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Abstract

Graphical games are one of the earliest examples of the impact that the general field
of graphical models have had in other areas, and in this particular case, in classical math-
ematical models in game theory. Graphical multi-hypermatrix games, a concept formally
introduced in this research note, generalize graphical games while allowing the possibility
of further space savings in model representation to that of standard graphical games. The
main focus of this research note is discretization schemes for computing approximate Nash
equilibria, with emphasis on graphical games, but also briefly touching on normal-form
and polymatrix games. The main technical contribution is a theorem that establishes suf-
ficient conditions for a discretization of the players’ space of mixed strategies to contain
an approximate Nash equilibrium. The result is actually stronger because every exact
Nash equilibrium has a nearby approximate Nash equilibrium on the grid induced by the
discretization. The sufficient conditions are weaker than those of previous results. In
particular, a uniform discretization of size linear in the inverse of the approximation er-
ror and in the natural game-representation parameters suffices. The theorem holds for a
generalization of graphical games, introduced here. The result has already been useful in
the design and analysis of tractable algorithms for graphical games with parametric payoff
functions and certain game-graph structures. For standard graphical games, under natural
conditions, the discretization is logarithmic in the game-representation size, a substantial
improvement over the linear dependency previously required. Combining the improved
discretization result with old results on constraint networks in AI simplifies the derivation
and analysis of algorithms for computing approximate Nash equilibria in graphical games.

1. Introduction

Graphical games (GGs) are graphical models for classical mathematical models in game the-
ory originally introduced within the artificial intelligence community by Kearns, Littman,
and Singh (2001). As is well-known to the readership of this journal, graphical models
are modern computationally amenable compact network-based representations introduced
and considerably developed and studied in the artificial intelligence (AI), statistics, and
machine learning (ML) community over the last 40 years (see, e.g., Waltz, 1975, Monta-
nari, 1974, Pearl, 1988, Dechter, 2003, and Koller & Friedman, 2009, for general intro-
ductory information and historical context). Graphical games have already impacted AI
and several other areas of computer science, with theory being a particular highlight (see,
e.g., Daskalakis, Goldberg, & Papadimitriou, 2009, and the references therein). Roughly
speaking, as initially defined by Kearns et al. (2001), this class of games are mathematical
abstractions of strategic interactions among individuals, restricted or induced by a graph.
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In this particular case, a graph, a binary action set, and a set of local payoff matrices, or,
equivalently, utility functions, define the game. Each of the n players has an individual
local payoff hypermatrix, involving the action of the player and the player’s neighbors in
the graph, chosen from each player’s set of 2 actions available. Graphical multi-hypermatrix
games (GMhGs), a concept formally introduced in this research note, generalize graphical
games while allowing the possibility of further space savings in model representation to that
of standard graphical games.

This research note revisits the simple uniform-discretization scheme that Kearns et al.
(2001) proposed in the context of n-player 2-action GGs. They showed the following in
that work. Let k be the size of the largest set of neighbors of any player and ε the ap-
proximation error parameter. If the size of the individual grid (i.e., number of grid points)
that the uniform-discretization scheme induces over the probability of playing an action is
Ω(2k/ε), then for each exact Nash equilibrium of the GG, its closest joint mixed-strategy in
the resulting regular joint grid is an ε-Nash equilibrium of the GG. 1 Kearns et al. (2001)
used that discretization to design a special type of dynamic-programming algorithm tai-
lored to computing approximate Nash equilibria in GGs with tree-structured graphs, which
they called TreeNash. That algorithm runs in time linear in the number of players and
O(2k

2
), assuming a fixed ε. The size of the input representation of the n-player 2-action

GG is O(n 2k). Ortiz and Kearns (2003) later extended TreeNash as a heuristic for GGs
with loopy graphs, leading to an algorithm called NashProp, which stands for “Nash
Propagation.”

An unpublished note drafted back in December 2002 (Ortiz, 2002) provided a signifi-
cantly sharper bound of O(k/ε) on the sufficient size of the discretization to achieve the
same approximation result. 2 The revised bound was logarithmic in the representation size
of the game, as opposed to the previous linear bound that Kearns et al. (2001) derived. 3

The revised, significantly tighter upper-bound on the sufficient discretization size led to an
improved running time of O(kk) for TreeNash in terms of just k. This meant that when
using the sparser discretization derived in the old note (Ortiz, 2002), TreeNash becomes a
quasi-polynomial time approximation scheme (quasi-PTAS) 4 to compute an ε-Nash equilib-
rium. Daskalakis and Papadimitriou (2008) independently rediscovered this result using a
proof technique that differs from the simple algebraic approach used in the old note (Ortiz,
2002), and here. Similarly, some of the results regarding algorithmic implications presented
here that followed from the old note (Ortiz, 2002), particularly for normal-form games, have
also been independently rediscovered in the literature using different approaches throughout
the years (see, e.g., some of the results of Lipton, Markakis, & Mehta, 2003, and Daskalakis

1. In the standard definition of an ε-Nash equilibrium in game theory, players tolerate losing expected
gains, up to an ε amount, from not unilaterally deviating. There are other, mostly newer concepts
of approximate Nash Equilibrium, such as “well-supported approximate equilibrium,” which impose
stronger requirements. This research note focuses on the standard definition.

2. The note was later posted online at http://www.cis.upenn.edu/~mkearns/teaching/cgt/revised_

approx_bnd.pdf as part of a course on computational game theory taught by Prof. Michael Kearns
during the Spring of 2003 at the University of Pennsylvania.

3. Note that Kearns et al. (2001) only considered the case of binary actions, hence the maximum number
of actions m does not play a role in the results within the context of that paper.

4. Please see textbooks such as those of Vazirani (2001) and Williamson and Shmoys (2011) for formal
definitions of different approximation schemes.
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& Papadimitriou, 2008). Those particular results followed immediately from the improved
discretization bound given in the old note (Ortiz, 2002), combined with previously known
results from the constraint-satisfaction-problem (CSP) and graphical-models literature.

The present research note extends the old note (Ortiz, 2002) and shows how the im-
proved discretization-size bounds for GGs, and some specializations, fall off immediately
as corollaries of a theorem established here which holds for GMhGs. In particular, the
current research note presents a result on the sufficient grid size for uniform discretization
to contain an approximate Nash equilibrium in the following sense: for every exact Nash
equilibrium of the game, its closest mixed strategy in `∞ distance in the induced grid is an
approximate Nash equilibrium. As example corollaries of the main result, we obtain that
for graphical games with largest neighborhood size k and in which the maximum number
of actions (pure strategies) of each player is m, the sufficient grid size is O(km/ε), which
implies a sufficient size of O(nm/ε) for standard normal-form games. We also obtain that
for n-player m-action polymatrix games, the sufficient size is O(m/ε). Sparse discretization
yields immediate computational results based on connection to algorithms for CSPs.

The remaining of the research note is organized as follows. Section 2 introduces pre-
liminary notation and relevant concepts. Section 3 introduces the discretization scheme of
primary interest here. Section 4 presents a corollary of the main sparse-discretization result
within the context of standard graphical games in normal-form. Section 5 presents and
discusses several results on polynomial and quasi-polynomial time algorithms for several in-
teresting subclasses of graphical and normal-form games that fall off from that connection.
Section 6 formally defines and connects GMhGs to other game classes, including previ-
ous game models in other areas both within and outside game theory, AI and computer
science, among others. It then presents the sparse-discretization theorem in the context
of GMhGs. That section also contains a brief discussion of classes of games proposed for
practical security-and-defense-related applications in which the theorem has already proved
useful to derive FPTAS algorithms.

2. Preliminaries

This section introduces the basic technical notation and concepts necessary to understand
the upcoming technical sections of this research note.

2.1 Basic Notation

Denote by x ≡ (x1, x2, . . . , xn) an n-dimensional vector and by

x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn)

the same vector without component i. Similarly, for every set S ⊂ [n] ≡ {1, . . . , n}, denote
by xS ≡ (xi : i ∈ S) the (sub-)vector formed from x using only components in S. Thus,
if Sc ≡ [n] − S denotes the complement of S, x ≡ (xS , xSc) ≡ (xi, x−i) for every i. If
A1, . . . , An are sets, denote by A ≡ ×i∈[n]Ai, A−i ≡ ×j∈[n]−{i}Aj and AS ≡ ×j∈SAj .

If G = (V,E) is an undirected graph, then for each i ∈ V denote by Ni ≡ {j | (j, i) ∈ E}
the neighbors of node/vertex i in G, and Ni ≡ Ni

⋃
{i} the neighborhood of node/vertex i in

G. Note that we have i /∈ Ni but i ∈ Ni for all i ∈ V .
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2.2 Graphical Games in Local Normal-Form Payoff Representations

This section formally defines graphical games (GGs), which are graphical models for compact
representations of classical models in game theory (Kearns et al., 2001). GGs extend and
generalize normal-form games.

Definition 1. A graphical game (GG) consists of an undirected graph G = (V,E), 5 where
each node i ∈ V in the graph corresponds to a player i in the game, and for each player
i, we have a set of actions or pure strategies Ai and a local payoff hypermatrix/function
M ′i : ANi → R, where Ni is the neighborhood of player i in G. The (global) payoff hyper-
matrix/function Mi of player i is such that, for each joint-action x ∈ A ≡ AV , we have
Mi(x) ≡M ′i(xNi).

Note that in a GG, the payoff that each individual player i receives when all players,
including i, take joint-action/pure-strategy x is a function of the joint-actions xNi of player
i’s neighborhood Ni only, thus conditionally independent of xV−Ni given xNi . It is convention
to let V = {1, . . . , n} ≡ [n], so that n ≡ |V |. The representation size of each local payoff
hypermatrix M ′i is Θ(|ANi |) = O(mk), where m ≡ maxi∈V |Ai| and k ≡ maxi∈V |Ni|. The
representation size of the GG is Θ(

∑
i∈V |ANi |) = O(nmk). If for all i we have Ni = V , then

the GG is a standard normal-form game, also called strategic- or matrix-form game, which
has a representation size Θ(n|A|) = O(nmn). Said differently, a GG with a complete/fully-
connected graph is equivalent to a normal-form game. Hence, a GG achieves considerable
representation savings over normal-form games whenever k � n.

2.3 Solution Concepts

A joint mixed strategy p ≡ (p1, . . . , pn) in a game is formed from each individual mixed
strategy pi ≡ (pi(xi) : xi ∈ Ai) for player i, which is a probability distribution over the
player’s actions Ai (i.e., pi(xi) ≥ 0 for all xi ∈ Ai and

∑
xi∈Ai pi(xi) = 1). Denote by

Pi ≡ { pi | pi(xi) ≥ 0, for all xi ∈ Ai and
∑

xi∈Ai pi(xi) = 1} the set of all possible
mixed strategies of player i (i.e., all possible probability distributions over Ai). Similarly
to the vector notation introduced above, for all i and any clique/set S ⊂ V , denote by p−i
and pS the mixed strategies corresponding to all the players except i and all the players
in clique S, respectively, so that p ≡ (pi, p−i) ≡ (pS , pV−S). A joint mixed strategy p
induces a joint (product) probability distribution over the joint action space A, such that,
for all x ∈ A, p(x) ≡

∏
i∈V pi(xi) is the probability, with respect to joint mixed strategy

p, that joint action x is played. Using the standard abuse of notation in the literature,
the expected payoff of player i with respect to joint mixed strategy p is simply denoted by
Mi(p) ≡

∑
x∈A p(x)Mi(x).

Definition 2. For any ε ≥ 0, a joint mixed-strategy p∗ is called an ε-Nash equilibrium if
for every player i, and for all xi ∈ Ai, Mi(p

∗
i , p
∗
−i) ≥Mi(xi, p

∗
i )− ε. That is, no player can

increase its expected payoff more than ε by unilaterally deviating from its mixed strategy
part p∗i in the equilibrium, assuming the others play according to their respective parts p∗−i.
A Nash equilibrium, or more formally, a mixed-strategy Nash Equilibrium, is then a 0-
Nash equilibrium, also referred to as an exact Nash equilibrium to differentiate it from its
approximation counterpart.

5. It is easy to extend the same result to GGs with directed graphs.
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Note that, for all i ∈ V , and p−i ∈ P−i, we have

max
pi∈Pi

Mi(pi, p−i) = max
xi∈Ai

Mi(xi, p−i)

if and only if maxpi∈PiMi(pi, p−i) ≥Mi(x
′
i, p−i), for all x′i ∈ Ai. 6 Note also that the exact-

equilibrium conditions are invariant to affine transformations of the payoff functions. On
the other hand, the approximate-equilibrium conditions are shift-invariant but not scale-
invariant, because scaling the payoffs affects the approximation error term. 7 At the same
time, note that the approximation error parameter ε is a single global value, constraining
the largest gains from unilateral deviations of any player. Thus, implicit in the defini-
tion of approximate Nash equilibrium is the fact that all the payoffs have the same scale.
Otherwise, the parameter ε is not very meaningful. We can bring all the players’ payoff
functions to the same scale in order to endow ε with a globally consistent meaning and in-
terpretation over all the players. In the case of GGs with local payoff matrices represented
in tabular/matrix/normal-form, the most typical and convenient scale normalization of the
payoff values is such that, for each player i ∈ V , we have minxMi(x) = minxNi M

′
i(xNi) = 0

and maxxMi(x) = maxxNi M
′
i(xNi) = 1. That way, the parameter ε is meaningful and glob-

ally consistent with respect to the minimum and maximum payoff values of every player
being 0 and 1, respectively. Because standard GGs use “tabular” representations, we do
not lose generality, with respect to computation, by assuming that the maximum and the
minimum local payoff values of each player are 0 and 1, respectively: we can compute them
both efficiently (i.e., in time linear in the representation size of the game). In the case of
GG generalizations however, such normalization is NP-hard. Section 6 revisits this point.

3. Discretization Schemes

The discretization scheme considered here is similar to that of Kearns et al. (2001), except
that we allow for the possibility of different discretization sizes for the mixed strategies of
players.

Definition 3. In an (individually-uniform) discretization scheme, for each player i and each
of the player’s action xi, the uncountable set I = [0, 1] of possible value assignments to the
probability pi(xi) is approximated by a finite grid defined by the set Ĩi = {0, τi, 2τi, . . . , (si−

6. The fact that maxxi∈Ai Mi(xi, p−i) ≥ Mi(x
′
i, p−i), for all x′i ∈ Ai proves one direction. For the reverse

direction, first recall that the maximum of any linear function over a simplex is achieved at a corner
of the simplex. In this case, because we are dealing with the probabily simplex Pi over Ai, each
corner corresponds to an action xi ∈ Ai. Let x∗i ∈ arg maxxi∈Ai Mi(xi, p−i). Then Mi(x

∗
i , p−i) =

maxpi∈Pi Mi(pi, p−i) ≥ maxx′i∈Ai
Mi(x

′
i, p−i) = Mi(x

∗
i , p−i), where the first equality follows from the

stated poperty of the maximum of a linear function over a simplex, the inequality follows from the
hypothesis, and last equality follows from the definition of x∗i . That proves the reverse direction.

7. For each player i, let Ci ∈ R+ and gi : A−i → R. Let C ≡ maxi Ci. Consider a new transformed
game defined by transformed payoff matrices {M̄i} of the original game: formally, for each player i, set
M̄i(xi, x−i) ≡ Ci ×Mi(xi, x−i) + gi(x−i), for all xi ∈ Ai and x−i ∈ A−i. Using linearity of expectation,
the fact that joint mixed strategies are product distributions, and simple algebra, it follows that, for all
p∗ ∈ P, p∗ is an ε-Nash equilibrium of the original game if and only if p∗ is an (Cε)-Nash equilibrium
of the new transformed game. The last statement yields the property stated in the body of the paper
about the exact-equilibrium conditions being invariant to affine transformations of the payoff functions
because a 0-Nash equilibrium is an exact Nash equilibrium, by definition.
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1)τi, 1} of values separated by the same distance τi = 1/si for some integer si. Thus the
discretization size is |Ĩi| = si + 1. Then, we would only consider mixed strategies qi such
that qi(xi) ∈ Ĩi for all xi, and

∑
xi∈Ai qi(xi) = 1. The induced discretized space of joint

mixed strategies is Ĩ ≡ ×i∈V Ĩ |Ai|i , subject to the individual normalization constraints stated
in the last sentence.

Kearns et al. (2001) and Ortiz and Kearns (2003) provide illustrative figures graphically
showing examples resulting from the discretization scheme.

4. Sparse Discretization

The obvious question is, how small can we make si and still guarantee that there exists
an ε-Nash equilibrium in the induced discretized space of joint mixed strategies? The
following corollary provides a stronger answer for GGs: it provides values for the si’s that
guarantee that for every Nash equilibrium, its closest point in the induced grid is an ε-Nash
equilibrium. An interesting aspect of the result is that si depends only on information
local to player i’s neighborhood: the number of actions |Ai| available to player i and the
largest number of neighbors |Nj | of the neighbors j ∈ Ni of player i (i.e., the quantity
maxj∈Ni |Nj |).

Note that the corresponding discretization bound provided in Kearns et al. (2001) in
the context of GGs is exponential in the largest neighborhood size k. In contrast, the bound
here is linear in k, a substantial reduction.

The corollary is a GG instantiation of a more general result on sparse discretization,
given in Theorem 3, which holds for a broader class of GG generalizations. The statement
and discussion of the theorem is in Section 6. The statement of the corollary uses notation
introduced above.

Corollary 1. (Sparse Discretization for Graphical Games) For any graphical game
and any ε > 0, a (individually-uniform) discretization with

si =

⌈
2 |Ai| maxj∈Ni |Nj |

ε

⌉
= O

(
mk

ε

)
for each player i is sufficient to guarantee that for every exact Nash equilibrium of the game,
its closest (in `∞ distance) joint mixed strategy in the induced discretized space is an ε-Nash
equilibrium of the game.

Remarks. It is important to recall that Kearns et al. (2001) also used `∞ distance in
their original work. That notion of distance has remained standard for uniform sparse
discretization, at least within the AI community. It is also well-known that for any arbitrary
but fixed approximation parameter ε > 0, even if a grid point corresponds to an ε-Nash
equilibrium, there might not be any exact Nash equilibrium nearby.

5. Algorithmic Implications

This section presents the algorithmic implications of the sparse-discretization approach,
borrowing heavily from standard results in AI, and highlighting their simplifying usefulness
and powers.
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5.1 Reductions to Consistency in CSPs

This section involves concepts from AI and graph theory. In the interest of space, the reader
is referred to appropriate standard references (see, e.g., the textbooks of Russell & Norvig,
2003 for AI, Bollobas, 1979 for graph theory, and Dechter, 2003 for graph theory as used in
AI).

Corollary 1 has several immediate computational consequences for the problem of ap-
proximate Nash equilibria in GGs with local payoff matrices represented in tabular form,
and in turn, also for multi-player games represented in standard normal (tabular) form.

To simplify the presentation, let us assume that the payoff values are in [0, 1], all the
players in the GG have the same number of actions m and the largest neighborhood size in
the graph of the game is k, so that the representation size of the GG is O(nmk). Under those
conditions, the uniform discretization presented in Theorem 3 has size s = si = O(mk/ε)
for all i.

5.1.1 Sparse-discretization GG-induced CSP

Once we introduce a discretization over the space of mixed strategies, then it is natural to
formulate the problem of computing ε-Nash equilibria on the induced discretized space as a
CSP, or more specifically in the case of GGs, as a special type of constraint network (Dechter,
2003). (In the interest of keeping this research note short, please see Russell & Norvig, 2003,
or other introductory textbook on AI, for general information on CSPs. The presentation
here contains only the CSP concepts necessary exclusively within the context of the topic
of this research note.) Several researchers have taken this or related approaches either
explicitly or implicitly (Kearns et al., 2001; Vickrey & Koller, 2002; Ortiz & Kearns, 2003;
Soni, Singh, & Wellman, 2007). The CSP for the game has one variable, domain, and
constraint for each player. Each variable corresponds to mixed strategy qi for each player
i. Each variable’s domain corresponds to the discretized set Ĩmi of mixed strategies for each
player i, properly corrected to account for normalization. 8 The approximate best-response
equilibrium conditions are the following: for each player i, each constraint function (table)
ci : Ĩmki → {0, 1} is defined so that, for all qN(i) ∈ Ĩmki , ci(qN(i)) = 1 if and only if
Mi(qi, q−i) ≥ maxx′i∈AiMi(x

′
i, q−i)− ε. Each constraint has arity at most k and encodes the

approximate best-response equilibrium conditions, each represented in tabular form using
smk = O((mk/ε)mk) bits. The transformation takes time O(poly(n, (mk/ε)mk)) and the
size of the resulting CSP is T = O(n(mk/ε)mk).

For graphical games, it is natural to consider the number of players n as being the “free”
parameter of the representation (i.e., the main parameter of interest in terms of problem
input size). Indeed, Kearns et al. (2001) considered the case of m = 2 only. Hence, if
mk log(mk) = O(log(n)) and ε = nΩ(−1/(mk)) = (mk)−Ω(1) = (logn)−Ω(1), then both the
time to perform the CSP transformation and its resulting representation size are polynomial
in the representation size of the game (i.e., polynomial in the number of players). Similarly,
if m and k are bounded (by a constant, independent of n), then the representation size of
the game is linear in n and the running time of the transformation is polynomial in n and
1/ε. Note that this is a natural restriction on the game parameters because otherwise the

8. Recall that we only consider qi ∈ Ĩmi such that
∑
xi∈Ai

qi(xi) = 1.
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representation size would be exponential in the number of players, thus defeating the main
purpose of the GG representation in the first place: succinctness.

At this point, we can apply any of a large number of existing off-the-shelf techniques for
solving the induced game-CSP. We can also apply techniques such as NashProp (Ortiz &
Kearns, 2003) that take advantage of the particular properties of the game best-response
constraints. Instead, in Sections 5.1.2 and 5.1.4, we will see how standard results for solving
constraint networks (Dechter, 2003) lead immediately to simple derivations of algorithmic
results for GGs.

5.1.2 An approach based on the GG-induced CSP hypergraph

An approach to solving CSPs in AI works on the hypergraph induced by the game CSP (Got-
tlob, Leone, & Scarcello, 2001). If T is the representation size of the game-CSP, w is the
hypertree width of the hypergraph, and the corresponding hypertree decomposition for the
CSP has been computed, then solving the CSP takes time O(Tw+1 log(T )) (Gottlob, Leone,
& Scarcello, 2000, 2002; Gottlob et al., 2001) (see also page 158 of “Bibliographical and
Historical Notes” Section in Chapter 5 of Russell & Norvig, 2003). As an anonymous re-
viewer pointed out, for the special case of GGs, solving the game-CSP given its hypertree
decomposition takes time O(n ρw+1 log ρ), where ρ = O

(
smk

)
is the maximum size of the

tabular representation encoding any constraint of the game-CSP. In the case of GGs, we
can compute the hypertree decomposition that the algorithm would use in time O(n2w+2).

The following theorem summarizes the discussion. As a preamble to a discussion of
primal graphs and treewidth later in the section, note that it is known that a CSP might
have hypergraphs with bounded hypertree width, but whose primal graph has unbounded
treewidth. However, the treewidth always bounds the hypertree width. Thus, the restriction
that the hypertree width be bounded by a constant may not be as limiting to the application
of the results as it first appears.

Theorem 1. There exists an algorithm that, given as input a number ε > 0 and a GG with
n players, maximum neighborhood size k, and maximum number of actions m, and whose
corresponding CSP has a hypergraph with hypertree width w, computes an ε-Nash equilibrium
of the GG in time O

(
n2w+2 + nmk(mk/ε)mk(w+1) log(mk/ε)

)
= nO(w)+n[(mk/ε)mk]O(w) =

[n (mk/ε)mk]O(w).

The following corollary characterizes the computational complexity of the approximation
schemes resulting from instances of the last theorem.

Corollary 2. There exists an algorithm that, given as input a GG with corresponding
hypergraph of hypertree width w bounded by a constant independent of the number of players
n, with a logarithmic function of n restricting the maximum number of actions m and the
maximum neighborhood size k as mk log(mk) = O(log(n)), and given ε = nΩ(−1/(mk)) =
(mk)−Ω(1) = (log n)−Ω(1), outputs an ε-Nash equilibrium of the game in time polynomial
in the representation size of the input. If, in particular, both m and k are bounded by
constants independent of n, then the algorithm runs in polynomial time in n and 1/ε,
for any ε > 0; hence, the algorithm is a fully polynomial time approximation scheme
(FPTAS). If, instead, the expression constraining m and k as a logarithmic function of
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n, mk log(mk) = O(log(n)), holds, and w = polylog(n), then the algorithm is a quasi-
polynomial time approximation scheme (quasi-PTAS).

5.1.3 A side note on normal-form games

For normal-form games, we have k = n and w = 1. 9 This leads to the following corollary.

Corollary 3. There exists a quasi-PTAS for computing an ε-Nash equilibrium of n-player
m-action normal-form games with m = O(poly(n)) that runs in time NO(polylog(N) log(1/ε)) =(

1
ε

)O(polylog(N))
, where N = nΘ(n) is the representation size of the game. If, in particular,

m is bounded by a constant independent of n, then the running time is NO(log
log(N)
ε

), where
N = 2Θ(n) is the corresponding representation size of the game.

We can also obtain the same result by using the sparse-support approach of Lipton et al.
(2003), even if m = 2O(n), but the dependence is exponential in 1/ε2 (i.e., NO(polylog(N)(1/ε)2);

or NO(
log(N)

ε2
), if m is bounded by a constant). The result of the last corollary for the case of

m fixed or bounded by a constant is stated by Daskalakis and Papadimitriou (2008). The
same result for m fixed or bounded by a constant also follows from Theorem 4 of Kearns
(2007). While no formal proof appears for Theorem 4 of Kearns (2007), the theorem follows
immediately from the proof in the original unpublished note (Ortiz, 2002).

It is important to emphasize that in the case of normal-form games, we could have
obtained the result directly by using an exhaustive search over the induced grid over mixed
strategies. That is essentially what the algorithm referred to in the corollary reduces to in
this case. Hence, we could output not just one ε-Nash equilibrium, but all ε-Nash equilibria
in the induced grid in the worst-case running time given in the corollary. The algorithms
based on the sparse-support approach can only guarantee to output one ε-Nash equilibrium
among all mixed strategies of a given maximum support.

5.1.4 An approach based on the GG-induced CSP primal graph

As it has been common knowledge in the graphical-models community for quite a while
now (see, e.g., the textbooks of Dechter, 2003; Russell & Norvig, 2003, and the references
therein, for a recent account of previous work in this area), another approach to solving a
(discrete) CSP is to build a clique (or join) tree from the primal graph of the CSP. In the
case of GGs, the primal graph is the graph of the game-CSP created by forming cliques
of every neighborhood. Then, we can apply a dynamic programming (or message-passing)
algorithm on the clique tree. The graphical model for the CSP, consisting of the primal
graph and a (tabular) representation of the constraint information, is called a constraint
network (Dechter, 2003; Russell & Norvig, 2003). Once the clique tree is built for the
constraint network, the running time is linear in the number of nodes of the join tree and
exponential in the size of the largest clique associated to a node in the clique tree. In
particular, if the primal graph has treewidth w′, the largest clique associated to the optimal
clique tree is w′ + 1 (Dechter, 2003). Given the optimal clique tree, the running time to

9. For the case of normal-form games, each node in any hypertree decomposition of the game-CSP cor-
responds to the best-response constraint of exactly one player. Thus, by definition, we have that the
hypertree width is one in this case.

75



Ortiz

solve the CSP is O((|V |+ |E|)|D|w′+1), where V is the set of nodes of the primal graph (i.e.,
the number of variables of the CSP), D is the largest (finite) domain of any variable of the
(discrete) CSP, and E its (finite) set of constraint functions (Dechter, 2003). In addition,
we can build the clique tree in time 2O(w′)|V | log(|V |) (Reed, 1992; Becker & Geiger, 2001).
Hence the well-known result that if the primal graph of a CSP has a treewidth w′ that
is logarithmic in the number of nodes |V |, then we can solve the CSP in polynomial time
if the CSP is represented in tabular form. The next theorem (Theorem 2) and corollary
(Corollary 4) follow from the application of those previously known results just described
for solving constraint networks and other related graphical models. Note that the treewidth
w′′ of the original graph of the game is always no smaller than the hypertree width w of
its hypergraph (Gottlob, Greco, & Scarcello, 2005). In addition, the GG’s primal graph
treewidth w′ satisfies w′ ≤ (w′′ + 1)k (Daskalakis & Papadimitriou, 2006). Thus, the
interesting bounds in the hypertree case are as given in the corollary. Also, this means
that the results can be easily extended to GGs with (original) graphs that have O(log(n))
treewidth as long as k is bounded. Finally, if a graph with n nodes has treewidth w′,
then the graph has at most (w′ + 1)n edges (see, e.g., the work of Becker & Geiger, 2001).
Because the number of edges of a GG primal graph is O(k2n), w′ = O(log(n)) implies
k = O(

√
log(n)).

Theorem 2. There exists an algorithm that, given as input a number ε > 0 and an n-player
m-action GG with maximum neighborhood size k and primal-graph treewidth w′, computes
an ε-Nash equilibrium of the game in time 2O(w′)n log(n) + n[(mk/ε)mk]O(w′).

Corollary 4. There exists a PTAS for computing an approximate Nash equilibria in n-
player GGs with bounded maximum number of actions, bounded neighborhood size, and
primal-graph treewidth w′ = O(log(n)).

The new discretization bounds also provide significant improvements on the representa-
tion results and running times for NashProp and its variants (Kearns et al., 2001; Ortiz &
Kearns, 2003). The new bounds may also provide improvements to previous discretization-
based schemes for computing ε-Nash equilibria in other similar models, such as those in the
work of Singh, Soni, and Wellman (2004) and Soni et al. (2007).

6. Graphical Multi-hypermatrix Games: Generalizing Graphical Games

This section introduces graphical multi-hypermatrix games (GMhGs), a class of games that
extends and generalizes GGs while capturing many classical game-theoretic model repre-
sentations, as discussed below. This class of games is not some theoretical concoction: they
are not only convenient in their generality, covering a large number of existing models, but
also practical. Indeed, Yu and Berthod (1995) used the same type of games to establish an
equivalence between local maximum-a-posteriori (MAP) inference in Markov random fields
and the Nash equilibria of the induced game. Ortiz (2015) provides a brief summary and
references to other examples of subclasses of GMhGs applied in artificial intelligence and
other fields. We briefly discuss another application in AI after stating Theorem 3, the core
theorem on sparse discretization in GMhGs.

Definition 4. A graphical multi-hypermatrix game (GMhG) is defined by a set V of n
players, and for each player i ∈ V , a set of actions, or pure strategies, Ai; a set Ci ⊂ 2V
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of cliques, or hyperedges, such that if C ∈ Ci then i ∈ C; and a set {M ′i,C : AC → R |
C ∈ Ci} of local-clique payoff matrices. For each player i ∈ V , the sets N(i) ≡ ∪C∈CiC
and Ni ≡ {j ∈ V | i ∈ N(j), j 6= i} are the clique of players affecting i’s payoff including i
(i.e., i’s neighborhood) and those affected by i not including i, respectively. The local and
global payoff matrices M ′i : AN(i) → R and Mi : A → R of i are (implicitly) defined as
M ′i(xN(i)) ≡

∑
C∈CiM

′
i,C(xC) and Mi(x) ≡M ′i(xN(i)), respectively.

Connections to other game classes. If for each player, each clique set is a single-
ton, we obtain a (possibly asymmetric) graphical game, and the single clique in the set
defines the neighborhood of the player (i.e., in that case, Ci = {N(i)} for all i). If, in
addition, each clique is the complete set of players, then the game is a standard normal-
form game, also called strategic- or matrix-form game (i.e., in that case, N(i) = V for all
i). A GMhG becomes a classical, standard polymatrix game (Janovskaja, 1968) if for each
player i, Ci = {{i, j} | j ∈ V, j 6= i}, which is the set of cliques of pairs of nodes involving
the player and every other player. 10 In contrast to hypergraphical games (Papadimitriou
& Roughgarden, 2008), a GMhG is more expressive, in part because a GMhG does not
require that the same “sub-game” (i.e., local-clique payoff hypermatrix) be shared among
all players in the clique of the “sub-game.” For example, a local-clique payoff hypermatrix
may appear in the summation defining the local payoff hypermatrix of exactly one player.
A GMhG has the polynomial intersection property and thus a polynomial correlated equi-
librium scheme (Papadimitriou & Roughgarden, 2008).

Representation size. The representation size of a GMhG is Θ
(∑

i∈V
∑

C∈Ci
∏
j∈C |Aj |

)
=

O(nκmc), where κ ≡ maxi∈V |Ci| and c ≡ maxi∈V maxC∈Ci |C|. Hence, the size is dom-
inated by the representation of the local-clique payoff matrices, which are each of size
exponential in their respective clique size. However, this representation size could be con-
siderably smaller than for a graphical game, which is exponential in the neighborhood size.
For example, if for each i, we have |Ci| ≤ k, and for each C ∈ Ci, we have |C| = 2, then the
GMhG becomes a graphical polymatrix game, with representation size O(nkm2), linear in
the maximum number of neighbors k, compared to O(nmk) for a standard graphical game
with “tabular” representations, which is exponential in k.

Payoff Scale. Normalizing the payoff of a GG in standard local strategic/normal-form
takes linear time in the representation size of the game. This is because we can find the
minimum and maximum local payoff values for each local payoff hypermatrix simply by
going over each payoff value in the hypermatrix in sequence. 11 However, such an approach is
intractable in GMhGs in general. Denote the maximum and minimum payoff values for each
player i ∈ V, ui ≡ maxxNi

∑
C∈CiM

′
i,C(xC) and li ≡ minxNi

∑
C∈CiM

′
i,C(xC), respectively.

Computing both ui and li is NP-hard. To see this, note that ui and li are the result of a max
and min operation over an additive function of the set of the player’s hyperedges and its
possible joint-actions. It is easy to reduce the problem of finding a solution to an arbitrary
contraint network to that of computing both ui and li for each player i. Hence, in general,

10. Note that this is the standard definition of polymatrix games. It requires symmetry in the hyperedges:
for all pair of players i, j ∈ V, i 6= j, {i, j} ∈ Ci ∩ Cj .

11. Recall that the “hypermatrix” of each player in a GG, as originally defined, reduces to a standard
multi-dimensional matrix that is exponential in the size of the player’s neighborhood.
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we do not have much of a choice but to assume that the payoffs of all players are in the
same scale. That way, using a global approximation-quality value ε is meaningful. Here, we
compute the individual maximum and minimum values of each hypermatrix payoff of each
player as a way to set up the sparse uniform-discretization.

Some additional notation is necessary before stating the theorem, whose proof appears
in Appendix A. Denote by ui,C ≡ maxxC∈AC M

′
i,C(xC) and li,C ≡ minxC∈AC M

′
i,C(xC)

the largest and smallest payoff values achieved by the local-grid payoff hypermatrix M ′i,C ,
respectively; and by Ri,C ≡ ui,C − li,C its largest range of values.

Theorem 3. (Sparse Discretization for Graphical Multi-hypermatrix Games) For
any graphical multi-hypermatrix game and any ε such that

0 < ε ≤ 2 min
i∈V

∑
C∈Ci Ri,C (|C| − 1)

maxC′∈Ci |C ′| − 1
,

a (uniform) discretization with

si =

⌈
2 |Ai| maxj∈Ni

∑
C∈Cj Rj,C (|C| − 1)

ε

⌉
for each player i is sufficient to guarantee that for every exact Nash equilibrium of the game,
its closest (in `∞ distance) joint mixed strategy in the induced discretized space is an ε-Nash
equilibrium of the game.

The generalized bound has already proved useful to derive and analyze dynamic-pro-
gramming algorithms for computing approximate Nash equilibria in non-trivial special cases
of interdependent defense (IDD) games with specific, practical graph structures. Chan,
Ceyko, and Ortiz (2012) introduced IDD games to model, study, and analyze security and
defense mechanisms for deterrence in network-structured interdependent security systems.
In an IDD game, each node in the graph represents an internal agent or “site” in the
network graph under the risk of a deliberate attack from an external agent, also called
the “attacker,” as a model abstraction. Each site individually and voluntarily decides
whether it is cost-effective to protect itself against a potential attack. One objective is
the potential to study the effect of minimal interventions in overall system security for
deterrence purposes. Chan and Ortiz (2015) use a corollary of Theorem 3 to design an
FPTAS for computing an approximate Nash equilibrium in IDD games with directed-tree-
structured graphs over the “sites” in the network. 12 The key point of the result is that the
number of actions/pure-strategies of the attacker is not constant, but linear in the number
of players (i.e., O(n), using the notation here). Typically, under such circumstances, naively
applying an algorithm such as TreeProp or NashProp would require worst-case running-
time exponential in n log n (i.e., O(nn)). And that is just to compute each message-passing
multi-dimensional table. In addition, each table itself would require space exponential in n
(i.e., Ω(2n)), even under the special cases we considered.

Unlike for standard GGs, the broader algorithmic and computational implications of
the sparse discretization in GMhGs remain open.

12. This result extends easily to IDD games with graphs of bounded (hyper)tree width, by following the stan-
dard approach used to derive algorithms based on serial dynamic programming in constraint (Dechter,
2003) and probabilistic (Koller & Friedman, 2009) graphical models in AI.
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Appendix A. Proof of Theorem 3

This appendix presents a derivation for the most general case of GMhGs. It is important
to note that the derivation of the proof is considerably simpler if one specifically considers
2-action GGs, as Kearns et al. (2001) originally did.

To simplify notation, given any joint mixed-strategy (i.e., a product distribution) p, for
all B ⊂ V , and xB ∈ AB, we denote by p(xB) ≡

∏
i∈B pi(xi) =

∑
x−B

p(xB, x−B) the joint

mixed-strategy over players in B only (i.e., marginal product-distributions of p over the
joint-actions of players in B). Let p and q be two joint mixed strategies and, for each player
i and each action xi, denote by ∆i(xi) ≡ pi(xi) − qi(xi). In a slight abuse of notation, let
∆(xS) ≡

∏
k∈S ∆k(xk).

The following very simple lemma is a cornerstone of the proof.

Lemma 1. (Product-Distribution Differences) For any clique B ⊂ V of players, for
any clique joint action xB,

p(xB)− q(xB) =
∑

S∈2B−∅

∆(xS) q(xB−S) .

Proof. The lemma follows by applying a binomial expansion:

p(xB) =
∏
j∈B

(qj(xj) + ∆j(xj))

=
∑
S∈2B

∆(xS) q(xB−S)

=q(xB) +
∑

S∈2B−∅

∆(xS) q(xB−S) .
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To further simplify the presentation of the proof, it is convenient to introduce a slight
abuse of notation: for all, i ∈ C,C ∈ Ci, B, S ⊂ C,B ∩ S = ∅, xS ∈ AS , pC−B−S ∈ PC−B−S ,
let M ′i,C(xS ,∆B, pC−B−S) ≡

∑
xB∈AB ∆(xB)M ′i,C(xS , xB, pC−B−S).

The following useful claim follows immediately from the last lemma of joint product
distribution differences (Lemma 1).

Claim 1. Under the conditions of Lemma 1, for all i ∈ V , C ∈ Ci, B ⊂ C, xB ∈ AB and
pC−B, qC−B ∈ PC−B, we have

M ′i,C(xB, pC−B)−M ′i,C(xB, qC−B) =
∑

S∈2C−B−∅

M ′i,C(xB,∆S , qC−B−S) .

Proof. Applying the last lemma on the differences between product distributions (Lemma 1),
we have

M ′i,C(xB, pC−B)−M ′i,C(xB, qC−B) =
∑
xC−B

 ∑
S∈2C−B−∅

∆(xS)q(xC−B−S)

M ′i,C(xC)

=
∑

S∈2C−B−∅

∑
xS

∆(xS)
∑

xC−B−S

q(xC−B−S)M ′i,C(xC)

=
∑

S∈2C−B−∅

M ′i,C(xB,∆S , qC−B−S) .

Using some algebra we can show another useful claim.

Claim 2. Under the conditions of Lemma 1, for all i ∈ V , and C ∈ Ci, we have∑
S∈2C−∅

M ′i,C(∆S , qC−S) =
∑

B∈2C−{i}−∅

M ′i,C(pi,∆B, qC−B−{i}) .

Proof. First note that we can decompose the left-hand side of the equation in the claim as∑
S∈2C−∅

M ′i,C(∆S , qC−S) =
∑

B∈2C−{i}−∅

M ′i,C(qi,∆B, qC−B−{i})+∑
B∈2C−{i}−∅

M ′i,C(∆i,∆B, qC−B−{i}) .

Now note that, using the definition of ∆i, we have

M ′i,C(∆i,∆B, qC−B−{i}) =M ′i,C(pi,∆B, qC−B−{i})−M ′i,C(qi,∆B, qC−B−{i}) .

The claim follows after making the appropriate substitution and simplifying:∑
S∈2C−∅

M ′i,C(∆S , qC−S) =
∑

B∈2C−{i}−∅

M ′i,C(qi,∆B, qC−B−{i})+∑
B∈2C−{i}−∅

(M ′i,C(pi,∆B, qC−B−{i})−M ′i,C(qi,∆B, qC−B−{i}))

=
∑

B∈2C−{i}−∅

M ′i,C(pi,∆B, qC−B−{i}) .
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Suppose p is a Nash equilibrium of the game, which must exist by Nash’s Theorem (Nash,
1951). Applying the last two claims above, we obtain

Mi(p) =Mi(q) +
∑
C∈Ci

∑
S∈2C−∅

M ′i,C(∆S , qC−S)

=Mi(q) +
∑
C∈Ci

∑
B∈2C−{i}−∅

M ′i,C(pi,∆B, qC−B−{i})

≥max
x′i

Mi(x
′
i, p−i)

= max
x′i

Mi(x
′
i, q−i) +

∑
C∈Ci

∑
B∈2C−{i}−∅

M ′i,C(x′i,∆B, qC−B−{i})

 .
Rearranging and simplifying, we obtain the following expression:

Mi(q) ≥max
x′i

Mi(x
′
i, q−i)+∑

C∈Ci

∑
B∈2C−{i}−∅

(
M ′i,C(x′i,∆B, qC−B−{i})−M ′i,C(pi,∆B, qC−B−{i})

)
.

Let q be the closest (in `∞ distance) joint mixed strategy in Ĩ, defined using sizes si as
given in the statement of the theorem, to exact Nash equilibrium p. Hence, we have

|∆i(xi)| ≤
ε

2 |Ai| maxj∈Ni
∑

C∈Cj Rj,C (|C| − 1)
.

Consider the conditional expected hypermatrix payoff difference in parenthesis within the
innermost summation inside the maximization of the equilibrium condition above. Noting
that

|M ′i,C(x′i, xB, qC−i,B )−M ′i,C(pi, xB, qC−i,B )| ≤ Ri,C ,

we obtain the following lower bound on that innermost summation:

(
M ′i,C(x′i,∆B, qC−i,B )−M ′i,C(pi,∆B, qC−i,B )

)
≥
∑
xB

[∏
k∈B
|∆k(xk)|

]
(−Ri,C)

=−Ri,C
∑
xB

∏
k∈B
|∆k(xk)| . (1)
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We can upper-bound the last factor in the right-hand side of the last expression as∑
xB

∏
k∈B
|∆k(xk)| =

∏
k∈B

∑
xk

|∆k(xk)|

≤
∏
k∈B

∑
xk

ε

2 |Ak| maxj∈Nk
∑

C′∈Cj Rj,C′ (|C
′| − 1)

=
∏
k∈B

ε

2 maxj∈Nk
∑

C′∈Cj Rj,C′ (|C
′| − 1)

≤
∏
k∈B

ε

2
∑

C′∈Ci Ri,C′ (|C
′| − 1)

=

(
ε

2
∑

C′∈Ci Ri,C′ (|C
′| − 1)

)|B|
.

Thus, using the resulting lower bound on the expression given in (1), we obtain

Mi(q) ≥ max
x′i

Mi(x
′
i, q−i)−

∑
C∈Ci

∑
B∈2C−{i}−∅

Ri,C

(
ε

2
∑

C′∈Ci Ri,C′ (|C
′| − 1)

)|B|
.

The second term in the right-hand side of the last expression equals

∑
C∈Ci

Ri,C
∑

B∈2C−{i}−∅

(
ε

2
∑

C′∈Ci Ri,C′ (|C
′| − 1)

)|B|

=
∑
C∈Ci

Ri,C

(1 +
ε

2
∑

C′∈Ci Ri,C′ (|C
′| − 1)

)|C|−1

− 1


≤
∑
C∈Ci

Ri,C

[
ε (|C| − 1)∑

C′∈Ci Ri,C′ (|C
′| − 1)

]
= ε .

The last inequality follows from using the upper-bound condition on ε given in the statement
of the theorem and applying the well-known inequality, 1 + z ≤ exp(z) ≤ 1 + z + z2 for
|z| < 1 (Cormen, Leiserson, & Rivest, 1990). This completes the proof of the theorem.
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