
Journal of Artificial Intelligence Research 70 (2021) 1281-1307 Submitted 07/2020; published 03/2021

Weighted First-Order Model Counting in the Two-Variable
Fragment With Counting Quantifiers

Ondřej Kuželka ondrej.kuzelka@fel.cvut.cz

Faculty of Electrical Engineering

Czech Technical University in Prague

Prague, Czech Republic

Abstract

It is known due to the work of Van den Broeck, Meert and Darwiche that weighted
first-order model counting (WFOMC) in the two-variable fragment of first-order logic can
be solved in time polynomial in the number of domain elements. In this paper we extend
this result to the two-variable fragment with counting quantifiers.

1. Introduction

In this paper we study weighted first-order model counting (WFOMC), which is an important
problem (not only) because it can be used for probabilistic inference in most statistical
relational learning models (Van den Broeck et al., 2011; Getoor & Taskar, 2007). Probabilistic
inference is in general intractable and the same holds for probabilistic inference in relational
domains and therefore also for WFOMC. Lifted inference refers to a set of methods developed
in the probabilistic inference literature which exploit structure and symmetries of the
problems for making inference more tractable (e.g., Poole, 2003; de Salvo Braz, Amir, and
Roth, 2005; Gogate and Domingos, 2011; Van den Broeck, 2011; Van den Broeck, Meert,
and Darwiche, 2014; Kazemi et al., 2016). One of the most celebrated results on symmetric
WFOMC comes from the works by Van den Broeck and his colleagues (Van den Broeck, 2011;
Van den Broeck et al., 2014) which established that WFOMC can be solved in polynomial
time for any fixed first-order logic sentence which contains at most two variables. In the
lifted inference literature, problems which admit such polynomial-time algorithms are called
domain-liftable (Van den Broeck, 2011).1

Kuusisto and Lutz (2018) recently extended the domain-liftability result for the two-
variable fragment by allowing to add one functionality constraint. That is, one can specify
that some binary relation should behave as a function. In their paper, they also mentioned
(although without giving any details) that if they could further extend their result to
multiple funcionality constraints, they could also establish domain liftability of the two-
variable fragment of first-order logic with counting quantifiers ∃=k, ∃≤k and ∃≥k (see, e.g.,
the work by Graedel, Otto, and Rosen, 1997), which stand for exist exactly k, exist at most k
and exist at least k, respectively. Motivated by the work of Kuusisto and Lutz, in this paper,
we first show a simpler method to add an arbitrary number of functionality constraints and
cardinality constraints to sentences from the two-variable fragment while still guaranteeing

1. Like, among others, Van den Broeck (2011), Van den Broeck et al. (2014), Kazemi et al. (2016), Kuusisto
and Lutz (2018), we also consider only the symmetric version of weighted first-order model counting. For
details and differences with the asymmetric version, we refer to the work of Beame et al. (2015).

©2021 AI Access Foundation. All rights reserved.

Kuželka

polynomial-time inference. We then use this result to prove that WFOMC is domain-liftable
for sentences from the two-variable fragment of first-order logic with counting quantifiers.

The rest of the paper is structured as follows. Section 2 contains the background material
needed for our technical results. In Sections 3-6, we work towards the proof of our main
result which we give in Section 7. We discuss related work in Section 8 and conclude the
paper in Section 9. The appendix located at the end of the paper then contains omitted
proofs and additional examples as well as some additional technical material that is not
needed for the main result but which further illustrates some of our techniques.

2. Background

In this section we describe the necessary technical background material.

2.1 Lagrange Interpolation

Lagrange interpolation (e.g., Seroul, 2000) is a classical method for finding the unique
polynomial p(x) of degree d that, for given d+ 1 points (x0, y0), (x1, y1), . . . , (xd, yd) satisfies
p(x0) = y0, p(x1) = y1, . . . , p(xd) = yd (under the condition that xi 6= xj for all i 6= j).
There are various methods of finding the coefficients of the polynomial (e.g. based on special
algorithms for solving systems of linear equations with Vandermonde matrices), in this paper
it will be enough to consider the elementary method based on the explicit Lagrange formula:

L(x) =

d∑
i=0

yi · li(x)

where li is defined as

li(x) =
∏

0 ≤ j ≤ d
i 6= j

x− xj
xi − xj

.

The next proposition shows a useful property of “bit complexity” of the coefficients
of such interpolating polynomials that will be useful later in this paper (the proof of this
proposition is located in the appendix).

Proposition 1. Let L(x) =
∑d

j=0 aj · xj be the interpolating polynomial (written in the
standard form as a sum of monomials) of points (x0, y0), (x1, y1), . . . , (xd, yd), where all
xj’s are integers and all yj’s are rational numbers, represented as fractions of integers. Every

aj can be represented as a fraction aj =
bj
cj

and the number of bits needed to represent the

integers bj and cj is polynomial in d and in the number of bits needed to represent the points
(x0, y0), (x1, y1), . . . , (xd, yd).

2.2 First-Order Logic

We assume that the reader is familiar with first-order logic and we only cover it briefly in
this section to set up notation used throughout the paper.

We work with function-free first-order logic languages L, defined by a set of constants,
called domain and usually denoted as ∆, a set of variables V and a set of predicates R

1282

WFOMC in the Two-Variable Fragment With Counting Quantifiers

(relations). When there is no risk of confusion, we assume such a language implicitly and
do not specify its components V, R (although we will usually specify the domain). We use
arity(R) to denote the arity of a predicate R. An expression of the form r(a1, ..., ak), with
a1, ..., ak ∈ ∆ ∪ V and r ∈ R, is called an atom or atomic formula. For example, sm(x),
sm(Alice) and fr(Alice, y) are atoms. A variable which is not bound by any quantifier is
called free. A first-order logic formula with no free variables is called a sentence. For instance,
the formula ∀x : ¬f(x, x) is a sentence, whereas the formula f(x, x) is not a sentence as the
variable x is free in it. A first-order logic formula in which none of the atoms contains any
variables is called ground. A possible world ω is represented as a set of ground atoms that
are true in ω. The satisfaction relation |= is defined in the usual way: ω |= α means that the
formula α is true in ω. For instance, if ω = {sm(Bob)} is a possible world on the domain
∆ = {Alice,Bob} then it holds ω |= (∃x : sm(x)) and ω 6|= (∀x : sm(x)).

The two-variable fragment of first-order logic (FO2) is obtained by restricting the set of
variables to V = {x, y}. For example, the sentence ∀x∀y : a(x) ∧ e(x, y)⇒ a(y) is in FO2.
The fragment of first-order logic FO2 is interesting among others because (i) satisfiability
is decidable for it (in particular it is NEXPTIME-complete) and (ii) weighted first-order
model counting is polynomial-time (in the size of the domain) for any sentence from FO2

(Van den Broeck, 2011; Van den Broeck et al., 2014).

2.2.1 First-Order Logic With Counting Quantifiers

An interesting extension of the 2-variable fragment of first order logic is obtained by adding
counting quantifiers ∃=k, ∃≤k and ∃≥k to it (Graedel et al., 1997). Satisfiability in this
fragment of first-order logic is still decidable, although this fragment lacks the finite-model
property that FO2 enjoys.

The counting quantifiers can be introduced as follows. Let ω be a possible world defined
on a domain ∆. The sentence ∃≥kx : ψ(x) is true in ω if there are at least k distinct elements
t1, . . . , tk ∈ ∆ such that ω |= ψ(ti). The other two counting quantifiers can be defined using:
(∃≤kx : ψ(x))⇔ ¬(∃≥k+1ψ(x)) and (∃=kx : ψ(x))⇔ (∃≤k : ψ(x) ∧ ∃≥k : ψ(x)).

Example 1. To give an example of the expressive power of FO2 with counting quantifiers, we
can notice that it is easy to constrain binary relations to be functions using it. In all models
of the sentence ∀x∃=1y : f(x, y), f is a function from the domain to itself. Additionally, if
we wanted to force f to be a bijection, we could use (∀x∃=1y : f(x, y)) ∧ (∀y∃=1x : f(x, y))
etc.

2.3 Weighted First-Order Model Counting

In this section we formally describe weighted first-order model counting. We start by defining
an auxiliary concept, cardinality of a relation.

Definition 1 (Cardinality of Relation). Let ω be a possible world and R be a k-ary predicate.
The cardinality of R in ω is defined as

N(R,ω) = |{R(x1, . . . , xk) ∈ ω}|,

i.e. N(R,ω) is the number of ground atoms of the predicate R that are true in ω.

1283

Kuželka

Example 2. Let ω = {fr(Alice,Bob), fr(Alice,Eve), sm(Alice)}. Then

N(fr, ω) = |{fr(Alice,Bob), fr(Alice,Eve)}| = 2.

Next we define weighted first-order model counting.

Definition 2 (WFOMC, Van den Broeck, 2011). Let Ω be a set of possible worlds over
a given domain ∆ (Ω will often be the set of all possible worlds over ∆), R be the set of
predicates in the language, w(P) and w(P) be functions from predicates to complex2 numbers
(we call w and w weight functions). Then for a given first-order logic sentence Γ, we define

WFOMC(Γ, w, w,Ω) =
∑

ω∈Ω:ω|=Γ

∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω).

We also define

WFOMC(Γ, w, w,∆)
def
= WFOMC(Γ, w, w,Ω∆),

where Ω∆ is the set of all possible worlds on the domain ∆ (using the predicates from R).

In this paper, when we do not explicitly define weights of some predicate R, we will assume
that w(R) = w(R) = 1.

Next we illustrate WFOMC on a small example. Additionally, we show how WFOMC
can be used for inference in Markov logic networks in Section 2.4.1.

Example 3. Let ∆ = {A,B}, R = {heads, tails}, w(heads) = 2, w(tails) = w(heads) =
w(tails) = 1, and Γ = ∀x : (heads(x) ∨ tails(x)) ∧ (¬heads(x) ∨ ¬tails(x)). There are four
models of Γ on the domain ∆: ω1 = {heads(A), heads(B)}, ω2 = {heads(A), tails(B)},
ω3 = {tails(A), heads(A)} and ω4 = {tails(A), tails(B)}. The resulting weighted model count
is WFOMC(Γ, w, w,∆) = 4 + 2 + 2 + 1 = 9.

2.3.1 Two Useful Technical Results About WFOMC

We now describe two useful technical properties of WFOMC. The first of these is about
bit complexity of WFOMC. Later in the paper, we will need to be able to bound the bit
complexity of WFOMC and the next proposition does exactly that (its proof is located in
the appendix).

Proposition 2. Let Γ be a first-order logic sentence, R = {R1, R2, . . . , Rm} be the set
of predicates from a given first-order language, ∆ be a domain and Ω∆ be the set of all
possible worlds on the domain ∆ using the predicates from R. Let w and w be weight
functions that assign to each predicate R ∈ R a rational number w(R) = w′(R)/w′′(R) and
w(R) = w′(R)/w′′(R), where w′(R), w′′(R), w′(R) and w′′(R) are integers. Let us further
define M = maxR max{|w′(R)|, |w′′(R)|, |w′(R)|, |w′′(R)|}. Then WFOMC(Γ, w, w,∆) can
be represented as a rational number a/b and the number of bits needed to encode the integers
a and b is bounded by a polynomial in |∆| and logM .

2. Normally, in the literature, the weights of predicates are real numbers. However, we will also use complex-
valued weights in this paper, therefore we define the WFOMC problem accordingly using complex-valued
weights.

1284

WFOMC in the Two-Variable Fragment With Counting Quantifiers

At some point in the paper, we will also need to replace certain subformulas by their
negations, without actually using negation. This is possible using a technique described
by Beame et al. (2015), stated in Appendix A.2 of their paper, which we restate in the
proposition below.3

Proposition 3. Let ¬ψ(x1, . . . , xk) be a subformula of a first-order logic sentence Φ with
k free variables x1, . . . , xk. Let C, D be two new predicates of arity k. Let Φ′ denote the
sentence obtained from Φ by replacing the subformula ¬ψ(x1, . . . , xk) with C(x1, . . . , xk).
Let

Υ = ∀x1∀x2 . . . ∀xk : ((ψ(x1, . . . , xk) ∨ C(x1, . . . , xk))

∧ (C(x1, . . . , xk) ∨D(x1, . . . , xk)) ∧ (ψ(x1, . . . , xk) ∨D(x1, . . . , xk)))

and extend the given weight functions w and w by defining w(C) = w(C) = w(D) = 1 and
w(D) = −1. Then it holds

WFOMC(Φ, w, w,Ω) = WFOMC(Φ′ ∧Υ, w, w,Ωext)

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic
language L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by
predicates C and D.

2.4 Domain-Lifted Inference

Importantly, there are classes of first-order logic sentences for which weighted model counting
can be solved in polynomial-time. In particular, let Ω be the set of all possible worlds over a
given domain ∆ and a given set of relations R. As shown by Van den Broeck et al. (2014),
when the theory Γ consists only of first-order logic sentences, each of which contains at most
two logic variables and uses the classical quantifiers ∃ and ∀ (i.e. the FO2 fragment), the
weighted model count can be computed in time polynomial in the size of the domain ∆.
This is not the case in general when the number of variables in the formulas is greater than
two unless P = #P1 (Beame et al., 2015).4 Within statistical relational learning, the term
used for problems that have such polynomial-time algorithms is domain liftability.

Definition 3 (Domain liftability). An algorithm for computing WFOMC with rational
weights is said to be domain-liftable if it runs in time polynomial in the size of the domain
and the number of bits needed to represent the weights.

The definition of domain liftability presented here differs slightly from the original
definition by Van den Broeck (2011) in that it also requires lifted algorithms to depend
polynomially on the size of the representation of the formulas’ weights. A justification for
this definition follows from the work of Jaeger (2015), Section 4.2. In particular, as pointed
out by Jaeger, all existing domain-lifted exact-inference algorithms are also domain-lifted
according to the definition that we use here.

3. The same transformation also appears in the literature under the name “relaxed Tseitin transform”
(Meert, Vlasselaer, & Van den Broeck, 2016).

4. #P1 is the set of #P problems over a unary alphabet.

1285

Kuželka

2.4.1 An Application of WFOMC: Inference in Markov Logic Networks

A Markov logic network (MLN, Richardson and Domingos, 2006) is a set of weighted
first-order logic formulas (α,w), where w ∈ R and α is a function-free first-order logic
formula. The semantics are defined w.r.t. the groundings of the first-order logic formulas,
relative to some finite set of constants ∆, called domain. An MLN Φ induces the probability
distribution on possible worlds ω ∈ Ω over a given domain:

PΦ(ω) =
1

Z
exp

 ∑
(α,w)∈Φ

w · n(α, ω)

 , (1)

where n(α, ω) is the number of groundings of α satisfied in ω (when α does not contain any
variables, we define n(α, ω) = 1(ω |= α)), and Z, called partition function, is a normalization
constant to ensure that PΦ is a probability distribution. We also allow infinite weights. A
weighted formula of the form (α,+∞) is understood as a hard constraint imposing that all
worlds ω in which n(α, ω) is not maximal have zero probability (this can also be deduced
by taking the limit w → +∞). If all formulas in an MLN have at most k variables, we call
such an MLN k-variable.

Computation of the partition function Z of an MLN can be converted to WFOMC. To
compute the partition function Z using weighted model counting, we proceed as Van den
Broeck et al. (2011). Let an MLN Φ = {(α1, w1), . . . , (αm, wm)} over a set of possible worlds
Ω be given. For every (αj , wj) ∈ Φ, where the free variables in αj are exactly x1, . . . , xk
and where w 6= +∞, we create a new formula ∀x1, . . . , xk : ξj(x1, . . . , xk)⇔ αj(x1, . . . , xk)
where ξj is a new fresh predicate. When w = +∞, we instead create a new formula
∀x1, . . . , xk : αj(x1, . . . , xk). We denote the resulting set of new formulas Γ. Then we set
w(ξj) = exp (wj) and w(ξj) = 1 and for all other predicates we set both w and w equal
to 1. It is easy to check that then WFOMC(Γ, w, w,Ω) = Z, which is what we needed to
compute. To compute the marginal probability of a given first-order logic sentence γ, we
have PΦ[X |= q] = WFOMC(Γ∪{q},w,w,Ω)

WFOMC(Γ,w,w,Ω) where X is sampled from the MLN.
For more examples of applications of weighted first-order model counting to statistical

relational learning problems, we refer to the work of Van den Broeck (2013).

3. Weighted Model-Counting Functions

Before getting to the weighted model-counting functions, we need to define notation for
vectors of “relation-cardinalities”. For a given possible world ω and a given list of predicates
Ψ = (R1, R2, ..., Rm), we define the respective vector of relation-cardinalities as

N(Ψ, ω)
def
= (n1, . . . , nm),

where ni = N(Ri, ω) is the cardinality of the relation Ri in ω, i.e. the number of ground
atoms of the form Ri(c1, . . . , carity(Ri)) that are true in ω.

Example 4. Let ω = {sm(Alice), sm(Bob), fr(Alice,Bob)} and Ψ = (sm, fr). Then the
vector of relation-cardinalities is N(Ψ, ω) = (2, 1).

Next we define model-counting function (which we will also call MC-function).

1286

WFOMC in the Two-Variable Fragment With Counting Quantifiers

0 1 2 3 4 5 6 7 8 9
N(ξ1,ω)

0
1

2
3

N
(ξ

2,
ω
)

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N(ξ1,ω)

0
1

2
3

4
N
(ξ

2,
ω
)

0

20000

40000

60000

80000

100000

120000

140000

Figure 1: Model-counting functions from Example 6.

Definition 4 (Model-Counting Function). Let Ω be a set of possible worlds and let Ψ =
(R1, R2, . . . , Rm) be a list of predicates. We define the model counting function as

MCΨ,Ω(n) = |{ω ∈ Ω|N(Ψ, ω) = n}|,

where n is a vector of integers. Given first-order logic sentence Γ and a domain ∆ we also
define

MCΨ,Γ,∆(n)
def
= MCΨ,ΩΓ,∆

(n),

where ΩΓ,∆ is the set of models of the sentence Γ on the domain ∆ (assuming some given
first-order language that also specifies the predicates).

Intuitively, for any n ∈ Nm, the model counting function gives us the number of possible
worlds (from the given set Ω) that satisfy N(Ψ, ω) = n.

Example 5. Let us consider the domain ∆ = {A,B,C,D}, the sentence Γ = ∀x : (heads(x)∨
tails(x)) ∧ (¬heads(x) ∨ ¬tails(x)) and the list Ψ = (heads). We assume that the first-order
language over which the possible worlds are defined contains only the predicates heads and
tails. Then we have, for instance, MCΨ,Γ,∆(0) = 1 (since there is only one model of Γ with
0 heads and that is {tails(A), tails(B), tails(C), tails(D)}) and MCΨ,Γ,∆(1) = 4 and so on.

Example 6. In Figure 1, we show examples of two MC-functions, MCΨ,Γ,∆(n), where
Ψ = (ξ1, ξ2), Γ = (∀x∀y : ξ1(x, y)⇔ (sm(x)∧ fr(x, y)⇒ sm(y)))∧ (∀x : ξ2(x)⇔ sm(x)), and
∆ is a domain of size 3 and 4, respectively. Note that the form of the sentence Γ corresponds
to the encoding of an MLN with two formulas α = sm(x) ∧ fr(x, y)⇒ sm(y) and β = sm(x)
(cf. Section 2.4.1).

The concept of model-counting function can be straightforwardly generalized to weighted
model-counting functions that we define next. Weighted model-counting functions are the
main “work-horses” that we use in the rest of the paper.

Definition 5 (Weighted Model-Counting Function). Let Ω be a set of possible worlds and
let Ψ = (R1, R2, . . . , Rm) be a list of predicates. We define the model counting function as:

WMCΨ,Ω(n, w, w) = WFOMC(>, w, w, {ω ∈ Ω|N(Ψ, ω) = n}),

1287

Kuželka

where > (tautology) is the trivial sentence which is always true. Given a first-order logic
sentence Γ and a domain ∆, we also define

WMCΨ,Γ,∆(n, w, w)
def
= WMCΨ,ΩΓ,∆

(n, w, w),

where ΩΓ,∆ is the set of models of the sentence Γ on the domain ∆ (assuming some given
first-order language that specifies the predicates).

Clearly, model-counting functions are a special case of weighted model counting functions
for w ≡ 1 and w ≡ 1.

In the next subsection we explain how to compute weighted model-counting functions
using a WFOMC oracle.

3.1 Computing Weighted Model-Counting Functions

At first it may not be obvious how to compute weighted model-counting functions efficiently.
In our previous work (Kuzelka, 2020), we described a method based on discrete Fourier
transform that can be used for computing weighted model-counting functions (we describe
this method in the appendix). A downside of this method is that it requires computing
WFOMC over complex numbers. Even though existing lifted inference algorithms, which
normally only count over real-valued weights, can be straightforwardly modified to also
allow complex numbers, it would be nicer if we could do the same without modifying them.
In this section, we show that it is possible to compute weighted model-counting functions
efficiently also without WFOMC over complex numbers. In particular, we prove the following
proposition.

Proposition 4. Let ∆ be a set of domain elements, Γ be a first-order logic sentence and
Ψ = (R1, . . . , Rm) be a list of relations. If WFOMC(Γ, w, w,∆) can be computed in time
polynomial in |∆| and in the number of bits needed to encode w and w then the corresponding
WMC-function WMCΨ,Γ,∆(n, w, w) can also be computed in time polynomial in |∆| and in
the number of bits needed to encode w and w.

Proof. We prove this proposition by showing how to compute weighted model-counting
functions using Lagrange interpolation when we have access to a WFOMC oracle.

Let w∗ and w∗ be weight functions defined by: w∗(R) = w∗(R) = 1 for all R ∈ Ψ and
w∗(R) = w(R) and w∗(R) = w(R) for all the other predicates R 6∈ Ψ. Then we can write:

WFOMC(Γ, w, w∗,∆) =
∑
n∈D

WMCΨ,Γ,∆(n, w∗, w∗) ·
m∏
i=1

w(Ri)
ni

where ni denotes the i-th component of n,

D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm} ,

and M1 = |∆|arity(R1), M2 = |∆|arity(R2), . . . , Mm = |∆|arity(Rm).
It follows that, when we fix all weights of all predicates R 6∈ Ψ (i.e. if we keep them

constant), WFOMC(Γ, w, w∗,∆) becomes a polynomial in the weights w(R1), . . . , w(Rm).
Let us denote this polynomial as W (w1, . . . , wm). Importantly, WMCΨ,Γ,∆(n, w∗, w∗) is the

1288

WFOMC in the Two-Variable Fragment With Counting Quantifiers

coefficient of
∏m
i=1w(Ri)

ni in this polynomial, where ni denotes the i-th component of n.
As we will show shortly, we can efficiently compute the coefficients of the monomials using a
WFOMC oracle, which means we will be able to efficiently compute WMC from a WFOMC
oracle. For that we first introduce another, univariate, polynomial:

W0(t)
def
= W

(
t, tM1+1, t(M1+1)(M2+1), . . . , t(...(M1+1)(M2+1))...)(Mm−1+1)

)
.

The polynomial W0 has the convenient property that the coefficient of

tn1+(M1+1)n2+···+(...(M1+1)(M2+1))...)nm

is equal to the coefficient of wn1
1 wn2

2 . . . wnm
m in W (w1, w2, . . . , wm). Let us denote this

coefficient by An1,...,nm . It follows that An1,...,nm is also equal to WMCΨ,Γ,∆(n, w∗, w∗), from
which we can then obtain

WMCΨ,Γ,∆(n, w, w) = WMCΨ,Γ,∆(n, w∗, w∗) ·
m∏
i=1

w(Ri)
ni · w(R)|∆|

arity(Ri)−ni

= An1,...,nm ·
m∏
i=1

w(Ri)
ni · w(R)|∆|

arity(Ri)−ni .

The only missing part is to show that we can extract the coefficient An1,...,nm efficiently
using a WFOMC oracle. This can be done using Lagrange interpolation (cf. Section 2.1).
First, we define |D|+ 1 points (xi, yi) for the polynomial interpolation problem: (1,W0(1)),
(2,W0(2)), . . . , (|D|+ 1,W0(|D|+ 1)). These points are computed using a WFOMC oracle.
Using Proposition 2, we have that the number of bits needed to encode each of W0(1), W0(2),
. . . , W0(|D|+ 1) is polynomial in |D|. Combining that with Proposition 1, we then have
that the number of bits needed to encode the coefficients of the polynomial interpolating the
points (1,W0(1)), (2,W0(2)), . . . , (|D|+ 1,W0(|D|+ 1)) grows only polynomially with |D|.
Since |D| is itself bounded by a polynomial in the size of the domain |∆|, it follows that we
can extract the coefficients and consequently the WMC-function that we want to compute
in time polynomial in |∆| and the number of bits needed to encode w and w.

Remark 1. We could do a bit better in terms of practical efficiency than the construction
from the above proof if we replaced the univariate Lagrange interpolation by its multivariate
version. We could use, e.g., Lemma 5 from the work of Koiran and Perifel (2011). Then
we would only need to evaluate WFOMC on weights from the set {0, 1, 2, . . . , |D|}. For
simplicity, in the proof of the above proposition we opted for the more elementary approach,
which is enough for our purposes.

4. WFOMC with Cardinality Constraints

In this paper, a simple cardinality constraint is an expression of the form |R| ∈ A where R is
a predicate and A ⊆ N. A possible world ω satisfies a given cardinality constraint |R| ∈ A if
N(R,ω) ∈ A, i.e. if the number of ground atoms Ri(t1, . . . , tn) that are true in ω is in A.

1289

Kuželka

We write ω |= (|R| ∈ A) when the cardinality constraint |R| ∈ A is satisfied in ω. We will
also use the notation |R| ./ k, where ./∈ {=,≤,≥, <,>} and k ∈ N. So, e.g., |R| ≤ k is a
short for |R| ∈ {0, 1, . . . , k}. Finally, we allow cardinality constraints as atomic formulas
in first-order logic formulas. For instance, (|f | = 2) ∧ (∀x∀y : f(x, y)⇒ f(y, x)) is a valid
formula (its models can be interpreted as undirected graphs with exactly one edge) and the
satisfaction relation |= is extended naturally.

Computing WFOMC with cardinality constraints can be done using WMC-functions.
Moreover as the next proposition shows, domain-liftability is preserved when we add
cardinality constraints to a sentence which is domain-liftable.

Proposition 5. Let Γ be a first-order logic sentence, ψ(x1, . . . , xm) be a propositional logic
formula and let Υ = ψ(|Ri1 | ./ k1, . . . , |Rim | ./ km), where ψ is a Boolean formula and
./∈ {=,≤,≥, <,>}. If computing the WFOMC of Γ is domain-liftable then computing the
WFOMC of Γ ∧Υ is also domain-liftable.

Proof. Let Ψ = (Ri1 , . . . , Rim). Since computing WFOMC(Γ, w, w,∆) is domain-liftable, so
is computing WMCΨ,Γ,∆(n), which follows from Proposition 4. In addition we only need to
evaluate the WMC-function on a set of polynomially-many (in |∆|) points, specifically on
the set D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm} where M1 = |∆|arity(Ri1

),
M2 = |∆|arity(Ri2

), . . . , Mm = |∆|arity(Rim). Finally, we can compute WFOMC(Γ∧Υ, w, w,∆)
as:

WFOMC(Γ, w, w,∆) =
∑
n∈D

1 (ψ(|Ri1 | ./ k1, . . . , |Rim | ./ km)) ·WMCΨ,Γ,∆(n)

where ni denotes the i-th component of the vector n. Hence, WFOMC(Γ ∧Υ, w, w,∆) can
be computed in time polynomial in the size of the domain which finishes the proof.

Remark 2. The techniques from this section do not apply only to encoding of cardinality
constraints. It is easy to replace the Boolean formula ψ by a function to rational numbers
and show that one can efficiently compute weighted first-order model counts with “non-
multiplicative” weight functions, i.e. with weight functions that only depend on N(Ψ, ω). We
will not need this more general setting in this paper.

5. WFOMC with Functionality Constraints5

A functionality constraint is a constraint expressed by a first-order-logic sentence of the form

∀x∃=1y : ψ(x, y),

which asserts that for every x there is exactly one y such that ψ(x, y) is true. In this
section we show how to compute WFOMC of a 2-variable first-order logic sentence with an

5. In the next section, we generalize the results presented here to allow constraints of the form ∀x∃=ky :
ψ(x, y), of which ∀x∃=1y : ψ(x, y) is a special case. However, the case of functionality constraints, besides
being easier to understand, is important on its own and has been studied in the literature (Kuusisto &
Lutz, 2018). We note that whereas Kuusisto and Lutz (2018) only allowed one functionality constraint,
here we already allow multiple functionality constraints.

1290

WFOMC in the Two-Variable Fragment With Counting Quantifiers

arbitrary number of functionality constraints while still guaranteeing runtime polynomial in
the domain size |∆|.

First, we can notice that we can replace any functional constraint of the form ∀x∃=1y :
ψ(x, y), where ψ(x, y) is a formula, with free variables exactly x and y, by (∀x∀y : ξ(x, y)⇔
ψ(x, y)) ∧ (∀x∃=1y : ξ(x, y)), where ξ is a fresh predicate not occurring anywhere else.
Therefore we will assume without loss of generality that the only functional constraints are
of the form ∀x∃=1y : R(x, y) where R is a predicate. The main result of this section is then
the following theorem.

Theorem 1. Let Γ be an FO2 sentence and Υ = (|Ri1 | ./ k1)∧· · ·∧(|Rim | ./ km)∧(∀x∃=1y :
Ri1(x, y)) ∧ · · · ∧ (∀x∃=1y : Rim′ (x, y)) be a conjunction of cardinality and functionality
constraints where ./∈ {=,≤,≥, <,>}. Computing the WFOMC of Γ ∧Υ is domain-liftable.

Next we prove a simple lemma that will allow us to reduce WFOMC with functionality
(and possibly also cardinality) constraints to WFOMC involving only cardinality constraints
and no functionality constraints.

Lemma 1. Let Ω be the set of all possible worlds on a domain ∆. Let Γ be a first-order
logic sentence. Let Φ = (∀x∃=1y : Ri1(x, y)) ∧ · · · ∧ (∀x∃=1y : Rih(x, y)) and Φ′ = (∀x∃y :
Ri1(x, y)) ∧ (|Ri1 | = |∆|) ∧ · · · ∧ (∀x∃y : Rih(x, y)) ∧ (|Rih | = |∆|). Then for all ω ∈ Ω:
(ω |= Γ ∧ Φ)⇔ (ω |= Γ ∧ Φ′).

Proof. Let R be any of the relations Ri1 , . . . , Rih . The constraint ∀x∃=1y : R(x, y) can be
rewritten as: (i) ∀x∃y : R(x, y) and (ii) ∀x, y, z : R(x, y) ∧R(x, z)⇒ y = z. (⇒) It follows
from (i) that |R| ≥ |∆|. If |R| > |∆| then by the pigeon-hole principle, there must be at
least one s ∈ ∆ such that R(s, t) and R(s, t′) for some t 6= t′ ∈ ∆ which contradicts (ii).
Hence, ∀x∃=1y : R(x, y) implies |R| = |∆| and ∀x∃y : R(x, y). (⇐) What we need to show
is that if (∀x∃y : R(x, y)) ∧ (|R| = |∆|) holds then (i) and (ii) must hold as well. Clearly,
(i) must hold. So let us suppose, for contradiction, that (∀x∃y : R(x, y)) ∧ (|R| = |∆|)
holds but there is some s ∈ ∆ such that R(s, t) and R(s, t′) for some t 6= t′ ∈ ∆. We have
|{(x, y) ∈ ∆2|R(x, y) ∧ x 6= s}| ≥ |∆| − 1 (from ∀x∃y : R(x, y)). Therefore it is easy to see
that |R| ≥ |{(x, y) ∈ ∆2|R(x, y) ∧ x 6= s}|+ 2 > |∆|, which is a contradiction.

Note that the constraints |Ri1 | = |∆|, . . . , |Rih | = |∆| are cardinality constraints which we
already know how to deal with.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Using Lemma 1, we can reduce the problem of computing the WFOMC
of Γ ∧Υ to the problem of computing the WFOMC of Γ ∧Υ′ ∧Υ′′ where Υ′ contains only
cardinality constraints and Υ′′ has the form (∀x∃y : ψ1(x, y))∧· · ·∧ (∀x∃y : ψm′(x, y)). Since
Γ ∧Υ′′ is an FO2 sentence (hence domain-liftable) and Υ′ is a conjunction of cardinality
constraints, we can use Proposition 5 to finish the proof.

Next we provide an illustration of the techniques derived so far.

Example 7. How many fixed points does a uniformly sampled function from {1, 2, . . . , n}
to itself have? We can answer this question using WFOMC with functionality constraints.
We define

Γ = (∀x∃y : f(x, y)) ∧ (∀x : ξ(x)⇔ f(x, x)).

1291

Kuželka

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

N(f(x, y),ω)

0
1

2
3

4
5

6
7

8
9

10
N
(f(
x,
x)
,ω

)

010−2
100
102
104
106
108
1010
1012
1014
1016
1018
1020
1022
1024
1026
1028

0 2 4 6 8 10
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p

Figure 2: Left: The MC-function from Example 7. Right: The distribution of the number
of fixed points (see Example 7).

Here, we introduced a fresh new predicate ξ such that, for all t ∈ ∆, ξ(t) is true if and only
if t is a fixed point of f . Next we define

Ψ = {f, ξ}.

Then, using the techniques described in Section 3, we compute the MC-function MCΨ,Γ,∆,
which is shown for n = 10 in the left panel of Figure 2. Now we can extract the distribution
that we wanted to compute from this MC-function by ignoring all points except those where
|f | = |∆|. That is, the probability pk that a uniformly sampled function has k fixed points
is equal to:

pk =
MCΨ,Γ,∆(|∆|, k)∑|∆|
j=1 MCΨ,Γ,∆(|∆|, j)

.

We show the computed distribution in the right panel of Figure 2 (blue circles). As a sanity
check, we also computed the distribution analytically using the formula

(
n
k

)
(n− 1)n−k/nn

and displayed it in the same plot (red crosses). As expected, the values computed using the
two approaches are the same.

We give a slightly more complex example, computing the number of anti-involutive
functions, in Appendix C.

6. The ∃=k-Quantifier

In this section we show how the techniques used for WFOMC with functionality constraints,
described in the previous section, can be further generalized to more complex settings. In
particular, we show how to use them to compute WFOMC with the counting quantifier ∃=k.

6.1 Two Types of Constraints: ∀x∃=ky and ∃=kx∀y

We start by showing how to extend domain-liftability to FO2 with constraints of the
form ∀x∃=ky : R(x, y) and ∃=kx∀y : R(x, y), where ∃=k is the counting quantifier “exists
exactly k”.

1292

WFOMC in the Two-Variable Fragment With Counting Quantifiers

Theorem 2. Let Γ be an FO2 sentence and

Υ = (|Ri1 | ./ c1) ∧ · · · ∧ (|Rim | ./ cm)

∧ (∀x∃=k1y : ψ1(x, y)) ∧ · · · ∧ (∀x∃=km′y : ψm′(x, y))

∧ (∃=k′1
x∀y : ϕ1(x, y)) ∧ · · · ∧ (∃=k′

m′′
x∀y : ϕm′′(x, y)),

where ./∈ {=,≤,≥, <,>}. Then computing the WFOMC of Γ ∧Υ is domain-liftable.

To prove Theorem 2, we will need the following two lemmas.

Lemma 2. Let Ω be the set of all possible worlds on a domain ∆. Let Γ be a first-order
logic sentence. Let Φ be a first-order logic sentence with cardinality constraints, defined as
follows:

Φ = (|R| = k · |∆|) ∧ (∀x, y : R(x, y)⇔ (fR1 (x, y) ∨ fR2 (x, y) ∨ · · · ∨ fRk (x, y)))

∧
k∧
i=1

(∀x∃y : fRi (x, y)) ∧
k∧

i,j=1,i 6=j
(∀x, y : ¬fRi (x, y) ∨ ¬fRj (x, y)).

Then it holds:

WFOMC(Γ ∧ ∀x∃=ky : R(x, y), w, w,Ω) =
1

(k!)|∆|
WFOMC(Γ ∧ Φ, w, w,Ωext),

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic
language L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by
predicates fR1 , . . . , fRk and where w(fR1) = w(fR1) = · · · = w(fRk) = w(fRk).

Proof. First we show that, for all ω ∈ Ωext, it holds: if ω |= Γ ∧ Φ then ω |= Γ ∧ ∀x∃=ky :
R(x, y). The sentence Φ implies that for every t1, t2 ∈ ∆ such that R(t1, t2) is true, there is
exactly one i ∈ {1, 2, . . . , k} such that fRi (t1, t2) is true. It follows that |R| = |fR1 |+ · · ·+ |fRk |.
Now, using similar reasoning as in the proof of Lemma 1, we can see that |fR1 |+ · · ·+ |fRk | =
|R| = k ·|∆| together with

∧k
i=1(∀x∃y : fRi (x, y)) and

∧k
i,j=1,i 6=j(∀x, y : ¬fRi (x, y)∨¬fRj (x, y))

also implies that all of fR1 (x, y), . . . , fRk (x, y) must be functions. It follows that ∀x∃=ky :
R(x, y) must be true in any possible world ω ∈ Ω that satisfies Φ.

To finish the proof, let [ω]L denote the “projection” of ω on the language L which is the
possible world obtained from ω by removing all atoms whose predicates are not contained
in L (i.e. fR1 , . . . , fRk). One can show easily that, for every model ω ∈ Ω of the sentence
Γ ∧ ∀x∃=ky : R(x, y), there are exactly (k!)|∆| models ω′ ∈ Ωext such that ω = [ω′]L, which
follows from the following: (i) if, for any t ∈ ∆, we permute t1, t2, . . . , tk in fR1 (t, t1),
fR2 (t, t2) . . . , fRk (t, tk) in the model ω′, we get another model of Γ ∧ Φ, (ii) up to these
permutations, the predicates fki in ω′ are determined uniquely by ω. Finally, the weights of
all these ω′s are the same as those of ω.

Lemma 3. Let Ω be the set of all possible worlds on a domain ∆. Let Γ be a first-order
logic sentence and UR and R be predicates. Then it holds:

WFOMC(Γ ∧ ∃=kx∀y : R(x, y), w, w,Ω)

= WFOMC(Γ ∧ (∃=kx : UR(x)) ∧ (∀x : UR(x)⇔ (∀y : R(x, y))), w, w,Ωext).

1293

Kuželka

0 20 40 60 80 100
n

0100
102
104
106
108
1010
1012
1014
1016
1018
1020
1022
1024
1026
1028

M
C Ψ

,Γ
,Δ
(n
)

Figure 3: The function MCΨ,Γ,∆(n)/2|∆|, where Ψ and Γ are described in the main text
in Section 6.1.1 and |∆| = 10. The y-coordinate of the red dot is equal to the number of
2-regular graphs on 10 vertices.

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic
language L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by
the predicate UR (in particular, we assume w.l.o.g. that L did not originally contain this
predicate).

Proof. The proof is straightforward.

We are now ready to prove Theorem 2.

Proof of Theorem 2. First, we can replace any constraint of the form ∀x∃=ky : ψ(x, y),
where ψ(x, y) is a formula, with free variables exactly x and y, by (∀x∀y : ξ(x, y) ⇔
ψ(x, y)) ∧ (∀x∃=ky : ξ(x, y)), where ξ is a fresh predicate not occurring anywhere else.
Therefore we will assume without loss of generality that the constraints are of the form
∀x∃=ky : R(x, y) where R is a predicate. Then, repeatedly using Lemma 3, we can get rid
of all constraints of the form ∃=kx∀y : R(x, y). Besides new first-order logic sentences, this
also produces new constraints of the form ∃=kx : UR(x) which can be easily encoded using
cardinality constraints |UR| = k. Finally, we can use Lemma 2 repeatedly to get rid of the
constraints of the form ∀x∃=ky : R(x, y). Since the resulting sentence contains only two
variables and cardinality constraints, it follows from Proposition 5 that we can compute its
WFOMC in time polynomial in the size of the domain ∆.

6.1.1 An Illustration: Counting K-Regular Graphs

We now illustrate the techniques developed in this section on the problem of computing the
number of 2-regular graphs on n vertices. An undirected graph is called k-regular if all its
vertices have degree k. Note that we do not count non-isomorphic graphs here.

1294

WFOMC in the Two-Variable Fragment With Counting Quantifiers

We start by writing down the axioms defining 2-regular graphs:

∀x : ¬e(x, x), (2)

∀x, y : e(x, y)⇒ e(y, x), (3)

∀x∃=2y : e(x, y). (4)

Here (2) forbids self-loops, (3) requires e to be a symmetric relation (to model undirected
graphs) and (4) requires every vertex to have two out-going edges. Since, by (3), edges are
guaranteed to be symmetric, (4) is enough to guarantee that every vertex will have degree 2.

Since every sentence in the above theory has at most 2 variables and contains only
quantifiers ∀ and ∃=k, we can apply the techniques developed in this section to compute the
number of 2-regular graphs using WFOMC. We now provide details. First, we can rewrite
(4) using only ∀, ∃ and cardinality constraints as in Lemma 2:

∀x∀y : ξ(x, y)⇔ e(x, y), (5)

|ξ| = 2|∆|, (6)

∀x∃y : f1(x, y), (7)

∀x∃y : f2(x, y), (8)

∀x∀y : ξ(x, y)⇔ (f1(x, y) ∨ f2(x, y)), (9)

∀x∀y : ¬f1(x, y) ∨ ¬f2(x, y). (10)

We set the weights of all the predicates to 1 except for ξ for which we set w(ξ) = λ and
w = 1. Let Γ be the conjunction of (2), (3), (5), (7), (8), (9), (10). Since Γ is in FO2, we can
use, e.g., the algorithm from the work (Beame et al., 2015) to compute WFOMC for any
weight λ in time polynomial in the size of the domain and number of bits needed to encode λ.
Thus we can use the techniques described in Section 3 to compute the MC-function MCΨ,Γ,∆,
where we set Ψ = {ξ}. Finally, we still need to divide the MC-function by 2!|∆| = 2|∆| to
account for the over-counting caused by f1 and f2. The number of 2-regular graphs is then
equal to MCΨ,Γ,∆(n)/2|∆| where n = 2|∆|. For 3, 4, 5, 6, 7, 8, 9, 10 vertices this method
yields the following numbers of 2-regular graphs: 1, 3, 12, 70, 465, 3507, 30016, 286884.
One can check that these numbers are exactly the same as the numbers of 2-regular graphs
listed in the On-Line Encyclopedia of Integer Sequences as sequence A001205.6 We show
one example of the MC-function divided by 210 in Figure 3 for |∆| = 10. The x-coordinate
of the red point shown there is n = 2|∆| = 20 and its y-coordinate MCΨ,Γ,∆ /2

10 = 286884
is the number of 2-regular graphs on 10 vertices.

One can easily adapt the above example for counting the number of k-regular graphs for
a general k (although the complexity of the encoding grows with k). We note that counting
k-regular graphs is, in fact, an interesting, not completely trivial, problem; for instance, it
has been studied for k = 2, 3, 4, 5 by Goulden and Jackson (1986) and for the general case of
arbitrary k by Gessel (1990).

6. http://oeis.org/A001205

1295

Kuželka

6.2 The General Case

In this section we use the results from the previous sections to show that computing WFOMC
of arbitrary two-variable first-order logic sentences with the quantifiers ∃=k is domain-liftable.
In particular, we now consider the case when the sentences can contain quantifiers ∃=k at
arbitrary places.

Theorem 3. Let Γ be a sentence in the two-variable fragment of first-order logic, possibly
containing a finite number of counting quantifiers ∃=k1, ∃=k2, . . . , ∃=km. Then computing
WFOMC(Γ, w, w,∆) is domain-liftable.

We already know from the previous sections how to do inference with special types of
constraints, in particular with cardinality constraints and constraints of the form ∀x∃=ky
and ∃=kx∀y. As we will see later, the main difficulty in extending these results is to be
able to encode sentences of the form ∀x : A(x)⇔ (∃=ky : R(x, y)), which will allow us to
transform a given sentence to a form manageable by Theorem 2. We show how to do it in two
steps. In Lemma 4, we show how to encode sentences of the form ∀x : A(x)∨ (∃=ky : R(x, y))
using the form of constraints that we already know how to handle. We then use Lemma 4,
together with Proposition 3 (Appendix A.2, Beame et al., 2015), to encode the sentence
∀x : A(x)⇔ (∃=ky : R(x, y)) when we prove Theorem 3.

Lemma 4. Let R be a relation, Γ be a first-order logic sentence and Υ be a conjunction of
∀x∃=ky and ∃=kx∀y-constraints and cardinality constraints. Let us define Φ = Φ1 ∧ Φ2 ∧
Φ3 ∧ Φ4 where:

Φ1 =∀x∃=ky : BR(x, y),

Φ2 =(|UR| = k),

Φ3 =∀x∀y : (A(x) ∧BR(x, y))⇒ UR(y),

Φ4 =∀x∀y : ¬A(x)⇒ (R(x, y)⇔ BR(x, y)).

Then the following holds for WFOMC:

WFOMC(Γ ∧Υ ∧ (∀x : A(x) ∨ (∃=ky : R(x, y))), w, w,∆)

=
1(|∆|
k

) WFOMC(Γ ∧Υ ∧ Φ, w, w,Ωext),

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic
language L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by
predicates UR and BR (in particular, we assume w.l.o.g. that L did not originally contain
these predicates).

Before proving this lemma, we give some intuition about the transformation used in it. First,
we introduce an auxiliary binary relation BR and we require it to satisfy ∀x∃=ky : BR(x, y)
(that is what Φ1 does). Then we introduce an auxiliary unary relation UR and we require it
to have cardinality equal to k (this is done by Φ2). The combination of Φ1 and Φ2 and the
constraint expressed by Φ3 then has the effect that RB(t, y) is uniquely determined, up to
the choice of UR, for any t ∈ ∆ for which A(t) is true. This will be important to guarantee

1296

WFOMC in the Two-Variable Fragment With Counting Quantifiers

correct counting. Finally, Φ4 forces BR(t, y) to be equivalent to R(t, y) for any t ∈ ∆ for
which A(t) is false, which among others means that BR(t, y) is also uniquely determined in
this case. Moreover, Φ4 is only satisfied when ∃=ky : R(t, y) is true for all t ∈ ∆ for which
A(t) is false, which is what we need to encode. The choice of UR then corresponds to the(|∆|
k

)
factor in the statement of the lemma. The proof gives more details.

Proof of Lemma 4. First, we show that for every possible world ω ∈ Ωext it holds: if ω |= Φ
then ω |= (∀x : A(x)∨ (∃=ky : R(x, y))). For contradiction, let us assume that ω∗ ∈ Ωext is a
possible world such that ω∗ |= Φ and ω∗ 6|= (∀x : A(x) ∨ (∃=ky : R(x, y))). Then there must
be a t ∈ ∆ such that ω∗ |= ¬A(t) ∧ ¬(∃=ky : R(t, y)). At the same time, it must be the case
that ω∗ |= ∃=ky : BR(t, y) (from Φ1) and ω∗ |= ∀y : R(t, y)⇔ BR(t, y) (from Φ4). However,
these cannot be all true at the same time, thus, we have arrived at a contradiction.

To finish the proof, let [ω]L denote the “projection” of ω on the language L which is the
possible world obtained from ω by removing all atoms whose predicates are not contained in L
(i.e. UR and BR). We show that for every ω ∈ Ω such that ω |= (∀x : A(x)∨ (∃=ky : R(x, y)))

there are exactly
(|∆|
k

)
possible worlds ω′ ∈ Ωext such that ω′ |= Φ and ω = [ω′]L. Let ω ∈ Ω

be any such possible world. Due to Φ2, to extend ω, we have to select a set {t1, t2, . . . , tk} of
elements of the domain ∆ and make UR(t1), UR(t2), . . . , UR(tk) true (and no other). This

can be done in
(|∆|
k

)
different ways. Once, we set the UR predicate in this way, there is only

one way to extend the possible world ω: For every t ∈ ∆ such that ω′ |= A(t), it must be
true ω′ |= B(t, t1) ∧ · · · ∧BR(t, tk). This is because, due to Φ1, for every t ∈ ∆ there must
be exactly k domain elements t′1, . . . , t′k such that ω′ |= BR(t, t′1)∧ · · · ∧BR(t, t′k). Moreover,
due to Φ3, if ω′ |= A(t) ∧BR(t, t′i) are true then ω′ |= UR(t′i) must be true as well. However,
there are only k such domain elements t′i (due to Φ2). This means that BR(t, t′i) is uniquely
determined. Moreover, for all the other t ∈ ∆ such that ω′ |= ¬A(t), BR must coincide with
R and hence is uniquely determined as well. This is what we needed to finish the proof.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We start by showing how to deal with sentences of the form Γ ∧ Υ
where

Υ = ∀x : A(x)⇔ (∃=ky : R(x, y)).

First we rewrite the sentence

Υ1 = ∀x : A(x)⇒ (∃=ky : R(x, y))

into a form that we already know how to handle. For that we introduce a new unary
predicate B and define

Υ′1 = (∀x : A(x)⇔ ¬B(x)) ∧ (∀x : B(x) ∨ (∃=ky : R(x, y))).

Sentences in this form can already be handled by Lemma 4. Let Ω′ext be the set of all possible
worlds on domain ∆ over the given language extended by the predicate B. Then for every
possible world ω ∈ Ω which is a model of Γ ∧Υ1 there is exactly one possible world in Ω′ext
which is a model of Γ ∧Υ′1, and vice versa.

1297

Kuželka

Next we need to show how to handle the sentence Υ2 = ∀x : A(x)⇐ (∃=ky : R(x, y)).
At first this may seem difficult but Proposition 3 comes to the rescue here. Specifically, if
we equivalently write

Υ2 = ∀x : A(x) ∨ ¬(∃=ky : R(x, y)),

we can get rid of the negation in front of (∃=ky : R(x, y)) using Proposition 3 as follows. We
create two new unary predicates C and D and define

Υ′2 = ∀x : ((∃=ky : R(x, y)) ∨ C(x)) ∧ (C(x) ∨D(x)) ∧ ((∃=ky : R(x, y)) ∨D(x))).

It follows from Proposition 3 that if we set w(C) = w(C) = w(D) = 1 and w(D) = −1 then
for any sentence Θ it will hold

WFOMC(Θ ∧Υ2, w, w,Ω) = WFOMC(Θ ∧ (∀x : A(x) ∨ C(x)) ∧Υ′2, w, w,Ω
′′
ext),

where Ω is the set of all possible worlds on the domain ∆ w.r.t. the given first-order logic
language L and Ω′′ext is the set of all possible worlds on the domain ∆ w.r.t. L extended by
the predicates C and D.

Next we can apply consecutively the two steps described above which gives us

WFOMC(Γ ∧Υ, w, w,Ω) = WFOMC(Γ ∧ (∀x : A(x) ∨ C(x)) ∧Υ′1 ∧Υ′2, w, w,Ω
′′′
ext),

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic
language L and Ω′′′ext is the set of all possible worlds on the domain ∆ w.r.t. L extended by
the predicates B, C and D. From Lemma 4, we already know how to handle the sentences
Υ′1 and Υ′2 when computing WFOMC.

Finally, we use the above to compute WFOMC of arbitrary two-variable sentences which
may contain quantifiers ∃=k. This is relatively straightforward. Let Γ be such a sentence.
We just need to repeatedly replace every subformula of the form ∃=ky : ψ(x, y) by Aψ(x),
where Aψ is a fresh unary predicate, and add a “definition” of this predicate in the form
(∀x∀y : Bψ(x, y) ⇔ ψ(x, y)) ∧ (Aψ(x) ⇔ (∃=ky : Bψ(x, y))). It is not difficult to see that
the resulting sentence after being rewritten according to the rules described in this proof
(i) can be handled by Theorem 2, (ii) that it contains only two variables and (iii) that
its size is independent of the size of the domain. Additionally, the only way in which the
resulting sentence will depend on the domain is through the cardinality constraints of the
form |R| = k|∆| and, in any such a constraint, k|∆| will grow only polynomially with the
size of the domain (this is no problem for establishing domain liftability). The statement of
the theorem then follows from the above and from Theorem 2.

7. The Two-Variable Fragment with Counting

In this section we show that the results from the previous sections imply domain liftability
for the two-variable fragment of first-order logic with counting quantifiers.

Theorem 4. Weighted first-order model counting is domain-liftable for the two-variable
fragment of first-order logic with counting quantifiers.

1298

WFOMC in the Two-Variable Fragment With Counting Quantifiers

Proof. We can prove this theorem by reducing it to the case with just the ∃=k-quantifier,
whose domain-liftability is established by Theorem 3.

First, any sub-formula of the form ∃≤ky : ψ(x, y) can be replaced by:

(∀y : ¬ψ(x, y)) ∨ (∃=1y : ψ(x, y)) ∨ (∃=2y : ψ(x, y)) ∨ · · · ∨ (∃=ky : ψ(x, y)).

Obviously, the size of the result of the above transformation is independent of the domain
size and if the original formula was in FO2, the new one will be in FO2 as well.

Next we need to get rid of the sub-formulas of the form ∃≥ky : ψ(x, y). Note that we
cannot blindly apply the same method we used for the sub-formulas with the quantifier ∃≤k
because, in that case, the number of disjuncts in the resulting formula would grow with the
size of the domain. Instead, we proceed as follows. We equivalently rewrite the sub-formula
as:

∃≥ky : ψ(x, y) = ¬¬(∃≥ky : ψ(x, y)) = ¬(∃≤k−1y : ψ(x, y)).

We already know how to handle sub-formulas of this form. So we are done.

8. Related Work

The work presented in this paper builds on a long stream of research in lifted inference
(Poole, 2003; de Salvo Braz et al., 2005; Van den Broeck, 2011; Gogate & Domingos, 2011;
Van den Broeck, 2013; Van den Broeck et al., 2014; Beame et al., 2015; Kazemi et al., 2016;
Kuusisto & Lutz, 2018). On the technical level, in the present paper, we directly exploit
results that established domain-liftability of the two-variable fragment of first-order logic
(Van den Broeck, 2011; Van den Broeck et al., 2014), which we extended by allowing counting
quantifiers. The result on domain-liftability of the two-variable fragment was relatively
recently extended in two somewhat related directions that we describe below.

First, Kazemi et al. (2016) showed that so-called domain-recursion rule, which had
been previously proposed by Van den Broeck, allows to enlarge the class of domain-liftable
theories. In particular, they identified two new domain-liftable fragments of first-order logic
which they call S2FO2 and S2RU. These two classes contain among others certain theories
with functionality axioms but, as also pointed out by Kuusisto and Lutz (2018), not all
FO2 theories with functionality axioms are contained in them. The domain-liftable class
identified in our work, i.e. FO2 with counting quantifiers, and the classes studied by Kazemi
et al. (2016) are incomparable. However, we believe that our techniques and theirs could be
combined in future work.

More recently, Kuusisto and Lutz (2018) showed that WFOMC for FO2 with at most
one functionality constraint is domain-liftable using a rather complex argument. They also
mentioned in the same work (although without giving any details) that if one could extend
this result to multiple functionality constraints, domain-liftability of FO2 with counting
quantifiers would follow. Specifically, in the concluding section of their paper, they say:
It can be shown that WFOMC for formulae of two-variable logic with counting C2 can be
reduced to WFOMC for FO2 with several functionality axioms. Thus, in principle, our results
from Section 6.1, where we established domain-liftability of FO2 with an arbitrary number
of functionality constraints, combined with their remark would also be sufficient to establish
our main result. However, since there are no details and no proof, we had to provide these

1299

Kuželka

ourselves. In fact, we did not use reductions directly based on functionality constraints in our
proofs (since that seemed to be rather wasteful), therefore we suspect that our reductions
might also be more efficient.

Finally, the methods that we used in the present paper resemble techniques used in
enumerative combinatorics (Stanley, 1986), in particular generating functions. We plan to
investigate these connections more closely in future work.

9. Conclusions

In this work we showed that the two-variable fragment of first-order logic with counting
quantifiers is domain-liftable. This significantly broadens the class of weighted first-order
model counting problems that can be solved in polynomial time. There is still a lot one can
do from here, especially for improving the practical efficiency of lifted inference algorithms
on problems that result from our reductions.

Acknowledgements

This work was supported by Czech Science Foundation project “Generative Relational
Models” (20-19104Y), the OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research
Center for Informatics” and a donation from X-Order Lab. The author is grateful to the
anonymous reviewers for their helpful comments and Guy Van den Broeck for pointing out
the problem of inference in the two-variable fragment of FOL with counting quantifiers
several years back.

Appendix A. Computing Weighted Model-Counting Functions Using
DFT

Here we describe an alternative approach to computing weighted model-counting functions
based on discrete Fourier transform. This approach is a generalization of a method from our
previous work (Kuzelka, 2020) where it was used in the context of Markov logic networks.

Notation We need a bit more notation here. We use i to denote the imaginary unit
i2 = −1 and 〈v, w〉 to denote the inner product of the vectors v and w (when v and w are
real vectors, inner product coincides with scalar product).

A.1 Discrete Fourier Transform

Here we describe the basic properties of multi-dimensional Fourier transform (DFT) that will
be needed in this paper. Let d be a positive integer and let N = [N1, . . . , Nd] ∈ (N \ {0})d
be a vector of positive integers. Let us define J = {0, 1, . . . , N1 − 1} × {0, 1, . . . , N2 − 1} ×
· · · × {0, 1, . . . , Nd − 1}. Let f : J → C be a function defined on J . Then the DFT of f is
the function g : J → C defined as

g(k) =
∑
n∈J

f(n)e−i2π〈k,n/N〉 (11)

1300

WFOMC in the Two-Variable Fragment With Counting Quantifiers

where n/N
def
= [[n]1/N1, [n]2/N2, . . . , [n]d/Nd] (i.e. “/” denotes component-wise division).

We use the notation g = F {f}. The inverse transform is then given as

f(n) =
1∏d

l=1Nl

∑
k∈J

g(k)ei2π〈n,k/N〉. (12)

It holds that f = F−1 {F {f}}.

A.2 Computing Weighted Model-Counting Functions Using DFT

Let Ω be the set of all possible worlds on a given domain ∆ and a given set of predicates R.
Here we show how to compute the WMC-function WMCΨ,Γ,∆(n) for given list of predicates
Ψ = (R1, . . . , Rm) and a given sentence Γ using DFT.

First, WMCΨ,Γ,∆(n) is a real-valued function of m-dimensional integer vectors. We can
restrict the domain7 of WMCΨ,Γ,∆(n) to the set

D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm}

where

M1 = |∆|arity(R1), M2 = |∆|arity(R2), . . . , Mm = |∆|arity(Rm).

Second, from the definition of DFT we then have for the Fourier transform g(k):

g(k) =
∑
n∈D

WMCΨ,Γ,∆(n, w, w) · e−i2π〈k,n/M〉 (13)

where k = (k1, . . . , km), M = (M1 + 1, . . . ,Mm + 1) and the division in n/M is again
component-wise.

Third, let Ω∗ = {ω ∈ Ω|ω |= Γ}. Let R be the set of all predicates R that have non-
neutral weights (i.e. w(R) 6= 1 or w(R) 6= 1). Using the definition of WMCΨ,Γ,∆(n, w, w),
we can write

g(k) =
∑
n∈D

 ∑
ω∈Ω∗:N(Ψ,ω)=n

∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω)

 e−i2π〈k,n/M〉

=
∑
n∈D

∑
ω∈Ω∗:N(Ψ,ω)=n

(∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω)

)
e−i2π〈k/M,N(Ψ,ω)〉

=
∑
ω∈Ω∗

(∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω)

)
e−i2π〈k/M,N(Ψ,ω)〉

= WFOMC(Γ, w′, w′,∆),

where we set w′(Ri) = w(Ri) · e−2iπki/Mi for all Ri ∈ Ψ, w′(R) = w(R) for all R ∈ R \ Ψ
and w′(R) = 1 for all R ∈ R. Thus, we can compute the DFT of WMC-functions using a

7. Here, domain refers to the domain of a mathematical function, not to a domain as a set of domain
elements ∆.

1301

Kuželka

polynomial number (in |∆|) of queries to a WFOMC oracle. Once we have the DFT g(k) of
the MC-function, obtaining the MC-function from the DFT is trivial. We just compute the
inverse DFT of g(k). Importantly, to obtain this, we did not need to add explicit cardinality
constraints, expressed as first-order logic sentences, to Γ or modify the formulas in it or in
the set Ψ in any way.

A note on representation of complex numbers In our previous work (Kuzelka, 2020),
we discuss the issues of representing complex numbers in the computations such as DFT in
detail.

Appendix B. Omitted Proofs

In this section we give proofs that were omitted from the main text.

B.1 Proof of Proposition 1

First, we bound the coefficients of monomials of the polynomials li(x). We write li(x) =∑d
j=0

ei,j
fi,j
· xj where ei,j , fi,j ∈ N. We have

max
i

log |ei,j | ≤ max
i

log

2d
d∏

0 ≤ j ≤ d
i 6= j

xj

 ≤ log

(
2d max

j
|xj |d

)
= d log

(
2 max

j
|xj |
)
,

(14)

max
i

log |fi,j | ≤ max
i

log

d∏

0 ≤ j ≤ d
i 6= j

|xi − xj |

 ≤ max
i

log

(
max
j
|xi − xj |d

)

= d log

(
2 max

j
|xj |
)
. (15)

Let yi =
y′i
y′′i

where both y′i and y′′i are integers. We then also have for the coefficient aj of

the monomial xj in the interpolating polynomial:

aj =
d∑
i=0

y′i
y′′i

ei,j
fi,j

=

∑d
i=0 y

′
iei,j

∏
0≤k≤d,k 6=j y

′′
kfk,j∏d

i=0 y
′′
i fi,j

.

Both the numerator and denominator of the last expression are integers and it holds

log

∣∣∣∣∣∣
d∑
i=0

y′iei,j ·
∏

0≤k≤d,k 6=j
y′′kfk,j

∣∣∣∣∣∣
 ≤ log

∣∣∣∣∣∣dmax
i

{
y′iei,j

}
·

∏
0≤k≤d,k 6=j

y′′kfk,j

∣∣∣∣∣∣

≤ log d+ log max
i
|y′i|+ log max

i
|ei,j |+

∑
0≤k≤d,k 6=j

(
log |y′′k |+ log |fk,j |

)
≤ log d+ log max

i
|y′i|+ d log max

i
|y′′i |+

(
d+ d2

)
log

(
2 max

j
|xj |
)

1302

WFOMC in the Two-Variable Fragment With Counting Quantifiers

(here the last inequality follows from (14) and (15)). It also holds

log

(∣∣∣∣∣
d∏
i=0

y′′i fi,j

∣∣∣∣∣
)
≤ d log max

i
|y′′i |+ dmax

i
log (|fi,j |) ≤ d log max

i
|y′′i |+ d2 log

(
2 max

j
|xj |
)
.

It follows that the number of bits needed to represent the coefficients of the interpolating
polynomial grows only polynomially with the number of bits needed to encode the points
(xi, yi), which is what we needed to show.

B.2 Proof of Proposition 2

Let use define the following set of integer vectors

D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm}

where M1 = |∆|arity(R1), M2 = |∆|arity(R2), . . . , Mm = |∆|arity(Rm). It is obvious that
the weight of any possible world ω ∈ Ω can be only one of the form

∏m
i=1w(Ri)

ni ·
w(Ri)

|∆|arity(Ri)−ni for some (n1, n2, . . . , nm) ∈ D. That means that there are only polynomi-
ally many, in ∆, different weights of possible worlds and the WFOMC is their weighted sum.
Specifically, the WFOMC can be written as

WFOMC(Γ, w, w,∆) =
∑

(n1,...,nm)∈D

C(n1,...,nm)

m∏
i=1

(
w′(Ri)

w′′(Ri)

)ni

·
(
w′(Ri)

w′′(Ri)

)|∆|arity(Ri)−ni

(16)

where C(n1,...,nm) ∈ N. It is easy to see that C(n1,...,nm) ≤ 2m·|∆|
A

and ni ≤ |∆|A where
A = maxR∈R arity(R). Next we define

D′(n1,...,nm) = C(n1,...,nm)

m∏
i=1

w′(Ri)
ni · w′(Ri)|∆|

arity(Ri)−ni

D′′(n1,...,nm) =

m∏
i=1

w′′(Ri)
ni · w′′(Ri)|∆|

arity(Ri)−ni

We have

logD′(n1,...,nm) = logC(n1,...,nm) +
m∑
i=1

ni logw′(Ri) +
m∑
i=1

(
|∆|arity(Ri) − ni

)
logw′(Ri)

≤ mA log 2 + 2m|∆|A logM

and similarly also

logD′′(n1,...,nm) =
m∑
i=1

ni logw′′(Ri) +

m∑
i=1

(
|∆|arity(Ri) − ni

)
logw′′(Ri) ≤ 2m|∆|A logM.

It follows that each of the summands in (16) can be represented as a fraction where both
the numerator and the denominator are represented using a polynomial number of bits in
|∆| and in logM .

Finally, WFOMC(Γ, w, w,∆) is a sum of |D| such fractions and |D| is also polynomial
in |∆|. The statement of the proposition follows from this.

1303

Kuželka

Appendix C. An Additional Example: Anti-Involutive Functions

Here we provide another example in which we illustrate how the techniques presented in
Section 6.1, where we introduced ∀∃=1-constraints, can be used to efficiently encode more
complex examples without much additional complexity Although the techniques that we
developed in the later sections (Section 6.2 and Section 7) are more general but we may
often pay for this generality by computational speed. For that we may sometimes need to
slightly adjust these techniques. We illustrate it on the case of anti-involutive functions.

We look at functions from M = {1, 2, . . . ,m} to N = {1, 2, . . . , n}. We say that a
function f : M → N is anti-involutive if f(f(x)) 6= x for all x ∈M . We are interested in the
problem of counting all anti-involutive functions from M to N . For that we first define such
functions in first-order logic with counting quantifiers and cardinality constraints (which
could also be represented in this case using counting quantifiers):

|M | = m, (17)

∀x : M(x)⇒ (∃=1y : f(x, y)), (18)

∀x, y : ¬M(x)⇒ ¬f(x, y), (19)

∀x, y : ¬f(x, y) ∨ ¬f(y, x). (20)

We also assume that ∆ = N . The models of this theory on the domain ∆ must be anti-
involutive functions from a set of size m (rather than from the set M) to ∆. This means
that to obtain the number of anti-involutive functions from M to N , we will need to divide
the model count that we obtain by

(
n
m

)
.

First, we replace both (18) and (19) by:

|f | = m, (21)

∀x∃y : M(x)⇒ f(x, y). (22)

The correctness of this transformation follows from similar reasoning as we used in the
proof of Lemma 1. Now we have no more counting quantifiers, only first-order logic sentences
and cardinality constraints. Hence, all we need is to compute the MC-function MCΨ,Γ,∆(n),
where Ψ = (f,M) and Γ is a conjunction of (20) and (22), and then use it to count only
over the possible worlds that satisfy the cardinality constraints |f | = |M | = m.

We plotted the resulting MC-functions in the left panels of Figure 4 and Figure 5, for
n = 5 and n = 10, respectively.8 In the right panels of these two figures, we plotted the
numbers of anti-involutive functions computed by our approach (blue circles). Note that each
of these plots corresponds to the diagonal of the respective MC-function (i.e. MCΨ,Γ,∆(m,m))
divided by

(
n
m

)
.

8. It is interesting to note that there is a good reason why the MC-function is zero in the roughly bottom
half of the plots. Taking a closer look at the MC-function we can notice that it is zero for |f | >

(
n
2

)
. This

is because of the constraint ∀x∀y : ¬f(x, y) ∨ ¬f(y, x), which implies that the cardinality of the relation
f cannot exceed the number of edges of the complete undirected graph on n vertices.

1304

WFOMC in the Two-Variable Fragment With Counting Quantifiers

0 1 2 3 4 5
N(M,ω)

0
5

10
15

20
25

N
(f,

ω
)

0
10−2
10−1
100
101
102
103
104
105

1 2 3 4 5
m

0

100

200

300

400

Nu
m

be
r o

f a
nt

i-i
nv

ol
ut

iv
e

fu
nc

tio
ns

Figure 4: Left: The MC-function for computing the number of anti-involutive functions
when n = 5. Right: The number of anti-involutive functions from {1, 2, . . . ,m} to
{1, 2, . . . , 5}.

0 1 2 3 4 5 6 7 8 9 10
N(M,ω)

0
10

20
30

40
50

60
70

80
90

10
0

N
(f,

ω
)

0
100
102
104
106
108
1010
1012
1014
1016
1018
1020
1022

2 4 6 8 10
m

0.0

0.5

1.0

1.5

Nu
m

be
r o

f a
nt

i-i
nv

ol
ut

iv
e

fu
nc

tio
ns

1e9

Figure 5: Left: The MC-function for computing the number of anti-involutive functions
when n = 10. Right: The number of anti-involutive functions from {1, 2, . . . ,m} to
{1, 2, . . . , 10}.

As a sanity check we compared our results with the numbers given by the explicit formula

F (m,n) =

bm/2c∑
i=0

(−1)i(n− 1)m−2i

(
m

2i

)
(2i)!

2i(i!)
,

derived by Kuusisto and Lutz (2018). We plotted it as red crosses. As expected, both
methods give the same results.

Alternatively, instead of replacing (18) and (19) by (21) and (22), we could have used
the transformation from Lemma 4. However, that would actually lead to a more complex
encoding. So, even though, we would still be able to solve the counting problem in time
polynomial in the size of the domain (i.e. in n), the exponent of the polynomial might be
higher. This illustrates the fact that there may often be more efficient transformations
than those we used in our proofs. Arguably, there seems to be quite some potential in
investigating more efficient transformations for certain cases.

1305

Kuželka

References

Beame, P., Van den Broeck, G., Gribkoff, E., & Suciu, D. (2015). Symmetric weighted
first-order model counting. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pp. 313–328. ACM.

de Salvo Braz, R., Amir, E., & Roth, D. (2005). Lifted first-order probabilistic inference. In
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, pp. 1319–1325.

Gessel, I. M. (1990). Symmetric functions and p-recursiveness.. J. Comb. Theory, Ser. A,
53 (2), 257–285.

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning, Vol. 1. MIT
press Cambridge.

Gogate, V., & Domingos, P. M. (2011). Probabilistic theorem proving. In UAI 2011,
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
pp. 256–265. AUAI Press.

Goulden, I. P., & Jackson, D. M. (1986). Labelled graphs with small vertex degrees and
p-recursiveness. SIAM Journal on Algebraic Discrete Methods, 7 (1), 60–66.

Graedel, E., Otto, M., & Rosen, E. (1997). Two-variable logic with counting is decidable. In
Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp.
306–317. IEEE.

Jaeger, M. (2015). Lower complexity bounds for lifted inference. TPLP, 15 (2), 246–263.

Kazemi, S. M., Kimmig, A., Van den Broeck, G., & Poole, D. (2016). New liftable classes
for first-order probabilistic inference. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems, pp. 3117–
3125.

Koiran, P., & Perifel, S. (2011). Interpolation in valiant’s theory. Computational Complexity,
20 (1), 1–20.

Kuusisto, A., & Lutz, C. (2018). Weighted model counting beyond two-variable logic. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, pp. 619–628.

Kuzelka, O. (2020). Complex Markov logic networks: Expressivity and liftability. In
Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI.

Meert, W., Vlasselaer, J., & Van den Broeck, G. (2016). A relaxed tseitin transformation
for weighted model counting. In Proceedings of the Sixth International Workshop on
Statistical Relational AI (StarAI), pp. 1–7.

Poole, D. (2003). First-order probabilistic inference. In IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, pp. 985–991.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62 (1-2),
107–136.

Seroul, R. (2000). Programming for mathematicians. Springer Science & Business Media.

1306

WFOMC in the Two-Variable Fragment With Counting Quantifiers

Stanley, R. P. (1986). What is enumerative combinatorics?. In Enumerative combinatorics,
pp. 1–63. Springer.

Van den Broeck, G. (2011). On the completeness of first-order knowledge compilation for
lifted probabilistic inference. In Advances in Neural Information Processing Systems,
pp. 1386–1394.

Van den Broeck, G. (2013). Lifted inference and learning in statistical relational models.
Ph.D. thesis, PhD thesis, KU Leuven.

Van den Broeck, G., Meert, W., & Darwiche, A. (2014). Skolemization for weighted first-order
model counting. In Proceedings of the 14th International Conference on Principles of
Knowledge Representation and Reasoning (KR), pp. 1–10.

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted
probabilistic inference by first-order knowledge compilation. In Proceedings of the
Twenty-Second international joint conference on Artificial Intelligence, pp. 2178–2185.
AAAI Press/International Joint Conferences on Artificial Intelligence.

1307

