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Abstract
An essential part of argumentation-based reasoning is to identify arguments in favor and against

a statement or query, select the acceptable ones, and then determine whether or not the original
statement should be accepted. We present here an abstract framework that considers two inde-
pendent forms of argument interaction—support and conflict—and is able to represent distinctive
information associated with these arguments. This information can enable additional actions such
as: (i) a more in-depth analysis of the relations between the arguments; (ii) a representation of
the user’s posture to help in focusing the argumentative process, optimizing the values of attributes
associated with certain arguments; and (iii) an enhancement of the semantics taking advantage of
the availability of richer information about argument acceptability. Thus, the classical semantic
definitions are enhanced by analyzing a set of postulates they satisfy. Finally, a polynomial-time
algorithm to perform the labeling process is introduced, in which the argument interactions are
considered.

1. Introduction and Motivation

Argumentation aims towards formalizing reasoning mechanisms with the capability of handling
contradictory, incomplete, and/or uncertain information, taking as inspiration commonsense reason-
ing and the human-like mechanism of defending a statement by giving reasons for its acceptance
and analyzing the ones against it (Rahwan & Simari, 2009). In this process, since reasons support-
ing conflicting conclusions can also be advanced, both the original statement and its support are
subject to scrutiny. Argumentation theories have been proposed for applications in many different
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domains, such as legal reasoning (Prakken & Sartor, 1997), recommender systems (Chesñevar &
Maguitman, 2004), agents and multi-agent systems (Kraus, 1997), applications to cyber security by
Shakarian et al. (2016, 2018), and others (Poole, Mackworth, & Goebel, 1998; Vreeswijk, 1997).

Several argument-based formalisms have emerged to study the different relations among ar-
guments. Dung (1995) proposes Abstract Argumentation Frameworks (AFs) to model real-world
situations representing the attack relations between abstract entities called arguments, and provid-
ing different acceptability semantics to determine which sets of arguments are acceptable. Sub-
sequently, Cayrol and Lagasquie-Schiex (2005b) extended Dung’s framework taking into account
two independent relations between arguments: attack and support. In this formalism, called Bipo-
lar Argumentation Frameworks (BAFs), the authors model a bipolar reasoning mechanism where
those arguments in favor of a conclusion can be considered as positive while those against the con-
clusion as negative. Furthermore, they adapt Dung’s acceptability semantics taking into account
the support relationship between arguments. Following the introduction of BAFs, several relevant
research lines that explored this formalism in different directions have been pursued by Nouioua
et al. (2010), Amgoud et al. (2008), Boella et al. (2010), and Cohen et al. (2018).

Although these formalizations model aspects that correspond to real-world situations, they do
not provide tools to represent particular features of arguments, and how these features are affected
by the relations (support and attack) between them. However, there exist applications where it is
necessary to provide such modeling details, considering features in order to refine the analysis and
provide extra information about their acceptance (Bench-Capon, 2003). That is, these formalisms
cannot provide the tools to represent the features associated with the arguments in relation to the
application domain such that: the reliability degrees associated with the information sources in a
recommender system, the jurisdiction and/or intuition behind legal arguments in the study of a legal
case, the temporal information associated with arguments involved in a decision support system,
among others. Thus, our approach allows us to represent how much a given argument is “believed
or disbelieved” by a given person analyzing different dimensions, offering us the possibility to
express more than just the classical acceptability status.

Considering this issue, Hunter and Polberg (2018) explain that exploratory study shows that the
most common approaches to argumentation might be too simplistic in order to adequately grasp
human reasoning. However, they do not believe that argumentation theory as a field is insufficient
altogether—in particular, they highlight the correspondence between the obtained results and vari-
ous, less common, formalisms such as probabilistic and bipolar frameworks, and prudent and careful
approaches. In this direction, they show how descriptive models of argumentation should take into
consideration bipolar approaches and graded/ranking semantics jointly based on the following as-
pects: (i) Analysis of how many weights the participants were using throughout the dialogs. In most
cases, three weights were insufficient to represent the participants’ opinions; a more detailed view of
their behavior was required to perform an adequate semantic analysis over complex scenarios where
classic semantics may fail to explain. (ii) Many additional attacks perceived by the participants can
be explained by the existing notions of indirect conflict in the bipolar argumentation framework.
They can therefore be used to model auxiliary conflicts arising in the context of a dialogue, but not
necessarily created at the logical level. Furthermore, the participants explicitly view certain rela-
tions as supporting, and the notion of defense does not account for all of the positive relations that
the participants have identified between the presented statements. In particular, they observed that
there are new support relations arising in the context of the dialogue, such as support coming from
statements working towards the same goal.
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In this work, based on the previous analysis, we have extended BAF by taking into account the
properties associated with the arguments in the form of labels, increasing the representational capa-
bilities of this formalization. These labels can be combined and propagated through the bipolar ar-
gumentation graph in accordance with the arguments’ interaction. Then, considering the additional
information provided by these labels, the semantics offered by BAF is improved by: (i) obtaining
more information about the arguments, (ii) defining new acceptability-based extensions, and (iii)
establishing user postures to analyze the argumentation framework where special constraints are
satisfied, In previous works by Budán et al. (2014, 2016), we presented preliminary results related
to this line of research; here, we improve previous semantic definitions, present an algorithm to
perform the labeling process, and analyze the set of postulates that satisfy the semantics presented
in this formalism. For now, we restrict our approach to consider well-founded BAFs, where no
cycles—including self-attacking and self-supporting arguments—exist.

This paper is structured as follows: Section 2 introduces an example to motivate the usefulness
of our formalization in the context of social platforms. Then, in Section 3, we present a brief in-
troduction to BAF; next, Section 4 introduces a refined version of the abstract algebra presented by
Budán et al. (2014, 2016) for handling the labels associated with arguments in the argumentation
domain; in Section 5 and Section 6, we present an extension of BAF to represent argument attributes,
and how these attributes are affected by the interactions between the arguments. Furthermore, we
present the algorithms to perform the labeling process. In Section 7, the acceptability process based
on argument’s features is presented, while in Section 8 we study the postulates satisfied by our
proposal; Section 9 develops the running example from the social platforms domain, applying our
formalism to analyze the features associated with each argument presented in a Twitter-like dis-
cussion. Finally, Section 10 discusses related work, and Section 11 presents our conclusions and
describes future research directions.

As supplementary material, we present two issues that we will further develop in future lines
of research. In Appendix A, we determine special coefficients associated with the argumentation
framework that represent the effectiveness of the support and conflict relation, as well as a refine-
ment process to improve the argumentative discussion by avoiding analysis of less relevant argu-
ments. In Appendix B, we present a preliminary analysis of the problem of dealing with cycles in
our system. Finally, we include proofs of all results in Appendix C.

2. Running Example

We now introduce a running example showing how our approach could help to achieve an improved
analysis, as discussed in the previous section. Consider a scenario involving a discussion by a group
of parents on Twitter (or a similar social platform) analyzing the adequacy of a school for a child.
In order to reach a decision, they evaluate arguments according to: (i) their preferences, assigning
to each of them an assessment of relevance, and (ii) a degree of “social rating” associated with each
argument, describing how popular the argument is in the discussion. Arguments A through K are
obtained from the tweets depicted in Figure 1; we assume that the social rating can be derived from
the tweet’s performance (retweets, likes, and comments), which is shown on the right.

This example illustrates how the knowledge used to solve a specific problem can be naturally
structured as arguments, and that considering the relationships among these arguments is useful
in reaching a decision. Also, since the parents analyze the arguments in favor and against the
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Jessica @jesshull79  Jun 23 
School @AilenEdu has a good approach to teaching 
and provides students with excellent material to boost 
their learning capabilities. 

 

Scott @sbivensny  Jun 24 
It’s clear from continuing education polls that 
@AilenEdu doesn’t provide opportunities for all 
students to obtain a college education. 

 

Leslie @lesguev00  Jun 24 
From what I’ve seen, teachers at @AilenEdu don’t 
have the skills to address the new generation of 
students. 

 

Sylvia @sylviag1980  Jun 24 
Teachers at @AilenEdu are not always fair in their 
treatment of students. 

 

Dorothy @dorokendrick  Jun 24 
Students at @AilenEdu generally enjoy the school’s 
approach to teaching. 

 

Michael @mikerichardson  Jun 24 
@AilenEdu has a strong offering of core academic 
subjects like English, History, Math, Science, Arts, 
and Foreign Languages. 

 
Emily @gibsonem  Jun 25 

Classes at @AilenEdu are very large, and have an 
extensive extracurricular activity program after school 
and on weekends. 

 
David @davesuber81  Jun 25 

@AilenEdu takes interest in each student’s learning, 
and provides opportunities for children to get extra 
help when needed. 

Dennis @dstafford000  Jun 25 
Students at @AilenEdu appear to be courteous, 
happy, and disciplined. 

 

Timothy @smithtim999  Jun 23 
I’m worried that many students drop out of 
@AilenEdu. What are the root causes of this? 

 

Kristen @kriscordero1  Jun 26 
I heard @AilenEdu will close an agreement with 
several universities so that students have more 
options when they graduate. 

C 

B 

D 

G 

I 

Re-Tweets:  19 
Likes: 26 

Comments:  10 

Re-Tweets:  2 
Likes: 18 

Comments:  3 

Re-Tweets:  8 
Likes: 21 

Comments:  3 

Re-Tweets:  12 
Likes: 8 

Comments:  16 

Re-Tweets:  15 
Likes: 42 

Comments:  19 

Re-Tweets:  5 
Likes: 21 

Comments:  3 

Re-Tweets:  5 
Likes: 16 

Comments:  8 

Re-Tweets:  0 
Likes: 5 

Comments:  1 

Re-Tweets:  9 
Likes: 41 

Comments:  7 

Re-Tweets:  3 
Likes: 12 

Comments:  4 

Re-Tweets:  7 
Likes: 32 

Comments:  5 
A 

H 

J 

K 

E 

F 

Figure 1: Tweets posted by people regarding a school’s characteristics. The argument names on the
left will be used throughout the paper as our running example. The tweets’ performance information
on the right will be used later on to derive argument valuations.

school selection according to their preferences and social rating, the arguments endorsing specific
characteristics show the usefulness of representing additional information.

Users can have different views of the real-world, where uncertainty is always present. Therefore,
the features associated with the arguments may not be fully specified, but it may still be possible to
define a spectrum representing the specific user’s abilities, points of view, or biases. For example,
the social ranking of an argument can oscillate due to comments for and against it, as well as by
like and re-tweet counts (cf. Figure 2). In this work, we annotate each attribute of an argument
with an interval [x,y] to represent the variation of a particular attribute’s value produced by the
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K

Re-Tweets: 19

Likes: 26

Comments: 10

Kristen @kriscordero1  Jun 26

I heard @AilenEdu will close an agreement with 

several universities so that students have more 

options when they graduate.

0.8

0.4

User
Social Rating

Figure 2: According to this user’s perception, this argument’s valuation is between 0.4 and 0.8,
taking into account the social rating (tweet author, metrics, etc.).

tolerance of the user’s preference or their perception uncertainty. It is important to remark that the
process of identifying relevant tweets, and obtaining arguments from them, is out of the scope of
this paper; however, the Natural Language Processing (Belinkov & Glass, 2019) and Argument
Mining (Lippi & Torroni, 2016) communities have research lines proposing tools to address this
task with promising results that are continually improved—we refer the interested reader to the
literature for more details.

The interactions between arguments can be given as support (e.g., the positive relation between
F and A) or as conflict (e.g., the negative relation between B and A). Each pro and con argument is
associated with descriptive features that have a weight in the final decision. That is, these features
describe the quality of arguments that can be affected by the interactions between arguments, such
as their support and conflict. These changes in the quality of the arguments can give clues to their
effectiveness in the role that they play in the argumentative process. Thus, actions such as attacks
and supports will be directly reflected in the final quality of the arguments.

3. Bipolar Abstract Argumentation

The basic approach to abstract argumentation-based reasoning is to consider arguments for and
against a conclusion, analyze the general scenario, and then select the acceptable arguments. In the
argumentation domain, arguments have different roles with respect to each other; it is possible to say
that arguments are presented in a bipolar way since those in favor of a conclusion can be considered
as positive while those against the conclusion as negative. Based on this intuition, when represent-
ing the essential argumentation mechanism, the notion of bipolarity is a natural one. Abstracting
away from the inner structure of the arguments, the BAF proposed by (Cayrol & Lagasquie-Schiex,
2005b) extends Dung’s notion of acceptability in abstract argumentation frameworks by distinguish-
ing two independent forms of interaction between arguments: support and attack. The relation of
support is assumed to be independent of the relation of attack, providing the former a positive rela-
tion between arguments.

Definition 1 (Bipolar Argumentation Framework) A Bipolar Argumentation Framework (BAF)
is a 3-tuple Θ = 〈AR,Ra,Rs〉, where AR is a set of arguments, and the elements Ra and Rs are
disjoint binary relations on AR called attack and support, respectively.
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In BAF, the graph description introduced by Dung (1995) is extended by adding the repre-
sentation of support between arguments. This approach provides a starting point for enriching
the analysis of discussions with the natural bipolarity of human reasoning. Additionally, Cayrol
et al. (2005b) introduce the notions of supported and secondary defeat, which combine a sequence
of supports with a direct defeat to consider the interaction between supporting and defeating argu-
ments.

Definition 2 (Defeat in BAF) Let Θ = 〈AR,Ra,Rs〉 be a BAF, and A,B ∈ AR be two arguments.
Then, we will say that:

– A is a supported defeat for B iff there exists a sequence A1 R1 . . . Rn An+1, with n≥ 1, where
A1 = A and An+1 = B, such that ∀i = 1, . . . , n−1, Ri ∈Rs and Rn =Ra.

– A is a secondary defeat for B iff there exists a sequence A1 R1 . . . Rn An+1, with n≥ 2, where
A1 = A and An+1 = B, such that R1 =Ra and ∀i = 2, . . . ,n, Ri ∈Rs.

Also, in any BAF, a sequence reduced to two arguments A Ra B (a direct defeat A→ B) is also
considered as a supported defeat from A to B.

Cayrol and Lagasquie-Schiex (2005b) argue that a set of arguments must be in some sense
coherent to model one side of an intelligent dispute. The coherence of a set of arguments is an-
alyzed internally (a set of arguments in which an argument attacks another in the same set is not
acceptable), and externally (a set of arguments that contains both a supporter and an attacker for
the same argument is not acceptable). Internal coherence is captured by extending the definition of
conflict-free set proposed by (Dung, 1995), while external coherence is captured via the notion of
safe set.

Definition 3 (Conflict-Freeness and Safety) Let Φ = 〈AR,Ra,Rs〉 be a BAF and S ⊆ AR be a set
of arguments. Then: (i) S is conflict-free iff @ A,B ∈ S such that there is a supported or secondary
defeat from A to B; and (ii) S is safe iff @ A ∈ AR and @ B,C ∈ S such that there is a supported or
secondary defeat from B to A, and either there is a sequence of supports from C to A, or A ∈ S.

The notion of conflict-freeness requires taking supported and secondary defeats into account,
becoming a more restrictive definition than the classical version of conflict-freeness originally pro-
posed by Dung. In addition, the notion of safety was shown to be powerful enough to encompass
conflict-freeness. The closure underRs, which concerns only the support relation, was also consid-
ered by (Cayrol & Lagasquie-Schiex, 2005b).

Definition 4 (Closure in BAF) Let Φ = 〈AR,Ra,Rs〉 be a BAF and S ⊆ AR be a set of arguments.
S is closed underRs iff ∀ A ∈ S, ∀ B ∈ AR, if ARs B then B ∈ S.

Based on the previous concepts, the notion of defense for an argument with respect to a set of
arguments is extended by taking into account the relations of support and conflict between argu-
ments.

Definition 5 (Defense for A by S) Let Φ = 〈AR,Ra,Rs〉 be a BAF, S ⊆ AR be a set of arguments
and A ∈ AR be an argument. S collectively defends A iff ∀ B ∈ AR, if B is a supported or secondary
defeat of A then ∃ C ∈ S such that C is a supported or secondary defeat of B. In this case, it can be
interpreted that C defends A from B.
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ABC
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J
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Figure 3: Initial bipolar argumentation graph.

Three different definitions for admissibility were proposed, from the most general to the most
specific. The most general is based on Dung’s definition; the notion of s-admissibility takes into
account external coherence, and external coherence is strengthened by requiring that admissible
sets be closed forRs.

Definition 6 (Admissibility Notions in BAF) Let Φ = 〈AR,Ra,Rs〉 be a BAF and S⊆ AR be a set
of arguments. The admissibility of a set S is defined as follows: i) S is d-admissible if S is conflict-
free and defends all its elements; ii) S is s-admissible if S is safe and defends all its elements; and
iii) S is c-admissible if S conflict-free, closed forRs and defends all its elements.

From the previous notions, Cayrol and Lagasquie-Schiex (2005b) proposed different semantics
for computing argument acceptability. These semantics consider the previous admissibility notion,
redefining the classical ones proposed by (Dung, 1995).

Definition 7 (Preferred Extensions in BAF) Let Θ = 〈AR,Ra,Rs〉 be a BAF, and S ⊆ AR be a
set of arguments. S is a d-preferred (resp. s-preferred, c-preferred) extension if S is maximal (for
set-inclusion) among the d-admissible (resp. s-admissible, c-admissible) subsets of AR.

Example 1 Let Φ = 〈AR,Ra,Rs〉 be a BAF, composed as follows (cf. Figure 3):

AR= {A,B,C,D,E,F,G,H,I,J,K},

Ra = {(K,A);(F,A);(C,B);(H,G)}, and

Rs = {(B,A);(J,B);(E,C));(D,A);(D,J);(G,F);(I,K)}.

We analyze the bipolar argumentation framework Φ characterized by the bipolar interaction
graph depicted in Figure 3; As usual, solid lines represent the attack relation, while dotted lines
represent the support relation. For instance, E is a support defeat of B, since E supports C, and B

is attacked by C (direct attacker); in addition, C is a secondary defeat of A, because B supports A,
which is attacked by C. On the other hand, F is a direct attacker of A; however, H is a secondary
defeat of F, because G supports F, which is attacked by H. Thus, the attack from F to A is invalidated.
Finally, I is a support defeat of A, since I supports K, and A is attacked by K (direct attacker).

Analyzing BAF Φ (cf. Figure 3) using the classical bipolar notions, the set S1 = {I,K,E,C,H} is
d-admissible, s-admissible, and c-admissible, while the set S2 = {I,K,E, C,D,J,H} is d-admissible,
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but not s-admissible (C is an attacker of B, which is supported by J), and not c-admissible (D supports
A, which does not belong to S2).

Bipolar argumentation frameworks typically focus on computing an acceptable set of arguments
based on a specific analysis that considers only the support and conflict relations between the argu-
ments involved in a discussion. The initial approach to bipolarity in argumentation frameworks was
introduced by Amgoud et al. (2004), Cayrol and Lagasquie (2005a, 2009, 2013), and the survey by
Cohen et al. (2014a)—these works will be discussed in Section 10.

4. Algebra of Argumentation Labels

The process of abstraction is generally used in many disciplines—and in particular mathematics and
computer science—to focus interest on what is relevant for a particular purpose. Thus, by abstract-
ing away details, we obtain conceptual generality that is useful for a specific purpose. On the one
hand, in computer science, researchers have created different abstract argumentation formalisms
used to model a rational discourse to compute a set of acceptable arguments, abstractly represent-
ing the entities and the reasons in favor or against a specific action, decision, or recommendation.
In this sense, these formalisms place special attention on the (positive and negative) relations be-
tween the abstract arguments, without considering the logical structure behind them. On the other
hand, mathematicians have created theories with various structures that apply to many objects; for
instance, abstract algebra evolved from earlier forms of arithmetic and reached its potential by the
process of successive abstractions that allowed to obtain increasingly complex systems without los-
ing mathematical purity and “inherent beauty”. The axiomatic nature of abstract algebra deals with
systems whose elements are of an unspecified type, together with specific operations that satisfy a
prescribed list of axioms or postulates.

In our formalism, the use of labels gives us the possibility of representing distinctive features
of arguments, and these labels change according to the existing relations between arguments. Fol-
lowing this idea, we use an algebrization that consists of a set of labels equipped with a collection
of operators to be used in combining and propagating the labels according to argument interac-
tions (Budán et al., 2015)—labels must represent information about the arguments and how they
interact. The algebra is based on an ordered set, allowing the comparison of labels; this set is also
characterized in an abstract way to allow the adaptation to different applications. A natural way of
representing this information is to use a scale that measures a particular feature of the argument.
We will consider valuations ranging between two distinguished elements: > and ⊥, where ⊥ rep-
resents the least possible degree in which an argument may possess a particular attribute, and > the
maximum. To operate with these elements, we borrow operations from fuzzy logic (Zimmermann,
2001), a well-studied set of tools for making inferences when the available information is imprecise
rather than exact.

Definition 8 (Algebra of Argumentation Labels) An algebra of argumentation labels is a 8-tuple
of the form A= 〈L,≤,�,⊗,⊕,	,>,⊥〉, where:

– L is a set of labels called the domain of labels.

– ≤ is a partial order over L (that is, a reflexive, antisymmetric, and transitive relation).
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– > and⊥ are two distinguished elements of L such that ∀α ∈L,α ≤>, i.e.,> is the last label
with respect to ≤, and ∀α ∈ L,⊥≤ α , i.e., ⊥ is the first.

– � : L×L→ L is called a support accumulation operation and satisfies:

� is commutative: ∀α,β ∈ L, α�β = β �α .

� is monotone: ∀α,β ,γ ∈ L, if α ≤ β , then α� γ ≤ β � γ .

� is associative: ∀α,β ,γ ∈ L, α� (β � γ) = (α�β )� γ .

> is the neutral element for �: ∀α ∈ L, α�>= α .

⊥ is the absorbing element for �: ∀α ∈ L, α�⊥=⊥.

– ⊗ : L×L→ L is called an attack accumulation operation that satisfies:

⊗ is commutative: ∀α,β ∈ L, α⊗β = β ⊗α .

⊗ is monotone: ∀α,β ,γ ∈ L, if α ≤ β , then α⊗ γ ≤ β ⊗ γ .

⊗ is associative: ∀α,β ,γ ∈ L, α⊗ (β ⊗ γ) = (α⊗β )⊗ γ .

> is the neutral element for ⊗: ∀α ∈ L, α⊗>= α .

⊥ is the absorbing element for ⊗: ∀α ∈ L, α⊗⊥=⊥.

– ⊕ : L×L→ L is called a strengthening operation that satisfies:

⊕ is commutative: ∀α,β ∈ L, α⊕β = β ⊕α .

⊕ is monotone: ∀α,β ,γ ∈ L, if α ≤ β , then α⊕ γ ≤ β ⊕ γ .

⊕ is associative: ∀α,β ,γ ∈ L, α⊕ (β ⊕ γ) = (α⊕β )⊕ γ .

⊥ is the neutral element for ⊕: ∀α ∈ L, α⊕⊥= α .

> is the absorbing element for ⊕: ∀α ∈ L, α⊕>=>.

– 	 : L×L→ L is called a weakening operation that satisfies:

	 is non-commutative: ∃α,β ∈ L, α	β 6= β 	α .

	 is monotone: ∀α,β ,γ ∈ L, if α ≤ β , then α	 γ ≤ β 	 γ .

	 is non-associative: ∃α,β ,γ ∈ L, α	 (β 	 γ) 6= (α	β )	 γ .

⊥ is the neutral element for 	: ∀α ∈ L, α	⊥= α .

∀α,β ∈ L, α	β ≤ α if β < α .

∀α,β ∈ L, α	β =⊥ if β ≥ α; In particular, ∀α ∈ L, α	>=⊥.

∀α,β ∈ L, if α	β =⊥ and β 	α =⊥, then α = β .

∀α,β ∈ L, if (α⊕β )<>, then
(
(α⊕β )	β

)
= α .
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4.1 Support and Attack Accumulation Operations

The support accumulation operation, denoted with �, is used to determine the valuations that en-
force a single argument based on the supporting arguments’ strength. It is clear that the result of
this operation should be invariant with respect to the order in which the supporting arguments are
considered, and therefore the operation is both commutative and associative, with > as the neu-
tral element. Furthermore, if stronger arguments support an argument, its support accumulation
valuation must be higher than that of one with supporters with lesser valuations, establishing mono-
tonicity. Also, ⊥ is the absorbing element for �, since the result of combining ⊥ with any element
of the set L is the absorbing element itself.

The attack accumulation operation, denoted with ⊗, is used to determine the valuations that
weaken a single argument based on the attacking arguments’ strength. As before, the result of
this operation should be invariant with respect to the order in which the attacking arguments are
considered, and therefore the operation is both commutative and associative, with > as the neutral
element. Furthermore, if stronger arguments attack an argument, its attack accumulation valuation
must be higher than that of one with attacker with lesser valuations, establishing monotonicity. In
addition, ⊥ is the absorbing element for ⊗, since the result of combining ⊥ with any element of the
set L is the absorbing element itself.

4.2 Strengthening and Weakening Operations

The strengthening operation, denoted with ⊕, determines the enforced valuation associated with an
argument; i.e., the accumulation valuation is combined with the original valuation associated with
the object argument through the strengthening operator (cf. Figure 4). Naturally, a way of doing this
would be to directly add these valuations, taking into consideration the conditions imposed by the
domain. For this reason, the ⊕ operation has some of the properties of addition of real numbers—
it is commutative and associative, with ⊥ (the least possible evaluation) as the neutral element,
i.e., arguments with valuation ⊥ not produced any effect. Furthermore, the ⊕ operation satisfies
monotonicity, ensuring that the valuation of a conclusion does not decrease if the support valuation
increases. Also, > is the absorbing element for ⊕ since it represents the highest possible valuation.
In Figure 4, the support accumulation operator is instantiated as α� β = min(α,β ) (Gödel t-norm)
while the strengthening operator is established as α⊕β = min(α +β ,1) (bounded sum c-norm).

The weakening operation, denoted with 	, determines the overall valuation of an argument
considering the strength associated with opposing reasons (cf. Figure 5). This operator enjoys the
monotonicity property, ensuring that the valuation of a conclusion decreases if the valuation of
the reasons against such a conclusion increases. Furthermore, ⊥ is the neutral element for 	,
specifying that the valuation associated with an argument is not affected by a counterargument with
valuation equal to the least possible valuation (a valuation that represents no strength). On the
other hand, in the opposite sense, an attacker with valuation equal to the highest possible valuation
> completely neutralizes the strength of the attacked argument. Coming back to Figure 4, the
attack accumulation operator is instantiated as α�β = αβ (minimum t-norm) while the weakening
operator is established as α	β = max(α−β ,0).

It is interesting to observe that the accumulation and strengthening operators can be instantiated
with a function from the t-conorm family (Schweizer & Sklar, 1961, 1963). These functions are
used in different application domains; for example, Dubois et al. (1982) present different ways to
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Figure 4: Combination of the original valuation and the impact of supports: behavior of the ⊕
operator in the Algebra of Argumentation Labels.
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Figure 5: Combination of the original valuation and the impact of attacks: behavior of the 	 opera-
tor in the Algebra of Argumentation Labels.

perform aggregation of arguments based on user preference through t-conorms. Another example is
the work of Lukasiewicz et al. (2008), which introduces a series of criteria to perform aggregation
of arguments supporting a particular conclusion in decision-support systems, taking into account
the uncertainty level associated with these arguments. On the other hand, weakening operators are
used in different application domains. Examples of this are the works of Budán et al. (2015, 2018);
the former presents a structured argumentation formalism where the weakening operator is used to
handle the relevance associated with the information in the legal domain, while the latter presents
a formalism with a weakening operator that considers a temporal dimension establishing the time
intervals in which an argument is defeated.

No further assumptions are made regarding the postulates adopted in Definition 8 for the op-
erators. For example, the weakest link principle could be the basis of the support accumulation
operator, but this is not the only possibility. Another example: given that ⊥ is the absorbing ele-
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ment, support can be related to what in argument maps are called dependent premises. Thus, the
meaning of each instance of these operators will depend on the application domain and the behavior
that the user wants to model. In future work, we will analyze how the definition of these operations
can be expanded to model the different interpretations associated with the support and conflict re-
lations in the context of bipolar frameworks (Nouioua & Risch, 2010; Cayrol & Lagasquie-Schiex,
2013).

Finally, another possibility supported in this formalism is handling second-order uncertainty;
instead of labels taking numeric values, we can have intervals representing uncertainty over the
specific value associated with the underlying property. In this case, the operators in the algebra
must be defined so that intervals are adequately manipulated, a concept that was addressed by Budán
et al. (2015).

In what follows, we present our formalism, where the algebra of argumentation labels has an
important role. The operators described above allow us to represent intuitively correct behaviors
when handling the labels in the argumentation process; we show that this is the case by proving that
the formalism satisfies a set of reasonable properties, which we present as postulates.

5. Labeled Bipolar Argumentation Frameworks

Even though BAFs allow to model support and attack, they lack the mechanisms to represent any
additional argument features. To address this, we extend BAFs by incorporating labels that hold spe-
cific information given about each argument and the result of the interactions among them. These
labels extend the argumentation framework’s representational capabilities and provide ways of re-
defining the acceptability process. Previous works by Budán et al. (2014, 2016) presented an early
version of this formalism; now, continuing its development, we improve previous semantic defini-
tions, present an algorithm to perform the labeling process, and analyze a set of postulates that are
satisfied by the semantics.

Definition 9 (Labeled Bipolar Argumentation Framework) A Labeled Bipolar Argumentation
Framework (L-BAF) is a 3-tuple Ψ = 〈Θ,A,υ〉, where Θ = 〈AR,Ra,Rs〉 is the underlying bipo-
lar argumentation framework, A is a set of algebras of argumentation labels A1,A2, . . . ,An (one
for each feature represented by the labels), and υ is a function that assigns to each element of AR
an n-tuple of elements in the algebras Ai, i = 1, . . . ,n. That is, υ : AR −→ |A1|× |A2|× . . .×|An|,
where |Ai| is the label domain of the algebra |Ai|,1≤ i≤ n. 1

Notation: Given A ∈ AR, the set {X ∈ AR | XRaA} is denoted with
−→
(A), and the set {X ∈ AR | XRsA}

is denoted with
99K
(A).

Next, we present an example that accompanies the development of this formalism with the aim
of clarifying the concepts introduced in turn.

Example 2 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, composed as follows:

AR= {A,B,C,D,E,F,G,H,I,J,K},

1. When no confusion may occur, we follow the usual convention of mentioning elements in an algebra A instead of
referring to elements in its corresponding carrier set |A|.
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Ra = {(K,A);(F,A);(C,B);(H,G)},

Rs = {(B,A);(J,B);(E,C);(D,A);(D,J);(G,F);(I,K)},

A = {A,B} is the set of algebras representing accuracy level and reliability strength for each
argument in AR. These algebras are defined as follows:

The domain of labels L1 of algebra A is the real interval [0,1] representing a normalized accuracy
valuation with > = 1 and ⊥ = 0. The accuracy of the arguments represents the certainty level
associated with the information proposed by the argument. The accumulation, strengthening, and
weakening operators are defined as follows:

Accuracy

γ�β = min(γ,β )

The support accumulation operator
models the support valuation as the
minimal accuracy valuations associ-
ated with the supporting arguments;
thus, the support valuation that en-
forces an argument is as good as the
worst argument that support it.

γ⊗β = γβ

The attack accumulation coefficient is
obtained through the conjunction2 of
the accuracy valuations corresponding
to the arguments that attack it.

γ⊕β = γ +β − γβ

The strengthening operator combines
the accuracy associated with the infor-
mation provided by the argument and
the supporting valuation obtained for it,
with a penalty term representing an un-
certain level.

γ 	 β =


γ−β

1−β
if γ ≥ β ,β 6= 1

0 otherwise.

The weakening operation obtains the
valuation associated with an attacked
argument through a gradual degrada-
tion in case that the attackers are not
strong enough to defeat it; thus, if the
accumulation of the attackers’ strength
is >, then the argument is wholly de-
feated.

The domain of labels L2 of algebra B is the real interval [0,1] representing a normalized reliability
valuation with>= 1 and⊥= 0. The reliability valuation associated with an argument is related to
the reliability of its source. The accumulation, strengthening, and weakening operators established
to manipulate this feature are defined as follows:

Reliability

γ�β = γβ

The support accumulation coefficient is
obtained through the conjunction of the
reliability valuations corresponding to
the arguments that support it.

2. The product t-norm is the standard semantics for strong conjunction in product fuzzy logic.

1569



ESCAÑUELA GONZALEZ, BUDÁN, SIMARI, & SIMARI

Argument
υ A B C D E F G H I J K

α1 0.6 0.2 0.3 [0.6,0.8] 0.4 0.6 0.6 0.8 [0.5,0.6] 0.7 0.7

α2 0.6 0.5 0.2 0.8 0.2 0.8 0.6 [0.5,0.7] [0.7,0.9] 0.6 0.7

Table 3: Initial argument valuations
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Figure 6: Initial labeled bipolar argumentation graph.

γ ⊗ β = 0 if γ = β = 0
γβ

γ +β − γβ
otherwise.

The attack accumulation coefficient is
obtained through a function that con-
solidates attack values, equating the ap-
pearance of strong attacks with weak
ones.

γ⊕β =
γ +β

1+ γβ

The strengthening operator increases
gradually the original reliability valua-
tion associated with an argument based
on the supporting accumulation ob-
tained for this argument.

γ 	 β =


1 if γ = 1,β < 1
γ−β if γ 6= 1,γ ≥ β

0 otherwise.

The reliability valuation for an ar-
gument is reduced by the reliability
valuation of its attackers considering
the strength of the involved arguments;
thus, a “bulletproof” argument (with
valuation 1) can only be weakened (de-
feated) by another one with this valua-
tion.

and υ(AR) determines the original valuation associated with each argument (see Table 3). We
annotate the attribute of an argument with an interval [x,y] to represent the variation of its attribute
produced by the agent’s perception uncertainty. In Table 3, α1 (resp. α2) corresponds to algebra
A (resp. B).

Analyzing L-BAF Ψ (cf. Figure 6) using the classical bipolar notions, we have the extensions
obtained in the Example 1, where S1 = {I,K,E,C,H} is d-admissible, s-admissible, and c-admissible,
while S2 = {I,K,E, C,D,J,H} is d-admissible, but not s-admissible and not c-admissible. Recall that
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Figure 7: Example of different possible users’ points of view.

the set S2 is a d-preferred extension, since it is the maximal d-admissible set; however, in this case,
there exists neither non-trivial s-preferred extension, nor non-trivial c-preferred extension.

The features associated with the arguments establish an argument classification giving an idea
of how important they are in the argumentation process. Next, we present the treatment of argu-
ment features in the bipolar argumentation domain and how they affect the argument acceptability
process.

6. Labeling Procedure in LAF

Once the argumentation graph is built, its corresponding solution space arises from the variation
associated with each label—this variation appears due to a variety of causes, such as uncertainty
associated with the agent’s perception, preferences (with different degrees of tolerance), their opti-
mistic or pessimistic inclinations, or inherent feature variation over time, among others. However,
users may be interested in a particular subset of solutions where specific preferences are taken into
account. Users can thus decide to take a posture (or stance) towards this variation depending on their
interests; the purpose behind this process is to represent the users’ point of view over a particular
discussion, optimizing the features associated with a specific set of arguments with respect to such
views (cf. Figure 7).

From a computational point of view, the posture feature is a tool that allows to simplify ranges
into single values, allowing us to collapse multiple options into one in cases in which the user does
not wish to entertain different possibilities. For example, consider the case of a user who wishes
to be completely conservative in their evaluation of uncertainty; here, lower bounds can always be
taken instead of entire intervals, leading to a much smaller and simpler solution space. Thus, the user
posture function affords significant reductions in the computational cost of the labeling process by
reducing the space of possible models to a single one. By adopting a selection criterion for the users’
posture (such as pessimistic, leaning pessimistic, unbiased, or other similar stances), the possible
values are reduced from any value within an interval—which causes a combinatorial blowup when
considering the entire set of arguments—to a single value representative of their posture. We also
use this function as a way to simplify our examples and the presentation of intuitions in general.
However, the use of a posture function can be considered an optional tool, choosing to work with
the entire space of solutions accepting the computational costs derived from the selection of the
operators to carry out the propagation of attribute value ranges. An analysis establishing a particular
point of view is used extensively in many areas of decision-making, such as engineering design
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(Baroni et al., 2015), medical procedures (Fox et al., 2007), legal case analysis (Palmirani, 2018),
and financial portfolio selection (Cruz-Reyes et al., 2014).

Definition 10 (Posture Function) Let Ψ be an L-BAF. The posture function ρ is defined as follows

ρ : AR−→ |A1|× |A2|× . . .×|An|

such that
ρ(A) = (ρ1

A(υ(A)),ρ
2
A(υ(A)), . . . ,ρ

n
A(υ(A)))

where
ρ

i
A : S ([⊥,>])→ [⊥,>],1≤ i≤ n,

where S ([⊥,>]) = {[α,β ] |⊥ ≤ α ≤ β ≤ >} and ρ i
A is any function given by the user such that

ρ i
A([α,β ]) = α if α = β , and ρ i

A([α,β ]) = γ with γ ∈ [α,β ].3

We can extend the posture function to select a specific posture for each attribute associated with
each argument. However, in order to simplify our formalism we only consider a single posture for
all the features associated with the arguments.

Example 3 Continuing with Example 2, suppose that we are interested in optimizing the argu-
mentation discussion representing our posture over the uncertainty intrinsically associated with the
information provided by the domain. In this sense, we can establish the posture over the arguments
through the function ρ as follows:

Optimistic Posture Pessimistic Posture Unbiased Posture
ρD : max([γ,β ]) ρI : min([γ,β ]) ρH : med([γ,β ])

In this case, we take an optimistic posture over argument D, while a pessimistic posture is
established for argument I; on the other hand, we consider an optimistic leaning (or unbiased)
posture4 over argument H. For reasons of readability, we do not include the position functions
that determine the valuations of the arguments with single values. Thus, the final attribute table
associated with the arguments is the following:

Argument
υ A B C D E F G H I J K

α1 0.6 0.2 0.3 0.8 0.4 0.6 0.6 0.8 0.5 0.7 0.7
α2 0.6 0.5 0.2 0.8 0.2 0.8 0.6 0.6 0.7 0.6 0.7

Now, we proceed to attach a label to each argument (node), representing valuations referring
to extra information that we want to represent. Next, we present the labeling procedure for an
argumentation graph, which derives a system of equations that characterizes the knowledge behavior
contained in the argumentation discussion.

3. The elements of S are sometimes referred to as segments.
4. The med operation corresponds to the median (the middle number of a finite sorted sequence.)
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Definition 11 (Labeling Procedure) Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying
BAF, GΘ be the corresponding argumentation graph for Θ,5 and A be an algebra in A. The label-
ing of an argument A is the assignment of three valuations from each of the algebras defined in Θ,
denoted with 〈αA, µA, δ A〉, where αA is the original value of the attribute assigned to the argument
by ρ that considers a user’s posture, µA is the strengthened valuation that represents the accumu-
lation of the attributes of arguments supporting A, and δ A is the overall valuation obtained after
taking the attacks and supports into consideration. If A is an argument defined in Θ, its valuations
〈αA, µA, δ A〉 with respect to A are determined as follows:

– αA = ρ(A).

– If
99K
(A)= /0, then µA = αA.

– If
99K
(A)6= /0, then µA = αA ⊕ (�m

j=1δ X j), with X j ∈
99K
(A).

– If
−→
(A)= /0, then δ A = µA.

– If
−→
(A)6= /0 and

99K
(A)= /0, then δ A = αA	 (⊗n

k=1δ Xk) with Xk ∈
−→
(A) .

– If
−→
(A)6= /0 and

99K
(A)6= /0, then

δ A =



αA⊕ ((�m
j=1δ X j)	 (⊗n

k=1δ Yk)) when ⊗n
k=1 δ Yk ≤�m

j=1δ X j ,

with Yk ∈
−→
(A) and X j ∈

99K
(A) .

αA	 ((⊗n
k=1δ Yk)	 (�m

j=1δ X j)) when ⊗n
k=1 δ Yk >�m

j=1δ X j ,

with Yk ∈
−→
(A) and X j ∈

99K
(A) .

The labeling is completed when all arguments defined in Θ are assigned a label. We use the term
labeled bipolar graph to refer to a complete labeling associated with the bipolar argumentation
graph.

Thus, the labeling of arguments begins with the function ρ , obtaining the original valuation
for each attribute representing the user’s posture. It then propagates from the leaves6, where the
original valuation coincides with the strengthened and overall valuations, to the rest of the nodes.
The strengthened valuation (the original valuation reinforced by the accumulation of valuations of
its supporting arguments) is determined for a given node. In the final step, the overall valuation
is obtained, where the support accumulation of valuations can face the accumulated values of the
attacking arguments and then the residual strength of this confrontation is applied over the original
valuation. For each A ∈ AR and for each algebra A ∈ A, representing a feature to be associated with
A, the triple 〈αA, µA, δ A〉 is called the label of A with respect to A.

In the BAF proposed by (Cayrol & Lagasquie-Schiex, 2005b), the support relation is assumed to
be independent of the attack relation modeling a positive relation between arguments, while attacks

5. We refer to the classical bipolar argumentation framework associated with Θ.
6. We will say that a node (or argument) is a leaf if and only if there do not exist incoming arcs of any type. That is, an

argument is a leaf if and only if there are no supporting or attacking argument that affect it.
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Figure 8: Example of attack effects in the L-BAF Ψ.
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Figure 9: Example of defense in the L-BAF Ψ through defender arguments.

are considered as defeats signifying a negative intention. However, unlike the original BAF, an at-
tack does not always imply a defeat in our proposal. Based on the weakening operator defined in the
algebra of argumentation labels, attacks between arguments can weaken the valuations associated
with the attacked argument, resulting in a defeat or a weakening. In contrast, no effect over the valu-
ations associated with the attacked argument is produced when all the attacking arguments have the
least possible feature degree (cf. Figure 8). So, when an argument experiences a weakening effect,
it can be understood as the result of defending itself from an attacker. In the figures that follow, the
label attached to each argument A ∈ AR contains the three values αA, µA, δ A obtained through the
labeling process; that triplet can be seen as a row in a 1×3 matrix. So, if an argument A ∈ AR has n
features, then its valuations are identified by an n×3 matrix (see Figure 12).

The notion of defense is implicit in the propagation of the arguments’ valuations. For example,
an argument C that defends an argument A from its attacker B can lead to different situations: the
defense argument is good enough to neutralize the attack (cf. Figure 9 (a)); the defense argument
allows to decrease the force of the attack, possibly producing a weakening in the attacked argument
(cf. Figure 9 (b)); or defeating it, case in which the defense is not effective (cf. Figure 9 (c)).

Furthermore, support can be interpreted in our formalism as a defense relation that neutralizes
or weakens the attacker’s strength. On the one hand, the accumulation of the strength that originated
from the supporting arguments may not be sufficient to neutralize the accumulation of the attacker’s
strength. Also, the residual strength of this confrontation may be sufficient to defeat or weaken the
argument under attack (cf. Figure 10 (a) and Figure 10 (b), respectively). On the other hand, the
strength of the supports may neutralize the strength of attacks effectively; so, the attacked argument
would be wholly defended or even strengthened (cf. Figure 10 (c)).
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Figure 10: Example of defense in the L-BAF Ψ through supporting arguments.

Algorithm 1: Labeling procedure for a bipolar graph GΘ

Head: LabelingGraph(GΘ,A).
Input: A bipolar argumentation graph GΘ, an algebra of argumentation labels A ∈ A.
Output: Valuations αX, µX, and δ X associated with each argument X in GΘ.
Initialize EQS as an empty system of equations;
Initialize each argument of GΘ with a not visited status;
for each argument X in GΘ that is not visited do

EQS := EQS∪LabelingFunction(X,GΘ,A,EQS);
return Solver(EQS).

In what follows, we present the algorithms for obtaining the valuations associated with each
argument in the bipolar argumentation graph. Algorithm 1, using Algorithm 2, produces a system
of equations to be solved by using a solver—the specific solver used will depend on how the op-
erators are defined in the algebra. Algorithm 2 analyzes each node of the graph with the purpose
of specifying the equations that determine the valuations of its arguments analyzing the relations
between them. To do this, it first analyzes the supporting arguments associated with an argument
to determine the support valuation associated with it; then, it specifies the equation that determines
the overall valuation of the input argument A based on the overall valuation associated with the
attacking arguments.

It is significant to mention that the propagation of the characteristics through a support or attack
chain is based on the overall valuation associated with each argument that comprises such chain,
giving rise to dependencies in the propagation through the argumentation graph.

The following result states the computational cost of this procedure.

Proposition 1 The worst-case running time of the labeling procedure for the bipolar argumentation
graph GΘ is O(n× (m+ t)), where n is the cardinality associated with the set of arguments AR, m
is the maximal number of arguments with an attacking role for an argument X ∈ AR, and t is the
maximal number of arguments with a supporting role for an argument X ∈ AR.
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Algorithm 2: Labeling function for an argument in the bipolar graph
Head: LabelingFunction(X,GΘ,A,EQS).
Input: An argument X in GΘ, a bipolar argumentation graph GΘ, and the algebra of argumentation labels A.
Input/Output: System of equations EQS for valuations αX, µX and δX associated with the argument X of GΘ.

Mark the argument X as visited;
Add “αX = ρ(X)” to EQS;

if
99K
(X)6= /0 then

Support :=>;

for each argument Y ∈
99K
(X) do

if Y is not visited then
LabelingFunction(Y,GΘ,A,EQS);

else
Support := Support�δY;

Add “µX = Support⊕αX” to EQS;
else

Add “µX = αX” to EQS;

if
−→
(X)6= /0 then

Conflict :=⊥;

for each argument Y ∈
−→
(X) do

if Y is not visited then
LabelingFunction(Y,GΘ,A,EQS);

else
Conflict := Conflict⊗δY;

if
99K
(X)= /0 then

Add “δX = αX	Conflict” to EQS;
else

if Conflict≤ Support then
Add “δX = αX⊕ (Support	Conflict)” to EQS;

else
Add “δX = αX	 (Conflict	Support)” to EQS;

else
Add “δX = µX” to EQS;

return EQS.
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The semantics of a bipolar argumentation framework is determined by the possible solutions to
the system of equations that is generated by the labeling process—each solution is a valid labeling
for the argumentation graph. Formally, we have:

Definition 12 (Valid Labeling for an L-BAF) Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the un-
derlying BAF, GΘ be the corresponding argumentation graph for Θ, and EQS be the corresponding
system of equations representing the constraints that all the valuations associated with the argu-
ments of GΘ must satisfy. A valid labeling for GΘ, denoted λ (Θ), is any set of values αX, µX, and
δ X, ∀X∈GΘ, that constitutes a solution for EQS. We denote with ΛΨ the set of all the valid labelings
for Ψ, and denote with GΨ the labeled bipolar graph for Ψ.

Since the labeling process incorporates the user’s posture, the system’s solution, and therefore the
labeled graph, is unique. The following theorem formalizes that result.

Theorem 1 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, GΘ be the corre-
sponding argumentation graph for Θ, and λ1(Θ) and λ2(Θ) be two different labeling sequences for
GΘ, where λ1(Θ) generates system EQS1 and λ2(Θ) generates system EQS2. Then, we have that
EQS1 = EQS2.

Another interesting result is that the valuations associated with the arguments are always in the
desired range.

Lemma 1 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, GΨ be the associated
labeled bipolar graph, and X be an argument in GΨ. Then, for every algebra A ∈A, the labels 〈αX,
µX,δ X〉 related to A satisfy: (i)αX ∈ [⊥,>], (ii)µX ∈ [αX,>], and (iii)δ X ∈ [⊥,µX].

Furthermore, the original, strengthened, and overall valuations of an argument are closely re-
lated; the valuations associated with each argument in the graph corresponding to a valid labeling
satisfy the following properties.

Lemma 2 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, ΛΨ be the set of all the
valid labelings for Ψ, GΨ be the associated labeled bipolar graph7, and X be an argument in GΨ.
Then, for every algebra A ∈ A, the labels 〈αX, µX, δ X〉 related to A satisfy:

(i) µX ≥ δ X;

(ii) µX ≥ αX; and

(iii) If µX=⊥, then δ X = αX =⊥.

As a consequence of the previous results, it is possible to assert that the labeling process pro-
duces a set of valid labelings that is sound and complete. That is to say that if there exists a valid
labeling for a bipolar argumentation graph GΘ, that labeling belongs to ΛΨ; moreover, all the label-
ings that belong to ΛΨ are adequate solutions for GΘ. Formally:

7. We refer to the classical bipolar argumentation framework where each argument is labeled with the original, strength-
ened, and overall valuations.
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X⊕δI
X

eX2 : δK
X = µK

X

eX3 : µC
X = αC

X⊕δE
X

eX4 : δC
X = µC

X

eX5 : µJ
X = αJ

X⊕δD
X

eX6 : δJ
X = µJ

X

eX7 : µB
X = αB

X⊕δJ
X

eX8 : δB
X = αB

X⊕ (δJ
X	δC

X)

eX9 : µG
X = αG

X

eX10 : δG
X = αG

X	δH
X

eX11 : µF
X = αF

X⊕δG
X

eX12 : δF
X = µF

X

eX13 : µA
X = αA

X⊕ (δB
X�δD

X)

eX14 : δA
X = αA

X	 ((δK
X⊗δF

X)	 (δB
X�δD

X))
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Figure 11: System of equations for Example 1, X ∈ A = {A,B}.

Theorem 2 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, GΘ be the correspond-
ing argumentation graph for Θ, and ΛΨ be the set of all the valid labelings for Ψ. Then, ΛΨ is
sound and complete.

Example 4 Continuing Example 3, we now turn to our approach (cf. Figure 12) in order to analyze
the relation between the arguments. We propagate the valuations associated with each argument
following the procedure from Definition 11; through this process, we obtain the system of equations
EQS (cf. Figure 11) for the argumentation graph GΘ. For reasons of readability, we do not include
the equations that determine the valuations of the leaf nodes, which are trivial.

Let us observe that the labeled argumentation graph captures the argumentation behavior in
a specific domain, where the features associated with the arguments reflect how these entities are
related; this is captured by the system EQS. For this example, two sets of equations are obtained,
one for each algebra in A = {A,B}. At first glance, the equations appear to be the same, but
they produce different expressions when the operators defined in the corresponding algebra are
instantiated. For instance, considering the first equation in Figure 11:

eX1 : µ
K
X = αK

X⊕δ I
X

when instantiated using algebra A renders:

eA1 : µ
K
A = αK

A+δ I
A−αK

Aδ I
A

but when instantiated using algebra B results in:

eB1 : µ
K
B =

αK
B+δ I

B−2αK
Bδ I

B

1−αK
Bδ I

B

Briefly summarizing, the underlying principles below can be directly mapped to the principles
laid out by (Cayrol & Lagasquie-Schiex, 2005a) and Bonzon et al. (2016), and are satisfied by all
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Figure 12: Example for labeled bipolar argumentation graph GΨ.

the valuations defined according to our labeling process. In general, these principles describe the
behavior of valuations associated with arguments in our framework.

Principle 1 The system of equations described by Definition 11 and the valid labelings that satisfy
such constraints (Definition 12) enjoy the following principles:

– Total Order: All pairs of arguments can be compared.

– Argument Equivalence: If there exists a graph isomorphism between the ancestors’ graph8

of two arguments, then they are equally acceptable.

– Ordinal Equivalence: If two arguments A and B have the same number of direct attackers
and supporters, and for each direct attacker of A there exists a direct attacker of B such that
the two attackers are equally acceptable, then A and B are equally acceptable too.

– Attack Strength: The overall valuation for an argument depends, in a non-increasing manner,
on the overall valuation of the attacking argument.

– Support Strength: The overall valuations of the supporting arguments contribute to increase
the strengthened valuation of the supported argument.

– The Overall and Strengthened Valuations: The overall valuation is equal to the strength-
ened valuation for arguments without attackers; for an attacked but undefeated argument, the
overall valuation is less than the strengthened valuation, whenever the attacking arguments
are strong enough to weaken it.

Once the arguments are labeled, we can consider their acceptability status; to accomplish this,
we will use the information attached to the arguments to provide different degrees, or rankings, of
acceptability. We will explore this issue in the following section.

8. The predecessor of an argument together with all the ancestors of the predecessor of an argument.
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7. Acceptability Process

The problem of understanding the process of argumentation and its role in human reasoning has
been studied by many researchers in different fields, including philosophy, logic, and AI (Barth &
Krabbe, 2010; Toulmin, 2003). Briefly speaking, the idea of argumentation-based reasoning is that
a claim is believable if it can be defended successfully against attacking arguments. In other words,
whether or not a rational agent believes in a specific claim depends on whether or not the argument
supporting this claim can be successfully defended against counterarguments.

Next, based on the arguments’ values, we characterize the statuses associated with each one.
The following classification is useful for representing the effect that the discussion has on each
argument; the status is thus valuable as an illustration of the original argument’s relationship with
its “processed” version.

Definition 13 (Gradual Status Assignment in L-BAF) Let Ψ= 〈Θ,A,υ〉 be an L-BAF, GΨ be the
corresponding labeled bipolar argumentation graph, and A be an argument (node) in GΨ. For each
algebra A ∈A, the argument A is assigned one of four possible statuses obtained from the valuation
〈αA, µA,δ A〉 related to A as follows:

– Neutralized iff δ A =⊥.

– Weakened iff ⊥< δ A < αA.

– Strengthened iff αA < δ A.

– Unchallenged iff αA = δ A 6=⊥.

Finally, every argument is associated with a vector of values where each value is associated with
a feature; each of these values reflects the argument’s degree of acceptability regarding a particular
feature. We denote with χg the gradual status assignment to the bipolar argumentation graph GΨ.

The goal is to obtain an acceptability status for the argument from that vector. One possibility
is to assign the least value in the vector as the overall acceptability degree for the argument. It is
interesting to observe that the decision to take the least value among all elements in the vector is
just one possible option that represents the most conservative option overall; the mechanism can be
generalized to include preferences over attributes (a similar approach is taken by (Kaci & van der
Torre, 2008)) or richer schemes that would allow for incorporating more complex choices. The
analysis of these alternative schemas that offer many design decisions brought about at the moment
of concrete implementation is outside the scope of this paper, but is part of future work to develop
the formalism further. The characterization presented above is useful to represent how strong the
supports and attacks are for a particular argument. For instance, strong arguments may be slightly
weakened, but this categorization gives us the possibility to recognize that an attacked argument is
not supported or, if it is supported, it has not enough strength to neutralize the attacks. It can be
understood as a preprocessing to take advantage of the available extra information, which can be
refined as discussed below.

Lemma 3 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, and GΨ be the corresponding labeled bipolar argumen-
tation graph. The gradual status assignment χg to GΨ is unique.
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Based on the status assigned to each argument, it is possible to identify in AR four categories of
arguments: neutralized, denoted as ARn; weakened, denoted as ARw; strengthened, denoted as ARs;
and unchallenged, denoted as ARu. This categorization of AR can be seen as a finite cover of AR; that
is, all arguments that belong to AR are categorized.

Proposition 2 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, GΨ be the corresponding labeled bipolar argumen-
tation graph, χg be the gradual status assignment to the bipolar graph GΨ, and ARn, ARw, ARs, and
ARu be a disjoint set of neutralized, weakened, strengthened, and unchallenged arguments in Ψ.
Then, the collection of subsets {ARn,ARw,ARs,ARu} is a finite cover of AR.

Let us observe that, ARn, ARw, ARs, and ARu cannot all be empty sets unless AR is empty, which
represents a non-interesting case; hence, the finite cover of AR can be seen as a partition of AR,
leading to a set of properties over AR that we will further discuss below.

We generally wish to determine a consistent set of arguments in favor or against certain conclu-
sions, commonly referred to as the semantics of acceptability. In this work, we will use the status
associated with the arguments to define our semantics; clearly, these sets may not always be conflict-
free or safe. Here, we use a preference relation, denoted with �, defined over AR that uses the extra
information contained in the labels in order to obtain the different conflict-free subsets of arguments
corresponding to each particular set of arguments. Defining preference between arguments is a
complex task since in some cases their valuations combine more than one attribute. In the literature,
different ways of addressing the issue of preference have been proposed (Domshlak et al., 2011,
Kaci, 2011, Rossi et al., 2011, 2012). Among them, in argumentation we can mention a few: defin-
ing a syntactic approach based on the elements involved in the construction of arguments (Simari &
Loui, 1992), applying the minimax principle (Yager, 1983), establishing a discussion to determine
the preference between arguments in a dynamic sense (Prakken & Sartor, 1997), Labeled Argu-
mentation Frameworks (Budán et al., 2015), and developing different measures between semantics
examining their possible maximization or combination (Doutre & Mailly, 2017) (a combination of
the Argument Interchange Format with an Algebra of Argumentation Labels). Consequently, it is
the user at the moment of implementation who must establish an adequate comparison criterion
based on the domain of application.

Definition 14 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, � be a preference relation over AR, and S ⊆ AR be
a set of arguments. Then, (i) S is conflict-free iff @ A,B ∈ S such that (B,A) ∈Ra with B � A; (ii)
S is safe iff @ A ∈ AR and @ B,C ∈ S such that (B,A) ∈Ra with B � A and either C supports A (thus
A /∈ S), or A ∈ S.

Only the direct support and attack relations will be considered since the argument features are
propagated through the argumentation graph. In this way, the attack and support sequences are
analyzed, and the final label associated with each argument that reflects the interaction between
arguments is obtained. Then, we analyze only the direct relations, while considering a preference
function to determine when an argument is better than another.

Next, we present the connection between a safe and a conflict-free set of arguments; this was
introduced by (Cayrol & Lagasquie-Schiex, 2005b) and, since our notion of safety and conflict-
freeness are different, we will demonstrate that the same result holds. Then, considering the notions
of conflict-freeness and safety defined in Definition 14, we have:
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Proposition 3 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, � be a preference relation over AR, and S ⊆ AR be
a set of arguments. Then:

(i) If S is safe, then S is conflict-free.

(ii) If S is conflict-free and closed under support, then S is safe.

Based on the previous notions, we establish the different acceptability extensions that combine
the conflict-freeness and safety definitions (that identify internal and external coherence) with the
status classification (that represents the final quality associated with the arguments after considering
the relationships between them).

Definition 15 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, and ARw, ARs, and ARu be the sets of weakened,
strengthened, and unchallenged arguments associated with Ψ. Then:

- S⊆ ARw is a CF-W extension of Φ iff S is a maximal conflict-free set;

- S⊆ ARw is an S-W extension of Φ iff S is a maximal safe set;

- S⊆ ARw is a C-W extension of Φ iff S is a maximal conflict-free set closed
underRs;

- S⊆ ARu is a CF-U extension of Φ iff S is a maximal conflict-free set;

- S⊆ ARu is an S-U extension of Φ iff S is a maximal safe set;

- S⊆ ARu is a C-U extension of Φ iff S is maximal conflict-free set closed
underRs;

- S⊆ ARs is a CF-S extension of Φ iff S is a maximal conflict-free set;

- S⊆ ARs is an S-S extension of Φ iff S is a maximal safe set; and

- S⊆ ARs is a C-S extension of Φ iff S is a maximal conflict-free set closed
underRs.

The primary motivation for analyzing semantics by category is to maintain the consistency
of such analysis. If the analysis were carried out without considering the distinction among the
strengthened, weakened, and unchanged arguments, then two possibly undesirable situations could
arise: (i) an unnecessary duplication of the semantic analysis, since the relationships have already
been analyzed and their effects propagated through the labeling process; and (ii) an inadequate
semantic analysis that arrives at an unnecessarily restricted set of acceptable arguments; that is, an
argument may conflict with another argument weakening it but not defeating it completely. In this
latter case, if we analyze the set of arguments as a set without categories, the weakened argument
would be discarded; however, after analyzing the argumentation graph, a weakened argument still
may have enough strength to cast doubt on a particular decision or at least be part of an explanation.

We thus consider each category of arguments independently of the others, defining extensions
for each of them. In this sense, we construct extensions according to the status of the argument, pro-
viding us with more information about them. That is, acceptable arguments from the weakened class
are those for which important reasons against them exist, while strengthened arguments are those
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Value-based Extensions Classical Extensions

CF-W
CF-U d-Preferred
CF-S
S-W
S-U s-Preferred
S-S
C-W
C-U c-Preferred
C-S

Table 4: Relationship between Value-based and Classical Extensions

that were mostly supported and that their opponents were not relevant. Finally, the unchallenged set
contains both arguments that are not attacked and arguments for which supporters neutralized the
attackers. Neutralized arguments are not considered to be part of any extensions since they do not
provide any valid knowledge to give a solution to the problem raised.

As we mentioned before, both conflict and support relations are analyzed, taking into account
their effect and the obtained defeated arguments. Thus, we analyze the conflict-free and safe notions
within each class to preserve the arguments’ category. Nevertheless, it is useful to highlight that the
extensions that emerge from the strengthened, weakened, and unchallenged classes make up a large
set of acceptable arguments. The idea of categorizing accepted groups of statements is useful when
making decisions; a decision supported by strengthened arguments is different from a decision based
on weakened ones. This classification gives us an intuition of what happened within the discussion
and provides us with a degree of confidence about a given decision.

Table 4 presents the relation between an extension in the classical semantics and those intro-
duced in our formalism. Essentially, this relation is based on the properties that they possess: maxi-
mality, defense, conflict-freeness, and safety. For example, the d-preferred extension is the maximal
conflict-free set that defends all its elements, as are the CF-W, CF-U, and CF-S extensions. Thus,
the same analysis can be carried over the other extensions. We do not intend to study here the possi-
ble inclusion or equivalence relationship between the extensions mentioned above. Instead, we wish
to highlight how a set of extensions in our formalism has the same properties of a classic extension,
based on a more refined analysis and a categorization of the arguments based on its attributes.

In the following proposition, the connection between the extensions defined in this work is
formalized.

Proposition 4 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, and ARw, ARs, and ARu be the sets of weakened,
strengthened, and unchallenged arguments associated with Ψ. Then:

(i) Any S-W (resp. S-S, S-U) extension is also a CF-W (resp. CF-S, CF-U) extension;

(ii) Any CF-W (resp. CF-S, CF-U) extension closed under Rs is also a S-W (resp. S-S, S-U)
extension; and

(iii) Any S-W (resp. S-S, S-U) extension closed underRs is also a C-W (resp. C-S, C-U) extension.

Furthermore, we establish the condition for a labeled argumentation framework to be equivalent
to a bipolar argumentation framework. That is, the extension obtained in our framework coincides
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Figure 13: Labeled bipolar argumentation graph.

with the extension obtained for the underlying bipolar argumentation framework. To do this, we
first establish the following results.

Proposition 5 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, GΨ be the corresponding labeled bipolar argumen-
tation graph, and ARw, ARs, ARu, and ARn be the sets of weakened, strengthened, unchallenged, and
neutralized arguments associated with Ψ, respectively. If ARw = /0 and all arguments A ∈ GΨ are

such that αA => when
99K
(A)= /0, and αA =⊥ when

99K
(A)6= /0, then

(i) ARs and ARu are conflict-free;

(ii) ARs ∪ ARu ∪ ARn = AR.

Theorem 3 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, and GΨ be the corresponding labeled bipolar argu-

mentation graph. If all arguments A ∈ GΨ are such that αA = > when
99K
(A)= /0, and αA = ⊥ when

99K
(A)6= /0, then

(i) ARu ∪ ARs is the d-preferred extension;

(ii) If ARs ∪ ARu is safe, then ARs ∪ ARu is the s-preferred extension; and

(iii) If ARs ∪ ARu is closed underRs, then ARs ∪ ARu is the c-preferred extension.

The following example illustrates these concepts.

Example 5 Continuing with Example 4, we classify the arguments that belong to AR according to
Definition 13 as follows:

ARn = {G} (neutralized),

ARw = {A} (weakened),

ARs = {C,B,J,K} (strengthened), and

ARu = {D,E,H,I,F} (unchallenged).
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We refine the analysis over each set by applying Definition 15 to obtain the acceptability exten-
sions specifying the sets of acceptable arguments. To do this, we first establish a preference function
used to identify an order between arguments of AR as follows:

for all A,B ∈ AR | A� B iff δ A
X > δ B

X for each X ∈ A.

The set ARw = {A} is a CF-W, S-W and C-W extension. The set ARs = {C,B,K,J} is a CF-S and S-S
extension, but it is not C-S extension—the relation ARs is not closed under Rs because B supports
A, which does not belong to ARs. Observe that C attacks B in ARs, but C � B because the accuracy
and reliability of B are better than the accuracy and reliability associated with C (the accuracy and
reliability of B are 0.89 and 0.83, while for C they are 0.58 and 0.38, respectively). Based on this,
also ARs is safe since J supports B, which is attacked by C; but, as we explained before, the negative
effect of the attack relation is lessened by the support of J.

The set ARu = {D,E,H,I,F} is a CF-U extension, but it is neither an S-S nor a C-S extension
since ARu is not closed underRs because D supports A, which does not belong to ARu. Furthermore,
D supports A, which is attacked by F; F � A because the reliability of F is better than that of A (the
reliability of A is 0.51, and for F it is 0.8).

Let us observe that if we take into account a set of arguments resulting from the union of
the strengthened, weakened, and unchallenged sets, and perform the semantic analysis follow-
ing the intuition presented in Definition 15, we have that the maximal conflict-free set is S1 =
{D,E,H,I,F,C,B,K,J}, while no arguments that are safe and closed under support are found. Thus,
argument A cannot be considered to be an acceptable argument; however, it has non-neutralized
features, yielding a contradiction. This result arises by merging the global semantic analysis per-
formed by the labeling process with the local semantic analysis, taking into account relationships
individually through the concept of conflict-free and safe.

Next, we analyze how the interactions between arguments are reflected in the labels representing
the features associated with them. We also explore some properties of acceptable arguments.

8. Labeling Properties

Recently, a set of properties have been proposed in different works that allow to better understand
the behavior of the different value-based semantics. The following postulates are satisfied by all
the valuations defined according to the labeling process. In general, these postulates describe the
behavior of valuations associated with arguments in our framework; they are studied by Amgoud
et al. (2013), Amgoud and Ben-Naim (2018), Potyka (2018), and Matt & Toni (2008).

First, our labeling procedure defined over a set of arguments should analyze the identity of the
arguments (represented through the original valuation) and consider the basis of the support and at-
tack between arguments (represented through the strengthened and overall valuations, respectively).
So, the first postulate says that two equivalent labeled bipolar argumentation frameworks should
give rise to equivalent families of valid labelings (models). Towards this end, first we introduce the
notion of isomorphism between two L-BAFs, which is used to connect them.

Definition 16 (Isomorphism) Let Ψ = 〈Θ,A,υ〉 and Ψ′ = 〈Θ′,A′,υ ′〉 be two L-BAFs where Θ =
〈AR,Ra,Rs〉 and Θ′= 〈AR′,R′a,R′s〉 are the underlying BAFs, υ and υ ′ the valuation functions, and
ρ and ρ ′ the posture functions. An isomorphism from Ψ to Ψ′ is a bijective function h : AR−→ AR′

such that:
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(i) ∀A ∈ AR, υ(A) = υ ′(h(A)),

(ii) ∀A ∈ AR, ρ(A) = ρ ′(h(A)),

(iii) ∀A,B ∈ AR,(A,B) ∈Ra iff (h(A),h(B)) ∈R′a, and

(iv) ∀A,B ∈ AR,(A,B) ∈Rs iff (h(A),h(B)) ∈R′s.

In what follows, we will introduce a set of postulates and analyze them concerning the semantics
presented in this formalism. To clarify their statements, when no confusion arises, we will simplify
the description by omitting to mention the context represented by the L-BAF Ψ = 〈Θ,A,υ〉 and its
underlying BAF Θ = 〈AR,Ra,Rs〉.

Postulate 1 (Abstraction) Given two L-BAFs Ψ = 〈Θ,A,υ〉 and Ψ′ = 〈Θ′,A′,υ ′〉, and an isomor-
phism h : Ψ−→Ψ′, then the following property holds:

For all A ∈ AR,〈αA,µA,δ A〉 ∈ ΛΨ if and only if 〈αh(A),µh(A),δ h(A)〉 ∈ ΛΨ′

In the following, we assume an L-BAF Ψ = 〈Θ,A,υ〉, the underlying BAF
Θ = 〈AR,Ra,Rs〉, the corresponding argumentation graph for Θ denoted as GΘ, and a valid la-
beling for GΘ denoted with λ (Θ).

The second postulate refers to the notion of independence between valuations, which simply
means that one can be computed without the other. The postulate then states that the answer to the
question of whether an argument A is at least as acceptable as an argument B should be independent
of any argument C that is neither connected to A nor to B; that is, there is no path from C to A nor B
(without considering the direction of the edges).

Postulate 2 (Independence) Let A and B be two arguments in AR that are not connected in GΘ.
Then, the valuations 〈αA, µA, δ A〉, 〈αB, µB, δ B〉 ∈ λ (Θ) associated with A and B, respectively, are
independent.

The third postulate says that if A is attacked with at most the same strength as B, and supported
with at least the same strength as B, then A should be at least as strong as B.

Postulate 3 (Monotony) Let 〈αA, µA, δ A〉, 〈αB, µB, δ B〉 ∈ λ (Θ) be the valuations associated with
two arguments A and B respectively. It holds that if

(i) αA = αB,

(ii) �m
j=1δ A j ≥�r

j=1δ B j with A j ∈
99K
(A),1≤ j ≤ m, and B j ∈

99K
(B),1≤ j ≤ r,

(iii) ⊗n
k=1δ Xk ≤⊗s

k=1δ Yk with Xk ∈
−→
(A),1≤ k ≤ n, and Yk ∈

−→
(B),1≤ k ≤ s,

then δ A ≥ δ B.

The directionality postulate states that the overall valuation of an argument should depend only
on its incoming edges, and not on the arguments it attacks or supports; i.e., the attacks and supports
are directed relations, and the attacker (supporter) influences the attacked (supported).
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Postulate 4 (Directionality) Let 〈αA,µA,δ A〉 ∈ λ (Θ) be a valuation associated with argument A.
Then:

(i) If there is no path in GΘ arriving to A, then αA = µA = δ A.

(ii) If
99K
(A) 6= /0 and

−→
(A) = /0, then αA ≤ µA = δ A.

(iii) If
99K
(A) = /0 and

−→
(A) 6= /0, then αA = µA ≥ δ A.

(iv) If
99K
(A) 6= /0 and

−→
(A) 6= /0, then αA ≤ µA ≥ δ A.

The next postulate, called equivalence, ensures that the overall strength of an argument depends
only on the original valuations of the arguments and the overall valuations of its (direct) attackers
and supporters.

Postulate 5 (Equivalence) Let 〈αA, µA, δ A〉, 〈αB, µB, δ B〉 ∈ λ (Θ) be the valuations associated
with two arguments A and B, respectively. Then, if it holds that

(i) αA = αB,

(ii) there exists a bijective function f :
99K
(A)−→

99K
(B) such that for all X ∈

99K
(A) µX = µ f (X),

(iii) there exists a bijective function g :
−→
(A)−→

−→
(B) such that for all Y ∈

−→
(A) δ Y = δ g(Y),

then 〈αA,µA,δ A〉= 〈αB,µB,δ B〉, which means that A and B are equivalent.

The following local property is concerned with the direct supporters and attackers (defenders) of
arguments. The strengthened label associated with an argument represents how strong its supports
are. Thus, when no attacking arguments exist to provide a weakening for an argument, its valuation
is strengthened by the supporting arguments. On the other hand, the quality of a direct attacker
depends on the quality of its attackers, and so on. Thus, the overall valuation associated with an
argument represents how strong its defenders and attackers are.

Postulate 6 (Quality Precedence) Given the valuations 〈αA,µA,δ A〉,〈αB,µB,δ B〉 ∈ λ (Θ) associ-
ated with two arguments A and B, respectively. When αA ≥ αB, we have that:

(i) If the strengths associated with the supporters of A and B verify that

�m
j=1δ A j >�r

j=1δ B j with A j ∈
99K
(A) and B j ∈

99K
(B), then

δ A > δ B when
−→
(A)= /0 and

−→
(B)= /0.

(ii) If the strengths associated with the attackers of A and B verify that

⊗n
k=1δ Xk <⊗s

k=1δ Yk with Xk ∈
−→
(A) and Yk ∈

−→
(B), then

δ A > δ B when
99K
(A)= /0 and

99K
(B)= /0.

The previous postulates suggest the introduction of three other postulates: neutrality, reinforce-
ment, and stability. In particular, neutrality states that, if the strengths associated with the supporting
and attacking arguments are equal to ⊥, then these relations cannot produce an effect.
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Postulate 7 (Neutrality) For any argument A ∈ AR where 〈αA, µA, δ A〉 ∈ λ (Θ) we have that: if

�m
j=1δ A j =⊗n

k=1δ Xk =⊥ with A j ∈
99K
(A),1≤ j ≤ m, and Xk ∈

−→
(A),1≤ k ≤ n, then δ A = αA.

The reinforcement postulate states that any argument becomes stronger if the quality of its attackers
is reduced or the quality of its supporters is increased.

Postulate 8 (Reinforcement) For any argument A ∈ AR and 〈αA, µA, δ A〉 ∈ λ (Θ) then δ A > αA iff

�m
j=1δ A j >⊗n

k=1δ Xk , where A j ∈
99K
(A),1≤ j ≤ m and Xk ∈

−→
(A),1≤ k ≤ n.

The stability postulate states that if an argument is neither attacked nor supported, its overall
valuation should be equal to its original valuation.

Postulate 9 (Stability) For any argument A where 〈αA, µA, δ A〉 ∈ λ (Θ) if
−→
(A)= /0 and

99K
(A)= /0 we

have that δ A = αA.

The following two postulates are centered on weakening and strengthening between arguments.
Weakening states that if the strength of the attacking arguments overcomes the strength of the sup-
porting arguments, then the affected argument loses its original attributes. Intuitively, supporters
are not sufficient for counter-balancing attackers; however, they may mitigate the global loss due to
attacks.

Postulate 10 (Weakening) For any argument A where 〈αA, µA, δ A〉 ∈ λ (Θ), we have:

(i) If ⊗n
k=1δ Xk >�m

j=1δ A j with Xk ∈
−→
(A),1≤ k ≤ n, and A j ∈

99K
(A),1≤ j ≤ m, then αA > δ A.

(ii) If
−→
(A)6= /0 and

99K
(A)= /0, then αA ≥ δ A.

On the other hand, strengthening states that if the strength of the supporting arguments over-
comes the strength of the attacking arguments, then the affected argument increases the original
features. Indeed, attacks are not sufficient for counter-balancing supports; however, they may miti-
gate the global gain due to supports.

Postulate 11 (Strengthening) For any argument A where 〈αA,µA,δ A〉 ∈ λ (Θ), we have that:

(i) If ⊗n
k=1δ Xk ≤�m

j=1δ A j with Xk ∈
−→
(A),1≤ k ≤ n, and A j ∈

99K
(A),1≤ j ≤ m, then αA ≤ δ A.

(ii) If
−→
(A)= /0, then αA ≤ δ A.

Strengthening soundness and weakening soundness express that any difference between the
original valuation and the overall valuation of an argument is caused by some supporting or attacking
argument. This property is called causality.

Postulate 12 (Causality) For any argument A where 〈αA,µA,δ A〉 ∈ λ (Θ). Then:

(i) If µA 6= δ A there exists an argument B ∈ AR such that δ B 6=⊥ with B ∈
−→
(A).
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(ii) If αA 6= µA there exists an argument B ∈ AR such that δ B 6=⊥ with B ∈
99K
(A).

Neutralization expresses that if an argument A is attacked by X and supported by Y, and the
overall valuations of X and Y are identical, then they neutralize each other with respect to A.

Postulate 13 (Neutralization) For any argument A∈ AR where 〈αA,µA,δ A〉 ∈ λ (Θ), if it holds that

�m
j=1δ A j =⊗n

k=1δ Xk with A j ∈
99K
(A),1≤ j ≤ m, and Xk ∈

−→
(A),1≤ k ≤ n, then αA = δ A.

The following postulate, called proportionality, states that the stronger the target of an attack,
the weaker its intensity.

Postulate 14 (Proportionality) For any arguments A, B where 〈αA,µA,δ A〉,〈αB,µB,δ B〉 ∈ λ (Θ),
if

(i) αA > αB,

(ii)
99K
(B)= /0 or �m

j=1δ Aj ≥�r
k=1δ Bk with A j ∈

99K
(A),1≤ j ≤ m, and Bk ∈

99K
(B),1≤ k ≤ n,

(iii) ⊗m
j=1δ Xj =⊗n

k=1δ Yk with X j ∈
−→
(A),1≤ j ≤ m, and Yk ∈

−→
(B),1≤ k ≤ n, and

(iv) δ A >⊥.

then δ A > δ B.

Finally, all postulates are compatible; i.e., it is possible to satisfy all of them with a single
labeling process.

Theorem 4 Any L-BAF instantiation satisfies the following postulates: Abstraction, Independence,
Monotony, Directionality, Equivalence, Quality Precedence, Neutrality, Reinforcement, Stability,
Weakening, Strengthening, Causality, Neutralization, and Proportionality.

9. An Extended Analysis of the Running Example

In this section, we return to the example from Section 1 to present a full account and complete
representation using all elements of the proposed formalism. Recall that in this scenario, parents
are analyzing arguments in favor and against the selection of schools according to their preferences.
Therefore, the arguments endorsing specific characteristics have different preference valuations rep-
resenting the parents’ preference regarding the arguments’ topics, as well as the social valuation that
represents society’s support (in the form of engagement via a social platform) of the information ad-
vanced by the arguments. Thus, this scenario can be represented and analyzed by our formalism as
follows:

Let Ψ = 〈Θ,A,υ〉 be an L-BAF with underlying BAF Θ = 〈AR,Ra,Rs〉, where:

– AR= {A;B;C;D;E;F;G;H;I;J;K},

– Ra = {(B,A),(D,A),(I,B),(K,C),(H,F)},

– Rs = {(C,B),(E,D),(F,A),(G,F),(I,F),(J,A)},
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– A = {A,B} is the set of two algebras, where A represents preference and B represents social
rating for each argument in AR. Both algebras are defined below.

– υ is a function that assigns to each argument in AR a tuple in A×B representing the preference
and social rating associated with that argument.

The algebras are defined as follows:

Algebra A: The domain of labels L1 of algebra A is the real interval [0,1] representing a normalized
preference valuation with>= 1 and⊥= 0. The preference over the arguments represents the
agent’s preference regarding specific issues that influence the decisions that it considers. The
operators of accumulation, strengthening, and weakening defined to manipulate this feature
are introduced as follows:

Preference
γ � β =

0 if γ = β = 0

γβ

γ +β − γβ
otherwise.

Determines the accumulation valuation
as the gradual combination of the valu-
ation associated with the involved argu-
ments applying a gradual conjunction.

γ⊗β = min(γ,β )

Yields the accumulation valuation as
the minimal valuation associated with
the involved arguments applying the
worst-link principle; thus, the valuation
that weakens an argument is as good as
the worst argument that attacks it.

γ⊕β = min(γ +β ,1)

The strengthening operation produces a
preference valuation associated with an
argument combining its own preference
and the supporting accumulation mea-
sure associated with it, with an upper
bound.

γ	β = max(γ−β ,0)

The preference of its attackers reduces
an argument’s preference in a direct de-
creasing way by the weakening opera-
tor, with a lower bound. Thus, the ef-
fects produced by this relationship de-
pend on the quality of the attacking ar-
guments.

Algebra B: The domain of labels L2 of algebra B is the real interval [0,1] representing a normalized
social rating with >= 1 and ⊥= 0. The social rating attached to the arguments is related to
society’s support. The operators of support and conflict established to manipulate this feature
are defined as follows:

Social Valuation

γ�β = γβ

The determination of the support accu-
mulation valuation is based on the con-
junction of the social valuations corre-
sponding to the arguments that support
it.
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Social Valuation

γ⊗β = min(γ,β )

The accumulation valuation is the min-
imal among the social rating valua-
tions associated with the attacking ar-
guments; thus, the attack valuation that
weakens an argument is as good as the
worst argument that attacks it.

γ⊕β =
γ +β

1+ γβ

This operator reflects the gradual
strengthening of the original social val-
uation associated with an argument
when supporting arguments are consid-
ered.

γ 	 β =


γ−β

1−β
if γ ≥ β ,β 6= 1

0 otherwise.

The conflict operation identifies the
gradual overall valuation associated
with conflicting arguments where the
effects produced by this relationship de-
pend on the quality of the arguments in-
volved.

The valuation υ : AR−→A×B specifies the preference degree associated with each argument based
on the parents’ preference, and determines the original (normalized) social valuation associated with
each argument (tweet) based on the number of followers, the number of retweets, and the number
of likes, as follows:

Argument
υ A B C D E F G H I J K

α1 0.9 [0.5,0.8] 0.9 0.8 0.4 0.7 0.8 [0.4,0.7] 0.6 0.8 0.6
α2 0.9 0.7 0.9 0.3 [0.3,0.6] 0.8 1 [0.2,0.8] 0.7 0.5 [0.4,0.7]

Next, we analyze the different results obtained when using the classical bipolar approach in com-
parison with the new formalism.

Comparison with the classical bipolar approach

Analyzing L-BAF Ψ (cf. Figure 14) using the classical bipolar notions, the set S = {E,H,I,J,K,D,G}
is a d-preferred extension. But, S is not safe since G supports F that is attacked by H with H and G

belonging to S, or closed under Rs because J supports A, which does not belong to S (which is an
admissible set).

Turning to our approach, suppose that the parents are interested in optimizing the argumentation
discussion representing their posture over the uncertainty intrinsically associated with the informa-
tion provided by the domain; this uncertainty is expressed as the uncertainty in parents’ perception
and the parents’ preference tolerance. In this sense, we can establish their posture over the argu-
ments using function ρ as follows:

Optimistic Posture Pessimistic Posture
ρK : max([γ,β ]) ρH : min([γ,β ])

Optimistic Leaning Posture Pessimistic Leaning Posture
ρE : med(med([γ,β ]),β ) ρB : med(γ,med([γ,β ]))
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A

B

C

JD

E

G

I

K

F

H

Figure 14: Labeled bipolar argumentation graph.

In this case, we take an optimistic posture over argument K postulating that the school will close
an agreement with the leading universities to increase its students’ options and thus secure a better
future, while a pessimistic posture is established for argument H arguing that the classes are large
with an extensive extracurricular activity program. Thus, the parents consider the student’s future
concerning university opportunities to be important, and that the extensive extracurricular activity
program helps the student to develop responsibility and skills. On the other hand, they consider
an optimistic leaning posture over argument E postulating that the teachers do not have the skills
to address this new generation of students, while a pessimistic leaning posture over argument B is
fixed arguing that students leave school before completing the last year. Thus, the parents think
that the conservative way of teaching is right even though teachers do not use modern resources.
Furthermore, they analyze the situation regarding dropouts, realizing that the reasons causing this
are foreign to the school.

For reasons of readability, we do not include the position functions that determine the valuations
of the arguments with single values. Thus, the final attribute table associated with the arguments
involved in the discussion is the following:

Argument
υ A B C D E F G H I J K

α1 0.9 0.58 0.9 0.8 0.4 0.7 0.8 0.4 0.6 0.8 0.6
α2 0.9 0.7 0.9 0.3 0.53 0.8 1 0.2 0.7 0.5 0.7

Now, we propagate the valuations associated with each argument following the procedure from
Definition 11. Through this process, the system of equations EQS for the argumentation graph GΘ is
obtained (cf. Figure 15), and the final labeling argumentation graph GΨ (cf. Figure 16) is computed.
Clarifying the presentation, we do not include the equations that determine the valuations of the leaf
nodes because of their simplicity.
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

eX1 : µC
X = αC

X

eX2 : δC = αC
X	δK

X

eX3 : µB = αB
X⊕δC

X

eX4 : δB = µB
X	 (δI

X�δC
X)

eX5 : µF
X = αF

X⊕ (δI
X�δG

X)

eX6 : δF
X = αF

X⊕ ((δI
X�δG

X)	δH
X)

eX7 : µD
X = αD

X⊕δE
X

eX8 : δD
X = µD

X

eX9 : µA
X = αA

X⊕ (δF
X�δJ

X)

eX10 : δA
X = αA

X	 ((δB
X⊗δD

X)	 (δF
X�δJ

X))


Figure 15: System of equations EQS where X ∈ {A,B} and the operations mentioned should be
instantiated following their definitions in the two algebras (as was exemplified after Figure 11).
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0.8 0.8 0.8

1 1 1

0.6 0.6 0.6

0.7 0.7 0.7

0.9 0.9 0.3

0.9 0.9 0.67

0.580.880.28

0.7 0.890.67

0.4 0.4 0.4

0.2 0.2 0.2
0.4 0.4 0.4

0.530.530.53

0.8 1 1

0.3 0.720.72

0.7 1 0.82

0.8 0.960.95

0.9 1 1

0.9 0.970.84

0.8 0.8 0.8

0.5 0.5 0.5

Figure 16: Final labeled bipolar argumentation graph.

Then, we classify arguments in AR according to Definition 13 as follows:

ARn = {} (neutralized),

ARw = {A,C,B} (weakened),

ARs = {D,F} (strengthened), and

ARu = {K,I,G,H,E,J} (unchallenged).

Next, we apply Definition 15 to obtain acceptability extensions specifying sets of acceptable
arguments: ARw = {A,B,C} is a CF-W (B attacks A; however, B � A) and S-W extension, since it is
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Classical Extensions Value-based Extensions

CF-W
d-Preferred CF-U

CF-S
S-W

s-Preferred S-U
S-S
C-W

c-Preferred C-U
C-S

Table 7: Comparison between Classical and Value-based extensions; greyed cells correspond to
extensions obtained in our example.

a conflict-free and safe set that defends all its elements; however, it is not closed under Rs because
C supports B, which does not belong to ARw. On the other hand, set ARu = {K,I,G,H,E,J} is a
CF-U and S-U extension (H attacks F, which is supported by G; however, H � F), but it is not C-U
since G supports F, which does not belong to ARu (the closure condition is not satisfied). The set
ARs = {D,F} is a CF-S, S-S, and C-S extension since it is conflict-free, safe and closed under Rs.
Also, in ARs the argument D attacks A; however, in this case D � A following the preference function
presented previously. Thus, based on this, ARs is safe since F supports A, which is attacked by D.

In summary, Table 7 depicts the results of our approach comparing them with the classical
semantic analysis. Interestingly, under the classical acceptability process we only obtain the unique
d-preferred extension S = {E,H,I,J,K,D,G}, while through our acceptability process we obtain the
CF-W and S-W extension ARw = {A,B,C} considering weakened arguments, the CF-U and S-U
extension ARu = {K,I,G,H,E,J} examining unchallenged arguments, and CF-S and C-S extension
ARs = {D,F} analyzing strengthened arguments. Contrasting with our formalism, we observe that
analyzing the example under the classical perspective we do not obtain any safe nor closed under
Rs extensions (except for the trivial ones).

Finally, coming back to the original decision support problem, we can conclude that “Ailen
Education” is a good school based on the arguments: A (weakened), F (strengthened), and G, H, I, J,
and K (unchallenged). However, there exist counterarguments affecting this decision that were not
strong enough to make the choice of this school persuasive, but that should be taken into account
for further analysis: B, C and D (strengthened), and E (unchallenged).

As we can see, the additional capabilities our approach offers will provide for a more flexible
and personalized analysis of the information that is available. Given the rich and varied nature of
data sources, e.g., all the information that originates in social media platforms, we consider this kind
of machinery to be fundamental in supporting decision-making processes by avoiding information
overload, allowing the handling of personal views, and beginning to tackle malicious activities such
as the publication and propagation of fake news and other related problems.

10. Related Work

As discussed in the introduction, rich features associated with knowledge are an essential aspect
of real-world reasoning. Thus, their consideration becomes highly relevant when modeling the
argumentation capabilities in intelligent systems. Next, we discuss relevant works that share this
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motivation, drawing attention to significant differences that exist with the formalism proposed in
this paper.

10.1 Interpretation of Support in Argumentation Frameworks

Cayrol and Lagasquie-Schiex (2013) consider three recent proposals for specializing the support re-
lation in abstract argumentation: deductive, necessary, and evidential support. Each specialization
can be associated with appropriate modeling using an appropriate complex attack. Nouioua and
Risch (2010) present a Dung abstract argumentation theory generalization that includes a particular
kind of support relation that captures knowledge of the form “argument a is necessary to obtain
argument b” in addition to the attack relation. In particular, the authors argue that—unlike unspec-
ified support—the necessity relation has the advantage of ensuring that its interaction with direct
attacks generates new indirect attacks having precisely the same nature of the direct ones. Boella
et al. (2010) studied, in the bipolar argumentation domain (Amgoud et al., 2008), the differences
between deductive support (which means that argument a supports argument b if the acceptance of a
implies the acceptance of b) and defeasible support (which means that the implication holds only by
default and it can be attacked). They also analyze the loss of admissibility exposed in the classical
bipolar framework, solving this problem by introducing second-order attacks not only on the attack
relation but also on the support relations. Cohen et al. (2018) studied the notion of support between
arguments in the context of structured argumentation systems where the elements from which argu-
ments are composed play a crucial role. Different forms of support are presented and studied; each
considers the structure of arguments and the relationships between these forms of support.

In our work, a general notion of support is taken into account, seeking to develop a formalism
that is as general as possible. Encoding different interpretations, such as those described above,
requires several adjustments regarding how attacks are modeled and how labels are propagated.
Furthermore, such adjustments also require a re-analysis of the postulates associated with the re-
sulting propagations. For this reason, the representation of argumentative substructures through a
particular interpretation of the support relationship at an abstract level will be considered in future
works, also as part of an effort to address the treatment of conflict cycles and studying mappings
from our formalism to argumentation systems.

10.2 Labeled Systems in Argumentation

The groundbreaking work by Gabbay on Labeled Deductive Systems (Gabbay, 1993, 1996) has
provided a clear and direct motivation for our work. The introduction of a flexible and rigorous
formalism to tackle complex problems using logical frameworks that include labeled deduction ca-
pabilities has allowed addressing research problems in temporal logics, database query languages,
and defeasible reasoning systems. In labeled deduction, the formulas are replaced by labeled for-
mulas, expressed as L :φ , where L represents a label associated with the logical formula φ . Labels
are used to carry additional information that enriches the representation language. The intuitions
attached to labels may vary according to the specific needs. The idea of structuring labels as an
algebra was present from the very inception of labeled systems (Gabbay, 1993).

Gabbay’s proposal was applied to argumentation systems (Gabbay, 1996) by proposing a frame-
work with the primary purpose of formally characterizing and comparing different argument-based
inference mechanisms through a unified framework; in particular, two non-monotonic inference
operators were used to model argument construction and dialectical analysis in the form of war-
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rant. Labels were used in the framework to represent arguments and dialectical trees. Our proposal
shares with those works the characteristic of also involving the use of labels together with an alge-
bra. Nevertheless, our intention is focused on pursuing a different goal—we are not trying to unify
the presentation of different logics and formally compare them, but to extend the representational
capabilities of argumentation frameworks by allowing them to handle additional domain-specific
information. It can be argued indeed that due to the extreme generality of Gabbay’s framework, it
could also be instantiated in some way to achieve this purpose, but we have aimed in our proposal to
provide an abstract framework, showing how to propagate labels in the specific case of the argument
interactions of support and conflict.

Later, concerned with a different problem, Gabbay (2012) proposed a numerical approach to
the problem of merging of argumentation networks; he considers an augmented network containing
the arguments and attacks of all the networks to be merged. Then, agents put forward their vote on
the components of the network depending on how they perceive these components locally, where
a vote means reinforcement in the sense that the more a component appears locally, the more it is
represented globally. Also, he presents a way to calculate the values of arguments in the weighted
augmented network and discern how the attacks to an argument affect its initial support value;
finally, he presents a threshold for acceptance to determine an argument’s acceptability based on its
weight. Here, we focus on arguments with different roles and how the relationship between them
affects acceptability; thus, our proposal shares the idea of assigning valuations to arguments and
propagating these valuations through an argumentation graph. However, we allow to associate more
than one attribute to the arguments and use an abstract algebraic structure in which operations of
support and conflict of arguments can be performed depending on the existing relationships between
them. The conflict operator models situations in which an undefeated argument is weakened when
counter-arguments exist; we used the valuation associated with arguments for determining when
an argument is better than another and to specify a concrete acceptability category (neutralized,
weakened, strengthened, and unchallenged).

Next, we analyze several works that use particular valuations associated with arguments to spec-
ify their strength and analyze how these valuations affect the argumentative process. We discrimi-
nate our analysis by the representation capability of the formalism.

10.3 Using Single Argument Valuations

When studying the conceptual underpinnings of argumentative reasoning, Bench-Capon (2002) has
noted that in real-life situations where arguments are in conflict, it is impossible to demonstrate
which is wrong conclusively; thus, in such cases, the primary purpose of argumentative reasoning is
to persuade rather than to refute. Quoting his statement in the cited paper: “The point is that in many
contexts the soundness of an argument is not the only consideration: arguments also have a force
which derives from the value they advance or protect.”. Based on this intuition, the author proposes
a formalism, called Valued-Based Argumentation Frameworks (VAF), extending Dung’s model to
consider the strength of arguments and, through these assessments, reflecting the preference of the
audience to which the arguments are directed. Specifically, in VAF, an argument is associated with
a value from some set that has an ordering based on a specific audience. Then, from the valua-
tions assigned to the arguments and the preferences, it is possible to specify when an argument is
strong enough to attack and defeat another. Therefore, different audiences specify different orders
over the set of values, determining different defeat relations between arguments. Finally, the au-
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thors also propose a set of semantics that extend the classical ones, defining two kinds of acceptable
sets: one considering those arguments accepted by all the audiences (arguments accepted objec-
tively), and another containing those arguments that are accepted by at least one audience (those
accepted subjectively). Likewise, Pollock (2010) accurately observed that in defeasible reasoning
most semantical analyses disregard the matter of the inner force of arguments; that is to say that
in a real debate some arguments support their conclusions with more force than others. However,
the recognition that arguments can differ in strength, and therefore, their conclusions might differ
in their degree of justification, leads to an increase in the complexity of the analysis. Thus, Pollock
proposes the addition of a type of argument that he calls diminishers, i.e., those that cannot wholly
defeat their target, but they are able to lower the degree of justification of the argument over which
they perform the attack. These ideas provided motivation for our work, analyzing the requirement
that features associated with the arguments (independently of their required logical soundness) are
essential when an argumentation discussion is analyzed. This necessity becomes even more critical
in the domain of social networks, where it is crucial to take into account different issues. Specifi-
cally, based on the intuitions introduced in these research lines, we combine Bipolar Argumentation
Frameworks with Algebras of Argumentation Labels to extend the representation capability of argu-
ment structures; in this system, labels represent argument features, generalizing the notion of value
and weight and allowing for multiple aspects being represented. Moreover, we recognize the fact
that the interaction between arguments can affect their labels, causing strengthening and weakening
among arguments. Thus, the information contained in the labels enables us to improve the analy-
sis performed over the argumentation framework and refine it limiting this analysis just to the set
of relevant arguments. In particular, in this expanded framework, it is possible to determine the
acceptability of sets of arguments, as well as additional information justifying their acceptability
status.

The ability of the abstract framework proposed by Dung to analyze and treat the inconsistency
associated with a knowledge base is well known; this framework identifies the arguments that de-
scribe a specific discussion and establishes a defeat relation between conflicting arguments. Then,
through a collective semantic process, it analyzes the discussion to determine the acceptability sta-
tus (accepted or rejected) associated with the involved arguments. However, due to this formalism’s
high-level abstraction, it is not possible to analyze the arguments’ acceptability from an individual
perspective since their individual properties are unknown. Amgoud and Cayrol (1998) proposed
a formalism, called Preference-Based Argumentation Frameworks, where a preference relation be-
tween the arguments is introduced in the classical abstract argumentation framework in order to
consider the user’s preferences. The defeat relation represents a conflict based on purely logical
properties (such as “rebut” or “undercut”), while the preference relation represents the preferences
(meta-knowledge) that cannot be extracted from the arguments themselves. Then, using a combina-
tion of these relations, it is possible to conclude that an argument defends itself when it is preferred
over all its attackers, or an argument is defended when there exists a set of arguments that defeats its
attackers, being the arguments of the defending set preferred to the arguments of the attacking set.
In contrast, our formalism details the arguments’ features used as a tool to specify preferences be-
tween arguments to establish some properties associated with a specific set of arguments. Thus, the
preference function is not used in the conflict resolution process, since this role is performed by the
conflict operator defined in the algebra of labels, which specifies how the valuations of arguments
involved in a conflict relation are affected.
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Elvang-Gøransson et al. (1993) analyze the fact that non-trivial arguments may be constructed
for and against a specific proposition in the presence of an inconsistent database; the problem arises
when determining which conclusion must be accepted. The authors define a particular concept of
acceptability, which is used to reflect the different acceptability levels associated with an argument;
then, they argue that “the more acceptable an argument, the more confident we are in it”. Addition-
ally, they define acceptability classes to assign linguistic qualifiers to the arguments. There are some
similarities between this proposal and our own, starting from the fact that the relationships between
the arguments are analyzed, and the acceptability class they belong to is determined. However,
they do not take into account the domain-dependent characteristics associated with the arguments,
only a single value is considered to determine argument strength, and they do not analyze the user’s
perspectives. The authors also work over a structured argumentation system while we work at an
abstract level.

Potyka (2018) proposes a continuous dynamical system as a well-suited tool to analyze cyclic
and acyclic bipolar argumentation frameworks, arriving at a convergence state. Towards this end, the
author gives the conditions under successive procedures that can be transformed into well-defined
dynamical systems; furthermore, the model satisfies a set of axiomatic properties that complement
the existing approaches. In contrast with our work, this approach includes the possibility of dealing
with cyclic bipolar argumentation frameworks; however, the author proposed a special and unique
propagating function, where the valuations given by this function may not always represent real-
world behavior. In our formalism, the acyclic bipolar argumentation framework is treated by a
labeling procedure, where the operators that propagate the argument features can be instantiated in
different ways, depending on the real-world domain. Moreover, we analyze the set of models that
satisfy objective functions introduced by the user to model a user position that maximizes, or min-
imizes, specific argument features. In addition, in A, we present a pruning process to optimize the
argumentation framework by analyzing the influence of the arguments involved in the discussion.

Cayrol and Lagasquie-Schiex (2005a) describe a two-step argumentation process: (i) the cal-
culation of a valuation of the relative strength of the arguments, and (ii) the selection of the most
acceptable among them. Their focus is on defining a gradual valuation of arguments based on their
interactions and establishing a graded concept of acceptability. The authors assert that an argument
is all the more acceptable if it can be preferred to its attackers and propose a domain of argument
valuations where aggregation and reduction operators are defined; however, the arguments’ eval-
uation is solely based on their interaction. In our work, we determine valuations through users’
perceptions, considering the different interactions among them, and propagating the valuations us-
ing the operations defined in the algebra of labels. Unlike the proposal of Cayrol and Lagasquie-
Schiex, the operations assigned to each relation among arguments are defined by the user—this
provides the possibility of explicitly considering the problem’s domain. Moreover, we provide the
ability to assign more than one valuation to the arguments, depending on the features we wish to
model. Our formalism also gives the possibility to obtain a feasible solution based on user per-
ception that optimizes some measure under uncertainty. Finally, after analyzing all the interactions
among arguments, we obtain final valuations assigned to each argument; then, through these valua-
tions, the acceptability status (strengthened, unchallenged, weakened, or neutralized) of arguments
is obtained.

Rago et al. (2016b) propose an algorithm computing only acyclic graphs for quantifying the
strength of alternative decision options, based on the aggregation of the strength of their attack-
ing and supporting arguments, proving a set of desirable properties that highlights the usefulness
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and proper propagation of values in the debate domain. In the same direction, the authors define a
quantitative semantics (Rago, Čyras, & Toni, 2016a) (adapting the algorithm proposed in the previ-
ous work) for evaluating the strength of arguments in bipolar argumentation frameworks, studying
the relationship between the new semantics and some existing semantics for other argumentation
frameworks, as well as some properties of a specific semantics. Furthermore, under certain con-
straints, they can compute cyclic graphs in the bipolar domain (assuming that all arguments have a
base score of 0.5). However, in our work, the algebra of labels allows us to perform a more general
propagation without conforming to specific functions, supporting different propagations according
to each attribute’s nature. A wide range of properties is provided, verifying the labeling process
has an adequate behavior and robustness, obtaining a set of semantics useful in the argumentative
domain. Also, only acyclic graphs are treated; in Appendix B we present and discuss several ideas
to address graphs with conflict cycles without loss of generality.

10.4 Using Multiple Argument Valuations

Kaci et al. (2008) generalized Bench-Capon’s value-based argumentation frameworks in such a way
that arguments can promote multiple values, and preferences among values or arguments can be
specified in various ways. Each value can be associated with one or more arguments and vice versa;
then, once the different values are mapped to each argument involved in the discussion, the exist-
ing conflict relations are analyzed to identify the successful attacks. In Bench-Capon’s value-based
framework, the attack of an argument A over an argument B is successful if and only if A attacks B
and the value promoted by B is not preferred over that promoted by A; however, in this new proposal,
arguments can promote more than one value; this increases the difficulty of determining when an
argument is preferred to another based on their valuations. To address this problem, the authors
provide two guidelines, based on the principles of minimal/maximal specificity, that allow estab-
lishing a unique possible ordering (total order) over the set of values associated with the arguments.
Then, based on this order, it is possible to obtain the successful attacks and subsequently, the accept-
able arguments; this is done by combining algorithms from non-monotonic reasoning with others
for calculating extensions in abstract argumentation. The main idea in that approach has certain
similarities with our work: the valuations associated with the arguments provide the possibility of
establishing argument strength, and the arguments have associated different valuations representing
attributes that are not related to the logical soundness of the arguments. However, from our per-
spective, each of the features associated with the arguments must have a particular interpretation, a
particular ordering, and individual treatment. Towards this end, we have incorporated a set of alge-
bras of argumentation labels that are provided to represent and compute the different characteristics
of the arguments modeling the knowledge behavior in the argumentation domain.

Motivated by the idea of encouraging and enhancing a debate on a particular topic in social
media, Leite et al. (2011) proposed an extension of Dung’s framework with the possibility to as-
sociate votes to arguments, together with a semantics that assigns a value to each argument; such
values are drawn from a predetermined set of possible values, and represent the arguments’ strength
(taking into account both the structure of the graph and the social opinion expressed through the
votes). This proposal has some similarities with the one presented in this paper since both obtain
additional information regarding the quality of the arguments. However, our formalism can be in-
terpreted as a generalization of the social argumentative framework allowing to represent multiple
features associated with arguments, such as user preferences and the accuracy of the information
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that the arguments represent, among others. Furthermore, our formalism allows us to represent pos-
itive (support) and negative (attack) relations between arguments, while the social argumentation
framework only represents an attack between contradictory arguments. On the other hand, some
similarities can be found between the operations used to manipulate the social strength of the argu-
ments and the operations defined in the algebra of argumentation labels; however, conflict resolution
is modeled differently.

In a series of works, Amgoud et al. (2016, 2018, 2019) introduce a closely related line of re-
search, where the authors define principles that a particular semantics would satisfy in a bipolar
setting. Such principles are useful for defining reasonable semantics, for a better understanding of
the design choices or foundations of each semantics, and for comparing pairs of semantics. Fur-
thermore, the authors propose the definition of a novel gradual semantics for the sub-class of non-
maximal acyclic bipolar graphs, showing that it satisfies a set of principles. Our formalism shares
the same goal, with particular attention over a set of well-defined operators that propagate the fea-
tures in an argumentative discussion. These operators can be instantiated in different ways, each
of them giving place to a specific semantics that models the constraints of the domain. Moreover,
we can refine the argumentative discussion introducing objective functions that specify the user’s
intentions to optimize a specific viewpoint, shifting the model from one perspective to another. On
the other hand, we present a set of tools to improve the discussion, analyzing the effectiveness of
the support and conflict relations, and the quality associated with the participating arguments. Addi-
tionally, we present an algorithm that implements the labeling process with tractable computational
complexity in acyclic argumentation graphs.

10.5 Fuzzy and Probabilistic Frameworks

There have been many developments centered around the extension of argumentation frameworks
with machinery for representing and reasoning with fuzzy and probabilistic information.

Several works discuss using fuzzy sets and relations to refine Dung’s semantics, as we do here in
the bipolar argumentation domain. In particular, Janssen et al. (2008) propose fuzzy argumentation
frameworks as a conservative extension of traditional Dung argumentation frameworks. The fuzzy
approach enriches the classical argumentation model’s expressive power by allowing to represent
the relative strength of the attack relationships between arguments and the degree to which argu-
ments are accepted. In the same direction, Gratie and Florea (2014) introduce a formalism where
fuzzy labels are used in Dung’s abstract argumentation. The first approach we propose is built as a
natural extension of the {in, out, undecided} labeling to real-valued labels, coupled with an unsu-
pervised learning algorithm that assigns consistent labels starting from a random initial assignment.
The second approach regards argument (fuzzy) labels as degrees of certainty in the argument’s ac-
ceptability; this translates into a system of equations that provides among its solutions the labelings
that describe complete extensions. The latter’s main innovations are that we allow for flexible use of
different operations, introducing the conflict process to weaken arguments and the support operation
to strengthen them. Also, after analyzing all the interactions among arguments, the acceptability sta-
tus (strengthened, unchallenged, weakened, or neutralized) is obtained. Our formalism also gives
the possibility to obtain a feasible solution under a user’s perception that optimizes some measure
under uncertainty.

In another direction, there exist works where probabilistic notions are explored in the argumen-
tation domain, extending abstract models. Hunter and Thimm (2017) explain that abstract argu-
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mentation can be enhanced by considering probability assignments on arguments, allowing for a
quantitative treatment of formal argumentation. In particular, the epistemic approach analyzes the
topology of the graph where probabilistic assessments on the acceptance of arguments are evalu-
ated w.r.t. the relations of the arguments in the graph. The core idea is that the more likely one is to
believe in an argument, the less likely one is to believe in an argument attacking it. The epistemic
approach is useful for modeling the beliefs that an opponent might have in the arguments presented,
which is useful, for example, when deciding on the best arguments to present to persuade an op-
ponent. Thus, under this proposal, they assign to each argument a degree of belief under a specific
probability function, affecting the argumentation graph where it plays a particular role. That is, an
agent may disbelieve some of the arguments based on what it knows about the topic. Furthermore, it
may disbelieve some of the arguments that are not attacked. Finally, some constraints on the proba-
bility function can be considered, which may take different aspects of the argument graph structure
into account. Furthermore, in a related research line, Fazzinga et al. (2015) analyze the combina-
tion of Dung’s abstract argumentation framework with probability theory to model uncertainty in
argumentation. In this setting, they address the fundamental problem of computing the probability
that a set of arguments is an extension according to a given semantics. That is, they characterize the
computational complexity of associating a probability distribution over the set of arguments, and
the complexity of obtaining specific semantics.

Our work is closest in spirit to the latter since labels can be seen as a generalization of proba-
bility values associated with arguments; however, it is not complete subsumption since the algebra,
in this case, would need to model a probabilistic space; the modeling of the corresponding proba-
bility distribution needs to reside elsewhere, as done in the works mentioned above. Furthermore,
the spirit of the values associated with the arguments is primarily to see how they are affected by
interactions within the argumentative model; that is, modeling the behavior of knowledge within the
discussion. In this sense, probabilistic values would not have to be modified by the existence of an
attack, but rather the probability should be a parameter to consider or not to consider such attacks.
Of course, in the absence of attacking arguments, the probability of the arguments attacked may
rise, but they still have different interpretations.

Hunter et al. (2020) introduce epistemic graphs as a generalization of the epistemic approach
to probabilistic argumentation. In these graphs, an argument can be believed or disbelieved up to a
given degree, thus providing a more fine-grained alternative to the standard Dung-based approaches
when it comes to determining the status of a given argument. Furthermore, the flexibility of the
epistemic approach allows both formalisms to model the rationale behind the existing semantics and
completely deviate from them when required. The interesting issue is that they analyze epistemic
graphs that can model both attack and support and relations that are neither support nor attack. The
way other arguments influence a given argument is expressed by the epistemic constraints that can
restrict the belief that they have about an argument with a varying degree of specificity. The fact
that they can specify the rules under which arguments should be evaluated, and they can include
constraints between unrelated arguments permits the framework to be more context-sensitive. As
mentioned above, the nature of the values in our work is different from the more specific probability
values, and some adjustments are required to handle them in our algebra. Thus, this is part of future
work and the definition of an algebra that can handle temporal notions.
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Argumentation 
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 × × × × × × ✓ ABSTRACT × ×
Argument-based 
Defeasible Reasoning
(Pollock)

× ✓ × × × ✓ ✓ ABSTRACT × ×
Preference-based 
Argumentation 
(Amgoud and Cayrol)

× × × × × × ✓ ABSTRACT × ×

Dialectical Reasoning
(Elvang-Gøransson) × × × × × × ✓ STRUCTURED × ×
Continuous Dynamical 
Systems (Potyka) × × × × × × ✓ STRUCTURED × ✓
Graduality in
Argumentation
(Cayrol and Lagasquie-Schiex)

× ✓ × × ✓ × ✓ ABSTRACT × ×

Multiple Value-based 
Argumentation (Kaci et al.) ✓ × × × × × ✓ ABSTRACT × ×

Social Argumentation
(Leite et al.) × ✓ × ✓ × × ✓ ABSTRACT × ×
Labeled Bipolar 
Argumentation
(This work)

✓ ✓ ✓ ✓ ✓ ✓ PRELIMINARY
RESULTS

ABSTRACT ✓ ✓

Figure 17: Comparing Argumentation Frameworks Tools.

10.6 Summary of Related Approaches

To summarize the wide variety of approaches we discussed above, in Table 17 we present an anal-
ysis based on the main features that characterize them, making it easier to compare specific ones
in terms of their capabilities: (1) Multiple values: the formalism can represent and manipulate
more than one attribute value simultaneously; (2) General propagation: support for instantiation
of different propagation operators according to the domain’s constraints; (3) Uncertainty ranges:
second-order uncertainty (intervals instead of single values); (4) Domain-dependent Features: sup-
port for features that go beyond interaction between arguments; (5) Bipolarity: availability of both
positive (support) and negative (attack) relations; (6) Weakening relation: support for finer-grained
analyses of conflicts between arguments; (7) Treatment of cycles: support for cyclic relations; (8)
Level of abstraction: abstract vs. structured arguments; (9) Solution space optimization: availability
of tools to reduce the solution space towards simpler analyses and/or lower computational costs;
and (10) Categories of acceptable arguments: categorization of accepted arguments beyond the
consideration of graduation levels (as commonly used in argumentative systems based on argument
ranking).

As can be seen in the table, an important issue that needs to be addressed in our work is the
treatment of conflict cycles. In this paper, we show preliminary results in this direction, which are
presented in Appendix B. Solving this non-trivial problem is the topic of ongoing and future work.

11. Conclusions and Future Work

Depending on the application, it is sometimes necessary to associate additional information with
arguments to accurately represent their features—the goal is to leverage this information in deter-
mining their acceptability status. For instance, in a multi-agent scenario, one might establish a
relevance degree associated with the arguments representing the agents’ preferences, consider the
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popularity of an argument based on the social vote associated with it, among others. Here, we
developed the Labeled Bipolar Argumentation Framework (L-BAF), which combines the represen-
tation capabilities provided by Bipolar Argumentation Frameworks (BAF) and the manipulation of
additional labels using an algebra developed for this purpose; in that way, interactions between
arguments have associated operations defined over the algebra, allowing information to be propa-
gated. In this expanded framework, it is feasible to determine the acceptability of sets of arguments
as well as additional information that justifies their acceptability status. This possibility means that
our formalism allows a more granulated analysis of the arguments and their relationships, represent-
ing the effect (positive and negative) of one argument over others; then, we use the final features
associated with each argument to classify them, and finally, over each relevant class, we looked
for some critical properties such as conflict freeness, safety, and closure under support. Also, we
presented a pruning process to optimize the argumentation framework by analyzing the influence of
the arguments involved in the discussion. Thus, a set of coefficients representing the quality of an
argumentation framework is extracted and used to dismiss arguments from consideration or to drop
relationships between them.

Current and future work involves developing an implementation of L-BAF by instantiating it in
the existing DeLP (Garcı́a & Simari, 2014) system as a basis; the resulting implementation will be
evaluated in different domains that require extra information associated with arguments, taking as
motivation studies and analyses such as P-DeLP (Alsinet et al., 2008a, 2008b). In another direction,
we will deepen the study of the bipolar cyclic argumentative frameworks and their treatment in the
proposed formalism. Furthermore, we are interested in analyzing the computational complexity
associated with the proposed formalism and how it is affected by the operators defined in the algebra
and the number of arguments interacting in a specific scenario.
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Appendix A. Refining an Argumentative Discussion

In any discussion, arguments proclaim assertions of different kinds; it would be interesting to have
the capability to analyze a scenario considering all arguments that have specific features suitable
for the topics being addressed. In this sense, in real-world applications, it can be useful to refine
argumentative frameworks by considering only those arguments that satisfy specific constraints
relevant to a given domain. For example, an agent needing to make a decision with a high degree
of reliability by considering only the best arguments involved in a discussion, or an agent making
a decision based only on the arguments with a specific social rating. In this direction, having extra
information associated with arguments introduces the possibility of improving the argumentative
discussion by excluding the least relevant arguments.

Different research lines have addressed the analysis of different aspects of an argumentation
framework to optimize it, applying specific techniques. In this direction, Bonzon et al. (2014) ad-
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dress the uncertainty faced by a user participating in multiagent debate. They propose a way to
compute the relative relevance of arguments for such a user by merging the classical argumentation
framework into a game-theoretic coalitional setting, where the worth of a collection of arguments
(opinions) can be seen as the combination of the information concerning the defeat relation and the
preferences over arguments of a user. Via a property-driven approach, they show that the Shapley
value for coalitional games defined over an argumentation framework can be applied to summarize
all the information about the worth of opinions into an attribution of relevance for the single argu-
ments. Furthermore, Bistarelli and Taticcihi (2019) explain that cooperative games are a class of
games where groups of players (or agents) compete to maximize their goal, through one or more
specific rules. In particular, voting games are a category of cooperative games in which each player’s
contribution determines the profit of labeling associated with a specific argumentation model. Thus,
to identify the value brought from a single player to a specific labeling, power indexes (Shapley
value and Banzhaf power index) are used, supporting a ranking process between the arguments.

In the same research thread, but analyzing the attack contribution in a discussion, Amgoud (2017)
argued that the acceptability degree of an argument should be equal to the primary strength of the
argument if the latter is not attacked. Otherwise, the argument is weakened by its attackers and loses
weight, leading to an acceptability degree lower than the primary strength. Hence, from the out-
come of a semantics, it is possible to compute each argument’s global loss because of its attackers.
It is the difference between the primary strength of the argument and its acceptability degree. How-
ever, it is not possible to say anything regarding the contribution of each attack to that loss. That
contribution represents, in some sense, the intensity of the attack. The greater the contribution of an
attack, the more harmful the attack. Information on the contribution of attacks is very useful since
it allows a better understanding of each one’s impact. Namely, it allows detecting worthless attacks
(i.e., attacks that do not have any impact on the target), and redundant ones (i.e., attacks that lead
to the same loss for their target). This ranking is very useful, especially in persuasion dialogues,
where agents have to choose the best counter-attack to win a dialogue. Thus, they propose the novel
concept of contribution measure, which takes as input an argumentation framework, and returns as
output a weight for each attack, representing the attack’s contribution.

As in these research lines, the values associated with an argument in L-BAFs allow us to analyze
the argumentation framework in three directions: (i) coefficients of attack and support, indicating
the effectiveness of the relations defined among the arguments, (ii) argument quality coefficients to
establish the quality of individual arguments participating in the discussion. To do this, we analyze
the relationship between the original value, a strengthened value after considering the supporting
arguments, and a overall value when considering the attackers and the supporters together (we can
establish how important their supporters and attackers are to each of them). Finally, (iii) we can
apply these coefficients using them to prune arguments to obtain a relevant, focused, and competent
discussion. The following definition aims to address points (i) and (ii).

Definition 17 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, GΨ be the corresponding labeled bipolar argumen-
tation graph, A be the set of label algebras, X ∈ A be an algebra of argumentation labels, and
#Ra and #Rs be the cardinalities of the attack and support relations, respectively. Then, the effec-
tiveness degree associated with the argument roles in Ψ is defined as follows where in each case
denominators assumed to be non-zero, otherwise the coefficient is 0:
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Particular Effectiveness Attack General Effectiveness Attack

ωa
X =

∑A∈AR µA
X−δ A

X

#Ra
Ωa

Ψ
=

∑X∈A ωa
X

#A

Particular Effectiveness Support General Effectiveness Support

ωs
X =

∑A∈AR µA
X−αA

X

#Rs
Ωs

Ψ
=

∑X∈A ωs
X

#A

Particular Argument Quality General Argument Quality

ω
q
X =

∑A∈ARαA
X

#AR
Ω
q
Ψ
=

∑X∈A ω
q
X

#A

Example 6 Returning to Example 4, the particular conflict, support, and argument quality coeffi-
cients are: ωa

A = 0.18, ωs
A = 0.14, and ω

q
A = 0.56 (w.r.t. accuracy) and ωa

B = 0.29, ωs
B = 0.22, and

ω
q
B = 0.58 (w.r.t. reliability); the general conflict, support, and argument quality coefficients are:

Ωa = 0.24, Ωs = 0.18, and Ωq = 0.57.
In a general sense, the attack and support coefficients establish that the arguments’ effectiveness

is quite low, while the quality of the arguments involved in the argumentation discussion is around
an intermediate value.

The following proposition establishes a relation between the coefficients of support and quality.
Briefly speaking, when the quality associated with the arguments is 1 (the highest value), the support
effects between them is irrelevant; this means that these arguments can be taken as truths tentatively,
for this reason, they do not need support that justifies their validity.

Proposition 6 Let Ψ= 〈Θ,A,υ〉 be an L-BAF, and Ω
q
Ψ

and Ωs
Ψ

be the general effectiveness support
and quality coefficients associated with Ψ, respectively. We have that: if Ω

q
Ψ
= 1, then Ωs

Ψ
= 0.

Analyzing a discussion where the arguments involved have the maximal possible quality (each
feature associated with the argument has the value 1), we conclude that no weakening nor strength-
ening between arguments can be produced. The following proposition formally states that result.

Proposition 7 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, Ω
q
Ψ

be the general quality coefficient associated
with Ψ, and ARw and ARs be the sets of weakened and strengthened arguments associated with Ψ,
respectively. We have that, if Ω

q
Ψ
= 1, then ARw = /0 and ARs = /0.

Once the arguments are labeled, we can consider their acceptability status. In this direction, we
use the information attached to the arguments to provide different degrees, or rankings, of accept-
ability. Next, we formalize the pruning approach presented in point (iii) above.

Definition 18 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, GΨ be the corresponding labeled bipolar argumen-
tation graph, and A be the set of algebras of labels. The pruned labeled bipolar argumentation
framework based on Ψ is the 3-tuple Ψ′ = 〈Θ′,A,υ〉 where Θ′ = 〈AR′,R′a,R′s〉 is the pruned BAF
such that:

– AR′ = {A ∈ AR | αA
X ≥ ω

q
X for each X ∈ A}, i.e., AR′ is the set of relevant arguments in AR.
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– R′a = {(A,B) ∈Ra with A,B ∈ AR′ | δ A
X ≥ ωa

X for each X ∈ A}, i.e., R′a is the relevant attack
relation defined over AR′, and

– R′s = {(A,B) ∈Rs with A,B ∈ AR′ | δ A
X ≥ωs

X for each X ∈A}, i.e.,R′s is the relevant support
relation defined over AR′.

After applying this pruning process, it is possible to analyze its effects, captured through the
following underlying principles:

Principle 2 The valuations obtained as a result of applying the pruning process given in Defini-
tion 18 meet the following principles:

– Strengthening by Support: Adding a new undefeated supporting argument can reduce the
weakening effects over the strength of the argument supported. A change in strength always
has a discernible cause;

– Strengthening by Removal: Removing an attacker can reduce the weakening effects over
the strength of the attacked argument. As with support, changes in strength always have a
discernible cause; and

– Ancestral Strengthening: The increase in strength of an argument can increase the strength
of all the supported arguments. A change in the subgraph that affects the strength associated
with an argument provoking its strengthening implies an increase of the strength associated
with each argument that such argument supports.

First, by removing attacking arguments or an attack relation, defeated arguments may become weak-
ened or even non-attacked arguments—these arguments thus recover their partial or total strength,
respectively. Indeed, removing attacking arguments, defeated arguments can end up having a
strengthened status if they are supported in the discussion: when the accumulation of the sup-
port strength exceeds the accumulation of the attack strength, it concludes in a strengthening of the
affected argument. So, a side effect of this action would be the strengthening of arguments; that
is, the restored arguments can strengthen supported arguments. More specifically, if we consider a
non-attacked supported argument, the strength restoration of the supporting argument is propagated
directly. On the other hand, if we consider an attacked supported argument, the strength restora-
tion of the supporting argument can mitigate or neutralize that attack. Following Definition 18, the
behavior associated with the bipolar model can be modified, removing arguments and relations. In
Figure 18, we analyze each case: (a) presents the strengthening by support removing both the at-
tacking arguments and the conflict relation from the discussion (the reason would be that both the
quality of argument C and the effect that C has on B are less than the conditions required; that is,
αC
X < ω

q
X and δ C

X < ωa
X), while (b) shows the strengthening by removal under the same constraints;

on the other hand, (c) analyzes the ancestral strengthening removing only the conflict relation be-
tween arguments C and B. From now on, the arguments that do not make the cut are greyed and are
thus pruned, and the corresponding edges, marked with ×, are eliminated.

The three following principles describe when a change in an argumentation framework can
improve or degrade the ranking of an argument. These properties have been proposed informally
by Cayrol and Lagasquie-Schiex (2005a) in the context of the semantics they introduced; we now
analyze them in the context of our formalism.
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(c) Ancestral Strengthening 

Figure 18: Strengthening in L-BAF.

Principle 3 The valuations given by Definition 11 after applying the pruning process established
in Definition 18 abide by the following principles:

– Improvement of a Defense Branch: improving a defense branch to any argument can in-
crease its overall valuation.

– Improvement of a Support Branch: improving a support branch to any argument can in-
crease its strengthened valuation.

– Improvement of an Attack Branch: improving an attack branch to any argument can de-
crease its overall valuation.

Extending the explanation introduced before to a chain of arguments, we can analyze the following
situation (cf. Figure 19). On the one hand, the positive effect is related to the improvement of
support and defense branches, removing an attacking argument or an attack relation that breaks an
attack branch; for example, in Figure 19(a) the defense associated with argument A is improved
by removing E, since E attacks C, which is the direct defense of A, thus weakening the strength
of B. On the other hand, the negative effect produced over an argument is the improvement of an
attacking branch, removing an attacking argument or an attack relation that breaks a defense branch;
in Figure 19(c) the attack produced from A to E is improved after removing C, since C was an attacker
of B, which restores its strength and thus improves the support of A.

After applying the refining process over an argumentation discussion, the overall argument qual-
ity improves. This result is reflected in the following proposition.

Proposition 8 Let Ψ = 〈Θ,A,υ〉 be an L-BAF and Ψ′ = 〈Θ′,A,υ〉 be the pruned labeled bipolar
argumentation framework based on Ψ. Then, the relation between the general quality of arguments
satisfies that Ω

q
Ψ
≤Ω

q
Ψ′ .

Example 7 Continuing with Example 6, we proceed to carry out the pruning process from Def-
inition 18. Once the pruning process is completed, it is necessary to propagate the valuations
associated with the arguments based on the new valuations (cf. Figure 21), and compute the new
coefficients.
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Figure 19: Improving Relations in L-BAF through the pruning process.
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Figure 20: Pruning process over the labeled bipolar argumentation graph.

In this case, the particular conflict, support, and argument quality coefficients are: ωa
A = 0.22,

ωs
A = 0.28, and ω

q
A = 0.68 (w.r.t. reliability) and ωa

B = 0.25, ωs
B = 0.35, and ω

q
B = 0.67 (w.r.t.

relevance). The general conflict, support, and argument quality coefficients are: Ωa = 0.24, Ωs =
0.32, and Ωq = 0.68.

Therefore, the refinement process depends on the user modeling decisions to both define the
cutoff thresholds and decide when an optimal argumentation framework has been achieved. As we
can see, the support and quality coefficient are closely related; this means that, if the argument
qualities increase, then the support between them may become irrelevant at some point. Thus, to
analyze the argumentative discussion, we need to put special attention to the attack coefficient to
analyze the negative relation, and the support or quality coefficients, to analyze the positive relation.
Next, we classify arguments AR′ according to Definition 13 as follows:

ARn = {G} (neutralized),

ARw = /0 (weakened),

ARs = {A,J} (strengthened), and

ARu = {D,H,K} (unchallenged).
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Figure 21: Example of a labeled bipolar argumentation graph.

Finally, we refine the analysis over each set by applying Definition 15 to obtain acceptability exten-
sions specifying sets of acceptable arguments: ARs = {A,J} is a CF-S, S-S, and C-S extension, since
it is a conflict-free, safe, and closed under Rs, while the set ARu = {D,H,K} is a CF-U extension
and S-U extension, but it is not a C-U extension—the relation ARu is not closed underRs because D
supports A, but A does not belong to ARu. Also, D supports A, which is attacked by K; however, K� A

because the features of A are better than those of K (the accuracy and reliability of A are 0.86 and
0.52, while for K are 0.7 and 0.7, respectively).

Appendix B. Abstract and Structured Frameworks: Conflict Cycle Analysis

As mentioned in the introduction, in this work, we only consider BAFs that are well-founded, i.e.,
those frameworks that do not contain cycles of any kind. The reason behind this assumption is that
dealing with frameworks that are not well-founded in a principled manner introduces a considerable
impact on the complexity of the formalism. Nevertheless, since dealing with cycles is an essential
topic in argumentation, we will now discuss some ideas that can be applied in treating this kind of
situations in our formalism, which we will more fully address in our future work. In the following
discussion, we will only consider conflict cycles; though this may seem too restrictive, it should be
noted that support cycles are mostly generated by so-called fallacious specifications (Cohen et al.,
2014b).

B.1 Dampening Factor

An immediate alternative is the resolution of conflicts through the application of a fixed-point func-
tion that allows achieving stable values in the argumentative system; well-known examples of this
kind of solution occur in the literature (Leite & Martins, 2011; Potyka, 2018; Amgoud & Ben-Naim,
2018). The drawback of this approach is its computational cost, the restrictive ability to represent
knowledge behavior in particular application domains, and the approximation errors that the pro-
cess might introduce in the arguments’ valuations. However, it is a feasible solution to leverage the
information provided by abstract frameworks; that is, if we do not have more information about the
arguments, then this solution is a reasonable way to deal with cyclic relations.
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B.2 Argument Structure and Value Propagation: Weakening and Aggregation in the
Presence of Conflict Cycles

In previous work (2017) we analyzed a formalism called Labeled Argumentation Frameworks
(LAFs), which presents a flexible structure to represent an argumentative discussion to answer a
query. This formalization uses the knowledge representation capabilities provided by the Argument
Interchange Format (Chesñevar et al., 2006) and leverages an algebra of argumentation labels9 that
allows representing the arguments’ features through labels, propagating them in the argumentation
domain through a series of operations defined for this purpose. Thus, the effects produced by the
interactions of support, conflict, and aggregation among arguments are reflected by the operations
defined in an algebra of labels.

In LAF, an argumentative graph (cf. Figure 22) is represented via the AIF ontology; there exist
information nodes (I-nodes) and scheme application nodes (S-nodes), where I-nodes are used to
represent propositional information contained in an argument (claim and premise) and S-nodes
capture the application of schemes, such as inference rule schemes (RA-nodes) and conflict schemes
(CA-nodes). S-nodes can be further classified; for example, inference schemes can be deductive or
defeasible, and defeasible inference schemes can be subdivided into more specific argumentation
schemes (e.g., expert opinion or witness testimony, among others). Thus, inference and conflict
schemes in the ontology embody the general principles expressing how it is that X is inferable from
W and X is in conflict with ∼ X (cf. Figure 22 (a)), respectively. The individual RA-nodes and
CA-nodes that fulfill these schemes then capture the passage or the process of actually inferring Y

from X and T, and conflicting T with ∼ T (cf. Figure 22 (c)), respectively. There are two types of
edges: scheme edges emanate from S-nodes and connected with I-nodes, and data edges emanating
from I-nodes and ending in S-nodes. Notice that edges connecting I-nodes are forbidden, because
I-nodes cannot be connected without an explanation that justifies that connection. There is always
a scheme, justification, inference, or rationale behind a relation between two or more I-nodes that is
captured through an S-node. Moreover, only I-nodes can have zero incoming edges, as all S-nodes
relate two or more components (for RA-nodes, at least one antecedent is used to support at least one
conclusion; for CA-nodes, at least one claim is in conflict with at least one other).

In LAF, an argumentative graph can contain cycles produced by one or more conflicts between
two or more knowledge pieces. For example, in Figure 22, there exists an even conflict between
A and B (one in claims x and :x, the other in claims y and :y). Therefore, the labeling pro-
cedure must determine the restrictions that the valuations must fulfill by adequately considering
these inconsistencies. The propagation process in LAF does not use fixed-point functions to resolve
cycles—the features associated with each piece of knowledge are the only tools used towards this
end. Thus, the strength of arguments is obtained by the aggregation of the strengths associated with
each independent reasoning chain supporting the conclusion. Also, the aggregation of arguments
reduces the complexity of conflict resolution, since there exists a single point of conflict in the ar-
gumentation graph for each pair of contradictory formulas. Therefore, it is possible to implement
a weakening relationship between contradictory arguments, since the weakened strength does not
depend on the order in which the conflicts are taken into account. That is, the conflicting formulas
are weakened in both directions, where the strongest conclusion prevails in a weakened state, and

9. The algebra proposed in the present work is characterized in order to work at an abstract level considering differ-
ent kinds of relations and interpretations; thus, even though at first glance LAF and L-BAF may seem similar, the
underlying intuitions, properties, definitions, and effects produced by the operations are very different.
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Figure 22: Cycles in a Labeled Argumentation Framework (LAF, a semi-structured formalism).

the weakest conclusion is neutralized. In a LAF, we need a knowledge base to create the argumen-
tation graph to analyze a specific domain; thus, the information provided is indeed more specific
than the information provided in our abstract formalism. Note that two-way conflicts are taken into
account; however, since the representation of knowledge is carried out on a directed graph, conflicts
are directed.

B.3 A New Proposal

We would like to explore how valuations can spread through the abstract argumentation system
in a more sophisticated and direct manner. As has been mentioned, we regard the fixed-point ap-
proaches as the natural result of working with abstract frameworks that have limited information
available about the relations between arguments. The main question we wish to analyze in this
section is then: Would it be possible to propagate the arguments’ valuations more effectively if we
had more information available about the relations between arguments, such as the conclusion that
an argument supports? The structured framework presented in the previous section hints towards
the fact that enriching the information in abstract argumentative frameworks a little further allows
for richer ways of carrying out the labeling process in the presence of cycles. Towards this end,
one possibility is to analyze how this less abstract, semi-structured formalism can solve the conflict
situation presented at an abstract level by identifying the minimal elements that we need to perform
a more sophisticated propagation.

First, we claim that it is necessary to have a greater granularity in relation to the argumentative
entities, being able to differentiate the levels of subarguments and the logical conclusions that they
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A B

A B

A B

A B

A B

A B

A B

A B

A B

Even Cycle
Conflict

Even Cycle
Conflict

considering
Subarguments

in BAF

Figure 23: Even Cycles in a Meta-Bipolar Argumentation Framework.

support. In this direction, we consider the work presented by Gorogiannis and Hunter (2011), where
an abstract argumentation framework is instantiated to a classical logical system satisfying a set of
properties and postulates. In addition, Martinez and Rotstein (2008) have argued that an essential
element in defeasible argumentation, which has not been widely explored as an extension in the
abstract setting, is the consideration of sub-arguments, i.e., inner portions of an argument that are
arguments on their own; nevertheless, sub-arguments constitute a vital part of their enclosing struc-
ture, usually called super-arguments. As sub-arguments are also arguments, they verify the same
properties as any other argument in the system. To address the problem, these authors introduced
an abstract sub-argument relation leading to an extended argumentation framework where this re-
lation is considered. The formalization is centered on a set of properties and characterizations of a
“sensible” sub-argumentation relation. Finally, the matter of argumentation semantics is addressed,
analyzing the role of sub-arguments when computing the set of acceptable arguments, indepen-
dently of the chosen semantics. In this direction, Prakken (2014) extends abstract argumentation
frameworks considering a necessary support relation to model sub-argument relations. Thus, focus-
ing on how cycles are treated in LAF, we will study how we could address bipolar argumentation
cycles in our formalism without losing generality. In other words, we evaluate how the resolution of
cycles, as done in LAF, can be carried over to the abstract level by leveraging specific information
about the domain.

Considering the advantages presented in both of the mentioned research lines, we are working
on building a meta-level bipolar argumentation framework in which two significant elements are
considered: the notion of abstract sub-argument in the bipolar domain, and the conclusion that
supports each argument. The goal is to create a meta-bipolar argumentation framework that is
closed under the notion of sub-argument; this procedure will allow the identification of the essential
pieces necessary for the framework. Indeed, we must consider the sub-argument notion as a special
form of support (Prakken, 2014); thus, if an argument A′ is a sub-argument of A, then A′ supports A.
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Figure 24: Odd Cycles in a Meta-Bipolar Argumentation Framework.
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Figure 25: Aggregation of Arguments in a Meta-Bipolar Argumentation Framework.

However, a significant problem must be addressed: how are attacks disaggregated? The ques-
tion arises because before introducing the notion of sub-argument, the attack between two arguments
in the original bipolar argumentation framework can reflect different situations (see Figure 23 and
Figure 24, where dashed lines represent the subargument relation, interpreted as support in BAF).
Thus, to avoid this problem, we label each argument with the corresponding claim that represents
the reason behind argument support. Then, considering this new information, we can carry out two
important procedures: arguments supporting the same conclusions (we can deduce that, as in LAF,
the aggregation of arguments may reduce the complexity of conflict resolution), and identify the
conflict points between arguments, providing a specific way to avoid the disaggregation of attacks
(see Figure 25).

Given the above preliminary analysis, we conjecture that implementing the algebra of argumen-
tation labels presented in this work with some refinement over the meta-level bipolar framework is
possible. In future work, we will study different approaches to bipolar argumentation and charac-
terize the properties that the corresponding algebras satisfy in the extended domain.
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Appendix C. Proofs

Proposition 1 The worst-case running time of the labeling procedure for the bipolar argumentation
graph GΘ is O(n× (m+ t)), where n is the cardinality associated with the set of arguments AR, m
is the maximal number of arguments with an attacking role for an argument X ∈ AR, and t is the
maximal number of arguments with a supporting role for an argument X ∈ AR.

Proof: Intuitively, as a loose upper bound, we can say that the labeling process for an argumentation
graph GΘ, associated with the underlying BAF Θ, has a worst-case running time in O(n3). This
arises from the following analysis: first, we need to label each argument (node in the graph GΘ)
(O(n)); second, for each argument we must analyze all the support argument associated with it
(O(n−1)); third, for each argument we must analyze all the attacks associated with it (O(n−1)).

However, let t the cardinality of
99K
(X) representing the set of supporting arguments for an argument

X ∈ AR, and m the cardinality of
−→
(X) representing the attacking arguments for an argument X ∈ AR.

First, we can refine the above analysis arguing that the worst case for the labeling of each argument
X ∈ AR is O(m+ t). This analysis arises based on the fact that, to label an argument X is necessary
label the arguments supporting and attacking X. Thus, the labeling process applied to X produces
a labeling over the supporting and attacking arguments. Finally, we can conclude that the labeling
process for an argumentation graph GΘ has a order O(n× (m+ t)).

2

Theorem 1 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, GΘ be the corre-
sponding argumentation graph for Θ, and λ1(Θ) and λ2(Θ) be two different labeling sequences for
GΘ, where λ1(Θ) generates system EQS1 and λ2(Θ) generates system EQS2. Then, we have that
EQS1 = EQS2.

Proof: Let us suppose that EQS1 6= EQS2. Then, either EQS1 * EQS2, or EQS2 * EQS1, or both;
assume, without loss of generality, that EQS1 * EQS2. By Definition 11, the labeling procedure
does not depend on the order in which arguments and attacks are considered, but this procedure
depends on the relations (support and conflict) between the arguments of AR in Θ. In this way,
if there exists an equation in EQS1 that is not in EQS2, then there exists a relation analyzed by
sequence λ1(Θ) that was not analyzed by sequence λ2(Θ)—this is a contradiction, since λ1(Θ) and
λ2(Θ) are sequences obtained by a labeling process that explores the entire argumentative graph GΘ

(in depth and breadth).
2

Lemma 1 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, GΨ be the associated
labeled bipolar graph, and X be an argument in GΨ. Then, for every algebra A ∈A, the labels 〈αX,
µX,δ X〉 related to A, satisfy: (i)αX ∈ [⊥,>], (ii)µX ∈ [αX,>], and (iii)δ X ∈ [⊥,µX].

Proof: Considering Definition 8, a label α belong to a set of labels L where there exists a partial
order ≤ such that > is the last label with respect to ≤ while ⊥ is the first one. Hence, based on this
notion, we analyze the effect associated with the positive (support and aggregation) and negative
(conflict) relations. Then, we have that:
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(i) αA ∈ [⊥,>]. By Definition 11, αA is given by the posture function ρ : AR −→ A, i.e., αA =
ρ(A). Furthermore, by Definition 9 and Definition 8, we have that the image associated with
the function ρ is the range [⊥,>]. Thus, αA must belong to the interval [⊥,>].

(ii) µA ∈ [αA,>]. By Lemma 2 −(i) we know that µA ≥ αA. Hence, we must prove that µA ≤>.
By Definition 11, the aggregated valuation µA is obtained in the following two ways:

– If
99K
(A)6= /0, then µA = αA ⊕ (�n

j=1δ A j), with A j ∈
99K
(A). By Definition 8, if (�n

j=1δ A j) =>,
then αA ⊕ >=> since > is the absorbing element for ⊕ (Definition 8). Thus, µA =>
which is the upper bound in the admitted range. One another hand, by Definition 8, if
(�n

j=1δ A j) =⊥, then αA ⊕ ⊥= αA since ⊥ is the neutral element for ⊕ (Definition 8).
Thus, µA = αA which is the lower bound in the admitted range.

– If
99K
(A)= /0, then µA = αA. By (i) we know that αA ≤>.Then, (ii) holds.

(iii) δ A ∈ [⊥,µA]. By Lemma 2 −(ii) we know that µA ≥ δ A. Hence, we must prove that ⊥≤ δ A.
By Definition 11, the overall valuation δ A is obtained in the following three ways:

– If
−→
(A)6= /0 and

99K
(A)= /0, then δ A = αA	 (⊗n

k=1δ Xk) with Xk ∈
−→
(A). Thus, by definition 8

we know that if αA ≤⊗n
k=1δ Xk then δ A =⊥. Otherwise, δ A >⊥. Then, (iii) holds.

– If
−→
(A)6= /0 and

99K
(A)6= /0, then we must analyze the following cases:

– If ⊗n
k=1δ Xk ≤ �m

j=1δ A j , then δ A = αA⊕ (�m
j=1δ A j 	⊗n

k=1δ Xk) with Xk ∈
−→
(A) and

A j ∈
99K
(A). By (i) we know that αA ≥⊥. Then, δ A ≥⊥. Thus, (iii) holds.

– If ⊗n
k=1δ Xk > �m

j=1δ A j , then δ A = αA	 (⊗n
k=1δ Xk 	�m

j=1δ A j) with Xk ∈
−→
(A) and

A j ∈
99K
(A). If αA ≤ (⊗n

k=1δ Xk 	�m
j=1δ A j) then δ A = ⊥. Otherwise, δ A > ⊥. Then,

(iii) holds.

– If
−→
(A)= /0, then δ A = µA ≥⊥. Thus, (iii) holds.

2

Lemma 2 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, GΨ be the associated
labeled bipolar graph, and X be an argument in GΨ. Then, for every algebra A ∈A, the labels 〈αX,
µX,δ X〉 related to A, satisfy:

(i) µX ≥ αX;

(ii) µX ≥ δ X; and

(iii) If µX=⊥, then δ X = αX =⊥.

Proof: Recall that an argument A has three associated valuations, αA, µA and δ A, where αA is the
original value of the attribute assigned to the argument by υ , µA accounts for the aggregation of
the attributes of arguments supporting A, and δ A is obtained after taking the attacks into account.
Thus, the labeling procedure introduced in Definition 11 establishes a dependency between these
valuations, since to be able to compute the overall valuation for the argument A it is necessary to
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know the accumulated valuations for A and the accumulated valuation associated with each attacking
argument.

(i) µA ≥ αA. On one hand, if
99K
(A)6= /0, then by Definition 11 we know that µA = αA ⊕ (�m

j=1δ A j)

with A j ∈
99K
(A). Furthermore, by the conditions that a strengthening operator must satisfy in-

troduced in Definition 8, we can deduce that αA ⊕ (�m
j=1δ A j) ≥ αA where A j supports A,

and thus property (i) holds. On another hand, if
99K
(A)= /0, then by Definition 11 we know that

µA = αA. Thus, (i) holds.

(ii) µA ≥ δ A. We separate the proof in two parts:

– If
99K
(A)6= /0, then by Definition 11 we know that µA = αA ⊕ (�m

j=1δ A j) with A j ∈
99K
(A).

Furthermore, if
−→
(A)= /0, then by Definition 11 we know that δ A = µA. Thus, (ii) holds.

Otherwise, if
−→
(A)6= /0, then we must analyze the attack effect over the attacked argument

as follows:

– If ⊗n
k=1δ Xk ≤ �m

j=1δ A j , with Xk ∈
−→
(A) and A j ∈

99K
(A), then by Definition 11 we know

that δ A = αA⊕ (�m
j=1δ A j 	⊗n

k=1δ Xk). Since �m
j=1δ A j ≥ (�m

j=1δ A j 	⊗n
k=1δ Xk), we

can deduce that µA ≥ δ A. Thus, (ii) holds.

– If ⊗n
k=1δ Xk > �m

j=1δ A j , with Xk ∈
−→
(A) and A j ∈

99K
(A), then by Definition 11 we know

that δ A = αA	 (⊗n
k=1δ Xk 	�m

j=1δ A j). Since ⊗n
k=1δ Xk >�m

j=1δ A j , and by the con-
ditions that a conflict operator must satisfy introduced in Definition 8, we have that
δ A < αA ≤ µA. Thus, we can deduce that δ A < µA. Thus, (ii) holds.

– If
99K
(A)= /0, then by Definition 11 we know that µA = αA. If

−→
(A)6= /0, then by Definition 11

we know that δ A = αA	 (⊗n
k=1δ Xk) < αA = µA. Thus, we have that δ A < µA, and (ii)

holds. Otherwise if
−→
(A)= /0, then by Definition 11 we know that δ A = µA. Thus, (ii)

holds.

(iii) If µA =⊥, then δ A = αA =⊥. We separate the proof in the following points:

– If
99K
(A)= /0 and

−→
(A)= /0, then by Definition 11 we know that µA = αA and δ A = µA. By

hypothesis we know that µA =⊥. Thus, (iii) holds.

– If
99K
(A)6= /0, then by Definition 11 we know that µA = αA ⊕ (�m

j=1δ A j) with A j ∈
99K
(A). But,

by hypothesis, µA =⊥. Then, µA = αA ⊕ (�m
j=1δ A j) =⊥.

Thus, we can deduce that αA =⊥ and �m
j=1δ A j =⊥ where ⊥ is the neutral element for

the operator ⊕ as it is established in Definition 8. Furthermore, we must analyze the
following situation:

– If
−→
(A)= /0, then by Definition 11 we know that δ A = µA =⊥. Thus, (iii) holds.

– If
−→
(A)6= /0, then by Definition 11 we know that: (a) If ⊗n

k=1δ Xk ≤ �m
j=1δ A j with

Xk ∈
−→
(A) and A j ∈

99K
(A), then δ A = αA⊕ (�m

j=1δ A j 	⊗n
k=1δ Xk). But, since �m

j=1δ A j =
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⊥ we can deduce that ⊗n
k=1δ Xk = ⊥. Then, δ A = ⊥. Thus, (iii) holds; (b) If

⊗n
k=1δ Xk >�m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then δ A=αA	 (⊗n

k=1δ Xk	�m
j=1δ A j).

But, we already proved that αA = ⊥, and then we obtain that δ A = ⊥. Thus, (iii)
holds.

– If
99K
(A)= /0 and

−→
(A)6= /0, then µA = αA. Furthermore, by hypothesis we know that µA =⊥.

Thus, we can deduce that αA = ⊥. On another hand, by Definition 11 we know that

δ A = αA	 (⊗n
k=1δ Xk) with Xk ∈

−→
(A) . But, αA =⊥ then δ A =⊥. Thus, (iii) holds.

2

Theorem 2 Let Ψ = 〈Θ,A,υ〉 be an L-BAF where Θ is the underlying BAF, GΘ be the correspond-
ing argumentation graph for Θ, and ΛΨ be the set of all the valid labelings for Ψ. Then, ΛΨ is
sound and complete.

Proof: We need to show that: all the labelings that belong to ΛΨ are adequate solutions for GΘ

(soundness), and if there exists a valid labeling for a bipolar argumentation graph GΘ, that labeling
belongs to ΛΨ (completeness).

ΛΨ (Soundness). By hypothesis GΘ is the corresponding argumentation graph for Θ and λ (Θ) is a
labeling for GΘ.

Furthermore, by Definition 11, we obtain the system of equations EQS representing the con-
straints of all the valuations associated with the arguments of GΘ. That is, EQS represents the
arguments behavior in the argumentative graph GΘ. In addition, by Theorem 1 the system EQS as-
sociated with a graph GΘ is unique. Hence, if λ (Θ) is a set of values αA, µA and δ A that constitute
a solution to EQS, then by Definition 12 it is a valid labeling GΘ. Thus, by construction λ (Θ) must
be in ΛΨ.

ΛΨ (Completeness). By hypothesis the labeling associated with GΘ is valid. Then, by Lemma 2 the
original value associated with an argument is less or equal than the strengthened value, while the
strengthened value is greater or equal than the weakened value. That is, arguments with supports
are strengthened, while arguments with attackers are weakened. Thus, the arguments relations are
reflected in their labels. Furthermore, by Lemma 1, the valuations associated with the arguments
are always in the desired range. 2

Lemma 3 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, and GΨ be the corresponding labeled bipolar argumen-
tation graph. The gradual status assignment χg to GΨ is unique.

Proof: Suppose that there exist two assignments χg and χ
′
g for a valid labeling associated with the

bipolar graph GΘ. Hence, there exists an argument A∈ AR with 〈αA, µA, δ A〉 the associated valuation
such that A is associated with two statuses. Thus, it is possible to assign the following combination
of status to A:

– Neutralized and Weakened. Contradiction, if A has assigned the status neutralized then δ A =
⊥, while if A has assigned the status weakened then δ A >⊥.

– Neutralized and Strengthened. Contradiction, if A has assigned the status neutralized then
δ A =⊥, while if A has assigned the status strengthened then δ A > αA.
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– Neutralized and Unchallenged. Contradiction, if A has assigned the status neutralized then
δ A =⊥, while if A has assigned the status unchallenged then αA = δ A 6=⊥.

– Weakened and Strengthened. Contradiction, if A has assigned the status weakened then αA >
δ A >⊥, while if A has assigned the status strengthened then δ A > αA.

– Weakened and Unchallenged. Contradiction, if A has assigned the status weakened then αA >
δ A >⊥, while if A has assigned the status unchallenged then δ A = αA.

– Strengthened and Unchallenged. Contradiction, if A has assigned the status strengthened then
αA < δ A, while if A has assigned the status unchallenged then δ A = αA.

This leads us to a contradiction, any argument A ∈ AR has a unique status based on a specific
valid labeling associated with GΘ.

2

Proposition 2 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, GΨ be the corresponding labeled bipolar argumen-
tation graph, χg be the gradual status assignment to the bipolar graph GΨ, and ARn, ARw, ARs, and
ARu be a disjoint set of neutralized, weakened, strengthened, and unchallenged arguments in Ψ.
Then, the collection of subsets {ARn,ARw,ARs,ARu} is a finite cover of AR.

Proof: From hypothesis we have that the sets of neutralized, weakened, strengthened, and unchal-
lenged arguments are subsets of AR. Thus, we must prove that the union of the collection of subsets
{ARn,ARw,ARs,ARu} is equal to AR. Suppose that ARn∪ARw∪ARs∪ARu 6= AR. Hence, there exists an
argument A such that A ∈ AR and A /∈ ARn∪ARw∪ARs∪ARu. However, by Definition 13, any argu-
ment A ∈ AR has assigned one of four possible statuses for each algebra, creating a vector with the
acceptability of that argument with respect to each of the attributes, and receives as its acceptability
degree the least degree of those that appear in the vector. Furthermore, by Lemma 3, we know that
any argument A ∈ AR has a unique status based on a specific valid labeling associated with GΘ. This
leads us to a contradiction, since if A ∈ AR then it has assigned a unique status based on a specific
valid labeling. Then, A must belong to the collection of subsets {ARn,ARw,ARs,ARu}. Thus, we can
conclude that ARn∪ARw∪ARs∪ARu = AR.

2

Proposition 3 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, � be a preference relation over AR, and S ⊆ AR be
a set of arguments. Then:

(i) If S is safe, then S is conflict-free.

(ii) If S is conflict-free and closed under support, then S is safe.

Proof: We separate the proof in the two parts shown in the statement:

(i) If S is safe, then S is conflict-free. Suppose that S is not conflict-free. Then, ∃ B,C ∈ S such
that (B,C) ∈Ra with B � C. By hypothesis, S is safe. Thus, by Definition 14 , @ A ∈ AR and
@ B,C ∈ S such that (B,A) ∈Ra with B� A, and either there is a sequence of supports from C

to A, or A ∈ S. This leads us to a contradiction, any argument that belongs to S or is supported
by S cannot be effectively attacked by S by safe definition.
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(ii) If S is conflict free and closed forRs, then S is safe. Suppose that S is not safe. Thus, ∃ A ∈ AR
and ∃ B,C∈ S such that (B,A)∈Ra with B� A, and either there is a sequence of supports from
C to A, or A ∈ S. By hypothesis, S is conflict free. Thus, by Definition 14, @ B,C ∈ S such that
(B,C) ∈Ra with B � C. Furthermore, the closure property establishes that ∀ A ∈ S, ∀ B ∈ AR

if A Rs B then B ∈ S. This leads us to a contradiction, since any argument supported by S
belongs to S and it is conflict free.

2

Proposition 4 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, and ARw, ARs, and ARu be the sets of weakened,
strengthened, and unchallenged arguments associated with Ψ. Then:

(i) Any S-W (resp. S-S, S-U) extension is also a CF-W (resp. CF-S, CF-U) extension;

(ii) Any CF-W (resp. CF-S, CF-U) extension closed under Rs is also a S-W (resp. S-S, S-U)
extension; and

(iii) Any S-W (resp. S-S, S-U) extension closed underRs is also a C-W (resp. C-S, C-U) extension.

Proof: We separate the proof in three parts:

(i) Any S-W (resp. S-S, S-U) extension S is also a CF-W (resp. CF-S, CF-U) extension. By
Definition 15, we can say that S is a maximal safe set. Furthermore, by Proposition 3–(i),
we know that if S is safe, then S is conflict-free. Thus, we only need to prove that S is a
maximal conflict-free set. Suppose that there exists an argument A /∈ S, where @ B ∈ AR such
that (B,A) /∈Ra or B� A. This leads us to a contradiction, since any argument supported and
defended by S belongs to S.

(ii) Any CF-W (resp. CF-S, CF-U) extension S closed under Rs is also an S-W (resp. S-S, S-U)
extension. By Definition 15, we can say that S is a maximal conflict free set closed underRs.
Furthermore, by Proposition 3, we know that if S is conflict free and closed for Rs, then S is
safe. Thus, we only need to prove that S is a maximal safe set. Suppose that there exists an
argument A /∈ S, where @ B,C ∈ S such that (B,A) ∈Ra with B � A and there is a sequence of
support from C to A (thus A /∈ S). This leads us to a contradiction, since any argument defended
by S belongs to S.

(iii) Any S-W (resp. S-S, S-U) extension S closed under Rs is also a C-W (resp. C-S, C-U) exten-
sion. By Definition 15, we can say that S is a maximal safe set closed underRs. Furthermore,
by Definition 15, a C-W (resp. C-S, C-U) extension is a maximal conflict-free set closed un-
der Rs. By (i), we know that any S-W (resp. S-S, S-U) extension S is also a CF-W (resp.
CF-S, CF-U) extension. Thus, S is a maximal conflict-free set. In addition, by hypothesis we
know that S is closed under Rs. This leads us to conclude that S is a C-W (resp. C-S, C-U)
extension.

2

Proposition 5 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, GΨ be the corresponding labeled bipolar argu-
mentation graph, and ARs, ARu, and ARn be the sets strengthened, unchallenged, and neutralized
arguments associated with Ψ, respectively. If all arguments A ∈ GΨ are such that αA = > when
99K
(A)= /0, and αA =⊥ when

99K
(A)6= /0, then
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(i) ARs ∪ ARu ∪ ARn = AR.

(ii) ARs and ARu are conflict-free;

Proof: We separate the proof in two parts:

(i) ARs ∪ ARu ∪ ARn = AR. We analyze the following cases:

– Suppose that the argument A ∈ GΨ verifies that αA => when
99K
(A)= /0. Thus, by Defini-

tion 11 we have that µA = αA =>.

If
−→
(A)= /0, then by Definition 11 δ A = µA. Thus, we have that δ A = >. Hence, by

Definition 13, we have that A ∈ ARu.

If
−→
(A)6= /0 and

99K
(A)= /0, then by Definition 11 we know that δ A = αA	 (⊗n

k=1δ Xk)

with Xk ∈
−→
(A). Thus, we must analyze two possibilities:

– If there exists an argument A j ∈
−→
(A) such that verifies that δ A j = >, then by

Definition 11 and Definition 8 we know that δ A =⊥. Hence, by Definition 13,
we have that A ∈ ARn.

– If any argument Xk ∈
−→
(A) verifies that δ Xk = ⊥, then by Definition 11 and Def-

inition 8 we have that δ A = αA = >. Hence, by Definition 13, we have that
A ∈ ARu.

– Suppose now that the argument A ∈ GΨ verifies that αA = ⊥ when
99K
(A)6= /0. Thus, we

must analyze two possibilities:

If
−→
(A)= /0, then by Definition 11 we know that δ A = µA, and µA = αA ⊕ (�m

j=1δ A j),

with A j ∈
99K
(A). Thus, δ A =�m

j=1δ A j .

– If any argument B ∈
99K
(A) such that verifies that δ B =>, then by Definition 8 we

know that δ A =>. Hence, by Definition 13, we have that A ∈ ARs.

– If there exists an argument B ∈
99K
(A) such that verifies that δ B =⊥, then by Defi-

nition 8 we know that δ A =⊥. Hence, by Definition 13, we have that A ∈ ARn.

If
−→
(A)6= /0, then by by Definition 11:

– If ⊗n
k=1δ Xk =�m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then δ A = αA⊕ (�m

j=1δ A j 	
⊗n

k=1δ Xk). Thus, δ A =⊥. Hence, by Definition 13, we can deduce that A ∈ ARn.

– If ⊗n
k=1δ Xk <�m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then δ A = αA⊕ (�m

j=1δ A j 	

⊗n
k=1δ Xk). Thus, δ A =�m

j=1δ A j	⊗n
k=1δ Xk with Xk ∈

−→
(A) and A j ∈

99K
(A). We need

to have that any argument A j ∈
99K
(A) satisfies that δ A j = >. It is a consequence

of if there exists an argument Al ∈
99K
(A) that verifies that δ Al =⊥ with 1≤ l ≤ m,

then �m
j=1δ A j = ⊥. Contradiction. Furthermore, any argument Xk ∈

−→
(A) must

verify that δ Xk = ⊥, thus ⊗n
k=1δ Xk = ⊥. Finally, by Definition 8 we have that

δ A =>. Hence, by Definition 13, we can deduce that A ∈ ARs.
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– If ⊗n
k=1δ Xk >�m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then δ A = αA	 (⊗n

k=1δ Xk 	
�m

j=1δ A j). Thus, by Definition 8 we have that δ A =⊥. Hence, by Definition 13,
we can deduce that A ∈ ARn.

Therefore given an argument A ∈ GΨ, we proved that A ∈ ARs ∪ ARu ∪ ARn. Thus, we can
conclude that ARs ∪ ARu ∪ ARn = AR.

(ii) ARs ∪ ARu is conflict-free. By (i), we know that ARs ∪ ARu ∪ ARn = AR. Thus, we can affirm
that ARw = /0 since there does not exist an argument A ∈ AR such that ⊥< δ A < αA. Suppose
that ARs ∪ ARu is not a conflict-free set. Thus, by Definition 14 we have that ∃ A,B ∈ ARs

∪ ARu such that (B,A) ∈ Ra with B � A. By hypothesis, the unique possible valuation for
the arguments are δ B = > and δ A = >. However, if (B,A) ∈ Ra, then by Definition 8 and
Definition 11 we know that δ A = ⊥. Contradiction, since by Definition 13, we know that if
δ A = ⊥, then A ∈ ARn. Thus, for this reason A /∈ ARs ∪ ARu. Therefore, there not exist two
arguments A,B ∈ ARs∪ARu verifying that (B,A) ∈Ra. Thus, we can conclude that ARs ∪ ARu

is conflict-free.

2

Theorem 3 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, and GΨ be the corresponding labeled bipolar argu-

mentation graph. If all arguments A ∈ GΨ are such that αA = > when
99K
(A)= /0, and αA = ⊥ when

99K
(A)6= /0, then

(i) ARu ∪ ARs is the d-preferred extension;

(ii) If ARs ∪ ARu is safe, then ARs ∪ ARu is the s-preferred extension; and

(iii) If ARs ∪ ARu is closed underRs, then ARs ∪ ARu is the c-preferred extension.

Proof: We separate the proof in three parts:

(i) ARs ∪ ARu is the d-preferred extension. By Proposition 5-(ii) we know that ARs ∪ ARu is
conflict-free set. Furthermore, by Proposition 2 we know that ARs ∪ ARu ∪ ARw ∪ ARn = AR,
which is a finite cover of AR. In addition, by hypothesis and Proposition 5-(i), we can say
that ARw = /0, then ARs ∪ ARu ∪ ARn = AR. Thus, ARs ∪ ARu is the maximal conflict-free set
that defends all its elements in Ψ. Now, we need to prove that ARs ∪ ARu = S where S is the
d-preferred extension in the underlying bipolar argumentation framework Θ.

– Suppose that ARs ∪ ARu * S, then there exists an argument A∈ ARs∪ARu and A /∈ S. Thus,
by Definition 5 there exists an argument B ∈ AR such that B is a supported or secondary
defeat of A and there does not exist an argument C ∈ S such that C is a supported or
secondary defeat of B. However, by hypothesis we have that A ∈ ARs ∪ ARu, then the
following cases can occur:

If A ∈ ARu, then αA = δ A =>. Then, can arise one of the following cases:
−→
(A)= /0 reflecting that the argument A has not any attacker in AR. Thus, by
Definition 6 A must belong to S. Contradiction.
−→
(A)6= /0 reflecting that any attacker of A is neutralized. Contradiction, by Defi-
nition 6 A must belong to S.
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If A ∈ ARs, then αA =⊥ and δ A =>. Then, can arise one of the following cases:
−→
(A)= /0 reflecting that the argument A has not any attacker in AR, and by Defi-

nition 11 any argument A j ∈
99K
(A) satisfies that δ A j =>. Thus, by Definition 6 A

must belong to S. Contradiction.
−→
(A)6= /0 reflecting that any attacker of A is neutralized. Thus, by Definition 6 A

must belong to S. Contradiction.

– Suppose that S * ARs ∪ ARu, then there exists an argument A such that A ∈ S and A /∈
ARs∪ARu. If A /∈ ARs∪ARu, then δ A =⊥. Thus, we must analyze the following cases:

If δ A = ⊥ and
99K
(A)= /0, then µA = αA = >. Thus, by Definition 11 there exists an

argument Xl ∈
−→
(A) satisfying that δ Xl => with l ∈ {1, . . . ,n}. However, by hypothe-

sis, A ∈ S. Then, by Definition 5, for any argument B ∈ AR such that B is a supported
or secondary defeat of A, there exists an argument C ∈ S such that C is a supported
or secondary defeat of B. Thus, δ A => then A ∈ ARs. Contradiction.

If δ A =⊥ and
99K
(A)6= /0, then αA =⊥. Furthermore, by Definition 11 there exists an

argument Al ∈
99K
(A) with l ∈ {1, . . . ,m}, satisfying that δ Al = ⊥. Thus, there exists

an attacker Xt for Al verfying that δ Xk = >. However, by hypothesis A ∈ S, then by
Definition 5 for any argument B ∈ AR such that B is a supported or secondary defeat
of A and there exists an argument C ∈ S such that C is a supported or secondary
defeat of B. Thus, δ A =>, then A ∈ ARs. Contradiction.

(ii) If ARs ∪ ARu is safe, then ARs ∪ ARu is the s-preferred extension. By (i) we know that ARs ∪
ARu is the d-preferred extension in Θ. That is, ARs ∪ ARu is the maximal conflict-free set that
defends all its elements. In addition, by hypothesis we know that ARs ∪ ARu is safe. Thus, ARs

∪ ARu is the maximal conflict free and safe set that defends all its elements, corresponding to
the s-preferred extension (Definition 7).

(iii) If ARs ∪ ARu is closed under Rs, then ARs ∪ ARu is the c-preferred extension. By (i) we know
that ARs ∪ ARu is the d-preferred extension in Θ. That is, ARs ∪ ARu is the maximal conflict-free
set that defends all its elements. In addition, by hypothesis we know that ARs ∪ ARu is closed
under Rs. Thus, ARs ∪ ARu is the maximal conflict free closed under Rs set that defends all
its elements, corresponding to the c-preferred extension (Definition 7).

2

Proposition 6 Let Ψ= 〈Θ,A,υ〉 be an L-BAF, and Ω
q
Ψ

and Ωs
Ψ

be the general effectiveness support
and quality coefficients associated with Ψ, respectively. We have that: if Ω

q
Ψ
= 1, then Ωs

Ψ
= 0.

Proof: By hypothesis Ω
q
Ψ
= 1. Thus, by Definition 17, we have that Ω

q
Ψ
=

∑A∈A ω
q
X

#A
= 1 with #A

= n. Hence, we have that ∑A∈A ω
q
X must be equal to n. Furthermore, by Definition 17, we know

that ω
q
X is defined as

∑A∈ARαA
X

#AR
. Then, in order to satisfy the last condition,

∑A∈ARαA
X

#AR
must be equal

to 1. By Lemma 1, we know that αA ∈ [⊥,>] (in particular the interval [0,1]). Thus,
∑A∈ARαA

X

#AR
= 1,
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if αA
X = 1 for each argument A ∈ AR. Hence, by Lemma 2–(i) we know that µA

X ≥ αA
X. Then, we can

conclude that µA
X = αA

X = 1. In another hand, by Definition 17 we know that Ωs
Ψ
=

∑A∈A ωs
X

#A
, where

ωs
X =

∑A∈AR µA
X−αA

X

#Rs
. Furthermore, by hypothesis we show that µA

X = αA
X. Thus, we can affirm that

µA
X−αA

X = 0 for each argument A ∈ AR. Finally, we can deduce that ωs
X =

∑A∈AR µA
X−αA

X

#Rs
= 0, and

for that Ωs
Ψ
=

∑A∈A ωs
X

#A
= 0.

2

Proposition 7 Let Ψ = 〈Θ,A,υ〉 be an L-BAF, Ω
q
Ψ

be the general quality coefficient associated
with Ψ, and ARw and ARs be the sets of weakened and strengthened arguments associated with Ψ,
respectively. We have that, if Ω

q
Ψ
= 1, then ARw = /0 and ARs = /0.

Proof: By the hypothesis and Definition 17 we know that Ω
q
Ψ
=

∑A∈A ω
q
X

#A
= 1 with #A = n. Hence,

we have that ∑A∈A ω
q
X must be equal to n. Furthermore, by Definition 17, we know that ω

q
X is

defined as
∑A∈ARαA

X

#AR
. Then, in order to satisfy the last condition,

∑A∈ARαA
X

#AR
must be equal to 1. By

Lemma 1, we know that αA
X ∈ [⊥,>] (in particular the interval [0,1]). Thus,

∑A∈ARαA
X

#AR
= 1, if αA

X = 1

for each argument A ∈ AR. Hence, by Lemma 2–(ii) we know that µA
X ≥ αA

X. Then, we can conclude
that µA

X = αA
X = 1. Now, we will prove that for any argument A ∈ AR verifies that δ A

X ∈ {0,1}.

(i) If
−→
(A)= /0, then by Definition 11 δ A

X = µA
X. Thus, we can deduce that δ A

X = 1.

(ii) If
−→
(A)6= /0 and

99K
(A)= /0, we must analyze two possibilities:

– If there exists an argument B ∈
−→
(A) such that verifies that δ B

X = 1, then by Definition 11
and Definition 8 we know that δ A

X = 0.

– If any argument Xk ∈
−→
(A) verifies that δ

Xk
X = 0, then by Definition 11 and Definition 8 we

have that δ A
X = αA

X = 1.

(iii) If
−→
(A)6= /0 and

99K
(A)6= /0, by Definition 11 we must analyze two possibilities:

– If⊗n
k=1δ

Xk
X ≤�

m
j=1δ

A j
X with Xk ∈

−→
(A) and A j ∈

99K
(A), then by Definition 11 we have that δ A

X =

αA
X⊕ (�m

j=1δ
A j
X 	⊗

n
k=1δ

Xk
X ). However, like αA

X = 1 by Definition 8 we must conclude
that δ A

X = 1.

– If ⊗n
k=1δ

Xk
X > �m

j=1δ
A j
X , with Xk ∈

−→
(A) and A j ∈

99K
(A), then by Definition 11 we have that

δ A
X = αA

X	 (⊗n
k=1δ

Xk
X 	�

m
j=1δ

A j
X ). We need to have an argument Xl ∈

−→
(A) such that sat-

isfies that δ
Xl
X = 1, with l ∈ {1, . . . ,n}. It is a consequence of if any argument Xk ∈

−→
(A)

verifies that δ
Xk
X = 0, then ⊗n

k=1δ
Xk
X = 0. Contradiction. Hence, there must exist an argu-

ment Xl ∈
−→
(A) such that δ

Xl
X = 1; thus�n

k=1δ
Xk
X = 1. Furthermore, there exists an argument
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A j ∈
99K
(A) that must verify that δ

A j
X = 0, thus �m

j=1δ
A j
X = 0. Finally, by Definition 11 we

have that δ A
X = 0.

Finally, we can conclude that δ A
X = 1 or δ A

X = 0. Then, by Definition 13 the status assigned to
A is unchallenged in case that δ A

X = 1 or neutralized in case that δ A
X = 0. In this direction, we

must affirm that ARw = /0 and ARs = /0.

2

Proposition 8 Let Ψ = 〈Θ,A,υ〉 be an L-BAF and Ψ′ = 〈Θ′,A,υ〉 be the pruned labeled bipolar
argumentation framework based on Ψ. Then, the relation between the general quality of arguments
satisfies that Ω

q
Ψ
≤Ω

q
Ψ′ .

Proof:
By hypothesis we have that Ψ = 〈Θ,A,υ〉 is an L-BAF and Ψ′ = 〈Θ′,A,υ〉 is the refined L-BAF

obtained after to apply the pruning process presented in Definition 18. Hence, by Definition 17,

we have that Ω
q
Ψ
=

∑A∈A ω
q
X

#A
and ω

q
X =

∑A∈ARαA
X

#AR
. Since Ω

q
Ψ

and ω
q
X are the arithmetic mean that

obtain the value based on the sum of a collection of numbers divided by the count of numbers in the
collection, then we have that min(αA

X) ≤ ω
q
X ≤ max(αA

X) with A ∈ AR. However, by Definition 18,
AR′ is the set of relevant arguments in AR (AR′ := {A ∈ AR | αA

X ≥ ω
q
X for each i = 1, . . .n})). Thus,

we can deduce that ω
q
X ≤min(αA

X)≤ω
q
X
′ ≤max(αA

X) with A∈ AR′. Thus, we can say that ω
q
X
′ ≥ω

q
X.

Finally, we deduce that Ω
q
Ψ
≤Ω

q
Ψ

′.
2

Theorem 4 Any L-BAF instantiation satisfies the following postulates: Abstraction, Independence,
Monotony, Directionality, Equivalence, Quality Precedence, Neutrality, Reinforcement, Stability,
Weakening, Strengthening, Causality, Neutralization, and Proportionality.

Proof: In order to prove this theorem, we analyze each postulate in the context of L-BAF, corrobo-
rating that they are satisfied. In each case, we are assuming the corresponding context represented
by the L-BAF Ψ = 〈Θ,A,υ〉 and its underlying BAF Θ = 〈AR,Ra,Rs〉.

ABSTRACTION. Given two L-BAFs Ψ = 〈Θ,A,υ〉 and Ψ′ = 〈Θ′,A′,υ ′〉, and an isomorphism h :
Ψ−→Ψ′, then the following property holds:

For all A ∈ AR,〈αA,µA,δ A〉 ∈ ΛΨ if and only if 〈αh(A),µh(A),δ h(A)〉 ∈ ΛΨ′

By Definition 11, the original valuations are given as αA = ρ(A) and αh(A) = ρ ′(h(A)), and by
hypothesis h is an isomorphism from Ψ to Ψ′ so by Definition 16 we know that υ(A) = υ ′(h(A)).

Thus αA = αh(A). Furthermore, by Definition 16 we have that
−→
(A)'

−→
(h(A)) and

99K
(A)'

99K
(h(A)). That is,

if Xk ∈
−→
(A) then h(Xk) ∈

−→
(A), and if A j ∈

99K
(A) then h(Aj) ∈

99K
(A). Hence, we can see that there exists the

following bijective correspondence δ Xk 7→ δ h(Xk) and δ A j 7→ δ h(Aj), and consequently ⊗n
k=1δ Xk 7→

⊗n
k=1δ h(Xk) and �m

j=1δ Aj 7→ �m
j=1δ h(Aj). Hence µA 7→ µh(A) and δ A 7→ δ h(A). Finally, for the above

and Definition 11 we can conclude that there exists the following bijective correspondence ΛΨ→
ΛΨ′/〈αA,µA,δ A〉 7→ 〈αh(A),µh(A),δ h(A)〉.
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INDEPENDENCE. Let A and B be two arguments in AR that are not connected in GΘ. Then, the val-
uations 〈αA, µA, δ A〉, 〈αB, µB, δ B〉 ∈ λ (Θ) associated with A and B, respectively, are independent.

By Definition 11, the original valuations are given as follows: αA = ρ(A) and αB = ρ(B). Hence, the
original valuations are independent. Thus, we must analyze the strengthened and overall valuations
associated with the arguments involved in the graph GΘ. Analyzing Definition 11, the strengthened
and overall valuation associated with an argument are affected by its corresponding supports and
attackers, respectively.

Furthermore, by hypothesis B is not connected with A in GΘ, then B /∈
99K
(A), B /∈

−→
(A) and vice versa.

This leads us to conclude that the valuations associated with the arguments A and B are independent.

MONOTONY. Let 〈αA, µA, δ A〉, 〈αB, µB, δ B〉 ∈ λ (Θ) be the valuations associated with two argu-
ments A and B respectively. It holds that if

(i) αA = αB,

(ii) �m
j=1δ A j ≥�r

j=1δ B j with A j ∈
99K
(A),1≤ j ≤ m, and B j ∈

99K
(B),1≤ j ≤ r,

(iii) ⊗n
k=1δ Xk ≤⊗s

k=1δ Yk with Xk ∈
−→
(A),1≤ k ≤ n, and Yk ∈

−→
(B),1≤ k ≤ s,

then δ A ≥ δ B.

By Definition 11, we analyze how the overall valuations for A and B are obtained in LAF.

– When ⊗n
k=1δ Xk ≤ �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), and ⊗s

k=1δ Yk ≤ �r
j=1δ B j with Yk ∈

−→
(B)

and B j ∈
99K
(B). We have that δ A = αA⊕ (�m

j=1δ A j 	⊗n
k=1δ Xk) and δ B = αB⊕ (�r

j=1δ B j 	

⊗s
k=1δ Yk). By hypothesis, we know that (�m

j=1δ A j) ≥ (�r
j=1δ B j) with A j ∈

99K
(A) and B j ∈

99K
(B),

and⊗n
k=1δ Xk ≤⊗s

k=1δ Yk with Xk ∈
−→
(A) and Yk ∈

−→
(B). Thus, we have that�m

j=1δ A j	⊗n
k=1δ Xk ≥

�r
j=1δ B j 	⊗s

k=1δ Yk . Furthermore, by hypothesis we know that αA = αB, then δ A ≥ δ B.

– When ⊗n
k=1δ Xk > �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), and ⊗s

k=1δ Yk > �r
j=1δ B j with Yk ∈

−→
(B)

and B j ∈
99K
(B). We have that δ A = αA	 (⊗n

k=1δ Xk 	�m
j=1δ A j) and δ B = αB	 (⊗s

k=1δ Yk 	

�r
j=1δ B j), with Xk ∈

−→
(A) and A j ∈

99K
(A), and Yk ∈

−→
(B) and B j ∈

99K
(B). By hypothesis, we have that

(�m
j=1δ A j)≥ (�r

j=1δ B j) with A j ∈
99K
(A) and B j ∈

99K
(B), and (⊗n

k=1δ Xk)≤ (⊗s
k=1δ Yk) with Xk ∈

−→
(A)

and Yk ∈
−→
(B). Thus, we have that ⊗n

k=1δ Xk	�m
j=1δ A j ≤⊗s

k=1δ Yk	�r
j=1δ B j . Furthermore, by

hypothesis we have that αA = αB, then δ A ≥ δ B.

– When ⊗n
k=1δ Xk ≤ �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), and ⊗s

k=1δ Yk > �r
j=1δ B j with Yk ∈

−→
(B)

and B j ∈
99K
(B). We have that δ A = αA⊕ (�m

j=1δ A j 	⊗n
k=1δ Xk) and δ B = αB	 (⊗s

k=1δ Yk 	
�r

j=1δ B j). By hypothesis, we know that αA = αB. Thus, we conclude that δ A ≥ δ B since

⊗s
k=1δ Yk 	�r

j=1δ B j >⊥ with Yk ∈
−→
(B) and B j ∈

99K
(B).
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– When ⊗n
k=1δ Xk > �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), and ⊗s

k=1δ Yk ≤ �r
j=1δ B j with Yk ∈

−→
(B)

and B j ∈
99K
(B). By hypothesis, we know �m

j=1δ A j ≥ �r
j=1δ B j then ⊗s

k=1δ Yk ≤ �r
j=1δ B j ≤

�m
j=1δ A j <⊗n

k=1δ Xk , with A j ∈
99K
(A), B j ∈

99K
(B), Xk ∈

−→
(A) and Yk ∈

−→
(B). Thus, ⊗s

k=1δ Yk <⊗n
k=1δ Xk

with Xk ∈
−→
(A) and Yk ∈

−→
(B). Hence, we have a contradiction since by hypothesis ⊗n

k=1δ Xk ≤

⊗s
k=1δ Yk with Xk ∈

−→
(A),1≤ k ≤ n, and Yk ∈

−→
(B),1≤ k ≤ s.

DIRECTIONALITY. Let 〈αA,µA,δ A〉 ∈ λ (Θ) be a valuation associated with argument A. Then:

(i) If there is no path in GΘ arriving to A, then αA = µA = δ A.

(ii) If
99K
(A) 6= /0 and

−→
(A) = /0, then αA ≤ δ A.

(iii) If
99K
(A) = /0 and

−→
(A) 6= /0, then αA ≥ δ A.

(iv) If
99K
(A) 6= /0 and

−→
(A) 6= /0, then αA ≤ µA and µA ≥ δ A.

We separate the proof in the corresponding four parts:

(i) If there is no path in GΘ arriving to A, then
99K
(A)= /0 and

−→
(A)= /0. Thus, by Definition 11, we

have that αA = ρ(A), µA = αA, and δ A = µA. Then, the postulate is naturally proved based on
the labeling process proposed in LAF.

(ii) If
99K
(A) 6= /0 and

−→
(A) = /0, then αA ≤ δ A. By Lemma 2−(ii), we know that αA ≤ µA, while by

Definition 11, we have that µA = δ A when
−→
(A)= /0. Finally, we can conclude that αA ≤ δ A.

(iii) If
99K
(A) = /0 and

−→
(A) 6= /0, then αA ≥ δ A. By Lemma 2−(i), we know that µA ≥ δ A, while by

Definition 11, we have that µA = αA. Finally, we can conclude that αA ≥ δ A.

(iv) If
99K
(A) 6= /0 and

−→
(A) 6= /0, then αA ≤ µA and µA ≥ δ A. By Definition 11, we know that

µA = αA ⊕ (�m
j=1δ X j), with X j ∈

99K
(A) when

99K
(A)6= /0. Hence, αA ≤ µA. Furthermore, by

Lemma 2−(i), we have that µA ≥ δ A.

EQUIVALENCE. Let 〈αA, µA, δ A〉, 〈αB, µB, δ B〉 ∈ λ (Θ) be the valuations associated with two
arguments A and B, respectively. Then, if it holds that

(i) αA = αB,

(ii) there exists a bijective function f :
99K
(A)−→

99K
(B) such that for all X ∈

99K
(A) µX = µ f (X),

(iii) there exists a bijective function g :
−→
(A)−→

−→
(B) such that for all Y ∈

−→
(A) δ Y = δ g(Y),
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then 〈αA,µA,δ A〉= 〈αB,µB,δ B〉 saying that A and B are equivalent.

From the hypothesis αA = αB, δ A j = δ f(Aj) and δ Xk = δ g(Xk), with A j ∈
99K
(A) and Xk ∈

−→
(A). Furthermore

�n
k=1δ A j = �n

k=1δ f(Aj) and ⊗n
k=1δ Xk = ⊗n

k=1δ g(Xk) with A j ∈
99K
(A) and Xk ∈

−→
(A). Hence for the above

and Definition 11 µA = µB and δ A = δ B. Finally, we can conclude that 〈αA,µA,δ A〉= 〈αB,µB,δ B〉.

QUALITY PRECEDENCE. Given the valuations 〈αA,µA,δ A〉,〈αB,µB,δ B〉 ∈ λ (Θ) associated with
two arguments A and B, respectively. When αA ≥ αB, we have that:

(i) If the strengths associated with the supporters of A and B verify that

�m
j=1δ A j >�r

j=1δ B j with A j ∈
99K
(A) and B j ∈

99K
(B), then

δ A > δ B when
−→
(A)= /0 and

−→
(B)= /0.

(ii) If the strengths associated with the attackers of A and B verify that

⊗n
k=1δ Xk <⊗s

k=1δ Yk with Xk ∈
−→
(A) and Yk ∈

−→
(B), then

δ A > δ B when
99K
(A)= /0 and

99K
(B)= /0.

We separate the proof in the corresponding two parts:

(i) By hypothesis we know that
−→
(A)= /0 and

−→
(B)= /0. Thus, by Definition 11, we have that δ A = µA

and δ B = µB. Furthermore, by Definition 11, we know that µA = αA ⊕ (�m
j=1δ A j) and

µB = αB ⊕ (�r
j=1δ B j), with A j ∈

99K
(A) and B j ∈

99K
(B). Thus, δ A = αA ⊕ (�m

j=1δ A j) and δ B =

αB ⊕ (�r
j=1δ B j), with A j ∈

99K
(A) and B j ∈

99K
(B). By hypothesis, we know that αA ≥ αB, and

�m
j=1δ A j >�r

j=1δ B j with A j ∈
99K
(A) and B j ∈

99K
(B). This leads us to conclude that δ A > δ B.

(ii) From the hypothesis we know that
99K
(A)= /0 and

99K
(B)= /0. Thus, by Definition 11, we have that

δ A = αA	 (⊗n
k=1δ Xk) and δ B = αB	 (⊗s

k=1δ Yk) with Xk ∈
−→
(A) and Yk ∈

−→
(A). Furthermore, by

hypothesis, we know that ⊗n
k=1δ Xk < ⊗s

k=1δ Yk and αA ≥ αB. This leads us to conclude that
δ A > δ B.

NEUTRALITY. For any argument A ∈ AR where 〈αA, µA, δ A〉 ∈ λ (Θ) we have that: if �m
j=1δ A j =

⊗n
k=1δ Xk =⊥ with A j ∈

99K
(A),1≤ j ≤ m, and Xk ∈

−→
(A),1≤ k ≤ n, then δ A = αA.

From the hypothesis, we know that �m
j=1δ A j = ⊗n

k=1δ Xk = ⊥ with Xk ∈
−→
(A) and A j ∈

99K
(A). Further-

more, by Definition 11, we have that δ A = αA⊕ (�m
j=1δ A j 	⊗n

k=1δ Xk) and µA = αA⊕ (�n
j=1δ A j)

with Xk ∈
−→
(A) and A j ∈

99K
(A). Hence, we can infer that δ A = αA⊕ ⊥ and µA = αA ⊕ ⊥. In addition,

by Definition 8, we know that ⊥ is the neutral element for 	 and ⊕. Thus, we can deduce that
δ A = µA = αA. Then, δ A = αA.

REINFORCEMENT. For any argument A ∈ AR and 〈αA, µA, δ A〉 ∈ λ (Θ) then δ A > αA iff�m
j=1δ A j >

⊗n
k=1δ Xk , where A j ∈

99K
(A),1≤ j ≤ m and Xk ∈

−→
(A),1≤ k ≤ n.
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From the hypothesis, we know that�m
j=1δ A j >⊗n

k=1δ Xk with Xk ∈
−→
(A) and A j ∈

99K
(A). Thus,�m

j=1δ A j	

⊗n
k=1δ Xk >⊥ with Xk ∈

−→
(A) and A j ∈

99K
(A). Since by Definition 11, δ A = αA⊕ (�m

j=1δ A j 	⊗n
k=1δ Xk)

with A j ∈
99K
(A) and Xk ∈

−→
(A), we can deduce that δ A > αA.

STABILITY. For any argument A where 〈αA, µA, δ A〉 ∈ λ (Θ) if
−→
(A)= /0 and

99K
(A)= /0 we have that

δ A = αA.

From the hypothesis we have that
−→
(A)= /0 and

99K
(A)= /0. Hence, by Definition 11, we know that

µA = αA and δ A = µA. Thus, we can deduce that δ A = αA.

WEAKENING. For any argument A where 〈αA, µA, δ A〉 ∈ λ (Θ), we have that:

(i) If ⊗n
k=1δ Xk >�m

j=1δ A j with Xk ∈
−→
(A),1≤ k ≤ n, and A j ∈

99K
(A),1≤ j ≤ m, then αA > δ A.

(ii) If
−→
(A)6= /0 and

99K
(A)= /0, then αA ≥ δ A.

We separate the proof in two parts:

(i) if⊗n
k=1δ Xk >�m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then αA≥ δ A. By Definition 11, if⊗n

k=1δ Xk >

�m
j=1δ A j with Xk ∈

−→
(A) and A j ∈

99K
(A), then δ A = αA	 (⊗n

k=1δ Xk 	�m
j=1δ A j). Furthermore,

⊗n
k=1δ Xk 	�m

j=1δ A j >⊥. This leads us to conclude that αA > δ A.

(ii) if
−→
(A)6= /0 and

99K
(A)= /0, then αA > δ A. By Definition 11, if

−→
(A)6= /0 and

99K
(A)= /0, then δ A =

αA	 (⊗n
k=1δ Xk) with Xk ∈

−→
(A). Furthermore, ⊗n

k=1δ Xk ≥ ⊥. This leads us to conclude that
αA ≥ δ A.

STRENGTHENING. For any argument A where 〈αA,µA,δ A〉 ∈ λ (Θ), we have that:

(i) If ⊗n
k=1δ Xk ≤�m

j=1δ A j with Xk ∈
−→
(A),1≤ k ≤ n, and A j ∈

99K
(A),1≤ j ≤ m, then αA ≤ δ A.

(ii) If
−→
(A)= /0, then αA ≤ δ A.

We separate the proof in two parts:

(i) if⊗n
k=1δ Xk ≤�m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then αA≤ δ A. By Definition 11, if⊗n

k=1δ Xk ≤

�m
j=1δ A j with Xk ∈

−→
(A) and A j ∈

99K
(A), then δ A = αA⊕ (�m

j=1δ A j 	⊗n
k=1δ Xk). Furthermore,

�m
j=1δ A j 	⊗n

k=1δ Xk ≥⊥. This leads us to conclude that αA ≤ δ A.

(ii) if
−→
(A)= /0, then αA ≤ δ A. By Definition 11, if

−→
(A)= /0, then δ A = µA. Thus, by Lemma 2−(i),

we know that µA ≥ αA. This leads us to conclude that αA ≤ δ A.

CAUSALITY. For any argument A where 〈αA,µA,δ A〉 ∈ λ (Θ). Then:

(i) If µA 6= δ A there exists an argument B ∈ AR such that δ B 6=⊥ with B ∈
−→
(A).

(ii) If αA 6= µA there exists an argument B ∈ AR such that δ B 6=⊥ with B ∈
99K
(A).
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We separate the proof in two parts:

(i) If µA 6= δ A there exists an argument Xk ∈ Arg such that δ Xk 6= ⊥ with X ∈
−→
(A). By hypothesis

µA 6= δ A, then
−→
(A)6= /0.

– If
99K
(A)= /0 then by Definition 11 we know that µA = αA and δ A = αA	 (⊗n

k=1δ Xk) with

Xk ∈
−→
(A). Since µA 6= δ A, then ⊗n

k=1δ Xk > ⊥. This leads us to conclude that there exists

Xk ∈
−→
(A) such that δ Xk 6=⊥.

– If
99K
(A)6= /0 then by Definition 11 we know that µA = αA ⊕ (�m

j=1δ A j), with A j ∈
99K
(A).

Furthermore, the overall valuation is obtained by the following cases:

If ⊗n
k=1δ Xk ≤ �m

j=1δ A j then δ A = αA ⊕ (�m
j=1δ A j 	⊗n

k=1δ Xk) with Xk ∈
−→
(A) and

A j ∈
99K
(A). Since µA 6= δ A, then �m

j=1δ A j > �m
j=1δ A j 	⊗n

k=1δ Xk . This leads us to

conclude that there exists Xk ∈
−→
(A) such that δ Xk 6=⊥.

If ⊗n
k=1δ Xk > �m

j=1δ A j then δ A = αA 	 (⊗n
k=1δ Xk 	�m

j=1δ A j) with Xk ∈
−→
(A) and

A j ∈
99K
(A). Since ⊗n

k=1δ Xk > �m
j=1δ A j we can deduce that ⊗n

k=1δ Xk > ⊥. This leads

us to conclude that there exists Xk ∈
−→
(A) such that δ Xk 6=⊥.

(ii) If αA 6= µA there exists an argument A j ∈ Arg such that δ A j 6= ⊥ with A j ∈
99K
(A). If αA 6= µA,

then by Definition 11, we know that µA = αA ⊕ (�m
j=1δ A j), with A j ∈

99K
(A). Since αA 6= µA,

then �m
j=1δ A j >⊥. This leads us to conclude that there exists A j ∈

99K
(A) such that δ A j 6=⊥.

NEUTRALITY. For any argument A ∈ AR where 〈αA,µA,δ A〉 ∈ λ (Θ), if it holds that �m
j=1δ A j =

⊗n
k=1δ Xk with A j ∈

99K
(A),1≤ j ≤ m, and Xk ∈

−→
(A),1≤ k ≤ n, then αA = δ A.

By Definition 11, we know that δ A = αA⊕ (�m
j=1δ A j	⊗n

k=1δ Xk), with Xk ∈
−→
(A) and A j ∈

99K
(A). Since

�m
j=1δ A j =⊗n

k=1δ Xk , then we can conclude that δ A = αA⊕ ⊥. Finally, αA = δ A.
PROPORTIONALITY. For any arguments A, B where 〈αA,µA,δ A〉,〈αB,µB,δ B〉 ∈ λ (Θ), if

(i) αA > αB,

(ii)
99K
(B)= /0 or �m

j=1 δ Aj ≥�r
k=1δ Bk with A j ∈

99K
(A),1≤ j ≤ m, and Bk ∈

99K
(B),1≤ k ≤ n,

(iii) ⊗m
j=1δ Xj =⊗n

k=1δ Yk with X j ∈
−→
(A),1≤ j ≤ m, and Yk ∈

−→
(B),1≤ k ≤ n, and

(iv) δ A >⊥.

then δ A > δ B.

We separate the proof in three parts:

– If
99K
(A)=

99K
(B)= /0, then by Definition 11 we know that δ A = αA	 (⊗n

k=1δ Xk) with Xk ∈
−→
(A) and

δ B = αB	 (⊗s
k=1δ Yk) with Yk ∈

−→
(B). By Hypothesis we have that ⊗n

k=1δ Xk = ⊗s
k=1δ Yk with

Xk ∈
−→
(A) and Yk ∈

−→
(B), and αA > αB. Thus, we can deduce that δ A > δ B.
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– If
99K
(A)6= /0 and

99K
(B)= /0, then by Definition 11 we know that δ B =αB	 (⊗s

k=1δ Yk) with Yk ∈
−→
(B),

and we analyze the following cases:

– If ⊗n
k=1δ Xk ≤ �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then by Definition 11 we know that

δ A = αA⊕ (�m
j=1δ A j 	⊗n

k=1δ Xk), with Xk ∈
−→
(A) and A j ∈

99K
(A) . By hypothesis we have

that αA > αB, then we can deduce that δ A > δ B.

– If ⊗n
k=1δ Xk > �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then by Definition 11 we know that

δ A =αA	 (⊗n
k=1δ Xk 	�m

j=1δ A j) with Xk ∈
−→
(A) and A j ∈

99K
(A) . By hypothesis we have that

⊗n
k=1δ Xk = ⊗s

k=1δ Yk with Xk ∈
−→
(A) and Yk ∈

−→
(B). Thus, we can deduce that ⊗n

k=1δ Xk 	

�m
j=1δ A j <⊗s

k=1δ Yk with A j ∈
99K
(A), Xk ∈

−→
(A) and Yk ∈

−→
(B). Furthermore, by hypothesis we

know that αA > αB, then we can deduce that δ A > δ B.

– If
99K
(A)6= /0 and

99K
(B)6= /0, then by Definition 11 we know that µA = αA ⊕ (�m

j=1δ A j) and µB =

αB ⊕ (�r
j=1δ B j), with A j ∈

99K
(A) and B j ∈

99K
(B).

– If ⊗n
k=1δ Xk ≤ �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then by Definition 11 we know that

δ A = αA⊕ (�m
j=1δ A j 	⊗n

k=1δ Xk), with Xk ∈
−→
(A) and A j ∈

99K
(A) . Then, we analyze the

following cases:

– If ⊗s
k=1δ Yk ≤ �r

j=1δ B j with Yk ∈
−→
(B) and B j ∈

99K
(B), then by Definition 11 we know

that δ B =αB⊕ (�r
j=1δ B j	⊗s

k=1δ Yk), with Yk ∈
−→
(B) and B j ∈

99K
(B) . By hypothesis we

know that αA > αB, �m
j=1δ A j ≥�r

j=1δ B j with A j ∈
99K
(A) and B j ∈

99K
(B), and⊗n

k=1δ Xk =

⊗s
k=1δ Yk with Xk ∈

−→
(A) and Yk ∈

−→
(B). Thus, we can deduce that δ A > δ B.

– If ⊗s
k=1δ Yk > �r

j=1δ B j with Yk ∈
−→
(B) and B j ∈

99K
(B), then by Definition 11 we know

that δ B = αB	 (⊗s
k=1δ Yk 	�r

j=1δ B j) with Yk ∈
−→
(B) and B j ∈

99K
(B). Then, we can

deduce that δ A > δ B.

– If ⊗n
k=1δ Xk > �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then by hypothesis we have that

�m
j=1δ A j ≥ �r

j=1δ B j with A j ∈
99K
(A) and B j ∈

99K
(B), and ⊗n

k=1δ Xk = ⊗s
k=1δ Yk with Xk ∈

−→
(A)

and Yk ∈
−→
(B). Furthermore by Definition 11 we know that αA	 (⊗n

k=1δ Xk 	�m
j=1δ A j)

with Xk ∈
−→
(A) and A j ∈

99K
(A). Then, we analyze the following cases:

– If ⊗s
k=1δ Yk ≤ �r

j=1δ B j with Yk ∈
−→
(B) and B j ∈

99K
(B), we have a contradiction. Since

⊗n
k=1δ Xk > �m

j=1δ A j with Xk ∈
−→
(A) and A j ∈

99K
(A), then �m

k=1δ A j < �r
j=1δ B j with

A j ∈
99K
(A) and B j ∈

99K
(B).
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– If ⊗s
k=1δ Yk > �r

j=1δ B j with Yk ∈
−→
(B) and B j ∈

99K
(B), by Definition 11 we know that

δ B = αB	 (⊗s
k=1δ Yk 	�r

j=1δ B j) with Yk ∈
−→
(B) and B j ∈

99K
(B). Hence, we can deduce

that ⊗n
k=1δ Xk 	�m

j=1δ A j ≤ ⊗s
k=1δ Yk 	�r

j=1δ B j . Furthermore, by hypothesis we
know that αA > αB. Thus, we conclude that δ A > δ B.

2
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