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Mauŕıcio D. L. Reis m reis@staff.uma.pt

Faculdade de Ciências Exatas e da Engenharia,

Universidade da Madeira, Campus Universitário da Penteada,

9020-105 Funchal, Portugal

CIMA - Centro de Investigação em Matemática e Aplicações

Abstract

In this paper we study a kind of operator —known as credibility-limited base revisions—
which addresses two of the main issues that have been pointed out to the AGM model of
belief change. Indeed, on the one hand, these operators are defined on belief bases (rather
than belief sets) and, on the other hand, they are constructed with the underlying idea
that not all new information is accepted. We propose twenty different classes of credibility-
limited base revision operators and obtain axiomatic characterizations for each of them.
Additionally we thoroughly investigate the interrelations (in the sense of inclusion) among
all those classes. More precisely, we analyse whether each one of those classes is or is not
(strictly) contained in each of the remaining ones.

1. Introduction

Belief change became a major subject in artificial intelligence in the middle of the 1980’s.
The one that is nowadays considered the standard model of belief change is the AGM model,
proposed by Alchourrón et al. (1985). In the AGM framework the belief state of an agent
is represented by a belief set, i.e. a logically closed set of propositional sentences —which
represents the beliefs of that agent. In the AGM model three kinds of change operators for
belief sets are considered, namely:

• Expansions, whose output is a belief set which (may be inconsistent and) contains all
the sentences of the original belief set and also the (sentence representing the) new
information.
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• Contractions, whose output is a belief set that is a subset of the original one, which
does not contain the sentence received as input, but contains as many as possible of
the previous beliefs.

• Revisions,1 whose output is, whenever possible, a consistent belief set that contains
the new belief and as many as possible of the previous beliefs.

The AGM model inspired many researchers to propose extensions and generalizations
(for an overview see Fermé & Hansson, 2011; and Fermé & Hansson, 2018), from among
which we highlight the following ones:

(a) Models of belief base change: These are models in which the belief state of an agent
is represented by a set of sentences that is not, except as a limiting case, closed
under logical consequence. These sets are called belief bases and have a fundamental
property: they allow to distinguish between explicit beliefs, which are elements of
the belief base, and derived beliefs, i.e., elements that are logical consequences of
the belief base, but that are not explicitly present in the belief base. Belief bases
are more suitable than belief sets for representing the belief states of real cognitive
agents since, as it was pointed out by Gärdenfors and Rott (1995), “when we perform
revisions or contractions, it seems that we never do it to the belief set itself (. . . ) but
rather on some typically finite base for the belief set”. Additionally, because belief sets
are often too big, eventually even infinite, they are not adequate for computational
implementations of belief change models. The use of belief bases has been largely
studied in the literature (Dalal, 1988; Fermé, 1992; Fuhrmann, 1988, 1991; Garapa,
2017; Hansson, 1989, 1991a, 1992b, 1994b; Nebel, 1989; Rott, 2000; Wassermann,
2000).

(b) Models of non-prioritized belief change: These are models in which the belief change
operators considered do not give priority to the new information received (contrary
to what is the case regarding the AGM model which fulfils the principle of primacy
of new information). For example, the output of a non-prioritized revision may not
contain the new belief that has motivated that revision. Analogously, the outcome of
a non-prioritized contraction may still contain the sentence by which the contraction
is made.

We highlight the following ones from among the operators of the kind mentioned in (a)
above:

• Base contraction operators: partial meet base contractions (Hansson, 1992a, 1993,
1991a); kernel contractions and smooth kernel contractions (Hansson, 1994a); and ba-
sic AGM-generated base contractions (Fermé, Krevneris, & Reis, 2008; Fermé, Garapa,
& Reis, 2017).

• Base revision operators: partial meet base revisions (Hansson, 1991a); kernel revisions
(Hansson, 1994a; Wassermann, 2000).

1. Throughout this article we will often designate a revision operator simply by a revision. This abuse of
language is common in the literature. It will always be clear from the context which meaning is intended
for the word revision wherever it shall be used.
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Regarding the kind of operators mentioned in (b), we highlight:

• The pioneering work on non-prioritized contraction where Fermé and Hansson (2001)
introduced the concept of shielded contraction. These operators are defined by means
of an AGM contraction and a set of sentences, designated by set of retractable sen-
tences and denoted by R. If a sentence α belongs to R, then the outcome of the
shielded contraction by it coincides with the outcome of the associated AGM contrac-
tion, otherwise the original belief set is left unchanged.

• The credibility-limited revision operators (CL revision for short), introduced by Hans-
son et al. (2001). Roughly speaking, a CL revision has the following credibility-based
behaviour: If a sentence α is credible, then it is added to the set of beliefs of the agent
as a consequence of the revision process, otherwise no change is made to the belief set.
Hence, a CL revision operator is induced by a (standard) revision operator and a set
of sentences —which contains the sentences that are considered credible, called the set
of credible sentences. In the above mentioned paper axiomatic characterizations are
presented for CL revision operators induced by AGM revisions and by several kinds
of sets of credible sentences. More precisely it presents some results exposing the re-
lation between the postulates satisfied by the CL revision operator and the properties
satisfied by the underlying set of credible sentences. CL revision can be seen as a
modified version of Makinson’s (1997) Screened revision. A Screened revision of a
belief set K by a given sentence α gives rise to a new belief set if the input sentence
α is consistent with A∩K, where A is a set of sentences that are considered immune
to revision. If the input sentence is inconsistent with A ∩K then the belief set K is
left unchanged when the screened revision is performed. The model of CL revision
was extended to cover iterated revision by Booth et al. (2012).

At this point we must mention that there are also several papers that combine the two
extensions of the AGM model mentioned above. These are works which present operators
of non-prioritized belief change for belief bases. We note that the lack of operators of this
kind had already been identified by Hansson (1999a) as one of the unexplored regions in
the existing works on non-prioritized belief revision.

Concerning non-prioritized contractions for belief bases, Fermé et al. (2003) have pre-
sented a class of shielded contractions on belief bases defined by means of a partial meet
contraction and a set of retractable sentences (satisfying a certain set of properties). Later,
Garapa et al. (2018b) have proposed and axiomatically characterized other (twenty) classes
of shielded base contraction induced by several well-known kinds of base contractions (not
only partial meet contractions) and several kinds of sets of retractable sentences (i.e. sets
satisfying several different, and non-equivalent, sets of properties).

With respect to non-prioritized revisions for belief bases, Fermé et al. (2003) have
presented an operator of CL base revision which is induced by a partial meet revision
operator and a set of credible sentences satisfying a certain set of properties.2 Falappa et
al. (2012) axiomatically characterized some operators of non-prioritized multiple revision

2. In that paper only one class of CL base revisions was considered, which is slightly different from all the
classes that will be considered in this paper.
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for belief bases. These are operators in which the input is a set of sentences instead of a
single sentence and where both the initial belief state and the input set are equally treated.

In the present paper we axiomatically characterize two constructive methods of base
revision, namely smooth kernel revisions and basic AGM-generated base revisions. Moreover
we will define and thoroughly study twenty classes of CL base revision operators. This
paper subsumes and significantly extends the study presented by Garapa et al. (2018a)3

and can be seen as the revision counterpart of a paper on shielded base contraction written
by the same authors (Garapa et al., 2018b). We will consider classes of CL revisions
operators induced by several kinds of base revisions, namely, partial meet base revisions,
kernel and smooth kernel revisions and basic AGM-generated base revisions; and several
kinds of sets of credible sentences, i.e., we consider several different, and non-equivalent, sets
of properties for characterizing a set of credible sentences. We axiomatically characterize
all the classes of CL base revisions considered and study the interrelations among them,
namely by investigating if each of those classes is or is not (strictly) contained in each one
of the remaining classes considered.

The idea of credibility-limit is closely related to that of trust. However, these are two
different concepts. In the works that address the notion of trust, credibility is related to the
source of the information and not to the information itself. There are several proposals in
the belief change literature (e.g., Booth & Hunter, 2018; Dragoni, Giorgini, & Baffetti, 1997;
Liberatore, 2018; Tamargo, Garćıa, Falappa, & Simari, 2014) which consider the source and
the domain of expertise. On the other hand, in the operators considered in this paper the
credibility of the new information is “assessed” independently of its source. For example, if
a Spanish person asks what the average temperature was during the past summer in Madrid
and receives as answer −32◦C she will reject this information, independently of its source.

There are several contexts in which CL models can be implemented: In databases, where
the integrity constraints cannot be revised during an update, in project management when
some restrictions (budget, time) cannot be changed when a contingency plan is designed;
as well as all kind of information systems where some constraints cannot be updated or
modified.

Example 1.1 When working with databases, it is imperative to detect inconsistent and non-
admissible data and prevent it from being incorporated into the system database. To this end,
suitable integrity constraints must be defined. These are used by the system’s data validation
mechanisms in order to prevent incorrect data from being entered. Integrity constraints are
logical conditions that must be satisfied by the input data to be incorporated into the system
database. When new input data is received, the database verifies if the integrity constraints
are satisfied. If not, the input information is not accepted. For example, a database of
people, which includes their birth and death dates (in case that person has already died),
should have a rule that for anyone with a death date, that date must be later then their date
of birth. If the data entered does not satisfy this rule, then it will not be accepted.

The rest of the paper is organized as follows:

3. In that paper only four of these twenty classes have been considered. Furthermore, only proof sketches
were presented for those results. In Appendix A. of this paper we present full proofs for them.
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In Section 2 we introduce the notations and recall the main background concepts and
results that will be needed throughout this article. We also recall the main results concern-
ing CL revision operators on belief sets. In Section 3 we introduce and characterize two
constructive methods for belief base revision, whose definitions are inspired in two base con-
traction constructive methods for belief bases. In Section 4 we present a formal definition
of credibility-limited base revision and introduce some new belief base revision postulates
and some desirable properties that a set of credible sentences should satisfy. Furthermore,
we present several results highlighting the interrelations among the properties satisfied by
a credibility-limited base revision operator and the properties satisfied by the (standard)
revision and the set of credible sentences which induce that credibility-limited revision. Af-
terwards, in Section 5 we present axiomatic characterizations for the following classes of
credibility-limited base revisions: CL revisions induced by partial meet revisions, CL revi-
sions induced by kernel revisions, CL revisions induced by smooth kernel revisions, and CL
revisions induced by basic AGM-generated base revisions. For each one of these four classes,
we shall identify five different subclasses—each one associated to a certain list of properties
of the set of credible sentences. Then, in Section 6 we analyse the interrelations among (all)
the classes of CL revisions considered in terms of the relation of (strict) inclusion. Finally,
in Section 7 we summarize the main contributions of the paper and briefly discuss their
relevance. In Appendix A. we provide proofs for all the original results presented.

2. Background

The following subsection introduces the notation that shall be used throughout the article.

2.1 Formal Preliminaries

We will assume a propositional language L that contains the usual truth functional connec-
tives: ¬ (negation), ∧ (conjunction), ∨ (disjunction),→ (implication) and↔ (equivalence).
We shall make use of a consequence operation Cn that takes sets of sentences to sets of
sentences and which satisfies the standard Tarskian properties, namely inclusion, monotony
and iteration. Furthermore we will assume that Cn satisfies supraclassicality, compactness
and deduction. We will sometimes use Cn(α) for Cn({α}), A ` α for α ∈ Cn(A), ` α for
α ∈ Cn(∅), A 6` α for α 6∈ Cn(A), 6` α for α 6∈ Cn(∅). The letters α, β, . . . (except for
γ and σ) will be used to denote sentences of L. Lowercase Latin letters such as p, q, . . .
will be used to denote atomic sentences of L. A,B, . . . shall denote sets of sentences of L.
K is reserved to represent a set of sentences that is closed under logical consequence (i.e.
K = Cn(K)) —such a set is called a belief set or theory. Given a belief set K we will use
K + α to denote Cn(K ∪ {α}). We will use the symbols ?, ∗,�, and ~ to denote AGM
belief set revision, belief base revision, CL belief set revision and CL belief base revision
operators, respectively.

2.2 AGM Revision Operators

The operation of revision of a belief set consists of the incorporation of new beliefs in that
set. In a revision process, some previous beliefs may be retracted in order to preserve the
consistency of the resulting belief set. The following six postulates, which were originally
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presented by Gärdenfors (1988), are commonly known as basic AGM postulates for revision:4

(?1) K?α = Cn(K?α) (i.e. K?α is a belief set). (Closure)
(?2) α ∈ K?α. (Success)
(?3) K?α ⊆ K + α. (Inclusion)
(?4) If ¬α 6∈ K, then K + α ⊆ K?α. (Vacuity)
(?5) If α is consistent, then K?α is consistent. (Consistency)
(?6) If ` α↔ β, then K?α = K?β. (Extensionality)

Definition 2.1 An operator ? for a belief set K is a basic AGM revision if and only if it
satisfies postulates (?1) to (?6).

Definition 2.2 An operator ? for a belief set K is an AGM revision if and only if it
satisfies postulates (?1) to (?6) and
(?7) K?(α ∧ β) ⊆ (K?α) + β. (Superexpansion)
(?8) If ¬β 6∈ K?α, then (K?α) + β ⊆ K?(α ∧ β). (Subexpansion)

2.3 Base Revision Operators

We start this subsection by introducing a definition of a revision operator in terms of
postulates. The following definition establishes the minimal set of postulates that a revision
operator must satisfy.

Definition 2.3 An operator ∗ for a set A is an operator of revision if and only if ∗
satisfies the following postulates:
(Success) α ∈ A ∗ α.
(Inclusion) A ∗ α ⊆ A ∪ {α}.
(Consistency) If α 6`⊥, then A ∗ α 6`⊥.

We now recall several well-known constructive models of revision functions on belief
bases.

2.3.1 Partial meet revisions

We recall the definition and axiomatic characterization of partial meet revisions.

Definition 2.4 (Alchourrón & Makinson, 1981) Let A be a belief base and α a sen-
tence. The set A⊥α (A remainder α) is the set of sets such that B ∈ A⊥α if and only
if:

1. B ⊆ A.

2. B 6` α.

4. These postulates had already been presented by Gärdenfors (1982) and by Alchourrón et al. (1985) but
with slightly different formulations.
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3. There is no set B′ such that B ⊂ B′ ⊆ A and B′ 6` α.

Definition 2.5 (Alchourrón et al., 1985) Let A be a belief base. A selection function
for A is a function γ such that for all sentences α:

1. If A⊥α is non-empty, then γ(A⊥α) is a non-empty subset of A⊥α.

2. If A⊥α is empty, then γ(A⊥α) = {A}.

Definition 2.6 (Alchourrón et al., 1985) Let A be a belief base. The partial meet re-
vision operator on A based on a selection function γ is the operator ∗γ such that for all
sentences α :

A ∗γ α = (
⋂
γ(A ⊥ ¬α)) ∪ {α}.

An operator ∗ on A is a partial meet revision if and only if there is a selection function
γ for A such that for all sentences α: A ∗ α = A ∗γ α.

In the following observation we recall an axiomatic characterization for partial meet
base revision functions.

Observation 2.7 (Hansson, 1991a) Let A be a belief base. An operator ∗ on A is a
partial meet revision if and only if ∗ satisfies success, consistency, inclusion and
(Uniformity) If for all subsets A′ ⊆ A,A′ ∪ {α} `⊥ if and only if A′ ∪ {β} `⊥, then
A ∩ (A ∗ α) = A ∩ (A ∗ β).
(Relevance) If β ∈ A and β 6∈ A ∗ α, then there is some A′ such that
A ∗ α ⊆ A′ ⊆ A ∪ {α}, A′ 6`⊥ but A′ ∪ {β} `⊥.

Uniformity (Hansson, 1993) states that if two sentences are inconsistent with the same
subsets of A, then the outcomes of the revisions of A by each of them should keep the same
elements of A. Relevance (Hansson, 1993) ensures that when revising a set A by a sentence,
nothing is removed unless that removal contributes to keeping the outcome of the revision
consistent.

2.3.2 Kernel revisions

Hansson (1994a) introduced Kernel Contraction, a generalization of Safe Contraction (Al-
chourrón & Makinson, 1985). It is based on a selection among the sentences of a set A
that contribute effectively to imply α; and on how to use this selection in contracting by α.
Formally:

Definition 2.8 (Hansson, 1994a) Let A be a set in L and α a sentence. Then A⊥⊥α is
the set such that B ∈ A⊥⊥α if and only if:

1. B ⊆ A.

2. B ` α.

3. If B′ ⊂ B then B′ 6` α.

1029



Garapa, Fermé, & Reis

A⊥⊥α is called the kernel set of A with respect to α and its elements are the α-kernels
of A.

To contract a belief α from a set A one must give up sentences in each α-kernel, otherwise
α would continue being implied by A. The so-called incision functions select the beliefs to
be discarded.

Definition 2.9 (Hansson, 1994a) Let A be a set of sentences. Let A⊥⊥α be the kernel
set of A with respect to α. An incision function σ for A is a function such that for all
sentences α:

1. σ(A⊥⊥α) ⊆
⋃

(A⊥⊥α).

2. If ∅ 6= B ∈ A⊥⊥α, then B ∩ σ(A⊥⊥α) 6= ∅.

Definition 2.10 Let A be a belief base. The kernel revision operator on A based on an
incision function σ is the operator ∗σ such that for all sentences α:

A ∗σ α = (A \ σ(A⊥⊥¬α)) ∪ {α}.

Observation 2.11 (Wassermann, 2000) Let A be a belief base. An operator ∗ on A is
a kernel revision function for A if and only if ∗ satisfies success, consistency, inclusion,
uniformity and
(Core-retainment) If β ∈ A and β 6∈ A ∗α, then there is some A′ ⊆ A such that A′ 6` ¬α
and A′ ∪ {β} ` ¬α.5

Core-retainment (Wassermann, 2000) is, as relevance, an expression of the principle of
minimal change. Core-retainment follows from relevance and success.

2.4 Credibility-Limited Revision for Belief Sets

Credibility-limited revision (Hansson et al., 2001) is an operator of non-prioritized revision.
When revising a belief set by a sentence, we need to analyse if this sentence is credible or
not. When revising by a credible sentence, the operator works as a basic AGM revision
operator, otherwise it leaves the original belief set unchanged. Formally:

Definition 2.12 (Hansson et al., 2001) Let K be a belief set, ? a basic AGM revision
operator on K and C a subset of L (the set of credible sentences). Then � is a credibility-
limited revision operator induced by ? and C if and only if:

K� α =

{
K?α if α ∈ C
K otherwise

5. To be more precise we note that this axiomatic characterization is equivalent to the one actually presented
by Wassermann (2000), which uses the postulate of non-contradiction (if 6` ¬α, then A∗α 6` ¬α) instead
of consistency.
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This construction can be further specified by adding constraints to the structure of C
(the set of credible sentences).6 Hansson et al. (2001) proposed the following desirable
properties for C:

Credibility of Logical Equivalents: If ` α↔ β, and α ∈ C, then β ∈ C.

Single Sentence Closure: If α ∈ C, then Cn(α) ⊆ C.

Disjunctive Completeness: If α ∨ β ∈ C, then either α ∈ C or β ∈ C.

Negation Completeness: α ∈ C or ¬α ∈ C.

Element Consistency: If α ∈ C, then α 6`⊥.

Expansive Credibility: If K 6` α, then ¬α ∈ C.

Revision Credibility: If α ∈ C, then K� α ⊆ C.

Credibility of logical equivalents also designated by closure under logical equivalence,
states that logically equivalent sentences should be both elements of C or of L \C. Single
sentence closure says that if a sentence is credible then all its logical consequences are
also credible. Single sentence closure implies closure under logical equivalence. Disjunctive
completeness states that if two sentences are not credible, then their disjunction is not
credible. Negation completeness states that for any sentence it holds that either it is credible
or its negation is credible. Element consistency states that contradictions are not credible.
Expansive credibility informally states that sentences that are consistent with K are credible.
Revision credibility states that sentences in the outcome of a revision by a credible sentence
are credible.

When considering a credibility-limited revision the success postulate must be discarded.
It must be replaced by weaker properties. The following postulates were formulated by
Hansson et al. (2001) and by Fermé and Hansson (2001):

(Relative Success) α ∈ K� α or K� α = K.
(Disjunctive Success) Either α ∈ K� α or ¬α ∈ K� ¬α.
(Strict Improvement) If α ∈ K� α and ` α→ β, then β ∈ K� β.
(Regularity) If β ∈ K� α, then β ∈ K� β.
(Strong Regularity) If ¬β 6∈ K� α, then β ∈ K� β.
(Disjunctive Distribution) If α ∨ β ∈ K� (α ∨ β), then α ∈ K� α or β ∈ K� β.
(Disjunctive Constancy) If K� α = K� β = K, then K� (α ∨ β) = K.

Relative success states that either a sentence is incorporated in the revision of a belief
set by it, or the original belief set is left unchanged. Disjunctive success states that either a
sentence belong to the revision of a belief set by it or the negation of that sentence belongs
to the revision of that belief set by it. Strict improvement states that if a certain sentence is
incorporated when revising a belief set by it, then the same thing happens regarding every
logical consequence of that sentence. Regularity says that if a sentence does not belong to
the revision of a belief set by it, then that sentence does not belong to the revision of that
belief set by any other sentence. Strong regularity states that if a sentence does not belong
to the revision of a belief set by it, then its negation belongs to the revision of that belief

6. One of the assumptions of this paper is that the set C is given a priori.
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set by any given sentence. Disjunctive distribution states that if a disjunction belongs to
the revision of a belief set by it, then the same thing happens regarding at least one of
its disjuncts. Disjunctive constancy is, as disjunctive distribution, a postulate concerning
revision by disjunctions. It states that a belief set is left unchanged when revising it by a
disjunction, whenever the same thing occurs when revising that belief set by either one of
the two disjuncts.

The following postulates are related to consistency. They will also be used in the
axiomatic characterizations that we will present.

(Weak Consistency Preservation) (Katsuno & Mendelzon, 1992) If both K and α are
consistent, then so is K� α.
(Strong Consistency) (Hansson, 1996) K� α is consistent.
(Consistency Preservation) (Makinson, 1997) If K is consistent, then K � α is
consistent.
(Consistent Expansion) (Fermé & Hansson, 1999) If K 6⊆ K�α, then K∪ (K�α) `⊥.

Additionally, Hansson et al. (2001) have proposed the following postulate, that consists
of an adaptation of subexpansion to the context of non-prioritized revision:

(Guarded Subexpansion) If α ∈ K�α and K�α 6` ¬β, then (K�α)+β ⊆ K�(α∧β).

Guarded subexpansion and subexpansion are equivalent in the presence of success.

Now we are in conditions to recall the representations theorems for the credibility-limited
revision operators mentioned above. We will start by presenting a minimal representation
theorem. After that, by adding conditions on C, the set of credible sentences, we obtain
more specific representation theorems.

Observation 2.13 (Hansson et al., 2001) Let K be a consistent belief set and � an
operator on K. Then the following three conditions are equivalent:

1. � satisfies closure, relative success, inclusion, weak consistency preservation, consis-
tent expansion and extensionality.

2. � is an operator of credibility-limited revision induced by a basic AGM revision oper-
ator for K and a set C ⊆ L that is closed under logical equivalence.

3. � is an operator of credibility-limited revision induced by a basic AGM revision opera-
tor for K and a set C ⊆ L that satisfies K ⊆ C and is closed under logical equivalence.

Observation 2.14 (Hansson et al., 2001) Let K be a consistent belief set and � an
operator on K. Then:7

7. The schema presented in this observation (and whenever a similar schema is used) should be interpreted
as follows:
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� is an operator of credibility-limited

revision induced by a basic AGM

operator on K and a set C ⊆ L that is

closed under logical equivalence and

satisfies

if and only if � satisfies closure,

relative success, inclusion, weak

consistency preservation, consistent

expansion, extensionality and

single sentence closure strict improvement

disjunctive completeness disjunctive distribution

negation completeness disjunctive success

element consistency strong consistency

expansive credibility vacuity

3. Two New Constructive Methods for Belief Base Revision

In this section we present two new constructive methods for belief base revision. Both
methods are the revision counterpart of existing constructive methods for belief base con-
traction. After that we will analyze the different belief base revision operators from the
point view of the notion of minimal change.

3.1 Smooth Kernel Revisions

The following definition introduces the concept of smooth kernel base revision which is a
kernel base revision based on a smooth incision function.

Definition 3.1 (Hansson, 1994a) An incision function σ for a set A is smooth if and
only if it holds for all subsets A′ of A that if A′ ` β and β ∈ σ(A⊥⊥α) then A′∩σ(A⊥⊥α) 6= ∅.
A kernel revision is smooth if and only if it is based on a smooth incision function.

In the following theorem an axiomatic characterization is provided for smooth kernel
base revisions.8

Theorem 3.2 Let A be a belief base. An operator ∗ on A is a smooth kernel revision if
and only if it satisfies success, consistency, inclusion, uniformity, core-retainment and
(Weak Relative Closure) A ∩ Cn(A ∩A ∗ α) ⊆ A ∗ α.

- � is an operator of credibility-limited revision induced by a basic AGM operator on K and a set
C ⊆ L that is closed under logical equivalence and satisfies single sentence closure iff � satisfies
closure, relative success, inclusion, weak consistency preservation, consistent expansion, extensionality
and strict improvement;

- � is an operator of credibility-limited revision induced by a basic AGM operator on K and a set
C ⊆ L that is closed under logical equivalence and satisfies disjunctive completeness iff � satisfies
closure, relative success, inclusion, weak consistency preservation, consistent expansion, extensionality
and disjunctive distribution;

- ...

8. This result was presented without a full proof by Garapa et al. (2018b). In the Appendix of this paper
we present a full proof for this result.
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Weak relative closure, which is an adaptation, for revision, of the contraction postulate
of relative closure (Hansson, 1994a), states that the set formed by the elements of A that
are included in the outcome of revising A by α is logically closed relative to A.9 We note
that the intersection with the set A that appears in the argument of consequence operator
Cn is not irrelevant as one might think. To see this consider the following example: Let
A = {α→ β, β, β → ¬α} and A ∗α = {α→ β, α}. Hence β ∈ A∩Cn(A ∗α) but β 6∈ A ∗α.
On the other hand, α → β is the only element of A that can be deduced from A ∩ A ∗ α.
It holds that α → β ∈ A ∗ α. Thus, ∗ satisfies weak relative closure but not the property
A ∩ Cn(A ∗ α) ⊆ A ∗ α.

3.2 Basic AGM-Generated Base Revisions

We will now recall the definition and an axiomatic characterization for basic AGM-generated
base revisions, which are operators of base revision defined from operators of basic AGM
revision (for belief sets).

Definition 3.3 Let A be a belief base. An operator ∗ for A is a basic AGM-generated base
revision if and only if there exists some basic AGM revision ? for Cn(A), such that for all
α ∈ L:

A ∗ α = (Cn(A) ? α) ∩ (A ∪ {α}).

This function is the revision counterpart of AGM-generated base contraction presented
by Ferm’e et al. (2008). In the following Theorem an axiomatic characterization is provided
for smooth kernel base revisions.10

Theorem 3.4 Let A be a belief base. An operator ∗ on A is a basic AGM-generated base
revision if and only if it satisfies success, consistency, inclusion and
(Vacuity) If A 6` ¬α, then A ∪ {α} ⊆ A ∗ α.
(Weak Extensionality) If ` α↔ β, then A ∩A ∗ α = A ∩A ∗ β.
(Disjunctive Elimination) If β ∈ A and β 6∈ A ∗ α, then A ∗ α 6` ¬α ∨ β.

The formulation of vacuity consists in an adaptation to belief bases of postulate (?4).
It states that if a sentence α is consistent with A that the outcome of contracting A by α
contains A ∪ {α}. If both vacuity and inclusion are satisfied then such outcome coincides
precisely with A ∪ {α}.

Weak extensionality states that if α and β are two logically equivalent beliefs then every
element of A that is kept when revising by α is also kept when revising by β. We note that
weak extensionality is a weaker version of extensionality: If ` α ↔ β, then A ∗ α = A ∗ β.
We also note that, in general, extensionality is not satisfied by belief base revisions. The
following example illustrates this fact: Let α and β be two distinct sentences such that
` α↔ β. Let A be a belief base such that A ∩ {α, β} = ∅. Let ∗ be a revision operator on
A, thus ∗ satisfies success and inclusion. Then α ∈ A∗α but α 6∈ A∗β, therefore A∗α 6= A∗β.

9. A set A is logically closed relative to B if and only if Cn(A) ∩B ⊆ A (Hansson, 1991b).
10. The remark concerning Theorem 3.2 written in Footnote 8 also applies to this result.
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Disjunctive elimination is an adaptation, for revision, of the contraction postulate with
the same designation proposed by Fermé et al. (2008) and states that if β is removed when
revising a set A by α, then from the revision of A by α we can not deduce that α implies β.

3.3 Belief Bases and Minimal Change

One of the hallmarks of the AGM model is that partial meet revision, kernel revision,
smooth kernel revision and basic AGM-generated base revisions are all equivalent when
applied to belief sets.11 However, partial meet revision and kernel revision are based in
two different notions of minimal change; the first one in a selection of remainder sets, the
latter on an incision function on kernel sets. In what concerns basic AGM-generated base
revisions, it inherits the minimal change of the AGM function on which it is based.

This diversity of models is present in the literature and there is not a general consensus
about which one better addresses the principle of minimal change.12 In this subsection we
present the existing relations between the different constructive models when applied to
belief bases.

The following observation exposes some relations among some of the postulates used in
the axiomatic characterizations of the different classes of base revision that were mentioned
above.13

Observation 3.5 Let A be a belief base and ∗ be an operator on A.

(a) If ∗ satisfies uniformity, then ∗ satisfies weak extensionality.

(b) If ∗ satisfies disjunctive elimination, then ∗ satisfies weak relative closure.

(c) If ∗ satisfies relevance and success, then ∗ satisfies core-retainment and disjunctive
elimination.

(d) If ∗ satisfies success and core-retainment, then ∗ satisfies vacuity.

The following observation exposes the interrelations among the different classes of re-
visions mentioned above which follow trivially from their axiomatic characterizations pre-
sented in Observations 2.7 and 2.11, and in Theorems 3.2 and 3.4 and the interrelations
among postulates presented in Observation 3.5.

Observation 3.6 Let A be a belief base and ∗ be a revision operator on A. Then:

(a) If ∗ is an operator of partial meet revision, then it is an operator of smooth kernel
revision.

11. The proof of this claim is relatively simple. Hansson (1994a) proved that the class of kernel contraction
and smooth kernel contraction are equivalent to the class of partial meet contraction for belief sets.
Fermé et al. (2008) proved that the class of basic AGM-generated base contraction is equivalent with
the class of partial meet contraction. Finally, the four corresponding models of belief set revision are
defined from the contraction operators by means of the Levi identity (K?α = K− ¬α+ α).

12. For this reason we consider all those four classes of base revision operators in this paper.
13. Some of the relations among postulates stated in the following observation have been presented without

a proof by Garapa et al. (2018a). In this paper we present a full proof for this result.
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(b) If ∗ is an operator of smooth kernel revision, then it is an operator of kernel revision.

(c) If ∗ is an operator of partial meet revision, then it is an operator of basic AGM-generated
base revision.

Figure 1 illustrates the relations exposed in the observation above.

Partial meet revision

AGM-generated
base revision

Smooth
kernel revision

Kernel revision

Figure 1: Map among different classes of base revision operators.

4. Credibility-Limited Base Revisions

In this section we present the basic ideas underlying the construction of credibility-limited
base revisions. Credibility-limited base revision can be seen as functions defined in two
steps. In the first step, one needs to determine which sentences are credible, i.e., the
sentences that an agent is willing to incorporate when performing a revision. Afterwards
the function should:

• leave the set of beliefs unchanged when revising it by a non-credible sentence;

• work as a base revision when revising by a credible sentence.

The following definition formalizes this concept:

Definition 4.1 Let ∗ be a revision operator (i.e., an operator that satisfies success,
inclusion and consistency) on a belief base A. Let C be a set of sentences (the associated
set of credible sentences). Then ~ is the credibility-limited base revision induced by ∗ and
C if and only if:

A~ α =

{
A ∗ α if α ∈ C
A otherwise

The above definition is an extension of the one presented for credibility-limited base
revision by Fermé et al. (2003), since it defines a credibility-limited base revision induced
by a generic revision operator (and a set C) instead of by a partial meet revision. The
following example illustrates the behaviour of a credibility-limited base revision.
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Example 4.2 (Garapa et al., 2018b) Let A = {p, p ∨ ¬q, p→ ¬q}, Cn be purely truth-
functional and ∗ be a partial meet base revision on A. It holds that A ⊥ ¬q = {{p, p ∨
¬q}, {p → ¬q}}. Let γ be a selection function for A such that γ(A ⊥ ¬q) = {{p, p ∨ ¬q}}.
Hence A∗q = {p, p∨¬q, q}. Let C = Cn(q)∪Cn(p)∪Cn(¬q) and ~ be the credibility-limited
base revision induced by ∗ and C. It holds that p ∧ q 6∈ C, hence A ~ (p ∧ q) = A. On the
other hand q ∈ C. Hence A~ q = A ∗ q = {p, p ∨ ¬q, q}.

4.1 Two Dimensions for Analysing Credibility-Limited Base Revisions

Definition 4.1 claims that ~ is induced by ∗ and C. For this reason the properties of the ~
revision operator are determined by two different factors:

1. The properties satisfied by the set C;

2. The properties of the belief base revision ∗.

In subsection 3.3 we discussed that in belief bases, contrary to what is the case in the
context of belief sets, different methods encompass different notions of minimal change. This
means that using different belief revision functions ∗, combined with different properties of
C will lead to a different set of properties satisfied by the ~ operator. Since the study of
base revision operators is an active research topic, it is convenient to study what is the
impact, in terms of the properties satisfied by ~, of each single postulate satisfied by ∗
(rather than only studying which properties as a whole are satisfied by ~ when ∗ is one of
the four kinds of base revision which we have mentioned above).

The operator ~ differs from the AGM functions in two fundamental issues: It may not
satisfy the postulate of success, i.e., the new information may not be accepted; and it fulfils
a stronger consistency condition/requirement, namely that the outcome of a change must
be a consistent belief base, whatever is the input sentence that causes that revision. On the
other hand, it is also important to study the relation between the (properties of the) set C
and the base revision ∗ which (together) induce the operator ~.

In the remainder of this section we will focus in which properties are suitable for the
set C in the context of belief bases and how these properties, combined with properties of
∗ influence the properties of the induced operator ~.

4.2 Credible Sentences

In this section we will analyse plausible properties for the set C in the belief base revision
framework. We start by pointing out that the full logical closure, i.e., Cn(C) ⊆ C is
patently unreasonable; two sentences α and β may be credible without α ∧ β being so
(an obvious example is to consider β such that ` β ↔ ¬α). In what follows, we present
different properties that relax this condition.

The minimal requirement is that C must be closed under double negation:

Closure Under Double Negation: α ∈ C if and only if ¬¬α ∈ C.
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We can extend this condition to require that, regarding credibility, equivalent sentences
have the same status:

Credibility of Logical Equivalents (Hansson et al., 2001): If ` α ↔ β, and
α ∈ C, then β ∈ C.

If we assign the status of “credible” to a sentence α it is reasonable to expect that its
consequences are also credible:

Single Sentence Closure (Hansson et al., 2001): If α ∈ C, then Cn(α) ⊆ C.

Note that if a set C satisfies single sentence closure then it also satisfies credibility
of logical equivalents. If two sentences are not credible, then their disjunction is not credible:

Disjunctive Completeness (Hansson et al., 2001): If α ∨ β ∈ C, then either
α ∈ C or β ∈ C.

An immediate consequence of the two previous conditions, when C 6= ∅, is the following:

Negation Completeness (Hansson et al., 2001): α ∈ C or ¬α ∈ C.

Regarding consistency, it is expected that contradictions are not credible:

Element Consistency (Hansson et al., 2001): If α ∈ C, then α 6`⊥.

The previous properties are internal in the sense that they only present relations among
elements of the set C. The following properties relate the set C with the set A.14 If a
sentence is consistent with A, then this sentence must be credible:

Expansive Credibility (Hansson et al., 2001): If A 6` α, then ¬α ∈ C.

Another reasonable property is that all the logical consequences of A are credible when
A is consistent:

Credibility Lower Bounding: If A is consistent, then Cn(A) ⊆ C.

If two sentences have the “same behaviour” regarding a set A, i.e., are consistent with
exactly the same subsets of A, it is expected that both have the same status regarding C:

Uniform Credibility: If it holds for all subsets A′ of A that A′ ∪ {α} `⊥ if and only
if A′ ∪ {β} `⊥, then α ∈ C if and only if β ∈ C.

14. We note that more rigorously the expression “with respect to A” should be added to the designation of
these properties. This will be omitted since there is no risk of ambiguity whenever these properties are
mentioned along this paper.
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Finally, the following properties relate the set C with A and the operator ~.15 A
reasonable requirement is that all the sentences in the outcome of a revision by a credible
sentence are credible.

Revision Credibility (Hansson et al., 2001): If α ∈ C, then A~ α ⊆ C.

On the other hand, it is expected that all the non-credible sentences are inconsistent
with the outcome of any revision::

Strong Revision Credibility (Fermé et al., 2003): If α 6∈ C, then A~ β ` ¬α.

A stronger requirement states that if a sentence α is not credible, then any possible
revision keeps a subset of A that implies ¬α:

Strong Expansive Credibility: If α 6∈ C, then A ∩A~ β ` ¬α.

Finally we introduce a condition that consists of a relation between the set of credible
sentences C and a (standard) base revision ∗ on a set A (which may be combined for
inducing a CL base revision on A).

If α 6∈ C and β ∈ C, then A ∩A ∗ β ` ¬α. (C - ∗)

Condition (C - ∗) states that if a sentence α is not credible, then any possible outcome
of revising a set A by a credible sentence contains a subset of A that implies ¬α.

The following observation exposes that in the presence of closure under double negation,
the property of strong expansive credibility is equivalent to the conjunction of expansive
credibility with condition (C - ∗).

Observation 4.3 Let A be a belief base and ~ be a credibility-limited base revision induced
by a revision operator ∗ on A and a set C ⊆ L that satisfies closure under double negation.
C satisfies strong expansive credibility if and only if C satisfies expansive credibility and ∗
and C satisfy condition (C - ∗).

According to the above result, given a credibility-limited base revision ~ induced by
a revision operator ∗ and a set (of credible) sentences C, in the presence of expansive
credibility and closure under double negation, the properties of strong expansive credibility
and (C - ∗) are equivalent. Nevertheless, we note that, condition (C - ∗) relates two
structures (namely ∗ and C) that are independent of each other, while, on the other hand,
strong expansive credibility presents a relation between a credibility limited revision ~
and its associated set of credible sentences. Therefore, in the process of constructing a
credibility-limited base revision it is more natural to consider condition (C - ∗) than strong

15. We note that more rigorously the expression “with respect toA and~” should be added to the designation
of these properties. This will be omitted since there is no risk of ambiguity whenever these properties
are mentioned along this paper.
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expansive credibility.

The following observations illustrate some relations between properties of sets of credible
sentences:

Observation 4.4 Let C be a subset of L that satisfies disjunctive completeness and element
consistency. Then C satisfies negation completeness if and only if Cn(∅) ⊆ C.

Observation 4.5 Let C be a set of sentences.

(a) If C satisfies single sentence closure, then C satisfies credibility of logical equivalents.

(b) If C satisfies uniform credibility, then C satisfies credibility of logical equivalents.

(c) If C satisfies expansive credibility and credibility lower bounding with respect to a con-
sistent set A, then C satisfies negation completeness.

(d) If α ∈ Cn(∅) and C satisfies negation completeness and element consistency, then
α ∈ C.

(e) If C satisfies credibility of logical equivalents, then C is closed under double negation.

4.3 Postulates for Credibility-Limited Base Revisions

In this subsection we recall some postulates for (credibility-limited) base revision and some
relations among these postulates. Most of the following postulates are an adaptation to
the belief bases context of the postulates for credibility-limited revisions on belief sets
presented in Subsection 2.2.

We start by mentioning that, in the context of credibility-limited base revision, there
may be some sentences that will not be accepted. This means that the success postulate
(α ∈ A~α) may not hold. Thus, we must consider weaker versions of the success postulate
capable of capturing the intuitions underlying CL revisions. The first one is about the
general principle of credibility-limited base revision: a sentence is accepted or no change is
made:

(Relative Success) α ∈ A~ α or A~ α = A.

If we are willing to accept a sentence α it is reasonable to accept all the sentences that
are logical consequence of α:

(Strict Improvement) If α ∈ A~ α and ` α→ β, then β ∈ A~ β.

If a disjunction belongs to the revision of a belief set by it, then the same thing should
happen regarding at least one of its disjuncts.

(Disjunctive Distribution) If α ∨ β ∈ A~ (α ∨ β), then α ∈ A~ α or β ∈ A~ β.
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The two following postulates specify the behaviour of CL revisions when it is the case
that a certain sentence β is not acceptable, i.e., β 6∈ A~ β. The first one states that when
that is the case, β is not accepted as a result of a revision by any other sentence. The second
one imposes that, in that case, ¬β is implied by the outcome of the revision by any sentence:

(Regularity) If A~ α ` β, then β ∈ A~ β.
(Strong Regularity) If A~ α 6` ¬β, then β ∈ A~ β.

The following postulate, originally proposed by Garapa et al. (2018a), states that if the
formulae of A that are kept when revising it by a sentence β imply ¬β, then ¬β is implied
by the formulae of A that remain when revising it by any formula.

(Persistence) If ¬β ∈ Cn(A ∩A~ β), then ¬β ∈ Cn(A ∩A~ α).

Although persistence is a reasonable property, there are some contexts in which this
postulate is not satisfied, as it is the case in the following situation.16 Suppose I believe
strongly in ¬β and that at a certain moment I get the information that β is the case. I am
not willing to stop believing in ¬β in order to incorporate β. Suppose now that I get stronger
information that proves that β is the case (for example, α∧ (α→ β)). So, although I revise
by a belief other than β, I end up losing my belief in ¬β. For example, suppose John made a
retreat away from the rest of the world between December 2019 and May 2020, and did not
have access to any information during that period. Suppose now that when he returns to
civilization, in June 2020, we tell him that the streets of some of the main cities of the world
have been completely empty for several weeks in March-April 2020. John will not believe it.
Then we explain him that this happened because a virus appeared in December 2019 and to
avoid contamination, a large part of the population had to be confined at home. Then John
may recall hearing in the news, before going to the retreat, that a highly contagious virus
had been discovered. At that moment John will start to believe that the streets of some
of the main cities in the world have been completely empty for some time during his retreat.

In AGM base revision, the outcome is consistent unless the input is inconsistent itself.
This is because in that model the principle of primacy of the new information has priority
over the principle of consistency. Since in what concerns credibility-limited base revision
the former principle is not valid, it is reasonable to require a stronger consistency condition:

(Consistency Preservation) If A 6`⊥, then A~ α 6`⊥.

The following observations relate some of the postulates mentioned above.

Observation 4.6 Let A be a belief base and ~ be an operator on A. If ~ satisfies relevance
and relative success, then ~ satisfies disjunctive elimination and core-retainment.

16. For this reason, we will consider several classes of credibility-limited base revision, some of which satisfy
persistence and others that do not.
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Observation 4.7 Let A be a consistent belief base and ~ an operation on A. If ~ sat-
isfies consistency preservation, persistence, relative success and vacuity, then ~ satisfies
disjunctive distribution, strict improvement and regularity.

4.4 Relations Between Base Revisions and Credibility-Limited Base Revisions

The following observation illustrates some properties that an operator of credibility-limited
base revision, induced by a revision operator ∗ and a set C, satisfies whenever ∗ and C
satisfy some given properties.

Observation 4.8 Let A be a belief base, C ⊆ L, and ~ be a credibility-base revision induced
by a revision operator ∗ and C. Then:

(a) It holds that:

If ∗ satisfies then ~ satisfies

— inclusion and relative success

relevance relevance

core-retainment core-retainment

disjunctive elimination disjunctive elimination

weak relative closure weak relative closure

(b) If C satisfies element consistency, then:

If ∗ satisfies then ~ satisfies

— consistency preservation

(c) If C satisfies uniform credibility, then:

If ∗ satisfies then ~ satisfies

uniformity uniformity

(d) If C satisfies credibility of logical equivalents (or single sentence closure), then:

If ∗ satisfies then ~ satisfies

weak extensionality weak extensionality

(e) If C satisfies expansive credibility and is closed under double negation (or satisfies either
credibility of logical equivalents or uniform credibility or single sentence closure), then:

If ∗ satisfies then ~ satisfies

vacuity vacuity

(f) Let A 6`⊥. If C satisfies expansive credibility and single sentence closure, then:

If ∗ satisfies then ~ satisfies

— strict improvement

(g) Let A 6`⊥. If C satisfies expansive credibility, closure under double negation (or credi-
bility of logical equivalents or uniform credibility or single sentence closure) and dis-
junctive completeness, then:
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If ∗ satisfies then ~ satisfies

— disjunctive distribution

(h) If C and ∗ satisfy condition (C - ∗) and C satisfies element consistency, then:

If ∗ satisfies then ~ satisfies

— persistence

weak extensionality weak extensionality

uniformity uniformity

(i) If C and ∗ satisfy condition (C - ∗) and C satisfies expansive credibility, then:

If ∗ satisfies then ~ satisfies

vacuity vacuity

If α is credible, then it should be an element of the outcome of the revision of a set A by
it. Therefore, a natural way to define a set of credible sentences C is by C = {α : α ∈ A~α},
where ~ is a credibility-limited revision. The following theorem states that, if the set C
satisfies expansive credibility and closure under double negation, then C is precisely the set
that is explicitly defined in terms of ~ by the above identity.

Theorem 4.9 Let A be a consistent belief base and ~ be an operator of credibility-limited
revision induced by a revision operator for A and a set C ⊆ L. If C satisfies expansive
credibility and closure under double negation, then C = {α : α ∈ A~ α}.

The next observation illustrates some properties that such a set satisfies whenever ~
satisfies some of the postulates mentioned in the beginning of Subsection 4.3.

Observation 4.10 Let A be a consistent belief base, ~ be an operator on A and C = {α :
α ∈ A~ α}.

If ~ satisfies then C satisfies

consistency preservation element consistency

strict improvement single sentence closure

disjunctive distribution disjunctive completeness

vacuity
expansive credibility and credibility

lower bounding

consistency preservation, persistence,
relative success and vacuity

satisfies single sentence closure,
disjunctive completeness, revision
credibility, uniform credibility and

credibility of logical equivalents

relative success, consistency
preservation, vacuity and uniformity

uniform credibility

relative success, consistency
preservation, vacuity and weak

extensionality
credibility of logical equivalents

relative success, consistency
preservation, vacuity and uniformity

credibility of logical equivalents
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In the next observation we will see that it is possible to construct an operator ∗ in terms
of ~ and C = {α : α ∈ A~α} and investigate the properties that such an operator satisfies
taking into account the properties satisfied by ~.

Observation 4.11 Let A be a consistent belief base, ~ be an operator on A and C = {α :
α ∈ A~ α}. Then there exists an operator ∗ on A such that:

(a) If ~ satisfies relative success, consistency preservation and inclusion, then ∗ is a revi-
sion operator and ~ is the credibility-limited base revision induced by ∗ and C.

(b) It holds that:

If ~ satisfies then ∗ satisfies

vacuity vacuity

relevance relevance

core-retainment core-retainment

disjunctive elimination disjunctive elimination

uniformity, relative success, vacuity,
consistency preservation

uniformity

weak extensionality, relative success,
vacuity, consistency preservation

weak extensionality

weak relative closure weak relative closure

(c) If ~ satisfies persistence, relative success and vacuity, then ∗ and C satisfy condition
(C - ∗).

5. Axiomatic Characterizations of Different Kinds of Credibility-Limited
Base Revision

In this section we present axiomatic characterizations for several classes of credibility-limited
base revision functions. We start by presenting, in Subsection 5.1, a representation theorem
for the most general class of credibility-limited base revision operators that we will consider.
Afterwards we will consider more specific classes of credibility-limited base revision oper-
ators induced by different kinds of revision functions (namely, by partial meet, (smooth)
kernel, and basic AGM-generated base revisions) and by different types of sets of credible
sentences. In each one of the Subsections 5.2 — 5.5 we present a representation theorem
for five classes of credibility-limited base revisions all induced by the same kind of revision
functions but each one of them with a different type of associated set of credible sentences.

5.1 Basic Credibility-Limited Base Revision

In this subsection we present a representation theorem for the most general class of
credibility-limited base revision that we will consider. The operators in this class will
be designated by basic credibility-limited revisions.
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Definition 5.1 A credibility-limited base revision ~ on a consistent belief base A induced
by a revision operator ∗ and a set C ⊆ L is a basic credibility-limited revision if and only
if C satisfies element consistency.

Theorem 5.2 Let A be a consistent belief base and ~ be an operator on A. Then the
following conditions are equivalent:

(a) ~ satisfies relative success, consistency preservation and inclusion.

(b) ~ is a basic credibility-limited revision.

In the remainder of this section we will obtain representation theorems for other less gen-
eral classes of credibility-limited revisions. More precisely, we will consider the credibility-
limited revision operators induced by partial meet base revisions, by (smooth) kernel base
revisions and by basic AGM-generated base revisions and, additionally, we will take into
account different sets of properties regarding the associated set of credible sentences.

5.2 Credibility-Limited Partial Meet Base Revisions

We start this subsection by defining five kinds of operators of credibility-limited base revision
induced by a partial meet revision operator ∗ and a set C:

Definition 5.3 A credibility-limited base revision ~ on a consistent belief base A induced
by a partial meet revision ∗ and a set C ⊆ L is a:

Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited partial meet revision
(CLPMR)

uniform credibility

Strictly improving
credibility-limited partial meet revision

(SI-CLPMR)

uniform credibility and single
sentence closure

Disjunctive distributive
credibility-limited partial meet revision

(DD-CLPMR)

uniform credibility and
disjunctive completeness

Strictly improving disjunctive
distributive credibility-limited

partial meet revision
(SI+DD-CLPMR)

uniform credibility, single
sentence closure and disjunctive

completeness

Persistent credibility-limited
partial meet revision

(P-CLPMR)
condition (C - ∗)

Throughout this chapter we will sometimes use the acronyms presented in the above
definition (and whenever a similar definition is presented) to designate the whole class of the
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corresponding operators (rather than only one of its elements). The designations proposed
for each of the classes of revisions proposed in the above definition are connected with the
distinguishing postulates of the axiomatic characterizations for these operators that are
presented in Theorem 5.4 below.

Theorem 5.4 Let A be a consistent belief base and ~ an operator on A. Then:

~ is a
if and only if ~ satisfies relative success,

consistency preservation, inclusion, vacuity,
uniformity, relevance and

CLPMR —

SI-CLPMR strict improvement

DD-CLPMR disjunctive distribution

SI+DD-CLPMR strict improvement and disjunctive distribution

P-CLPMR persistence

It is worth noticing that the set C which was used in the proof of the right-to-left part
of Theorem 5.4 was the set C = {α : α ∈ A ~ α}. Therefore, it follows immediately from
Observations 4.5 and 4.10 that, to the list of properties of C mentioned in each row of the
table presented in Definition 5.3, we can add the following ones: credibility lower-bounding,
credibility of logical equivalents, negation completeness and closure under double negation.
Furthermore, in the case of the last row, besides the properties mentioned above we can
also add (to the list of properties of C there presented): single sentence closure, disjunctive
completeness, revision credibility and uniform credibility. Therefore, there are several alter-
native (equivalent) definitions for the classes introduced in Definition 5.3, more precisely
several equivalent definitions, but each one with a different set of properties associated to
the set C. The same is also valid for Definitions 5.6, 5.8 and 5.10.

Next we present examples of credibility-limited revision operators that belong to some
of the classes introduced in Definition 5.3 but do not belong to others. These examples
allow us to conclude that the classes mentioned in Definition 5.3 are all different from each
other.

Example 5.5 Let A = {p, q}, Cn be purely truth-functional and ∗ be a partial meet revision
on A such that A ∗ (¬p ∨ ¬q) = {p,¬p ∨ ¬q} and A ∗ (¬p ∧ ¬q) = {¬p ∧ ¬q}. Let ~ be the
operator of credibility-limited base revision induced by ∗ and a set C.

(a) Let C be the set defined by the following condition:

α ∈ C if and only if ¬α 6∈ Cn(p) ∪ Cn(q)

Then C satisfies element consistency, expansive credibility, uniform credibility and
single sentence closure.17 Therefore, by Definition 5.3, ~ is a CLPMR and a SI-
CLPMR. On the other hand it holds that ¬p 6∈ C, ¬q 6∈ C and ¬p ∨ ¬q ∈ C since
p∧q 6∈ Cn(p)∪Cn(q). Hence A~¬p = A~¬q = A but A~(¬p∨¬q) = A∗(¬p∨¬q) =
{p,¬p ∨ ¬q}. Thus ~ does not satisfy disjunctive distribution. Therefore, according
to Theorem 5.4, ~ is not a DD-CLPMR nor a SI+DD-CLPMR.

17. See Lemma 1 in the Appendix.
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(b) Let C be the set defined by the following condition:

α ∈ C if and only if ¬α ∈ Cn(q) \ Cn(p)

Then C satisfies element consistency, expansive credibility, uniform credibility and
disjunctive completeness.18

Therefore, according to Definition 5.3, ~ is a CLPMR and a DD-CLPMR. On the
other hand it holds that ¬q ∈ C and ¬p ∨ ¬q 6∈ C. Thus A ~ (¬p ∨ ¬q) = A and
A~¬q = A ∗¬q. Thus ¬q ∈ A~¬q, ` ¬q → (¬p∨¬q) and ¬p∨¬q 6∈ A~ (¬p∨¬q),
from which it follows that ~ does not satisfy strict improvement. Therefore, according
to Theorem 5.4, ~ is not a SI-CLPMR nor a SI+DD-CLPMR.

(c) Let C be the set defined by the following condition:

α ∈ C if and only if ¬α 6∈ Cn(q)

Then C satisfies element consistency, expansive credibility, uniform credibility, single
sentence closure and disjunctive completeness.19

Therefore, according to Definition 5.3, ~ is a SI+DD-CLPMR (and also a SI-
CLPMR, a DD-CLPMR and a CLPMR). On the other hand it holds that ¬q 6∈ C
and ¬p∨¬q ∈ C. Thus A~¬q = A and A~ (¬p∨¬q) = A∗ (¬p∨¬q) = {p,¬p∨¬q}.
Therefore, A ∩ A ~ ¬q ` q but A ∩ A ~ (¬p ∨ ¬q) 6` q. Thus ~ does not satisfy
persistence. Therefore, according to Theorem 5.4, ~ is not a P-CLPMR.

5.3 Credibility-Limited Kernel Base Revisions

We start this subsection by defining five kinds of operators of credibility-limited base revision
induced by a kernel revision ∗ and a set C:

Definition 5.6 A credibility-limited base revision ~ on a consistent belief base A induced
by a kernel revision ∗ and a set C ⊆ L is a:

Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited kernel revision
(CLKR)

uniform credibility

Strictly improving
credibility-limited kernel revision

(SI-CLKR)

uniform credibility and single
sentence closure

Disjunctive distributive
credibility-limited kernel revision

(DD-CLKR)

uniform credibility and
disjunctive completeness

Continued on next page

18. See Lemma 2 in the Appendix.
19. See Lemma 3 in the Appendix.
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Continued from previous page

if and only if C satisfies:

Strictly improving disjunctive distributive
credibility-limited kernel revision

(SI+DD-CLKR)

uniform credibility, single
sentence closure and disjunctive

completeness

Persistent credibility-limited
kernel revision

(P-CLKR)
condition (C - ∗)

In the following theorem we present axiomatic characterizations for the five kinds of
operators of credibility-limited base revision introduced in the above definition.

Theorem 5.7 Let A be a consistent belief base and ~ an operator on A. Then:

~ is a
if and only if ~ satisfies relative success,

consistency preservation, inclusion, vacuity,
uniformity, core-retainment and

CLKR —

SI-CLKR strict improvement

DD-CLKR disjunctive distribution

SI+DD-CLKR strict improvement and disjunctive distribution

P-CLKR persistence

The difference between the axiomatic characterizations of the classes of credibility-
limited revision induced by partial meet revision operators, presented in the previous
subsection, and the ones for the classes of credibility-limited induced by kernel revision
operators, presented in Theorem 5.7, is the replacement of relevance by core-retainment,
therefore, according to Observation 4.6, every class of credibility-limited revision induced by
partial meet revision operators is a subclass of the corresponding class of credibility-limited
revision induced by kernel revision operators, i.e., P-CLPMR ⊆ P-CLKR, DD-CLPMR ⊆
DD-CLKR, SI-CLPMR ⊆ SI-CLKR, SI+DD-CLPMR ⊆ SI+DD-CLKR and CLPMR ⊆
CLKR.

5.4 Credibility-Limited Smooth Kernel Base Revisions

We start this subsection by defining five kinds of operators of credibility-limited base revision
induced by a smooth kernel revision operator ∗ and a set C:

Definition 5.8 A credibility-limited base revision ~ on a consistent belief base A induced
by a smooth kernel revision ∗ and a set C ⊆ L is a:
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Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited smooth kernel revision
(CLSKR)

uniform credibility

Strictly improving credibility-limited
smooth kernel revision

(SI-CLSKR)

uniform credibility and single
sentence closure

Disjunctive distributive credibility-limited
smooth kernel revision

(DD-CLSKR)

uniform credibility and
disjunctive completeness

Strictly improving disjunctive
distributive credibility-limited

smooth kernel revision
(SI+DD-CLSKR)

uniform credibility, single
sentence closure and disjunctive

completeness

Persistent credibility-limited smooth kernel
revision

(P-CLSKR)
condition (C - ∗)

The following representation theorem axiomatically characterizes five kinds of operators
of credibility-limited revisions. All these operators are induced by smooth kernel revisions
but each one of them has a different type of associated set of credible sentences.

Theorem 5.9 Let A be a consistent belief base and ~ an operator on A. Then:

~ is a
~ satisfies relative success, consistency

preservation, inclusion, vacuity, uniformity,
core-retainment, weak relative closure and

CLSKR —

SI-CLSKR strict improvement

DD-CLSKR disjunctive distribution

SI+DD-CLSKR strict improvement and disjunctive distribution

P-CLSKR persistence

The axiomatic characterizations of the classes of credibility-limited revision operators
induced by smooth kernel revision operators, presented in Theorem 5.9, can be obtained
from the ones presented for credibility-limited revision operators induced by kernel revision
operators, presented in Theorem 5.7, by adding weak relative closure. Thus, every class
of credibility-limited revision induced by smooth kernel revision operators is a subclass of
the corresponding class of credibility-limited revision induced by kernel revision operators.
Furthermore, it follows from Theorems 5.4 and 5.9 and Observations 3.5 and 4.6 that every
class of credibility-limited revision induced by partial meet revision operators is a subclass
of the corresponding class of credibility-limited revision induced by smooth kernel revision
operators. That is, it holds that CLPMR ⊆ CLSKR ⊆ CLKR, SI-CLPMR ⊆ SI-CLSKR ⊆
SI-CLKR, DD-CLPMR ⊆ DD-CLSKR ⊆ DD-CLKR, SI+DD-CLPMR ⊆ SI+DD-CLSKR
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⊆ SI+DD-CLKR and P-CLPMR ⊆ P-CLSKR ⊆ P-CLKR. These results will be refined in
Observation 6.3 where it is stated that (all of) these set inclusions are in fact strict.

5.5 Credibility-Limited Basic AGM-Generated Base Revisions

We start this subsection by defining five kinds of operators of credibility-limited base revision
induced by a basic AGM-generated revision operator ∗ and a set C:

Definition 5.10 A credibility-limited base revision ~ on a consistent belief base A induced
by a basic AGM-generated revision ∗ and a set C ⊆ L is a:

Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited
basic AGM-generated revision

(CLbAGMR)
credibility of logical equivalents

Strictly improving credibility-limited
basic AGM-generated revision

(SI-CLbAGMR)
single sentence closure

Disjunctive distributive credibility-limited
basic AGM-generated revision

(DD-CLbAGMR)

credibility of logical equivalents
and disjunctive completeness

Strictly improving disjunctive
distributive credibility-limited
basic AGM-generated revision

(SI+DD-CLbAGMR)

single sentence closure and
disjunctive completeness

Persistent credibility-limited
basic AGM-generated revision

(P-CLbAGMR)
condition (C - ∗)

In the following representation theorem we axiomatically characterize the five kinds of
operators of credibility-limited revisions introduced in the above definition.

Theorem 5.11 Let A be a consistent belief base and ~ an operator on A. Then:

~ is a

if and only if ~ satisfies relative success,
consistency preservation, inclusion, vacuity,
weak extensionality, disjunctive elimination

and

CLbAGMR —

SI-CLbAGMR strict improvement

DD-CLbAGMR disjunctive distribution

SI+DD-CLbAGMR strict improvement and disjunctive distribution

P-CLbAGMR persistence

The axiomatic characterizations of the classes of credibility-limited revision operators
induced by AGM-generated base revision operators, presented in Theorem 5.11, can
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be obtained from the ones presented for credibility-limited revision operators induced
by partial meet revision operators, presented in Theorem 5.4, by replacing uniformity
and relevance by weak extensionality and disjunctive elimination. Thus according to
Observations 3.5 and 4.6, every class of credibility-limited revision induced by partial
meet revision operators is a subclass of the corresponding class of credibility-limited
revision induced by AGM-generated base revision operators. That is, it holds that
CLPMR ⊆ CLbAGMR, SI-CLPMR ⊆ SI-CLbAGMR, DD-CLPMR ⊆ DD-CLbAGMR,
SI+DD-CLPMR ⊆ SI+DD-CLbAGMR and P-CLPMR ⊆ P-CLbAGMR. In fact, as it will
be stated in Observation 6.5, the inclusions above are (all) strict.

5.6 Summary of the Results Obtained

Table 2 summarizes the results obtained in the representation theorems presented in this
section. Given a credibility limited revision ~ the white cells that are on the top of the same
column represent the properties that C (the associated set of credible sentences) satisfies.
The white cells that are placed on the right of the same row indicates the properties that
~ satisfies.

6. Maps Between Credibility-Limited Base Revision Functions

We start this section by presenting an observation that illustrates the interrelations among
classes of credibility-limited base revisions induced by the same type of revision function,
but each one of them with a different type of associated set of credible sentences. Through
this section we assume that the classes of credibility-limited revision mentioned are formed
by operators defined on the same belief base.

Observation 6.1 Let X be any one of the elements of the following set of strings:
{CLPMR,CLSKR,CLKR,CLbAGMR}. Then:

(a) P-X ⊂ SI+DD-X.

(b) SI+DD-X ⊂ DD-X.

(c) SI+DD-X ⊂ SI-X.

(d) DD-X 6⊆ SI-X and SI-X 6⊆ DD-X.

(e) DD-X ⊂ X.

(f) SI-X ⊂ X.

In Figure 2 we present a diagram that summarizes the results presented in Observation
6.1.

In what follows we will study the interrelations among classes of credibility-limited
revisions induced by different kinds of revision operators. We start by presenting an example
that shows that P-CLSKR 6⊆ CLPMR and that P-CLKR 6⊆ CLSKR.20

20. Note that having in mind Observation 6.1 it follows from P-CLSKR 6⊆ CLPMR that CLSKR 6⊆
CLPMR, SI-CLSKR 6⊆ SI-CLPMR, DD-CLSKR 6⊆ DD-CLPMR, SI+DD-CLSKR 6⊆ SI+DD-CLPMR
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Table 2: Schematic representation of the main postulates satisfied by each one of the twenty
classes of credibility limited revisions considered and also of the properties satisfied
by the set of credible sentences by which each of those operators is induced. In this
table the column headings correspond to properties of C, while the row headings
(on the right) correspond to properties of ~.

Example 6.2 Let Cn be purely truth-functional. Let C = {α : ¬α 6∈ Cn(∅)}. It holds
that C satisfies element consistency, expansive credibility and for any revision operator ∗
it holds that C and ∗ satisfy condition (C - ∗).

(a) Let A = {p, p ∨ q, p ↔ q, r}. Hence A⊥⊥(p ∧ q) = {{p, p ↔ q}, {p ∨ q, p ↔ q}}.
Let ∗ be the smooth kernel revision based on a smooth incision function σ such that:
σ(A⊥⊥(p∧ q)) = {p, p↔ q}. Hence A ∗ ¬(p∧ q) = (A \ σ(A⊥⊥(p∧ q)))∪ {¬(p∧ q)} =
{p∨ q, r,¬(p∧ q)}. Let ~ be the credibility-limited revision operator induced by ∗ and
C. Thus ~ is a P-CLSKR. On the other hand ¬(p ∧ q) ∈ C. Thus A ~ ¬(p ∧ q) =
A ∗ ¬(p ∧ q) = {p ∨ q, r,¬(p ∧ q)}. Hence p ∈ A, p 6∈ A~ ¬(p ∧ q), but for any set A′

and P-CLSKR 6⊆ P-CLPMR. Analogously, from Observation 6.1, it follows from P-CLKR 6⊆ CLSKR
that CLKR 6⊆ CLSKR, SI-CLKR 6⊆ SI-CLSKR, DD-CLKR 6⊆ DD-CLSKR, SI+DD-CLKR 6⊆ SI+DD-
CLSKR and P-CLKR 6⊆ P-CLSKR.
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P-X

SI+DD-X

SI-X DD-X

X

Figure 2: Map among different classes of credibility-limited base revision functions induced
by the same kind of revisions. The X must be replaced by one of the following
strings CLPMR, CLSKR, CLKR, CLbAGMR. An arrow between two boxes sym-
bolises that the class at the origin of the arrow is a strict subclass of the class at
the end of that arrow.

such that A~¬(p∧q) ⊆ A′ ⊆ A∪{¬(p∧q)} it holds that either A′ `⊥ or A′∪{p} 6`⊥.
Hence ~ does not satisfy relevance. Thus ~ is not a CLPMR.

(b) Let A = {p, q, p ∨ q, p → q}. Hence A⊥⊥q = {{p, p → q}, {p ∨ q, p → q}, {q}}.
Let ∗ be the kernel revision based on a incision function σ such that: σ(A⊥⊥q) =
{q, p ∨ q, p → q}. Hence A ∗ (¬q) = {p,¬q}. Let ~ be the credibility-limited revision
operator induced by ∗ and C. It holds that ~ is a P-CLKR. On the other hand,
¬q ∈ C, thus A ~ (¬q) = A ∗ (¬q) = {p,¬q}. Hence A ∩ A ~ (¬q) = {p}. Therefore
A∩Cn(A∩A~ (¬q)) = A∩Cn(p) = {p, p∨ q} 6⊆ A~ (¬q). Hence ~ does not satisfy
weak relative closure. Hence ~ is not a CLSKR.

The following observation highlights that each one of the classes of CLSKRs that we
have considered in Definition 5.8 is subsumed by the corresponding class of CLKRs and, on
the other hand, contains the corresponding class of CLPMRs.

Observation 6.3

(a) CLPMR ⊂ CLSKR ⊂ CLKR.

(b) SI-CLPMR ⊂ SI-CLSKR ⊂ SI-CLKR.

(c) DD-CLPMR ⊂ DD-CLSKR ⊂ DD-CLKR.

(d) SI+DD-CLPMR ⊂ SI+DD-CLSKR ⊂ SI+DD-CLKR.

(e) P-CLPMR ⊂ P-CLSKR ⊂ P-CLKR.
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The following example provides a credibility-limited revision that is a P-CLbAGMR but
not a CLPMR nor a CLKR. Therefore this example shows that P-CLbAGMR 6⊆ CLPMR
and that P-CLbAGMR 6⊆ CLKR.

Example 6.4 Let L be the language that consists only of the two atomic sentences p and
q and their truth-functional combinations. Let Cn be purely truth-functional. Let C = {α :
¬α 6∈ Cn(∅)}. It holds that C satisfies element consistency, expansive credibility and for
any revision operator ∗ it holds that C and ∗ satisfy condition (C - ∗). Let A = {p, q}. It
holds that Cn(A) ⊥ p = {Cn(p↔ q), Cn(q)}. Let ? be the partial meet revision operator for
Cn(A) based on a selection function γ such that γ(Cn(A) ⊥ p) = {Cn(p ↔ q)}. Hence ?
is an AGM revision for Cn(A) (Alchourrón et al., 1985) and Cn(A) ? (¬p) = Cn(Cn(p↔
q) ∪ {¬p}) = Cn({p ↔ q,¬p}) = Cn(¬q ∧ ¬p). Let ∗ be an operator defined for all α
by A ∗ α = (Cn(A) ? α) ∩ (A ∪ {α}). Hence ∗ is a basic AGM-generated base revision.
Therefore the credibility-limited revision ~ induced by ∗ and C is a P-CLbAGMR. It holds
that A ∗ (¬p) = (A ∪ {¬p}) ∩ Cn(¬q ∧ ¬p) = {¬p}. From the definition of C it holds that
¬p ∈ C. Thus A ~ (¬p) = A ∗ (¬p) = {¬p}. Therefore q ∈ A and q 6∈ A ~ (¬p), but for
any set A′ ⊆ A it holds that either A′ ` ¬¬p or A′ ∪ {q} 6` ¬¬p. Thus ~ does not satisfy
core-retainment. Hence ~ is not a CLKR (nor a CLSKR nor a CLPMR).

The following observation highlights that each one of the classes of CLPMRs that
we have considered in Subsection 5.2 is strictly contained in the corresponding class of
CLbAGMRs.

Observation 6.5

(a) CLPMR ⊂ CLbAGMR.

(b) SI-CLPMR ⊂ SI-CLbAGMR.

(c) DD-CLPMR ⊂ DD-CLbAGMR.

(d) SI+DD-CLPMR ⊂ SI+DD-CLbAGMR.

(e) P-CLPMR ⊂ P-CLbAGMR.

In the following example we present a credibility-limited base revision that is a P-CLSKR
(and consequently a P-CLKR) but not a CLbAGMR.

Example 6.6 Let Cn be purely truth-functional. Let C = {α : ¬α 6∈ Cn(∅)}. It holds that
C satisfies element consistency, expansive credibility and for any revision operator ∗ it holds
that C and ∗ satisfy condition (C - ∗). Let A = {p, p ∨ q, p→ q}. Hence A⊥⊥q = {{p, p→
q}, {p∨ q, p→ q}}. Let ∗ be the kernel revision based on a smooth incision function σ such
that: σ(A⊥⊥q) = {p, p→ q}. Hence A∗ (¬q) = (A\σ(A⊥⊥q))∪{¬q} = {p∨q,¬q}. Let ~ be
the credibility-limited revision operator induced by ∗ and C. It holds that ~ is a P-CLSKR
(and a P-CLKR). On the other hand, ¬q ∈ C, thus A ~ (¬q) = A ∗ (¬q) = {p ∨ q,¬q}.
Hence p ∈ A, p 6∈ A~(¬q) and A~(¬q) ` ¬¬q∨p. Therefore, ~ does not satisfy disjunctive
elimination. Thus ~ is not a CLbAGMR.
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The following observation exposes that each one of the classes of CLbAGMRs is not
related, in terms of inclusion, neither with the corresponding class of CLSKRs nor with the
corresponding class of CLKRs.

Observation 6.7

(a) CLKR 6⊆ CLbAGMR, CLbAGMR 6⊆ CLKR, CLSKR 6⊆ CLbAGMR and CLbAGMR 6⊆
CLSKR.

(b) SI-CLKR 6⊆ SI-CLbAGMR, SI-CLbAGMR 6⊆ SI-CLKR, SI-CLSKR 6⊆ SI-CLbAGMR
and SI-CLbAGMR 6⊆ SI-CLSKR.

(c) DD-CLKR 6⊆ DD-CLbAGMR, DD-CLbAGMR 6⊆ DD-CLKR, DD-CLSKR 6⊆ DD-
CLbAGMR and DD-CLbAGMR 6⊆ DD-CLSKR.

(d) SI+DD-CLKR 6⊆ SI+DD-CLbAGMR, SI+DD-CLbAGMR 6⊆ SI+DD-CLKR, SI+DD-
CLSKR 6⊆ SI+DD-CLbAGMR and SI+DD-CLbAGMR 6⊆ SI+DD-CLSKR.

(e) P-CLKR 6⊆ P-CLbAGMR, P-CLbAGMR 6⊆ P-CLKR, P-CLSKR 6⊆ P-CLbAGMR and
P-CLbAGMR 6⊆ P-CLSKR.

In Figure 3 we present a diagram that summarizes the results presented in Observations
6.3, 6.5 and 6.7. The X in this diagram is either a blank space or one of the following
strings: SI-, DD-, SI+DD- or P-.

XCLPMR

XCLbAGMR XCLSKR

XCLKR

Figure 3: Map among different classes of credibility-limited base revision operators. The
X in the diagram must be replaced by a blank space or by an element of the
following set of strings: {SI−, DD−, SI +DD−, P−}.

7. Conclusion

Standard revision operators are always successful in the sense that the sentence by which
the original belief base is revised is always incorporated in the resulting revised set.
However this is not a realistic feature of a belief revision process. When facing new
information, an intelligent agent should be able to reject it.
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The basic idea underlying credibility-limited revision is to define a function in two
steps. The first step consists of determining if a given belief is credible or not. Then, in a
second step the credibility-limited revision operator should:
- leave the set of beliefs unchanged when the belief by which it is revised is considered
non-credible;
- behave as a standard revision when revising by a credible belief.

The main contributions of this paper are:

(i) The presentation of several results highlighting some direct relations among the pos-
tulates satisfied by a credibility-limited revision function ~ induced by a (standard)
base revision ∗ and a set of credible sentences C and the postulates satisfied by ∗ and
the properties of the set C.

(ii) The proposal and axiomatic characterization of twenty kinds of credibility-limited
base revisions.

(ii) The study of the interrelations among all those classes in terms of (strict) inclusion.

To finish, it is worth mentioning that the representation theorems provided in this paper
make it possible to predict the behaviour of any of the proposed functions. We note also
that, conversely, by means of the mentioned theorems, for certain sets of properties that
are desirable for a credibility-limited revision function, it is possible to identify an explicit
construction of a function that will satisfy all those properties.
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Appendix A. Proofs

Previous Lemmas

Lemma 1 Let A = {p, q}, Cn be purely truth-functional and C be the set defined by the
following condition:

α ∈ C if and only if ¬α 6∈ Cn(p) ∪ Cn(q)

Then C satisfies element consistency, expansive credibility, uniform credibility and single
sentence closure.

Proof.
Element consistency: Let α ∈ C. Hence ¬α 6∈ Cn(p) ∪ Cn(q). Thus ¬α 6∈ Cn(∅) (since
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Cn(∅) ⊆ Cn(p) ∪ Cn(q)). Therefore α 6`⊥.
Expansive credibility: Assume that ¬α 6∈ C. Hence α ∈ Cn(p) ∪ Cn(q). Therefore
A ` α.
Uniform credibility: Assume that it holds, for all subsets A′ ⊆ A, that A′∪{α} `⊥ if and
only if A′ ∪ {β} `⊥. Let α ∈ C. Hence ¬α 6∈ Cn(p) ∪ Cn(q). Thus ¬α 6∈ Cn(p) and ¬α 6∈
Cn(q). Therefore {p, α} 6`⊥ and {q, α} 6`⊥. Thus, by hypothesis, {p, β} 6`⊥ and {q, β} 6`⊥.
Hence ¬β 6∈ Cn(p) and ¬β 6∈ Cn(q), from which it follows that ¬β 6∈ Cn(p) ∪Cn(q). Thus
β ∈ C. By symmetry of the case it follows that if β ∈ C, then α ∈ C. Therefore it holds
that α ∈ C if and only if β ∈ C.
Single sentence closure: Let α ∈ C and β ∈ Cn(α). Thus ¬α 6∈ Cn(p) ∪ Cn(q) and
{¬β} ` ¬α. Therefore ¬β 6∈ Cn(p) ∪ Cn(q). Hence β ∈ C.

Lemma 2 Let A = {p, q}, Cn be purely truth-functional and C be the set defined by the
following condition:

α ∈ C if and only if ¬α ∈ Cn(q) \ Cn(p)

Then C satisfies element consistency, expansive credibility, uniform credibility and disjunc-
tive completeness.

Proof.
Element consistency: Let α ∈ C. Hence ¬α ∈ Cn(q) \ Cn(p). It holds that Cn(∅) ⊆
Cn(p). Thus ¬α 6∈ Cn(∅). Therefore α 6`⊥.
Expansive credibility: Assume that ¬α 6∈ C. Hence ¬¬α ∈ Cn(q) \ Cn(p). Therefore
α ∈ Cn(q). Hence A ` α.
Uniform credibility: Assume that it holds, for all subsets A′ ⊆ A, that A′ ∪ {α} `⊥
if and only if A′ ∪ {β} `⊥. Let α ∈ C. Hence ¬α ∈ Cn(q) \ Cn(p). Thus ¬α ∈ Cn(q)
and ¬α 6∈ Cn(p). Hence {q, α} `⊥ and {p, α} 6`⊥. Thus, by hypothesis, {q, β} `⊥ and
{p, β} 6`⊥. Hence ¬β ∈ Cn(q) and ¬β 6∈ Cn(p), from which it follows that β ∈ C. By
symmetry of the case it follows that if β ∈ C, then α ∈ C. Therefore it holds that α ∈ C if
and only if β ∈ C.
Disjunctive completeness: Assume that α∨β ∈ C. Then ¬(α∨β) ∈ Cn(q)\Cn(p). Thus
¬(α∨β) ∈ Cn(q) and ¬(α∨β) 6∈ Cn(p). Hence ¬α∧¬β ∈ Cn(q) and ¬α∧¬β 6∈ Cn(p). Thus
¬α ∈ Cn(q), ¬β ∈ Cn(q) and (¬α 6∈ Cn(p) or ¬β 6∈ Cn(p)). Therefore ¬α ∈ Cn(q)\Cn(p)
or ¬β ∈ Cn(q) \ Cn(p). Thus α ∈ C or β ∈ C.

Lemma 3 Let A = {p, q}, Cn be purely truth-functional and C be the set defined by the
following condition:

α ∈ C if and only if ¬α 6∈ Cn(q)

Then C satisfies element consistency, expansive credibility, uniform credibility, single sen-
tence closure and disjunctive completeness.

Proof.
Element consistency: Let α ∈ C. Hence ¬α 6∈ Cn(q). Thus ¬α 6∈ Cn(∅). Therefore
α 6`⊥.
Expansive credibility: Assume that ¬α 6∈ C. Hence α ∈ Cn(q). Thus A ` α.
Uniform credibility: Assume that it holds, for all subsets A′ ⊆ A, that A′ ∪ {α} `⊥
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if and only if A′ ∪ {β} `⊥. Let α ∈ C. Hence ¬α 6∈ Cn(q), from which it follows that
{q, α} 6`⊥. Thus, by hypothesis, {q, β} 6`⊥. So ¬β 6∈ Cn(q). Hence β ∈ C. By symmetry
of the case it follows that if β ∈ C, then α ∈ C. Therefore it holds that α ∈ C if and only
if β ∈ C.
Single sentence closure: Let α ∈ C and β ∈ Cn(α). Thus ¬α 6∈ Cn(q) and {¬β} ` ¬α.
Therefore ¬β 6∈ Cn(q). Hence β ∈ C.
Disjunctive completeness: Assume that α ∨ β ∈ C. Hence ¬(α ∨ β) 6∈ Cn(q). Thus
¬α 6∈ Cn(q) or ¬β 6∈ Cn(q). Thus α ∈ C or β ∈ C.

Lemma 4 Let A be a belief base. Let ∗ be an operator on A such that (for all α) A ∗ α =
(A \

⋃
(A⊥⊥¬α)) ∪ {α}, then ∗ satisfies relevance, consistency, success, inclusion, vacuity,

weak extensionality, uniformity, core-retainment, disjunctive elimination and weak relative
closure.

Proof.
Let ∗ be an operator on a belief base A defined (for all α) by A∗α = (A\

⋃
(A⊥⊥¬α))∪{α}.

We will start by showing that ∗ satisfies relevance. Let β ∈ A and β 6∈ A ∗ α.
Thus β ∈

⋃
(A⊥⊥¬α). Hence there exists Y ∈ A⊥⊥¬α such that β ∈ Y . Let

X = Y \{β}∪(A\
⋃

(A⊥⊥¬α))∪{α}. Hence X ⊆ A∪{α}, A∗α = (A\
⋃

(A⊥⊥¬α))∪{α} ⊆ X
and X ∪ {β} `⊥ (since X ∪ {β} ` ¬α and α ∈ X). It remains to prove that X 6`⊥.
Assume by reductio ad absurdum that X `⊥. Hence, by deduction it follows that
X ′ = Y \ {β} ∪ (A \

⋃
(A⊥⊥¬α)) ` ¬α. It follows by compactness that there exists a

finite subset H = {γ1, ..., γn} of X ′ such that H ` ¬α. Where γ1, ..., γk ∈ Y \ {β} and
γk+1, ..., γn ∈ A \

⋃
(A⊥⊥¬α), for some 1 ≤ k < n. Hence {γ1, ..., γk} ∪ {γk+1, ..., γn} ` ¬α

but {γ1, ..., γk} 6` ¬α. Thus there is some inclusion-minimal subset W of H such that
W ` ¬α but no proper set of W implies ¬α. Hence W ∈ A⊥⊥¬α. On the other hand, since
{γ1, ..., γk} 6` ¬α, W contains at least one of the γi ∈ {γk+1, ..., γn}. Contradiction since
{γk+1, ..., γn} ⊆ A \

⋃
(A⊥⊥¬α). Hence ∗ satisfies relevance.

On the other hand, by definition of kernel revision, ∗ is a kernel revision. Hence, by Ob-
servations 2.11, ∗ satisfies consistency, success, inclusion, uniformity and core-retainment.
On the other hand, by Observation 3.5, ∗ satisfies vacuity, weak extensionality, disjunctive
elimination and weak relative closure.

Proofs

Proof of Theorem 3.2.
(Construction-to-postulates)
Let ∗ be an operator of smooth kernel revision on A. It follows from Observation 2.11 that
∗ satisfies consistency, success, inclusion, uniformity and core-retainment. It remains to
prove that ∗ satisfies weak relative closure. Since ∗ is a kernel revision operator it follows
that ∗ is based on a incision function σ such that for all sentences α:

A ∗ α = (A \ σ(A⊥⊥¬α)) ∪ {α}
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On the other hand, σ is smooth. Hence it holds for all subsets A′ of A that if A′ ` β and
β ∈ σ(A⊥⊥α) then A′ ∩ σ(A⊥⊥α) 6= ∅.

Assume that β 6∈ A ∗ α. By ∗ success it follows that β 6= α. We intend to prove that
β 6∈ A ∩ Cn(A ∩ A ∗ α). It follows trivially if β 6∈ A. Consider now that β ∈ A. Hence, by
definition of ∗, β ∈ σ(A⊥⊥¬α). Assume by reductio ad absurdum that β ∈ A∩Cn(A∩A∗α).
Then ((A \ σ(A⊥⊥¬α)) ∪ {α}) ∩ A ` β. Thus ((A \ σ(A⊥⊥¬α)) ∪ (A ∩ {α})) ` β. We will
consider two cases:
Case 1) α 6∈ A. Hence A \ σ(A⊥⊥¬α) ` β. Let X = A \ σ(A⊥⊥¬α). Hence X ⊆ A, X ` β,
β ∈ σ(A⊥⊥¬α) and X ∩ σ(A⊥⊥¬α) = ∅. Which contradicts the fact that σ is smooth.
Case 2) α ∈ A. Hence, by deduction, A\σ(A⊥⊥¬α) ` α→ β. Suppose that α ∈ σ(A⊥⊥¬α).
Hence there exists Y ⊆ A⊥⊥¬α such that α ∈ Y . Let Y ′ = Y \ {α}. Thus Y ′ 6` ¬α but
Y ′∪{α} ` ¬α. Hence by deduction, Y ′ ` α→ ¬α. Contradiction, since ` ¬α↔ (α→ ¬α).
Thus α 6∈ σ(A⊥⊥¬α), from which it follows that α ∈ A \ σ(A⊥⊥¬α) and consequently that
A \ σ(A⊥⊥¬α) ` β. The rest of the proof for this case follows as in the previous one.
(Postulates-to-construction)
Let ∗ be an operator that satisfies all the postulates listed in the observation. Let
σ(A⊥⊥¬α) = A \ (A ∩ (A ∗ α)). This is the same construction that is used in the proof
of Observation 2.11 that was presented by Wassermann (2000, Proof of Theorem 5.2.14).
Hence σ is an incision function for A and A ∗ α = (A \ σ(A⊥⊥¬α)) ∪ {α}. It remains to
show that σ is smooth. Let A′ be a subset of A such that A′ ` β and β ∈ σ(A⊥⊥¬α). We
intend to prove that A′ ∩ σ(A⊥⊥¬α) 6= ∅.
Assume by reductio ad absurdum that A ∩ A ∗ α ` β. From β ∈ σ(A⊥⊥¬α) it follows
that β ∈ A. Thus by ∗ relative closure it follows that β ∈ A ∗ α. Contradiction, since
β ∈ σ(A⊥⊥¬α) = A \ (A ∩ (A ∗ α)). Therefore A ∩ A ∗ α 6` β. From A′ ` β it follows that
A′ 6⊆ A ∩ A ∗ α. Hence there is some sentence δ ∈ A′ \ (A ∩ A ∗ α). Thus δ ∈ σ(A⊥⊥¬α).
Therefore δ ∈ A′ ∩ σ(A⊥⊥¬α), from which it follows that A′ ∩ σ(A⊥⊥¬α) 6= ∅.

Proof of Theorem 3.4.
(Construction-to-postulates)
LetA∗α = (Cn(A)?α)∩(A∪{α}) and ? be a basic AGM revision for Cn(A). Hence ? satisfies
success, inclusion, vacuity, consistency, extensionality and closure. We will now prove
that ∗ satisfies consistency, success, inclusion, vacuity, weak extensionality and disjunctive
elimination.
Success: Follows trivially by ∗ definition and ? success.
Inclusion: Follows trivially by ∗ definition.
Vacuity: Let A 6` ¬α and β ∈ A ∪ {α}. If β = α, then β ∈ A ∗ α by definition of ∗
and ? success. Assume now that β 6= α. Then β ∈ A. Hence, by ? vacuity Cn(Cn(A) ∪
{α}) ⊆ Cn(A) ? α. On the other hand,21 Cn(Cn(A) ∪ {α}) = Cn(A ∪ {α}) therefore
A ∪ {α} = Cn(A ∪ {α}) ∩ (A ∪ {α}) ⊆ (Cn(A) ? α) ∩ (A ∪ {α}) = A ∗ α.
Weak extensionality: Let ` α↔ β. Then A ∩A ∗ α = A ∩ ((Cn(A) ? α) ∩ (A ∪ {α})) =
A∩(Cn(A)?α). Thus, by ? extensionality, A∩A∗α = A∩(Cn(A)?β). Hence, by definition
of ∗, it follows that A ∩A ∗ α = A ∩A ∗ β.

21. Cn(A ∪B) = Cn(A ∪ Cn(B)) (Hansson, 1999b).
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Disjunctive elimination: Let β ∈ A and β 6∈ A ∗ α. Then, by definition of ∗, β 6∈
(Cn(A)?α)∩(A∪{α}). Hence β 6∈ Cn(A)?α. On the other hand, by ? success, α ∈ Cn(A)?α.
Thus, by ? closure, Cn(A) ? α 6` ¬α ∨ β. Therefore, by definition of ∗ it follows that
A ∗ α 6` ¬α ∨ β.
Consistency: Let α 6`⊥. By ? consistency it follows that Cn(A) ? α 6`⊥. Hence A ∗ α 6`⊥.
(Postulates-to-construction)
Let ∗ be an operator on A that satisfies consistency, success, inclusion, vacuity, weak
extensionality and disjunctive elimination. Let ? be an operator on Cn(A) defined, for all
α ∈ L, as follows:

Cn(A) ? α = Cn(A ∗ α)

We must prove that:
a) ? satisfies success, consistency, extensionality, inclusion, vacuity and closure;
b) A ∗ α = (Cn(A) ? α) ∩ (A ∪ {α}).
Proof of a) Closure follows trivially from ? definition. Success, consistency and inclusion
follow trivially from ? definition and ∗ success, consistency and inclusion respectively.
Vacuity: Let ¬α 6∈ Cn(A). By ∗ vacuity it follows that A ∪ {α} ⊆ A ∗ α. Thus
Cn(Cn(A) ∪ {α}) = Cn(A ∪ {α}) ⊆ Cn(A ∗ α) = Cn(A) ? α.
Extensionality: Let ` α↔ β. It follows, by ∗ weak extensionality, that A∩A∗α = A∩A∗β.
We will prove by double inclusion that Cn(A) ? α = Cn(A) ? β.
We will start by proving that A ∗ α = (A ∩A ∗ α) ∪ {α}.
(A ∩ A ∗ α) ∪ {α} = (A ∪ {α}) ∩ (A ∗ α ∪ {α}) = A ∗ α (the last equality follows from ∗
success and inclusion).
Let δ ∈ Cn(A) ? α. Then A ∗ α ` δ. Thus (A ∩ A ∗ α) ∪ {α} ` δ. Therefore, by
deduction (A ∩ A ∗ α) ` α → δ. It follows, from ` α ↔ β and ∗ weak extensionality,
that (A ∩ A ∗ β) ` β → δ. Hence (A ∩ A ∗ β) ∪ {β} ` δ. Therefore A ∗ β ` δ. Hence
δ ∈ Cn(A) ? β. Thus Cn(A) ? α ⊆ Cn(A) ? β. By symmetry of the case it holds that
Cn(A) ? β ⊆ Cn(A) ? α. Therefore Cn(A) ? α = Cn(A) ? β.
Proof of b) That A ∗ α ⊆ (Cn(A) ? α) ∩ (A ∪ {α}), follows from ? definition and ∗
inclusion. Let δ ∈ (Cn(A) ? α) ∩ (A ∪ {α}). If δ = α, then it follows from ∗ success
that δ ∈ A ∗ α. Assume now that δ 6= α. Hence δ ∈ A and A ∗ α ` δ. From the
latter it follows that A ∗ α ` ¬α ∨ δ. Hence, by disjunctive elimination, it follows that
δ ∈ A∗α. Thus (Cn(A)?α)∩(A∪{α}) ⊆ A∗α. Therefore (Cn(A)?α)∩(A∪{α}) = A∗α.

Proof of Observation 3.5.

(a) Trivial

(b) Let β ∈ A∩Cn(A~α∩A) and assume by reductio ad absurdum that β 6∈ A~α. Then,
by disjunctive elimination, A~α 6` ¬α∨β. On the other hand, from β ∈ Cn(A~α∩A)
it follows by monotony of Cn that A ~ α ` β then A ~ α ` ¬α ∨ β. Contradiction.
Therefore, β ∈ A~ α. Hence A ∩ Cn(A~ α ∩A) ⊆ A~ α.

(c) Let A be a belief base and ~ be an operator on A that satisfies relative success and
relevance. Let β ∈ A and β 6∈ A ~ α. It follows by relative success that α ∈ A ~ α.
On the other hand, by relevance, there exists some A′ such that A ~ α ⊆ A′ ⊆
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A ∪ {α}, A′ 6`⊥ but A′ ∪ {β} `⊥. Since α ∈ A ~ α it holds that α ∈ A′. Let
B = A′ \ {α}. Hence B ⊆ A. On the other hand, since A′ 6`⊥ it follows that
B ∪ {α} 6`⊥. Thus B 6` ¬α. From A′ ∪ {β} `⊥ it follows that (B ∪ {α}) ∪ {β} `⊥.
Hence, by deduction B ∪ {β} ` ¬α.
To prove that ~ satisfies disjunctive elimination let β ∈ A and β 6∈ A~α. By success
it follows that α ∈ A ~ α. Assume by reductio ad absurdum that A ~ α ` ¬α ∨ β.
Thus A ~ α ` β. On the other hand, by relevance, there is some set A′ such that
A ~ α ⊆ A′ ⊆ A ∪ {α} and A′ 6`⊥ but A′ ∪ {β} `⊥. Contradiction, since A′ ` β.
Therefore, A~ α 6` ¬α ∨ β.

(d) Let A 6` ¬α. Assume by reductio ad absurdum that A ∪ {α} 6⊆ A ~ α. By success it
follows that α ∈ A~ α. Hence, there exists some β such that β ∈ A and β 6∈ A~ α.
Thus, by core-retainment, there exists A′ ⊆ A such that A′ 6` ¬α and A′ ∪ {β} ` ¬α.
Contradiction, since A′ ∪ {β} ⊆ A. Therefore, A ∪ {α} ⊆ A~ α.

Proof of Observation 4.3.
Let A be a belief base and ~ be a credibility-limited base revision induced by a revision
operator ∗ on A and a set C ⊆ L that satisfies closure under double negation.
Assume first that C satisfies strong expansive credibility. We will show that C satisfies
expansive credibility and that C and ∗ are related through condition (C - ∗).
Expansive credibility: Let ¬α 6∈ C. By strong expansive credibility it holds that
A ∩A~ β ` α. Thus A ` α.
Condition (C - ∗): Let α 6∈ C and β ∈ C. Then A ~ β = A ∗ β. On the other hand, by
strong expansive credibility, it holds that A ∩A~ β ` ¬α. Thus A ∩A ∗ β ` ¬α.
Assume now that C satisfies expansive credibility and that C and ∗ are related through
condition (C - ∗). Let α 6∈ C. We will consider two cases:
Case 1) β ∈ C. Hence, by condition (C - ∗), A ∩A ∗ β ` ¬α. Thus A ∩A~ β ` ¬α.
Case 2) β 6∈ C. It holds that A ~ β ∩ A = A. On the other hand, from α 6∈ C, it follows
by closure under double negation that ¬¬α 6∈ C. Thus, by expansive credibility, it follows
that A ` ¬α. Therefore A ∩A~ β ` ¬α.

Proof of Observation 4.4.
Assume first that it holds that Cn(∅) ⊆ C. Hence (¬α ∨ α) ∈ C. Therefore, by disjunctive
completeness it follows that ¬α ∈ C or α ∈ C.
Assume now that C satisfies negation completeness. Let α ∈ L be such that ` α. Hence
¬α `⊥. Therefore, by element consistency, ¬α 6∈ C, from which it follows by negation
completeness that α ∈ C.

Proof of Observation 4.5.

(a) Let ` α ↔ β. If α ∈ C, then by single sentence closure β ∈ C. By symmetry of the
case it follows that is β ∈ C, then α ∈ C. Thus α ∈ C if and only if β ∈ C.

(b) Let ` α↔ β. It follows trivially by uniform credibility, that α ∈ C if and only if β ∈ C.
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(c) Let A 6`⊥ and ¬α 6∈ C. Then by expansive credibility it follows that A ` α. Therefore
by credibility lower bounding α ∈ C.

(d) Let α ∈ Cn(∅). Then ¬α `⊥. From which it follows by element consistency that
¬α 6∈ C. Therefore, by negation completeness, α ∈ C.

(e) Trivial. �

Proof of Observation 4.6.
Let A be a belief base and ~ be an operator on A that satisfies relevance and relative

success.
To prove that ~ satisfies disjunctive elimination, let β ∈ A and β 6∈ A ~ α. It follows by
relative success that α ∈ A ~ α. Assume by reductio ad absurdum that A ~ α ` ¬α ∨ β.
Hence A ~ α ` β. On the other hand, by relevance, there exists some A′ such that
A~α ⊆ A′ ⊆ A∪{α}, A′ 6`⊥ but A′∪{β} `⊥. Contradiction, since every set that contains
A~ α implies β.
To prove that ~ satisfies core-retainment, let β ∈ A and β 6∈ A ~ α. It follows by relative
success that α ∈ A ~ α. On the other hand, by relevance, there exists some A′ such that
A~ α ⊆ A′ ⊆ A ∪ {α}, A′ 6`⊥ but A′ ∪ {β} `⊥. Since α ∈ A~ α it holds that α ∈ A′. Let
B = A′ \ {α}. Hence B ⊆ A. On the other hand, since A′ 6`⊥ it follows that B ∪ {α} 6`⊥.
Thus B 6` ¬α. From A′ ∪ {β} `⊥ it follows that (B ∪ {α}) ∪ {β} `⊥. Hence, by deduction
B ∪ {β} ` ¬α.

Proof of Observation 4.7.
Assume that A 6`⊥.
Disjunctive distribution Let α 6∈ A ~ α and β 6∈ A ~ β. By relative success it follows
that A~ α = A and A~ β = A. If A 6` ¬α, then by vacuity A ∪ {α} ⊆ A~ α, from which
it follows that α ∈ A ~ α. Contradiction. Hence A ` ¬α. By symmetry of the case it
follows that A ` ¬β. Thus A ∩ A ~ α ` ¬α and A ∩ A ~ β ` ¬β. Hence, by persistence,
A ∩ A ~ (α ∨ β) ` ¬α and A ∩ A ~ (α ∨ β) ` ¬β. Therefore A ∩ A ~ (α ∨ β) ` ¬α ∧ ¬β.
Thus A ∩ A~ (α ∨ β) ` ¬(α ∨ β). Hence by monotony A~ (α ∨ β) ` ¬(α ∨ β). It follows,
by consistency preservation, that α ∨ β 6∈ A~ (α ∨ β).
Strict improvement Let α ∈ A ~ α and ` α → β. By relative success it follows that
β ∈ A ~ β or A ~ β = A. In the first case we are done. Consider now that A ~ β = A.
Assume by reductio ad absurdum that A ` ¬β. Hence A∩A~β ` ¬β. Thus, by persistence,
A ∩ A~ α ` ¬β. Hence A~ α ` ¬β. On the other hand, from α ∈ A~ α and ` α→ β, it
follows that A ~ α ` β. Therefore, A ~ α `⊥, which contradicts consistency preservation.
Hence A 6` ¬β. Vacuity holds, therefore β ∈ A~ β.
Regularity Let A ~ α ` β. By relative success it follows that β ∈ A ~ β or A ~ β = A.
In the first case we are done. Consider now that A ~ β = A. Assume by reductio ad
absurdum that A ` ¬β. Hence A ∩ A ~ β ` ¬β. Thus, by persistence, A ∩ A ~ α ` ¬β.
Hence A ~ α ` ¬β. This contradicts consistency preservation. Hence A 6` ¬β. Vacuity
holds, therefore β ∈ A~ β.

Proof of Observation 4.8.
Let A be a belief base, C ⊆ L, and ~ be a credibility-limited base revision induced by a
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revision operator ∗ and C.
Thus,

A~ α =

{
A ∗ α if α ∈ C
A otherwise

where, by Definition 2.3, ∗ is an operator on A that satisfies success, consistency and
inclusion.

(a) That ~ satisfies inclusion and relative success follows trivially by its definition and ∗
inclusion and ∗ success, respectively.

Let ∗ be an operator on A that satisfies relevance. Let β ∈ A and β 6∈ A ~ α.
Hence A~α = A∗α, and it follows trivially from ∗ relevance that ~ satisfies relevance.

Let ∗ be an operator on A that satisfies core-retainment. Let β ∈ A and β 6∈ A ~ α.
Hence A~ α = A ∗ α, and it follows trivially from ∗ core-retainment that ~ satisfies
core-retainment.

Let ∗ be an operator on A that satisfies disjunctive elimination. Let β ∈ A and
β 6∈ A~α. Hence A~α = A∗α, and it follows trivially from ∗ disjunctive elimination
that ~ satisfies disjunctive elimination.

Let ∗ be an operator on A that satisfies weak relative closure. If α ∈ C, then A~α =
A ∗α. Thus, by ∗ weak relative closure it follows that A∩Cn(A∩A~α) ⊆ A~α. If
α 6∈ C, then A~ α = A. Thus A ∩ Cn(A ∩A~ α) = A = A~ α.

(b) Let C be a set that satisfies element consistency and α ∈ L. We will show that ~
satisfies consistency preservation. Let A 6`⊥. It follows trivially if α 6∈ C. Assume
now that α ∈ C. Then A ~ α = A ∗ α. On the other hand, by element consistency,
α 6`⊥. Hence, by ∗ consistency A~ α 6`⊥.

(c) Let C be a set that satisfies uniform credibility and ∗ a revision operator that satisfies
uniformity. Let it be the case that for all subsets A′ ⊆ A, A′ ∪ {α} `⊥ if and only
if A′ ∪ {β} `⊥. By uniform credibility α ∈ C if and only if β ∈ C. If α ∈ C, then
β ∈ C. The rest follows from ∗ uniformity.
If α 6∈ C, then β 6∈ C. Thus A ∩A~ α = A = A ∩A~ β.

(d) We start by noticing that, according to Observation 4.5, if C satisfies single sentence
closure, then it also satisfies credibility of logical equivalents. Let C be a set that
satisfies credibility of logical equivalents and ∗ a revision operator that satisfies weak
extensionality. We intend to prove that ~ satisfies weak extensionality. Let ` α↔ β.
By credibility of logical equivalents α ∈ C if and only if β ∈ C. If α ∈ C, then β ∈ C.
The rest follows from ∗ weak extensionality. If α 6∈ C, then β 6∈ C, from which it
follows that A~ α = A~ β = A. Thus A ∩A~ α = A ∩A~ β.
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(e) We start by noticing that, according to Observation 4.5, if C satisfies either credibility of
logical equivalents or uniform credibility or single sentence closure, then it also satisfies
closure under double negation. Let C be a set that satisfies expansive credibility
and closure under double negation and ∗ a revision operator that satisfies vacuity.
We intend to prove that ~ satisfies vacuity. Consider that A 6` ¬α. By expansive
credibility ¬¬α ∈ C. Thus by closure under double negation α ∈ C. Hence A ~ α =
A ∗ α. Therefore, it follows by ∗ vacuity that A ∪ {α} ⊆ A~ α.

(f) Let A 6`⊥ and let C be a set that satisfies expansive credibility and single sentence
closure. We intend to prove that ~ satisfies strict improvement. Let α ∈ A ~ α and
` α → β. Suppose that α 6∈ C. By single sentence closure ¬¬α 6∈ C. Thus by
expansive credibility A ` ¬α. On the other hand, by definition of ~, it follows that
A ~ α = A. Hence A `⊥. Contradiction. Hence α ∈ C. Thus by single sentence
closure β ∈ C. Therefore A ~ β = A ∗ β, from which it follows by ∗ success that
β ∈ A~ β.

(g) Let A 6`⊥. We start by noticing that, according to Observation 4.5, if C satisfies either
credibility of logical equivalents or uniform credibility or single sentence closure, then
it also satisfies closure under double negation. Let C be a set that satisfies expansive
credibility, closure under double negation and disjunctive completeness. We intend to
prove that ~ satisfies disjunctive distribution. Let α 6∈ A ~ α and β 6∈ A ~ β. Thus,
by ∗ success, it follows that α 6∈ C and β 6∈ C. By closure under double negation it
follows that ¬¬α 6∈ C and ¬¬β 6∈ C, from which it follows, by expansive credibility
that A ` ¬(α ∨ β). On the other hand, by disjunctive completeness α ∨ β 6∈ C.
Therefore A~ (α ∨ β) = A, thus α ∨ β 6∈ A~ (α ∨ β) (since A 6`⊥).

(h) Let C and ∗ satisfy condition (C - ∗) and assume C satisfies element consistency.

Let A ∩ A ~ β ` ¬β and α ∈ L. It holds that A ` ¬β and A ~ β ` ¬β. If β ∈ C,
then by element consistency β 6`⊥. On the other hand, A~ β = A ∗ β, from which it
follows, by ∗ success, that A∗β `⊥ (since it holds that A~β ` ¬β). This contradicts
∗ consistency. Hence β 6∈ C. If α ∈ C, then A ~ α = A ∗ α. On the other hand, by
condition (C - ∗), it follows that A ∩ A ∗ α ` ¬β. Therefore A ∩ A ~ α ` ¬β. If
α 6∈ C, then A~ α = A. Hence A ∩A~ α ` ¬β.

Assume that ∗ is a revision operator that satisfies weak extensionality. We intend
to prove that ~ satisfies weak extensionality. Let ` α ↔ β. Assume that α 6∈ C.
If β ∈ C, then by element consistency β 6`⊥. On the other hand, A ~ β = A ∗ β,
from which it follows, by ∗ success and consistency, that A ~ β 6` ¬β. From α 6∈ C
it follows, by condition (C - ∗), that A ∩ A ~ β ` ¬α. Therefore A ~ β ` ¬α from
which it follows that A~ β ` ¬β. Contradiction. Hence β 6∈ C. By symmetry of the
case it also follows that if β 6∈ C, then α 6∈ C. Therefore α ∈ C if and only if β ∈ C.
Let α ∈ C. Then β ∈ C. Hence A ~ α = A ∗ α and A ~ β = A ∗ β. From which it
follows, by ∗ weak extensionality, that A ∩A~ α = A ∩A~ β.
Let α 6∈ C. Then β 6∈ C. Hence A ~ α = A ~ β = A. Therefore
A ∩A~ α = A ∩A~ β = A.
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Assume that ∗ is a revision operator that satisfies uniformity. We intend to prove
that ~ satisfies uniformity. Let it be the case that for all subsets A′ ⊆ A, A′∪{α} `⊥
if and only if A′∪{β} `⊥. If α ∈ C and β ∈ C, then A~α = A∗α and A~β = A∗β.
By ∗ uniformity A ∩A ∗ α = A ∩A ∗ β. Hence A ∩A~ α = A ∩A~ β.
If α 6∈ C and β 6∈ C, then A~ α = A~ β = A. Hence A ∩A~ α = A ∩A~ β.
Assume now by reductio ad absurdum, without loss of generality, that α ∈ C and
β 6∈ C. Hence by condition (C - ∗) it follows that A∩A∗α ` ¬β. On the other hand,
from α ∈ C, it follows that A ~ α = A ∗ α and, by element consistency, that α 6`⊥.
Hence, by ∗ consistency A ~ α 6`⊥. By ∗ success it follows that A ~ α 6` ¬α. Thus
A ∩A~ α 6` ¬α. By hypothesis it follows that A ∩A~ α 6` ¬β. Contradiction.

(i) Let C and ∗ satisfy condition (C - ∗) and assume C satisfies expansive credibility. Let
∗ be a revision operator that satisfies vacuity. Consider that A 6` ¬α. It follows by
expansive credibility that ¬¬α ∈ C. Assume by reductio ad absurdum that α 6∈ C.
Hence by condition (C - ∗) it follows that A ∩ A ∗ ¬¬α ` ¬α. From which it follows
that A ` ¬α. Contradiction. Hence α ∈ C. Therefore A ~ α = A ∗ α. Thus, by ∗
vacuity it follows that A ∪ {α} ⊆ A~ α. �

Proof of Theorem 4.9.
Let A be a consistent belief base and ~ be an operator of credibility-limited revision induced
by a revision operator ∗ for A and a set C ⊆ L that satisfies expansive credibility and
closure under double negation. We will prove by double inclusion that C = {α : α ∈ A~α}.
Let α ∈ C. Then A ~ α = A ∗ α, from which it follows by ∗ success that α ∈ A ~ α.
Therefore C ⊆ {α : α ∈ A~ α}.
Let α ∈ A ~ α. If A ~ α 6= A, then by definition of ~ it follows that α ∈ C. Assume
now that A ~ α = A. Thus A 6` ¬α (since A 6`⊥). By expansive credibility it follows
that ¬¬α ∈ C. Therefore α ∈ C (since C satisfies closure under double negation). Hence
{α : α ∈ A~ α} ⊆ C.

Proof of Observation 4.10.
Let ~ be an operator on A that satisfies consistency preservation. We will show that C
satisfies element consistency. Let α ∈ C. Then α ∈ A~ α. On the other hand from A 6`⊥
it follows by ~ consistency preservation that A~ α 6`⊥. Hence α 6`⊥.

Let ~ be an operator on A that satisfies strict improvement. We will show that C
satisfies single sentence closure. Let α ∈ C and β ∈ Cn(α). Hence α ∈ A~α and ` α→ β.
Thus, by strict improvement, β ∈ A~ β. Therefore β ∈ C.

Let ~ be an operator on A that satisfies disjunctive distribution. We will show that C
satisfies disjunctive completeness. Let α ∨ β ∈ C. Hence α ∨ β ∈ A ~ (α ∨ β). Thus, by
disjunctive distribution, α ∈ A~α or β ∈ A~β. From which it follows that α ∈ C or β ∈ C.

Let ~ be an operator on A that satisfies vacuity. We will show that C satisfies expansive
credibility and credibility lower bounding.
Expansive credibility: Let A 6` α. Then A 6` ¬¬α. By ~ vacuity it follows that
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¬α ∈ A~ ¬α. Therefore ¬α ∈ C.
Credibility lower bounding: Let A ` α. It follows that A 6` ¬α, since A 6`⊥. Thus, by
~ vacuity, α ∈ A~ α. Hence α ∈ C.

Let ~ be an operator on A that satisfies consistency preservation, persistence, relative
success and vacuity. By Observation 4.7 it follows that ~ also satisfies disjunctive
distribution, strict improvement and regularity. Thus as shown above C satisfies single
sentence closure and disjunctive completeness. Since C satisfies single sentence closure
then it also satisfies credibility of logical equivalents. We will now show that C also satisfies
revision credibility.
Revision credibility Let α ∈ C and β ∈ Cn(A ~ α). Hence, by ~ regularity, it follows
that β ∈ A ~ β. Hence β ∈ C, by definition of C. We will now show that C satisfies
uniform credibility.
Uniform credibility Assume that it holds for all subsets A′ of A that A′ ∪ {α} `⊥ if
and only if A′ ∪ {β} `⊥. We intend to prove that α ∈ C holds if and only if β ∈ C holds.
Consider that β 6∈ C. Hence β 6∈ A ~ β. By ~ relative success and vacuity it follows,
respectively, that A~ β = A and A ` ¬β. Hence A∩A~ β ` ¬β. By persistence it follows
that A ∩ A ~ α ` ¬β. From which it follows by hypothesis that A ∩ A ~ α ` ¬α. Hence
A ~ α ` ¬α. By consistency preservation it follows that α 6∈ A ~ α. Thus α 6∈ C. By
symmetry of the case it follows that if α 6∈ C, then β 6∈ C.

Let ~ be an operator on A that satisfies relative success, uniformity, vacuity and
consistency preservation. We will show that C satisfies uniform credibility. Assume that
it holds for all subsets A′ of A that A′ ∪ {α} `⊥ if and only if A′ ∪ {β} `⊥. Hence, by
~ uniformity, A ∩ A ~ α = A ∩ A ~ β. Let α 6∈ C. Thus α 6∈ A ~ α. Therefore by ~
vacuity A ` ¬α and by ~ relative success A ~ α = A. Thus A = A ∩ A ~ β. Therefore
A ∩ A ~ β ` ¬α. From which it follows, by hypothesis, that A ∩ A ~ β ` ¬β. Thus
A ~ β ` ¬β. By ~ consistency preservation it follows that β 6∈ A ~ β. Hence β 6∈ C. By
symmetry of the case it follows from β 6∈ C that α 6∈ C. Therefore α ∈ C if and only if β ∈ C.

Let ~ be an operator on A that satisfies relative success, vacuity, consistency preser-
vation and weak extensionality.22 We will show that C satisfies credibility of logical
equivalents. Let ` α ↔ β. Suppose that α 6∈ C. Hence α 6∈ A ~ α. Thus by relative
success A ~ α = A. Assume by reductio ad absurdum that β ∈ C. Thus β ∈ A ~ β.
Thus, by ~ consistency preservation, A ~ β 6` ¬β. By weak extensionality it follows that
A ∩A~ α = A ∩A~ β. Thus A ∩A~ α 6` ¬β, from which it follows that A ∩A~ α 6` ¬α.
Therefore, A 6` ¬α. From which it follows by vacuity that α ∈ A ~ α. Contradiction.
Hence if α 6∈ C, then β 6∈ C. By symmetry of the case it follows that β 6∈ C, then α 6∈ C.
Therefore α ∈ C if and only if β ∈ C.

22. Note that according to Observation 3.5 if ~ satisfies uniformity, then it also satisfies weak extensionality.
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Proof of Observation 4.11.
Let A be a consistent belief base, ~ be an operator on A and C = {α : α ∈ A~ α}. Let ∗
be the operator on A defined by:

A ∗ α =

{
A~ α if α ∈ C
(A \

⋃
(A⊥⊥¬α)) ∪ {α} otherwise

.

In what follows we show that this operator satisfies statements (a), (b) and (c).

(a) We start by showing that the following equality holds:

A~ α =

{
A ∗ α if α ∈ C
A otherwise

If α ∈ C, then by definition of ∗, A ~ α = A ∗ α. Assume now that α 6∈ C. Hence
α 6∈ A~ α, from which it follows, by ~ relative success, that A~ α = A.
It remains to show that ∗ is a revision operator. According to Definition 2.3 we must
to show that ∗ satisfies success, inclusion and consistency.
That ∗ satisfies success follows trivially by ∗ definition.
That ∗ satisfies inclusion follows trivially by ∗ definition and ~ inclusion.
Let α 6`⊥. If α ∈ C, then A ∗ α = A ~ α. Thus, by ~ consistency preservation, it
follows that A ∗ α 6`⊥. Assume now that α 6∈ C. Thus, by Lemma 4, it follows that
A ∗ α 6`⊥.

(b) Assume ~ satisfies vacuity. We will prove that ∗ satisfies vacuity. If α ∈ C, then
A ∗ α = A~ α and the rest of the proof for this case follows by ~ vacuity. If α 6∈ C,
then A ∗α = (A \

⋃
(A⊥⊥¬α))∪{α}. The rest of the proof follows trivially by Lemma

4.

Assume ~ satisfies relevance. We will prove that ∗ satisfies relevance. If α ∈ C, then
A ∗ α = A ~ α and the rest of the proof for this case follows by ~ relevance. Let
α 6∈ C. Hence A ∗ α = (A \

⋃
(A⊥⊥¬α)) ∪ {α}. The rest of the proof follows trivially

by Lemma 4.

Assume ~ satisfies core-retainment. We will prove that ∗ satisfies core-retainment.
If α ∈ C, then A ∗ α = A ~ α and the rest of the proof for this case follows by ~
core-retainment. Let α 6∈ C. Hence A ∗ α = (A \

⋃
(A⊥⊥¬α)) ∪ {α}. The rest of the

proof follows trivially by Lemma 4.

Assume ~ satisfies disjunctive elimination. We will prove that ∗ satisfies disjunctive
elimination. If α ∈ C, then A∗α = A~α and the rest of the proof for this case follows
by ~ disjunctive elimination. Let α 6∈ C. Hence A ∗ α = (A \

⋃
(A⊥⊥¬α))∪ {α}. The

rest of the proof follows trivially by Lemma 4.

Assume ~ satisfies uniformity, relative success, vacuity and consistency preservation.
We will prove that ∗ satisfies uniformity. Assume that it holds for all subsets A′ ⊆
A,A′ ∪ {α} `⊥ if and only if A′ ∪ {β} `⊥. Let β 6∈ C. Hence β 6∈ A ~ β. Thus,
by ~ relative success it follows that A ~ β = A and by vacuity that A ` ¬β. Hence
A ∩ A ~ β ` ¬β. Therefore, by hypothesis A ∩ A ~ β ` ¬α. Thus by ~ uniformity
A ∩ A ~ α ` ¬α. From which it follows that A ~ α ` ¬α. Hence, by ~ consistency
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preservation, it follows that α 6∈ C. By symmetry of the case it follows that if α 6∈ C,
then β 6∈ C. Therefore α ∈ C if and only if β ∈ C.
Let α ∈ C, then β ∈ C. Hence A ∗ α = A ~ α and A ∗ β = A ~ β. Thus by ~
uniformity A ∩A ∗ α = A ∩A ∗ β.
Let α 6∈ C, then β 6∈ C. Then A ∗ α = (A \

⋃
(A⊥⊥¬α)) ∪ {α} and A ∗ β = (A \⋃

(A⊥⊥¬β)) ∪ {β}. From which it follows by Lemma 4 that A ∩A ∗ α = A ∩A ∗ β.

Assume ~ satisfies weak extensionality, relative success, vacuity and consistency
preservation. We will prove that ∗ satisfies weak extensionality. Let α and β be
such that ` α↔ β. Let β 6∈ C. Hence, by ~ relative success it follows that A~β = A
and by vacuity that A ` ¬β. Hence A ∩ A ~ β ` ¬β. Therefore, by hypothesis
A ∩ A ~ β ` ¬α. Thus by ~ weak extensionality A ∩ A ~ α ` ¬α. From which it
follows that A~α ` ¬α. Hence, by ~ consistency preservation, it follows that α 6∈ C.
By symmetry of the case it follows that if α 6∈ C, then β 6∈ C. Therefore α ∈ C if and
only if β ∈ C.
Let α ∈ C, then β ∈ C. Hence A ∗ α = A ~ α and A ∗ β = A ~ β. Thus by ~ weak
extensionality A ∩A ∗ α = A ∩A ∗ β.
Let α 6∈ C, then β 6∈ C. Then A ∗ α = (A \

⋃
(A⊥⊥¬α)) ∪ {α} and A ∗ β =

(A\
⋃

(A⊥⊥¬β))∪{β}. From which it follows by Lemma 4 that A∩A∗α = A∩A∗β.

Assume ~ satisfies weak relative closure. We will prove that ∗ satisfies weak relative
closure. If α ∈ C, then A ∗ α = A ~ α and the rest of the proof for this case follows
by ~ weak relative closure. Let α 6∈ C. Hence A ∗ α = (A \

⋃
(A⊥⊥¬α)) ∪ {α}. The

rest of the proof follows trivially by Lemma 4.

(c) Consider that ~ satisfies persistence, relative success and vacuity. We intend to prove
that C and ∗ satisfy condition (C - ∗).
Let α 6∈ C and β ∈ C. Then, by relative success, A ~ α = A. By definition of ∗ it
follows that A ∗ β = A~ β.
If A 6` ¬α, then by ~ vacuity it follows that α ∈ A ~ α. From which it follows that
α ∈ C. Contradiction.
Hence A ` ¬α. Therefore A∩A~ α ` ¬α. Hence, by ~ persistence, A∩A~ β ` ¬α.
Thus A ∩A ∗ β ` ¬α. �

Proof of Theorem 5.2.
Let A be a consistent belief base.
((a)→ (b)) Let~ be an operator onA that satisfies relative success, consistency preservation
and inclusion. Let C be the set defined by:

C = {α : α ∈ A~ α}

According to Observation 4.10, C satisfies element consistency. On the other hand, it
follows from Observation 4.11 (a) that there exists an operator ∗ such that ~ is the
credibility-limited base revision induced by ∗ and C.
((b) → (a)) Let ~ be the operator of credibility-limited base revision induced by a revision
operator ∗ and a set C ⊆ L that satisfies element consistency. Hence by Observation 4.8
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(a) and (b), ~ satisfies relative success, consistency preservation and inclusion.

Proofs of Theorems 5.4, 5.7, 5.9.
(Right-to-left)
Let A be a consistent belief base and ~ be an operator that satisfies relative success,
consistency preservation, inclusion, vacuity and uniformity. Let C be the set defined by:

C = {α : α ∈ A~ α}

It follows from Observation 4.10 that C satisfies element consistency, expansive credibility
and uniform credibility.
Furthermore, from Observation 4.10, it follows that:
- If ~ satisfies strict improvement, then C satisfies single sentence closure;
- If ~ satisfies disjunctive distribution, then C satisfies disjunctive completeness;
From Observation 4.11 (a) it follows that there exists a revision operator ∗ such that ~ is
the credibility-limited base revision induced by ∗ and C. Furthermore from Observation
4.11 (c) it follows that if ~ satisfies persistence, then C and ∗ satisfy condition (C - ∗).
For Theorem 5.4
From Observation 4.11 and Observation 2.7 it follows that ∗ is a partial meet revision.
For Theorem 5.7
From Observation 4.11 and Observation 2.11 it follows that ∗ is a kernel revision.
For Theorem 5.9
From Observation 4.11 and Observation 3.2 it follows that ∗ is a smooth kernel revision.
(Left-to-right)
Let A be a consistent belief base, ∗ be an operator on A and C ⊆ L. Let ~ be such that:

A~ α =

{
A ∗ α if α ∈ C
A otherwise

From Observation 4.8 it follows that if ∗ satisfies success, consistency, inclusion, vacuity
and uniformity, then:
- ~ satisfies inclusion and relative success.
- If C satisfies element consistency, then ~ satisfies consistency preservation.
- If C satisfies uniform credibility, then ~ satisfies uniformity.
- If C satisfies expansive credibility and uniform credibility, then ~ satisfies vacuity.
- If C satisfies expansive credibility and single sentence closure, then ~ satisfies strict
improvement.
- If C satisfies expansive credibility, uniform credibility and disjunctive completeness, then
~ satisfies disjunctive distribution.
- If C satisfies expansive credibility and C and ∗ satisfy condition (C - ∗), then ~ satisfies
vacuity.
- If C satisfies element consistency and C and ∗ satisfy condition (C - ∗), then ~ satisfies
persistence and uniformity.
For Theorem 5.4
If ∗ is a partial meet revision operator on A, then from Observation 2.7 ∗ satisfies success,
consistency, inclusion, relevance and uniformity. From Observation 3.5 it follows that ∗
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satisfies vacuity. From Observation 4.8 (a) it holds also that ~ satisfies relevance.
For Theorem 5.7
If ∗ is a kernel revision operator on A, then from Observation 2.11 ∗ satisfies success, con-
sistency, inclusion, core-retainment and uniformity. From Observation 3.5 it follows that
∗ satisfies vacuity. From Observation 4.8 (a) it holds also that ~ satisfies core-retainment.
For Theorem 5.9
If ∗ is a smooth kernel revision operator on A, then ∗ is a kernel revision operator and ∗
satisfies weak relative closure (Observation 3.2). From Observation 3.5 it follows that ∗
satisfies vacuity. From Observation 4.8 (a) it holds also that ~ satisfies core-retainment
and weak relative closure.

Proof of Theorem 5.11.
(Right-to-left)
Let A be a consistent belief base and ~ be an operator that satisfies relative success, con-
sistency preservation, inclusion, vacuity, weak extensionality and disjunctive elimination.
Let C be the set defined by:

C = {α : α ∈ A~ α}

It follows from Observation 4.10 that C satisfies element consistency, expansive credibility
and credibility of logical equivalents.
Furthermore, from Observation 4.10, it follows that:
- If ~ satisfies strict improvement, then C satisfies single sentence closure;
- If ~ satisfies disjunctive distribution, then C satisfies disjunctive completeness;
From Observations 3.4 and 4.11 it follows that there exists a basic AGM-generated
base revision ∗ such that ~ is the credibility-limited base revision induced by ∗ and C.
Furthermore from Observation 4.11 (c) it follows that if ~ satisfies persistence, then C and
∗ satisfy condition (C - ∗).

(Left-to-right)
Let A be a consistent belief base, C ⊆ L and ∗ be a basic AGM-generated revision operator
on A. Let ~ be such that:

A~ α =

{
A ∗ α if α ∈ C
A otherwise

From Observation 3.4 ∗ satisfies success, consistency, inclusion, vacuity, weak exten-
sionality and disjunctive elimination. Hence from Observation 4.8 (a) it follows that ~
satisfies relative success, inclusion and disjunctive elimination. Furthermore, it follows
from Observation 4.8 that:
- If C satisfies element consistency, then ~ satisfies consistency preservation.
- If C satisfies credibility of logical equivalents, then ~ satisfies weak extensionality.
- If C satisfies expansive credibility and credibility of logical equivalents, then ~ satisfies
vacuity.
- If C satisfies expansive credibility and single sentence closure, then ~ satisfies strict
improvement.
- If C satisfies single sentence closure, then ~ satisfies weak extensionality.
- If C satisfies expansive credibility and single sentence closure, then ~ satisfies vacuity.

1070



Credibility-Limited Base Revision: New Classes and Their Characterizations

- If C satisfies expansive credibility, credibility of logical equivalents and disjunctive
completeness, then ~ satisfies disjunctive distribution.
- If C satisfies expansive credibility, single sentence closure and disjunctive completeness,
then ~ satisfies disjunctive distribution.
- If C satisfies expansive credibility and C and ∗ satisfy condition (C - ∗), then ~ satisfies
vacuity.
- If C satisfies element consistency and C and ∗ satisfy condition (C - ∗), then ~ satisfies
persistence and weak extensionality.

Proof of Observation 6.1.
Proof that P-CLPMR ⊂ SI+DD-CLPMR, SI+DD-CLPMR ⊂ DD-CLPMR, SI+DD-
CLPMR ⊂ SI-CLPMR, DD-CLPMR 6⊆ SI-CLPMR, SI-CLPMR 6⊆ DD-CLPMR, DD-
CLPMR ⊂ CLPMR and SI-CLPMR ⊂ CLPMR:
It follows from Example 5.5 that:

(i) CLPMR 6⊆ DD-CLPMR, SI-CLPMR 6⊆ DD-CLPMR and SI-CLPMR 6⊆ SI+DD-
CLPMR;

(ii) CLPMR 6⊆ SI-CLPMR, DD-CLPMR 6⊆ SI-CLPMR and DD-CLPMR 6⊆ SI+DD-
CLPMR;

(iii) SI+DD-CLPMR 6⊆ P-CLPMR.

On the other hand it follows from Theorem 5.4 that SI+DD-CLPMR ⊆ DD-CLPMR,
SI+DD-CLPMR ⊆ SI-CLPMR, DD-CLPMR ⊆ CLPMR and SI-CLPMR ⊆ CLPMR.
Furthermore, combining Theorem 5.4 and Observation 4.7 we can conclude that P-CLPMR
⊆ SI+DD-CLPMR.

Proof that P-CLKR ⊂ SI+DD-CLKR, SI+DD-CLKR ⊂ DD-CLKR, SI+DD-CLKR
⊂ SI-CLKR, DD-CLKR 6⊆ SI-CLKR, SI-CLKR 6⊆ DD-CLKR, DD-CLKR ⊂ CLKR and
SI-CLKR ⊂ CLKR:
That P-CLKR ⊆ SI+DD-CLKR follows trivially from Theorem 5.7 and Observation 4.7.
That SI+DD-CLKR ⊆ DD-CLKR, SI+DD-CLKR ⊆ SI-CLKR, DD-CLKR ⊆ CLKR and
SI-CLKR ⊆ CLKR follow trivially from Theorem 5.7.
To prove that SI+DD-CLKR 6⊆ P-CLKR, DD-CLKR 6⊆ SI+DD-CLKR, SI-CLKR 6⊆
SI+DD-CLKR, SI-CLKR 6⊆ DD-CLKR, DD-CLKR 6⊆ SI-CLKR, CLKR 6⊆ DD-CLKR and
CLKR 6⊆ SI-CLKR it is enough to consider the credibility-limited revisions presented in
Example 5.5, attending to Definition 5.6, Theorem 5.7 and to the fact that every partial
meet revision is a kernel revision (Observation 3.6).

Proof that P-CLSKR ⊂ SI+DD-CLSKR, SI+DD-CLSKR ⊂ DD-CLSKR, SI+DD-
CLSKR ⊂ SI-CLSKR, DD-CLSKR 6⊆ SI-CLSKR, SI-CLSKR 6⊆ DD-CLSKR, DD-CLSKR
⊂ CLSKR and SI-CLSKR ⊂ CLSKR:
That P-CLSKR ⊆ SI+DD-CLSKR follows trivially from Theorem 5.9 and Observation 4.7.
That SI+DD-CLSKR ⊆ DD-CLSKR, SI+DD-CLSKR ⊆ SI-CLSKR, DD-CLSKR ⊆
CLSKR and SI-CLSKR ⊆ CLSKR follow trivially from Theorem 5.9.
To prove that SI+DD-CLSKR 6⊆ P-CLSKR, DD-CLSKR 6⊆ SI+DD-CLSKR, SI-CLSKR
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6⊆ SI+DD-CLSKR, SI-CLSKR 6⊆ DD-CLSKR, DD-CLSKR 6⊆ SI-CLSKR, CLSKR 6⊆
DD-CLSKR and CLSKR 6⊆ SI-CLSKR it is enough to consider the credibility-limited
revisions presented in Example 5.5, attending to Definition 5.8, Theorem 5.9 and to the
fact that every partial meet revision is a smooth kernel revision (Observation 3.6).

Proof that P-CLbAGMR ⊂ SI+DD-CLbAGMR, SI+DD-CLbAGMR ⊂ DD-
CLbAGMR, SI+DD-CLbAGMR ⊂ SI-CLbAGMR, DD-CLbAGMR 6⊆ SI-CLbAGMR,
SI-CLbAGMR 6⊆ DD-CLbAGMR, DD-CLbAGMR ⊂ CLbAGMR and SI-CLbAGMR ⊂
CLbAGMR:
That P-CLbAGMR ⊆ SI+DD-CLbAGMR follows trivially from Theorem 5.11 and
Observation 4.7.
That SI+DD-CLbAGMR ⊆ DD-CLbAGMR, SI+DD-CLbAGMR ⊆ SI-CLbAGMR,
DD-CLbAGMR ⊆ CLbAGMR and SI-CLbAGMR ⊆ CLbAGMR follow trivially from
Theorem 5.11.
To prove that SI+DD-CLbAGMR 6⊆ P-CLbAGMR, DD-CLbAGMR 6⊆ SI+DD-CLbAGMR,
SI-CLbAGMR 6⊆ SI+DD-CLbAGMR, SI-CLbAGMR 6⊆ DD-CLbAGMR, DD-CLbAGMR
6⊆ SI-CLbAGMR, CLbAGMR 6⊆ DD-CLbAGMR and CLbAGMR 6⊆ SI-CLbAGMR it is
enough to consider the credibility-limited revisions presented in Example 5.5, attending to
Definition 5.10, Theorem 5.11 and to the fact that every partial meet revision is a basic
AGM-generated base revision (Observation 3.6).

Proof of Observation 6.3.
It follows trivially from Observation 3.6 that CLPMR ⊆ CLSKR ⊆ CLKR, SI-CLPMR
⊆ SI-CLSKR ⊆ SI-CLKR, DD-CLPMR ⊆ DD-CLSKR ⊆ DD-CLKR, SI+DD-CLPMR ⊆
SI+DD-CLSKR ⊆ SI+DD-CLKR and P-CLPMR ⊆ P-CLSKR ⊆ P-CLKR.

That CLSKR 6⊆ CLPMR, SI-CLSKR 6⊆ SI-CLPMR, DD-CLSKR 6⊆ DD-CLPMR,
SI+DD-CLSKR 6⊆ SI+DD-CLPMR and P-CLSKR 6⊆ P-CLPMR, follows from Observation
6.1 and Example 6.2 (a) (see Footnote 20).

That CLKR 6⊆ CLSKR, SI-CLKR 6⊆ SI-CLSKR, DD-CLKR 6⊆ DD-CLSKR, SI+DD-
CLKR 6⊆ SI+DD-CLSKR and P-CLKR 6⊆ P-CLSKR, follows from Observation 6.1 and
Example 6.2 (b) (see Footnote 20).

Proof of Observation 6.5.
It follows trivially from Observation 3.6 that CLPMR ⊆ CLbAGMR, SI-CLPMR ⊆
SI-CLbAGMR, DD-CLPMR ⊆ DD-CLbAGMR, SI+DD-CLPMR ⊆ SI+DD-CLbAGMR
and P-CLPMR ⊆ P-CLbAGMR.
On the other hand, according to Example 6.4, P-CLbAGMR 6⊆ CLPMR and from this,
having in mind Observation 6.1, it follows that CLbAGMR 6⊆ CLPMR, SI-CLbAGMR 6⊆
SI-CLPMR, DD-CLbAGMR 6⊆ DD-CLPMR, SI+DD-CLbAGMR 6⊆ SI+DD-CLPMR and
P-CLbAGMR 6⊆ P-CLPMR.
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Proof of Observation 6.7.
According to Examples 6.4 and 6.6 it holds, respectively, that P-CLbAGMR 6⊆ CLKR and
that P-CLSKR 6⊆ CLbAGMR. Therefore it follows from Observations 6.1 and 6.3 that all
the statements of Observation 6.7 hold.
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