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Abstract

We study the mechanism design problem of a social planner for locating two facilities on
a line interval [0, 1], where a set of n strategic agents report their locations and a mechanism
determines the locations of the two facilities. We consider the requirement of a minimum
distance 0 ≤ d ≤ 1 between the two facilities. Given the two facilities are heterogeneous,
we model the cost/utility of an agent as the sum of his distances to both facilities. In
the heterogeneous two-facility location game to minimize the social cost, we show that the
optimal solution can be computed in polynomial time and prove that carefully choosing
one optimal solution as output is strategyproof. We also design a strategyproof mechanism
minimizing the maximum cost. Given the two facilities are homogeneous, we model the
cost/utility of an agent as his distance to the closer facility. In the homogeneous two-facility
location game for minimizing the social cost, we show that any deterministic strategyproof
mechanism has unbounded approximation ratio. Moreover, in the obnoxious heterogeneous
two-facility location game for maximizing the social utility, we propose new deterministic
group strategyproof mechanisms with provable approximation ratios and establish a low-
er bound (7 − d)/6 for any deterministic strategyproof mechanism. We also design a
strategyproof mechanism maximizing the minimum utility. In the obnoxious homogeneous
two-facility location game for maximizing the social utility, we propose deterministic group
strategyproof mechanisms with provable approximation ratios and establish a lower bound
4/3. Besides, in the two-facility location game with triple-preference, where each facility
may be favorable, obnoxious, indifferent for any agent, we further motivate agents to report
both their locations and preferences towards the two facilities truthfully, and design a
deterministic group strategyproof mechanism with an approximation ratio 4.
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1. Introduction

In this paper, we study the two-facility location games with minimum distance requirement
between two facilities. Here, the minimum distance requirement means that the distance
between the two facilities should be at least a certain value. Its origin, the two-facility
location game, models the scenario where the social planner is going to build two facilities
on a line segment with some self-interested agents who want to minimize (maximize) their
own costs (utilities). The agents are required to report their locations which are their
private information, and a mechanism will map the reports to two locations to place the
two facilities, with the purpose of optimizing the social cost (utility).

When the social planner (e.g., government) plans to build several public facilities (e.g.,
bus stop, theater, shopping mall, school, park, hospital, etc.) to serve some nearby agents
(e.g., residents, users, customers), the distance between any two adjacent facilities can be
one of the key factors to be considered. Especially, nowadays, the COVID-19 outbreak has
become a great threat to public health and human life worldwide (Cascella et al., 2020).
The agents need to go to the facilities to obtain services. If the two facilities are too close,
the agents would gather to crowd, which decreases the social distance between people, and
increases the possibility of virus spread. Therefore, in order to reduce crowd gathering to
prevent rapidly spread of the COVID-19, the social planner needs to setup the minimum
distance between any two adjacent facilities (Klise & Bynum, 2020). Other reasons related
to decentralized facilities are diversification requirements, where one partial block of houses
are not allowed to benefit from all the new projects of facilities (Moore & Stamm, 2012);
affordable housing developments and zoning regulations so that public resources can be
fairly distributed (Zhong et al., 2019; Sakai et al., 2020). For Game 1 of the heterogeneous
two-facility location game, we show an instance that the social planner plans to deploy a
theater and a primary school in a street, where all agents prefer living close for easy access
to both movie entertainment and education resource. The two facilities should be some
distance far away due to diversification requirements. Since each agent needs services from
both heterogeneous facilities, the cost of each agent should be the sum of his Euclidean
distances to the two facilities (Serafino & Ventre, 2014). For Game 2 of the homogeneous
two-facility location game, we show an instance that the social planner plans to deploy two
temporary COVID-19 testing sites in a street (Kaplan, 2020). To avoid crowd gathering,
the two sites should be some distance far away. Since each agent only needs go to any one
of two sites for testing, the cost/utility of each agent is his Euclidean distance to the closer
site (Lu et al., 2010).

On the other hand, when the social planner plans to build several obnoxious facilities
(e.g., factories), where all agents prefer living far away, the distance constraint between
any two adjacent facilities is also a key factor to be considered. To comply with the
environmental regulations of the limit on the total emissions, decentralized facilities help
to reduce the spread of toxic gases and avoid penalties for any polluter exceeding the
environmental limit (Turken et al., 2017). More seriously, if the factories are too close, any
explosion hazard of a factory may cause the chain reactions and the disaster of all factories,
and thus risk human life (Fu et al., 2016). Therefore, by adding the minimum distance
requirement, we study Game 3 of the obnoxious heterogeneous two-facility location game,
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and Game 4 of the obnoxious homogeneous two-facility location game for the objective of
maximizing the social utility.

Besides, there exist some facilities (e.g., train station, kindergarten, theme park, parking
lot, etc.) for which agents may have triple preferences: favorable, obnoxious, and indifferent;
and the distance constraint between any two adjacent facilities should be also considered.
Specifically, for Game 5 of the two-facility location game with triple-preference, the social
planner plans to build a parking lot and a kindergarten with at least some distance in
between for kids’ safety. Some agents prefer to live close to the parking lot to park their cars
more conveniently, while some others want to stay away to avoid vehicle exhaust emissions
around the parking lot, and the rest of agents are indifferent to the parking lot. Regarding
the kindergarten, some agents prefer to stay close to it to pick up their kids, while some
others want to stay away it to avoid noise, and the rest of agents are indifferent to it.

An agent may manipulate the mechanism by misreporting his private information in
order to decrease his cost or increase his utility. Therefore, we emphasize on the strat-
egyproofness of a mechanism, which guarantees that an agent’s utility/cost is optimized
by reporting the truth. We aim to design deterministic strategyproof mechanisms whose
performances approximate well the optimal social cost/utility. The evaluation of a mecha-
nism is conducted by the approximation ratio, which is the worst ratio between the social
cost/utility of the mechanism output and the optimal social cost/utility considering all
possible agent profiles.

We summarize our results and key novelty as follows.

• Two-Facility location games with minimum distance requirement (TFLG): To the best
of our knowledge, this is the first time that the distance requirement is considered in
the facility location games for strategyproof mechanism design.

• Mechanism design for Game 1 of the heterogeneous TFLG: In Section 3, we study
the game where the agents prefer to stay close to both two facilities, and the cost
of an agent is the sum of his distances to both facilities. We consider objectives of
minimizing the social cost and minimizing the maximum cost of all agents, and design
strategyproof mechanisms that output the optimal solutions.

• Mechanism design for Game 2 of the homogeneous TFLG: In Section 4, we study the
homogeneous TFLG where the facilities provide the same service and are favorable for
all agents, and the cost of an agent is his distance to the closer facility. We show that
for objective of minimizing the social cost, any deterministic strategyproof mechanism
has unbounded approximation ratio.

• Mechanism design for Game 3 of the obnoxious heterogeneous TFLG: In Section 5,
we study the game where each agent prefers to stay far away from two obnoxious
heterogeneous facilities, and the utility of an agent is the sum of his distances to both
facilities. To maximize the social utility, we design deterministic group strategyproof
mechanisms with provable approximation ratios, and prove a lower bound of 7−d

6 .
Furthermore, when the objective is to maximize the minimum utility, we design a
strategyproof mechanism that returns the optimal solution.

• Mechanism design for Game 4 of the obnoxious homogeneous TFLG: In Section 6,
we study the game where each agent prefers to stay far away from two obnoxious
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homogeneous facilities, and the utility of an agent is his distance to the closer facility.
We design a deterministic group strategyproof mechanism with an approximation
ratio 9 for maximizing the social utility and find a lower bound 4/3. We also show
that in most cases, there is no strategyproof mechanism with bounded approximation
ratio for maximizing the minimum utility.

• Mechanism design for Game 5 of the heterogeneous TFLG with triple-preference:
Finally, in Section 7, we study the general game with triple-preference, where each of
the two facilities may be favorable, obnoxious or indifferent for any agent. We motivate
agents to report their locations and preferences for the two facilities truthfully. We
design a deterministic group strategyproof mechanism with an approximation ratio 4
and obtain a corresponding lower bound.

Game 1: Game 2: Game 3: Game 4: Game 5:
Hete Homo Obnx Hete Obnx Homo Hete TP

Obj min SC min MC min SC or MC max SU max MU max SU max MU max SU

UB
1 1

+∞ [1, 2] 1 [4, 9]
+∞ 4

(Me 1) (Me 2) (Me 5) (Me 6) (Me 10) (Me 11)

LB 1 1 +∞ 7−d
7 1 [4

3 ,
3
5 ] +∞1 7−d

6

Table 1: A summary of the results in the paper, where Hete is for heterogeneous two-facility
location games with minimum distance requirement, Homo is for homogeneous, Obnx is for
obnoxious, TP is for triple-preference, Obj is for objective, UB is for upper bound, LB is
for lower bound, SC is for social cost, MC is for maximum cost, SU is for social utility, MU
is for minimum utility, Me is for Mechanism, and 0 ≤ d ≤ 1 is the distance requirement.

Table 1 summarizes our main results in the paper. Our work generalizes the existing
studies on facility location games without distance constraints (i.e., d = 0). Particularly,
without distance constraints, our heterogeneous TFLG degenerates to the one-facility loca-
tion games (Procaccia & Tennenholtz, 2009); our homogeneous TFLG degenerates to the
two-facility location games (Procaccia & Tennenholtz, 2009; Fotakis & Tzamos, 2014); and
our obnoxious heterogeneous TFLG degenerates to the obnoxious one-facility location games
(Cheng et al., 2013). The non-trivial distance constraint between the two facilities makes
the design of strategyproof mechanisms, and the proof of lower bounds more challenging. In
Game 6, for example, we design Mechanism 10 for different regimes 0 ≤ d < 5

14 , 5
14 ≤ d ≤

3
5 ,

and 3
5 < d < 1. The analyses of our mechanisms and the corresponding lower bounds are

regarded as the major technical contributions of this paper.

1.1 Related Work

In the algorithmic view of locating one facility, Procaccia and Tennenholtz (2009) first
studied strategyproof mechanisms with provable approximation ratios on a line. Then
characterizations of deterministic strategyproof mechanisms on line, tree, and cycle networks

1. This infinite lower bound is obatined under the condition that any deterministic strategyproof mechanism
f only selects from any k ∈ N+ candidates.
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were provided (Moulin, 1980; Schummer & Vohra, 2002). For the obnoxious facility game,
the problem of designing strategyproof mechanisms to approximately maximize the social
utility was studied (Cheng et al., 2013). They presented a 3-approximation deterministic
group strategyproof mechanism and proved a lower bound of 2. Characterizations of all
strategyproof mechanisms with exactly two candidates in the general metric were studied
(Han & Du, 2011; Ibara & Nagamochi, 2012). They showed that there exists a lower bound
of 3 for strategyproof mechanism in any metric, matching the upper bound of 3 (Cheng
et al., 2013). Zhang and Li (2014) the extended mechanism design for both games with
weighted agents on a line and provided the corresponding lower and upper bounds on the
optimal social utility. Combining the above two models together, the dual-preference game
was studied, where some agents want to be close to the facility while the others want to be
far away from the facility (Zou & Li, 2015; Feigenbaum & Sethuraman, 2015). Further, Xu
et al. (2019) extended the facility point to be an UAV in the dual-preference game.

For the two-facility location game, Lu et al. (2009) improved the lower bounds for
the two homogeneous facilities scenario and the scenario when one agent possesses multiple
locations. Lu et al. (2010) considered the cost of an agent to be the distance between his own
location and the closer facility in a general metric space. Sui et al. (2013) proposed a class of
percentile mechanisms in the form of generalized median mechanisms. Fotakis and Tzamos
(2014) proved that the best approximation ratio achievable by deterministic strategyproof
mechanisms for locating 2 facilities on the line to minimize the total cost is n− 2. Serafino
and Ventre (2014, 2015) initiated the study on two heterogeneous facility location games
in the graph where the cost of an agent is the sum of his distances to both facilities. Yuan
et al. (2016) proposed the optional preference model for the facility location game with
two heterogeneous facilities on a line, where agents are allowed to have optional preference.
Anastasiadis and Deligkas (2018) studied heterogeneous k-facility location games on the
line segment where the preferences of agents over the facilities are the private information,
and the locations of agents are known to the social planner. Fong et al. (2018) proposed a
fractional preference model for the facility location game with two facilities that serve the
similar purpose on a line where each agent has his location information as well as fractional
preference towards the two facilities.

In addition, Todo et al. (2011) extended the original model by fully characterizing
the deterministic false-name-proof facility location mechanisms for locating a single facility
on a line. Then Sonoda et al. (2016) extended the model by characterizing the possible
outcomes of false-name-proof mechanisms for locating two facilities on a line as well as on
a circle. Wada et al. (2018) studied variable populations in the static and dynamic facility
location models and proposed a class of online social choice functions for the dynamic model.
Keijzer and Wojtczak (2018) considered a multi-stage facility reallocation problems on the
line, where a facility is moved between stages based on the locations reported by n agents,
and characterized the optimal mechanisms both in the offline setting and in the online
setting. Other extensions of the facility location game can be found (Cai et al., 2016; Mei
et al., 2016; Xu et al., 2020).

Besides, for minimum distance requirement and decentralized facilities, Moon and Pa-
payanopoulos (1991) proposed non-strategic version of the two-facility location problem
where the facilities must be separated by at least a specified distance. White (1993)
studied the locations of two facilities with minimal separation. Lei and Church (2013)
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studied facility dispersion problems involving the locations of a number of facilities where
the intention was to place them as far apart from each other as possible. Jung (2016)
developed methodologies for determining the optimal distributions of facilities by including
a variety of distance constraints, one of which is related to process safety. Chen et al. (2019)
proposed the dispersion problem to locate n facilities in a k-dimensional polytope, so that
they are far away from each other and from the boundary of the polytope. To the best
of our knowledge, our paper is the first study of the facility location games that take the
distance requirement and the agents’ strategic behavior into consideration for strategyproof
mechanism design.

2. System Model

Let N = {1, 2, · · · , n} be the set of agents located on a line interval I = [0, 1]. We denote
x = (x1, x2, · · · , xn) as the n ∈ N+ agents’ location profile, which is private information and
needs to be reported by each agent. Without loss of generality, we assume that xi ≤ xi+1

for any 1 ≤ i ≤ n− 1.
In the two-facility location game, a mechanism f outputs two facilities’ locations (y1, y2)

based on a given location profile x, i.e., (y1, y2) = f(x) : In → I2. Denote the minimum
distance requirement between the two facilities as d ∈ [0, 1], i.e., |y2 − y1| ≥ d. If the two
facilities are heterogeneous, the cost of agent i is denoted as the sum of his distances to the
two facilities, i.e.,

ci(f(x), xi) = |y1 − xi|+ |y2 − xi|. (1)

If the two facilities are homogeneous, the cost of agent i is denoted as his distance to the
closer facility, i.e.,

ci(f(x), xi) = min{|y1 − xi|, |y2 − xi|}. (2)

Let x−i = (x1, · · · , xi−1, xi+1, · · · , xn) be the location profile without agent i. Let xS be
the location profile with all agent i ∈ S ⊆ N and x−S be the location profile without any
agent i ∈ S ⊆ N . Following utilitarian objective, the social cost of a mechanism f(x) with
respect to x is denoted as the sum of costs of n agents, i.e.,

SC(f(x),x) =
n∑

i=1

ci(f(x), xi). (3)

For egalitarian objective, the maximum cost of a mechanism f(x) with respect to x is

MC(f(x),x) = max
i∈N

ci(f(x), xi). (4)

As agents may misreport their locations to change y1 and y2 for their own benefits, strate-
gyproofness of f(x) is important to ensure. Next we formally define the strategyproofness
and the group strategyproofness respectively.

Definition 1. A mechanism is strategyproof in the two-facility location game if no agent can
benefit from misreporting his location. Formally, given agent i, profile x = {xi,x−i} ∈ In,
and any misreported location x′i ∈ I , it holds that

ci(f(xi,x−i), xi) ≤ ci(f(x′i,x−i), xi).
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Definition 2. A mechanism is group strategyproof in the two-facility location game if for
any group of agents, at least one of them cannot benefit if they misreport simultaneously.
Formally, given a non-empty set S ⊆ N , profile x = {xS ,x−S} ∈ In, and the misreported
x′S ∈ I |S|, there exists i ∈ S, satisfying

ci(f(xS ,x−S), xi) ≤ ci(f(x′S ,x−S), xi).

In the facility location game, we are interested in designing strategyproof mechanisms
that also perform well with respect to minimizing the social cost. For a location profile,
let OPT1(x) be the optimal (minimum) social cost. A mechanism f has an approximation
ratio γ, if for any possible profile x ∈ In, SC(f,x) ≤ γOPT1(x).

In the obnoxious heterogeneous two-facility location game, the agents prefer to be far
away from the two facilities. We define agent i’s utility as

ui(f(x), xi) = |y1 − xi|+ |y2 − xi|. (5)

In the obnoxious homogeneous two-facility location game, the agents prefer to be far away
from the closer facility. We define agent i’s utility as

ui(f(x), xi) = min{|y1 − xi|, |y2 − xi|}. (6)

Following utilitarian objective, the social utility of a mechanism f(x) with respect to x is

SU(f(x),x) =
n∑

i=1

ui(f(x), xi). (7)

For egalitarian objective, the minimum utility of a mechanism f(x) with respect to x is

MU(f(x),x) = min
i∈N

ui(f(x), xi). (8)

Definition 3. A mechanism is strategyproof in the obnoxious two-facility location game
if no agent can benefit from misreporting his location. Formally, given agent i, profile
x = {xi,x−i} ∈ In, and any misreported location x′i ∈ I , it holds that

ui(f(xi,x−i), xi) ≥ ui(f(x′i,x−i), xi).

Definition 4. A mechanism is group strategyproof in the obnoxious two-facility location
game if for any group of agents, at least one of them cannot benefit if they misreport
simultaneously. Formally, given a non-empty set S ⊆ N , profile x = {xS ,x−S} ∈ In,
and the misreported x′S ∈ I |S|, there exists i ∈ S, satisfying

ui(f(xS ,x−S), xi) ≥ ui(f(x′S ,x−S), xi).

For a location profile x, let OPT2(x) be the optimal (maximum) social utility. A
mechanism f has an approximation ratio γ, if for any profile x ∈ In, OPT2(x) ≤ γSU(f,x).
The heterogeneous two-facility location game with triple-preference will be shown later
where we will further allow agents to misreport their preferences towards the two facilities.
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3. Game 1: Heterogeneous Two-Facility Location Games

In the heterogeneous two-facility location game, where all agents want to get close to the two
heterogeneous facilities, we consider the cost of agent i as ci = |y1−xi|+ |y2−xi|. Assume,
without loss of generality, that facility 1 is on the left of facility 2, i.e., 0 ≤ y1 ≤ y2 ≤ 1.

3.1 Minimize the Sum of Costs

Following utilitarian objective, from (1) and (3), we rewrite the social cost as function

g(y1, y2|x) = SC(f(x),x) =
n∑

i=1

(|y1 − xi|+ |y2 − xi|) (9)

of two variables (y1, y2) ∈ D, and the optimal social cost OPT1(x) can be obtained by
solving:

min
y1,y2

g(y1, y2|x) = min
y1,y2

n∑
i=1

(|y1 − xi|+ |y2 − xi|),

s.t. (y1, y2) ∈ D = {(y1, y2)|y2 − y1 ≥ d, 0 ≤ y1, y2 ≤ 1},
given 0 ≤ xi ≤ 1, for i = 1, ..., n and 0 ≤ d ≤ 1. (10)

The feasible region D of (y1, y2) is an isosceles right triangle with three corners (0, d), (1−
d, 1), (0, 1) and is closed convex.

Proposition 1. g is a convex function with (y1, y2) ∈ D and can obtain its minimum in
D at y2 − y1 = d.

Proof. According to the property of convex functions, agent i’s cost function |y1−xi|+ |y2−
xi| with two variables (y1, y2) is convex, since function |y1−xi| with variable y1 and function
|y2−xi| with variable y2 are both convex. Therefore, social cost

∑n
i=1(|y1−xi|+ |y2−xi|) is

convex in (y1, y2). As D is a convex set, g is a continuous convex function in D. To obtain
the optimal social cost OPT1, we consider the linear optimization problem (10). Further,
we define ∂D = ∂D1 ∪ ∂D2 ∪ ∂D3, as the boundary of the closed convex set D, where

∂D1 = {(y1, y2)|y2 − y1 = d, 0 ≤ y1 ≤ 1− d}, ∂D2 = {(y1, y2)|y1 = 0, d ≤ y2 ≤ 1},
and ∂D3 = {(y1, y2)|y2 = 1, 0 ≤ y1 ≤ 1− d}.

Obviously, D\∂D is the largest open convex subset of D.
Next we prove that the optimal point in (y1, y2) ∈ D can be obtained in ∂D1. It is

known that

arg min
y

n∑
i=1

|y − xi| =

{
[xn

2
, x(n

2
+1)] if n is even

xn+1
2

if n is odd
. (11)

There are two cases according to the parity of n.
Case 1: n is even. Due to (11), function g(y1, y2|x) obtains its local minimum at the

point
(y1, y2) ∈ E = [xn

2
, xn

2
+1]× [xn

2
, xn

2
+1],

given (y1, y2) ∈ [0, 1]× [0, 1]. E is a square area and also a closed convex set. There are two
subcases depending on the relationship between E and D.
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Figure 1: Connections between the line segment L and convex sets E, D.

1) E ∩ D 6= ∅. The necessary condition for E ∩ D 6= ∅ is that E ∩ ∂D1 6= ∅, due to the
shapes of triangle D and square E in [0, 1]2. See convex sets E and D in Figure 1. The
optimal point in (y1, y2) ∈ D can be obtained in E ∩ ∂D1 which is a non-empty subset
of ∂D1.

2) E ∩ D = ∅. Given (y1, y2) ∈ [0, 1] × [0, 1], by (11), its global minimum can only be
obtained at the point (y1, y2) ∈ E. Since g is a convex function, the local minimum of g
must be obtained at the point (y1, y2) ∈ E. When E ∩D = ∅, there is no local minimum
point but one global minimum point (optimal point) in D. The optimal point in D can
only be obtained at a point in ∂D. Otherwise, if the optimal point is obtained at a point
in open set D\∂D, this point must be the point of local minimum, which contradicts the
fact that g can only obtain its local minimum at the point (y1, y2) ∈ E and E ∩D = ∅.
Further, this optimal point can be obtained in ∂D1. Otherwise, we assume the optimal
point (y1, y2) is only obtained in ∂D2 ∪ ∂D3 as shown in Figure 1. Then we can always
draw a line segment L connecting the optimal point (y1, y2) ∈ ∂D2 ∪ ∂D3 and any point
(ȳ1, ȳ2) ∈ E. This line segment L must intersect with line segment ∂D1 at point (ỹ1, ỹ2).
Note that (ỹ1, ỹ2) is between points (y1, y2) and (ȳ1, ȳ2) on line segment L. Recall that
the value of g at point (ỹ1, ỹ2) is greater than the values of g at points (y1, y2) and
(ȳ1, ȳ2). However, this contradicts the fact that function g is also convex in convex line
segment L.
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Case 2: n is odd. Due to (11), function g(y1, y2|x) can obtain its local minimum at the
point (y1, y2) = (xn+1

2
, xn+1

2
), given (y1, y2) ∈ [0, 1]× [0, 1]. This point cannot overlap with

D, i.e., (xn+1
2
, xn+1

2
) ∩D = ∅, since any point in D must satisfy that y2 − y1 > 0. Thus we

can follow the similar proof in subcase 2) of Case 1 and draw the same conclusion that this
optimal point in D can be obtained in ∂D1.

According to Proposition 1, we can consider an equivalent linear optimization problem
to replace (10):

min
y1,y2

g(y1, y2|x) s.t. (y1, y2) ∈ ∂D1 = {(y1, y2)|y2 − y1 = d, y1 ∈ [0, 1− d]}. (12)

Thus, by letting y2 = y1 + d, we only need to find the solution of facility 1’s location to
solve (12), which we denote as y?1(d; x):

y?1(d; x) = arg min
y1∈[0,1−d]

n∑
i=1

(|y1 − xi|+ |y1 + d− xi|). (13)

Before solving (13), it is widely known that if n is even,

arg min
y

n∑
i=1

|y − xi| = [xn
2
, x(n

2
+1)]. (14)

Define location profile x − d = {x1 − d, x2 − d, . . . , xn − d}. From (13) and (14), we have
y?1(d; x) ∈ [x̃n, x̃n+1], where x̃i is denoted as the i-th order statistic of the set {x−d,x} ∈ I2n.
Since y?1(d; x) should be within feasible interval [0, 1−d], we have the solution of facility 1’s
location, which is

y?1(d; x) ∈[x̃n, x̃n+1] ∩ [0, 1− d] = [max{0, x̃n},min{1− d, x̃n+1}] (15)

We can also choose a special y?1(d; x) to make it strategyproof as shown in Mechanism
1 below. However, we should note that an arbitrary choice of y?1(d; x) in the range cannot
guarantee strategyproofness. For example, we select y1 as (max{0, x̃n}+min{1−d, x̃n+1})/2
in the range (15). If location profile is x = {x1, x2} = {0, 0.4} and d = 0.2, we can obtain
(y1, y2) = (0.1, 0.3) and the cost of agent 2 is c2((y1, y2), x2) = 0.4. However, if agent 2
misreport his location from x2 = 0.4 to x′2 = 1, the two facilities’ locations will change to
(y′1, y

′
2) = (0.4, 0.6), and the cost of agent 2 will be c2((y′1, y

′
2), x2) = 0.2. Thus, agent 2 can

misreport to minimize his cost. Next, we provide a strategyproof mechanism.

Mechanism 1. (y1, y2) = (y?1(d;x), y?1(d;x) + d) where

y?1(d;x) = max{0, x̃n} =

{
0 if xn ≤ d
x̃n if xn > d

. (16)

Theorem 1. Mechanism 1 outputs the optimal solution and is strategyproof.
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Proof. Mechanism 1 select y1 as the infimum of range (15) and thus outputs the optimal
solution. Next, we prove the strategyproofness.

If xn ≤ d, then x1 − d, x2 − d, . . . , xn − d ≤ 0. Thus x̃n = xn − d ≤ 0, and
y?1(d; x) = max{0, x̃n} = 0. Otherwise if xn > d, then x̃n ≥ min{x1, xn − d} ≥ 0.
Thus y?1(d; x) = max{0, x̃n} = x̃n. Therefore we design y?1(d; x) in (16) and f(x) =
(y?1(d; x), y?1(d; x) + d). Suppose that agent i misreports his location from xi to x′i. Define
x′ = {x1, . . . , xi−1, x

′
i, xi+1, . . . , xn} and xn(x′) = max{x′}. Define x̃n(x′) as the n-th order

statistic of the set {x′ − d,x′} ∈ I2n. Define y?1(d; x′) as the location of facility 1 in (16)
after agent i’s misreporting. We divide our discussion of strategyproofness into three cases
according to xi.

Case 1: y?1(d; x) ≤ xi ≤ y?1(d; x) + d. Agent i has no incentive to misreport his location
since he has obtained the minimum cost d.

Case 2: xi < y?1(d; x). Agent i misreports his location from xi to x′i. We divide this case
into two parts according to x′i.

1. x′i < xi. There are two choices of y?1(d; x) in (16).

(a) If xn ≤ d, then we choose 0 as y?1(d; x) in (16). We have y?1(d; x) = 0, which
contradicts the fact that y?1(d; x) > xi ≥ 0. Hence, this choice never exists.

(b) If xn > d, then we choose x̃n as y?1(d; x) in (16). After agent i’s misreporting,
since x′i < xi < y?1(d; x), we still have xn(x′) = xn > d and y?1(d; x′) = x̃n(x′)
in (16). Since x′i < xi < y?1(d; x) = x̃n, we have x̃n(x′) = x̃n, which means
y?1(d; x′) = x̃n and new locations of the two facilities do not change.

2. x′i > xi. After agent i misreports, xn(x′) ≥ xn, and thus y?1(d; x′) ≥ y?1(d; x) in (16).
Hence,

ci(f(x′), xi) = 2y?1(d; x′) + d− 2xi ≥ ci(f(x), xi) = 2y?1(d; x) + d− 2xi

and agent i increases his cost.

Case 3: xi > y?1(d; x) + d. Agent i misreports his location from xi to x′i. We divide this
case into two parts.

1. x′i < xi. After agent i’s misreporting, we have xn(x′) ≤ xn, x̃n(x′) ≤ x̃n, and thus
y?1(d; x′) ≤ y?1(d; x) in (16). Hence,

ci(f(x′), xi) = 2xi − 2y?1(d; x′)− d ≥ ci(f(x), xi) = 2xi − 2y?1(d; x)− d,

and agent i increases his cost.

2. x′i > xi. There are two choices of y?1(d; x) in (16).

(a) If xn ≤ d, then we choose 0 as y?1(d; x) in (16). We have xi ≤ xn ≤ d, which
contradicts the fact that xi > y?1(d; x) + d. Hence, this choice never exists.

(b) If xn > d, then we choose x̃n as y?1(d; x) in (16). After agent i’s misreporting,
since x′i > xi > y?1(d; x) + d, we still have xn(x′) ≥ xn > d and y?1(d; x′) = x̃n(x′)
in (16). Since x′i−d > xi−d > y?1(d; x) = x̃n, we have x̃n(x′) = x̃n, which means
y?1(d; x′) = x̃n and new locations of the two facilities do not change.
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Therefore, Mechanism 1 is strategyproof.

3.2 Minimize the Maximum Cost

Following egalitarian objective, we consider minimizing the maximum cost. From (1) and
(4), we need to solve the problem:

min
(y1,y2)∈D

max
i∈N
{|xi − y1|+ |xi − y2|},

where D = {(y1, y2)||y1 − y2| ≥ d, 0 ≤ y1 ≤ y2 ≤ 1}. We design the following mechanism.

Mechanism 2. If d ≥ xn− x1, return y1 = min{x1, 1− d} and y2 = y1 + d; if d < xn− x1,
return y1 = x1 and y2 = xn.

Theorem 2. Mechanism 2 outputs the optimal solution for minimizing the maximum cost
and is also strategyproof.

Proof. Let f be Mechanism 2. We first prove f outputs the optimal solution for minimizing
the maximum cost.

Given d ≥ xn − x1, for the cost of any agent i ∈ N ,

ci = |xi − y1|+ |xi − y2| ≥ |y2 − y1| ≥ d.

Thus, the optimal solution for minimizing the maximum cost should be min(y1,y2)∈D maxi∈N
ci((y1, y2),x) ≥ d. In Mechanism 2, for any agent i ∈ N , y1 = min{x1, 1 − d} ≤ x1 ≤ xi;
and y2 = y1 + d = min{x1 + d, 1} ≥ xn ≥ xi. Thus the cost of agent i under Mechanism 2 is

ci(f,x) = |xi − y1|+ |xi − y2| = (xi − y1) + (y2 − xi) = y2 − y1 = d

and the maximum cost under Mechanism 2 is MC(f,x) = maxi∈N ci(f,x) = d. Therefore,
Mechanism 2 outputs the optimal solution.

Given d < xn − x1, for the maximum cost,

max
i∈N

ci = max
i∈N

(|xi − y1|+ |xi − y2|) = max{|x1 − y1|+ |x1 − y2|, |xn − y1|+ |xn − y2|},

due to function |xi − y1|+ |xi − y2| is convex for variable xi. Then the optimal solution for
minimizing the maximum cost should be

min
(y1,y2)∈D

max ci((y1, y2),x) = min
(y1,y2)∈D

max{|x1 − y1|+ |x1 − y2|, |xn − y1|+ |xn − y2|}

≥ min
(y1,y2)∈D

1

2
(|x1 − y1|+ |x1 − y2|+ |xn − y1|+ |xn − y2|)

= min
(y1,y2)∈D

1

2
((|x1 − y1|+ |xn − y1|) + (|x1 − y2|+ |xn − y2|)) ≥ xn − x1.

The cost of agent i under Mechanism 2 is

ci(f,x) = |xi − y1|+ |xi − y2| = (xi − x1) + (xn − xi) = xn − x1,
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and the maximum cost under Mechanism 2 is MC(f,x) = maxi∈N ci(f,x) = xn − x1.
Therefore, Mechanism 2 outputs the optimal solution.

Next, we prove Mechanism 2 is strategyproof.

Given xn−x1 ≤ d, no agent has incentive to misreport since they have already obtained
the minimum cost d.

Given xn − x1 > d, then y1 = x1 and y2 = xn. Suppose that agent i misreports his
location xi to x′i, x′ = {x−i, x′i} and (y′1, y

′
2) = f(x′). There are three cases.

Case 1: agent 1 misreports his location x1 to x′1. If x′1 < x1, due to

max{x′} −min{x′} = xn − x′1 > xn − x1 > d,

then y′1 = min{x′} = x′1 and y′2 = max{x′} = xn Thus,

c1(f(x′), x1) = |x1 − y′1|+ |x1 − y′2| = xn − x′1 > xn − x1 = c1(f(x), x1).

If x′1 > x1, There are two subcases.

• max{x′} −min{x′} > d. Then y′1 = min{x′} ≥ x1 and y′2 = max{x′} ≥ xn. Thus,

c1(f(x′), x1) = |x1 − y′1|+ |x1 − y′2| = y′1 + y′2 − 2x1

≥ x1 + xn − 2x1 = xn − x1 = c1(f(x), x1).

• max{x′}−min{x′} ≤ d. Then y′1 = min{min{x′}, 1− d} ≥ x1 and y′2 = y′1 + d. Thus,

c1(f(x′), x1) = |x1 − y′1|+ |x1 − y′2| = 2y′1 + d− 2x1

=2 min{min{x′}, 1− d}+ d− 2x1 ≥ 2 min{max{x′} − d, 1− d}+ d− 2x1

=2(max{x′} − d) + d− 2x1 ≥ 2xn − d− 2x1 > 2xn − (xn − x1)− 2x1

=xn − x1 = c1(f(x), x1).

Case 2: agent n misreports his location xn to x′n. This case is similar with Case 1.

Case 3: agent i with x1 < xi < xn misreports his location xi to x′i. It is obvious that
min{x′} ≤ x1, max{x′} ≥ xn. Thus max{x′} −min{x′} ≥ xn − x1 > d and y′1 = min{x′},
y′2 = max{x′}. For agent i’s cost,

ci(f(x′), xi) = |xi − y′1|+ |xi − y′2| = y′2 − y′1 ≥ xn − x1 = ci(f(x), xi).

Therefore, Mechanism 2 is strategyproof.

Note that not all mechanisms outputting an optimal solution are strategyproof. Only
carefully chosen optimal solution can be strategyproof. For example, consider the mechanis-
m that returns y1 = min{x1, 1−d} and y2 = y1+d, if d ≥ xn−x1; returns y1 = (x1+xn−d)/2
and y2 = (x1 + xn + d)/2, if d < xn − x1. This mechanism also outputs an optimal solution
but is not strategyproof.
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4. Game 2: Homogeneous Two-Facility Location Games

In this section, we study the homogeneous two-facility location game, where all agents
want to get close to the two homogeneous facilities. From (2) and (3), the cost of agent
i is ci((y1, y2), xi) = min{|y1 − xi|, |y2 − xi|} and the social cost is SC((y1, y2),x) =∑

i∈N ci((y1, y2), xi). The problem can be shown as below:

min
(y1,y2)∈D

n∑
i=1

min{|y1 − xi|, |y2 − xi|},

where D = {(y1, y2)||y1 − y2| ≥ d, 0 ≤ y1 ≤ y2 ≤ 1}. Given d = 1, the optimal solution is
(y1, y2) = (0, 1) and is obviously strategyproof. Given d = 0, the stratgyproof mechanism
that (y1, y2) = (x1, xn) provides the best approximation ratio of (n−2) (Fotakis & Tzamos,
2014). However, when 0 < d < 1, it is not clear to what extent strategyproof mechanisms
can approximate the optimal solution. Unfortunately, in the following, we show that no
strategyproof mechanism has a bounded approximation when 0 < d < 1.

Theorem 3. Given n ≥ 5, no strategyproof mechanism in the homogeneous two-facility
location game with minimum distance requirement 0 < d < 1 has bounded approximation
ratio.

Proof. Before we prove the theorem, we first recall the classic setting without the distance
constraint, where the authors characterized all possible strategyproof mechanisms that have
bounded approximation to the optimal algorithmic solution (Fotakis & Tzamos, 2014).

Claim 1. Theorem 3.1 in Fotakis and Tzamos (2014): Given n ≥ 5, in the homogeneous
two-facility location game without distance constraint, for all 3-location instance1 x, the
only mechanisms that are strategyproof and with bounded approximation ratios are either
(1) Extreme Points (i.e., y1 = x1 and y2 = xn), or (2) Single Dictator (i.e., there is a
unique dictator i such that for all x, y1 = xi or y2 = xi).

It is easy to see that any strategyproof mechanism with distance constraint 0 < d < 1
is a strategyproof mechanism for the setting without distance constraint. To distinguish
the two settings, for a location profile x, we use OPTd(x) to denote the optimal social cost
with distance constraint d and OPT (x) without distance constraint.

Next, we show that the Extreme Points mechanism and Single Dictator mechanism
either are not feasible or do not have bounded approximation to OPTd(·) for all location
profiles. Consider the following location profile x where agents 1 to n − 2 are located at
0, agent n − 1 is at ε > 0 (sufficiently small), and agent n is at xn = d − ε < d. Thus
OPTd(x) = 2ε by placing two facilities at 0 and d. It is easy to see that Extreme Points
mechanism is not feasible as (xn − x1) < d violating the distance constraint. Next we
consider the Single Dictator mechanism and suppose n is the dictator. This is without loss
of generality as we can always reorder the agents such that the dictator is at d − ε. For
any Single Dictator mechanism, by placing one facility at xn, if d > 1 − xn, there is no
feasible position for the second facility, thus this mechanism is not feasible; otherwise, we

1. A 3-location instance means that there are three different locations x1, x2, x3, and a partition of N into
three coalitions N1, N2, N3 such that all agents in coalition Ni occupy location xi for any {1, 2, 3}.
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have 2d− ε ≤ 1 and the second facility can only be placed within [2d− ε, 1]. However, this
makes the social cost to be at least (n− 2)(d− ε)� OPTd(x) = 2ε.

Now, for contradiction, suppose a mechanism f satisfying distance constraint d is
strategyproof and has bounded approximation ratio K to OPTd(x) for any instance x.
Note that we have discussed that f cannot be Extreme Point or Single Dictator.

Let x be any 3-location profile. Note that under Fotakis and Tzamos (2014)’s model,
the three locations can be anywhere on the real line (not restricted to be within [0, 1]), thus
x is immune to scale. Without loss of generality, denote by 0 ≤ x1 < x2 < x3 ≤ 1 the
corresponding generic locations and x2 − x1 ≤ x3 − x2. Assume ki agents are at xi, where
ki ≥ 1 for all i and k1 + k2 + k3 = n. Let ε = d

2n(x2 − x1) < d
2n . Then we scale location

profile x to x′ by placing x1 at 0, x3 at d − ε, and keeping the relative distances between
x2 and x1, x3 the same, i.e.,

x′1 = 0, x′2 =
x2 − x1

x3 − x1
(d− ε), x′3 = d− ε.

We claim that for location profile x′, OPTd(x′) ≤ (n − 1)OPT (x′). We prove this by
enumerating all possible structures of OPT (x′) and compare it with the social cost SC(0, d)
by placing two facilities at 0 and d, which is one possible solution to the problem with
distance constraint thus OPTd(x′) ≤ SC((0, d),x′). Note that

SC((0, d),x′) ≤ k2(x′2 − x′1) + k3ε ≤ (n− 2)(x′2 − x′1) + (x′2 − x′1) = (n− 1)(x′2 − x′1),

where the second inequality is because

k3ε < nε =
d

2
(x2 − x1) <

d

2
· 1

d− ε
· (x′2 − x′1) < x′2 − x′1.

There are only three cases for OPT (x′). (1) If OPT (x′) is obtained by placing the two
facilities at x′1 and x′2, then OPT (x′) = k3(x′3−x′2) ≥ x′2−x′1. (2) If OPT (x′) is obtained by
placing the two facilities at x′1 and x′3, then OPT (x′) = k2(x′2−x′1) ≥ x′2−x′1. (3) If OPT (x′)
is obtained by placing the two facilities at x′2 and x′3, then OPT (x′) = k1(x′2−x′1) ≥ x′2−x′1.
No matter which case happens, it holds that

SC((0, d),x′) ≤ (n− 1)(x′2 − x′1) ≤ (n− 1)OPT (x′).

Accordingly, OPTd(x′) ≤ (n− 1) ·OPT (x′).
Thus, if f has bounded approximation ratio K for OPTd(x′) and is not Extreme Point

or Single Dictator, f is also strategyproof and has bounded approximation ratio K(n− 1)
for OPT (x), which is a contradiction with Claim 1.

Using a similar analysis, we note that Theorem 3 also holds when the objective is to
minimize the maximum cost.

5. Game 3: Obnoxious Heterogeneous Two-Facility Location Games

In this section, we study the obnoxious heterogeneous two-facility location game, where all
agents dislike the two facilities. From (5), we consider agent i’s utility as ui(f(x), xi) =
|y1 − xi|+ |y2 − xi|.

733



Xu, Li, Li & Duan

5.1 Maximize the Sum of Utilities

Following utilitarian objective, from (5), (7) and (9), we need to solve the problem:

max g(y1, y2|x) s.t. (y1, y2) ∈ D.

Proposition 2. Social utility g can reach its maximum if (y1, y2) is at one out of three
points (0, d), (1− d, 1), (0, 1).

Proof. Since function g is a convex function according to Proposition 1, g has a global
maximum in D. Further, g can obtain its global maximum on boundary ∂D. Otherwise,
if g obtains its global maximum at point (y1, y2) in open set D\∂D, that point must be
a local maximum point, which contradicts the fact that g is a convex function. Then
finding the maximum point of g on D is equivalent to finding the maximum point of g on
∂D = ∂D1∪∂D2∪∂D3. ∂Di’s (i = 1, 2, 3) are line segments and thus convex sets. Similarly,
the convex function g in each line segment ∂Di reaches its maximum at the boundary of
∂Di, i.e., two endpoints of ∂Di. Overall, the maximum point (y1, y2) of g over the three line
segments can only be among the three corner points of ∂D : (0, d), (1− d, 1), (0, 1).

It is easy to obtain OPT2 by using Proposition 2. However, a mechanism outputting
the optimal solution OPT2 is not strategyproof given d < 1. Taking an example when
d = 0, the obnoxious heterogeneous two-facility location game degenerates to the obnoxious
one-facility location game, where the optimal location is not strategyproof (Cheng et al.,
2013). Next, we propose strategyproof mechanisms.

Mechanism 3. Given a location profile x, return f(x) = (y1, y2) = (0, 1).

Lemma 1. Mechanism 3 is group strategyproof with an approximation ratio γ = 2− d.

Proof. Mechanism 3 is group strategyproof since (y1, y2) is fixed at (0, 1).
The social utility of Mechanism 3 is SU((0, 1),x) = n. For any agent i’s utility,

d ≤|y1 − y2| ≤ ui((y1, y2), xi) = |y1 − xi|+ |y2 − xi| ≤ |y1 + y2 − 2xi| ≤ 2− d,

due to |y2 − y1| ≥ d. Thus, the optimal utility is

OPT2(x) = max
(y1,y2)∈D

n∑
i=1

(|y1 − xi|+ |y2 − xi|) ≤ (2− d)n.

Therefore, γ = OPT2(x)/SU((0, 1),x) ≤ 2− d, which is within [1, 2].

Mechanism 3 does not take agents’ locations into account. By counting agent numbers
in different location intervals, we propose Mechanism 4 which selects (y1, y2) among all the
three candidate optimal points (0, d), (1− d, 1), (0, 1).

Mechanism 4. Denote l1 = 1
2(1− d) and l2 = 1

2(1 + d). Given a location profile x, if more
than n

2 agents are located in [0, l1], f(x) = (y1, y2) = (1 − d, 1), if more than n
2 agents are

located in [l2, 1], f(x) = (y1, y2) = (0, d), and otherwise, f(x) = (y1, y2) = (0, 1).
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Lemma 2. Mechanism 4 is group strategyproof with an approximation ratio

γ = max{3− 3d

1 + d
,

2

1 + d
}.

Proof. We first prove group strategyproofness. For any xi ∈ [0, l1],

ui((1− d, 1), xi) = 2− d− 2xi ≥ ui((0, 1), xi) = 1 ≥ ui((0, d), xi) = xi + |d− xi|; (17)

for any xi ∈ [l2, 1],

ui((0, d), xi) ≥ ui((0, 1), xi) ≥ ui((1− d, 1), xi);

for any xi ∈ (l1, l2),

ui((0, 1), xi) ≥ ui((1− d, 1), xi), ui((0, d), xi).

Let S ⊆ N be an agent coalition. We must prove that the agents in S cannot all gain
by misreporting. We denote n1, n2, n3 as the numbers of agents in [0, l1], [l2, 1], (l1, l2)
without misreporting, respectively. n′1, n

′
2, n

′
3 are the numbers of agents in [0, l1], [l2, 1],

(l1, l2) with misreporting, respectively. The new location profile is x′ to mislead the two
facilities’ locations to (y′1, y

′
2). There are three cases.

Case 1: n1 >
n
2 , thus (y1, y2) = (1− d, 1).

1. If n′1 > n
2 , then (y′1, y

′
2) = (1 − d, 1) and ui(f(x), xi) = ui(f(x′), xi) for any agent

i ∈ N .

2. If n′2 >
n
2 , then (y′1, y

′
2) = (0, d). Since n2 + n3 ≤ n

2 , at least one agent i in [0, l1]
misreports his location to x′i ∈ [l2, 1]. Thus ui(f(x′), xi) ≤ ui(f(x), xi) due to (17).

3. Otherwise, (y′1, y
′
2) = (0, 1). Since n′1 ≤ n

2 , at least one agent i in [0, l1] misreports his
location to x′i ∈ [l2, 1] ∪ (l1, l2). Due to (17), ui(f(x′), xi) ≤ ui(f(x), xi).

Case 2: n2 >
n
2 , thus (y1, y2) = (0, d). Strategyproofness analysis of Case 2 is the same

as Case 1.

Case 3: Otherwise, (y1, y2) = (0, 1). There are three subcases and can similarly follow
the proof of Case 1 to draw the same conclusion that f is group strategyproof.

Next, we analyze the ratio γ. There are three cases.

Case 1: n1 >
n
2 and then (y1, y2) = (1− d, 1). We have

SU((1− d, 1),x) ≥
∑

i:xi∈[0,l1]

(2− d− 2xi) + n3d+ n2d ≥ n1 + n2d+ n3d, (18)

SU((0, d),x) ≤
∑

i:xi∈[0,l1]

(xi + |d− xi|) + n3 + n2(2− d)

≤ n1 max{d, 1− 2d}+ n2(2− d) + n3, (19)

SU((0, 1),x) = n. (20)
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Due to (18), (19), (20) and n1 >
n
2 ,

SU((0, d),x)

SU((1− d, 1),x)
≤ n1 max{d, 1− 2d}+ (n− n1)(2− d)

n1 + (n− n1)d

≤
n
2 max{d, 1− 2d}+ n

2 (2− d)
n
2 + (n− n

2 )d
= max{3− 3d

1 + d
,

2

1 + d
},

SU((0, 1),x)

SU((1− d, 1),x)
≤ n

n1 + (n− n1)d
≤ n

n
2 + n

2d
=

2

1 + d
,

and thus according to Proposition 2,

γ =
max{SU((0, d),x), SU((0, 1),x)}

SU((1− d, 1),x)
= max{3− 3d

1 + d
,

2

1 + d
}.

Case 2: n2 >
n
2 . The analysis is similar to Case 1.

Case 3: Otherwise, (y1, y2) = (0, 1). By (19), we have

SU((0, d),x) ≤ n1 + n2(2− d) + n3 = n2(1− d) + n ≤ n

2
(1− d) + n (21)

and SU((1− d, 1),x) ≤ n
2 (1− d) + n. Thus

γ = max{SU((0, d),x)

SU((0, 1),x)
,
SU((1− d, 1),x)

SU((0, 1),x)
} ≤

n
2 (1− d) + n

n
=

3− d
2

.

In conclusion,

γ ≤ max{max{3− 3d

1 + d
,

2

1 + d
}, 3− d

2
} = max{3− 3d

1 + d
,

2

1 + d
},

which is within [1, 3].

By combining Mechanism 3 and Mechanism 4, we have the following mechanism which
is also group strategyproof and can obtain a smaller approximation ratio for d ∈ [0, 1].

Mechanism 5. Given a location profile x, if 0 ≤ d ≤ 2−
√

3, use Mechanism 3 to return
(y1, y2); if 2−

√
3 < d < 1, use Mechanism 4 to return (y1, y2).

Theorem 4. Mechanism 5 has an approximation ratio

γ = min{2− d,max{3− 3d

1 + d
,

2

1 + d
}} ∈ (1, 2].

The next theorem establishes the lower bound for any deterministic strategyproof mech-
anism.

Theorem 5. In the obnoxious heterogeneous two-facility location game, given d ∈ [0, 1],
for any n ≥ 3 agents, any deterministic strategyproof mechanism f has an approximation
ratio γ of at least 7−d

6 .

The proof of Theorem 5 is shown in Appendix A. We can see the upper bound and the
lower bound of deterministic strategyproof mechanisms in Figure 2.
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Figure 2: The upper bound and the lower bound of deterministic strategyproof mechanisms
for d ∈ [0, 1).

5.2 Maximize the Minimum Utility

Following egalitarian objective, we consider maximizing the minimum utility. From (5) and
(8), we need to solve the problem:

max
(y1,y2)∈D

min
i∈N
{|xi − y1|+ |xi − y2|},

where D = {(y1, y2)||y1 − y2| ≥ d, 0 ≤ y1 ≤ y2 ≤ 1}. We design the following mechanism.

Mechanism 6. If d < 2x1 − 1, return (y1, y2) = (0, d); if d < 1 − 2xn, return (y1, y2) =
(1− d, 1); if d ≥ 2x1 − 1 and d ≥ 1− 2xn, return (y1, y2) = (0, 1).

Theorem 6. Mechanism 6 outputs the only optimal solution for maximizing the minimum
utility if d 6= 2x1 − 1 and d 6= 1 − 2xn; it outputs the optimal solution for maximizing the
minimum utility if d = 2x1 − 1 or d = 1− 2xn. Mechanism 6 is also strategyproof.

Proof. Let f be Mechanism 6. Before proving, we first claim that the solution of maxi-
mizing the minimum utility, i.e., arg max(y1,y2)∈D mini∈N ui((y1, y2), xi) must be (y1, y2) =
(y?1, y

?
2) = (0, d), or (1 − d, 1), or (0, 1). Otherwise, for contradiction, if the solution is

(y?1, y
?
2) /∈ {(0, d), (1− d, 1), (0, 1)}, there exists some i? ∈ N satisfying that

max
(y1,y2)∈D

min
i∈N

ui((y1, y2), xi) = ui?((y?1, y
?
2), xi?) ≥ ui?((y1, y2), xi?).

However, by Proposition 2, ui?((y1, y2), xi?) can only obtain its maximum when (y1, y2) =
(0, d), or (1− d, 1), or (0, 1), which contradicts (y1, y2) = (y?1, y

?
2) /∈ {(0, d), (1− d, 1), (0, 1)}.
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We first prove Mechanism 6 outputs the optimal solution for maximizing the minimum
utility. There are three cases for any agent’s utility.

Case 1: d < 2x1 − 1. The utility of any agent i ∈ N is

ui((0, d), xi) = 2xi − d ≥ 2x1 − d > 1,

due to xi ≥ x1 >
1+d

2 ≥ d;

ui((1− d, 1), xi) = |1− d− xi|+ 1− xi

≤max{|1− d− 1 + d

2
|+ 1− 1 + d

2
, d} = max{1− 2d, d} ≤ 1,

due to 1+d
2 < x1 ≤ xi ≤ 1; and ui((0, 1), xi) = 1. Thus,

ui((y1, y2), xi) ≤ max{ui((0, d), xi), ui((1− d, 1), xi), ui((0, 1), xi)} = ui((0, d), xi).

Accordingly, the optimal solution for maximizing the minimum utility should be

max
(y1,y2)∈D

min
i∈N

ui((y1, y2), xi) ≤ min
i∈N

max
(y1,y2)∈D

ui((y1, y2), xi)

= min
i∈N

ui((0, d), xi) = min
i∈N

2xi − d = 2x1 − d.

In Mechanism 6, (y1, y2) = (0, d) and thus the minimum utility of agents is

MU(f,x) = min
i∈N

ui((0, d), xi) = min
i∈N

2xi − d = 2x1 − d.

Therefore, Mechanism 6 outputs the only optimal solution as d < 2x1 − 1.
Case 2: d < 1 − 2xn. We rewrite Case 2 as xn <

1−d
2 and Case 1 as x1 >

1+d
2 . We can

see that due to symmetry, Case 2 is similar with Case 1.
Case 3: d ≥ 2x1 − 1 and d ≥ 1− 2xn. We have that for the minimum utilities,

MU((0, d),x) = min
i∈N

ui((0, d), xi) = u1((0, d), x1)

= x1 + |x1 − d| ≤ max{d, 2x1 − d}
{
< 1 for 2x1 − 1 < d < 1
= 1 for d = 1 or d = 2x1 − 1

, (22)

due to 0 ≤ x1 ≤ 1+d
2 ;

MU((1− d, 1),x) = min
i∈N

ui((1− d, 1), xi) = un((1− d, 1), xn)

=|1− d− xn|+ 1− xn ≤ max{2(1− xn)− d, d}
{
< 1 for 1− 2xn < d < 1
= 1 for d = 1 or d = 2xn − 1

, (23)

due to 1−d
2 ≤ xn ≤ 1; and

MU((0, 1),x) = min
i∈N

ui((0, 1), xi) = 1.

Thus, by comparing with (22) and (23), (0, 1) is the only optimal solution for maximizing
the minimum utility, if d > 2x1 − 1 and d > 1 − 2xn; (0, 1) is one of the optimal solutions
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for maximizing the minimum utility, if d = 2x1 − 1 or d = 1 − 2xn. In Mechanism 6,
(y1, y2) = (0, 1), so Mechanism 6 outputs the only optimal solution, if d > 2x1 − 1 and
d > 1− 2xn, and also outputs the optimal solution, if d = 2x1 − 1 or d = 1− 2xn.

Next, we prove Mechanism 6 is strategyproof. There are three cases.

Case 1: d < 2x1 − 1, (y1, y2) = (0, d). We have xi ≥ x1 ≥ 1+d
2 , and thus max(y1,y2)∈D

ui((y1, y2), xi) = ui((0, d), xi). Therefore, no agent has incentive to misreport his location
since he has already obtained the maximum utility.

Case 2: d < 1 − 2xn, (y1, y2) = (1 − d, 1). Due to symmetry, this case is similar with
Case 1.

Case 3: d ≥ 2x1 − 1 and d ≥ 1− 2xn, (y1, y2) = (0, 1). There are three subcases.

• Subcase 1: any agent i with xi ∈ [0, 1−d
2 ) misreports his location. Note that i can not

be n since xn ≥ 1−d
2 . We assume agent i can increase his utility after misreporting.

Then (y′1, y
′
2) must be (1− d, 1) due to

ui((1− d, 1), xi) ≥ ui((0, 1), xi) = 1 ≥ ui((0, d), xi)

from (17). We must have the condition that d < 1−2 max{x′}. Thus max{x′} < 1−d
2 ,

which contradicts max{x′} ≥ xn ≥ 1−d
2 .

• Subcase 2: any agent i with xi ∈ (1+d
2 , 1] misreports his location. This subcase is

similar with Subcase 1.

• Subcase 3: No agent i with xi ∈ [1−d
2 , 1+d

2 ] has incentive to misreport his location
since he has already obtained the maximum utility 1.

Therefore, Mechanism 6 is strategyproof.

6. Game 4: Obnoxious Homogeneous Two-Facility Location Games

In this section, we study the obnoxious homogeneous two-facility location game, where all
agents dislike the two facilities. From (6), we consider agent i’s utility as ui(f(x), xi) =
min{|y1 − xi|, |y2 − xi|}.

6.1 Maximize the Sum of Utilities

From (6) and (7), the social utility is SU((y1, y2),x) =
∑

i∈N min{|y1 − xi|, |y2 − xi|}.
Following utilitarian objective, the problem is shown as

max
(y1,y2)∈D

n∑
i=1

min{|y1 − xi|, |y2 − xi|},

where D = {(y1, y2)||y1 − y2| ≥ d, 0 ≤ y1 ≤ y2 ≤ 1}.
Given d = 1, the optimal solution is (y1, y2) = (0, 1) and is obviously strategyproof.

However, given any d < 1, the optimal solution is not strategyproof, since this game is
a generalization of obnoxious one-facility game, where there is no strategyproof optimal
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solution (Cheng et al., 2011). As will be clear by our lower bound result, the optimal
solution is not strategyproof. Now we find strategyproof mechanisms given d < 1.

Define T1 = {i|xi ∈ [0, 1
2 ], xi ∈ x} and T2 = {i|xi ∈ (1

2 , 1], xi ∈ x}. Obviously, N =
T1 ∪ T2.

Mechanism 7. Given 0 ≤ d < 1
2 , if |T1| ≥ |T2|, return (y1, y2) = (1− d, 1); if |T1| < |T2|,

return (y1, y2) = (0, d).

Lemma 3. Mechanism 7 is group strategyproof with an approximation ratio γ = 4−4d
1−2d .

Proof. Given d < 1
2 , for any agent i in T1,

ui((1− d, 1), xi) = 1− d− xi ≥ ui((0, d), xi) = min{xi, |xi − d|};

for any agent i in T2,

ui((1− d, 1), xi) = min{|1− d− xi|, 1− xi} ≤ ui((0, d), xi) = xi − d.

By the similar proof of strategyproofness in Lemma 2, Mechanism 7 is group strategyproof.
Now we prove the approximation ratio. Without loss of generality, assume that |T1| ≥

|T2|, so we have (y1, y2) = (1− d, 1) in Mechanism 7. The approximation ratio is

γ =
OPT2(x)

SU((1− d, 1),x)
=

maxy1,y2(
∑

i∈N ui((y1, y2), xi)∑
i∈T1

(1− d− xi) +
∑

i∈T2
min{|1− d− xi|, 1− xi}

≤
∑

i∈N (1− d)∑
i∈T1

(1− d− 1/2) +
∑

i∈T2
0

=
n(1− d)

|T1|(1/2− d)
≤ 4− 4d

1− 2d
.

We first show the following lemma for the proof of Lemmas 5 and 6.

Lemma 4. For any agent i, we have

|xi − y1| ≤ |xi − 1 + d|+ 1− d, |xi − y2| ≤ 1− xi + 1− d, |xi − y1| ≤ xi + 1− d; (24)

|xi − y1| ≤ |xi −
1− d

2
|+ 1− d

2
, |xi − y2| ≤ |xi −

1 + d

2
|+ 1− d

2
. (25)

Proof. Since 0 ≤ y1 ≤ 1− d,

|xi − y1| = |(xi − (1− d)) + (1− d)− y1| ≤ |xi − (1− d)|+ |1− d− y1|
≤ |xi − (1− d)|+ 1− d,

|xi − y1| ≤ xi + y1 ≤ xi + 1− d,
|xi − y1| ≤ |xi − (1− d)/2|+ |(1− d)/2− y1| ≤ |xi − (1− d)/2|+ (1− d)/2.

Since d ≤ y2 ≤ 1,

|xi − y2| ≤ |xi − 1|+ |1− y2| ≤ |xi − 1|+ 1− d
|xi − y2| ≤ |xi − (1 + d)/2|+ |(1 + d)/2− y2| ≤ |xi − (1 + d)/2|+ (1− d)/2.
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Define T3 = {i|xi ∈ [0, 1−d
2 ), xi ∈ x}, T4 = {i|xi ∈ [1−d

2 , 1
2), xi ∈ x}, T5 = {i|ti ∈

[1
2 ,

1+d
2 ), xi ∈ x}, and T6 = {i|ti ∈ [1+d

2 , 1], xi ∈ x}. Obviously, N = T3 ∪ T4 ∪ T5 ∪ T6.

Mechanism 8. Given 1
2 ≤ d < 1, if |T3|+ |T5| ≥ |T4|+ |T6|, return (y1, y2) = (1− d, 1); if

|T3|+ |T5| < |T4|+ |T6|, return (y1, y2) = (0, d).

Lemma 5. Mechanism 8 is group strategyproof with an approximation ratio

γ = max{4, 3− 2d

2d− 1
}.

Proof. Given d ≥ 1
2 , for any agent i in T3,

ui((1− d, 1), xi) = 1− d− xi ≥ ui((0, d), xi) = xi;

for any agent i in T5,

ui((1− d, 1), xi) = min{xi − 1 + d, 1− xi} ≥ ui((0, d), xi) = |xi − d|;

for any agent i in T4,

ui((1− d, 1), xi) = |1− d− xi| ≤ ui((0, d), xi) = min{xi, d− xi};

for any agent i in T6,

ui((1− d, 1), xi) = 1− xi ≤ ui((0, d), xi) = xi − d.

By the similar proof of strategyproofness in Lemma 2, Mechanism 8 is group strategyproof.

Now we prove the approximation ratio. Without loss of generality, assume that |T3| +
|T5| ≥ |T4|+ |T6|, and hence (y1, y2) = (1− d, 1) in Mechanism 8. The social utility is

SU((1− d, 1),x) =
∑
i∈N

min{|xi − (1− d)|, |xi − 1|}

≥|T3|(1− d)/2 +
∑
i∈T5

min{|xi − 1 + d|, 1− xi}+
∑

i∈T4∪T6

min{|xi − 1 + d|, 1− xi}. (26)

By (24) in Lemma 4 and |T4|+ |T6| ≤ |T3|+ |T5|, the optimal social utility is

OPT2(x) = max
(y1,y2)∈D

∑
i∈N

min{|y1 − xi|, |y2 − xi|}

≤ max
(y1,y2)∈D

∑
i∈T3

ui((y1, y2), xi) + max
(y1,y2)∈D

∑
i∈T5

ui((y1, y2), xi) + max
(y1,y2)∈D

∑
i∈T4∪T6

ui((y1, y2), xi)

≤|T3|(1− d) +
∑
i∈T5

(1− xi) +
∑

i∈T4∪T6

(min{|xi − 1 + d|, 1− xi}+ 1− d)

≤2|T3|(1− d) +
∑
i∈T5

((1− xi) + (1− d)) +
∑

i∈T4∪T6

min{|xi − 1 + d|, 1− xi}. (27)
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By (26) and (27), the approximation ratio is

γ =
OPT2(x)

SU((1− d, 1),x)
≤

2|T3|(1− d) +
∑

i∈T5
(2− xi − d)

|T3|(1− d)/2 +
∑

i∈T5
min{|xi − 1 + d|, 1− xi}

≤max{ 2|T3|(1− d)

|T3|(1− d)/2
,

∑
i∈T5

(2− xi − d)∑
i∈T5

min{|xi − 1 + d|, 1− xi}
}

≤max{ 2|T3|(1− d)

|T3|(1− d)/2
,max{ 2− xi − d

|xi − 1 + d|
,
2− xi − d

1− xi
}}

= max{ 2(1− d)

(1− d)/2
,
2− 1/2− d
d− 1/2

,
2− (1 + d)/2− d

1− (1 + d)/2
} = max{4, 3− 2d

2d− 1
}.

Define T7 = {i|xi ∈ [1−d
4 , 3+d

4 ], xi ∈ x}, and T8 = {i|xi ∈ [0, 1−d
4 ) ∪ (3+d

4 , 1], xi ∈ x}.

Mechanism 9. Given d < 1, if |T7| ≥ |T8|, return (y1, y2) = (0, 1); if |T7| < |T8|, return
(y1, y2) = (1−d

2 , 1+d
2 ).

Lemma 6. Mechanism 9 is group strategyproof with an approximation ratio γ = 9.

Proof. For any agent i in T7,

ui((0, 1), xi) = min{xi, 1− xi} ≥ ui((
1− d

2
,
1 + d

2
), xi) = min{|xi −

1− d
2
|, |xi −

1 + d

2
|};

for any agent i in T8,

ui((0, 1), xi) = min{xi, 1− xi} ≤ ui((
1− d

2
,
1 + d

2
), xi) = min{|xi −

1− d
2
|, |xi −

1 + d

2
|}.

By the similar proof of strategyproofness in Lemma 2, Mechanism 9 is group strategyproof.

Now we prove the approximation ratio. If |T7| ≥ |T8|, we have (y1, y2) = (0, 1) in
Mechanism 9. The social utility is

SU((0, 1),x) =
∑
i∈N

min{xi, 1− xi} ≥
∑
i∈T7

min{xi, 1− xi} ≥ |T7|(1− d)/4.

By (24) in Lemma 4, the optimal social utility is

OPT2(x) = max
(y1,y2)∈D

∑
i∈N

min{|y1 − xi|, |y2 − xi|}

≤
∑
i∈N

min{xi + 1− d, 1− xi + 1− d} = SU((0, 1),x) + (1− d)n.

The approximation ratio is

γ =
OPT2(x)

SU((0, 1),x)
≤ 1 +

(1− d)n

SU((0, 1),x)
≤ 1 +

(1− d)n

|T7|(1− d)/4
= 9.
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If |T7| < |T8|, we have (y1, y2) = (1−d
2 , 1+d

2 ) in Mechanism 9. The social utility is

SU((
1− d

2
,
1 + d

2
),x) =

∑
i∈N

min{|xi −
1− d

2
|, |xi −

1 + d

2
|}

≥
∑
i∈T8

min{|xi −
1− d

2
|, |xi −

1 + d

2
|} ≥ |T8|

1− d
4

.

By (25) in Lemma 4, the optimal social utility is

OPT2(x) = max
(y1,y2)∈D

∑
i∈N

min{|y1 − xi|, |y2 − xi|}

≤
∑
i∈N

min{|xi −
1− d

2
|+ 1− d

2
, |xi −

1 + d

2
|+ 1− d

2
} = SU((

1− d
2

,
1 + d

2
),x) +

1− d
2

n.

The approximation ratio is

γ =
OPT2(x)

SU((0, 1),x)
≤ 1 +

(1− d)n/2

SU(((1− d)/2, (1 + d)/2),x)
≤ 1 +

(1− d)n/2

|T8|(1− d)/4
= 5.

In conclusion, the approximation ratio is 9.

By combining Mechanisms 7, 8 and 9, we have the following mechanism.

Mechanism 10. Given a location profile x, if 0 ≤ d < 5
14 , use Mechanism 7 to return

(y1, y2); if 5
14 ≤ d ≤ 3

5 , use Mechanism 9 to return (y1, y2); if 3
5 < d < 1, use Mechanism 8

to return (y1, y2).

Theorem 7. Mechanism 10 is also group strategyproof and can obtain an approximation
ratio γ = 4−4d

1−2d , if 0 ≤ d < 5
14 ; 9 if 5

14 ≤ d ≤
3
5 ; 3−2d

2d−1 if 3
5 < d < 7

10 ; 4 if 7
10 < d < 1, which is

within [4, 9] for d ∈ [0, 1).

Theorem 8. In the obnoxious homogeneous two-facility location game, given d ∈ [0, 1), for
any n ≥ 2 agents, any deterministic strategyproof mechanism f has an approximation ratio
γ of at least 4/3.

The proof of Theorem 8 is shown in Appendix B. Interestingly, we notice that the lower
bound is not continuous when d is close to 1. If d ∈ [1/3, 1), the lower bound is always
5/3 but if d = 1, the lower bound drops to 1 immediately. The upper and lower bounds of
deterministic strategyproof mechanisms are illustrated in Figure 3.

6.2 Maximize the Minimum Utility

For egalitarian objective, we consider maximizing the minimum utility. From (6) and (8),
the utility of agent i is ui((y1, y2), xi) = min{|y1− xi|, |y2− xi|} and the minimum utility is
MU((y1, y2),x) = mini∈N ui((y1, y2), xi). We need to solve the problem:

max
(y1,y2)∈D

min
i∈N
{min{|y1 − xi|, |y2 − xi|}},
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Upper bound under Mechanism 10
Lower bound under Theorem 8

Figure 3: The upper bounds under Mechanism 10 and the lower bounds under Theorem 8
for d ∈ [0, 1).

where D = {(y1, y2)||y1 − y2| ≥ d, 0 ≤ y1 ≤ y2 ≤ 1}. Given d = 1, the optimal solution is
(y1, y2) = (0, 1) and is obviously strategyproof. Given d = 0, our obnoxious homogeneous
two-facility location game degenerates to obnoxious one-facility location game, and by 5.4 in
Han and Du (2011), there is no strategyproof mechanism with bounded ratio for maximizing
the minimum utility. Given 0 < d < 1, in the following, we show that in most cases,
there is no strategyproof mechanism with bounded approximation ratio for maximizing the
minimum utility.

Theorem 9. Given 0 < d < 1, for any n ≥ 2k agents, any deterministic strategyproof
mechanism f which only selects from any k ∈ N+ candidates has an approximation ratio γ
of at least +∞ for maximizing the minimum utility.

Proof. Suppose strategyproof mechanism f = (y1, y2) only selects from any k ≥ 1 candi-
dates, which are (y1,1, y1,2), (y2,1, y2,2), . . . , (yk,1, yk,2), with yi,2−yi,1 ≥ d for i = 1, 2, . . . , k.
For n ≥ 2k agents, we select the location profile x satisfying

{y1,1, y1,2, y2,1, y2,2, . . . , yk,1, yk,2} ⊆ x.

Note that for any strategyproof mechanism f , the minimum utility MU((y1, y2),x) =
mini∈N{min{|y1− xi|, |y2− xi|}} = 0, because there are always agents which are located at
y1, y2. Obviously, given location profile x, the optimal solution for maximizing the minimum
utility must be greater than 0, because we can always choose y1, y2 which are not located at
any location in x, respectively. Hence, we can conclude that there is no any deterministic
strategyproof mechanism f with bounded approximation ratio γ.
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7. Game 5: Heterogeneous Two-Facility Location Games with
Triple-preference

In this section, we design the deterministic strategyproof mechanism for the heterogeneous
two-facility location game with triple-preference. Each agent has his own preference towards
one out of the two heterogeneous facilities and we denote preference of agent i to facility j
as pji which is −1, 0 or 1. An agent i with pji = 1 prefers to be close to facility j, an agent i

with pji = −1 prefers to be far away from facility j and an agent i with pji = 0 is indifferent
to facility j where j = 1, 2. We denote pi = {p1

i , p
2
i } ∈ {−1, 0, 1}2 and p = {p1, p2, . . . , pn}

represents the profile of all n agents’ preferences. We allow any agent to misreport both his
location and his preferences. The social planner needs to gather information of both agents’
locations x and preferences p to determine the two facilities’ locations (y1, y2). Given the
two facilities’s locations (y1, y2) = f(x,p), we define agent i’s utility towards facility j as

uji =


|yj − xi| if pji = −1

1 if pji = 0

1− |yj − xi| if pji = 1

. (28)

Note that in the case that pji = −1, to make the approximation ratio positive and mean-
ingful, we require non-negative utilities and purposely add 1 to the utility; in the case of
pji = 0, we define agent i’s utility as 1. Those methods are widely used (Zou & Li, 2015;
Anastasiadis & Deligkas, 2018). Denote agent i’s utility as

ui = u1
i + u2

i . (29)

The social utility of a mechanism f is defined as:

SU(f(x,p), (x,p)) =
n∑

i=1

ui(f(x,p), xi, pi). (30)

OPT3(x,p) is the optimal social utility. Next, we formally define the strategyproofness in
the two-facility location game with triple-preference.

Definition 5. A mechanism f is strategyproof in the heterogeneous two-facility location
game with triple-preference if no agent can benefit from misreporting his location or pref-
erences. Formally, given agent i, location profile x = {xi,x−i} ∈ In, preference profile
p = {p1

i , p
2
i ,p−i} ∈ {−1, 0, 1}2n, any misreported location x′i ∈ I and any misreported

preferences {p′1i , p
′2
i } ∈ {−1, 0, 1}2, it holds that

ui(f((xi,x−i), (p
1
i , p

2
i ,p−i)), xi, pi) ≥ ui(f((x′i,x−i), (p

′1
i , p

′2
i ,p−i), xi, pi).

The group strategyproofness in the two-facility location game with triple-preference can
be similarly defined as in Definition 2. A mechanism f has an approximation ratio γ, if for
any profile x ∈ In and p ∈ {−1, 0, 1}2n, OPT3(x,p) ≤ γSU(f,x,p).
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Set of agents
{p1

i , p
2
i } =

{1,1} {1,-1} {-1,1} {-1,-1}

xi ∈
[0, 1

2 ] Q1 Q2 Q3 Q4

(1
2 , 1] Q5 Q6 Q7 Q8

Set of agents
{p1

i , p
2
i } =

{0,1} {0,-1} {1,0} {-1,0} {0,0}

xi ∈
[0, 1

2 ] Q9 Q10 Q11 Q12 Q13

(1
2 , 1] Q14 Q15 Q16 Q17 Q18

Table 2: Sets of agents Q1 −Q18.

Define eighteen sets of agents Q1 ∪ · · · ∪ Q18 = N as shown in Table 2, depending on
their locations and preferences. Then define the following sets based on Q1, . . . , Q18 :

R1 = {i|p1
i = 1} = Q1 ∪Q2 ∪Q5 ∪Q6 ∪Q11 ∪Q16,

R2 = {i|p2
i = 1} = Q1 ∪Q3 ∪Q5 ∪Q7 ∪Q9 ∪Q14,

R3 = {i|p1
i = −1} = Q3 ∪Q4 ∪Q7 ∪Q8 ∪Q12 ∪Q17,

R4 = {i|p2
i = −1} = Q2 ∪Q4 ∪Q6 ∪Q8 ∪Q10 ∪Q15. (31)

Define the social utility function SU(f(x,p), (x,p)) by (28), (29), (30), Table 2, and (31):

SU((y1, y2), (x,p)) =
∑
i∈R1

(1− |y1 − xi|) +
∑
i∈R2

(1− |y2 − xi|)

+
∑
i∈R3

|y1 − xi|+
∑
i∈R4

|y2 − xi|+ |Q13|+ |Q18|+
18∑
i=9

|Qi|. (32)

To obtain OPT3 is to solve

maxSU((y1, y2), (x,p)), s.t. (y1, y2) ∈ G = {(y1, y2)||y2 − y1| ≥ d, 0 ≤ y1, y2 ≤ 1}.

Note that different from the feasible region D in problem (10), the feasible region G includes
two isosceles right triangles, as the two facilities are different to any agent. A mechanism
outputting OPT3 is not strategyproof since this triple-preference game’s special case is the
obnoxious two-facility location game. We need to design a new deterministic strategyproof
mechanism. Define N = R5 ∪R6 ∪R7, where

R5 = Q2 ∪Q7 ∪Q10 ∪Q11 ∪Q14 ∪Q17,

R6 = Q3 ∪Q6 ∪Q9 ∪Q12 ∪Q15 ∪Q16,

R7 = Q1 ∪Q4 ∪Q5 ∪Q8 ∪Q13 ∪Q18. (33)

Mechanism 11. If |R5| ≥ |R6|, f(x,p) = (y1, y2) = (0, 1), otherwise, f(x,p) = (y1, y2) =
(1, 0).

Theorem 10. Mechanism 11 is group strategyproof with an approximation ratio 4.
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Proof. By (28), (29) and Table 2, we have that for any agent i ∈ R5, ui((0, 1), xi, pi) ≥
ui((1, 0), xi, pi); for any agent i ∈ R6, ui((1, 0), xi, pi) ≥ ui((0, 1), xi, pi); and for any agent
i ∈ R7, ui((0, 1), xi, pi) = ui((1, 0), xi, pi). Note that, in Mechanism 11, there are only two
options of the two facilities’ locations, which are (0, 1) and (1, 0). By following the similar
proof of group strategyproofness in Lemma 2, obviously, we can also prove Mechanism 11
is group strategyproof.

Next, we prove the approximation ratio γ. Without loss of generality, assume that
|R5| ≥ |R6|, and therefore (y1, y2) = (0, 1). Because |R5| ≥ |R6|, the optimal utility is

OPT3(x,p) = max
(y1,y2)∈G

SU((y1, y2), (x,p)) =
∑
i∈N

max
(y1,y2)∈G

(u1
i + u2

i ) ≤ 2N

=2(|R5|+ |R6|+ |R7|) ≤ 4|R5|+ 2|R7|. (34)

By (32) and (33), the social utility of Mechanism 11 is

SU((0, 1), (x,p)) =
∑

i∈R1∪R4

(1− xi) +
∑

i∈R2∪R3

xi + |Q13|+ |Q18|+
18∑
i=9

|Qi|

≥(|Q1|+ |Q2|+ |Q11|+ |Q2|+ |Q4|+ |Q10|)× (1− 0.5)

+ (|Q5|+ |Q7|+ |Q14|+ |Q7|+ |Q8|+ |Q17|)× 0.5 + |Q13|+ |Q18|+
18∑
i=9

|Qi|

=|R5|+ 0.5|R7|+ 0.5(|Q10|+ |Q11|+ |Q14|+ |Q17|) + (|Q9|+ |Q12|+ |Q15|+ |Q16|)
+ 1.5(|Q13 +Q18|) ≥ |R5|+ 0.5|R7|. (35)

By (34) and (35), the approximation ratio is

γ ≤ OPT3(x,p)

SU((0, 1), (x,p))
≤ 4|R5|+ 2|R7|
|R5|+ 0.5|R7|

= 4.

The lower bound result of Theorem 5 for the obnoxious heterogeneous two-facility
location game can carry over to the heterogeneous two-facility location game with triple-
preference as we have remarked that the obnoxious facility location game is a special case
of the two-facility location game with triple-preference.

8. Conclusions

We considered the mechanism design problem of a social planner for locating two facilities
with minimum distance requirement on a line interval, where a set of n strategic agents
report their locations. In the heterogeneous two-facility location game, we found the optimal
solution and proved carefully choosing one optimal solution as output is strategyproof. We
also designed a strategyproof mechanism minimizing the maximum cost. In the homoge-
neous two-facility location game, we proved any deterministic strategyproof mechanism has
infinity approximation ratio. In the obnoxious heterogeneous two-facility location game, we
proposed new deterministic group strategyproof mechanisms with provable approximation
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ratios and obtained the lower bound 7−d
6 . We also designed a strategyproof mechanism

maximizing the minimum utility. In the obnoxious homogeneous two-facility location game,
we propose deterministic group strategyproof mechanisms with provable approximation
ratios and also establish a lower bound 4/3. In the heterogeneous two-facility location
game with triple-preference, we designed a deterministic group strategyproof mechanism
with an approximation ratio 4.

In the future, we will study the randomized mechanism design in the obnoxious two-
facility location game and in the two-facility location game with triple-preference. Moveover,
it would be interesting to extend our model to include more than two facilities with minimum
distance requirement or consider the facility location games in more general metric spaces
such as circles and trees.
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Appendix A. Proof of Theorem 5

Proof. Assume N = {1, 2, 3}. Let f be a deterministic mechanism. Consider the profile
x = {x1, x2, x3} = {1+3d

4 , 1+d
2 , 3+d

4 } and f(x) = (y1, y2). Note that given d ∈ [0, 1], d ≤
x1 ≤ x2 ≤ x3 ≤ 1. For easy access of agents’ utilities in the following proof, we make Table
3. For the social utilities, we have SU((0, d),x) = 3,

ui((x, y), xi) i = 1 i = 2 i = 3

(x, y) = (0, d) 1+d
2 1 3−d

2

(x, y) = (1− d, 1) 3−3d+|3−7d|
4

1−d+|1−3d|
2

1−d+|1−5d|
4

(x, y) = (0, 1) 1 1 1

Table 3: Agent’s utility in (0, d), (1− d, 1), (0, 1).

SU((1− d, 1),x) = (6− 6d+ |3− 7d|+ |2− 6d|+ |1− 5d|)/4 ≤ 3,

and SU((0, 1),x) = 3. Hence, the optimal solution of x is

OPT2(x) = max{SU((0, d),x), SU((1− d, 1),x), SU((0, 1),x)} = 3. (36)
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Denote x′ as the location profile after one of the three agents misreports. Let (y′1, y
′
2) = f(x′)

and (y′1, y
′
2) satisfies y′2 − y′1 ≥ d and 0 ≤ y′1, y′2 ≤ 1. We have the following cases.

Case 1: y1 > x1 and y2 ≤ x3. We have d ≤ y2−y1 ≤ x3−x1 = 1−d
2 , which implies d ≤ 1

3 .
Since x1 < y1 ≤ y2 ≤ x3, by similar analysis and conclusion of Proposition 2, the social
utility can reach its maximum when (y1, y2) is one out of (x1, x1 + d), (x1, x3), (x3− d, x3),
which is

SU((y1, y2),x) ≤ max{SU((x1, x1 + d),x), SU((x1, x3),x), SU((x3 − d, x3),x)}

= max{5− 5d+ |5d− 1|
4

,
3(1− d)

2
,
5− 5d+ |5d− 1|

4
} ≤ 1.5. (37)

Accordingly, by (36) and (37), γ ≥ OPT2(x)/SU((y1, y2),x) ≥ 2.

v
0

v
1

vx1 = 1+3d
4 v

x2 = 1+d
2

vx3 = 3+d
4v

d

x′1v v
y1

v
y2

Figure 4: Case 2 for the proof of Theorem 5.

Case 2: y1 ≤ x1 and y2 ≤ x1, as shown in Figure 4. In this case, u1((y1, y2), x1) ≤
2x1 − d = 1+d

2 . Consider x′1 = 0 and x′ = {x′1, x2, x3}. Note that SU((0, d),x′) = 5+d
2 ≤ 3,

SU((1− d, 1),x′) =
11− 7d+ |2− 6d|+ |1− 5d|

4

{
> 3 if d ∈ [0, 1

9)
≤ 3 if d ∈ [1

9 , 1]
,

and SU((0, 1),x′) = 3. Thus the optimal solution of x′ is

OPT2(x′) = max{SU((1− d, 1),x′), SU((0, 1),x′)} ≥ 3. (38)

As f is strategyproof and agent 1 cannot gain by misreporting from x1 to x′1, the utility of
agent 1 must satisfy

u1((y′1, y
′
2), x1) = |y′1 − x1|+ |y′2 − x1| ≤ u1((y1, y2), x1) ≤ 1 + d

2

⇔
{

2x1 − 1+d
2 ≤ y

′
1 + y′2 ≤ 2x1 + 1+d

2

|y′1 − y′2| ≤ 1+d
2

⇔
{
y′1 + y′2 ≤ 1 + 2d

y′2 − y′1 ≤ 1+d
2

. (39)

By (39), the domain of (y′1, y
′
2) is a convex polygon with corner points:

1. (0, d), (0, 1+d
2 ), (1+d

2 , 1+3d
2 ), (1+3d

4 , 3+5d
4 ) if d ∈ [0, 1

5 ];

2. (0, d), (0, 1+d
2 ), (1+d

2 , 1+3d
2 ), (1−d

2 , 1), (2d, 1) if d ∈ (1
5 ,

1
3 ];

3. (0, d), (0, 1+d
2 ), (1−d

2 , 1), (1− d, 1) if d ∈ (1
3 , 1].

Hence, for the profile x′, by similar analysis and conclusion of Proposition 2, the social
utility of x′ under f can obtain its maximum if (y1, y2) is at one out of all corner points.
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By some calculations, the social utility of x′ under f is

SU((y′1, y
′
2),x′) ≤

SU((0, d),x′) if d ∈ [0, 1
5 ]

max{SU((0, d),x′), SU((1−d
2 , 1),x′),

SU((2d, 1),x′)} if d ∈ (1
5 ,

1
3 ]

max{SU((0, d),x′), SU((1−d
2 , 1),x′),

SU((1− d, 1),x′)} if d ∈ (1
3 , 1]

=


5+d

2 if d ∈ [0, 1
5 ]

max{5+d
2 , 5+d

2 , 3− 2d} if d ∈ (1
5 ,

1
3 ]

max{5+d
2 , 5+d

2 , 2 + d} if d ∈ (1
3 , 1]

=
5 + d

2
. (40)

Accordingly, by (38) and (40), γ ≥ OPT2(x′)/SU((y′1, y
′
2),x′) ≥ 6

5+d .
Case 3: y1 ≤ x1 and x1 < y2 ≤ x3. In this case,

SU((y1, y2),x) = (x1 + x2 + x3 − y1) + (x3 − x1 + |y2 − x2|)

=x2 + 2x3 − y1 + |y2 − x2| ≤ x2 + 2x3 − 0 + (x3 − x2) =
3(3 + d)

4
. (41)

Accordingly, by (36) and (41), γ ≥ OPT2(x)/SU((y1, y2),x) = 4
3+d .

v
0

v
1

vx1 = 1+3d
4 v

x2 = 1+d
2

vx3 = 3+d
4v

d

x′3vv
y1

v
y2

Figure 5: Case 4 for the proof of Theorem 5.

Case 4: y2 > x3, as shown in Figure 5. In this case, u3((y1, y2), x3) = y2 − y1 ≤ 1.
Consider x′3 = 1 and x′ = {x1, x2, x

′
3}. Note that

SU((0, d),x′) = 2x1 − d+ 2x2 − d+ 2x′3 − d =
7− d

2
≥ 3,

SU((1− d, 1),x′) =
5− d+ |3− 7d|+ |2− 6d|

4
≤ 3,

and SU((0, 1),x′) = 3. Thus the optimal solution of x′ is

OPT2(x′) = SU((0, d),x′) =
7− d

2
. (42)

As f is strategyproof and agent 3 cannot gain by misreporting from x3 to x′3, the utility of
agent 3 must satisfy

u3((y′1, y
′
2), x3) = |y′1 − x3|+ |y′2 − x3| ≤ u3((y1, y2), x3) ≤ 1

⇔2x3 − 1 ≤ y′1 + y′2 ≤ 2x3 + 1⇔ 1 + d

2
≤ y′1 + y′2. (43)

By (43), the feasible region of (y′1, y
′
2) is a convex quadrangle with corner points (0, 1+d

2 ),

(0, 1), (1−d, 1) and (1−d
4 , 1+3d

4 ). Hence, for the profile x′, by similar analysis and conclusion
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of Proposition 2, the social utility of x′ under f can obtain its maximum if (y1, y2) is at one
out of all four corner points, which is

SU((y′1, y
′
2),x′)

≤max{SU((0,
1 + d

2
),x′), SU((0, 1),x′), SU((1− d, 1),x′), SU((

1− d
4

,
1 + 3d

4
),x′)}

= max{5 + d

2
, 3,

5− d+ |3− 7d|+ |2− 6d|
4

, 2 + d} = 3. (44)

Accordingly, by (42) and (44), γ ≥ OPT2(x′)/SU((y′1, y
′
2),x′) = 7−d

6 .
In conclusion, f has an approximation ratio γ of at least

min{2, 6

5 + d
,

4

3 + d
,
7− d

6
} =

7− d
6
∈ [1,

7

6
].

Appendix B. Proof of Theorem 8

Proof. Assume N = {1, 2}. Let f be a deterministic mechanism. Consider the profile
x = {x1, x2} = {1−d

4 , 3+d
4 } and f(x) = (y1, y2). Denote x′ as the location profile after

one of the two agents misreports. Let (y′1, y
′
2) = f(x′). (y′1, y

′
2) satisfies y′2 − y′1 ≥ d and

0 ≤ y′1, y′2 ≤ 1.

v
0

v
1

vx1 = 1−d
4 vx2 = 3+d

4v
d

v
1− d

x′1v v
y1

v
y2

Figure 6: The proof of Theorem 8 given d < 1/5.

Note that given d ∈ [0, 1/5), 0 ≤ d ≤ x1 ≤ x2 ≤ 1 − d ≤ 1, as shown in Figure 6. We
have the following cases.

Case 1.1: y1 ≤ x1. In this case, u1((y1, y2), x1) = min{|y1 − x1|, |y2 − x1||} ≤ (1− d)/4.
Consider x′1 = 0 and x′ = {x′1, x2}. The optimal social utility is

OPT2(x′) = SU((1− d, 1),x′) = (1− d) + (1− d)− (3 + d)/4 = (5− 9d)/4.

As f is strategyproof and agent 1 cannot gain by misreporting from x1 to x′1, the utility
of agent 1 must satisfy u1((y′1, y

′
2), x1) ≤ u1((y1, y2), x1) ≤ (1 − d)/4, which implies that

y′1 ≤ (1− d)/2. The social utility under f is

SU((y′1, y
′
2),x′) ≤ max{SU(

1− d
2

,
1− d

2
+ d),x′), SU((

1− d
2

, 1),x′)}

= max{1− d
2

+ |x2 − (
1− d

2
+ d)|), 1− d

2
+ min{|x2 −

1− d
2
|, 1− x2}}

= max{3− 3d

4
,
3− 3d

4
} =

3− 3d

4
.

The approximation ratio is γ = OPT2(x′)/SU((y′1, y
′
2),x′) ≥ 5−9d

3−3d .
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Case 1.2: y2 ≥ x2. Due to symmetry, this case is similar with Case 1.1.
Case 1.3: x1 ≤ y1 ≤ y2 ≤ x2. In this case,

SU((y1, y2),x) ≤ SU((x1, x1 + d),x) = x2 − x1 − d =
1− d

2
.

The optimal social utility is OPT2(x) = SU((0, d),x) = x1−d+x2−d = 1−2d. Accordingly,
γ = OPT2(x)/SU((y1, y2),x) ≥ 2−4d

1−d .
In conclusion, for d ∈ [0, 1/5), f has an approximation ratio γ of at least

min{5− 9d

3− 3d
,
2− 4d

1− d
} =

5− 9d

3− 3d
∈ (

4

3
,
5

3
].

v
0

v
1

vx1 = 1−d
4 vx2 = 3+d

4v
1− d

v
d

x′1v v
y1

v
y2

Figure 7: The proof of Theorem 8 given d ≥ 1/5.

Now considering d ∈ [1/5, 1), we note that

0 ≤ x1 ≤ min{1− d, d} ≤ max{1− d, d} ≤ x2 ≤ 1,

as shown in Figure 7. We have the following cases.
Case 2.1: y1 ≤ x1 ≤ y2 ≤ x2, as shown in Figure 7. In this case, u1((y1, y2), x1) =

x1 − y1 ≤ (1− d)/4. Consider x′1 = 0 and x′ = {x′1, x2}. The optimal social utility is

OPT2(x′) = SU((1− d, 1),x′) = (1− d)− 0 + min{|1− d− x2|, 1− x2}

=1− d+ min{5d− 1

4
,
1− d

4
} = min{3 + d

4
,
5− 5d

4
}.

As f is strategyproof and agent 1 cannot gain by misreporting from x1 to x′1, the utility
of agent 1 must satisfy u1((y′1, y

′
2), x1) ≤ u1((y1, y2), x1) ≤ (1 − d)/4, which implies that

y′1 ≤ (1− d)/2. The social utility under f is

SU((y′1, y
′
2),x′) ≤ max{SU((

1− d
2

,
1− d

2
+ d),x′), SU((

1− d
2

, 1),x′)}

≤max{1− d
2

+ |1 + d

2
− x2|,

1− d
2

+ min{|1− d
2
− x2|, 1− x2}}

= max{3− 3d

4
,
3− 3d

4
} =

3− 3d

4
.

The approximation ratio is γ = OPT2(x′)/SU((y′1, y
′
2),x′) ≥ min{5

3 ,
3+d
3−3d}.

Case 2.2: x1 ≤ y1 ≤ y2 ≤ x2. In this case,

SU((y1, y2),x) ≤ SU((x1, x1 + d),x) = (3 + d)/4− (1− d)/4− d = (1− d)/2.

For the optimal social utility,

OPT2(x) = SU((0, d),x) = min{x1 − 0, d− x1}+ x2 − d

= min{1− d
4

,
5d− 1

4
}+

3− 3d

4
= min{1− d, 1 + d

2
}.
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Accordingly, γ = OPT2(x)/SU((y1, y2),x) = min{2, 1+d
1−d}.

Case 2.3: x1 ≤ y1 ≤ x2 ≤ y2. Due to symmetry, this case is similar with Case 2.1.

Case 2.4: y1 ≤ x1 ≤ x2 ≤ y2. In this case,

SU((y1, y2),x) ≤ SU((0, 1),x) = (1− d)/4 + (1− d)/4 = (1− d)/2.

For the optimal social utility, OPT2(x) = min{1− d, (1 + d)/2}. Accordingly,

γ = OPT2(x)/SU((y1, y2),x) ≥ min{2, (1 + d)/(1− d)}.

In conclusion, for d ∈ [1/5, 1], f has an approximation ratio γ of at least

min{min{5

3
,

3 + d

3− 3d
},min{2, 1 + d

1− d
}} = min{5

3
,

3 + d

3− 3d
} ∈ [

4

3
,
5

3
].

Therefore, f has an approximation ratio γ of at least 5−9d
3−3d if d ∈ [0, 1

5); 3+d
3−3d if d ∈ [1

5 ,
1
3);

and 5
3 if d ∈ [1

3 , 1), which is within [4
3 ,

5
3 ].
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