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Abstract

An important step in the development of value alignment (VA) systems in artificial
intelligence (AI) is understanding how VA can reflect valid ethical principles. We propose
that designers of VA systems incorporate ethics by utilizing a hybrid approach in which both
ethical reasoning and empirical observation play a role. This, we argue, avoids committing
“naturalistic fallacy,” which is an attempt to derive “ought” from “is,” and it provides
a more adequate form of ethical reasoning when the fallacy is not committed. Using
quantified modal logic, we precisely formulate principles derived from deontological ethics
and show how they imply particular “test propositions” for any given action plan in an
AI rule base. The action plan is ethical only if the test proposition is empirically true, a
judgment that is made on the basis of empirical VA. This permits empirical VA to integrate
seamlessly with independently justified ethical principles.

1. Introduction

Artificial intelligence (AI) technologies increasingly replace human decision makers. Worries
rise about the compatibility of AI and human values. A growing number of researchers are
examining how AI can acquire moral intelligence (Wallach & Allen, 2008; Burton et al., 2017;
Walsh et al., 2019; Lin, Abney, & Bekey, 2011; Bringsjord, 2013; Scheutz & Arnold, 2016;
Arnold, Kasenberg, & Scheutz, 2017; Arnold & Scheutz, 2018). We refer to such attempts
as “value alignment” (hereafter VA). Russell, Dewey, and Tegmark (2015) highlight the
need for VA and identify two options for achieving it:

[A]ligning the values of powerful AI systems with our own values and preferences
... [could involve either] a system [that] infers the preferences of another rational
or nearly rational actor by observing its behavior ... [or] could be explicitly
inspired by the way humans acquire ethical values.

As this passage suggests, one option for VA is to teach machines human preferences, and
another is to teach machines ethics. The word “values” in fact has this double meaning. It
can refer to what humans value in the sense of what they see as subjectively preferable, or it
can refer to reasonably defensible ethical principles. The distinction is important, because
we acquire knowledge of the two types of values in different ways.
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A similar distinction occurs in previous literature under the names top-down and bottom-up
(Allen, Varner, & Zinser, 2000; Allen, 2002; Allen, Smit, & Wallach, 2005; Allen, Wallach,
& Smit, 2006; Allen et al., 2005; Wallach, Allen, & Smit, 2008). Russell et al. (2015)
suggest a bottom-up approach in the form of inverse reinforcement learning, which allows
a machine to internalize a pattern of preferences by observing how humans actually behave
(Abbeel & Ng, 2004; Ng & Russell, 2000). Reinforcement learning, and machine learning
(ML) in general, offer a number of advantages but must deal with such issues as inadequate
reward functions to represent complex ethical norms, biased data, and opaqueness (Arnold
et al., 2017; Prince & Pinker, 1988; Marcus, 2018). A promising alternative to ML is logic-
based VA, which has received less attention despite having a long research record (Arkoudas,
Bringsjord, & Bello, 2005; Bringsjord, Arkoudas, & Bello, 2006; Bringsjord & Taylor, 2012;
Bringsjord, 2017; Govindarajulu & Bringsjord, 2017; Hooker & Kim, 2018).

In this paper, we make a case for hybrid VA that combines ML-based and logic-based
approaches. A logic-based approach is especially important because it allows the use of
“independently justified” or “independently defensible” ethical principles. By these we mean
principles that find their justification in ethical theory. Such principles are “normative”
in the sense commonly used by moral philosophers: they are prescriptive rather than
descriptive and are elements of traditional normative moral theories such as deontology,
consequentialism, and virtue ethics. Such principles are increasingly discussed as candi-
dates for computational use (Bentzen & Lindner, 2018; Lindner, Mattmüller, & Nebel,
2020; Ganascia, 2007). Independently justified principles avoid many problems, including
those associated with the well-known is-ought gap, one aspect of which is reflected in the
unconscious biases now widely studied by behavioral ethicists (Bazerman & Tenbrunsel,
2011). In turn, we propose our own version of deontological VA for use in such a hybrid
approach.

After elaborating on why a purely ML-based approach is inadequate, we show how
symbolic logic enables the introduction of deontological reasoning into machine ethics.
Rather than opting for a particular version of moral theory, we attempt to develop a
comprehensive, ecumenical framework of ethical principles (Parfit, 2011). We first articulate
univeralization, utilitarian, and autonomy-based principles in the idiom of quantified modal
logic. We then use these principles to derive test propositions, also formulated in modal
logic, for each action specified by an AI rule base. The action is ethical only if the test
propositions are empirically true, a judgment that can be based on machine learning and
empirical VA. This permits empirical VA to integrate seamlessly with independently justified
ethical principles.

2. Two Different Value Alignment Systems

Because more than one philosophical theory of mind is possible, different models of AI are
are also possible, and so too, different models of VA. Broadly speaking, two categories of
VA stand out, ML-based and logic-based, although neither is instantiated perfectly in any
given working AI system (Table 1).

ML-based VA is connectionist. Connectionism holds that human intelligence can be
explained and imitated by using artificial neural nets consisting of three kinds of connected
units: input, hidden, and output (Buckner & Garson, 2019). Deep Learning (DL) exempli-
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Table 1: Comparison of ML-based and logic-based VA

ML-based Logic-based

Theory of mind Connectionism Computationalism

Base discipline Statistics Logic

AI techniques
Machine learning
(automated statistics, deep learning)

Symbolic AI
(i.e., GOFAI: Good Old Fashioned AI)

Value alignment Bottom-up Top-down

Example

ML system trained by lay people’s
perception of fairness regarding
autonomous vehicles and
gender/racial discrimination

Formalized normative principles
(e.g., double effect theory, categorical
imperatives) using symbolic logic
(e.g., quantified modal logic)

Dual process
theory

System 1 System 2

fies connectionism by utilizing a complex “automated statistics” based on a large number
of hidden and opaque heuristics using associations (Danks, 2014). ML’s major advantage,
which is especially obvious in an end-to-end model such as DL, is its powerful ability to
imitate and further strengthen skill sets in training data. DL has illustrated the power of
connectionist models by capably learning human skills, especially in the domain of pattern
recognition, face recognition, medical diagnostic systems, and text reading.

2.1 The Is-Ought Gap and The Problem of Bounded Ethicality

Since connectionist systems are inductive, the quality of ML-based VA relies heavily on that
of inputs. If training data is biased or unethical, the system will generate well-imitated,
undesirable outputs. Microsoft’s AI-based chatter-bot Tay (an acronym for “thinking about
you”) was designed to engage with people on Twitter and learn from them how to carry
on a conversation. When some people started tweeting racist and misogynistic expressions,
Tay responded in kind. Microsoft immediately terminated the experiment (Wolf, Miller, &
Grodzinsky, 2017). Most algorithmic bias problems we see now are the results of ML-based
VA, which uses data sets from humans who already have implicit or explicit biases.

These mistakes reflect an error well-known to moral philosophers, the problem of de-
riving an “ought” from an “is,” sometimes called the “naturalistic fallacy.” From the
fact that people behave in racist ways, it cannot follow that people ought to behave in
such ways. While not a formal fallacy, the violation of the is-ought gap signals a form
of epistemic näıveté, one that ignores the axiom in normative ethics that “no justifiable
‘ought’ can be derived directly from an ‘is”’. Disagreements about the robustness of the
fallacy abound (Donaldson, 1994, 2012; Pigden, 2016; Woods & Maguire, 2017), and so
this paper adopts a modest, workable interpretation of the is-ought gap coined recently by
Daniel Singer, namely, “There are no valid arguments from non-normative premises to a
relevantly normative conclusion” (Singer, 2015). Descriptive (or naturalistic) statements
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are reportive of what states of affairs are like, whereas normative statements are stipulative
and action-guiding. Examples of the former are “The grass is green” and “Many people find
deception to be unethical.” Examples of the latter are “You ought not murder” and “Lying
is unethical.” Normative statements usually figure in the semantics of deontic (obligation-
based) or evaluative expressions such as “ought,” “impermissible,” “wrong,” “good,” “bad,”
or “unethical.” One may object that a high-level domain-general premise such as “machines
ought to have our values no matter what” might successfully link a descriptive premise to a
normative conclusion. This objection is correct, but allows the original problem to pop up
again at a deeper level. “What facts,” one might ask, “justify the conclusion that machines
ought to imitate perfectly our behaviors?”

Using data from “unbiased” people’s behaviors seems an obvious solution, but the prob-
lem is more complicated than one thinks. The preceding decade of research in behavioral
ethics has shown the existence of various pernicious influences on ethical decisions, often
at an unconscious level. When these influences lead to unethical behavior that conflict
with an actor’s moral beliefs and commitments (Moore et al., 2006), the phenomenon
is often referred to as “bounded ethicality”(Bazerman, 2011; Bazerman & Tenbrunsel,
2011; Chugh, Bazerman, & Banaji, 2005; Tenbrunsel, 2005). One example of bounded
ethicality is “ordinary prejudice,” which reveals itself in implicit associations about gender,
race, and other demographic groups (Bertrand, Chugh, & Mullainathan, 2005; Green et
al., 2007; Greenwald et al., 2009; Rudman & Ashmore, 2007). These associations can
lead to unintentionally discriminatory results, such as discriminatory hiring practices and
unwarranted discrepancies in the evaluation of the skills and competencies of workers.
Other elements of bounded ethicality include “in-group favoritism,” “self-serving bias,”
and “motivated blindness,” the last of which refers to a systemic but unconscious failure to
notice unethical behavior in oneself or others even when it is in one’s financial interest
to do so (Bazerman & Moore, 2011; Moore, Tanlu, & Bazerman, 2010). One might
consider using professional moral philosophers’ opinions as training data for ML-based VA
(Anderson & Anderson, 2011), but recent research shows both expert judgment generally
and ethical expert judgment in particular to be frequently biased. Professional ethicists’
moral intuitions and specific judgements turn out to be as vulnerable to biases or irrelevant
factors as those of lay persons (Schwitzgebel & Cushman, 2012; Wiegmann, Horvath, &
Meyer, 2020; Tobia, Buckwalter, & Stich, 2013; Schwitzgebel & Cushman, 2015; Egler &
Ross, 2020). Because any attempt to use the ML-based VA system to generate the principles
would be viciously circular, ML-based systems stand in need of independently defensible
principles in order to evaluate even the training data to be used.

Logic-based VA is distinct from the ML-based in several ways. It is analogous to
computationalism, in which human intelligence operates as a computer does, or in other
words, in step with a set of systematic, abstract, symbol-and-rule mechanisms that are
transparently expressed with formal-symbolic logic (Rescorla, 2020; Scheutz, 2002). Due
to the popularity of ML systems, logic-based systems are sometimes referred to as GOFAI
(“good old-fashioned AI”) (Haugeland, 1985). But logic-based AI is still widely used, for
instance, in the driving mechanisms of autonomous drones or cars, even though the pattern
recognition mechanisms in these applications are primarily based on ML systems. Logic-
based approaches are especially useful when formalizing independently defensible ethical
principles of the sort invoked by professional philosophers. Such logic-based systems are
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sometimes labeled symbolic AI. Interestingly enough, formal logic is one of a few languages
shared by both computer scientists and moral philosophers. Unlike eliminative (pure)
connectionist systems, logic-based VA relies not on associations, but on deductive logic
and logical proofs.

2.2 The Problem of System 2 and Systematicity

From a psychological perspective, ML systems are relevantly similar to what dual process
theory (Kahneman, 2011) knows as “System 1” (Chauvet, 2018; Geffner, 2018; Rossi &
Loreggia, 2019). It is opaque, fast, and intuitive to use. Dual process theory frames the
human mind in terms of two distinctive processes: System 1 and System 2. In contrast
to System 1 thinking, System 2 thinking is slow, transparent, analytical, logical, reasons-
responsive, and computational. Research shows that unethical and biased decisions are
correlated with System 1 thinking, and that shifting the mode to System 2 thinking is often
an effective way to avoid unethical behaviors (Bazerman & Gino, 2012; Bazerman & Sezer,
2016; Zhang et al., 2015; Sezer, Gino, & Bazerman, 2015). This is despite the fact that
System 1 thinking can be useful in other domains where intuitive associations are useful,
such as in making heuristic decisions.

Because ML systems draw upon System 1 behavior, ML-based VA can be inherently vul-
nerable to unethical decision-making. The “systematicity” challenge, neglected by connec-
tionists for decades (Calvo & Symons, 2014; Lake & Baroni, 2018; Alhama & Zuidema, 2019;
Geffner, 2018; Marcus, 2001), sheds further light on this. In 1988, linguistic philosophers
(Fodor & Pylyshyn, 1988) argued that connectionism confuses the intrinsically systematic
nature of thought with a system of associations. More specifically, they argued that
thoughts—e.g., “Mary loves John”—must involve operations with a set of rules (e.g., syn-
tactic and semantic combinatorial relations or grammars). Pure or eliminative connectionist
systems, which rely exclusively on associations, lack the ability to employ rules, and this
seriously limits their ability to explain human thinking. A human who can think “Mary
loves John” can also think “John loves Mary,” but purely connectionist systems trained
by connectionist methods cannot systematically do the latter without further resources.
Responding to this challenge, many connectionists have attempted to show that structured
ML systems might be redesigned, but the attempts underscore the eventual need for ML
systems that employ rule-like structures.

Our purpose here is not to adjudicate this debate. However, the debate itself reveals
the need for connectionist systems to be used within their legitimate scope. In that
sense, our view is roughly consistent with that of Paul Smolensky who responded to the
systematicity challenge in his article, “On the proper treatment of connectionism (PTC)”
(1988). Similar to dual process theory, Smolensky’s “proper treatment of connectionism”
construes human intelligence in terms of two distinct realms: on the one hand, there is
“cultural knowledge” (e.g., formalized knowledge presented by symbols and rule-like logic),
and, on the other, there is “individual knowledge” (e.g., perception, intuitive processing).
Connectionist systems are adequate for the latter, but not the former. The proper treat-
ment of connectionism entails that computational systems are necessary but insufficient for
language-like processing because human language operates against a backdrop of empirical,
common-sensical knowledge which, in turn, allows rules themselves to make sense.

875



Kim, Hooker, & Donaldson

This broad point is especially relevant for moral thought, in which the “reasoning”
portion of moral thinking relies upon systemic operations instead of associations. A person
who can reason, “It is wrong for Jane to gratuitously lie to Mary” can also reason “It is
wrong for Mary to gratuitously lie to Jane” or “It is not wrong for . . . .” Moral reasoning is
fundamentally rule-based. It can be said that a person who concludes “It is wrong for Jane
to lie to Mary” uses a rule such as “It is wrong for agent x to gratuitously lie to someone”
and an empirical premise, “Jane gratuitously lies to Mary.”1

3. Related Work

Bringsjord and his collaborators (Bringsjord et al., 2006; Bringsjord & Taylor, 2012; Bringsjord,
2017; Arkoudas et al., 2005; Govindarajulu & Bringsjord, 2017) are the first we know to use
deontic logic to explicitly represent philosophically justifiable ethical principles such as the
doctrine of double effect. Our approach dovetails with that of Bringsjord in identifying the
importance of deontic logic for teaching right and wrong to machines. Since his pioneering
work, many others have attempted to represent ethical principles using deontic logic. These
contributions reveal the versatility of deontic logic when formalizing not only deontological
moral theory but other traditions, such as areteic theory (including virtue ethics) and
commandment theory.

Our work is consistent with the established deontic tradition in moral philosophy that
uses deontic logic to formalize deontological moral theory. Rather than opting for a particu-
lar version of moral theory, we attempt to develop a comprehensive, ecumenical framework
of ethical principles (Parfit, 2011). We offer a deontological representation of three central
ethical traditions, using a generalization principle, an autonomy principle, and a deontic
utility principle. Using deontology, we indicate in outline how ethical obligations can be
derived from first principles instead of relying on conflicting moral intuitions of what seems
fair or unbiased. While ethical philosophy has been viewed as vague and subjective by the
popular imagination, the deontological approach to moral philosophy is known for offering
a rigorous foundation.

Wallach et al. (2008) first suggested a hybrid approach to VA and recommended
combining top-down and bottom-up approaches. Although their distinction can be more
broadly construed, a typical top-down approach installs ethical principles directly into the
machine, while a bottom-up approach typically asks the machine to learn prescriptive norms
from experience. From an epistemological perspective, the typical bottom-up VA approach
can result in teaching strategies that sometimes conflate “is” and “ought.” For example, one
might suggest that a machine might learn ethics through a simulated process of evolution
(Conitzer et al., 2017). The fact that certain ethical norms evolve does not imply that they
are valid ethical principles (Berker, 2009; Nagel, 1979; McDowell, 1995; Rachels, 1990).
It is true that bottom-up approach does not automatically commit the naturalistic fallacy,
particularly if ethical principles validate the norms learned in this fashion (Wallach & Allen,
2008). Nonetheless, in our approach to hybrid VA, bottom-up learning does none of the

1. Moral particularism criticizes rule-based ethical theory, but grants easily that rules are used in moral
reasoning, even as it critiques a one-size-fits-all approach. Interestingly, a rule-based or logic-based
ethical theory is not committed to a rigorous one-size-fits-all approach (Smith & Dubbink, 2011).
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normative work, but is used only to evaluate the truth of test propositions derived from
ethical principles.

Another version of a hybrid approach to VA is advocated by Arnold et al., who argue,
“architectures must explicitly represent legal, ethical and moral principles, while using
them as principles for decision-making in order to achieve predictable decisions on the part
of the system” and “systems that uphold those principles as much as possible represent
a more ethical path than systems that are less transparent less accountably trained, and
less easily corrected”(2017, p. 81). We largely agree with these authors, and our efforts
are indebted to their insightful criticism of the IRL-based VA. Arnold et al. suggest that
the problems in the IRL approach can be significantly addressed by an hybrid approach
in which explicitly written ethical rules can be imposed as constraints on what a machine
learns from observation through IRL. We follow this very path by developing deontological
principles as constraints, realizing nonetheless that one must ask precisely what remains
within the unconstrained space of observational learning. If what remains is learning that
includes ethical norms, then once again we confront the is-ought gap. If, on the other hand,
it is learning that includes empirical facts about the world, then those facts alone cannot
be transformed into “oughts.”

It is with this in mind that we offer a hybrid approach to VA that integrates inde-
pendently justified ethical principles from the deontological tradition in ethics (Korsgaard,
1996; Nagel, 1986; O’Neill, 2014) with factual knowledge acquired through ML technology.
Relevant facts may include observed preferences and values, but even such value-relevant
facts cannot be the source of ethical principles.

Applying the imperative, “Thou shalt not kill,” to a given action requires at a minimum
that someone knows the facts relevant to the action (Hare, 1991). The relevant facts, which
may include observations of human values and preferences, do not by themselves decide
what is ethical, but they factor into ethical assessment. In addition, action decisions almost
always take the form, “If the facts are such-and-such, then do A,” which we refer to as an
action plan. This provides a clue as to how VA can knit together empirical observation and
ethical principles. The factual information in an action plan can be merged with ethical
imperatives that depend on factual circumstances to arrive at an ethical judgment. The
next section describes in detail how this can be accomplished.

4. Integrating Ethical Principles and Empirical VA

We now show how deontologically derived ethical principles can combine with empirical
facts in a systematic way. An adequate exposition of deontological reasoning is far beyond
the scope of this paper, and we do not attempt to defend the specific ethical principles
we have chosen, although we briefly explain why we think they are reasonable. Relevant
literature is cited for readers who wish to study the underlying arguments in detail. Our
purpose here is only to show how a careful statement of ethical principles clarifies how these
principles can interrelate with empirical observation in VA.

We argue that expressing ethical assertions in the idiom of quantified modal logic, as
developed in Hooker and Kim (2018), makes the relationship between ethical principles
and empirical observation perspicuous. Specifically: ethical principles imply certain logical
propositions that must be true in order for a given action plan to be ethical, and empir-
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ical observation determines whether these propositions are, in fact, true. We refer these
propositions as test propositions, whose empirical evaluation typically requires observation
of human values, beliefs, and behavior. The test propositions need not appear alongside
the action plans in an AI system, but they can be generated and evaluated automatically
if desired (Section 4.5).

Thus the role of ethics in hybrid VA is to derive necessary conditions for the rightness
of specific actions, and the role of empirical VA is to ascertain whether these conditions are
satisfied in the real world.

4.1 Actions and Reasons

Deontology derives ethical principles from the logical structure of action (Kant, 1785; Wood,
1999; O’Neill, 2014; Hooker & Kim, 2019). It begins with the necessity of distinguishing free
action from mere behavior, insofar as causally speaking, both are determined by chemical
and physical forces. Contemporary deontological thinkers usually base the distinction
between free and causally determined behavior on a Kantian dual standpoint theory of
ethics that identifies free action as behavior for which the agent has reasons (Bilgrami, 1996;
Korsgaard, 1996; Nagel, 1986; Nelkin, 2000). Such reasons are not themselves psychological
causes or motivations, but considerations that the agent consciously makes to justify a
choice. The reasons need not be good or convincing ones from another agent’s perspective,
but must be sufficiently coherent to serve as an explanation of why the agent chose the
action.

Ethical principles are necessary conditions for the coherence or intelligibility of the
reasons behind an action. While a number of necessary conditions for coherence are possible,
ethical principles rest on the universality of reason: an agent who takes a set of reasons as
justifying an action must, in order to be consistent take the reasons as justifying the same
action for any agent to whom those reasons apply.

We focus on the three ethical principles that have been most intensely studied in the
literature—generalization, utility maximization, and respect for autonomy. Each states a
necessary condition for ethical conduct. We make no claim that they are exhaustive, but
only that they illustrate how empirical VA can be anchored by ethical principles.

Before proceeding, two caveats are in order. First, in this paper we do not attempt
to convince readers of the superiority of the deontological tradition or its premise that
principles can be discovered through an analysis of the logical structure of action. Our
aim is more modest: to show that deontology is particularly suitable for hybrid VA. Two
of the three principles we employ, generalization and respect for autonomy, have historical
roots in Kant’s The Formula of the Universal Law and The Formula of Humanity (Wood,
1999), although our formulations of them differ. Second, we also use a deontic model of
utilitarianism (Cummiskey, 1996) in order to make utilitarianism consistent with the other
two other principles.

4.2 Generalization Principle

The universality of reason leads immediately to the generalization principle: a rational
agent must believe that his/her reasons for acting are consistent with the assumption that
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all rational agents to whom the reasons apply could engage in the same actions (O’Neill,
2014; Wood, 1999).

As an example, suppose I see wristwatches on open display in a shop and steal one. My
reasons for the theft are that I would like to have a new watch, and that I can get away
with taking one.2 At the same time, I cannot rationally believe that I would be able to get
away with the theft if everyone stole watches when these reasons apply. The shop would
install security measures to prevent theft, which is inconsistent with one of my reasons for
stealing the watch. The theft therefore violates the generalization principle.

To give these ideas more precision, we express the action plan and generalization prin-
ciple in the language of quantified modal logic. In so doing, we do not define a deductive
system or propose formal semantics, as they are unnecessary for our project. We merely
borrow logical notation in order to allow a more rigorous formulation and application of
ethical principles.

The decision to steal a watch can be expressed in logical notation as follows. Define
predicates:

C1(a) = Agent a would like to possess an item on
display in a shop.

C2(a) = Agent a can get away with stealing the item.
A1(a) = Agent a will steal the item.

Because the agent’s reasons are an essential part of moral assessment, we evaluate the
agent’s action plan, which states that the agent will take a certain action when certain
reasons apply. In this case, the action plan is:(

C1(a) ∧ C2(a)
)
⇒a A1(a) (1)

Here, ⇒a is not logical entailment but indicates that agent a regards C1(a) and C2(a) as
justifying A1(a). The reasons in the action plan should be the most general set of conditions
that the agent takes as justifying the action. Thus the action plan refers to an item in a
shop rather than specifically to a watch, because the fact that it is a watch is not relevant
to the justification; what matters is whether the agent wants the item and can get away
with stealing it.

We can now state the generalization principle using quantified modal logic. Let C(a)⇒a

A(a) be an action plan for agent a, where C(a) is a conjunction of the reasons for taking
action A(a). The action plan is generalizable if and only if:

�aP
(
∀x

(
C(x)⇒x A(x)

)
∧ C(a) ∧A(a)

)
(2)

Here, P (S) means that it is physically possible for proposition S to be true, and �aS
means that a can rationally believe S. The proposition �aS is equivalent to ¬�a¬S, where
�a¬S means that rationality requires require a to deny S.3 Thus (2) says that agent a can

2. In practice, the reasons for theft are likely to be more complicated than this. I may be willing to
steal partly because I believe the shop can easily withstand the loss, no employee will be disciplined or
terminated due to the loss, I will not feel guilty afterward, and so forth. But for purposes of illustration
we suppose there are only two reasons.

3. The operators � and � have a somewhat different interpretation here than in traditional epistemic and
doxastic modal logics, but the identity �S ≡ ¬�¬S holds as usual.
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rationally believe that it is possible for everyone to have the same action plan as a, even
while a’s reasons still apply and a takes the action.

Returning to the theft example, the condition (2) becomes the test proposition for action
plan (2):

�aP
(
∀x

(
C1(x) ∧ C2(x)⇒x A1(x)

)
∧ C1(a) ∧ C2(a) ∧A1(a)

)
(3)

This says that it is rational for a to believe that it is physically possible for the following to
be true simultaneously: (a) everyone steals when the stated conditions apply, and (b) the
conditions apply and a steals. Since (3) is false, action plan (1) is unethical.

The necessity of (3) for the rightness of action plan (1) is anchored in deontological
theory, while the falsehood of (3) is a fact about the world. This fact might be inferred by
collecting responses from shop owners about how they would react if theft were widespread.
Thus ethics and empirical VA work together in a very specific way: ethics tells us that the
test proposition (3) must be true if the theft is to be ethical, and empirical VA provides
evidence that bears on whether (3) is true.

An action plan in the autonomous vehicle domain might be:

C3(a)⇒a A2(a) (4)

where
C3(a) = An ambulance under the control of agent a can reach its

destination sooner by using siren and lights.
A2(a) = Agent a will direct an ambulance to use siren and lights.

Agent a is the ambulance driver, or in the case of an autonomous vehicle, the designer
of the software that controls the ambulance. The generalization principle yields the test
proposition:

�aP
(
∀x

(
C3(x)⇒y A2(x)

)
∧ C3(a) ∧A2(a)

)
(5)

This says that it is rational for agent a to believe that siren and lights could continue
to hasten arrival if all ambulances used them for all trips, emergencies and otherwise. If
empirical VA reveals that most drivers would ignore siren and lights if they were universally
abused in this fashion, then we have evidence that (5) is false, in which case action plan (4)
is unethical.

4.3 Maximizing Utility

Utilitarianism is normally understood as a consequentialist theory that evaluates an act
by its actual consequences. Specifically, an act is ethical only if it maximizes total net
expected utility across all who are affected. Yet the utilitarian principle can also be
construed in a deontological fashion (Cummiskey, 1996), which allows it to be interpreted
as requiring the agent to select actions that the agent can rationally believe will maximize
utility. While utilitarians frequently view utility maximization as the sole ethical principle,
it can be seen as an additional necessary condition for an ethical action. The other non-
utilitarian principles remain in force because only actions that satisfy the other principles
are considered options for maximizing utility.

In a deontological analysis, utility is not what people generally value but what the agent
is rationally committed to valuing. The logic of means and ends requires that the agent
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regard some end as intrinsically valuable (such as happiness), and the universality of reason
requires that it be seen as valuable for any agent. A utilitarian believes this commits the
agent to selecting actions that maximize the expected net sum of utility over everyone who
is affected.4

The utilitarian principle can be formalized by requiring that a given action plan create
at least as much utility as any other available action plan. Let u(C(a), A(a)) be a utility
function that measures the total net expected utility of action A(a) under conditions C(a).
Then an action plan C(a) ⇒a A(a) satisfies the utilitarian principle only if agent a can
rationally believe that action A(a) creates at least as much utility as any ethical action that
is available under the same circumstances. This can be written:

�a∀A′
(
E
(
C(a), A′(a)

)
→ u

(
C(a), A(a)

)
≥ u

(
C(a), A′(a)

))
(6)

where A′ ranges over actions. The predicate E(C(a), A′(a)) means that action A′(a) is
available for agent a under conditions C(a), and that the action plan C(a) ⇒a A′(a) is
generalizable and respects autonomy.5 Note that we are now quantifying over predicates
and have therefore moved into second-order logic.

Popular views about acceptable behavior frequently play a role in applications of the
utilitarian principle. For example, in some parts of the world, drivers consider it wrong to
enter a stream of moving traffic from a side street without waiting for a gap in the traffic.
In other parts of the world this can be acceptable, because drivers in the main thoroughfare
expect it and make allowances. Suppose driver a’s action plan is (C4(a)∧C5(a))⇒a A3(a),
where:

C4(a) = Driver a wishes to enter a main thoroughfare.
C5(a) = Driver a can enter a main thoroughfare by moving

into the traffic without waiting for a gap.
A3(a) = Driver a will move into traffic without waiting

for a gap.

As before, driver a is the designer of the software if the vehicle is autonomous. Using (6),
the driver’s action plan maximizes utility only if the following test proposition is true:

�a∀A′
(
E
(
C4(a), C5(a), A′(a)

)
→

u
(
C4(a), C5(a), A3(a)

)
≥ u

(
C4(a), C5(a), A′(a)

)) (7)

Suppose we wish to design driving policy in a context where pulling immediately into traffic
is considered unacceptable. Then, doing so is a dangerous move that no one is expecting
and an accident could result. Waiting for a gap in the traffic results in greater net expected
utility, or formally, u(C4(a), C5(a), A3(a)) < u(C4(a), C5(a), A4(a)), where A4(a) is the
action of moving into traffic after waiting for a gap. So (7) is false, and its falsehood

4. Alternatively, one might argue that maximizing the minimum utility over those affected (or achieving a
lexicographic maximum) is the rational way to take everyone’s utility into account, after the fashion of
John Rawls’s difference principle (Rawls, 1971). Or one might argue for some rational combination of
utilitarian and equity objectives (Karsu & Morton, 2015; Hooker & Williams, 2012). However, for many
practical applications, simple utility maximization appears to be a sufficiently close approximation to a
“rational” choice, and to simplify exposition we assume so in this paper.

5. For “respecting autonomy,” see the next section.
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can be inferred by collecting popular views about acceptable driving behavior. Observed
preferences and values are therefore relevant to an ethical assessment, but they alone do
not determine the assessment.

Again, we have a clear demonstration of how ethical principles can combine with empir-
ical VA. The utilitarian principle tells us that a particular action plan is ethical only if test
proposition (7) is true, and empirical VA tells us whether (7) is true.

A similar approach can accommodate other situations in which popular expectations
bear on ethical decisions. For example, it has been observed that people may expect different
ethical norms to be followed by machine agents rather than by humans (Malle et al., 2015).
This could affect generalizability as well as a utilitarian assessment, because there may be
different implied promises or agreements concerning machines than humans. Yet again,
expectations alone do not determine the ethical outcome.

4.4 Respect for Autonomy

A third ethical principle requires agents to respect the autonomy of other agents. Specifi-
cally, an agent should not adopt an action plan that the agent is rationally constrained to
believe is inconsistent with an ethical action plan of another agent, without informed con-
sent. Murder, enslavement, and inflicting serious injury are extreme examples of autonomy
violations because they interfere with many ethical action plans. Coercion may or may not
violate autonomy, depending on precisely how action plans are formulated.6

The argument for respecting autonomy is basically as follows. Suppose I violate some-
one’s autonomy for certain reasons. That person could, at least conceivably, have the same
reasons to violate my autonomy. This means that, due to the universality of reason, I am
endorsing the violation of my own autonomy in such a case. This is a logical contradiction,
because it implies that I am deciding not to do what I decide to do. To avoid contradicting
myself, I must avoid interfering with other action plans.

To formulate an autonomy principle, we say that agent a’s action plan C(a) ⇒a A(a)
is consistent with b’s action plan C ′(b)⇒b A

′(b) when:

�aP (
A(a) ∧A′(b)

)
∨ ¬�aP

(
C(a) ∧ C ′(b)

)
(8)

This says that agent a can rationally believe that the two actions are mutually consistent,
or can rationally believe that the reasons for the actions are mutually inconsistent. The
latter suffices to avoid inconsistency of the action plans, because if the reasons for them
cannot both apply, the actions can never come into conflict.

As an example of how coercion need not violate autonomy, suppose agent b wishes to
catch a bus and has decided to cross the street to a bus stop (provided no traffic is coming).
The agent’s action plan is (

C6(b) ∧ C7(b) ∧ ¬C8(b)
)
⇒b A5(b) (9)

6. A more adequate analysis leads to a principle of joint autonomy, according to which it is violation of
autonomy to adopt an action plan that is mutually inconsistent with action plans of a set of other agents,
when those other action plans are themselves mutually consistent. Joint autonomy addresses situations
in which an action necessarily interferes with the action plan of some agent but no particular agent, as
when someone throws a bomb into a crowd. A general formulation of the joint autonomy principle in
terms of modal operators is given in Hooker and Kim (2018). This and other complications are discussed
in Hooker (2018).
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where
C6(b) = Agent b wishes to catch a bus.
C7(b) = There is a bus stop across the street from b.
C8(b) = There are cars approaching b.
A5(b) = Agent b will cross the street.

Agent a sees agent b begin to cross the street and forcibly pulls b out of the path of an
oncoming car that b does not notice. Agent a’s action plan is:(

C8(b) ∧ C9(b)
)
⇒a A6(a, b) (10)

where
C9(b) = Agent b is about to cross the street.
A6(a, b) = Agent a will prevent agent b from crossing the street.

Agent a does not violate agent b’s autonomy, even though there is coercion. Their action
plans (9) and (10) are consistent with each other, because the condition (8) yields the test
proposition:

�aP (
A5(b) ∧A6(a, b)

)
∨ ¬�aP

(
C6(b) ∧ C7(b) ∧ ¬C8(b) ∧ C8(b) ∧ C9(b)

)
(11)

This means that either (a) agent a can rationally believe that the two actions are consistent
with each other, or (b) agent a can rationally believe that the antecedents of (9) and (10)
are mutually inconsistent. As it happens, the two actions are obviously not consistent with
each other, and so (a) is false. However, agent a can rationally believe that the antecedents
of (9) and (10) are mutually inconsistent, because C8(b) and ¬C8(b) are contradictory. This
means (b) is true, which implies that condition (11) is satisfied, and there is no violation of
autonomy.

Again, this clearly distinguishes the roles of ethics and empirical observation in VA.
Ethical reasoning tells us that the test proposition (11) must be true if autonomy is to be
respected, whereas observation of the world tells us whether (11) is true.

In saying that coercion can be ethical, we do not imply that a violation of autonomy
can be ethical. Coercion must be consistent with the coerced agent’s action plan, as in the
above example. Coercion can also be ethical when there is implied or informed consent,
or when it is necessary to prevent unethical behavior (as in self-defense).7 Interfering with
an unethical action plan is no violation of autonomy because an unethical action plan is,
strictly speaking, not an action plan due to the absence of a coherent set of reasons for
undertaking it. An action plan is considered unethical in this context when it violates the
generalization or utility principle, or interferes with an action plan that does not violate one
of these principles, and so on recursively. Thus, coercion is ethical in an act of self-defense,
or to stop someone from unethically harming others.

To illustrate how autonomy may play a role in the ethics of driving, suppose that a
pedestrian b dashes in front of a’s rapidly moving car. Driver a can slam on the brake and

7. Coercion can be ethical when there is informed consent to a risk of interference, because giving informed
consent is equivalent to including the possibility of interference as one of the antecedents of the action
plan. This occurs, for example, when a medical test subject gives consent with the knowledge that an
experimental drug may cause illness, even though administering a drug that turns out to be harmful is
a form of coercion.
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avoid impact with the pedestrian, but another driver c is following closely and a sudden
stop could cause a crash. The driver a must choose between two possible action plans:(

C10(a, b) ∧ C11(a, c)
)
⇒a A7(a) (12)(

C10(a, b) ∧ C11(a, c)
)
⇒a ¬A7(a) (13)

where
C10(a, b) = Pedestrian b is dashing in front of a’s car.
C11(a, c) = Driver c is closely following a’s car.
A7(a) = Agent a will immediately slam on the brake.

Meanwhile, the pedestrian b has any number of action plans that are clearly inconsistent
with death or serious injury. Let C12(b) ⇒b A8(b) be one of them. Also, driver c of the
other car (there is only one occupant) has action plans that are inconsistent with an injury.
We suppose that C13(c)⇒c A9(c) is one of them.

We first check whether hitting the brakes, as in action plan (12), is inconsistent with
the other driver’s action plan C13(c)⇒c A9(c). The test proposition is

�aP (
A7(a) ∧A9(c)

)
∨ ¬�aP

(
C10(a, b) ∧ C11(a, c) ∧ C13(c)

)
(14)

The first disjunct is clearly true, because a can rationally believe that it is possible that
hitting the brake is consistent with avoiding a rear-end collision and therefore with any
planned action C13(c) ⇒c A9(c), even if this is improbable. So action plan (12) does not
violate joint autonomy.

We now check whether a failure to hit the brake, as in action plan (13), is inconsistent
with the pedestrian’s action plan C12(b)⇒b A8(b). There is no violation of autonomy if

�aP (
¬A7(a) ∧A8(b)

)
∨ ¬�aP

(
C10(a, b) ∧ C11(a) ∧ C12(b)

)
(15)

The first disjunct of (15) is clearly false for b’s action plan C12(b) ⇒b A8(b), because
driver a cannot rationally believe that a failure to hit the brake is consistent with it. The
second disjunct is likewise false, because driver a has no reason to believe that C10(a, b),
C11(a, c), and C12(b) are mutually inconsistent. Thus (15) is false, and we have a violation
of autonomy. The driver should therefore slam on the brakes. There is no need to check the
other ethical principles, because only one of the possible action plans satisfies the autonomy
principle.

4.5 Implementation Issues

While it is not our purpose to address engineering aspects of deontically-grounded VA,
we can take note of some implementation issues that arise. The main implication of our
proposal is that the portion of an AI system that makes ethically relevant decisions must be
rule-based (i.e., an instance of GOFAI) because it must consist of action plans. Fortuitously,
action plans have an if–then structure that is convenient for coding rules.

One can ask whether a rule-based system is adequate for the complexities of real-life
decision-making, but this is, of course, a problem that is not confined to deontically-based
VA. We do not attempt here to judge the versatility of rule-based AI, but we note that
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it seems to be increasingly viewed as technically viable and even necessary due to the
nontransparency of deep learning and support vector machines. Regarding autonomous
vehicles, for example, Brandom (2018) states: “Many companies have shifted to rule-
based AI, an older technique that lets engineers hard-code specific behaviors or logic into
an otherwise self-directed system.” The technical community has ample experience at
accurately coding and debugging huge rule-based systems. An ordinary (non-self-driving)
automobile is already regulated by more than 100,000 lines of code. Ethics-based systems
can evolve through several versions and be updated as necessary, as with any other type of
complex software. Rule-based AI can also be combined with machine learning (Woźniak &
Po lap, 2020). Even in a pure ML system, it is possible to derive rules that approximate the
directives generated by ML (Soares, Angelov, & Costa, 2020) and perhaps subject them to
ethical evaluation.

The test propositions used to evaluate the ethical status of action plans need not appear
in the AI rule base, and it is a further implementation decision whether to generate them
automatically. This is fairly straightforward (less so for the utilitarian test), because the
procedure for doing so can be clearly specified as shown above. Machine learning and other
forms of empirical VA can then be used to evaluate the truth of the test propositions.

5. Conclusion

Humanity’s goal should be to invest machines with a moral sensitivity that mimics the
human conscience. But conscience is dynamic rather than static, and adjusts ethical
principles systematically to empirical observations. In this paper we have elaborated two
challenges to AI moral reasoning that spring from the interrelation of facts and values.
The first is a confusion that mistakenly identifies facts for values; the second is a confusion
that misunderstands the process of moral reasoning. In addressing these challenges, we
have identified how and why AI can commit the naturalistic fallacy, move illicitly from
“is’s” to “oughts,” and oversimplify the process of moral reasoning. We have sketched, in
response, a proposal for understanding moral reasoning in machines, one that highlights
how deontological ethical principles can interact with factual states of affairs.
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Woźniak, M., & Po lap, D. (2020). Intelligent home systems for ubiquitous user support
by using neural networks and rule-based approach. IEEE Transactions on Industrial
Informatics, 16 (4), 2651–2658.

Zhang, T., Fletcher, P. O., Gino, F., & Bazerman, M. H. (2015). Reducing bounded
ethicality: How to help individuals notice and avoid unethical behavior. Organizational
Dynamics, 44 (4), 310–317.

890


