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Abstract

The family of methods collectively known as classifier chains has become a popular
approach to multi-label learning problems. This approach involves chaining together off-
the-shelf binary classifiers in a directed structure, such that individual label predictions
become features for other classifiers. Such methods have proved flexible and effective and
have obtained state-of-the-art empirical performance across many datasets and multi-label
evaluation metrics. This performance led to further studies of the underlying mechanism
and efficacy, and investigation into how it could be improved. In the recent decade, nu-
merous studies have explored the theoretical underpinnings of classifier chains, and many
improvements have been made to the training and inference procedures, such that this
method remains among the best options for multi-label learning. Given this past and on-
going interest, which covers a broad range of applications and research themes, the goal
of this work is to provide a review of classifier chains, a survey of the techniques and ex-
tensions provided in the literature, as well as perspectives for this approach in the domain
of multi-label classification in the future. We conclude positively, with a number of rec-
ommendations for researchers and practitioners, as well as outlining key issues for future
research.

1. Introduction

Interest in multi-label classification has grown at an explosive pace in the last 10 years, from
only a few dozen explicit mentions in the scientific literature to hundreds of new papers per
year, a significant collection of benchmark datasets, and a number of dedicated software
frameworks. Applications are as diverse as those found in multi-class classification, and
several families of methods have emerged. Reviews of the area are given by, for example,
Zhang and Zhou (2014), and in the broader context of multi-output learning, by Waegeman
et al. (2019).

The defining aspect of multi-label learning is the association of multiple binary class la-
bels to a single instance. A multi-label dataset can be denoted D = {x(i),y(i)}Ni=1, consisting

of N examples. Each i-th instance x(i) is associated with a label vector y(i) = [y
(i)
1 , . . . , y

(i)
L ];

there are L elements corresponding to L label concepts, and each element y
(i)
j ∈ {0, 1} in-

dicates the relevance (if 1) or not (if 0) of the j-th concept to this instance. A multi-label
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model is tasked with providing predictions ŷ = [ŷ1, . . . , ŷL] for any given test instance x̃.
Note that traditional multi-class learning also considers L concepts but, in contrast, only
a single concept can be relevant to any particular instance. In both types of learning,
each instance is typically multi-dimensional, described by D features (also referred to as
attributes).

Figure 1a shows an example of a multi-label dataset. Figure 1b shows how this dataset
can be naturally transformed, or reduced, into L binary problems that are solved indepen-
dently. This approach, of applying independent binary classifiers, is known as the binary
relevance method, which has become a typical baseline in multi-label studies.

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

x̃ ŷ1 ŷ2 ŷ3 ŷ4

(a) A multi-label dataset, with test in-
stance x̃.

X Y1

x(1) 0

x(2) 1

x(3) 0

x(4) 1

x(5) 0

x̃ ŷ1

X Y2

x(1) 1

x(2) 0

x(3) 1

x(4) 0

x(5) 0

x̃ ŷ2

X Y3

x(1) 1

x(2) 0

x(3) 0

x(4) 0

x(5) 0

x̃ ŷ3

X Y4

x(1) 0

x(2) 0

x(3) 0

x(4) 1

x(5) 1

x̃ ŷ4

(b) A transformation into L two-class
datasets to which independent binary
classifiers can be applied.

Figure 1: Illustration of how independent classifiers can be applied to a multi-label classifica-
tion problem by transformation (often explicitly called a reduction) into separate datasets.
Each instance is also a vector, not expanded for notational simplicity. The goal of a model
is to predict all labels ŷj |j = 1, . . . , L for a given test instance x̃.

The method of classifier chains was described by Read et al. (2009) (later, with an
extended analysis, by Read et al., 2011), and also proposed contemporaneously by Kaj-
danowicz and Kazienko (2009). The idea is simple: connect binary classifiers in a ‘chain’,
such that the output prediction of one classifier is appended as an additional feature to the
input of all subsequent classifiers. This method is one of many approaches that seeks to
model relationships between labels, thus obtaining improved performance over the binary
relevance approach. There are now dozens of variants and analyses of classifier chains, and
the method has been involved in at least a hundred empirical evaluations, often proving
among the most competitive, even in relatively recent comparisons (Moyano, Galindo, Cios,
& Ventura, 2018). On the grounds of such interest, much of which is still ongoing, the goal
of this paper is to provide an overview of landmark developments and analyses, and also to
discuss perspectives exemplified by various methods that have been proposed.

For the purposes of our investigation, we define classifier chains under the following
two properties: 1) one classifier per label, considered as a node in a chain, where 2) the
chain is any directed acyclic structure in which the output of one classifier becomes input
to the subsequent classifiers to which it is connected in that structure. This is a broader
definition than in the initial work proposing classifier chains, which explicitly considered a
fully-connected cascade; to afford us greater flexibility to follow more recent developments
in the same context. Arguably, we could speak of “directed acyclic graphs of classifiers” but
we retain the terminology of a ‘chain’ in line with the bulk of the related literature. Indeed,
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the flexibility of this method is certainly one of the main factors behind its popularity, and
the large number of variants offered in the literature.

If we consider chains which are not connected at all, then we recover the binary relevance
method. We remark that “binary relevance”, although typically denoting independent clas-
sifiers, can be considered itself a family of methods that encompass the full spectrum of
classifier chains (Burkhardt & Kramer, 2015; Zhang, Li, Liu, & Geng, 2018) from indepen-
dent classifiers to fully-connected chains, without conflict of terms. An important concept is
the hyperparametrization of base classifiers; here, any suitable binary classifier (e.g., logistic
regression, decision trees, support vector machines) can be considered. In the deterministic
sense, the j-th binary classifier, given an input instance x, produces predictions ŷj ∈ {0, 1}
indicating the relevance of each of the j-th labels as it pertains to that instance. For prob-
abilistic varieties of chains, discussed in Section 3.1, we should additionally assume that
a base classifier provides a probabilistic interpretation of this decision. It is worth noting
that the classifier chain then corresponds to an appropriately structured Bayesian network
in which the base classifiers define the conditional probability distributions at each node of
the network.

Graphically, the original formulation of classifier chains can be drawn as in Figure 2b, as
a fully connected chain. One could also refer to the fully connected structure as a cascade
or a fan to distinguish from a Markov chain where each node is connected only to the
previous node and following node – which is also a possible configuration in this context
(see Figure 2c, and, for example, Read, Martino, & Hollmén, 2017). Other variants are
also possible, such as trees (for example, Figure 2d, and Enrique Sucar et al., 2014), and
arbitrary directed acyclic graphs (DAGs) (for example, Figure 2e, and Zhang & Zhang,
2010). The mechanism of all these configurations is the same: the incoming edges to the
j-th node represent features to the j-th classifier, and the outgoing edge its prediction.
Figure 2a is equivalent to binary relevance (and thus, Figure 1b). Even though undirected
graphical models are related (further discussion in Section 5), we consider those to belong
to a separate class of model due to the different inference strategies involved.

y4y3y2y1

x

(a)

y4y3y2y1

x

(b)

y4y3y2y1

x

(c)

y4y3y2y1

x

(d)

y4y3y2y1

x

(e)

y3y1y2y4

x

(f)

Figure 2: Different classifier chain structures for a problem with 4 labels. Note the difference
between (b) and (f) is the order of labels.

Figure 3 shows the dataset transformation corresponding to Figure 2b (which can be
contrasted with that of independent models; Figure 2a and Figure 1b); one dataset per
node/label. It is straightforward to make transformations for the other cases exemplified
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in Figure 2 in a related fashion. Any binary classifier can be employed on the transformed
datasets.

X Y1

x(1) 0

x(2) 1

x(3) 0

x(4) 1

x(5) 0

x̃ ŷ1

X Y1 Y2

x(1) 0 1

x(2) 1 0

x(3) 0 1

x(4) 1 0

x(5) 0 0

x̃ ŷ1 ŷ2

X Y1 Y2 Y3

x(1) 0 1 1

x(2) 1 0 0

x(3) 0 1 0

x(4) 1 0 0

x(5) 0 0 0

x̃ ŷ1 ŷ2 ŷ3

X Y1 Y3 Y3 Y4

x(1) 0 1 1 0

x(2) 1 0 0 0

x(3) 0 1 0 0

x(4) 1 0 0 1

x(5) 0 0 0 1

x̃ ŷ1 ŷ2 ŷ3 ŷ4

Figure 3: The transformation of a dataset (that of Figure 1a) for the application of classifier
chains (as shown in Figure 2b). It is worth highlighting that (as in Figure 1) the 0/1

values shown in the tables correspond to the values y
(i)
j found in the training data; whereas

ŷ1, . . ., ŷL (in the final row) are all predicted values not available at training time.

Classifier chains have obtained state-of-the-art performance in many empirical evalua-
tions, including a variety of datasets and evaluation metrics (see, for example, Madjarov
et al., 2012; Moyano et al., 2018, and references therein). This strong off-the-shelf per-
formance, their simplicity of implementation, and the open choice of base classifiers to fit
many preferences and suitability to different domains, has led to their wide usage and on-
going development. A search in the academic literature reveals they have been used in
diverse applications ranging from vision and natural language domains, to bioinformatics,
health analytics, time series, and route forecasting. Although we do not explicitly tackle
this setting in this manuscript, the method of classifier chains (unlike many other multi-
label methods) generalizes easily to the case of having multiple (more than two) values per
label, a task sometimes called multi-label multi-class, multi-dimensional, or multi-objective
classification, see, for example, the work by Kocev et al. (2007), Read et al. (2014).

In addition to attracting interest from practitioners on account of their performance,
classifier chains have also raised many questions of a theoretical nature: How can their
efficacy be explained? And what do the learning algorithms for these chains optimize?
(We look at these issues in Section 3). Tied in with this are further questions that have
driven much related work: Is there an optimal chain order and, if so, how to find it?
(This is covered in Section 4). Can chains be seen as a special case of other methods (or
vice versa)? (See our discussion of related work in Section 5). Following an attempt at
addressing these questions, we provide perspectives and discuss open issues in Section 6,
and give recommendations to practitioners in Section 7, before concluding (Section 8).

2. Preliminaries: Multi-label Learning

The general concept of multi-label classification and classifier chains has been introduced
in Section 1 in terms of mapping instances x to label-vectors y. Here we provide additional
notation and concepts which are relevant to a more in-depth and theoretical discussion.

Beginning with a binary single-label problem, we seek a classifier h to map instances x to
y ∈ {0, 1}. It should carry out this mapping, i.e., make a decision/classification, according
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to the loss function of interest. A common objective is to minimize 0/1 loss

`0/1(y, ŷ) = [[y 6= ŷ]] =

{
0 y = ŷ (inputs match exactly)

1 otherwise
(1)

which is equivalent to maximizing classification accuracy. In this paper we use J to denote a
payoff function such as accuracy, where higher is better; note that `0/1(y, ŷ) = 1−Jacc.(y, ŷ).
Minimizing the 0/1 loss implies that in a probabilistic setting

ŷ = h(x) = argmax
y∈{0,1}

P (y|x) (2)

i.e., the mode of the posterior distribution (maximum a-posteriori, or MAP estimate).
In multi-label classification, there are 2L possible classifications (corresponding to dis-

tinct combinations/subsets of L labels), rather than just 2, hence:

ŷ = [ŷ1, . . . , ŷL] = h(x) = argmax
y∈{0,1}L

P (y|x) (3)

We use the notation P (y|x) ≡ P (Y = y|X = x), corresponding to a single number,
i.e., P (y|x) ∈ [0, 1], to represent the probability that y1, . . . , yL are the label relevance
indicators, given test instance x.

The 0/1 loss can be normalized, providing a value ∈ [0, 1] for N training examples as

`0/1(D) =
1

N

N∑
i=1

`0/1(y(i), ŷ(i)) (4)

with training set D, where `0/1(y(i), ŷ(i)) – referring to Eq. (1) – returns 0 only if each single
bit matches exactly. (thus often referred to as ‘exact match’ in payoff form; `0/1(D) =
1− Jexact-match(D)). We may rewrite explicitly

`0/1(y, ŷ) = [[y 6= ŷ]] =

{
0
∑L

j=1[[yj = ŷj ]] = L

1 otherwise

The sum over indices i = 1, . . . , N is allowed by the assumption of independent and identi-
cally distributed samples in the training set.

The choice of this loss coincides with the general intuition that we should model labels
together, since an incorrect combination of labels by any degree gives worst possible loss
for that instance. As such it has motivated and justified many methods. It also implies
exponential complexity (if all 2L label combinations are to be modeled explicitly), therefore
providing a major challenge to overcome. Classifier chains form one family of such methods.

There are numerous (more than a dozen) often-used multi-label loss metrics; some of
them are drastically different from each other. For example, another loss frequently referred
to in the multi-label literature is Hamming loss:

`H(D) =
1

NL

N∑
i=1

L∑
j=1

`0/1
(
y

(i)
j , ŷ

(i)
j

)
=

1

L

L∑
j=1

(
1

N

N∑
i=1

`0/1
(
y

(i)
j , ŷ

(i)
j

))
(5)
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Even if expressed here in terms of (single-label) 0/1 loss, Hamming loss can be considered
on the opposite end of the spectrum to 0/1 loss as a multi-label metric, and indeed in-
dicates that we can model all labels individually and independently, as we have explicitly
expressed on the right hand side; i.e., it can be tackled by independent binary classifiers –
via minimizing Eq. (1) on a per-label basis.

What does it mean to model labels together (or not)? Statistically, we can speak of
modeling label dependence. We may speak of global dependence (or marginal/unconditional
dependence) between two label variables Y1 and Y2 when

P (Y ) = P (Y1)P (Y2|Y1) = P (Y2)P (Y1|Y2) 6= P (Y1)P (Y2)

and conditional dependence (conditioned on input x) implies that

P (Y |x) = P (Y1|x)P (Y2|Y1,x) = P (Y2|x)P (Y1|Y2,x) 6= P (Y1|x)P (Y2|x) (6)

(we use upper case Y = [Y1, Y2] here to make explicit that these inequivalences can hold
for any combinations [y1, y2] ∈ {0, 1}2). Figure 4 provides visual intuition in the form of
graphical models. Also note that an in-depth introduction to these concepts is given in the
context of multi-label learning by Dembczyński et al. (2012a), and we refer the reader there
for a thorough treatment.

Y1

Y2

(a) Global indepen-
dence

Y1 Y2

(b) Global depen-
dence

X

Y1 Y2

(c) Conditional in-
dependence

X

Y1 Y2

(d) Conditional de-
pendence

Figure 4: Different types of dependence w.r.t. Y1 and Y2; shown here as Bayesian networks.

Note that in Eq. (6) the second and third terms are equivalent expansions of the joint
full conditional (left term). This means that Figure 4d (also Figure 4b) showing dependence
can be equivalently drawn with the arrow pointing from Y2 to Y1. More generally, for L
labels, conditional dependence implies

P (Y |x) = P (Y1|x)

L∏
j=2

P (Yj |x, Y1, . . . , Yj−1) (7)

6=
L∏
j=1

P (Yj |x)

and again here, any permutation of j = 1, . . . , L is valid.
The expansion into conditional distributions is convenient for expression as a Bayesian

network, such as those drawn in Figure 2, where directed edges show the conditional de-
pendence. Eq. (7) specifically captures full dependence corresponding to either Figure 2b
or Figure 2f (among other possible label orders). Sparser structures can model sparser
dependence relations, by replacing Y1, . . . , Yj−1 with the corresponding parents of node Yj .
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Thus far, we have provided the groundwork for motivating classifier chains: performance
metrics such as 0/1 loss which imply modeling labels together (i.e., linking them in the chain
structure). Further, we have briefly reviewed label dependence, a theoretical mechanism
upon which to view such an approach. Although Hamming loss entails the goal of high
performance on each label individually and independently (rather than jointly together) –
such a goal should also be a goal of a multi-label method – and typically will correlate with
it; sometimes the minimizer will even coincide with that of 0/1 loss (Dembczyński et al.,
2012a); an obvious example is where classification can be carried out perfectly and all losses
are 0.

Table 1: A toy training dataset with empirical distributions. In the conditional distributions
specifically exemplified here, test instance x̃ = [1, 1], and ŷ1 = 1. Notice that either
ŷ = [0, 1] or ŷ = [1, 0] fullfil Eq. (3) for minimizing 0/1 loss, yet minimizing Hamming loss
suggests [0, 0] according to Eq. (2) per label. By comparing P (·) and P (·|x̃) in tables (b), (c)
and (d), we find both global dependence and conditional dependence under Eq. (6); but we
must recall that these P are only empirical estimations via counting from training dataset
(a) (D = {x(i),y(i)}Ni=1 where L = 2, N = 8); specifically P (y) = 1

N

∑N
i=1[[y(i) = y]] and

P (y|x̃) = P (y, x̃)/P (x̃) where P (y, x̃) = 1
N

∑N
i=1[[y(i) = y]][[x(i) = x̃]]; e.g., P ([1, 0]|x̃) =

(1
8 ·2)/1

2 = 0.5; and, i.e., not necessarily equivalent to either underlying ground truth or test
data distributions. Note that the tables can be understood in conjunction with Figure 4.

X Y1 Y2

[0, 1] 1 1
[0, 1] 0 0
[1, 0] 0 0
[0, 0] 0 0
[1, 1] 1 0
[1, 1] 1 0
[1, 1] 0 1
[1, 1] 0 1

(a) Training dataset

y P (y) P (y|x̃)

[0, 0] 0.375 0.
[0, 1] 0.25 0.5
[1, 0] 0.25 0.5
[1, 1] 0.125 0.

(b) Estimated distributions
over y

y1 P (y1) P (y1|x̃)

0 0.625 0.5
1 0.375 0.5

y2 P (y2) P (y2|x̃)

0 0.625 0.5
1 0.375 0.5

(c) Estimated distributions
over yj

y2 P (y2|ŷ1) P (y2|x̃, ŷ1)

0 0.67 1.
1 0.33 0.

(d) Estimated distributions
over y2|ŷ1

At this point, however, it is crucial to emphasise that the equivalence in Eq. (6), de-
noting label dependence, holds only for ground-truth P . In real-world problems, we do not
have true underlying distributions P and instead have to approximate them, typically in a
data-driven fashion (learning from the training data). Table 1 shows example empirical dis-
tributions obtained by counting of co-occurrence frequencies from training data. Different
base classifiers will embody different approximations, but whichever model class we choose,
it is unlikely that these estimated P will be the ground truth. This departure (from an
idealized ground-truth model) is furthermore exacerbated by approximate inference (which
is increasingly needed for larger numbers of labels, given the exponential increase in label
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combinations). This issue has major implications regarding the design of classifier chains;
it raises important questions regarding their performance and choice of chain structure,
and lays the basis for a discussion of the complex relationship between chain structure and
performance under different loss functions. We address these questions in the following
sections of this article.

3. How Classifier Chains Work

In this section, we explore the mechanism of classifier chains, looking to explain reasons for
their efficacy on multi-label problems.

As with most machine learning methods, there are many angles from which to approach
and view classifier chains. We elaborate on two of these in the following subsections (similar-
ities to other methods will be approached in Section 5). We choose these two because they
illustrate two aspects leading to the success of chaining. In particular, the first (Section 3.1)
on account of its appealing probabilistic interpretation and how this relates to strong pre-
dictive performance particularly under 0/1 loss. The second (Section 3.2) is mainly about
explaining strong performance of chains under Hamming loss and improving performance
in general, by producing a stronger feature representation via chained labels. Indeed, if a
multi-label concept is well modeled, predictive performance will be strong across many loss
metrics or even – as mentioned in Section 2 – equivalent. Metrics may also be blended or
used as surrogates for each other (Park & Read, 2018).

In this section, we consider the fully-cascaded chain where each j-th base classifier
provides prediction

ŷj = hj(x, ŷ1, . . . , ŷj−1) (8)

but this can easily be generalized to any directed acyclic structure by replacing indices
1, . . . , j − 1 with the indices corresponding to the parent nodes of yj .

To build hj , one uses instances {[x(i), y
(i)
1 , . . . , y

(i)
j−1]}Ni=1 formed from the training data as

input, and corresponding {y(i)
j }Ni=1 as output. From this perspective, binary base classifiers

can then be trained in an off-the-shelf manner. We remind the reader that, conversely,
predictions ŷj (or their estimated probabilities) are not used (or known) at training time
(refer to Figure 3 for illustration) – at prediction time they are imputed recursively by the
model via Eq. (8).

It has been noticed by Senge et al. (2013), and is worth remarking here, that this
common way of training classifier chains, using the training labels as inputs, breaks a
common assumption of statistical learning, namely that the distribution of the training
data and test data should be identical. This is because at test time, the predicted labels
are used as inputs, yet these are not from the same distribution as the training data, as
that distribution is not known, and can only be approximated by the predictive distribution
used on test data. Further discussion on this special case is deferred to Section 5.3.

3.1 Classifier Chains as Probabilistic Models

The formalization of probabilistic classifier chains was proposed by Dembczyński et al.
(2010). The training process is identical to the ‘standard’ formulation, but an additional
requirement of the base classifiers hj is that they have a probabilistic interpretation (at
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least in the loose sense of a prediction ∈ [0, 1] that could be understood as a confidence):

ŷj = hj(x) := argmax
yj∈{0,1}

P (yj |x, y1, . . . , yj−1) (9)

With these models (or, more precisely, their probabilistic components), inference can be
phrased as a maximum a-priori (MAP) estimate, where Eq. (3) is developed as follows:

ŷ = argmax
y∈{0,1}L

P (y1|x)
L∏
j=2

P (yj |x, y1, . . . , yj−1) (10)

This corresponds to a minimization of the 0/1 loss (Eq. (4)), since the MAP estimate
Eq. (10) is the minimizer for this loss. Note, particularly, the expansion of the joint proba-
bility from Eq. (7) in correspondence with Figure 2b.

Figure 5 illustrates this idea as a probability tree where each path from root to leaf rep-
resents one combination of labels y ∈ {0, 1}L, associated with probability P (y|x), factored
across branches as per Eq. (10). Under this view, deterministic inference in classifier chains
as originally proposed by Read et al. (2009), follows a single path greedily through the tree.
This is an inexpensive and arguably crude approximation of Eq. (10) to the extent that
one can only talk of the method being a mode-seeker (Dembczyński et al., 2010), that is
to say it seeks out the MAP estimate1 in a greedy way, but is not guaranteed to find it.
On the other extreme, exploring all 2L paths provides a Bayes-optimal inference solution,
corresponding to the highest payoff (minimal 0/1 loss). While being a faithful evaluation of
Eq. (10), this exhaustive search is generally intractable, provoking the application of tree
search methods to efficiently trial a subset of paths, thereby approximating the best solution
at reduced cost: for example, Monte Carlo search, ε-approximate, beam search, or even A∗

search (the work by Mena et al., 2016 provides a comprehensive survey; with detailed refer-
ences and empirical results). Note also that, although typically set up to minimize 0/1 loss,
probabilistic classifier chains can be used with any loss function (Dembczyński, Waegeman,
& Hüllermeier, 2012b) including Hamming loss, unlike the original greedy inference which
seeks out the 0/1 minimizer in a non-optimal way. We can also see that goodness-of-fit
depends on chain structure, since if it is reduced to that of Figure 2a, chains will generally
not be able to minimize 0/1 because label dependencies cannot be modeled. We defer a
deeper discussion on chain structure to Section 4.

Although classifier chains may be configured to optimize different losses, ‘by default’
when making a prediction (supposing adequate connectivity and no steps taken to the
contrary) they are seeking a minimization of 0/1 loss (greedily, exhaustively, or on some
trade-off) for that prediction, using the given structure and test instance. This explains
the typically high performance under this and related metrics. Recall that, although the
base models are induced independently (i.e., the training process for hj is not dependent
on the outcome of training h1, . . . , hj−1 and can be carried out separately and even in
parallel – including the probabilistic chains), this is not the case at test time, where a
model’s inference procedure is explicitly dependent on the inference of the previous labels.
Moreover, training is done iteratively over labels, typically leading to a 0/1-loss minimization

1. One may remark that, with regard to the first label in the chain y1 (but only that one) it can be said to
be minimizing Hamming loss

691



Read, Pfahringer, Holmes, & Frank

x

0

0
0

0.5

10.5
0.2

1
0 0.288

0.9

10.1

0.8

0.4

1

0
0

0.4

1 0.2680.6
0.7

1
0

0.5

10.5

0.3

0.6

Figure 5: A probability tree corresponding to a fully-connected classifier chain (like Fig-
ure 2b) over three labels. The marginal p(yj |x, . . .) is shown on branches from level j−1 to
j, whereas P (y|x) is given for each full path. Note that in this example the nodes (labels) of
the best path, P ([0, 1, 0]|x) = 0.288, are not the same as those taken by ‘standard’ (greedy)
classifier chains, which picks P ([1, 0, 1]|x) = 0.268. Note also that there are 2L paths in
total (23 = 8 in this case).

or some approximation thereof. Given a particularly useful/powerful (and possibly large)
set of input features x, the additional predictive benefit of the extra label features may be
negligible – this is an informal way of stating that labels are approximately conditionally
independent of each other. In such a scenario, the minimizer for 0/1-loss and Hamming loss
is equivalent, and the ‘multi-label nature’ of the problem ceases to exist. However, it also
implies that the problem is ‘easy’ – studies invariably measure some form of conditional
label dependence; as we commented above at the beginning of this section.

3.2 Classifier Chains as Neural Networks

One might assume that if (probabilistic) classifier chains are set up to minimize 0/1 loss,
they will not show statistically significant improvement compared to independent classifiers
in cases where all label concepts are being evaluated independently, such as under Hamming
loss. However, it is widely shown that classifier chains do in fact often outperform indepen-
dent classifiers when labels are evaluated independently, even when the base model class is
identical (see, for example, empirical studies by Madjarov et al., 2012; Moyano et al., 2018;
Rivolli et al., 2020).

This apparent contradiction is resolved under a different conceptualisation of the base
classifiers. If we consider that models h1, . . . , hj−1 are part of the j-th model hj , then the
performance gain can be explained in terms of earlier labels offering themselves as a feature
space expansion for later labels in the chain (Dembczyński et al., 2012b; Read & Hollmén,
2017). Figure 6 makes this explicit by showing classifier chains as a feed-forward multi-layer
neural network (where base classifiers take the place of activation functions).

The result is comparable to the way latent nodes behave inside a standard multi-layer
neural network. One can recall the case of modeling the xor function, which is very well
known in the neural network community (see, for example, Goodfellow, Bengio, & Courville,
2016) for requiring a hidden layer for correct modeling. Figure 7 contrasts a typical failed
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x

y1z1

y2z2 z3

y3

Figure 6: Greedy inference in a classifier chain as a forward pass in a neural network. Base
classifiers take the place of activation functions into yj and identity functions to zk, e.g.,
z3 = f(y1) = y1 (can also be seen as delay nodes). Note that z-variables are thus either
vectors or scalars depending on input. There is no implication of back propagation in the
training process. Note y1 and y2 can be viewed as part of the model for predicting y3.

attempt of a linear classifier to achieve separability of points w.r.t. their xor class labels
vs. a successful solution in a classifier chain where separation is achieved via leveraging of
an earlier label prediction (or, in this example). We further point out that even a base
classifier with a linear decision boundary provides a non-linearity via its decision function.
For example, logistic regression has a sigmoid function, and uses a threshold to map into
discrete class output, ŷj ∈ {0, 1}.
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Figure 7: The xor label cannot be separated by a linear decision boundary in x ∈ R2 space
(left), but can be separated with an expansion to the feature space in the form of the xor
label (right; vertical axis). Note that jitter has been added to the points x ∈ {0, 1}2 for
purposes of illustration.

If classifier chains may be considered as a deep neural network of L + 1 layers, this is
only in respect of the forward pass. A full analogy to neural networks is limited by the fact
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that the nodes of a classifier chain are not latent nodes in the true sense; they are already
exemplified in the training set as training labels. We cannot claim deep learning, as we do
not back-propagate through the base classifiers. Hence, one may argue that classifier chains
should be considered as ‘feature-space expanders’ rather than neural networks, however
an analogy with elementary basis-function expansion is also limited since the formation of
these functions (in chains) is data driven and not expert driven. A deep network has been
leveraged and extended with synthetic/artificial labels and traditional hidden layers, for
example, by Read and Hollmén (2017), and Cisse, Al-Shedivat, and Bengio (2016); which
can be seen as developing a network deep in the label space (as opposed to in the input
space). Particularly the idea of adding “synthetic” labels to a chain blurs the line with
the concept of basis expansions (arbitrary non-linear functions, often polynomials or radial
functions). We refer again to this discussion later in Table 3.

It is also possible to pass probabilistic information from the marginal posterior on la-
bels down the chain instead of a hard classification, where each node emits real-valued
probabilities P (Yj = 1|x, . . .) ∈ [0, 1] instead of ŷj = hj(x) = argmaxyj∈{0,1} P (Yj =
yj |x, . . .)), according to the argument that this additional information on prediction un-
certainty/confidence is more expressive than a binary value. Under the view as a forward
pass through a neural network, this is a question of activation function/non-linearity as
represented by each base classifier.

Activation functions in a neural network are inherently simplistic, since it is the greater
network that embodies the necessary complexity. In a related way, a classifier chain (i.e.,
a network of base classifiers) is relatively less effective if we select a powerful non-linear
model class for these classifiers such as decision trees or even ensemble models (Read &
Hollmén, 2017); the stronger base learners make much of the connectivity in the chain
redundant. This is particularly so under Hamming loss, where the gain of chains compared
to independent models may in theory be reduced to zero. However, in practice the effect
varies greatly depending on the dataset and base classifier parametrization (Rivolli et al.,
2020). This is an important issue in classifier-chain design. In any case, this question of
connectivity leads us to the general question of how specifically to order or structure the
chain around its label nodes.

4. The Question of Chain Structure

Chain structure is a major issue, because it affects major aspects of the classification model
including, notably, predictive performance, computational scalability, and interpretation.
Note that we consider a variation in the order of nodes a specific variation of structure (no
need to consider them separately, as in some work).

The full-chain factorization (as in Eq. (10)) is in fact valid and equivalent for any order
of labels (see also Eq. (6) in Section 2) however, as explained earlier, this refers only to
the case where P is the ground-truth distribution and when the inference is exhaustive. In
practice (where these conditions do not hold) it is found that chain order has significant
effect. This has been empirically found in the literature (for example, by Read et al., 2014,
among others) and we additionally illustrate this here with the results in Figure 8: the
variability of performance among different chains is clearly exhibited.
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Figure 8: Jaccard score on the Emotions data for classifier chains (base classifier: logistic
regression) for the first 45 of the 720 possible chain orders compared. Also included are
the Jaccard scores obtained using independent classifiers and an ensemble of all 45 chains,
where the latter predicts the majority labels across all 45 chains.

Discussions of chain order frequently relate to the issue of error propagation (Senge,
del Coz, & Hüllermeier, 2014); a phenomenon related to the challenge faced in hidden
Markov models known as the label-bias problem (Dietterich, 2002) where it denotes the
effect of high uncertainty at some part of the chain leading to an error, which in turn
propagates down the chain causing further errors. There are numerous factors implicated
in this uncertainty. One obvious factor is the length of the chain, and here there are several
aspects to notice: a longer chain is inherently more susceptible to propagating error (simply
because of greater length for an error to propagate over); yet conversely – if this chain is
heavily cascaded/connected – it then also offers a potentially more powerful expansion of
feature space (by offering to leverage an increasing number of input nodes; recall, Section
3.2). Naturally, a longer chain is much more computationally challenging to manage, with
the number of possible predictions increasing exponentially and the number of possible
chain structures increasing hyper-exponentially (w.r.t. length/the number of labels L).

A sparse DAG is attractive because it simplifies the model, making it more efficient
and scalable, and it can even improve predictive performance (because it may reduce error
propagation by reducing propagation in general). Enforcing sparsity may also yield a more
interpretable model. Unfortunately, although such a hypothetical DAG is efficient to use,
finding it (as well as chain order) is a question of combinatorial complexity, and the possible
structures cannot be exhaustively trialed for more than a dozen or so labels: just 6 labels of
the benchmark emotions data (considered in Figure 8 w.r.t. Jaccard score2) imply a total
of 720 different chain orders, and 32 768 unique DAGs.

Due to the different factors involved (accuracy, efficiency, interpretation, . . . ) the mo-
tivation for structure search is often not clearly linked to any particular factor. In the fol-

2. Also known as Jaccard index, or Jaccard similarity coefficient, considered alongside Hamming and 0/1-
metrics by, for example, Park and Read (2018); higher is better
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lowing, we focus on the predictive performance (which arguably has motivated the largest
number of related studies in classifier chain order) and additionally treat efficiency and
interpretation with regard to this as a question of tradeoff.

In the following we discuss different options for structure search. In order to facilitate
this discussion and the different issues that arise, we consider the example of Figure 9,
featuring a toy example of three labels, each representing a logical operation on the two
binary inputs (recall also the related Figure 7).

or and xor

x

xorandor

x

orandxor

x

Figure 9: A toy problem, with two bits as input, x ∈ {0, 1}2, and three labels that represent
the logical operations on these bits. Shown are 3 of the 8 possible directed structures among
the three nodes (note that the order changes). The suitability of each depends on the
base classifier, where a non-linear classifier like a decision tree will solve all labels on any
structure, and logistic regression is only suitable on the middle with greedy inference; also
on the fully-connected structure (right) with exhaustive inference.

4.1 Random Ensembles

Using ensembles of randomly ordered chains was an early approach (Read et al., 2011) that
proved effective in a similar sense to other methods that induce diversity among ensemble
members and then combine predictions, such as bagging (Breiman, 1996), and a similar
bias-tradeoff analysis applies. Bagging is typically carried out using an unstable learning
algorithm such as a decision tree inducer. However, even if base models are not necessarily
unstable, imposing a random order on each chain model helps to achieve this effect. This
is related to, for example, imposing random structures of neural networks to make them
more diverse when used in an ensemble. The averaging effect of the ensemble thus reduces
the variance component of the error caused by this randomness. Note however that this
strategy essentially mitigates potentially poor chain orders rather than identifying a good
order (as seen in Figure 8 where the ensemble of chains is an average performer compared
to the best and worst chain orders).

4.2 Using a Label Hierarchy

Hierarchical classification has long been of interest in the multi-label community (Kir-
itchenko, Matwin, Nock, & Famili, 2006; Ramrez-Corona, Sucar, & Morales, 2014). A
hierarchy designed by a domain expert will almost certainly incorporate some form of label
dependence, and is available for use by an algorithm even prior to seeing the data. However,
such hand-built hierarchies and other structures (if they are available) are usually designed
for human interpretation of the data rather than to increase classifier performance. Indeed,
a model class has typically not even been considered at the time of the hierarchy design.
Top performance on hierarchical classification problems can be obtained with chain-based
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methods that completely ignore the hierarchy (Puurula et al., 2014), indicating that such
a consideration is not always necessary.

We do emphasise that results may differ if the hierarchy explicitly forms part of the
loss metric, but this goes beyond the scope of this work. In other cases, making use of a
hand-built/domain-expert hierarchy can be considered a special case of generating structure
from label dependence, which we discuss in the following, Section 4.3 (from the context of
learning the dependence from the data). Later, in Section 5.5, we discuss hierarchical
tree-based methods in the context of related work.

4.3 Structure from Label Dependence

A large part of the classifier-chains literature promotes structuring the chain according to
label dependencies discovered in the data. This idea is well founded; it would be inefficient
to place a chain structure over a set of labels that are independent of each other. And it is
also attractive in the sense that measuring dependence between variables is a highly studied
problem for which many statistical tools exist. A common recipe for classifier chain-based
methods (and other methods in the wider multi-label literature) has been to 1) measure label
dependence, and 2) use the dependence measurements to create a structure (often a sparse
one for efficiency reasons), and 3) deploy base classifiers and an inference method of choice.
This approach is taken by Zhang and Zhang (2010), Read et al. (2015), Kajdanowicz and
Kazienko (2013), Jun et al. (2019) and dozens more (many others cited by those authors).

However, although it may be intuitively obvious that dependence is connected to struc-
ture, exploiting this intuition successfully requires further thought.

A simple approach is to measure global label dependence by counting label co-occurrences,
and to derive a structure from this, where high dependence favors connectivity. An initial
inconvenience is the difficulty to obtain any representative sparse structure, due to the
almost ubiquitous inter-dependence of multi-label data. A second issue is that any global
dependence detected among labels in the dataset does not imply a corresponding advantage
connecting these in a chain structure at testing time where input instances are observed
(the reader may recall the discussion on global versus conditional dependence in Section 2,
and in particular Table 1).

Measuring conditional label dependence (dependence under observation of input x) im-
plies building models. Probabilistic classifiers hj (recall; Eq. (9)) incorporate a mechanism
for obtaining approximation P (·|x, · · · ) that can be used to check for conditional depen-
dence against Eq. (7). This immediately raises two questions: firstly, of the computational
complexity of building these models (as required for each measurement), and secondly, of the
effectiveness of the chosen model class for the particular problem; different base classifiers
will provide different approximations of ground-truth P .

An efficient way of estimating conditional label dependence was described by Zhang
and Zhang (2010). It requires building only one classifier per label (and is thus linear with
L) and thereafter only incurs the computational overhead in computing pairwise statistical
measurements of dependence between their errors. This is because the individual errors
εj = `(yj , ŷj) (of each j-th label, under loss function `) are conditioned on the instance via
the prediction: ŷj = hj(x). This approach is therefore relatively affordable.
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The model class of base classifiers has a huge effect on the ideal chain structure. Con-
sider, for example, the toy problem in Figure 9 having logical operations as labels (relating
also to Figure 7, as discussed in Section 3.2): if classifiers hj learn to predict their labels
perfectly given any pair of input bits x then there is no point in connecting any labels in
a chain (conditional independence holds). But of course, a perfect model cannot usually
be obtained in practice. For example, logistic regression fails to model the Yxor concept
correctly on its own, which may show up in measurements of dependence, and thus accord-
ing to the argument of structure from dependence, chain connectivity should be increased
around this label.

However, we remark that the order of labels in the chain (its directionality) cannot be
determined from measurements of statistical dependence. In Figure 9 it is apparent that
the order in which or and xor are given may be crucial to the success of the problem
(particularly when greedy inference is employed). Figure 8 also illustrates numerous cases
where a minor change in label order has a significant effect on accuracy, for example, notice
the considerable drop in accuracy from swapping labels 4 and 5 at the end of the chain.

To take this aspect into account, Zaragoza et al. (2011) create a connected structure,
obtained from measurements of label dependence, and then convert it into a number of
trees with different directionality across each one (namely, one tree per label, each label is
used once as a root node). As an ensemble method, it incurs the relative advantages and
disadvantages of such an approach (see Section 4.1). Particularly, having so many models
can be unsatisfactory in terms of computational complexity and interpretability (notably,
it does not shed any light onto causality).

Overall, label dependence measurements can potentially provide interesting insights into
interpreting the data (just as feature dependence is often measured in single-label data to
obtain this information) from a correlation point of view. Conditional dependence can hint
towards structures that might be useful for prediction, but this is ultimately dependent on
the selection of base classifiers and inference schemes – both of which are often plugged
in after a structure is set. As such, dependence cannot reveal causality, and it cannot not
unveil the most powerful directionality (order of labels) across the chain.

4.4 Order via Base Classifier Accuracy

Heuristics can also be designed around the expected predictive performance of base clas-
sifiers, i.e., their accuracy : labels that are easier to model (i.e., have relatively higher pre-
dictive performance) can be placed near the beginning of the chain, supposing that these
models are less likely to generate errors (which would be propagated down a relatively
longer part of the chain). Therefore, under this view, weaker classifiers are placed nearer
the end of the chain where they have less influence. Studies have been carried out by En-
rique Sucar et al. (2014), Kajdanowicz and Kazienko (2013); and discussed also by Senge
et al. (2013). One should note that although this approach suggests an order across labels
(unlike label-dependence), it does not lead to a general solution for structure. Neither is
there any consensus in the literature over whether this approach is effective. Indeed, very
poor predictions for a particular label may potentially serve as excellent features for other
predictions. In view of this, such labels should be placed nearer the beginning of the chain
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to serve as good feature expansions (as implied in Section 3.2) even if their own predictions
are poor.

4.5 General Search for Structure

Although there are good arguments given in the literature to the above-discussed factors
behind chain-order performance, in real-world data, the different factors are convoluted
and may interact and counteract each other. This is apparent when we take a closer look
at per-label accuracy; as in Figure 2. Therefore a single heuristic may not be globally
effective.

m Chain Order Jaccard A1 A2 A3 A4 A5 A6

5 [1 2 3 6 4 5] 0.52 0.81 0.70 0.73 0.93 0.82 0.74
6 [1 2 3 6 5 4] 0.54 0.81 0.70 0.73 0.93 0.86 0.74

17 [1 2 5 4 6 3] 0.53 0.81 0.70 0.73 0.94 0.81 0.73
18 [1 2 5 6 3 4] 0.53 0.81 0.70 0.71 0.91 0.81 0.77

20 [1 2 6 3 5 4] 0.57 0.81 0.70 0.75 0.95 0.84 0.77
42 [1 3 5 6 4 2] 0.57 0.81 0.72 0.74 0.94 0.83 0.76

Table 2: A selection of models {m} (indexed from left to right in Figure 8), associated
Jaccard score (also as in Figure 8) alongside respective per-label accuracy (Aj) for all
labels j = 1, . . . , 6. Moving a label forward or backwards in the chain may have either a
positive or negative outcome for the labels involved or make no difference at all; and per-
label changes may counteract each other to be invisible under the overall score associated
with a structure.

If our aim is to find an optimal chain structure under a particular loss function, given
a particular base classifier and inference configuration, at any cost, then we may approach
the task directly as a trial-and-error search through the space of all possible structures.
This task is already relevant in Bayesian network structure learning (Gasse, 2017). Finding
the optimal structure this way is an NP-hard problem, but many options already exist
for tackling it, for example: local search, simulated annealing, and other hill-climbing and
evolutionary methods; and many of these have been adapted specifically to classifier chains,
for example, by Kumar et al. (2013), Read et al. (2014), Goncalves et al. (2013). And
Gasse (2017) gives a thorough treatment in the general application to multi-label learning.
Figure 10 illustrates a simple example using tree search.

Formally, letting θ represent the parametrization of the structure of a chain classifier
(for which base model class is pre-selected), and J (θ) be the payoff (accuracy) incurred by
this model, then we are searching for

θ∗ = argmax
θ∈Θ

E[J (θ)] (11)

where space Θ contains all possible structures, of hyper-exponential size w.r.t. L, namely
2L(L−1)/2 DAGs (or L! orders given fixed structure). Note that, of course this is an argmin
when considering loss metrics `.

Aside from the size of the space, we note that each proposed step/trial θ′ ∈ Θ in the
search requires the approximation of an expectation, because we want parametrization θ to
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[1, 2, 3, 4]: 0.48

[2, 1, 3, 4] 0.50 [1, 2, 4, 3] 0.55

[2, 4, 3, 1] 0.53 [2, 3, 1, 4] 0.55 [4, 1, 3, 2] 0.50

[1, 4, 3, 2] 0.60 [2, 4, 1, 3] 0.58 [4, 1, 2, 3] 0.54

[1, 3, 4, 2] 0.57

Figure 10: An example of searching for chain order via tree search, over L = 4 labels. At
each node the chain order θ is shown with its associated expected payoff E[J (θ)] (as in
Eq. (11)). Each branch is associated with a measurement of this estimated payoff; implying
a slow expansion. Nevertheless, as is typical, a small search can render an important
improvement in predictive performance, even if no clear pattern emerges with regard to
chain order.

perform well in general on unseen test data. An average over internal k-fold cross validation
results using the training data can be used in its place – a task which requires building k
copies of a classifier chain (which itself consists of L base classifiers) at each step; and
implies a difficult tradeoff: More cross validation (i.e., more folds) may better approximate
the expectation (and facilitate a more precise search), but using k folds implies a factor
of k in running time. On the other hand, using fewer folds implies less computational
expenditure, but higher variance in their estimated performance. This challenging scenario
is known in other tasks, and many tools are available; Powell (2019), for example, provides
a synthesis of techniques and applications.

Even with state-of-the-art tools and computational resources, the optimal θ∗ (satisfying
Eq. (11)) may never be found and we will have to make do with some approximation θ̂,
such that (we hope) J (θ̂) ≈ J (θ∗). Luckily, in practice, the surface of the function J (θ)
over θ is often undulating with many local maxima that yield good results (Read et al.,
2014) and therefore off-the-shelf searches yield a good local maximum θ̂ (corresponding to
an effective chain) relatively quickly. Figure 8 also shows an indication of this. Perform-
ing multiple searches in parallel (from different points in the space) additionally yields an
effective ensemble (where all members rest on or close to some local maxima).

In addition to off-the-shelf textbook methods, one can make particular adaptations of
a search that are useful in the context of classifier chains. Namely, one can take advantage
of the fact that under greedy inference a search in chain space can be made increasingly
faster by freezing the chain along its directionality. In other words, a simulated-annealing
type scheme where proposed structures differ from the ones trialled already only near the
end of the chain, and increasingly so over time. This speed-up is on account of only having
to retrain classifiers which are ‘down chain’ from the first modified node and the first part
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Figure 11: Searching for a chain structure or order involves trialing a series of proposals.
For example, two labels can be swapped in their positions to propose a new order. This
figure shows a distribution for selecting such labels, which is modified over time steps t of
the search, at speed proportional to β. The search becomes cheaper over time, since altering
the chain from point j only involves retraining base models j + 1, . . . , L. Based on Read
et al. (2014).

of the chain can be reused from earlier trials (Read et al., 2014). An illustration is given in
Figure 11.

By imposing a fixed structure, the search space is reduced to simply the order in which
labels appear within that structure. Read et al. (2015), for example, use a relatively-sparse
trellis structure. Teisseyre (2017) employs L1 regularization to prune a fully-connected
directed structure to a sparse one. The latter approach is particularly efficient as the
structure ‘search’ is carried out as an integral part of the learning algorithm; albeit with a
loss of flexibility since this method does not work generally for all types of regularization
and base classifiers.

The search for chain structure is often approached exclusively in the model-building
(training) phase, prior to inference on test instances. After all, the structure is an integral
part of a classifier chain model and one can obtain a single structure which works globally
well on the test set. On the other hand, it must be emphasised that even an exhaustive
search will not necessarily uncover a single ground-truth representation θ∗ (in Eq. (11)). In
any case θ∗ is not necessarily unique, and moreover, may differ among evaluation metrics and
types of instances. Since metrics J , and particularly, test instances, are not always observed
at training time, it can also be appropriate to move the structure search to inference time,
as follows, w.r.t. the MAP estimate, extended from Eq. (10):

ŷ = argmax
y∈{0,1}L,θ∗∈Θ

P (y|x; θ∗) (12)

where P (·|·; θ) implies traversing the probabilistic representation specified by the structure
θ (a particular classifier chain arrangement).

Naturally, conducting the full search indicated by Eq. (12) is impractical even for mod-
estly sized label sets since it requires training multiple models per test instance. However,
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if we have already carried out a search at training time for a globally-performing structure,
then we have already trialed a set of strutures S = {θ1, . . . , θM}. Replacing Θ with S
in Eq. (12) yields a dynamic search that incurs only an additional factor M of running
time per test instance, the same as an ensemble of M models, yet with often better results
(Read et al., 2014; da Silva, Gon calves, Plastino, & Freitas, 2014; Narassiguin, Elghazel, &
Aussem, 2017; Pinto, Soares, & Mendes-Moreira, 2016).

If each individual θ ∈ S is obtained by starting from a different point in the search space,
there will typically be considerable variety among these locally-optimum structures, despite
the fact that all are rendered in the search for a globally optimum structure. On small
problems, where it is feasible to generate a large part of the structure space, it is possible
to observe many disconnections between local changes in structure and global changes in
accuracy. For example in Figure 8 (and, respectively, Table 2), the small difference in
chain order from swapping labels [1 2 3 6 4 5] and [1 2 3 6 5 4] corresponds to a notable jump
in predictive performance (particularly surprising as this swap comes at the end of the
chain). Conversely, the orders [1 2 6 3 5 4] and [1 3 6 5 4 2] appear objectively dissimilar from
each other, but obtain very similar (and relatively high) Jaccard score. Table 2 provides
particular insight.

4.6 Summary and Alternatives

The question of the ‘best’ chain structure can only be answered respective of evaluation met-
ric, base classifier(s), parametrization, inference method, and test instances – and none of
these items are necessarily attached to the available real-world training data. The structure
of models is an important issue across many areas of machine learning, including proba-
bilistic models and neural networks. Therefore research is ongoing in many areas (a recent
survey is provided by Scanagatta, Salmerón, & Stella, 2019).

Even though investing in structure search can pay off in terms of global and local
predictive performance (regarding test set, and individual test instances, respectively), the
challenges and instability associated with this search has inspired researchers to avoid this
issue altogether. Indeed, increasingly-promising efforts have given rise to effective methods
which are similar in approach to classifier chains, but avoid the question of chain structure.
We look at some of these in the following section, and discuss the relative disadvantages
that this approach incurs.

5. Related Methods

Having elaborated prediction with classifier chains as probabilistic inference (Section 3.1)
and a feed-forward pass of a neural network (Section 3.2), it is inevitable to turn up close
connections to other methods in these areas, and other related areas.

5.1 Probabilistic Graphical Models

The probabilistic view of classifier chains revealed that a classifier chain is in fact a type of
probabilistic graphical model. It can be seen as a particular case of a conditional random
field (Dembczyński et al., 2012b), or a maximum entropy Markov model or a hidden Markov
Model (Read et al., 2017), or another variety of graphical model, depending on the chain
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structure and inference method chosen. Note that Markov models specifically imply the
Markov assumption which is not a typical restriction in chains. Also, greedy inference is
considered the standard option for classifier chains, i.e., a single directed pass, but typically
more rigorous (even if still approximate) inference is carried out in, e.g., conditional random
fields (CRFs), and to specifically minimize log loss.

A main point of departure from classifier chains, at least as we have defined them
in this work, is when directionality is removed from (or equivalently bi-directionality is
implied upon) the edges connecting label nodes. Such a graph of binary classifiers (see
Figure 12a), was proposed by Guo and Gu (2011). Compared to a directional chain, the
training procedure is simplified: each binary classifier takes the output of all other classifiers
as additional input; so the question of label order is no longer in consideration, neither
the computational expenditure required for it. However, the prediction/inference phase
is significantly more intense: single-pass greedy inference is not possible or at least not
effective, and rather, hundreds or thousands (or more) iterations of Gibbs sampling may be
required for each test instance. For larger labelsets, the question of structure (even if not
directionality) is still relevant, since sparsity becomes necessary for tractability. Essentially,
for each test instance x, this approach relies on taking samples

ỹ
[t]
j ∼ p(yj |x, ỹ

[t]
1 , . . . , ỹ

[t]
j−1, ỹ

[t−1]
j+1 , . . . , ỹ

[t−1]
L ) (13)

over iterations t = 1, 2, . . . until convergence. Then, a marginal mean or joint mode esti-
mation (to minimize Hamming loss or 0/1 loss, respectively) can be obtained simply by
averaging or taking the mode over samples.

y4

y3y2

y1

x

(a) CRF/Undirected network.
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(b) Stacked binary relevance.

Figure 12: Multi-label models related to classifier chains, exemplified for L = 4 labels:
(a) an undirected model (shown as bi-directional) among labels, from Guo and Gu (2011),
implying iterations at inference time; and (b) a stacking approach such as used by Cheng
and Hüllermeier (2009) among others (note that often the second level of labels in (b) also
takes the input x, but this is omitted for brevity).

5.2 Neural Networks

The view of classifier chains as neural networks (as we discussed in Section 3.2) raises
obvious connections, not just to standard multi-layer perceptron architectures (which, as
Nam et al., 2014 demonstrate, can be competitive multi-label models) but also relatively
recent architectures, for example, residual neural networks (He, Zhang, Ren, & Sun, 2016);
ResNets. In Figure 13, we illustrate a simple ResNet for single-label prediction, in a way

703



Read, Pfahringer, Holmes, & Frank

that draws obvious comparison to the cascade of a classifier chain as shown in Figure 6;
only the type of inner layer variables differ, with ResNets having been introduced to cascade
inputs across hidden layers rather than label-space.

x

h1z1

h2z2

y

Figure 13: A ResNet for single-label prediction, using node notation similar to Figure 6
w.r.t. zl. In this case, hl are ‘standard’ hidden layers in the network. Note the structural
similarity to that of the classifier chain in Figure 6.

Further connections can be seen to variants of recurrent neural networks (RNNs) such
as long short-term memory networks (LSTMs). Indeed, LSTMs have already found some
success in application to the multi-label problem (Nam, Loza Menćıa, Kim, & Fürnkranz,
2017). The main interest in this application is in the context of an extremely large number
of labels, since potentially substantially fewer parameters are required; in fact possibly fewer
than the number of output labels, since with a fixed number of parameters (as chosen by the
user as a hyperparameter) an RNN will continue producing labels until an end-of-sequence
symbol is output. We remark that unlike usual applications of sequential models like RNNs,
the order that labels are output is not important for multi-label classification tasks, rather
they are considered as an unordered set.

5.3 Stacking

As noticed by Kajdanowicz and Kazienko (2013), Senge et al. (2013) and others, chaining
can be viewed as a particular case of binary relevance stacking and vice versa. Stacking
approaches for multi-label classification have been presented and studied independently, for
example, by Cheng and Hüllermeier (2009), Loza Menćıa and Janssen (2016), Kajdanowicz
and Kazienko (2009). These methods typically use the predictions of independent binary
classifiers as inputs to a second set of classifiers. The vanilla version of this approach is
shown in Figure 12b, noting that often the input is additionally directed to the second layer
of classifiers. The understanding is that the second layer ‘corrects’ the predictions of the
first layer in taking into account dependence among labels.

A stacked prediction is made as follows for the j-th label:

ŷj = ŷ
[2]
j = h

[2]
j (x, ŷ

[1]
1 , . . . , ŷ

[1]
L ) (14)

where [l] denotes the l-th layer, i.e., h
[2]
j is the base classifier on layer 2 responsible for

predicting the relevance of the j-th label. The similarities with greedy inference (Eq. (8))

704



Classifier Chains: A Review and Perspectives

Table 3: A learning problem with regard to label y2, shown for (a) training, and (b) testing,
under related schemes, including a classifier chain. Here, φ is a basis function (e.g., φ1 = x2)
and ẑ1 is a latent variable (not known at training time). All values with hats, e.g., ẑ, require
a learning procedure to obtain; otherwise are available as (or can be calculated directly
from) the dataset prior to learning. We have omitted superscripts of training examples

(x ≡ x(i), y2 ≡ y
(i)
2 ) for brevity; x̃ is explicitly a test example (with no known associated

labels).

X1 X2 X3 Y2

Basis expansion x φ1 φ2 y2

Classifier chain x y1 y2

Stacking x ŷ1 ŷ2 y2

Hidden layer x y2

(a) Training

X1 X2 X3 Y2

Basis expansion x̃ φ1 φ2 ŷ2

Classifier chain x̃ ŷ1 ŷ2

Stacking x̃ ŷ
[1]
1 ŷ

[1]
2 ŷ

[2]
2

Hidden layer x̃ ẑ1 ẑ2 ŷ2

(b) Inference

in a standard classifier chain is apparent: with a difference that in a classifier chain the j-th
label is only predicted once. It is easy to imagine simple changes to cross from one form to
another. For example, by passing over a chain twice, we obtain

ŷj = ŷ
[2]
j = h

[2]
j (x, ŷ

[1]
1 , . . . , ŷ

[1]
L , ŷ

[2]
1 , . . . , ŷ

[2]
j−1) (15)

for the prediction of the j-th label in the second pass/iteration; a general combination of
chaining and stacking of which both a standard chain and stacked set of classifiers are
special cases. As we add a third and fourth pass over the chain, and so on, we find close ties
to inference for undirected chains (recall Figure 12a and, particularly, Eq. (13)) – except in
that case nodes are chosen (i.e., samples are taken) stochastically, rather than taking the
mode as prediction.

However, if we look at the training phase, there is an important distinction to make

with regard to stacking. If each model h
[l]
j is trained using the true labels {y(i)

j } as they are

presented in the training dataset (as additional inputs alongside each x(i)), this can indeed

be seen as a particular case of classifier chains. On the other hand, if h
[l]
j is trained using some

predictions {ŷ(i)
j } as inputs, where ŷ

(i)
j = h

[l−1]
j (x(i), . . .) from a previous layer, then there is

a qualitative difference; this form of training is typical of stacking. When classifier chains
uses this procedure of training models using predictions rather than the training set labels,
this is called nested stacking by Senge et al. (2013); and those authors showed interesting
results: nested stacking performs better under Hamming loss (presumably by leveraging
predictions as feature-space expansion), whereas standard classifier chains perform better
under 0/1 loss (as they are able to model conditional label dependence). Nested stacking
has also been recognized elsewhere (for example, by Li & Lin, 2014) under different names.
Table 3 provides an explicit example and comparison among four methods including these,
which can provide further intuition.
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5.4 RAkEL

The large family of methods stemming from the so-called label powerset approach provides
a well-known alternative to classifier chains. The RAkEL (random k-label subsets) method
(Tsoumakas, Katakis, & Vlahavas, 2011) has been heavily cited and extended in the multi-
label literature. Rather than binary base classifiers, label powerset methods consider multi-
class base classifiers, where each label vector/combination is considered as a class value; thus
the total number of possible classes is 2L. The method gets its name from set notation,
where all combinations of labels from a set of labels, e.g., {1, . . . , L}, is indeed the powerset
P, of cardinality 2L (we can denote this by P = {0, 1}L). However, in practice, the number
of classes is much less than 2L because it is limited to the labelsets actually observed
in the training data (of size N), and because only sets of k < L labels are considered
(as in RAkEL), and possibly also because the set is explicitly reduced to only the most
frequently observed labelsets as performed by Read et al. (2014). Although these methods
were originally seen as a different approach to classifier chains, in a probabilistic setting, they
can all be observed as approximating the same optimization problem, namely minimizing
0/1 loss as k → L. Suppose indeed that k = L and that a set of labelsets V ⊂ P has been
selected by one of these methods, where |V| � 2L, then the inference task is to select which
labelset maximizes the posterior joint conditional:

ŷ = argmax
y∈V

P (y|x) (16)

i.e., a MAP estimate. In comparison to Eq. (10), one sees that, whereas classifier chains
provide an efficient (probabilistic tree-)search over the space of all 2L possible predictions,
label-powerset methods restrict the search space itself.

5.5 Tree-based Methods

In Section 4.2 above we discussed hierarchies, where a tree is modeled around a pre-defined
dataset hierarchy. It is also clear that a tree, rather than a cascaded chain, is one kind of
generalization that can be learned for classifier chains, i.e., yielding classifier trees. This
approach has been studied by Dembczyński et al. (2016) in a probabilistic context.

In this scenario, of trees built around class labels, we find close connections to other
tree-based approaches, such as nested dichotomies (Frank & Kramer, 2004; Leathart et al.,
2019); even if these are not necessarily for multi-label classification – having binary class
probability estimates facilitates efficient tree search techniques for efficient inference in many
contexts. The same can be said with regard to hierarchical softmax (Wydmuch, Jasinska,
Kuznetsov, Busa-Fekete, & Dembczynski, 2018).

Condensed filter trees (Li & Lin, 2014) are a tree-based method for multi-label learning
related to classifier chains, particularly in regard to having 2L possible paths from root to
leaf (see, particularly, Figure 5). The novelty in these trees is based on the fact that, since
many paths are seldom taken, focus can be placed on important ones, hence ‘condensing’
the structure.
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5.6 Structured-Output Prediction

Multi-label learning is a particular type of structured-output learning, for which typical
examples involve sequence to sequence mapping or image segmentation (i.e., outputs with
inherent local dependence) but structured output learning also considers problems that
require output of more complex structures such as trees and graphs. CRFs and Markov
models already mentioned above are well-known models to this kind of learning.

The interesting connection to classifier chains is in methods where the aspect of search
is combined with learning, as well as the idea of a transformation (or reduction) to simpler
problems. A notable example is the SEARN algorithm (Daumé, Langford, & Marcu, 2009)
which reduces structured output to binary classification via cost sensitive classification.
These authors use the language of reinforcement learning, and talk of a policy h that is
built for each training example, and taking action ŷj (making a prediction). However one
can get close to this view from Section 4.5, where the search and the learning becomes
inextricably linked. Furthermore, as with classifier chains, a main advantage (compared to
many other structured-output methods) is being able to tackle different loss functions using
any model class (i.e., what we refer to as a base classifier). In Section 3.1, we mentioned
how probabilistic chains can be flexible with regard to loss function, and this was further
generalized by the hyper-parametrization of the loss function with regard to chain order
search (Eq. (11)). In this sense, in their most generic formulations, SEARN and classifier
chains are closely related, and could be formulated as special cases of each other, not
forgetting that the original respective targeted areas (structured-output learning vs. multi-
label classification for chains) do indeed lead to different formulations.

Whereas SEARN (as most varieties of classifier chain) uses classifiers to produce struc-
tured outputs through a single sequence of greedy decisions, HC Search (Doppa, Fern, &
Tadepalli, 2014a) makes use of recurrent classifiers. This approach has been shown effective
vs. SEARN, as well as on multi-label problems (Doppa, Yu, Ma, Fern, & Tadepalli, 2014b).
In this context, a heuristic (H) provides a search (e.g., a tree search, as mentioned above)
across possible labelsets y, and then it is a cost function (C) which evaluates these candi-
dates. A novelty separating this method from chaining as we have discussed it is the idea
that the search may be learned separately under a different loss, as opposed to employing
an off-the-shelf textbook search method. The idea of evaluating (albeit not necessarily ex-
plicitly ranking) candidates y produced by a structure is identical in the probabilistic chain
formulation.

5.7 Summary

A full elaboration of all related methods is beyond the scope of this paper. Instead, we can
emphasise again the particular niche of classifier chains: a flexible hyper-parametrization of
binary base classifiers trained on a transformed multi-label dataset with off-the-shelf tools
and models; a fast approximate inference over general DAG structures, leading to their
strong out-of-the-box performance without the need for hand-crafted feature functions or
hidden units.
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6. Perspectives and Open Issues for Classifier Chain Methods

Given that over a decade has passed since the initial formulation of classifier chains as a
method of multi-label classification, it is well worth asking whether they are still relevant
and competitive, in the rapidly evolving area of multi-label learning.

In general, the constant flow of modifications and developments building on classifier
chains that appear in the scientific literature suggests that interest is strong and ongoing.
Of course, developments are driven by the general interest in multi-label learning. Sev-
eral new implementations of classifier chains have appeared in major open-source software
frameworks in recent years, including Scikit-Learn (Pedregosa et al., 2011) and derivatives
(Szymański & Kajdanowicz, 2017; Montiel et al., 2018).

On the other hand, there are several limitations that are becoming increasingly apparent,
for example computational complexity. A single fully-cascaded chain implies quadratic
complexity in terms of feature space expansion. This is negligible on datasets with only
tens of labels, but in recent years the multi-label community has approached ever larger
datasets, eventually including a class of “extreme multi-label” problems, for example by
Liu et al. (2017), with tens or hundreds of thousands of label concepts.

Many strategies can be taken to extend usability and scalability of chains, for example
ensemble subspaces have been used successfully in datasets with many thousands of labels
(Puurula et al., 2014), where chains are built on a subset of the labels and their votes are
combined. This label-subspace methodology draws heavily from other approaches, such as
the RAkEL method (Tsoumakas et al., 2011).

Particularly, as data sets grow larger and as computational power becomes cheaper and
more widely available (especially GPUs and TPUs, etc.) it becomes increasingly difficult for
classifier chain approaches to out-compete neural network architectures (such as those by
Liu et al., 2017; but there are many such examples), for which maturing frameworks exist.
Earlier, the chaining mechanism replaced to some extent the need for hidden nodes and
learning their associated weights/parameters (see Section 3.2) providing an off-the-block
advantage against data-hungry neural networks. But now data is increasingly available,
and it is possible to build networks of millions of parameters, and train those parameters,
with only a few lines of code and a few hours of GPU time.

On the other hand, even though the largest multi-label datasets are becoming larger,
creating a new trend in extreme classification, there is no shortage of new real-world ap-
plications associated with only modest numbers of labels in smaller tabular datasets. And
this is likely to maintain interest in and development of chain methods. Besides that, we
emphasise that neural and chain architectures are not by any means mutually exclusive (as
already seen in Section 3.2) and neural architectures can further benefit from aspects found
in classifier chains, as explored by Read and Hollmén (2017) and Cisse et al. (2016) among
others.

Still, in cases of ‘small data’, where deep networks of latent nodes are not needed or
suitable, there are often particular challenges for classifier chains that need further atten-
tion. For example, as a set of binary classifiers, chain methods are particularly vulnerable
to problems of class imbalance, stemming from the sparsity of the label matrix of most
multi-label datasets. There have been proposals to address this, for example, by Liu and
Tsoumakas (2018), Lin and Xu (2016). In some cases the sparsity may be linked addition-
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ally to the phenomenon of weak labels – a type of noise due to ‘lazy’ human labeling where
some relevant label values are missing in the training data.

Although interpretability has not been a motivating factor behind most work on classifier
chains to date (or on multi-label learning in general) it can be seen as a key advantage
offered by chaining. Unlike multi-layer neural networks or other multi-label methods where
inter-label dependence is ‘hidden’ in (i.e., modeled by) inner layers of the network, classifier
chains explicitly models this dependence in a structure in the output space – among the
labels. In the multi-label literature, one can find different visualizations of label dependence,
usually in the form of graphs or heatmaps, but the associated work for the most part does
not verify such dependence relations with a domain expert, or show them to be useful or
offering insight to any real-world problems, or even demonstrate stability of the relations
from one test set to another. In addition, further development is needed to establish if and
in what contexts dependence is useful and reliable for interpretation – particularly taking
into account base models and chain structure. It seems that this is a clear path requiring
attention, especially with growing interest in interpretable machine learning (Molnar, 2019).

There have been increasingly advanced efforts to integrate feature selection into the
chain, for example, by (Tenenboim-Chekina, Rokach, & Shapira, 2013; Teisseyre, 2017).
Such an approach makes sense, as any conceptual boundary between feature and label
variables is already inherently blurred by the chaining mechanism.

Using so-called automatic machine learning (Auto-ML) could prove useful as a general
means for electing and calibrating base models, chain order, and so on. There is some
recent and early work in this direction involving classifier chains (Wever, Tornede, Mohr,
& Hüllermeier, 2020).

The choice of SEARN (mentioned in Section 5.6) to use the terminology of a policy is
particularly interesting. If transferred to the area of classifier chains, one can easily imagine
using many of the large variety of methods from the area of reinforcement learning, such as
Monte Carlo tree search, for finding a classification in a non-greedy way.

Another interesting perspective of classifier chains is via transfer learning and concept
drift adaptation. In a sense, building classifier chains is transfer learning. In machine
learning, if we become interested in a new class concept, we may want to adapt from
(i.e., transfer) knowledge representations of an existing similar concept. The labels in a
multi-label dataset are almost always related in some way (after all, they are part of the
same dataset). Therefore adding a new label to a classifier chain could be considered
as transferring knowledge from existing concepts (i.e., labels) to learn the new one. Of
course, in typical applications of transfer learning, such as adaptation to concept drift,
older concepts are no longer useful and can eventually be discarded, unlike in the typical
multi-label case, where all labels are, in most cases, considered equally relevant.

One may then even-more easily consider the adaptation of chaining mechanisms to
multi-task learning – learning L tasks together. Multi-label learning is clearly a special case
of multi-task learning. In the general case, however, there is more freedom with regard to
different types and sizes of input spaces per concept in multi-task learning. Furthermore,
multi-task learning inherently includes (or at least does not exclude) regression tasks among
the L tasks to be learned – which will take us to the final point of this section.

The development of chains in a regression context, where labels take on continuous val-
ues yj ∈ R, appears natural at first approach, yet it meets significant challenges. Despite
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early demonstrations of direct application (Borchani, Varando, Bielza, & Larrañaga, 2015),
getting strong off-the-shelf performance (vs. independent models) from these so-called re-
gressor chains has proven more difficult. This is mainly due to different loss functions
targeted in regression, and the lack of inherent non-linearity (for example, consider: logistic
regression is linear in terms of decision boundary, but classification via logistic regression is
not, because each input is cast to either 0 or 1). A recent analysis is provided by Read and
Martino (2020). Overall, regressor chains appear to be an interesting avenue for future re-
search, but they behave and require a treatment so different from their classifier homologues
that we can avoid analysis of them in this paper.

7. Summary and Recommendations

In this work, we have catalogued the evolution of the family of methods of classifier chains
across many different analyses, and synthesized many of these methods and their respective
advantages and disadvantages.

We have not provided a large-scale empirical comparison of different methods, since
the inherent flexibility of classifier chains makes it difficult to set up a fair but concise
evaluation. Almost all varieties target some point on the spectrum of possible tradeoffs
between predictive performance and computational expenditure, or address a particular
challenge, and are therefore interesting for specific combinations of dataset and metric.
However, instead of such an evaluation, we make some general recommendations.

Figure 14 and Table 4 outline the main varieties to be chosen from and (in the ta-
ble) their respective computational complexity, with regard to both training and testing
phases. The complexity is considered relative to the size of the label set, L (thus we do not
deal specifically with subsampling strategies that may affect the size of the input instance
space). Clearly, as L becomes larger, more consideration must be made toward compu-
tationally tractable training and inference. However, aside from this spectrum, there are
other important aspects worth highlighting. If the metric of predictive performance evalu-
ates labels independently of each other, as for example Hamming loss does, then less chain
structure is necessary in general, but the base classifier should be sufficiently powerful and
non-linear. On the other hand, a weak linear base classifier will almost always benefit from
increased connectivity, and more rigorous inference.

A number of classifier chain ‘recipes’ are suggested in Table 5. These suggested config-
urations still leave room for finer-grained parametrization such as the ε or beam-width of
the search, hyper-parametrization of base classifiers, and so on. Indeed, each recipe does
not necessarily correspond to a particular paper from the literature, although some specific
example references are given (also in in Table 4 and throughout the text of this paper).
Rather, these can be seen as a way to roll the review material of this paper into a toolbox
comprising a number of high-level recommendations suitable for many real-world problems.

Even though particular configurations of classifier chains scale up to fairly large datasets,
as discussed in Section 6, many large multi-label problems, especially of the ‘extreme’
variety, are increasingly better served by neural network architectures, which may, of course,
incorporate elements of classifier chains.
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Table 4: Complexity of (a) inference and (b) structuring strategies for L labels and M
trained ensemble members (M = 1 corresponds to a single model), supposing fixed input
space and base classifier. In (a), S is dependent on a chosen search strategy; and can
be anywhere in 1 ≤ S ≤ 2L, i.e., ranging between greedy and brute-force complexity.
Recall that, although measuring marginal dependence does not require training classifiers,
computation is nevertheless required.

(a) Inference complexity (number of passes down the chain)

Inference Iterations Example reference

Greedy O(M) Read et al., 2009
Search O(M · S) Mena et al., 2016
Exhaustive O(M · 2L) Dembczyński et al., 2010

(b) Training complexity, which involves making a number of marginal-dependence mea-
surements (complexity denoted in OM in terms of the number of measurements) and/or
inducing models (complexity denoted in O in terms of the number of models). Note that
we include the cost of the final models built for prediction (in addition to those built
for measuring conditional dependence) in O. Three variations are listed for conditional
dependence.

Structuring strategy Complexity Example reference

Random (default) O(M · L) Read et al., 2011
Marginal Dependence OM(L2) + O(M · L)
Cond. Dependence O(L2) +O(M · L)
Cond. Dependence O(L) +OM(L2) +O(M · L) Zhang & Zhang, 2010
Cond. Dependence O(L) Teisseyre, 2017
Based on Accuracy O(L) +O(M · L) See Section 4.4
Search‡ (fixed structure) O(M · L!) Read et al., 2015

Search‡ (free structure) O(2L
2
) Gasse, 2017

‡ Actual complexity depends on chosen search algorithm

Figure 14: Configurations of classifier chains in terms of inference and single model vs.
ensembles (left), chain order/structure (mid.), and base classifier (right). In addition, the
quality of posterior probability/confidence of the base classifier should also be considered
for non-greedy inference (not shown).

8. Conclusion

Over a decade after initial interest in classifier chains as a method for multi-label clas-
sification, novel developments and analyses and fresh applications continue to appear in
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Table 5: Some suggested classifier chain recipes combining the results of numerous papers
(references given in Table 4). Obviously a plethora of other options are also possible. Refer
to Section 3 and Section 4 for details on Inference and Structure, respectively. If not
specified, the base classifier is assumed selected and parametrized according to practitioner
preference, and problem domain and dimensions.

Name Inference Order/Structure Base Classifier

The Baseline Greedy Ensemble Random SVM or trees
As by Read et al. (2009)

The Kaggler Greedy Ensemble Random/Sparse A mixture
A large subspace-ensemble of random diverse sparse chains; with a variety of base models.

A Good Order Search Single Logistic regression
Good probability estimates help with a search for one powerful fully-cascaded model.

Neural Net Greedy Single L2 logistic reg.
A full cascade for predictive power, with regularization. Essentially a neural network.

Neural Net Sparse Greedy L1 logistic reg.
Single model, L1 regularization takes care of pruning, as in Teisseyre (2017).

Sparse & interpretable Greedy Single Decision trees
Use a conditional dependence heuristic (Zhang & Zhang, 2010), for sparse structure.

Expensive & effective Search Linear, or mix
A multiple-start structure search. Reuse models in a dynamic ensemble at inference time.

the literature. Particular variations of chaining continue to attain competitive and often
state-of-the-art performance on many multi-label datasets. New mechanisms for training
and inference have been developed and have now also been adapted to other areas, such as
multi-output regression.

The rise of ubiquitous access to neural network frameworks and associated hardware
acceleration has begun to overshadow the option of off-the-shelf classifier chains for very
large datasets. Nevertheless, as is also the case in relation to many other areas, there can
be mutual benefit and shared development between deep neural and chaining approaches.
In addition to this, one should keep in mind that only a subset of newly emerging datasets
can be considered better suited to treatment under deep neural architectures, and therefore
we can expect classifier chaining to continue to be relevant, thereby justifying the review of
the methodology which we have carried out in this paper.

Furthermore, we may remark that there are many issues found in multi-label contexts
that directly relate to classifier chains, such as weak labels, class imbalance and inter-
pretability of label relations discovered (and how they relate to and can provide insight on
the underlying application domain). These thematics are far from considered solved, and
new issues are coming to the forefront. We speculate that numerous papers will continue
to appear to confront them.
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Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive experimental
comparison of methods for multi-label learning. Pattern Recognition, 45 (9), 3084–
3104.
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Senge, R., del Coz, J. J., & Hüllermeier, E. (2014). On the problem of error propagation in
classifier chains for multi-label classification. In Spiliopoulou, M., Schmidt-Thieme,
L., & Janning, R. (Eds.), Data Analysis, Machine Learning and Knowledge Discovery,
pp. 163–170, Cham. Springer International Publishing.
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chain classifiers for multidimensional classification. In 24th International Joint Con-
ference on Artificial Intelligence (IJCAI ’11), pp. 2192–2197.

Zhang, M.-L., Li, Y.-K., Liu, X.-Y., & Geng, X. (2018). Binary relevance for multi-label
learning: an overview. Frontiers of Computer Science, 12 (2), 191–202.

Zhang, M.-L., & Zhang, K. (2010). Multi-label learning by exploiting label dependency. In
KDD ’10: 16th ACM SIGKDD International conference on Knowledge Discovery and
Data mining, pp. 999–1008. ACM.

717



Read, Pfahringer, Holmes, & Frank

Zhang, M.-L., & Zhou, Z.-H. (2014). A review on multi-label learning algorithms. IEEE
Transactions on Knowledge and Data Engineering, 26 (8), 1819–1837.

718


