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Abstract

We aim to mine temporal causal sequences that explain observed events (consequents)
in time-series traces. Causal explanations of key events in a time-series have applications
in design debugging, anomaly detection, planning, root-cause analysis and many more. We
make use of decision trees and interval arithmetic to mine sequences that explain defining
events in the time-series. We propose modified decision tree construction metrics to handle
the non-determinism introduced by the temporal dimension. The mined sequences are
expressed in a readable temporal logic language that is easy to interpret. The application
of the proposed methodology is illustrated through various examples.

1. Introduction

This article presents an approach for learning causal sequence relationships, in the form of
temporal properties, from data. Most realistic causal relationships are timed sequences of
events that affect the truth of a target event. For example: “A car crashes into another. The
cause was that there was a time-point 7 sec to 8 sec before the crash at which the two cars
had a relative velocity of 70 kmph and a longitudinal distance of 6 m, and the leading car
braked sharply.” In this relationship, the cause is the relative velocity, the distance between
the cars, and the braking of the lead car. Such timing relationships can be expressed in
logic languages such as Linear Temporal Logic (Pnueli, 1977) for discrete event systems
and Signal Temporal Logic (Maler & Nickovic, 2004) for continuous and hybrid systems.
Temporal logic properties are also extensively used in the semiconductor industry, with
language standards such as SystemVerilog Assertions (SVA) (IEEE, 2012) and Property
Specification Language (PSL) (IEEE, 2010). The notion of sequence expressions in SVA,
which is very natural for expressing temporal sequences of events, is one of the primary
features responsible for the popularity of the language in industrial practice. In this article
we use a logic language inspired from SVA, which allows us to express real-valued timing
relations between predicates. Our choice is partially influenced by our objective of mining
assertions from circuit simulation traces, but also due to the applicability of the semantics
of sequence expressions in other time-series domains. For instance, in our language, the
causal expression for a crash may be captured as:

rspeed >= 70 && brake && ld <= 6 |-> ##[7:8] crash
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In this expression, brake is a proposition, ld and rspeed are real-valued variables
representing the longitudinal distance and relative velocity respectively, and rspeed>=70

and ld<=6 are predicates over real variables (PORVs).

Methods for learning causal relationships from data have been studied extensively and its
importance is well established (Pearl, 1995, 2000; Pearl et al., 2009; Evans & Grefenstette,
2018; Guo et al., 2018; Pearl, 2019). Most recently, the case was made for the need to build
a framework for learning causal relationships using logic languages, to have explanations
for predictions or recommendations and to understand cause-effect patterns from data,
the latter being a necessary ingredient for achieving human level cognition (Pearl, 2019).
Causal learning has applications in many areas (Guo et al., 2018) including medical sciences,
economics, education, environmental health and epidemiology. We aim to learn causal
relationships as temporal properties, of the form α ⇒ β, having a defined syntax and
semantics. α is a sequence of Boolean expressions, with adjacent expressions separated from
one another by time intervals. β is a predicate whose cause is to be learned. Properties of
this nature can be used for deduction. This then enables us to learn complex hierarchical
causal relationships.

Existing learning approaches, such as neural networks, require large amounts of training
data, and their results are not easily explainable. Furthermore, it is difficult to generalize
the same network structure to a variety of domains. Alternately, using Bayes networks
to capture causal relationships, poses ambiguities which are challenging to deal with when
reasoning over time. Bayes networks do not explicitly indicate what events cause what; a
variety of networks can be constructed for the same data. Also, time, which is a factor
in our learning, introduces a natural partial order among the events. Furthermore, the
data is a time-series representing the continuous evolution of variables over real-time, and
therefore in our setting time is assumed to be dense by default, and the variables over which
the predicates are defined are assumed to be continuous in general.

In this article, we use decision trees to achieve our goal of learning causal relationships.
Traditional decision tree structures, as they exist in standard texts (Quinlan, 1986; J.
R. Quinlan, 1993; Mitchell, 1997), deal with enumerated value domains of the variables.
Continuous domains can be partitioned into a finite set of options by using predicates.
For example, we may have the predicates, speed<30, 30<=speed<=100, and speed>100,
to define low speed, moderate speed, and high speed. In the temporal setting, speed,
varies with time and hence the truths of these predicates change with time. When learning
causal sequences which connect events in multiple time-worlds, the following fundamental
challenges arise:

• A data-point is the state of a single time-world. For a time-series over real-time, in
theory, there are infinite time-worlds in a finite time window.

• The influence of a predicate on the truth of the consequent changes with the time
separation between them. In other words, the same predicate may contribute to
the consequent being true in some time-worlds and false in some other time-worlds.
Relative to the consequent, it means that different past time-worlds contribute to its
truth in potentially conflicting ways.
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Figure 1: Evidence of time-separations between events in different time-worlds.

• The influence of a time-world state on a future event (namely, the consequent) not
only depends on the truth of the predicates in that time-world, but also on the truth
of the predicates in past time-worlds.

The main challenges may therefore be summarized in terms of two questions, namely:

1. Finding the predicates which influence the consequent, and

2. For these predicates, finding the time window separating the predicates and the con-
sequent, such that the sequence of predicates guarantee the consequent.

The challenges above arise due to the non-deterministic characteristic of temporal properties
such as the one described earlier. In a temporal property, past time-worlds influence future
time-worlds, and due to the dense nature of the real-time domain, these time-world asso-
ciations are not always an exact association, and non-determinism in time plays a crucial
role in representing these relationships.

In Fig. 1, various temporal associations are described. In Fig. 1(a), in one instance,
event e1 is separated from event e2 by t1 time units, and in another by t′1 time units. The
system from which the traces have been taken may potentially admit infinite variations of
time separation between e1 and e2 within a dense time interval. For learning meaningful
associations we need to generalize from the discrete time separation instances shown in the
time-series to time intervals. Fig. 1(b) depicts a similar situation with three events, where
the separation between e1 and e2 can vary, and the separation between e2 and event e3 may
also vary. Fig. 1(c) generalizes this.

The primary contributions of this article are as follows:

• We discuss the problems associated with using the standard decision tree learning
framework for learning causal sequence relationships across multiple time-worlds. We
show how this is attributed to the metrics used in building the decision tree.

• We adapt the measures of entropy, to account for time-worlds that may non-determi-
nistically be classified into multiple classes.

• We also adapt the information gain metric to account for time-world states that may
be present across multiple sibling nodes in the decision tree.

• We propose a logic language for representing causal sequences. The semantics of
the language are compatible with standard ranking measures for assessing learned
properties. We use measures of support and correlation to measure the quality of the
learned properties. These measures also give insights into the data.
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Figure 2: Vehicle road-map: Routes with demarcations for direction and speed limits.

• We propose a decision tree construction that uses the adapted metrics to learn causal
sequences across multiple time-worlds. We provide a method to translate the associa-
tions learned into properties, in a logic language that can be then used for reasoning.

The theory developed in this article has been implemented in a tool called the Prefix
Sequence Inference Miner (PSI-Miner), available at https://github.com/antoniobruto/
PSIMiner. The article is organized as follows. Section 2 outlines the problem statement
with a motivating example and presents the formal language for representing the properties
mined. Section 3 presents definitions for various structures and metrics used throughout
this article. In Section 4, we extend the standard decision tree metrics to incorporate time
into the learning process and develop an algorithm for mining temporal sequence expressions
to derive explanations for a given target event. Section 5 introduces ranking metrics for
properties. Section 6 discusses measures employed to prevent over-fitting using various
stopping conditions and pruning methods. Section 7 describes how we extend structures
and metrics to operate over multiple time-series simultaneously. In Section 8 we demonstrate
the utility of the methodology through select case studies. Section 9 discusses related work.
Section 10 concludes and summarizes the article.

2. Mining Explanation as Prefix Sequences

We start with a motivating example. Figure 2 shows a map of town X, depicting roadways
for vehicular movement in two dimensions. Vehicles are tagged with GPS devices to monitor
their movements. The data contains patterns describing routes vehicles follow and their
speed. Congestion and delays are reported in various parts of the town and one wishes to
determine the causes that lead to a delay in reaching the office.

We label those states as delayed from which the delay in reaching office is inevitable.
Obviously, the cause for a delay is a sequence of movement events that lead to a delayed
state. Once in a delayed state, the vehicle is always delayed. Some events may be common
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to all vehicles reaching the office, and such events need to be separated out from those that
contribute to the delay. Also, since the traffic pattern evolves with the time of the day, the
time delays separating the relevant events have a significant role in capturing the causal
sequence responsible for the delay.

Mining causes from the data leads to the discovery of the potential sequence of events
leading to a delay. One such event sequence is as follows:

I1 ##[0:40] !LANE2 ##[0:5] !LANE1 && R3S3 |-> ##[0:30] DELAY

The formula reads as, “After being at Intersection-1 (I1), if the vehicle is not in Lane-
2 (!LANE2) within the next 40 minutes, and is on road segment R3S3 but not in Lane-1
(!LANE1) within the next 5 minutes, then within the next 30 minutes, the vehicle is delayed.”
On further examination, using the layout of roads, the town discovers that the vehicle was
on the wrong lane while making the turn into R3S3 and ended up in the wrong lane in
a high-speed zone. We call the language for describing the above property as the Prefix
Sequence Inferencing language (PSI-L).

A prefix sequence inference (alternatively, a PSI-L formula or PSI-L property) has the
general syntax, S|->E; where, S is a prefix sequence of the form sn τn sn−1 τn−1 . . . τ1 s0,
also known as a sequence expression.

A time interval τi is of the form [a : b], a, b ∈ R≥0, a ≤ b, and each si is a Boolean
expression of predicates. The length of the sequence expression is n (having at most n time
intervals). A special case arises when s0 = true and τ1 6= ∅. In such a case the prefix
sequence inference is treated as the expression sn τn sn−1 τn−1 . . . τ2 s1 |-> τ1 E.

The consequent E in a PSI-L formula is assumed to be given. It is in the context of E
that the antecedent S is learned. E is called the target of the PSI-L formula. The notation
Sji is used to denote the expression sj τj . . . τi+1 si, 0 ≤ i ≤ j ≤ n. In general, S ≡ Sn0 .

For variable set V , the set D = R≥0 × R|V | is the domain of valuations of timestamps
and variables in V . A data point is a tuple (t, η) ∈ D, t ∈ R≥0 and η ∈ R|V |. The value
of a variable x ∈ V at the data point (t, η) is denoted by η[x]. Boolean and real-valued
variables are treated in the same way in the implementation. A Boolean value at a data
point is either 1 for true or 0 for false, and {0, 1} ⊂ R. We use the notation η |= s to denote
satisfaction of a Boolean expression s by a valuation η at a data point.

Definition 1. Time-Series (Trace): A trace T is a finite ordered list of tuples (t1, η1),
(t2, η2), (t3, η3) . . . (td, ηd), ∀i∈Nd−1

ti < ti+1. The length of T , the number of tuples in T ,
expressed as |T |, is d. The temporal length of T , denoted ||T ||, is td − t1.
T (i), i ∈ Z>0 denotes the ith data point (ti, ηi) in trace T .
A sub-trace T ji of T is defined as the ordered list (ti, ηi), (ti+1, ηi+1), . . . (tj , ηj); i, j ∈ Nd

and i ≤ j.

Definition 2. Match of a Sequence Expression and a PSI-L formula: The se-
quence expression Sml ::= sm τm sm−1 τm−1 . . . τl+1 sl has a match at T (j) in sub-trace T ji
of trace T , denoted T ji |=Sml iff:

• ηi |= sm, ηj |= sl

• ∃i≤k≤j T jk |= Sm−1
l

∧
tk − ti ∈ τm if (m− 1) > l

A PSI-L formula can have multiple matches in T . The PSI formula S|->E has a match
in trace T at T (j) iff ∃1≤i≤j T ji |= S and ηj |= E.

209



Antonio A. Bruto da Costa & Pallab Dasgupta

N0 { }

〈I1, 15〉

µ = 0.9343
ǫ = 0.3495

N2 {〈I1, 15〉}

〈LANE1, 6〉

µ = 0.7314
ǫ = 0.7262

N9
{〈I1, 15〉,µ = 0.8810

ǫ = 0.2783 〈!LANE1, 6〉}
〈R3S3, 6〉

N12 〈R3S3, 6〉}
µ = 0.7077
ǫ = 0.2650

{〈I1, 15〉,
〈!LANE1, 6〉,

〈LANE2, 7〉

µ = 1.0
ǫ = 0.0

N15

N11,N13,N14

N1,N3, ...N8

N10
µ = 0.0
ǫ = 0.0

{〈I1, 15〉,
〈LANE1, 6〉}

I1 ##[0:45] LANE1
|=> ##[0:30] !DELAY

〈R3S3, 6〉}
{〈I1, 15〉,
〈!LANE1, 6〉,

〈LANE2, 7〉,

I1 ##[0:40] !LANE2 ##[0:5] !LANE1 && R3S3

|=> ##[0:30] DELAY

N16
µ = 0.7
ǫ = 0.26

tree depth
bound reached

〈R3S3, 6〉}
{〈I1, 15〉,
〈!LANE1, 6〉,

〈!LANE2, 7〉,

DELAY

Figure 3: Decision Tree for mining causes of the delayed state DELAY for Town-X. A node
is represented as a circle, a decision of the form 〈predicate, bucket〉 is an oval, decisions
constraining a node are indicated to the right of each node within braces, while metrics for
the node are on its right.

We consider a given predicate alphabet P and a predicate, E ∈ P, that needs explanation,
called the target. Given a finite set of traces T and a target E, we wish to find various prefix
sequences that causally determine the truth of the target E. Each such prefix sequence
produces a PSI-L formula, which is valid over all traces in T.

We assume a bound n ∈ N, n ≥ 0, on the length of the prefix. We also use a parameter,
k ∈ R≥0, called delay resolution, representing an initial upper bound on the time separating
adjacent predicates in the prefix sequence. It is assumed that initially every time interval
in the prefix sequence, τi = [0 : k], 0 ≤ i ≤ n. The time intervals are refined as the PSI-L
property is learned.

Before developing the theory behind mining PSI-L properties, we convey a high level
intuitive outline of the approach, which we believe will help in the understanding of the
notations and definitions that follow.

Given the target, E (namely, the consequent), and the values of n and k, we create a
template of the following form:

tn ##[0:k] tn−1 ##[0:k] . . . ##[0:k] t1 ##[0:k] t0 |-> E

where each ti is called a bucket and represents a placeholder for a Boolean combination
of predicates (denoted si) from P. Initially, therefore, given values for n and k, the template
describes a sequence of events spread over a time span of, at most, n× k time units before
E. Our algorithm uses decision trees and works on this template in two cohesive ways,
namely:
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1. It uses novel metrics based on information gain to choose the combinations of pred-
icates that go into a bucket. Not all buckets may be populated at the end – the
intervals preceding and succeeding empty buckets are merged.

2. The delay intervals between populated buckets are narrowed to optimize the influence
of the sequence expression on the target.

We use metrics based on interval arithmetic to compute the influence of predicates on the
target across time intervals. The arithmetic is elucidated by hypothetically moving the
target backwards in time, so that information gain metrics can be computed on individual
time worlds.

An example of a decision tree produced by our algorithm for the property described
earlier for the delayed state is shown in Figure 3. The path in the decision tree leading to
the node at which a property is found is indicated using bold blue lines. A node in the
decision tree is named as N and given an index. When the error ε at a node is non-zero, a
choice of predicate and bucket is made and two child nodes are generated. If the decision
tree depth bound is reached, no more decisions can be made. Some nodes, such as N10

and N15 are nodes with zero error. For such nodes, a property can be constructed using
predicates and bucket positions labeling the path from the node to the root. A predicate is
false on the left branch and true on the right branch. For instance, the property described
earlier is generated at N15, and consists of the buckets t15 = {I1}, t7 = {LANE2} and
t6 = {!LANE1, R3S3}. A delay resolution of 5 is used here. The delays between buckets is
computed using this delay resolution and the bucket indexes. Refinement of delays may be
possible in some instances, and we explore this later.

3. PSI-Arithmetic and Preliminary Definitions

A summary of the methodology for mining prefix sequences is depicted in Figure 4. Initially,
an event E (the consequent) is presented as the target. Prefix sequences that appear to
cause E are to be mined (these are the potential antecedents). The antecedent and the
consequent together define the mined property. It is important to note that the non-
existence of a counter-example in the data is a necessary but not sufficient condition for a
property to be mined.

The truth intervals of a predicate in a trace define a Boolean trace. The given trace is
initially replaced by the Boolean traces corresponding to the predicate alphabet P.

We use interval arithmetic to represent and analyze truths of predicates over dense-time.
We handle time arithmetically, instead of as a series of samples, making the methodology
robust to variations in the mechanism used for sampling the data. This also allows us to
parameterize time delays between sequenced events, and compute the trade-offs involved
while varying the temporal positions of the events. All definitions are with respect to a
single trace for ease of explanation, but the methodology easily extends to dealing with
multiple traces, as discussed later in Section 7.

Definition 3. Interval Set of a predicate P for trace T : The Interval Set of a
predicate P for trace T , IT (P ), is the set of all non-overlapping maximal time inter-
vals, [a, b); a, b ∈ R≥0; a < b, in T where P is true. The interval [ti : tj) ∈ IT (P ) iff
∀i≤k<jT (k) |= P . The length of the interval set IT (P ), denoted |IT (P )| is defined as,
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|IT (P )| = Σ∀I=[a,b)∈IT (P )(b − a) For an interval I = [a, b), the left and right values of the
interval are denoted l(I) and r(I), denoting a and b respectively.

Definition 4. Truth Set for trace T and Predicate Set P: The Truth Set for P
in trace T , IT (P), is the set of all Interval Sets for the trace T of all predicates P ∈ P.
IT = {IT (P )|P ∈ P}.

Essentially, the trace T is translated into a Truth Set, namely the set of all labeled
interval sets for predicates in P. The truth set acts a Booleanized abstraction of the trace
T with respect to P.

Recall the following template of the mined properties as outlined in the previous section:

tn ##[0:k] tn−1 ##[0:k] . . . ##[0:k] t1 ##[0:k] t0 |-> E

where each ti is called a bucket. We propose a decision tree learning methodology
for mining prefix sequences. Every path of the learned decision tree leads to a true or
false decision, representing the truth of the consequent. Each node of the decision tree
corresponds to a pair 〈P, i〉, namely a chosen predicate and its position (the bucket) in the
prefix sequence. Different branches correspond to different choices of predicates in different
buckets. The accumulated choices along a path of the decision tree define a partial prefix
sequence, where some of the buckets have been populated. These accumulated choices shall
be referred to as a constraint set.

Definition 5. Constraint Set: A constraint is a pair, 〈P, i〉, consisting of a predicate,
P , and its position in the prefix-sequence, where P ∈ P, i ∈ [0 : n], n ∈ N. A constraint
set C is a set of constraints at a node in the decision tree obtained by accumulating the
constraints at its ancestors in the tree.

Definition 6. Prefix-Bucket: For a constraint set C, the prefix-bucket at position i ∈ N,
given as Bi(C), is the set of all predicates P , where 〈P, i〉 ∈ C. The set of all buckets for a
constraint set C is written as B(C) or simply B if constraint set C is known from context.

The term prefix-bucket refers to the set of constraints in a bucket. When the constraint
set C is known, we use the notation Bi to mean Bi(C).

The set of constraints in C define a partial prefix in PSI-L. In the prefix-sequence
sn τn sn−1 τn−1 . . . τ1 s0, the sub-expression si, 0 ≤ i ≤ n, is formed by the conjunction of
predicates in the bucket Bi(C). The partial prefix sequence formed from the constraint set C
is denoted as SC. For a constraint set C, the interval set for bucket Bi, given as IT (Bi), is
the set of truth intervals where the constraints in Bi are all true.
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The learning algorithm must place predicate and event constraints into various buckets.
Some buckets may remain empty, resulting in the delays in the sequence that appear before
and after it to merge.

Definition 7. Interval Work-Set: An interval work-setWn
0 is a set, {IB0 , IB1 , IB2 , ..., IBn |

IBi ∈ Iτ (Bi), 0 ≤ i ≤ n}, of labeled truth intervals for the set of labelled buckets, B = {B0,
B1, B2,..., Bn}, of constraint set C. We also define Wk

i = {IBj |i ≤ j ≤ k}.
For trace T , different combinations of bucket truth intervals, produce unique interval

work-sets. The set of all work sets that can be derived from Iτ (Bi), 0 ≤ i ≤ n, is given as
WC or simply W when the context C is known.

Intuitively, each Interval Work-Set is constructed by choosing one interval from each
prefix bucket. This has been further illustrated in Example 1.

We use the notion of Forward Influence to find the set of time points that qualify as a
match for a prefix sequence following Definition 2. Since the designated time of the match
is the time at which the match ends, we refer to these time points as end-match times.
End-match times can be spread over an interval, and we shall refer to such intervals as
end-match intervals.

Definition 8. Forward Influence F(S,Wn
0 ): The forward influence for a prefix sequence

expression S = sn τn sn−1 ... τ1 s0, given the interval work-set Wn
0 = {IB0 , ..., IBn}, is an

interval, recursively defined as follows:

F(S,W i
i ) = IBi

F(S,Wj
i ) = (F(S,Wj

i+1)⊕ τi) ∩ IBi , 0 ≤ i < j ≤ n
where, ⊕ represents the Minkowski sum of intervals: [α : β]⊕ [a : b] = [α + a : β + b]. For
S, the set of intervals in F(S,Wn

0 ) are called the end-match intervals of S. The set of all
forward influence intervals over all work sets W, is F(S,W) =

⋃
Wn

0 ∈WF(S,Wn
0 ).

Example 1. Consider the sequence expression S ≡ s2 ##[1:4] s1 ##[2:8] s0, and bucket
truth interval sets for a trace T , IT (B2) = {[2 : 4]}, IT (B1) = {[3 : 5], [7 : 9]} and
IT (B0) = {[4 : 9], [12 : 19]}. There are 1× 2× 2 = 4 interval work-sets.

The computation of forward influence using Definition 8, for each possible interval work-
set is described in the form of a tree in Figure 5a. An interval work-set is the set of truth
intervals of buckets encountered along a path from the root to a leaf node in the tree. The
tree is rooted at a node corresponding to the truth interval [2 : 4] for B2. Level i in the tree
corresponds to the computation of F(S,W2

i ).
The sequence expression, therefore, has four end-match intervals, namely [5 : 9], [9 : 9],

[12 : 13], and [12 : 16]. These intervals are contributed by different combinations of truth
intervals of the constituting predicates (that is, different interval work-sets), and may have
overlaps.

Even though a truth interval of a predicate in the work-set may contribute to a match
of a sequence expression, not all the points in that truth interval may participate in the
contribution. In other words, it is quite possible that only some sub-interval of a truth
interval actually takes part in the forward influence. Finding such sub-intervals eventually
leads us to find the begin-match intervals for a sequence expression.
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Figure 5: Influences computed for B2##[1 : 4] B1##[2 : 8] B0, with Iτ (B2) = {[2 : 4]},
Iτ (B1) = {[3 : 5], [7 : 9]} and Iτ (B0) = {[4 : 9], [12 : 19]}

In order to find the sub-intervals of the intervals in the work-set, we use a backward
influence computation as defined below.

Definition 9. Backward Influence B(S,Wn
0 , i): The backward influence, B(S,Wn

0 , i),
i ∈ [0, n], for a sequence expression S = sn τn sn−1 ... τ1 s0, given the interval work-set
Wn

0 = {IB0 , IB1 , ..., IBn}, is an interval defined as follows:

B(S,Wn
0 , 0) = F(S,Wn

0 )
B(S,Wn

0 , i) = (B(S,Wn
0 , i− 1)	 τi) ∩ F(S,Wn

i ) , 0 < i ≤ n

where, 	 represents the Minkowski difference of intervals: [α : β]	 [a : b] = [α− b : β − a].
For S, the set of intervals in B(S,Wn

0 , n) are called the begin-match intervals of S. The
set of all backward influence intervals at position i, over all work sets W, is B(S,W, i) =⋃
Wn

0 ∈WB(S,Wn
0 , i).

For a given prefix sequence expression S having at most n time intervals, and interval
work-setWn

0 , we use the shorthand notation Fi0 to represent F(S,W i
0), and Bi0 to represent

B(S,Wn
0 , i). Computing backward influences will, as we see later, also allow us to refine

delay intervals between non-empty buckets of a learned property.

Example 2. We continue with the example of Figure 5a. For each interval set, the backward
influence is computed, using Definition 9. The computation begins with the leaves of the
tree in Figure 5a, and proceeds backwards through the sequence expression to determine the
intervals corresponding to each match, indicated as a bottom-up computation in Figure 5b.

In a sequence expression computing the forward influence is not sufficient to identify the
sequence of intervals contributing to a match. We explain this using Figure 5b. Observe the
second column in Figure 5b corresponding to the interval work-set W2

0 = {[12 : 19]B0 , [3 :
5]B1 , [2 : 4]B2}. From Figure 5a, the forward influence computes the influence intervals to
be [2 : 4], [3 : 5], [12 : 13]. The interval [3 : 5] corresponds to the forward influence match up
to B1. The truth interval of B0 under consideration for this match is the interval [12 : 19].
Of the truth interval [3 : 5] of B1, observe that [3 : 4) ⊕ [2 : 8] = [5 : 12), [5 : 12) ∩ [12 :
19] = ∅, which does not fall within the truth interval [12 : 19] of B0, and thus truth interval
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[3 : 4) cannot contribute to a match. On the other hand, [4 : 5] ⊕ [2 : 8] = [6 : 13], and
[6 : 13] ∩ [12 : 19] = [12 : 13]. Therefore, of the interval [3 : 5], only [4 : 5] contributes to a
match.

Observation 1. For a potential infinite continuum of prefix sequence expression matches
associated with an interval work-set, the forward-influence computes the corresponding end-
match time intervals, and the backward influence computes sub-intervals from work-sets that
take part in matches.

Recall, that we use the shorthand notation SC to represent the prefix sequence con-
structed from constraint-set C.

Definition 10. Influence Set The influence set for a sequence expression for constraint
set C, SC = sn τn sn−1 ... τ1 s0, given interval sets for each bucket, IT (Bi), 0 ≤ i ≤ n, is
defined as the union of end-match intervals over all possible work sets Wn

0 ∈W, defined as
follows: IT (SC) =

⋃
Wn

0 ∈WF(SC ,Wn
0 )

Definition 11. Length of a Truth Set: The length of a Truth Set ITC(P), under constraint
set C, represented by |ITC(P)| is the length of the influence set, given as |IT (SC)|.

Example 3. We continue with the example of Figure 5a. The set of all possible work sets,
W, in the figure, is W = {{[4 : 9]B0 , [3 : 5]B1 , [2 : 4]B2}, {[4 : 9]B0 , [7 : 9]B1 , [2 : 4]B2}, {[12 :
19]B0 , [3 : 5]B1 , [2 : 4]B2}, {[12 : 19]B0 , [7 : 9]B1 , [2 : 4]B2}}. Let C be the constraint set forming
the buckets in the sequence-expression. The influence set for SC, is computed in Example 1
using forward influence. The influence set is IT (SC) = {[5 : 9], [9 : 9], [12 : 13], [12 : 16]}.
The length of the truth set for SC is |IT (SC)| = 9− 5 + 9− 9 + 13− 12 + 16− 12 = 9.

This section may be summarized as follows. Properties over dense real-time may match
over a continuum of time points. We use time intervals to represent truth points for pred-
icates (Definition 3) and sets of predicates (Definition 4). A prefix sequence is built from
a set predicate constraints (Definition 5), where each predicate occupies a fixed position
(bucket) in the prefix sequence. Multiple predicates sharing the same position in the se-
quence form a prefix-bucket (Definition 6). A predicate can be true over multiple disjoint
time intervals. All predicates in the same bucket are conjuncted together, and hence a
bucket of predicates may be true over a set of intervals. Choosing a combination of truth
intervals, one truth interval from each bucket position, forms an interval work-set (Defini-
tion 7). For the prefix-sequence and a given work-set, the forward influence (Definition 8)
provides a mechanism for computing the end time-points associated with the match of the
prefix-sequence , while the backward influence (Definition 9) provides a mechanism for com-
puting the begin time-points associated with the matching end time-points of the forward
influence. The set of all end time-points for all work-sets of a prefix-sequence form a set
of intervals where the prefix-sequence has influence, the influence set (Definition 10). The
choice of constraints C limits the length of the truth set (Definition 11), and determines the
decisions made for mining additional constraints.
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4. Learning Decision Trees for Sequence Expressions

This section develops the methodology for learning decision trees treating the target as the
decision variable. Each path of the decision tree from the root to a leaf will represent a
prefix sequence for the target or its negation.

The semantics of sequence expressions allow for both, immediate causality and future
causality to be asserted. Immediate causality, expressed as S |-> E, is observed when the
truth of sequence S at time t causes the consequent E to be true at time t. Future causality,
expressed by the assertion S |-> ##[a:b] E relates the truth of the sequence S at time t
with the truth of E at time t′ ∈ [t+ a : t+ b]. In both these forms, E is Boolean, and S is,
by default, a temporal sequence expression.

An important special case of immediate causal relations consists of relations where S is
strictly Boolean and does not contain any delay interval. We first present decision making
metrics available in standard texts (Mitchell, 1997) that we have adapted to interval sets for
mining immediate causal relations of this type. Later, we demonstrate through examples
that these metrics can lead to incorrect decisions when S is temporal. At the end, we
present metrics and a decision tree algorithm to learn sequence expressions to express future
causality relations.

4.1 Decision Metrics for learning Immediate Relations

At each node of the decision tree, statistical measures of Mean and Error are used to
evaluate the node. Standard decision tree algorithms use measures of Entropy or Ginni-
Index (Aggarwal, 2015) to measure the disorder and chaos in the data.

For immediate relations of the form S |-> E, where S and E are Boolean expressions,
the property template is t0 |-> E, and standard Shannon Entropy is used as a measure
of disorder. Information gain is used to evaluate decisions at internal nodes of the decision
tree.

Definition 12. MeanTC(E) (Ott & Longnecker, 2006): For the target E, the propor-
tion of time in trace T that E is true in the trace constrained by C:

MeanTC(E) =
|IT (E) ∩ I(SC)|
|I(SC)|

The mean represents the conditional probability of E being true under the influence of the
constraints in C. For convenience, we use µTC(E) to refer to MeanTC(E). The mean is not
defined when |I(SC)| = 0.

Note that for this special case of immediate causality, the mean represents the condi-
tional probability of E being true under the immediate influence of the constraints in C.
Also, there is only one immediate bucket, t0, and therefore all members of C correspond to
the same bucket. This means I(SC) corresponds to those regions of the trace which satisfy
all predicates in C.
Lemma 1. The mean, µTC(E) is 1 if and only if E is true wherever SC is true, and 0 if
and only if E is false wherever SC is true.

Proof. If E is true wherever SC is true, then IT (E)∩I(SC) = I(SC), therefore µTC(E) = 1.
Conversely, if µTC(E) = 1, then |IT (E) ∩ I(SC)| = |I(SC)|, which is possible only in the
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situation where IT (E)∩I(SC) = I(SC). Similarly, it can be shown that E is false whenever
µTC(E) = 0.

Definition 13. ErrorTC(E)(Aggarwal, 2015): For the target class E, the error for the
trace T constrained by C is defined as follows:

ErrorTC(E) = −µTC(E)× log2(µTC(E))− µTC(¬E)× log2(µTC(¬E))

For convenience, we use εTC(E) to refer to ErrorTC(E).

Lemma 2. For an immediate property, the error, εTC(E) for constraint set C and consequent
E is zero if and only if SC decides the truth of E or ¬E, that is, either there are no counter-
examples for SC|->E or there are no counter-examples for SC|->¬E.

Proof. We assume that |I(SC)| > 0, the sum of lengths of truth intervals for the expression
describing C is non-zero.

Part A: Consider the property SC|->E, where |IT (E) ∩ I(SC)| > 0. Assume that there
are counter-examples for SC|->E. The counter-examples would introduce a non-zero time
interval when SC is true and E is false. Let one of the counter-example time-intervals be
the interval [a : b), where b > a. Therefore, |IT (¬E) ∩ I(SC)| > 0, hence µTC(¬E) > 0,
and log2(µTC(¬E))) < 0 (the mean is bounded between 0 and 1). Similarly the term,
µTC(E) × log2(µTC(E))) < 0, since |IT (¬E) ∩ I(SC)| > 0 . Hence, from Definition 13,
εTC(E) > 0.

Consider the property SC|->E, where |IT (E) ∩ I(SC)| = |I(SC)|. Hence, |IT (¬E) ∩
I(SC)| = 0. Hence µTC(E) = 1, µTC(¬E) = 0 and hence ErrorT (E) = 0.

The proof for when the property is of the form SC|->¬E is identical.

Part B: Conversely, if the error is non-zero, then both terms of Definition 13 are non-zero
(the intervals for E and ¬E are compliments of each other). From Definition 12, µTC(E) > 0,
µTC(¬E) > 0, and hence IT (E) ∩ I(SC) 6= I(SC) and IT (¬E) ∩ I(SC) 6= I(SC). Therefore,
there exists a non-empty interval [a1 : b1), b1 > a1 where SC is true and E is false, and there
exists a non-empty interval [a2 : b2), b2 > a2 where SC is true and E is true, respectively
representing counter-example intervals for SC|->E and SC|->¬E.

We aim to construct a decision tree where the target, E, is the decision variable. Each
node of the decision tree represents a predicate, which is chosen on the basis of its utility
in separating the cases where E is true from the cases where E is false. Each branch out
of a node represents one of the truth values of the predicate representing that node. The
set of cases at an intermediate node of the decision tree are the time points at which the
predicates from the root to that node have precisely the values representing the edges along
that path (recall the definition of a constraint set).

This utility metric is called the gain. While many gain metrics exist (Aggarwal, 2015),
we find that Information Gain works best for our two class application. The standard
definition of Information Gain is given below.

Definition 14. Gain (Quinlan, 1986): The gain (improvement in error) of choosing
P ∈ P to add to constraint set C, at a node having error εTC(E) is as follows:

Gain = εTC(E)−
|I(SC∪{P})|
|I(SC)|

× εTC∪{P}(E)−
|I(SC∪{¬P})|
|I(SC)|

× εTC∪{¬P}(E)
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Figure 6: Truths of Predicates={P,Q,R,E} and Pseudo-Targets (n=3, k=0.4) for E.

Applying traditional decision tree learning using Definitions 13 and 14 on the truth-set
is suitable for mining those immediate properties where the antecedent, S, is Boolean.

To mine prefix sequences with delays, E’s truth must be tested with the truth of other
predicates over past time points. In Section 4.2, we introduce the notion of pseudo-targets
that allow us to evaluate constraints that have influence on E over a time-span. In Sec-
tion 4.3 we provide metrics for evaluating decisions involving pseudo-targets. Section 4.4
provides insights into the proposed metrics and Section 4.5 incorporates them into an al-
gorithm for learning prefixes. In Section 4.6 we explain how the learned decision tree is
translated into PSI-L temporal logic properties.

4.2 Pseudo-Targets for Sequence Expressions

We use the notion of pseudo-targets to compute summary statistical measures for the influ-
ence of predicates on the target across time. Recall from Section 2 the template form:

tn ##[0:k] tn−1 ##[0:k] . . . ##[0:k] t1 ##[0:k] t0 |-> ##[0:k] E

The parameters used in the above are the delay resolution, k, and the length, n, of the
sequence expression. Pseudo-targets are generated by stretching the target back in time
across each of the n delay intervals.

Definition 15. Pseudo-Target: A pseudo-target is an artificially created target computed
by stretching the truth of the target’s interval set back in time by a multiple of the delay
resolution k. The target E stretched back in time by an amount i×k is denoted as Ei. The
interval set for the pseudo-target Ei in trace T is computed as follows:

IT (Ei) = IT (E)	 [0 : i× k] =
⋃

I∈IT (E)

I 	 [0 : i× k] (1)

where, the 	 represents the Minkowski difference between intervals: [α : β]	 [a : b] = [α−b :
β − a]. The truth intervals for the negated pseudo-targets are computed similarly.
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For a prefix sequence with at-most n delay intervals and a delay resolution k, we augment
the truth set, IT (P) to ÎT (P) as follows:

ÎT (P) = IT (P) ∪ (
⋃

1≤i≤n
IT (Ei)) ∪ (

⋃
1≤i≤n

IT (¬Ei)) (2)

Example 4. In Figure 6, n = 3 and k = 0.4, the truth intervals of three pseudo-targets of
predicate E are shown. Pseudo-target Ei is computed according to Equation 1. For instance,
given Iτ (E) = {[5 : 8.3), [11.8 : 13), [18 : 20)} and Iτ (¬E) = {[0 : 5), [8.3 : 11.8), [13 : 18)},
Iτ (E2) and Iτ (¬E2) are computed to be as follows:

Iτ (E2) = {[5 : 8.3), [11.8 : 13), [18 : 20)} 	 [0 : 0.8]

= {[4.2 : 8.3), [11 : 13), [17.2 : 20)}
Iτ (¬E2) = {[0 : 5), [8.3 : 11.8), [13 : 18)} 	 [0 : 0.8]

= {[0 : 5), [7.5 : 11.8), [12.2 : 18)}

Observe that in Figure 6, the true and false intervals for pseudo-targets are not comple-
mentary. We wish to mine prefixes to explain both E and ¬E. Hence while generating
pseudo-targets, Equation 1 is also used to generate the pseudo-target truth intervals for
when E is false.

4.3 Effect of Pseudo-Targets on Decision Making

At each decision node, we must decide which predicate best reduces the error in the resulting
split, while simultaneously choosing a temporal position for the predicate in the n-length
prefix sequence. We achieve the latter by choosing to test a predicate with each pseudo-
target, to identify which pseudo-target (and therefore which position), given a possibly
non-empty partial prefix, is most correlated with the predicate under test. The choice of
predicate and position that gives the best correlation is then chosen.

At each query node of the decision tree, with constraint set C, for target E, the following
steps are carried out:

1. Compute MeanTC(Ê) and ErrorTC(Ê), where Ê is the pseudo-target applicable
for constraint set C.

2. For each 〈P, i〉, where P ∈ P, 1 ≤ i ≤ n, and 〈P, i〉 /∈ C, 〈¬P, i〉 /∈ C
(a) C1 = C ∪ 〈P, i〉, C0 = C ∪ 〈¬P, i〉.
(b) Compute MeanTC1 (Ẽ), ErrorTC1 (Ẽ), MeanTC0 (Ẽ), ErrorTC0 (Ẽ). Here,

Ẽ is a pseudo-target that may differ from Ê.

(c) Compute the gain for the choice 〈P, i〉, for constraint sets C1 and C0, with
respect to ErrorTC (Ê) computed in Step 1.

3. Report the arguments 〈P ∗, i∗〉 that contribute the best gain from Step 2.

In the core steps of the above procedure, namely, Step 1 and Step 2, we compute
the statistical measures of mean and error for pseudo-targets Ê and Ẽ. The definition of
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MeanTC(Ê) and ErrorTC(Ê) in Section 4.1 assume that the true and false interval lists of
E are compliments of each other, however, for a pseudo-target Ê this is not true, hence
the metrics cannot be directly applied. Furthermore, even though in each iteration of
Step 2, a choice of 〈P, i〉 is made, it is unclear for which pseudo-target the measures must
be computed. We first resolve the later and then address the computation of the statistical
measures.

Note that in Step 2 (a), for a predicate P , once a pseudo-target position is determined,
the split considers P being true in one branch and P being false in the other, while the
temporal position for P and ¬P remains the same for both child nodes of the split.

4.3.1 Choosing a Pseudo-Target for a Partial Prefix

A path of a decision tree in the making is expanded by adding a constraint 〈P, i〉 into
the constraint set C corresponding to the path. The choice of the constraint, namely the
predicate P and its bucket ti, is made by comparing the influence (on the target, E) of
the prefix sequences obtained by adding to C each such pair 〈P, i〉. At the heart of this
approach are the metrics used to determine the goodness of a partial prefix sequence in
terms of its influence on the target E. Our metrics are computed by stretching the target
back in time as pseudo-targets. It is, therefore, an important step to determine which of
the pseudo-targets is to be used for a given partial prefix sequence.

Proposition 1. The pseudo-target applicable for a given constraint set C is the smallest
bucket position, i, among all non-empty buckets, 0 ≤ i ≤ n.

Example 5. For n = 3, and delay resolution k = 0.4, we consider the template of the
form: t3 ##[0:0.4] t2 ##[0:0.4] t1 ##[0:0.4] t0 |-> E. Suppose the given constraint
set is C = {〈Q, 3〉, 〈P, 1〉}. The prefix-buckets are therefore, B3(C) = {Q}, B2(C) = {},
B1(C) = {P} and B0(C) = {}. The partial prefix sequence that results from C is S ≡ Q
##[0:0.8] P . This then asserts Q ##[0:0.8] P |-> ##[0:0.4] E.

Note that the delays separating placeholders t3, t2, and t1 have merged into the interval
##[0:0.8] because t2 is empty. Also, since t0 is empty, the delay between t1 and t0

separates B1(C) from E. In this case, therefore, evaluating C requires using pseudo-target
E1 as shown in Figure 6. In other words, E1 represents the expression ##[0:0.4]E.

4.3.2 Adapting Statistical Measures for Pseudo-Targets

Standard decision tree algorithms assume that classes are independent and that no data
point in the data set belongs to more than one class. However, for a pseudo-target, this is not
the case, because, the pseudo-target can (non-deterministically in time) be true and false at
some times (see Figure 6). Hence a traditional error computation, such as in Definition 13,
misrepresents the relationships that exist.

Furthermore, at each decision node, we make two decisions, deciding which predicate to
pick, and deciding which temporal position (pseudo-target) gives the best gain for the chosen
predicate. The two decisions are dependent and must be made together. Pseudo-targets
help us to learn the most influential temporal position for a predicate.

Example 6 demonstrates the lacunae of using the traditional definitions of mean and
error from Section 4.1.
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Figure 7: Predicates={Q,P,E} and Pseudo-Targets (n=3, k=0.4) for E. C = {〈Q, 3〉, 〈P, 2〉}
is a constraint set; while I(SC) is the set of end match influence time intervals.

Example 6. Consider the constraint set C = {〈Q, 3〉, 〈P, 2〉}, where the truth intervals of
the predicates are shown in Figure 7. We demonstrate the computation of MeanTC(E

2)
and ErrorTC(E

2) for C, following their standard definitions over time intervals, as given in
Section 4.1.

• SC ≡ Q ##[0:0.4] P . The influence set is computed following Definition 10:

I(SC) = {[4.3 : 4.6), [6.6 : 9.8)}
|I(SC)| = (4.6− 4.3) + (9.8− 6.6) = 3.5

Since the smallest non-empty bucket is t2 (containing P ), we use pseudo-target E2 in
our computations. The mean and error with respect to E2 are computed as follows:

µTC (E2) =
|ITC (E2) ∩ I(SĈ)|

|I(SC)|
µTC (¬E2) =

|ITC (¬E2) ∩ I(SC)|
|I(SC)|

=
(0.3 + 3.2)

(3.5)
=

(3.5)

(3.5)
=

(0.3 + 0.8)

(3.5)
=

(1.1)

(3.5)

= 1.0 = 0.3143

εTC (E2) = −(0)− (−0.5238) = 0.5238

Observe that for the prefix SC, visually one observes no error with respect to E2 (indicated
by the blue band overlayed on E2). Hence, intuitively, the property Q ##[0:0.4] P |->

##[0:0.8] E, having no error, should be reported. However, since error exists with respect
to ¬E2, according to Definition 13 the property is would be set aside as requiring refinement,
by adding predicates in some bucket.

From Example 6 it is clear that using the measures of mean and error from Section 4.1,
it is possible to miss potential relations that may exist in the data presented in Figure 7.
This is primarily due to the fact that the measures ignore that there can be an overlap of
the truth intervals of a pseudo-target’s true and false state. The measure of error counts the
entropy contributed by the overlapping states twice. We introduce the definition of unified
error that takes this into account when computing the error.
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Definition 16. Unified-ErrorT (Ei, C): For the target class Ei, the unified error, denoted
as UETC(E

i), for the trace T constrained by C is defined as follows:

UETC(E
i) = εTC(E

i) + µTC(E
i ∧ ¬Ei)× log2(µTC(E

i ∧ ¬Ei))
While computing the unified error, the term µTC(E

i ∧ ¬Ei) × log2(µTC(E
i ∧ ¬Ei) rep-

resents the entropy in the region of the overlap. By adding this term, we effectively ensure
that the entropy from the overlap is considered only once when computing the unified error.

Lemma 3. For a PSI-L property, the unified error, UETC(E
i), for constraint set C and

consequent pseudo-target Ei is zero if and only if C decides Ei or ¬Ei, that is, there are no
counter-examples for SC|->Ei or there are no counter-examples for SC|->¬Ei.
Proof. We make the assumption that |I(SC)| > 0, the sum of lengths of truth intervals for
the expression describing C is non-zero. For the case where i = 0, since µTC(E ∧ ¬E) = 0,
UETC(E

0) = εTC(E). We therefore, only consider the case when i > 0.
Part A: Consider the property SC|->Ei, where |IT (Ei) ∩ I(SC)| > 0. Assume that there
are counter-examples for SC|->Ei. The counter-examples would introduce a non-zero time
interval when SC is true and Ei is false. Let one of the counter-example time-intervals be
the interval [a : b), where b > a. Therefore, |IT (¬Ei) ∩ I(SC)| > 0, hence µTC(¬Ei, C) > 0,
and log2(µTC(¬Ei, C))) < 0 (the mean is bounded between 0 and 1). Similarly the term,
µTC(E

i, C)× log2(µTC(E
i, C)) < 0, since |IT (¬Ei)∩ I(SC)| > 0 . Hence, from Definition 13,

ErrorT (Ei, C) > 0. For i > 0, µTC(E
i ∧ ¬Ei) > 0, however µTC(E

i ∧ ¬Ei) < µTC(¬Ei).
Therefore, εTC(E

i) > µTC(E
i ∧ ¬Ei)× log2(µTC(E

i ∧ ¬Ei)), and hence UETC(E
i) > 0 .

Consider the property SC|->Ei, where |IT (Ei) ∩ I(SC)| = |I(SC)|. Let Υ = IT (Ei) ∩
IT (¬Ei) represent the overlapping intervals of Ei and ¬Ei. Since, |IT (Ei) ∩ I(SC)| =
|I(SC)|, I(SC) ⊆ IT (Ei). Therefore, IT (¬Ei) ∩ I(SC) ⊆ IT (Ei) and hence IT (¬Ei) ∩
I(SC) = Υ ∩ I(SC). For i > 0, Υ 6= ∅, and 0 ≤ |Υ ∩ I(SC)| < |I(SC)|. Hence, for the case
where |Υ ∩ I(SC)| = 0, µTC(¬Ei, C) = µTC(E

i ∧ ¬Ei, C) = 0. On the other hand, when
|Υ ∩ I(SC)| > 0, µTC(¬Ei, C) = µTC(E

i ∧ ¬Ei, C) and the term for ¬E in εTC(E
i) balances

out the term for Υ from UETC(E
i), yielding a unified error of zero.

The proof for when the property if of the form SC|->¬Ei is identical.
Part B: Conversely, if the unified error is non-zero, then 0 < µTC(E

i, C) < 1 and 0 <
µTC(¬Ei, C) < 1. If any one term was zero or one, the same argument, using overlapping
truth intervals, Υ, from Part A of the proof would render the error zero. From Definition 12,
0 < µTC(E

i, C) < 1, 0 < µTC(¬Ei, C) < 1, and hence IT (Ei)∩I(SC) 6= I(SC) and IT (¬Ei)∩
I(SC) 6= I(SC). Therefore, there exists a non-empty interval [a1 : b1), b1 > a1 where SC
is true and Ei is false, and there exists a non-empty interval [a2 : b2), b2 > a2 where SC
is true and Ei is true, respectively representing counter-example intervals for SC|->Ei and
SC|->¬Ei.
Example 7. In Example 6 on considering the overlap component and computing the Unified
Error for the constraint set C, we get the following:

µTC (E2 ∧ ¬E2) =
|ITC (E2 ∧ ¬E2) ∩ I(SC)|

|I(SC)|
UETC (E2) = εTC (E2) + 0.3143× (log2(0.3143))

=
(0.3 + 0.8)

(3.5)
=

(1.1)

(3.5)
= 0.5238 + (−0.5238)

= 0.3143 = 0
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From this example, we see that the use of Unified Error reveals the association in the data
that was earlier set aside when using the error metric of Definition 13.

The non-determinism resulting out of reasoning with time intervals presents another
fundamental difference with the traditional decision tree learning algorithm. Each node in
the traditional decision tree splits the data points into disjoint subsets, which is leveraged
by the information gain metric. As the following example shows, some time points in the
time-series data may be relevant for both branches of a node in the decision tree.

Example 8. Consider the split of the data-set resulting from considering Q at bucket t3 to
augment the constraint set {〈P, 2〉} to obtain C0 = {〈¬Q, 3〉, 〈P, 2〉} and C1 = {〈Q, 3〉, 〈P, 2〉}.
Due to the non-deterministic semantics of the temporal operator ##[a : b], the forward
influence (end-matches) of C0 and C1 overlap.

F(SC0 ,W3
2 ) = {[4.3 : 6), [6.6 : 6.7), [9.6 : 9.8), [13.2 : 14), [17.3 : 20)}

F(SC1 ,W3
2 ) = {[4.3 : 4.6), [6.6 : 9.8)}

The two sets overlap at all time-points in the intervals [4.3 : 4.6), [6.6 : 6.7) and [9.6 : 9.8).
Hence, the sum of the weights in the definition of Gain in Definition 14 exceeds 1, that is:

|F(SC0 ,W3
2 )|

|I(S{〈P,2〉})|
+
|F(SC1 ,W3

2 )|
|I(S{〈P,2〉})|

> 1

Furthermore, the influence set of intervals for the constraint set {〈P, 2〉} is:

I(S{〈P,2〉}) = {[4.3 : 6), [6.6 : 9.8), [13.2 : 14), [17.3 : 20)}
Since the temporal position of Q is earlier than that of P , F(SC0 ,W3

2 ) ∪ F(SC1 ,W3
2 ) =

I(S{〈P,2〉}), however, this need not always be the case. If Q is placed later than P in the
sequence, the forward influence list can change substantially, since it would now be contained
in the interval list of Q.

Due to both, potential overlapping data-points between the child nodes of a split and
the data-points after the split being potentially different from those of the parent node, we
present a revised definition of gain, called unified gain.

Definition 17. Unified-Gain: The gain (improvement in error) of choosing to split on
P ∈ P, at bucket position b, given the existing constraint set C, at a node having error ε, is
as follows:

UG(ε, C, P, b) = ε− α(C, P, b)× εTC∪{〈P,b〉}(E)− α(C,¬P, b)× εTC∪{〈¬P,b〉}(E)

where,

α(C, P, b) =
|IT (SC∪{〈P,b〉})|

|IT (SC∪{〈P,b〉})|+ |IT (SC∪{〈¬P,b〉})|

4.4 Variations of Unified Gain with Temporal Positions

Given an existing constraint set C (possibly empty - at the root of the tree), a candidate
predicate P , and its temporal position i in the sequence, the Gain is dependent on the
resulting pseudo-target association.
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Gain

Temporal (Bucket) Position
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Plateaus
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Figure 8: Gain for a candidate predicate, with varying temporal distances from the target
predicate.

Theorem 1. The Unified Gain, of placing predicate P in bucket index i, is monotonically
non-decreasing with increasing values of i.

Proof. Following Proposition 1, the pseudo-target association is dependent on the smallest
index among the non-empty buckets in the constraint lists resulting from the split. The
split results in two nodes, one with the constraint list C ∪ {〈P, i〉} and the other with the
constraint list C ∪ {〈¬P, i〉}. The smallest non-empty bucket is, therefore, the minimum of
i and the index of the smallest index non-empty bucket in C. Let the index of the smallest
index non-empty bucket in C be b. Let b̂ be the lesser of i and b. The length of interval list

for the pseudo-target, |I(E b̂)|, becomes larger with larger values of b̂ (From Definition 15).

Initially, at the root of the decision tree, the constraint set, C, is empty. Hence, as b̂

increases, a larger fraction of the truth of P would be covered by the pseudo-target E b̂.
This would cause the quantum of counter-examples for both true and false states of P and
it’s association with E to reduce, leading to a reduced entropy, and therefore an increase in
Gain. Hence as b̂ increases, the Gain would monotonically increase or remain stagnant at
a plateau. This is depicted in Figure 8.

When the constraint set, C, is non-empty, i.e. there is at least one element 〈Q, j〉 ∈ C,
the following cases arise:

1. [b > i] (Figure 9) : The end-match of the sequence C ∪ 〈P, i〉 is computed by adding
[0 : (b − i) × k] to the end-match of C. While maintaining i < b, as i increases,
i.e. i is a bucket further from the target, but closer to the end-match of C (depicted
in Figure 9), the length of the end-match of the resulting constraint-set C ∪ 〈P, i〉,
monotonically decreases. For larger differences between b and i (smaller values of i),
the end-match is wider, hence the potential for counter-examples (with respect to the
target) is higher. Therefore, as i increases, the entropy monotonically decreases.

2. [b ≤ i] (Figure 10) : For constraint-set C, either Bi is empty or non-empty. When P
is placed in bucket i ≥ b, the new bucket B′i = Bi ∪ {P}. We have the following two
cases:
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Figure 9: Relative Position of Predicate P with respect to the end-match interval list for
a constraint set, with the end-match represented as S. The index of the minimum index
non-empty bucket, b, is 8. The index of the bucket where P may be placed in the sequence
is i.
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time
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Figure 10: Relative Position of Predicate P with respect to the end-match interval list for
a constraint set, with the end-match represented as S. The index of the minimum index
non-empty bucket, b, is 8. The index of the bucket where P may be placed in the sequence
is i.

(a) Bi is non-empty: On adding P to bucket i, let The interval list of P is in-
tersected with the interval list of Bi and therefore the resulting bucket has the
interval list I(B′i) ⊆ I(Bi).

(b) Bi is empty: Let h be the smallest bucket index, h > i, such that Bh 6= ∅, and
let j be the largest bucket index, j < i, such that Bj 6= ∅. If such a index h does
not exist, then i is the largest index non-empty bucket in the prefix, while the
case that j does not exist is not possible under the present case (b ≤ i).
If Bh 6= ∅, then the forward influence of Bh on Bj is computed as follows:

Θ = (I(Bh)⊕ [0 : (h− j)× k]) ∩ I(Bj)
However, on adding P in bucket i, h > i > j, the forward influence of Bh on Bj
is computed as follows:

Ω = ((I(Bh)⊕ [0 : (h− i)× k]) ∩ I(Bi))⊕ [0 : (i− j)× k]) ∩ I(Bj)
Hence, Ω ⊆ Θ. The potentially reduced forward influence on Bj similarly prop-
agates toward reducing the end-match for the sequence having P in bucket i. A
reduced end-match has lesser potential for entropy, and therefore yields a higher
gain, or leaves the gain unchanged.

4.5 A Miner for Prefix Sequences

The prefix sequence inference mining algorithm is presented as Algorithm 1. The length of
the sequence n, and the delay resolution k are meta-parameters of the algorithm. Every
choice of n and k yields a different instance of the algorithm. The choice of values of the
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ALGORITHM 1: nk-PSI-Miner: Mining n-length, k-resolution Prefix Sequences

Input: Truth Set IT (P) for trace T , Predicate List P, Target E, Constraint List C
Output: PSI-L properties A, structured as the decision tree.

1 if stoppingCondition(IT (P),P, E, C) then return;
2 b← Smallest non-empty bucket position in C;
3 Pbest ← ∅; ibest ← −1; gbest ← 0;
4 for 0 ≤ i < n do
5 forall P ∈ P, 〈P, i〉 /∈ C do
6 g ← UG(UETC (Eb), C, P, i);
7 if g > gbest then Pbest ← P ; ibest ← i; gbest ← g ;

8 if ibest < 0 then return;
9 nk-PSI-Miner(IT (P),P, E, C ∪ {〈Pbest, ibest〉});

10 nk-PSI-Miner(IT (P),P, E, C ∪ {〈¬Pbest, ibest〉});

meta-parameters must come from the domain. The algorithm learns a decision tree for PSI
properties for the truth set ÎT (P) for a choice of n and k.

In Algorithm 1, Line 1 tests the current node for termination. One of the criteria for
termination is that the node is homogeneous with respect to E, that is, the error at the
node is zero. Other stopping conditions are described later in Section 6.

In Line 2 the smallest non-empty bucket index is identified from the constraint set C,
and is used in Line 6 to compute the error for C. The loop at Line 4 iterates over every
pseudo-target position, while Line 5 chooses a predicate from the predicate alphabet P. Any
predicate and pseudo-target position combination already present in C are ignored in Line 5.
The Unified Gain for the choice of predicate and pseudo-target is computed in Line 6 and
the best gain, and its associated arguments are determined in Line 7. The computation of
Unified Gain uses the smallest non-empty bucket index for the choice of pseudo-target, with
respect to which the Unified Entropy and Unified Gain are computed. The loop beginning
at Line 4 implicitly chooses the smallest bucket position for the “best predicate” that has the
maximum gain. As shown in Section 4.4, the gain plateaus at various points and we choose
the earliest point on the plateau that has the highest gain. Line 8 terminates exploration
if for the current node, no remaining predicate and bucket position pair can improve the
solution. If a best predicate and bucket position pair is found, lines 9 and 10 branch on new
constraint sets. In the following section, we describe an approach for translating a decision
tree constructed using Algorithm 1 into properties in PSI-L.

4.6 From Decision Trees to PSI-L Formulae

The nodes in the decision tree at which the error is zero are the leaf nodes of the tree and
have homogeneous data with respect to the truth of E. We call these nodes PSI nodes and
the labels along the path from a PSI node to the root (the constraint set C) form a PSI-L
property template. A template consists of predicates and their relative sequence position
from the target. Concretizing the PSI template involves computing the relative positions of
predicates from each other. We do this by grouping predicates that fall in the same relative
temporal position into a bucket, and then compute tight time delays that separate buckets
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in order of their temporal distance from the target E. The computation of tight separating
intervals between buckets assumes an any-match (may) semantic.

At a PSI node, the set of constraints C is known. Recall, that a PSI node is a node at
which the entropy is zero. We use the notation Bi, to denote the set of predicates having
influence on the target with a step size of [0 : i×k], while si is the conjunction of predicates
in Bi. The PSI-L property has one of the following forms:

sn τn sn−1 τn−1 . . . τ1 s0|-> E , when B0 6= ∅
sn τn sn−1 τn−1 . . . τ2 s1|-> τ1 E , otherwise

We wish to compute tight intervals, τi, 1 ≤ i ≤ n.

Definition 18. Tight delay separation: For trace T and constraint set C, a delay sep-
aration [a : b], a ≤ b, between buckets Bi and Bj, i > j, is tight with respect to the match
semantics of Definition 2 iff the following conditions hold,

• Maximality: ∃ti, t′i ∈ ITC(Bi), tj , t′j ∈ ITC(Bj): ti + a = tj and t′i + b = t′j

• Left-Tight: If a > 0, ∀t ∈ [0 : a); ti ∈ ITC(Bi); tj ∈ ITC(Bj): ti + t 6= tj

• Right-Tight: If b<(i−j)×k, ∀t ∈ (b,(i−j)×k]; ti ∈ ITC(Bi); tj ∈ ITC(Bj): ti+t 6= tj

We use the standard interval widening operation for a set of intervals I.

Definition 19. Widening over a set of intervals: For a set of intervals I, the widening
over the intervals in I is defined to be the following interval:

W(I) = [min
I∈I

l(I) : max
I∈I

r(I)]

In the remainder of this section we describe how tight delay separations, or simply
separations, are computed. For the property S|->Ei we compute separations between
buckets. The interval set for the jth bucket, Bj , for the constraint set C, of intervals that
take part in the prefix SC , is as follows:

İTC(Bj) = B(S,W, j)

Note, that for the bucket with the smallest index (closest to the target), the intervals
taking part in the prefix SC are the end-match intervals.

We compute the separation interval, SepC(Bj , E), for j > 0, of Bj from E as follows:
• For each interval İBj in İTC(Bj), and each truth interval IEi of E, compute the influence

of İBj on IE . For some İBj and IE , this is given as, F+ = (İBj ⊕ [0 : j × k]) ∩ IE .

• For a given İBj and IE , and therefore a value of F+, we compute the separation of

F+ from İBj as, D = F+ 	 İBj .
• We compute D over all combinations of İBj and IE , and widen over the resulting set

of intervals.

• It is possible for D to be larger than [0 : j× k] due to the semantics of the Minkowski
operators. We, therefore, bound the widened set by [0 : j×k]. In our implementation,
intervals in an interval set are sorted according to their timestamps. For any two
intervals [α : β] and [a : b], we compute the Minkowsky difference between them only
if β >= a.

227



Antonio A. Bruto da Costa & Pallab Dasgupta

The separation, SepC(Bj , E), for j > 0, of Bj from E as follows:

SepC(Bj , E) =W(I |I = ((İBj ⊕ [0 : j × k]) ∩ IE)	 İBj ) ∩ [0 : j × k]

for all İBj ∈ İTC(Bj) and IE ∈ IT (E))

Note that SepC(Bj , E) computes the separation between a bucket Bj and the target Ei.
To form a prefix sequence, delay intervals separating adjacent buckets must be computed.
The separation τj between Bj and Bj−1 is iteratively computed as follows:

τj =

{
SepC(Bi, E) j = i

SepC(Bj , Bj−1) 0 ≤ i < j ≤ n
Recall that i is the smallest index of a non-empty bucket in SC , and that some buck-

ets may be empty, and the separation between adjacent non-empty buckets Bj and Bl is
computed in a similar manner.

Proposition 2. Two non-empty buckets Bj and Bl are adjacent iff ∀m ∈ (j : l), Bm = ∅.
We define the predicate Adj(j,l) to be true iff Bj and Bl are adjacent.

The separation in terms of adjacent buckets is then computed as follows:

τj =

{
SepC(Bj , Bl) Adj(j, l), 0 ≤ l < j ≤ n
SepC(Bj , E) j = i

The first statement computes the separation between two non-empty adjacent buckets,
and the second indicates that the jth bucket is the non-empty bucket in the prefix sequence
having the smallest index. Therefore, we use the separation between the jth bucket and
the target as-is. The separation between the last non-empty bucket and the target would
appear as a delay constraint in the consequent. For a prefix with the largest index bucket
being h, the second to the smallest being m, and the smallest being i, the prefix sequence
would be of the form, sh τh . . . τm si |-> τi E.

Example 9. Consider the set of intervals for two non-empty buckets, B2 and B3, that take
part in the match of the prefix, and the interval set for target E, to be given as follows:

İTC(B2) = {[4.3 : 4.6), [6.6 : 9.8)}
İTC(B3) = {[3.9 : 4.2), [6.3 : 6.4)}
IT (E) = {[4.6, 5), [6.6 : 6.9), [13 : 18)}

The delay resolution k = 0.4. The separation intervals are computed as follows:

• For B2 we compute SepC(B2, E) as follows:

F+ = İTC(B2)⊕ [0 : 2× 0.4] ∩ IT (E)

= {[4.3 : 5.4), [6.6 : 10.6)} ∩ IT (E)

= {[4.6 : 5), [6.6 : 6.9)}
(F+ 	 IB2) ∩ {[0 : 0.8]} = {[0 : 0.7), [0 : 0.3)}
W({[0 : 0.7), [0 : 0.3)}) = [0 : 0.7]
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• For B3 we compute SepC(B2,B3) as follows:

F+ = (İTC(B3)⊕ [0 : 1× 0.4]) ∩ İTC(B2)

= {[3.9 : 4.2), [6.3 : 6.4)} ⊕ [0 : 0.4] ∩ İTC(B2)

= {[4.3 : 4.6), [6.6 : 6.8)}
(F+ 	 IB3) ∩ {[0 : 0.4]} = {[0.1 : 0.4), [0.2 : 0.4)}

W({[0.1 : 0.4), [0.2 : 0.4)}) = [0.1 : 0.4]

The property obtained, on integrating the delay separation time intervals, is as follows:
s3 ##[0.1:0.4] s2 |-> ##[0:0.7] E.

5. Quality of Mined PSI-L Properties

The decision tree learned by Algorithm 1 can compute several prefixes. It is important to
rank these in terms of those that are likely to be causal relations and those that are not.
Furthermore, it is also important to understand how mined prefixes are related to the trace.

We measure the goodness of a PSI-L property S|->Ei, where i is the smallest non-empty
bucket index in S, using heuristic metrics of Support, and Correlation. We also measure
how much of the trace is covered for the set of PSI properties generated.

Recall that Ei is the ith pseudo-target, that is the target’s truth stretched back in time
by an amount of i× k, where k is the delay resolution. In the definitions, while the support
only considers S, the correlation and coverage deal with Ei. To be consistent, we re-enforce
in all definitions that we relate the truth of the prefix S forward in time with target E, and
hence write S|->Ei.

Definition 20. Support: For a property S|->Ei, the quantum of time for which S is true
in the trace T is the support of S|->Ei.

Support(S|->Ei) =
|IT (S)|
||T ||

where IT (S) is the influence interval list for the sequence S computed according to Defini-
tions 10 and 8, while ||T || is the length of the trace given in Definition 1.

A high support for PSI-L property S|->Ei is indicative of S being frequently true in
the trace. However, a low support need not indicate that the property is incorrect, and
could indicate a corner case behaviour.

Definition 21. Correlation: For the assertion S|->Ei, correlation indicates how much
of Ei’s truth is associated with S, that is the quantum of the consequent, Ei’s truth, that
the antecedent S contributes to.

Correlation(S|->Ei) =
|(IT (S)⊕ [0 : i× k]) ∩ IT (Ei)|

|IT (Ei)|
Definition 22. Trace Coverage: Trace coverage quantifies the fraction of the trace that
is explained by the properties generated by the miner.

Given a trace T of length L, and the mined property set A, the coverage interval list of
T by A, denoted Cov(T ,A), is computed as follows:
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Cov(T ,A) =
⋃

(S|->Ẽi)∈A(IT (S)⊕ [0 : i× k]) ∩ IT (Ẽ)

where Ẽ ∈ {E,¬E}. The percentage of coverage is then given by |Cov(T ,A)|
L × 100.

Example 10. We compute the three metrics introduced in this section for the interval sets
from the prefix and target from Figure 7.

Support(IT (S)|->E2) =
3.5

20
= 17.5%

Correlation(IT (S)|->E2) =
|{[4.3 : 5.4), [6.6 : 10.6)} ∩ {[0 : 5), [6.4 : 11.8), [12.2 : 18)}|

|{[0 : 5), [6.4 : 11.8), [12.2 : 18)}|

=
|{[4.3 : 5), [6.6 : 10.6)}|

|{[0 : 5), [6.4 : 11.8), [12.2 : 18)}|
=

4.7

16.2
= 29.01%

Cov(T ,A) = IT (S)⊕ [0 : 2× 0.8] ∩ IT (E)

= {[4.3 : 5), [6.6 : 10.6)}

Percentage of coverage =
|{[4.3 : 5), [6.6 : 10.6)}|

20

=
4.7

20
= 23.5%

6. Stopping Conditions, Over-fitting and Pruning

While building the decision tree, for prefixes, there are two stopping conditions that we
employ to terminate the growth of the tree.

1. Purity of a Node: When the constraint set C completely determines the truth of
the target E, the decision tree node is 100% pure and further growth is terminated.
A node with constraint set C, and minimum bucket position b, is considered pure if
the unified error at the node is zero, that is UETC(E

b) = 0.

2. Depth Constraints: It is also possible to define a depth threshold, αd, and stop the
tree from growing if the length of the current exploration path crosses αd.

Decision trees are known to suffer from problems of over-fitting. Over-fitting involves
fitting a learned model so closely to the data, that the model becomes specific in explaining
the peculiarities in the data, making it overly defined and specific to the data over which
learning is performed. This is exceptionally problematic with data that is discrete. In this
case, when dealing with dense real-time data, and arbitrary resolution of time, depending
on the time precision in the data, over-fitting can lead to a large number of properties being
generated, leaving the designer with an overwhelmingly large number of prefix properties
and rendering the mining as an ineffective aid to designers.
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To prevent over-fitting, we employ pruning and abstraction mechanisms controlled via
meta-parameters. The measures employed are as follows:

1. Using a support threshold: A threshold αs is defined to indicate the minimum
support below which a prefix is being over-fit to the data. If a node with constraint
set C has a support below αs, further splitting of the node is terminated. Note that,
due to the dense interpretation of time, in some situations, a low support is expected
when explaining targets concerning corner case behaviours.

2. Using a correlation threshold: A threshold αc is defined to indicate the minimum
correlation below which a prefix is being over-fit to the target. If a node with constraint
set C has a correlation below αc with its associated target, further splitting of the node
is terminated.

3. Prefix Grouping: We use interval arithmetic to mine prefix sequences. This allows
overly constrained prefixes to be grouped into sequences that share common event
orderings. Hence a prefix mined by Algorithm 1 may be representative of an infinite
number of distinct prefixes that have similar event orderings but dissimilar in delay
intervals separating every adjacent pair of events.

4. Constraint Set Limits: Limits on the depth of the decision tree impose an implicit
upper bound on the number of constraints used to build a prefix.

The constraints on tree-depth αd, support αs and correlation αc, are treated as meta-
parameters of the decision tree learning algorithm.

7. Handling Multiple Traces

In this article, for simplicity, all metrics have been defined for a single time-series. When
considering a set T of time-series, any pair of time-series may share a common time-line. For
instance, consider two autonomous vehicles V1 and tt V2 that have their state recorded over
time. The recording for V1 begins at 09:48:07AM and is recorded up to 04:02:23PM. The
recording for V2 begins at 08:32:30AM and is recorded up to 04:32:43PM. Hence given a time
t in the duration from 09:48:07AM to 04:02:23PM, it is possible that at t, we observe two
conflicting state entries for a vehicle. Considering truth intervals over predicates, therefore,
at any given time, due to differences in the state between V1 and V2, it is possible that a
predicate has conflicting values of truth. To resolve this, it is not possible to simply use
a timestamp offset and concatenate the two time-series. The concatenation in time could
introduce unintended temporal relationships in the data. It is therefore important to treat
each time-series as being independent. In this section, we redefine core metrics used in our
learning framework for dealing with multiple time-series.

In our framework, the definition of Mean(.) is a fundamental metric, and it is sufficient
to re-define this metric to ensure that evidence is considered from all time-series. To handle
a set of time-series, the definition of mean is extended as follows:

Definition 23. MeanTC(E): For the target class E, the proportion of time that E is true
in the set of traces T constrained by C :

MeanT(E, C) =

∑
T ∈T |IT (E) ∩ I(SC)|∑

T ∈T |I(SC)|
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For convenience, µTC(E) may be used in place of MeanT(E, C). The mean is not defined
when

∑
T ∈T |I(SC)| = 0.

Similarly, the normalization factor α used in Definition 17 is extended to consider mul-
tiple traces as follows:

α(C, P, b) =

∑
T ∈T |IT (SC∪{〈P,b〉})|∑

T ∈T(|IT (SC∪{〈P,b〉})|+ |IT (SC∪{〈¬P,b〉})|)
Using the measures in this section to compute unified entropy and unified gain and

associated metrics allows us to incorporate information from multiple time-series.

8. Experimental Results

We use a selection of examples to demonstrate the utility of PSI-Miner. The miner was
used on a standard laptop with a 2.40GHz Intel Core i7-5500U CPU with 8GB of RAM.

For each example, we choose meta-parameters n, the number of intervals in the an-
tecedent, and k, the initial time delay between buckets. The target event, being explained,
and the predicate alphabet used for mining are also known. The prefixes learned are vali-
dated against the data and prior knowledge that was not available to the miner.

Example 11. This example focuses on PSI-Miner’s ability to learn and generalize timing
intervals across multiple traces. We use position information from multiple vehicles in
Town-X (from Section 2, Figure 2) to learn which of the routes from location D to A is the
fastest.

There are three routes, namely DA1, DA2 and DA3, in the direction from D to A. We
pick time-series of nine vehicles, three from each route. We then run PSI-Miner separately
for each route, on its set of three time-series, providing predicates for all way-points. A
delay-resolution of k = 2min and a maximum sequence length of n = 15 are used in the
experiments. Since a vehicle may spend very little time at the source/destination in relation
to total time, we allow small support percentages.

Time to travel from D to A

Route Property Support (%) Correlation (%)

DA1 D|-> ##[26.90:28] A 78.56×10−2 100
DA2 D|-> ##[14.21:16] A 26.42×10−2 100
DA3 D|-> ##[18.82:20] A 37.66×10−2 100
All D|-> ##[14.21:28] A 51.2×10−2 100

Table 1: PSI-L Properties describing the time to travel from D to A, along three paths and
a summary property for all paths. Time intervals are measured in minutes, with decimals
interpreted as a fraction of a minute.

The first three properties in Table 1 describe the time to travel along the three differ-
ent routes. Note that PSI-Miner picked only one predicate, the one for location D in the
antecedent. This is because, for instance, for route DA1, D, at the bucket position of 14
(14min×2 = 28min), was sufficient to construct a property. We observe that route DA2 is
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Figure 11: Passenger Travel Surveillance

the fastest available route; vehicles leaving D reach A from between 14min:12sec to 16min,
while route DA1 takes the longest time, that is between 26min:54sec to 28min.

We also evaluate if PSI-Miner is able to correctly generalize this timing information
when given time-series from all routes. We provide PSI-Miner traces from all three routes
simultaneously and use the same values of meta-parameters k and n. We observe from the
fourth property that it is correctly able to generalize across all traces and learn the minimum
and maximum times for travel correctly.

Example 12. Disease has been reported among passengers arriving by ship. The origin
point of all passengers is the same, however, the routes the ships take may differ. Routes
may share common way-points and paths. A map of these movements is shown in Fig. 11.
In the map, passengers arrive at two locations, one is the labelled SOURCE, and the other is
a labelled HARBOUR. We hope to discover locations that could be disease hot-spots. For each
passenger, their movement data is tagged as risky or non-risky. A non-risky tag is used on
passenger movements not carrying disease, while movements of passengers reporting disease
symptoms are tagged as risky.

We assume that we are given as predicates locations for way-points ships pass through or
stop at along their route. In Fig. 11, predicates for way-points are marked with rectangles
and labelled. Position information from 100 passengers is analyzed using PSI-Miner. It is
known that a ship passes through at most five intermediate way-points. We, therefore, use a
sequence length of n = 5. On average, the time to move between way-points is known to be
70mins. We use a time delay of 70mins between events in the sequence. We examine using
the target RISKY, representing passengers reported having the disease. We use predicates for
way-points and the target. The following prefix sequences are learned:

ISLAND ##[0:140] !TURNING-POINT |-> ##[0:70] RISKY

Support = 17.63% Correlation = 52.5%
!ISLAND && MIDDLE ##[0:135.23] !TURNING-POINT |-> ##[0:70] !RISKY

Support = 7.53%, Correlation = 11.33%
From the prefixes learned, visiting the island has a 52% correlation with passengers

marked risky (that are diagnosed with the disease). Those not visiting the island but passing
through the middle are non-risky, with a correlation of 11.33%.
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Figure 12: Waveform of voltage (volts) in red, and current (mA) in green, versus time (ms)
depicting the behaviour of a low-dropout voltage regulator circuit.

The predicate !TURNING-POINT is true for all positions other than within the rectangular
region marked as TURNING-POINT, which is why it appears in all prefixes. However, we also
want to know what happens to ships turning back? We explore further using the predicates
TURNING-POINT and RISKY and learn the following prefixes:

TURNING-POINT |-> ##[0:70] !RISKY

Support = 18.98%, Correlation = 28.58%

In a time-series, for a risky (or non-risky) passenger, every time-position record is
labelled as risky (or non-risky). Each prefix can explain (correlate with) only time-points
after the prefix is satisfied, possibly a small portion of the time-series, that is labelled risky
(or non-risky). Therefore the prefixes reported do not have a high correlation. Since, we
never report a property unless it has 100% confidence, in this case, the correlation values are
acceptable. The time-delay of ##[0:70] appears in the consequent of the PSI-L properties
for the same reason.

From the mined properties, we learn that passengers visiting the island carry the disease,
whereas passengers in ships turning around or passing through the middle region without
visiting the island do not have disease symptoms. Authorities may then curtail visits to the
island and inform travellers accordingly.

Example 13. A low-dropout voltage regulator (LDO), is a voltage regulator used to accu-
rately maintain stable voltages for devices containing micro-electronics, such as processing
units with varying power levels. During the design of the regulator, simulations produce
behaviours that can be difficult to understand. We use PSI-Miner on the simulation of an
LDO circuit to understand its operation. We use PSI-Miner to analyze the simulation de-
picted in Figure 12. Since the occurrence of a circuit event can span short periods of time,
we use a low support threshold (10−4%). Time intervals in the prefixes are measured in
seconds.

The following are a selection of the properties that are mined:

“When at 10% of the rated voltage (VLowerBand: 0.18<=v<=0.19), while not in a state of short
circuit (InShrtCkt: i>=0.0085), then sometime in the next 4.06µs to 4.09µs the terminal
voltage rises to 90% of its rated value (VUpperBand: 1.62<=v<=1.63).”
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!InShrtCkt && VLowerBand |-> ##[4.06e-06:4.09e-06] VUpperBand

(Support 0.0002%, Correlation: 0.023%)
The property has a very low correlation because the prefix containing the lower band (10%)
crossing lasts for a very small amount of time. However, this property is significant, and
provides insight into the rise-time of the LDO.

“When not in a state of short circuit, if the terminal voltage is at 90% of its rated value,
then for some time between 0.4µs to 0.63µs it will not reach the rated value (VStable:
1.5<=v<=1.85).”

!InShrtCkt && VUpperBand |-> ##[ 4.0e-7:6.3e-7 ] !VStable

(Support: 1%, Correlation: 0.02%)
“When the short circuit event (ShrtCktEvent: 0.0085<=i<=0.009) isn’t in play, but the circuit
is in a state of short circuit (current is above the 8.5mA threshold), then sometime in the
next 20µs the terminal voltage is not at its rated value.”

InShrtCkt && !ShrtCktEvent |-> ##[0.0:2.0e-05] !VStable

(Support: 23.19%, Correlation: 82.29%)

Example 14. A comparator suffers from a glitch that occurs on a digital port. We use
PSI-Miner to mine correlations that may exist, looking for glitches that may have occurred
on other lines within a short window of time. It is likely that if these occurred before the
observed glitch on the digital port, they could have carried a disturbance across. PSI-Miner

is provided with a list of Boolean expressions over a predicate alphabet (Table 2) and asked
to explain the expression nrst1V8Band. The alias nrst1V8Band represents valid voltages for
the digital port which may have been violated.

Predicate/Boolean Expression Alias

nrst1V8 <= 0.05 || nrst1V8 >= 1.5 nrst1V8Band

uvlo<=0.0041 || uvlo>=0.740 uvloBand

ovlo<=0.0041 || ovlo>=1.5 ovloBand

enOsc <= 0.019 enOscBand

vreflow <=0.0270 vreflowBand

vrefhigh >=1.21 vrefhighBand

supptri<=0.00499 suppBand

clkrun<=-0.04 clkBand

Table 2: Predicate Alphabet used for PSI-Miner for the Comparator

“When the clock level and the UVLO are not within acceptable thresholds, and if within 6µs
the OVLO is also outside acceptable thresholds, then within 9µs the nstr1V8Band also falls
outside acceptable thresholds.”

!clkBand && !uvloBand ##[0.0:6.0e-06] !ovloBand |-> ##[0.0:9.0e-06] !nrst1V8Band

(Support: 3.01%, Correlation: 24.95%)
“When the clock and oscillator enable are not within acceptable thresholds and the UVLO
is within its acceptable threshold, within the next 4.8µs the nstr1V8Band falls outside ac-
ceptable thresholds.”

!clkBand && uvloBand && !enOscBand |-> ## [0.0:4.80e-06] !nrst1V8Band
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Figure 13: Glitch behaviour in an Comparator Circuit

(Support: 0.14%, Correlation: 12.85%)
The prefix sequences mined help identify that it is possible that the when the clkBand ex-
pression becomes false (there is jitter on the clock port), this leads to a cascading of jitters
on other ports. In one case, the UVLO and OVLO both fall out of acceptable bands of op-
eration, while in another the oscillator enable falls outside its acceptable band of operation.
Such information may be useful in a root cause analysis and for monitoring for similar
anomalies.

PSI-Miner was able to compute the decision tree in under a second in our experiments.
The computation time varies with the size of the interval set. The trend for CPU-Time as
n and k vary is depicted in Figure 14. For every increasing incremental change in n, the
number of pseudo-targets increases accordingly. This then increases the number of pseudo-
targets against which unified gain is computed for every predicate. For a fixed predicate
alphabet P, for an increase in n by one, a fixed number, |P|, of new computations of unified
gain are introduced. To demonstrate this, we use the data-set of the LDO of Example 13.
We choose this example since this analog circuit has behaviours that occur in a scale of
micro-seconds, while the trace itself is 5ms long, orders of magnitude longer than mined
behaviours. We also use predicates having small truth intervals (a few micro-seconds long).
In Figure 14, we record the CPU-Time to process the trace and generate the pseudo-targets
(Input Processing), and to generate the decision tree (Tree Generation). Other constraints
on the decision tree are the same as in Example 13.

We first vary n in increments of 10, from 10 to 100, using a fixed delay resolution of
10−6 and use all the predicates from Example 13 as part of the predicate alphabet. We
use the predicate VUpperBand as the target. We observe that as n increases, the time to
generate pseudo-targets varies around only marginally around 1.5ms. On the other hand,
we see a clear trend in the time to generate the decision tree. In general, we observe that
the CPU-Time increases linearly with n.

Next, we vary k in multiples of 2, starting with k = 10−6, while using a fixed prefix
length of n = 10, and all the predicates from Example 13. The target used is the same
as earlier. We observe that as k increases, the time to generate pseudo-targets varies
marginally, around 1.5ms, while in general the CPU-Time decreases with an increase in k.
There seems to be no clear relationship between k and CPU-time, beyond what is already
stated. The decreasing trend of CPU-time with increasing values of k is explained by the
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(a) CPU-Time versus prefix length (n) (b) CPU-Time versus delay resolution (k)

Figure 14: CPU-Time for input processing and decision tree generation as n and k vary

fact that although k increases, the number of pseudo-targets remains constant. However,
the number of truth intervals for the ith pseudo target may decrease. This is owed to the
use of Minkowski difference with larger intervals, leading to the merging of truth intervals
for the target. A decrease in the size of the interval set for a pseudo-target results in fewer
set operations, resulting in a decrease in CPU-Time.

9. Related Work

Mining information from time-series data has been a topic of study for decades (Esling &
Agon, 2012; Ralanamahatana et al., 2005). Learning problems include but are not limited
to the following:

1. Querying: Finding a time-series similar to a given one from a database. Meth-
ods include Singular Value Decomposition (SVD), Discrete Fourier transform (DFT),
Discrete Wavelet Transforms (DWT) or Adaptive Piecewise Constant Approximations
(APCA) and the dissimilarity metric to index the time-series (Chakrabarti et al., 2002;
Faloutsos et al., 1994).

2. Clustering: Clustering time-series data using a similarity metric between time-series.
For instance, in Debregeas & Hebrail, 1998, time-series recorded from the electrical
power-grid are clustered together using Kohonen Maps, while in Kalpakis et al., 2001,
distance measures are explored for clustering.

3. Summarization: Summarize a time-series with a representative approximation (In-
dyk et al., 2000). Similarly, Van Wijk & Van Selow, 1999, discusses other methods
for visualizing trends in a univariate time-series dataset.

4. Separation Features: Given time-series S and Ŝ, find interesting features that
separate the two time-series. In Guralnik & Srivastava, 1999, time-series data is
analyzed to determine interesting episodes in the time-series. In Keogh et al., 2002,the
authors suggest discretizing the time-series and finding sub-strings that occur most
frequently in the time-series.

5. Prediction: Given a time-series S over time points (t1, ..., tn), predict the behaviour
of S as if observed over time points (tn+1, ..., tn+k). Studies in this area have been
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reported in Brockwell & Davis, 2002; Harris & Sollis, 2003; Tsay, 2005; and Brockwell
& Davis, 1986.

6. Anomaly detection: The problem of detecting a pattern that deviates from a nom-
inal behaviour is strongly linked to the problem of prediction. Like prediction, it also
relies on having a sufficiently accurate model of the time-series to be able to identify
deviations (Ypma et al., 1997; Zhong & Khoshgoftaar, 2007; Ma & Perkins, 2003).

7. Motif Discovery: A sub-sequence that is observed frequently in a time-series is
called a Motif. A detailed review of existing literature in this area can be found in
Esling & Agon, 2012.

These approaches do not address the problem considered in this paper, namely to find
causal sequences of predicates that explain a given consequent. More recently, the focus of
learning has been to learn artifacts about time-series that can be expressed in logic and are
therefore inherently explainable. These studies are broadly broken down into the following
two types:

• Learning properties from templates: A template property is provided. The learning
problem is to choose property parameter values that best represent the time-series.

• Learning property structure and parameter values: Given a syntax for the property,
learn the property that best represents the time-series.

We summarize related work in these problems and position our work against them.

9.1 Learning from Templates

A large repository of work exists on mining parameter values for a template property in
parametric STL (PSTL) (Jin et al., 2015; Asarin et al., 2012; Bakhirkin et al., 2018; Yang
et al., 2012) with the aim of optimizing property robustness for the given time-series trace.
The work in Asarin et al., 2012, proposes learning the range of valid parameter values for
a PSTL property that a given set of dense-time real-valued system traces satisfy. Given a
formula in PSTL, the authors of Asarin et al., 2012, and Bakhirkin et al., 2018, propose
techniques to compute a validity domain for the formula’s time and value parameters such
that all traces satisfy the formula given these domains. In Yang et al., 2012, the authors
propose a methodology to compute parameter domains for a property in MTL that a given
embedded and hybrid system satisfies.

In Jin et al., 2015, the authors propose learning parameter values that satisfy system
requirements expressed as template properties in PSTL. They iterate on the domain of
parameter values until they converge on a combination of values that make the property
valid for the given set of traces.

Methods for template-based learning require a parameterized property expressed in a
formal logic such as MTL or STL. This means that the predicates that influence a given
consequent are known, and the parameter values are learned. The learning problem is
thereby transformed into a parameter optimization problem. Some of these works also
assume the existence of a model of the system.
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These methods are not applicable to cases where nothing is known about the factors
that influence the truth of a given consequent, yet we wish to find the causal sequence of
events. Our contribution is in providing a methodology that learns the timed sequence of
predicates that cause the consequent, which involves learning the relevant predicates, as
well as the real-time timing between them.

9.2 Learning Property Structure and Parameter Values

While in Section 9.1 a formula structure was provided as input to the learning task, we now
summarize property mining studies in which such templates are not-provided.

The work on Temporal Logic Inference (TLI) in Kong et al., 2014, aims to classify two
labelled sets of time-series by learning distinguishing Boolean combinations of temporal
properties of the form F[t1,t2)ψ or G[t1,t2]ψ, where ψ is Boolean1. The work in Bombara et
al., 2016, improves the methodology in Kong et al., 2014, to allow for multiple predicates
in the antecedent and properties of the form F[t1,t2)ϕg or G[t1,t2]ϕf . The predicate and
timing constants are learned using local search heuristic algorithms like simulated annealing,
while the property structure is learned using standard decision trees. As we have shown in
our work, using standard decision trees for learning temporal logic properties can lead to
misleading outcomes. Moreover, the methodologies of Kong et al., 2014 and Bombara et
al., 2016, do not address our problem of finding a causal sequence for a given consequent.
One straightforward way of adapting their work is to perform a splitting of traces into two
classes of sub-traces of length n × k, one class containing E and the other containing ¬E.
Note that in both types of traces, it is possible that there exist both, time-points where
E is true and others where ¬E is true. Hence, in both sets there would be similar event
sequences, with similar delays between events, associated differently with E and ¬E. This
could result in an empty or misleading outcome. On the other hand, the work proposed
here could be adapted to work with classification problems. One way to achieve this is to
introduce an variable denoting class type with appropriate values at all time-points in all
traces. For instance, consider trace sets TA and TB containing traces of two classes A and
B. Introduce a new variable ”class”, with class == A true at all time-points of traces of
class A, and false for all time-points of traces of class B. We now use the proposed PSI-
Miner methodology to mine properties with E ≡ class == A as the target. We successfully
used this technique in Example 12 to identify key differences between passenger movements
labeled RISKY and !NON-RISKY.

The work in Bartocci et al., 2014, learns a discriminator property to distinguish be-
tween traces generated by two different processes. The method relies on using a statistical
abstraction of the data in the traces. The property structure and parameters are optimized
separately.

Past work in Yang & Evans, 2004; Yang et al., 2006; Gabel & Su, 2008a, 2008b; and
De-Orio et al., 2009, focuses on mining sequences and causal relations for program events.
The most recent study examines program traces and learns a finite automaton, over a user-
defined alphabet, describing all the ways (up to a discrete event bound on path length)
of violating a propositional assertion given in the program (Chockler et al., 2020). Older
studies focus on mining cause-effect relations in programs as LTL properties (Chang &

1. F and G are respectively the standard future and global operators of temporal logic
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Wang, 2010; Danese et al., 2015a, 2015b; Lemieux et al., 2015). The methodology in
Cutulencoet al., 2016, mines timed regular expressions from program traces, while in Garg
et al.,2016, decision trees are used to learn invariants for software programs. In these works,
the sequences mined do not preserve timing information between the events.

The tool Goldmine (Vasudevan et al., 2010) uses decision trees to mine causal relations
from clocked traces of Boolean systems as an ordering of events. The assertions mined are
in a subset of LTL limited to bounded safety and liveness. The work in Kauffman & Fis-
chmeister, 2017, mines Allen’s interval relations, specifically event intervals from clocked
event traces. The proposed methodology mines nfer rules (based on Allen’s Temporal
Logic) from learned before relations given a set of clocked event traces. The learned se-
quences are a series of before relations between events in the traces. These techniques are
not applicable to real-time data from dense-time systems.

To the best of our knowledge, ours is the first work on mining sequences consisting of
Boolean combinations of predicates over real variables separated by dense real time delay
intervals that causally determine the truth of a given consequent. Our methodology au-
tomatically finds the predicate combinations that influence the consequent as well as the
real time delay intervals that separate them. Although we start with a property skeleton
consisting of bucket positions and template delay intervals, the learning methodology au-
tomatically fills the buckets by choosing relevant predicates, merges empty buckets, and
tightens the delays between the buckets to return dense time temporal properties for ex-
plaining the truth of the consequent.

10. Conclusions

In complex dynamical systems, the task of finding the causal trigger of an event is an
important and non-trivial task. The AI/ML community seeks data-driven solutions for such
problems. Our approach of mining prefix sequences addresses this task. Prefix sequences
expressed in logic are easily readable and are easy to explain.

Properties mined using our methodology are useful in many different contexts. This
includes the following:

1. Anomaly Detection. Anomalies may be viewed as deviations from set patterns in the
data. If a property mined from legacy data fails during the execution of the system,
then it may be an anomaly. Properties can be readily monitored over simulation and
real-time execution, and can thereby be used to detect anomalies.

2. Prediction. The mined properties can be monitored at runtime to predict future
events. For example, when the prefix-sequence at the antecedent of a property matches
the runtime behavior, the consequent can be predicted within the corresponding delay
interval.

3. Clustering. Time-series data can be partitioned into clusters on the basis of the truth
of the mined properties. Also, for a given consequent we may have mined different
prefix-sequences. Clustering the data based on the matches of the prefix-sequence
help us to separate out data corresponding to different causes that lead to the same
outcome.
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There are several interesting offshoots from our work. For example:

• Incorporating domain knowledge. If we already know some properties over the vari-
ables in the system, then the mining algorithm can be suitably modified to ensure that
the mined properties do not contradict the domain knowledge. This is particularly
necessary for safety-critical systems, where corner case safety properties are not well
represented in the data.

• Finding separation features. Separation features are properties that explain the dif-
ference between two sets of time-series data sets. To facilitate the readability of the
differences, we need to mine properties over similar predicates and having similar
structure. This requires considerable modification in the mining algorithm and is one
of the future directions being pursued by us.

• Mining properties with recurrent behaviors. Suppose a consequent event, E, is caused
when a predicate P remains true for more than 20 seconds. Such a property cannot
be mined using the present approach because the recurrent requirement for predicate
P cannot be captured in the present language. This is also an interesting direction of
our future research.

We believe that there are many other possible directions of research based on the contribu-
tions of this paper. The increasing significance of finding causal sequences in data driven
learning approaches adds to the impact potential of the methods presented in this paper.
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