (2), 156–172.

Chen, C., Seff, A., Kornhauser, A., & Xiao, J. (2015). Deepdriving: Learning affordance for
direct perception in autonomous driving. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 2722–2730. IEEE.

Da Silva, F. L., & Costa, A. H. R. (2019). A survey on transfer learning for multiagent
reinforcement learning systems. Journal of Artificial Intelligence Research, 64, 645–
703.

de Bruin, T., Kober, J., Tuyls, K., & Babuška, R. (2018). Integrating state representation
learning into deep reinforcement learning. IEEE Robotics and Automation Letters,
3 (3), 1394–1401.

Dikmen, M., & Burns, C. M. (2016). Autonomous driving in the real world: Experiences
with tesla autopilot and summon. In Proceedings of the 8th international conference on
automotive user interfaces and interactive vehicular applications, pp. 225–228. ACM.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An open
urban driving simulator..

1552

MADRaS : Multi Agent Driving Simulator

Dossa, R. F. J., Lian, X., Nomoto, H., Matsubara, T., & Uehara, K. (2019). A human-like
agent based on a hybrid of reinforcement and imitation learning. In 2019 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE.

Dresner, K., & Stone, P. (2008). A multiagent approach to autonomous intersection man-
agement. Journal of artificial intelligence research, 31, 591–656.

Fayjie, A. R., Hossain, S., Oualid, D., & Lee, D. (2018). Driverless car: Autonomous driving
using deep reinforcement learning in urban environment. In 2018 15th International
Conference on Ubiquitous Robots (UR), pp. 896–901.

Kaushik, M., Prasad, V., Krishna, K. M., & Ravindran, B. (2018). Overtaking maneuvers in
simulated highway driving using deep reinforcement learning. In 2018 IEEE Intelligent
Vehicles Symposium (IV), pp. 1885–1890. IEEE.

Koutńık, J., Cuccu, G., Schmidhuber, J., & Gomez, F. (2013). Evolving large-scale neural
networks for vision-based reinforcement learning. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation, pp. 1061–1068. ACM.

Koutńık, J., Schmidhuber, J., & Gomez, F. (2014). Evolving deep unsupervised convolu-
tional networks for vision-based reinforcement learning. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, pp. 541–548. ACM.

LaValle, S. M. (2006). Planning algorithms. Cambridge university press.

Li, Y., Song, J., & Ermon, S. (2017). Infogail: Interpretable imitation learning from visual
demonstrations. In Advances in Neural Information Processing Systems, pp. 3812–
3822.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Goldberg, K., Gonzalez, J. E., Jordan,
M. I., & Stoica, I. (2018). Rllib: Abstractions for distributed reinforcement learning..

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra,
D. (2019). Continuous control with deep reinforcement learning..

Lin, X., Adams, S. C., & Beling, P. A. (2018). Multi-agent inverse reinforcement learning
for general-sum stochastic games. ArXiv, abs/1806.09795.

Lin, X., Beling, P. A., & Cogill, R. (2017). Multiagent inverse reinforcement learning for
two-person zero-sum games. IEEE Transactions on Games, 10 (1), 56–68.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning.
In Machine learning proceedings 1994, pp. 157–163. Elsevier.

Liu, G.-H., Siravuru, A., Prabhakar, S., Veloso, M., & Kantor, G. (2017). Learning end-to-
end multimodal sensor policies for autonomous navigation. In Levine, S., Vanhoucke,
V., & Goldberg, K. (Eds.), Proceedings of the 1st Annual Conference on Robot Learn-
ing, Vol. 78 of Proceedings of Machine Learning Research, pp. 249–261. PMLR.

Loiacono, D., Cardamone, L., & Lanzi, P. L. (2013). Simulated car racing championship:
Competition software manual..

Loiacono, D., Lanzi, P. L., Togelius, J., Onieva, E., Pelta, D. A., Butz, M. V., Lonneker,
T. D., Cardamone, L., Perez, D., Sáez, Y., et al. (2010a). The 2009 simulated car
racing championship. IEEE Transactions on Computational Intelligence and AI in
Games, 2 (2), 131–147.

1553

Santara, Rudra, Buridi, Kaushik, Naik, Kaul, Ravindran

Loiacono, D., Prete, A., Lanzi, P. L., & Cardamone, L. (2010b). Learning to overtake in torcs
using simple reinforcement learning. In IEEE Congress on Evolutionary Computation,
pp. 1–8. IEEE.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., & Mordatch, I. (2017). Multi-agent
actor-critic for mixed cooperative-competitive environments. In Proceedings of the
31st International Conference on Neural Information Processing Systems, NIPS’17,
p. 6382–6393, Red Hook, NY, USA. Curran Associates Inc.

Minster, G., Haghighat, S., Chu, K., & Vogt, K. (2018). System and method for autonomous
vehicle driving behavior modification.. US Patent 10,035,519.

Neider, J., Davis, T., & Woo, M. (1993). OpenGL programming guide, Vol. 14. Addison-
Wesley Reading, MA.

Onieva, E., Cardamone, L., Loiacono, D., & Lanzi, P. L. (2010). Overtaking opponents with
blocking strategies using fuzzy logic. In Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, pp. 123–130. IEEE.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks, 113, 54–71.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In
Advances in neural information processing systems, pp. 305–313.

Richter, S. R., Hayder, Z., & Koltun, V. (2017). Playing for benchmarks. In International
conference on computer vision (ICCV), Vol. 2.

Richter, S. R., Vineet, V., Roth, S., & Koltun, V. (2016). Playing for data: Ground truth
from computer games. In European Conference on Computer Vision, pp. 102–118.
Springer.

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., & Lopez, A. M. (2016). The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 3234–3243.

Santara, A., Naik, A., Ravindran, B., Das, D., Mudigere, D., Avancha, S., & Kaul, B. (2018).
Rail: Risk-averse imitation learning. In Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AAMAS ’18, p. 2062–2063,
Richland, SC. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Seel, N. M. (2011). Encyclopedia of the Sciences of Learning. Springer Science & Business
Media.

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and phys-
ical simulation for autonomous vehicles. In Field and service robotics, pp. 621–635.
Springer.

Shalev-Shwartz, S., Shammah, S., & Shashua, A. (2016). Safe, multi-agent, reinforcement
learning for autonomous driving..

1554

MADRaS : Multi Agent Driving Simulator

Shalev-Shwartz, S., & Shashua, A. (2016). On the sample complexity of end-to-end training
vs. semantic abstraction training..

Sharifzadeh, S., Chiotellis, I., Triebel, R., & Cremers, D. (2016). Learning to drive using
inverse reinforcement learning and deep q-networks. CoRR, abs/1612.03653.

Sulkowski, T., Bugiel, P., & Izydorczyk, J. (2018). In search of the ultimate autonomous
driving simulator. In 2018 International Conference on Signals and Electronic Systems
(ICSES), pp. 252–256. IEEE.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Talpaert., V., Sobh., I., Kiran., B. R., Mannion., P., Yogamani., S., El-Sallab., A., & Perez.,
P. (2019). Exploring applications of deep reinforcement learning for real-world au-
tonomous driving systems. In Proceedings of the 14th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications -
Volume 5: VISAPP,, pp. 564–572. INSTICC, SciTePress.

Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., & Sumner, A. (2000).
Torcs, the open racing car simulator. Software available at http://torcs.sourceforge.net,
4 (6).

Yoshida, N. (2016). Gym-torcs. https://github.com/ugonama-kun/gymtorcs.

You, C., Lu, J., Filev, D., & Tsiotras, P. (2019). Advanced planning for autonomous vehicles
using reinforcement learning and deep inverse reinforcement learning. Robotics and
Autonomous Systems, 114, 1 – 18.

Yu, L., Song, J., & Ermon, S. (2019). Multi-agent adversarial inverse reinforcement learning.
In International Conference on Machine Learning, pp. 7194–7201. PMLR.

1555

