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Abstract

Symmetry-based pruning is a powerful method for reducing the search effort in finite-
domain planning. This method is based on exploiting an automorphism group connected
to the ground description of the planning task – these automorphisms are known as struc-
tural symmetries. In particular, we are interested in the StructSym problem where the
generators of this group are to be computed. It has been observed in practice that the
StructSym problem is surprisingly easy to solve. We explain this phenomenon by showing
that StructSym is GI-complete, i.e., the graph isomorphism problem is polynomial-time
equivalent to it and, consequently, solvable in quasi-polynomial time. This implies that it is
solvable substantially faster than most computationally hard problems encountered in AI.
We accompany this result by identifying natural restrictions of the planning task and its
causal graph that ensure that StructSym can be solved in polynomial time. Given that
the StructSym problem is GI-complete and thus solvable quite efficiently, it is interest-
ing to analyse if other symmetries (than those that are encompassed by the StructSym
problem) can be computed and/or analysed efficiently, too. To this end, we present a
highly negative result: checking whether there exists an automorphism of the state tran-
sition graph that maps one state s into another state t is a PSPACE-hard problem and,
consequently, at least as hard as the planning problem itself.

1. Introduction

Symmetries in a (natural or artificial) system can, mathematically speaking, be viewed as
the invariance of the system under certain transformations. When systems exhibit symmet-
ric structure, it is often possible to exploit this algebraic property to various ends. One of
the main usages of symmetries in computer science is symmetry breaking – it is a promi-
nent method for search-space reduction. The main idea behind symmetry breaking is to
divide the search space into clusters of similar states which allows the exploration of only
one representative state per cluster. The exploitation of this technique together with some
suitable search strategy may significantly reduce the total search effort.

We concentrate on symmetry breaking in finite-domain representation (FDR) planning
in this article. FDR planning is an interesting testbed for evaluating search-space reduc-
tion methods since there is an exponentially large number of states in the search-space.
Therefore, the search problem has high complexity (it is known to be PSPACE-complete,
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Bäckström & Nebel, 1995), and there are a multitude of problems that can be formu-
lated within this framework. Thus, task simplification becomes highly relevant and many
such methods have been proposed. Examples include partial order reduction (Wehrle &
Helmert, 2012), relevance analysis (Haslum, Helmert, & Jonsson, 2013), symmetry based
reductions (Röger, Sievers, & Katz, 2018), symmetry breaking, etc. In this work we concen-
trate on symmetry breaking in FDR planning. Research on this topic has been intensive
and has led to numerous results (Starke, 1991; Emerson & Sistla, 1996; Fox & Long, 1999;
Rintanen, 2003; Pochter, Zohar, & Rosenschein, 2011; Domshlak, Katz, & Shleyfman, 2012;
Gnad, Torralba, Shleyfman, & Hoffmann, 2017; Fǐser, Torralba, & Shleyfman, 2019). These
results rely on the computation of a certain kind of symmetries of the state transition graph
known as automorphisms. An automorphism of a graph is a bijective function from vertices
to vertices that maps edges into edges and non-edges into non-edges.

One of the problems with the approach is that symmetry detection is a complex problem.
One may illustrate this by the symmetries of the state transition graph of an FDR planning
task. Assume we want to compute all automorphisms of this graph. Given an instance with
n variables and domain size d, the state space contains dn vertices and up to (dn)! ≈ (dn/e)d

n

automorphisms. In many cases, it is sufficient to work with generators of the automorphism
group; however, up to dn − 1 generators are still required in the worst case. As a response
to this, research has focused on studying symmetries defined on compact representations of
the state space. The first notion of this kind of symmetries for FDR planing was proposed
by Pochter et al. (2011) and later refined by Domshlak et al. (2012). Shleyfman, Katz,
Helmert, Sievers, and Wehrle (2015) introduced the notion of structural symmetries that
captures the previously proposed concepts, and additionally can be derived from a given
planning task in a straightforward declarative manner.

Let StructSym denote the problem of computing the generators of the structural sym-
metries of FDR planning tasks. The main result of this article shows that StructSym
is a GI-complete problem, i.e., the graph isomorphism problem is polynomial-time equiv-
alent to it. The graph isomorphism problem has been intensively studied in complexity
theory due to its important applications, but it has resisted all attempts both at identi-
fying polynomial-time algorithms for it and at proving it being NP-hard. This may be
viewed as “bad news”, since there is a fair chance that the computation of structural sym-
metries cannot be performed in polynomial-time. However, StructSym is GI-complete
and, due to recent algorithmic results by Babai (2015)1, solvable in quasi-polynomial time.
A problem X is solvable in quasi-polynomial time if there exists a fixed constant c and an
algorithm for X running in O(2(logn)c) time. Just as the name suggests, problems solvable
in quasi-polynomial time may be viewed as problems that are very close to being solvable
in polynomial time, and it is highly conceivable that no NP-hard problem can be solved
in quasi-polynomial time. We note that many computational problems that appear in AI
have much higher time complexity under plausible assumptions. The strong exponential
time hypothesis (SETH) was introduced by Impagliazzo and Paturi (2001); it asserts that
the Boolean satisfiability problem cannot be solved in 2(1−ε)n time for any ε > 0. This
hypothesis implies that many computational problems cannot be solved in 2o(n) time and,

1. The history behind this result is a bit complicated since an error in the original proof was found by
Helfgott and it was later corrected by Babai. More details can be found in the reports by Helfgott,
Bajpai, and Dona (2017) and Babai (2016).
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consequently, not in quasi-polynomial time. One may, for example, note that STRIPS
planning can be solved in O(4n · poly(||Π||)) time (where n is the number of variables and
||Π|| denotes the size of the input instance), yet not in O(2cn) time for any c < 1 under
SETH (Bäckström & Jonsson, 2017). In light of this, our result should be viewed as “good
news” and the result is in line with empirical observations: the computation of structural
symmetries has proven to be very efficient in practice (Domshlak et al., 2012; Sievers, Röger,
Wehrle, & Katz, 2019).

Given that StructSym is solvable in quasi-polynomial time, it is still interesting to
identify subclasses that allow for polynomial-time computation. It may, for instance, be the
case that StructSym contains so large polynomial-time solvable fragments that the need
for the quasi-polynomial algorithm becomes rare in practice. This would imply that simpler
and/or more efficient algorithms can frequently be used. One idea for identifying tractable
fragments has its roots in the work by Shleyfman (2019). He addresses certain connections
between planning tasks, their corresponding causal graphs, and structural symmetries. This
work mostly concentrate on algebraic connections and not so much on computational im-
plications. We complement these results by showing that there are interesting connections
also from the computational side. In brief, we use the causal graph for identifying natu-
ral restrictions on planning tasks so that the computation of structural symmetries can be
performed in polynomial time.

We have earlier discussed that computing generators for the automorphism group of the
full state transition graph is a very time-consuming operation since the number of generators
is huge. At the same time, knowledge about the automorphisms of this graph may be highly
valuable for search-space reduction. In the final part of this article we study the complexity
of obtaining partial information about the automorphisms of the state transition graph. We
consider the following natural problem: given an FDR planning task and two states s, t,
is there an automorphism of the state transition graph that maps s to t? We prove that
this problem is PSPACE-hard and, thus, at least as hard as the planning problem itself.
This indicates that structural symmetries exhibit a good trade-off between complexity and
search-space reduction.

This article is structured as follows. We present some basic information about FDR
planning, the mathematical background, and symmetries in Section 2 and an introduction
to the Graph Isomorphism problem in Section 3. The GI-completeness proof can be
found in Section 4, we treat polynomial-time solvable special cases in Section 5, and we
study the complexity of computing more general symmetries in Section 6. We conclude the
paper with a brief discussion in Section 7. Some results presented in Section 4 are based on
a previous conference publication (Shleyfman, 2019).

2. Preliminaries

This section describes some background material that is used throughout the article: we
cover planning, group theory, and structural symmetries in the forthcoming three sections.
Before we begin, we need to introduce some basic mathematical concepts. A directed graph
(digraph for short) is a pair 〈N,E〉 where N is the finite set of vertices, and E ⊆ N2 is the
set of edges, where each edge is an ordered pair of vertices. A loop (sometimes referred as
self-loop) is a directed edge from a vertex to itself. An undirected graph is a pair 〈N,E〉
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where N , once again, is the set of vertices, and E ⊆ {e ⊆ N | |e| = 2} is the set of edges.
A labeled graph assumes that each edge has the form 〈n1, n2; l〉 where n1, n2 are vertices,
l ∈ L is a label, and L is a label set. In what follows, each graph that is not labeled is
considered to be a simple graph, that is, graph with no loops and no parallel edges. A
colored graph assumes a color function on the graph’s vertices, col : N → N. A path in
a graph is a finite sequence of distinct edges which joins a sequence of vertices. A simple
cycle is a non-empty path where the only coinciding vertices are the first and last one.
For a vertex n in the undirected graph G = 〈N,E〉 let deg(n) denote the degree of n, i.e.
|{{n′, n} ∈ E | n′ ∈ N}|, the degree of the graph G is deg(G) = max{deg(n) | n ∈ N}.
To avoid unnecessary reminders, the notion of deg of directed graphs is introduced in the
beginning of Section 5. Finally, we write i ∈ [k] as a shortcut for i ∈ {1, 2, . . . , k}, k ∈ N.

2.1 Deterministic Planning Tasks

A planning task consists of a description of states (via variables and their associated do-
mains), a set of state modifying actions, an initial state, and a goal. We adopt the widely
used FDR language for describing such tasks (e.g., Bäckström & Klein, 1991; Bäckström &
Nebel, 1995; Helmert, 2009). Notation and terminology mostly follow Helmert and Domsh-
lak (2009).

Definition 1. An FDR planning task is a 4-tuple Π = 〈V,O, s0, G〉, where:

• V is a finite set of state variables, with each variable v ∈ V being associated with its
finite domain D(v).

– Each complete assignment to V is called a state, and S =×v∈V D(v) is called
the state space of Π.

– A fact is a pair 〈v, d〉, where v ∈ V and d ∈ D(v), thus each variable v ∈ V can be
represented as a set of mutually exclusive facts Fv = {〈v, d〉 | d ∈ D(v)}. The set
of all facts will be denoted by F . A partial variable assignment is a set of facts,
each corresponding to a different variable. For a partial assignment (or a state)
p to a set of variables V, vars(p) ⊆ V denotes the subset of variables instantiated
by p, and, for v ∈ vars(p), p[v] denotes the value provided by p to the variable v.

• s0 is an initial state.

• The goal G is a partial assignment to V: A state s is a goal state iff G ⊆ s.

• O is a finite set of actions, each action o is given by a tuple 〈pre(o), eff(o), cost(o)〉,
where

– pre(o) and eff(o) are partial states and denote the precondition and the effect of
o, respectively, and

– cost : O → R0+ a function that assigns non-negative costs to actions.

The semantics of FDR actions is as follows: An action o is applicable in a state s iff
s[v] = pre(o)[v] for all v ∈ vars(pre(o)). If o is applicable in state s, then the application of
o changes the value of each v ∈ vars(eff(o)) to eff(o)[v], and the resulting state is denoted

1186



Complexity of Symmetries

by sJoK. Otherwise, the result is undefined. By O(s) ⊆ O we denote the set of actions
applicable in s.

A sequence of actions π = 〈o1, . . . , on〉 is a path that starts in s if, for i ∈ [n], oi is
applicable in state sJo1K . . . Joi−1K. The state resulting from applying such a sequence of
actions π in s is denoted by sJπK, and the cost of π is the cumulative cost of actions in the
sequence, i.e., cost(π) =

∑n
i=1 cost(oi). A path that starts in s0 and achieves G ⊆ sJπK is

called a plan for Π. A plan π is optimal if the sum of action costs in π is minimal among
all plans. (Optimal) planning aims at finding an (optimal) plan for Π.

A planning task Π implicitly induces a state transition graph TΠ. This is a labeled
digraph TΠ = 〈S,E〉, whose vertexes S are the states of Π, the set of labeled arcs E =
{〈s, sJoK; o〉 | s ∈ S, o ∈ O(s)}2 is induced by the actions of Π, and the cost function of the
labeled arcs cost : O → R0+ being induced by the action cost function as cost(s, sJoK; o) =
cost(o). The problem of finding a plan for Π is equivalent to finding a directed path in TΠ

from the vertex s0 to a vertex that corresponds to a goal state.

Planning tasks are often structurally complex and difficult to comprehend. One simpli-
fied way of visualizing them is causal graphs (e.g., Knoblock, 1994; Bacchus & Yang, 1994;
Jonsson & Bäckström, 1998; Domshlak & Brafman, 2002). We follow the definition given
by Helmert (2004): the causal graph of a planning task Π = 〈V,O, s0, G〉 is a directed graph
CGΠ = 〈N,E〉, where N = {nv | v ∈ V} and (nu, nv) ∈ E if u 6= v and there exists o ∈ O,
such that u ∈ vars(pre(o)) ∪ vars(eff(o)) and v ∈ vars(eff(o)). In a nutshell, the causal
graph contains an edge from a source variable to a target variable, if changing the value of
the target variable may depend on the value of the source variable.

2.2 Groups

Groups are frequently used in mathematics and elsewhere for describing symmetries of
various kinds. We refer the reader to Herstein (1975) for a more detailed exposition. A
group Γ is a pair (XΓ, ◦) where XΓ is a set and ◦ is a total function from XΓ ×XΓ to XΓ

that has the following properties.

1. For all a, b, c ∈ XΓ, (a ◦ b) ◦ c = a ◦ (b ◦ c).

2. There exists an element e ∈ XΓ (referred to as the identity element) such that, for
every element a in XΓ, e ◦ a = a ◦ e = a. We denote this element idΓ.

3. For each a in XΓ, there exists an element b in XΓ such that a ◦ b = b ◦ a = e, where e
is the identity element. The element b is often denoted a−1.

For increased readability, we sometimes write a ∈ Γ instead of a ∈ XΓ.

A concrete example (that we will encounter several times in the sequel) is the cyclic
group of order n. Consider a group Zn whose set of elements is the integers {0, . . . , n− 1}
and the operation is addition modulo n. The identity element of Zn is trivial, i.e., e = 0.
The inverse of element a is a−1 = (n − a) mod n, since (a + a−1) mod n = (a + n − a)
mod n = 0. A cyclic group of order n is a group that is isomorphic to Zn.

2. It is important to note that TΠ may contain a pair of arcs (s, sJoK; o) and (s, sJo′K; o′) such that sJoK = sJo′K
and o 6= o′.

1187



Shleyfman & Jonsson

Let Γ = (XΓ, ◦) denote an arbitrary group. A tuple Σ = (XΣ, ◦|XΣ
) is called a subgroup

of Γ if XΣ ⊆ XΓ and (XΣ, ◦|XΣ
) is a group where ◦|Σ is the restriction of ◦ to XΣ ×XΣ.

We let Σ ≤ Γ denote that Σ is a subgroup of Γ. Given a subset XS ⊆ XΓ, we let Gen(XS)
denote the elements g ∈ XΓ that can be finitely expressed by using the elements of XS

together with the operations ◦ and ·−1. The set Gen(XS) always defines a subgroup of Γ.
If XΓ = Gen(XS), then we say that XS generates Γ.

We now give a brief overview of automorphism groups that play a key role in this article.
Let G1 = 〈N1, E1〉 and G2 = 〈N2, E2〉 be two (di-)graphs, and let σ : N1 → N2 be a bijection.
We say that σ is a graph isomorphism (or simply isomorphism) when (n, n′) ∈ E1 if and
only if (σ(n), σ(n′)) ∈ E2. The graphs G1 and G2 are called isomorphic. The idea behind
graph isomorphisms can easily be lifted to other kinds of mathematical structures. An au-
tomorphism is an isomorphism from a mathematical object to itself. The automorphisms
of, for instance, a graph G = 〈N,E〉 are closed under function composition and every auto-
morphism has an inverse which is an automorphism, too. Thus, the automorphisms form a
group which we call an automorphism group and denote it by Aut(G). The automorphism
group of a graph G = 〈N,E〉 is known to be generated by a fairly small set of generators
that contains at most |N | − 1 elements. This can be seen as follows. A permutation group
is a group Γ = (XΓ, ◦) whose elements are permutations (viewed as bijective functions) of
some set and whose group operation is function composition. Let Sn denote the symmetric
group of order n, i.e. the permutation group containing all possible permutations over n
objects. Every group Aut(G) is a subgroup of S|N | since each automorphism σ ∈ Aut(G) is
a permutation of the |N | vertices of the graph G. Jerrum (1986) has presented an algorithm
(known as Jerrum’s filter) that, given a permutation group Γ ≤ Sn, produces a generating
set for Γ of size at most n− 1.

When investigating relations between automorphism groups of different structures, one
typically exploits various structure-preserving mappings. Let Γ = (X, ◦) and Σ = (Y, ∗)
be groups, and let φ : Γ → Σ be a mapping. If φ satisfies φ(a ◦ b) = φ(a) ∗ φ(b) for all
a, b ∈ Γ, then we say that φ is a homomorphism of Γ to Σ. One may note that if φ is a
homomorphism, then φ maps the identity element of Γ to the identity element of Σ and
φ(a−1) = φ(a)−1 for all a ∈ Γ.

If φ is a homomorphism that is bijective, then φ is called an isomorphism, while Γ and
Σ are called isomorphic. We denote this as Γ ∼= Σ or simply Γ = Σ. One may note that if
two graphs G1 and G2 are isomorphic, then their automorphism groups are isomorphic, too.

While bijective homomorphisms are useful for verifying that two groups have the same
structure, injective homomorphisms are useful for identifying subgroups. We need the
following well-known results (Herstein, 1975).

Theorem 1. Let Γ and Σ be groups and let φ : Γ → Σ be a homomorphism. If φ is an
injection, then there exists a subgroup Λ ≤ Σ such that Λ ∼= Γ. In this case, we will simply
write Γ ≤ Σ.

The kernel of a group homomorphism is an important concept in this context. In a
certain sense, the kernel measures the “non-injectivity” of a homomorphism.

Definition 2. Let Γ and Σ be two groups, and let φ : Γ → Σ be a group homomorphism.
The kernel of φ (ker(φ)) is the set φ−1(idΣ) or, equivalently, the set {x ∈ Γ | φ(x) = idΣ}.
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Theorem 2. Let Γ and Σ be groups, and let φ : Γ → Σ be a homomorphism. The homo-
morphism φ is injective if and only if ker(φ) = {idΓ}.

2.3 Structural Symmetries

This section introduces the notion of structural symmetries. In short, a structural symmetry
is a relabelling of a given planning task that preserves the structure of the underlying state
transition graph. We follow the definition of structural symmetries for FDR planning tasks
as defined by Wehrle et al. (2015). For a planning task Π = 〈V,O, s0, G〉, let F be the set
of Π’s facts, and let FV = {Fv | v ∈ V} be the set of sets of facts attributed to each variable
in V.

Definition 3. Let Π = 〈V,O, s0, G〉 be a planning task, and let σ : F ∪ O → F ∪ O be a
function that is a permutation on F and a permutation on O. We say that σ is a structural
symmetry if the following hold:

1. σ(FV) = FV ,

2. σ(O) = O, and, for all o ∈ O, σ(pre(o)) = pre(σ(o)), σ(eff(o)) = eff(σ(o)), and
cost(σ(o)) = cost(o), and

3. σ(G) = G.

We define the application of σ to a set X by σ(X) = {σ(x) | x ∈ X}, where σ is applied
recursively down to the level of action labels and facts. For example, let s be a partial state.
Thus, s can be represented as a set of facts. Applying σ to s will result in a partial state
s′, such that for all facts 〈v, d〉 ∈ s it holds that σ(〈v, d〉) = 〈v′, d′〉 ∈ s′ and s′[v′] = d′.

A set of structural symmetries Σ for a planning task Π induces a subgroup Γ of the
automorphism group Aut(TΠ), which in turn defines an equivalence relation over the states
S of Π. Namely, we say that s is symmetric to s′ iff there exists an automorphism σ ∈ Γ
such that σ(s) = s′. The group of all structural symmetries of Π will be denoted by Aut(Π).
We have the following central computational problem.

Problem. Structural Symmetry (StructSym)
Instance. A planning task Π.
Output. A set of generators S for Aut(Π) such that

|S| ≤ |O|+
∑
v∈V

(|D(v)|+ 1) .

The bound on the number of generators matches the number of vertices of the colored graph
that we introduce next.

The final concept we need is the problem description graph (PDG). PDGs were intro-
duced by Pochter et al. (2011), and later reformulated for different purposes by Domshlak et
al. (2012) and Shleyfman et al. (2015). Intuitively, a PDG is a colored graph that preserves
some structural properties of a given planning task. This properties allow to transform the
symmetries found in PDG into symmetries of the transition graph of this task.

In previous works, shifted action costs (c + cost(o), where c = 3 or 4) were used as
colors to distinguish between actions of different costs. This was no problem since costs in
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this setting were used only for distinguishing vertices. In this article, however, we need to
replace colors with graph gadgets (see Section 4) and this requires us to use colors that are
(1) integers and (2) these integers are not too large. To this end, we introduce an auxiliary
map on action costs. Note that this mapping of colors into integers does not change any
results that are given for PDGs in the literature.

Let CO be the number of unique costs of actions in the task Π, i.e. CO = |{cost(o) | o ∈
O}|. We define a function ord : O → [CO] to be be an order preserving function with respect
to costs, i.e., for o1, o2 ∈ O holds that cost(o1) ≤ cost(o2) implies that ord(o1) ≤ ord(o2).
The main properties of the function ord that we are interested in are

1. for o1, o2 ∈ O it holds cost(o1) = cost(o2) if and only if ord(o1) = ord(o2), and

2. for each o ∈ O it holds that ord(o) ≤ CO.

In the following definition the function ord will allow us to distinguish between action costs,
as well as operating within a reasonable bound on the number of colors we are coloring our
graph with.

Definition 4. Let Π be a FDR planning task. The problem description graph (PDG) of
Π is the colored directed graph PDGΠ = 〈N,E, col〉 with nodes

N = NV ∪
⋃
v∈V

ND(v) ∪NO,

where NV = {nv | v ∈ V}, ND(v) = {n〈v,d〉 | d ∈ D(v)}, and NO = {npre
o , neff

o | o ∈ O}. The
node colors are

col(n) =



0 if n ∈ NV
1 if n ∈

⋃
v∈V

ND(v) and 〈v, d〉 ∈ G

2 if n ∈
⋃
v∈V

ND(v) and 〈v, d〉 6∈ G

3 if npre
o ∈ NO

4 + ord(o) if neff
o ∈ NO,

and edges
E =

⋃
v∈V

Ev ∪
⋃
o∈O

(
Epre
o ∪ Eeff

o ∪ {npre
o , neff

o }
)
,

where Ev = {{nv, n〈v,d〉} | d ∈ D(v)}, Epre
o = {{npre

o , n〈v,d〉} | 〈v, d〉 ∈ pre(o)}, and Eeff
o =

{{n〈v,d〉, neff
o } | 〈v, d〉 ∈ eff(o)}} (see Figure 1).

Pochter et al. (2011) have considered PDG symmetries, i.e. symmetries of TΠ that are
induced by Aut(PDGΠ). Shleyfman et al. (2015) have shown that the structural symmetries
of Π (given some minor condition that are fulfilled via a preprocessing step) are in a one-
to-one correspondence with the PDG symmetries of Π. Later on, Shleyfman (2020) showed
that the following result holds even with no preprocessing.

Theorem 3. Let Π be an FDR planning task. Then, Aut(PDGΠ) and Aut(Π) are isomor-
phic.
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A B

pre eff

Move A,B

preeff
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Figure 1: Illustration of the example of a planning problem (a) planning problem
Π = 〈{〈Tr, A〉, 〈Tr, B〉}, {oMove A,B, oMove B,A}, {〈Tr, A〉}, {〈Tr, B〉}〉, with the ac-
tions oMove A,B = 〈{〈Tr, A〉}, {〈Tr, B〉}, 1〉 and oMove B,A = 〈{〈Tr, B〉}, {〈Tr, A〉}, 1〉
and (b) its PDG.

3. The Graph Isomorphism Problem

The goal of Sections 3 and 4 is to prove that the complexity of computing structural sym-
metries is polynomial-time equivalent to the Graph Isomorphism (GI) problem. We
introduce GI and some related problems in this section while our reductions are presented
in Section 4. GI is the well-known decision problem of determining whether two finite
undirected graphs are isomorphic or not.

Problem. Graph Isomorphsim
Instance. Two undirected graphs G1 and G2.
Question. Do G1 and G2 admit an isomorphism?

This problem has a special status in complexity theory since it is neither known to be
solvable in polynomial time nor to be NP-complete. We elaborate upon this in Section 3.1.
The reductions in Section 4 are not directly based on GI but on two auxiliary problems
AGEN and CAGEN. These problems and some connections with GI are discussed in
Section 3.2.

3.1 Complexity Background

We begin this section by recapitulating the definition of Turing reductions. Such reductions
will be the basis for many of the forthcoming results. A Turing reduction from a decision
problem X to a decision problem Y is an oracle machine which decides problem X given an
oracle for the problem Y . In other words, it can be viewed as an algorithm that solves X
by exploiting an algorithm for solving Y as a subroutine. This idea can analogously be used
for function problems. Furthermore, we say that a problem X is polynomial-time Turing
reducible to Y if the algorithm for solving X runs in polynomial time and we denote this by
X ≤p Y . An important consequence is that if X ≤p Y and Y is polynomial-time solvable,
then X is polynomial-time solvable, too. If two problems are polynomial-time reducible to
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each other, then we say that these problems are polynomial-time Turing equivalent and we
denote this by X =p Y . All reductions in this article are Turing reductions so we typically
use the term reduction instead of Turing reduction.

The GI problem defines a complexity class in a natural way: we let GI denote the
set of problems that are polynomial-time reducible to GI and we say that a problem is
GI-complete if it is polynomial-time equivalent to GI. It is well-known that GI is in
NP and consequently that GI ⊆ NP, but no polynomial-time algorithm is known for
GI. However, there exist surprisingly efficient algorithms for GI and GI is polynomial-
time solvable for important classes of graphs such as trees (Kelly, 1957), bounded-degree
graphs (Luks, 1982), and planar graphs (Hopcroft & Wong, 1974). On the other hand, every
attempt to prove that GI is NP-complete has failed and it appears that GI is of a much
more constrained nature than other NP-complete problems (Schöning, 1987). Assuming
that P 6= NP, Ladner’s theorem (Ladner, 1975) shows that there are problems (referred to
as NP-intermediate) in NP that are neither polynomial-time solvable nor NP-complete.
One may speculate that GI is one of the problems that are NP-intermediate: supporting
evidence of this hypothesis is the fact that GI cannot be NP-complete unless the polynomial
time hierarchy collapses to its second level (Schöning, 1987).

From an algorithmic point of view, Babai (2015) has shown that GI can be solved
in quasi-polynomial time, i.e., in time bounded by 2((logn)c) for some fixed c. Quasi-
polynomiality works very well in combination with polynomial-time reductions: if X ≤p Y
and Y is solvable in quasi-polynomial time, then so is X (with the immediate implication
that every problem in GI is solvable in quasi-polynomial time). This property is, for exam-
ple, not shared by problems that are solvable in single-exponential 2O(n) time (such as the
Boolean satisfiability problem): the fact that X ≤p Y and Y is solvable in single-exponential
time does not imply that X is solvable in single-exponential time.

3.2 Problems Related to GI

We will now introduce two problems that are related to graph isomorphisms: AGEN and
CAGEN. Instead of directly using GI for proving the complexity of the structural symme-
try problem StructSym, we will use CAGEN for proving that StructSym is a member
of GI and AGEN for proving GI-hardness of StructSym.

In the automorphism generation problem AGEN the input is an undirected graph G
and the output is a set of generators for Aut(G). The following is a first attempt to define
this problem.

Problem. Automorphism Generation (AGEN)
Instance. An undirected graph G.
Output. A set of generators for the automorphisms of G.

We see that this definition is unsatisfactory since there is no bound on the size of
generators. This implies that the output may contain n! generators in the worst case: the
empty graph on n vertices has n! automorphisms and this set is trivially a generating set.
We thus reformulate AGEN as follows.
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Problem. Automorphism Generation (AGEN)
Instance. An undirected graph G = 〈N,E〉.
Output. A set |S| of generators for the automorphisms of G such that |S| ≤ |N |.

It is known that the second version of the problem is GI-complete via a result by
Mathon (1979). Note that the bound |N | is presented in the proof of the result but it is not
stated in the formulation of the theorem. We will exclusively use the second formulation of
AGEN in the sequel.

PDGs are colored graphs so we will be highly interested in color-preserving automor-
phisms in the sequel. Consider a colored graph G = 〈N,E, col〉. An automorphism α of G
is color-preserving if col(α(n)) = col(n) for every n ∈ N . The AGEN problem can readily
be generalized to colored graphs.

Problem. Colored Automorphism Generation (CAGEN)
Instance. An undirected colored graph G = 〈N,E〉.
Output. A set S of generators for the color-preserving automorphisms of G such that
|S| ≤ |N |.

We continue by taking a closer look at the AGEN problem. As pointed out earlier,
Mathon (1979) has proved the following result.

Theorem 4. GI =p AGEN.

Mathon’s reductions are based on colored graphs, and he exploits methods for reducing
problems on colored graphs to problems on non-colored graphs. Many details are unfor-
tunately excluded in Mathon’s two-page paper so there is not a full specification of how
to handle colored graphs. This is problematic for several reasons in our setting. First of
all, PDGs are indeed colored graphs and we cannot exploit algorithms for (uncolored) GI
unless we know exactly how to simulate colours. This is obvious from the correctness point
of view, yet it is also important from the complexity point of view: we do not want our
constructions to blow up graph size too much. Secondly, we will later on (in Section 5)
study PDGs with bounded degree. Once again, we need to know how the simulation of
colours work, since we need to keep the degree bounded. One should note that Mathon’s
proof has caused some confusion in the literature, for example, Ghosh and Kurur (2014, p.
5) attempt to prove CAGEN =p GI by adding one-path labels to the graph (see Figure 2).

We continue by explaining the problem with Mathon’s proof in greater detail – this will
make it easier for the reader to appreciate the construction that we present in Section 4.
We begin with a few definitions. Let G = 〈N,E〉 denote an arbitrary graph and let Γ be
its automorphism group Aut(G). For a vertex n ∈ N we denote by Γn the automorphism
group that fixes n, i.e., {σ ∈ Γ | σ(n) = n}. The group Γn1,...,nk

is defined by recursively
fixing the vertices n1, . . . , nk ∈ N , i.e., Γn1,n2 = (Γn1)n2

. For m ∈ N we define a path graph
by Pm = 〈Nm, Em〉, where

Nm = {ni | i ∈ [m]} and Em = {{ni, ni+1} ⊆ Nm | i ∈ [m− 1]}.

A path graph on vertices n0, . . . , nm is depicted in the lower part of Figure 2. For a graph
G = 〈N,E〉, and a vertex n ∈ N and a positive number m ∈ N, we define G〈n,Pm〉 =
〈N ∪ Pm, E ∪ Em ∪ {n, n1}〉.

Let us now consider the beginning of the proof of the Theorem in Mathon (1979).
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Proof. We require the definition of graph labels. Let Gn1,...,nk
denote a copy

of G with unique distinct labels attached to the vertices n1, . . . , nk ∈ N . This
can be accomplished for example by adding paths of appropriate length to the
ni’s. (...)

The goal of this construction is to assure that two nodes with different labels (which
we call colors) can never be isomorphic. This is achieved by appending extra structures (in
this case paths) to the vertices of the original graph. Formally, Mathon aims at proving
Aut(Gn1,...,nk

) = Γn1,...,nk
for any set of vertices n1, . . . , nk ∈ N and Γ = Aut(G). However,

it is not obvious how to add paths that achieve this. Let us, for instance, consider

Gn1,...,nk
= G〈n1,P 1

m1
〉,...,〈nk,Pk

mk
〉,

where P imi
∩ P jmj = ∅ for i, j ∈ [k], i 6= j, that is, each path is unique and attached to a

specific graph vertex.

Let us look at the graph G = 〈{n0}, ∅〉. It is easy to see that G〈n0,Pm〉 = Pm+1 for
any m ∈ N (see Figure 2). Note also that the automorphism group of G is trivial, i.e.,
Aut(G) = {e}. On the other hand, Aut(Pm+1) = Z2 where Z2 is the cyclic group of order
two.

G

n0

G〈v,Pm〉

n0 n1 nm−1 nm

Figure 2: The addition of one path.

From the phrase “This can be accomplished for example by adding paths of appropriate
length to the ni’s.” it may follow that more than one path can be attached to a specific
vertex. Two paths are still not enough here, since for the same graph G = 〈{n0}, ∅〉,
the graph that fixes n0 is Gn0 = G〈n0,P 1

m1
〉,〈n0,P 2

m2
〉. Once again, it is easy to see that

Aut(G〈n0,P 1
m1
〉,〈n0,P 2

m2
〉) = Z2 (see Figure 3).

G〈n0,P 1
m1
〉,〈n0,P 2

m2
〉

n1
m1

n1
1

n0 n2
1 n2

m2

Figure 3: The addition of two paths.
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The statement Aut(Gn1,...,nk
) = Γn1,...,nk

should hold for three paths attached to a single
vertex, i.e.,

Gn1,...,nk
= G〈n1,P 1

m〉,〈n1,P 2
m+1〉,〈n1,P 3

m+2〉,...,〈nk,P
3k+1
m 〉,〈nk,P

3k+2
m+1 〉,〈nk,P

3k+3
m+1+k〉

,

where |N | = m. The proof of this statement, however, is somewhat harder than the con-
struction that we present in the next section and it introduces a larger number of auxiliary
vertices.

4. Complexity of Computing Symmetries

The goal of this section is to prove that StructSym is polynomial-time equivalent to GI.
The section is divided into two parts where the first part (Section 4.1) presents a reduction
from StructSym to GI and the second part (Section 4.2) presents a reduction in the
opposite direction. Most of Section 4.2 is devoted to proving that CAGEN =p GI – the
inclusion of StructSym in GI is a fairly direct consequence of this result. The GI-hardness
result in Section 4.2 is based on a reduction from AGEN. To this end, we exploit a method
by Zemlyachenko et al. (1985) that transforms any undirected graph G into a directed
graph G′ such that G and G′ have the same automorphisms, and we introduce a method
that transform any directed graph G′ into a planning task whose structural symmetries are
in a one-to-one correspondence with the automorphisms of G′.

4.1 Computation of Structural Symmetries

We will now prove that the StructSym problem can be polynomial-time reduced to GI.
The basic idea is to view planning tasks as PDGs and to use CAGEN as an intermediate
problem. Our aim is to simulate colors in a graph by adding a particular form of subgrapshs
with certain properties, denoted label structures, that prevent nodes with different colors
from being isomorphic, i.e. the label structure Lik can be interpreted as the assignment of
color i to vertex nk. The following definition is the cornerstone of our approach.

Definition 5. Let G = 〈N,E〉 be a undirected graph with N = {nk | k ∈ [m]}. We define a
label structure to be a graph Lik = 〈N i

k, E
i
k〉 such that

N i
k = {nkj | j ∈ [m+ 4]},

Eik = {{nkj , nkj+1} | j ∈ [m+ 2]}∪
{{nk1, nkm+3}, {nkm+1, n

k
m+3}, {nki , nkm+4}},

where i, k ∈ [m]. The attachment of label Lik to vertex nk ∈ N is defined to be the graph
Gni

k
= 〈N ∪N i

k, E ∪ Eik ∪ {{nk, nkm+3}}〉 (see Figure 4).

Analogously, we define the graph G
n
i1
1 ,...,n

ik
k

to be G where we have attached labels Litnt
to

vertices nt ∈ N for all t ∈ [k], where it ∈ [m]. By construction, the order of the vertices is
irrelevant. Note also that we, without loss of generality, allow each original vertex n ∈ N
to have at most one label attached to it.

Given an arbitrary graph G and a graph G′ that is a full assignment of labels to all
vertices of G, we see that the degree of G′ is max{4, 1 + deg G}. Furthermore, G′ contains at
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nk1

nki

nkm

nkm+4

nkm+1

nkm+2

nkm+3

nk

G

Lik

Figure 4: Label Lik is attached to a vertex nk in some graph G.

most n2 + 5n vertices if G contains n vertices. We will now show that labels indeed behave
as colors by proving the following result.

Lemma 1. Let G = 〈N,E〉 be an undirected graph with N = {nk | k ∈ [m]} and let
col : N → [m] be a coloring function. We let Gc = 〈N,E, col〉 denote the colored version of G.

Define G′ = G
n

col(n1)
1 ,n

col(n2)
2 ,...,n

col(nm)
m

to be the uncolored graph with the labels Lcol(n1)
1 ,Lcol(n2)

2 ,

. . ., Lcol(nm)
m attached to all vertices n1, n2, . . . , nm of the graph G. Then, Aut(Gc) = Aut(G′).

The proof is based on two auxiliary lemmas that we present below. Let G be an undi-
rected graph and let G′ be the graph where some of the vertices of G has been colored
by introducing labels. In the next lemma we prove that there is an injective homomor-
phism from Aut(G′) to Aut(G) and, consequently, that Aut(G′) is a subgroup of Aut(G) by
Theorem 1. Furthermore, this homomorphism preserves the colors that are implied by the
labelings. Labels are based on cycles so we frequently need to reason about cycles in graph.
This is facilitated by the following definition: let

Ck(N) = {n ∈ N | n belongs to a simple cycle of length k}.

Note that Ck(N) is not itself a cycle but the set of all vertices in N that are contained in
some simple cycle of length k.

Lemma 2. Let G = 〈N,E〉 be an undirected graph with N = {nj | j ∈ [m]} and let

G′ = G
n
i1
1 ,n

i2
2 ,...,n

ik
k

be a graph G with k ∈ [m] labels Li11 ,L
i2
2 , . . . ,L

ik
k attached to the vertices

n1, n2, . . . , nk, respectively. Then,
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1. the function φ : Aut(G′) ≤ Aut(G) defined such that φ(σ) = σ|N is an injective
homomorphism, and

2. for arbitrary σ ∈ Aut(G′) and for all t, t′ ∈ [k], it holds that σ(nt) = nt′ =⇒ it = it′.

Proof. We begin by making a few useful observations. Denote G′ = 〈N ′, E′〉. Note that
N ∩ Cm+3(N ′) = ∅ since G has exactly m vertices and none of the vertices in N can be a
part of a simple cycle of size m+ 3; the label structures are not interconnected and each of
these structures is connected to G by exactly one edge. Note also that there are exactly 2k
vertices of distance 1 from Cm+3(N ′). For label Litt these vertices are ntm+4 and nt. These
vertices cannot be mapped to each other by any isomorphism since they are connected to
the m + 3 cycle by the edges {ntm+4, n

t
i}, {ntm+3, nt}, respectively, and for the connection

vertices we have 3 = deg nti 6= deg ntm+3 = 4.

We continue by showing that φ is an homomorphism. Arbitrarily choose σ in Aut(G′).
We have σ(N it

t ) ∩N = ∅ for t ∈ [k] which implies

σ

⋃
t∈[k]

N it
t

 =
⋃
t∈[k]

N it
t ,

since automorphisms preserve vertex degrees. This observation implies that σ(N) = N .
Now consider the function φ : Aut(G′) → Aut(G) where φ(σ) = σ|N . Note that since

σ is an automorphism of G′ that admits σ(N) = N ⊆ N ′ and G is a subgraph of G′, the
restriction σ|N is an automorphism of G. Moreover, composition is preserved by φ so it is
a group homomorphism. Next, we show that φ is an injection. We use Theorem 2 for this:
the homomorphism φ is injective if and only if its kernel is trivial, that is, ker(φ) = {e′}
where e′ is the identity element of Aut(G′). We denote the identity element of Aut(G) by e.

Thus, let σ|N = e. Then σ(N it
t ) = N it

t for each t ∈ [k]. This follows directly from the
fact that each label is connected to the original graph by exactly one edge. Note that

deg ntit = deg ntm+1 = 3, and deg ntm+4 = 1,deg ntm+3 = 4,

while all other vertices in N it
t have degree 2. This, in turn, implies that

σ(ntm+4) = ntm+4, and σ(ntm+3) = ntm+3.

Since automorphisms preserve distances and cycles, and ntm+1 ∈ C3(N ′) and ntit /∈ C3(N ′),
we have

σ(ntm+1) = ntm+1, and σ(ntit) = ntit .

The rest of the vertices are fixed due to distance preservation, i.e., for all j ∈ [m + 4], it
holds that σ(ntj) = ntj for arbitrary t ∈ [k]. It follows that σ = e′. We conclude that
Aut(G′) ≤ Aut(G).

Next, let nt and nt′ be two vertices in G attached to labels Litt and Lit′t′ , respectively.
Arbitrarily choose σ ∈ Aut(G′) such that σ(nt) = nt′ . Since each vertex is attached to at

most one label, we see that σ(N it
t ) = N

it′
t′ . By the same arguments used in the previous

paragraph, there is one vertex per label that is both of degree 3 and does not belong to
a cycle of size 3, these vertices are ntit and nt

′
it′

. Consequently, we have σ(ntit) = nt
′
it′

and
it = it′ .
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Assume now that G′ is a fully colored version of G, i.e. every vertex in G has been
decorated with a label. Under this assumption, the next lemma can be viewed as a converse
of Lemma 2: every automorphism of G that preserves the colors implied by the labels can
be extended to an automorphism of G′.

Lemma 3. Let G′ = G
n
i1
1 ,...,n

im
m

be a (fully) labeled graph with the labels Li11 , . . . ,Limm attached

to all vertices n1, . . . , nm of the graph G. Arbitrarily choose σ in Aut(G) such that σ(nt) =
nt′ implies it = it′. Then, σ can be extended to σ′ ∈ Aut(G′) and the mapping ·′ is an
injective homomorphism from Aut(G) to Aut(G′).

Proof. Let G = 〈N,E〉 be an undirectd graph and let G′ = 〈N ′, E′〉 be its fully labeled
extension described above. For a color preserving automorphism σ ∈ Aut(G), we define its
extension σ′ to the labeled graphs G′ as follows:

1. for arbitrary nt ∈ N , let σ′(nt) = σ(nt), and

2. for all t ∈ [m] and for all j ∈ [m+ 4], let σ′(ntj) = nt
′
j where σ(nt) = nt′ .

We first note that σ′ is a permutation of N ′ since σ is a permutation of N . This follows
directly from point 2. Next, by point 1, we see that σ′ preserves the edges in G, i.e., if
{n, n′} ∈ E, then {σ′(n), σ′(n′)} ∈ E, too. Furthermore, we know that σ(nt) = nt′ =⇒
it = it′ so σ′ preserves the edges in the label structure Lit′t′ , t′ ∈ [m]. Finally, by point 1 and

point 2, we have that σ′({nt, ntm+3}) = {nt′ , nt
′
m+3}. Hence, σ′ is a permutation of N ′ that

preserves all edges in E′ so it is an automorphism.

We next show that the mapping ·′ is an injective homomorphism. We begin by verifying
its injectivity. Arbitrarily choose distinct σ, ψ ∈ Aut(G) and assume to the contrary that
σ′ = ψ′. Choose an element n ∈ N such that σ(n) 6= ψ(n). By the definition of ·′,
σ′(n) 6= ψ′(n), too, and this contradicts that σ′ = ψ′.

We continue by proving that ·′ is a group homomorphism. Arbitrarily choose σ, ψ ∈
Aut(G). We verify that σ′ ◦ ψ′ = (σ ◦ ψ)′. Arbitrarily choose a vertex n′ ∈ N ′. If n′ ∈ N ,
then σ′(n′) = σ(n′) and ψ′(n′) = ψ(n′) so both (σ′◦ψ′)(n′) and (σ◦ψ)′(n) equals (σ◦ψ)(n′).
If n′ 6∈ N , then n′ = ntj where t ∈ [m] and j ∈ [m + 4]. In this case, σ′(ntj) = nt1j where

σ(nt) = nt1 and ψ′(ntj) = nt1j where ψ(nt) = nt1 . Hence, it holds that

(σ′ ◦ ψ′)(ntj) = σ′(ψ′(ntj)) = σ′(nt1j ) = nt2j ,

where σ(nt1) = nt2 . Let τ = σ ◦ ψ and note that

(σ ◦ ψ)′(ntj) = τ ′(ntj) = nt3j ,

where τ(nt) = nt3 . We know that σ(nt1) = nt2 and ψ(nt) = nt1 so nt2 = σ(ψ(nt)) = τ(nt) =
nt3 . We conclude that nt2j = nt3j and (σ′◦ψ′)(ntj) = (σ◦ψ)′(ntj). It follows that (σ′◦ψ′)(n′) =
(σ ◦ ψ)′(n′) for arbitrary σ, ψ ∈ Aut(G) and n′ ∈ N ′ so ·′ is a homomorphism.

We now have the tools needed for proving Lemma 1.
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Proof. (of Lemma 1) We demonstrate this by showing that there is an inclusion from Aut(G′)
to Aut(Gc) and backwards. This implies that Aut(G′) and Aut(Gc) are isomorphic.

By Lemma 2(1) we know that the function ψ : Aut(G′)→ Aut(Gc) defined by ψ(σ) = σ|N
is an injective homomorphism. By Lemma 2(2), we know that ψ is color preserving over
G. Thus, ψ is an injective homomorphism from Aut(G′) to Aut(Gc) and we conclude that
Aut(G′) ≤ Aut(Gc) by Theorem 1.

We show the other direction. Arbitrarily choose σ ∈ Aut(Gc). Since σ must preserve
colors, we have that σ(nt) = nt′ implies col(nt) = col(nt′). By Lemma 3, there is an
extension of σ to σ′ ∈ Aut(G′) and the mapping ·′ is an injective homomorphism. Hence,
Aut(Gc) ≤ Aut(G′) by Theorem 1.

Lemma 1 provides a simple way of proving that CAGEN and GI are polynomial-time
equivalent problems. We first note that the function ψ : Aut(G′) → Aut(Gc) defined by
ψ(σ) = σ|N is surjective and, consequently, an isomorphism between Aut(G′) and Aut(Gc).
Assume there is an automorphism α in Aut(Gc) such that there is no β ∈ Aut(G′) with
ψ(β) = α. Every automorphism in Aut(Gc) is color-preserving so α(nt) = nt′ =⇒ col(nt) =
col(nt′). This implies that α′ ∈ Aut(G′) where ·′ is the operation used in Lemma 3. However,
ψ(α′) = α by definition and this leads to a contradiction.

Lemma 4. CAGEN =p GI.

Proof. CAGEN ≤p AGEN : Let Gc = 〈G, col〉 be a colored graph, where G = 〈N,E〉
is an undirected graph with |N | = m, and col : N → [m] is a coloring function. The
uncolored graph G′ = G

n
col(n1)
1 ,...,n

col(nm)
m

can be computed in polynomial time and it contains

at most |N |2 + 5|N | nodes (as was observed immediately after Definition 5). We know that
Aut(Gc) = Aut(G′) by Lemma 1 so the CAGEN problem for Gc can be solved by solving
AGEN for G′. The set of generators S = {α1, . . . , αk} that is returned contains at most
|N |2 + 5|N | elements. The tighter bound of |N | generators that are used in the definition
of the CAGEN problem can be obtained as follows. By Lemma 2, we have that for every
σ ∈ Aut(G′) it holds that for every vertex n ∈ N , σ(n) = m implies that m ∈ N and
that the label Ln attached to n is uniquely mapped by σ to the label Lm attached to m.
This implies that it is enough to check only the vertices of the graph G, which, in turn,
implies that k ≤ |N |. We know that the function ψ(σ) = σ|N is an isomorphism between
Aut(Gc) and Aut(G′). Thus, the set S′ = {ψ(α1), . . . , ψ(αk)} is a set of generators for Gc, it
contains at most |N | elements, and it can be computed in polynomial time. Hence, there
is a polynomial-time reduction from CAGEN to AGEN.

AGEN ≤p GI : This follows directly from the fact that AGEN =p GI (Theorem 4).

GI ≤p CAGEN : Let G1 = 〈N1, E1〉 and G2 = 〈N2, E2〉 be two undirected graphs. Assume
without loss of generality that N1 ∩ N2 = ∅. Define a colored graph Gc = 〈G1 ∪ G2, col〉
where col assigns the same color to all vertices. Compute CAGEN for the graph Gc. This
results in a set of generators for Aut(Gc) whose size is polynomially bounded in the size of
Gc. For each generator σ, check if there exists n ∈ N1 such that σ(n) ∈ N2. If this is the
case, then accept and otherwise reject.

The main result of this section is an immediate consequence of the previous lemma.
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Theorem 5. StructSym is polynomial-time Turing reducible to GI.

Proof. The generators of Aut(Π) are per definition the generators of Aut(PDGΠ) as was
pointed out at the end of Section 2.3. We know that PDGΠ is a colored undirected graph
so the problem of computing the generators of Aut(PDGΠ) is in GI by Lemma 4.

4.2 Hardness of Computing Structural Symmetries

The goal of this section is to prove GI-hardness of StructSym. We will see (in Theorem 6)
that this result holds even for severely restricted planning tasks. Thus, we will tacitly assume
that every action has cost 1 and that every variable has domain D2 = {0, 1} throughout
this section.

The basic strategy for the hardness proof is to transform (in polynomial time) directed
graphs G into planning tasks Π such that Aut(G) and Aut(Π) are isomorphic. Such a trans-
formation allow us to transform AGEN into StructSym and thus prove GI-hardness; the
fact that AGEN is only defined for undirected graphs can be overcome by a method sug-
gested by Zemlyachenko et al. (1985). The transformation of directed graphs into planning
tasks is presented in Lemma 6. The transformation itself is straightforward but proving
that it has the required properties needs some work. To simplify the analysis of this trans-
formation, we exploit the causal graph of Π and divide the correctness proof into two steps:
we first prove that Aut(CGΠ) = Aut(G) and then that Aut(CGΠ) = Aut(Π). The first
isomorphism holds almost trivially given the construction of Π but the second isomorphism
requires some effort. To show the second isomorphism, we introduce a homomorphism Φ
from the structural symmetries of a planning task to the automorphism group of its causal
graph. This homomorphism is not bijective in general but we prove that this is indeed the
case when considering planning tasks that are the result of our transformation. This im-
plies that Aut(CGΠ) = Aut(Π) since bijective homomorphisms (i.e. isomorphisms) preserve
automorphims groups (as was discussed in Section 2.2).

We begin by introducing the mapping Φ and we prove in Lemma 5 that it is a ho-
momorphism from Aut(Π) to Aut(CGΠ) for every planning task Π. In order to describe
Φ, arbitrarily choose a planning task Π = 〈V,O, s0, G〉 and pick σ ∈ Aut(Π). The func-
tion σ is a permutation on F ∪ O that maps facts to facts and actions to actions. We
connect σ to the set of variables V via the following observation: each variable v can be
represented by the set of facts Fv (as defined in Section 2.1). With this viewpoint, we let
σ(v) = {σ(〈v, d〉) | d ∈ D(v)} for v ∈ V. It follows that σ(Fv) = Fu for some u ∈ V and it
makes sense to impose a restriction on σ such that σ̄(v) = u. The map σ̄ is formally defined
in the proof of Lemma 5 (see below). Under this convention, we can view σ̄ as a permutation
on V, since by Definition 3 we have that σ(FV) = FV . For each variable v ∈ V, we let nv
denote the corresponding vertex in CGΠ and we define the mapping l(Fv) = nv. Finally,
we define the mapping Φ from Aut(Π) to Aut(CGΠ) as follows: Φ(σ)(nv) = l(σ(Fv)) for
every vertex nv in CGΠ.

Lemma 5. The mapping Φ is a homomorphism from Aut(Π) to Aut(CGΠ) for every plan-
ning task Π.

Proof. Arbitrarily choose a planning task Π = 〈V,O, s0, G〉 and assume CGΠ = (N,E)
where N = {nv | v ∈ V}. Let Ω(V) be the group of all possible permutations over the
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variables of the planning task Π. We prove the claim by chaining two homomorphisms,
Aut(Π)→ Γ→ Aut(CGΠ), where Γ is a subgroup of Ω(V).

First, let us note that a structural symmetry σ maps a set of facts associated with one
variable to a set of facts that are associated with another (not necessarily different) vari-
able, i.e., σ(FV) = FV . This definition, unfortunately, makes the reasoning about variable
symmetries cumbersome. To avoid unnecessary complications in notation we introduce a
bijective function vl : FV → V such that vl(Fv) = v that maps a set of variable facts to their
variable label. For σ ∈ Aut(Π), define σ̄ ∈ Ω(V) as σ̄(v) = vl ◦ σ ◦ vl−1(v). Say σ(Fv) = Fu,
then we have

1. σ̄(v) = vl ◦ σ ◦ vl−1(v) = vl ◦ σ(Fv) = vl(Fu) = u, and

2. σ̄1 ◦ σ̄2 = vl ◦ σ1 ◦ vl−1 ◦ vl ◦ σ2 ◦ vl−1 = vl ◦ σ1 ◦ σ2 ◦ vl−1 = σ1 ◦ σ2 ∈ Ω(V).

I.e., the map is well-defined and closed under composition, which implies ·̄ : Aut(Π) →
Γ ≤ Ω(V) is a group homomorphism (see Section 2.2). We have that Γ is indeed a group,
since it is a homomorphic image of a group. Thus, we defined σ̄ that allows us to reason
directly about the indices of the causal graph CGΠ while still preserving the automorphism
structure imposed by structural symmetries. Hence, for a causal graph vertex nv we can
write Φ(σ)(nv) = l(σ(Fv)) = nσ̄(v).

Next, let us show that if σ ∈ Aut(Π), then Φ(σ) is in Aut(CGΠ); in other words,
for every σ ∈ Aut(Π), (nu, nv) ∈ E ⇔ (Φ(σ)(nv),Φ(σ)(nu)) ∈ E. We first show that if
(nu, nv) ∈ E, then (Φ(σ)(nu),Φ(σ)(nv)) ∈ E, too. For each edge (nu, nv) ∈ E, there exists
an o ∈ O such that u ∈ vars(pre(o))∪ vars(eff(o)) and v ∈ vars(eff(o)). Therefore, for each
σ ∈ Aut(Π) it holds that σ̄(u) ∈ vars(pre(σ(o)))∪vars(eff(σ(o))) and σ̄(v) ∈ vars(eff(σ(o)))
so (nσ̄(u), nσ̄(v)) ∈ E. We conclude that

(nu, nv) ∈ E ⇒ (nσ̄(u), nσ̄(v)) ∈ E ⇒ (l(σ(Fu)), l(σ(Fv))) ∈ E ⇒ (Φ(σ)(nu),Φ(σ)(nv)) ∈ E.

Assume instead that (Φ(σ)(nu),Φ(σ)(nv)) ∈ E. We see that

(Φ(σ)(nu),Φ(σ)(nv)) ∈ E ⇒ (nσ̄(u), nσ̄(v)) ∈ E ⇒ (nu, nv) ∈ E.

Next, we verify that Φ(σ1)◦Φ(σ2)(nv) = (Φ(σ1 ◦σ2))(nv) for arbitrary σ1, σ2 ∈ Aut(Π) and
v ∈ V:

(Φ(σ1 ◦ σ2))(nv) = nσ1◦σ2(v) = nσ̄1◦σ̄2(v) = Φ(σ1)(nσ̄2(v)) = Φ(σ1) ◦ Φ(σ2)(nv).

We continue by proving that for every directed graph G, there exists a planning task Π
such that Aut(G) = Aut(Π). The homomorphism Φ is the key for proving that these two
automorphism groups are isomorphic.

Lemma 6. Let G be a directed graph. Then, there exists a planning task Π such that
Aut(G) = Aut(Π) and Π can be computed in polynomial time.
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Proof. Given a directed graph G = 〈N,E〉, we construct a planning task Π = 〈V,O, s0, G〉
that satisfies the conditions of the lemma. Let V = {v | v ∈ N} with D(v) = D2 for
each v ∈ N , i.e., F = V × D2. For arbitrary u, v ∈ V, we define the actions ov:0→v:1 =
〈{〈v, 0〉}, {〈v, 1〉}〉 and ou:0→v:0 = 〈{〈u, 0〉}, {〈v, 0〉}〉. All actions are of cost one, thus the
comparison of costs is omitted. We will refer to the first type as inner actions and the
second type as outer actions. Finally, let

• O = {ov:0→v:1 | v ∈ V} ∪ {ov:0→u:0 | (v, u) ∈ E},

• s0 = {〈v, 0〉 | v ∈ V}, and

• G = {〈v, 1〉 | v ∈ V}.

CGΠ

v u

w

PDGΠ

v u

w

0 1 0 1

0 1

Figure 5: Toy example of a given graph CGΠ, and the PDGΠ imposed by the constructed
task Π, where V = {v, u, w}, and the dashed arcs represent the actions (we omit
the pre and eff vertices of each action, since they are obvious from the context).
Recall that by Theorem 3 we have that Aut(Π) = Aut(PDGΠ).

It follows that Π can be computed in polynomial time and that CGΠ and G are isomor-
phic graphs due to the actions in O: specifically, the outer actions. Thus, Aut(CGΠ) =
Aut(G) and it is sufficient to prove that Aut(CGΠ) = Aut(Π).

Let Φ denote the mapping that we introduced just before Lemma 5. The lemma implies
that Φ is a homomorphism from Aut(Π) to Aut(CGΠ). We prove below that the mapping
Φ is bijective; this implies that Aut(CGΠ) = Aut(Π) and, consequently, that Aut(G) =
Aut(Π). Let 〈N ′, E′〉 = CGΠ with N ′ = {nv | v ∈ V}. Furthermore, let Oi be the set of
inner actions in O and Oo be the set of outer actions.

Φ is surjective. Arbitrarily choose ψ ∈ Aut(CGΠ). We prove that there is a σ in Aut(Π)
such that Φ(σ) = ψ. Recall that the set of facts F is {〈v, 0〉, 〈v, 1〉 | v ∈ V}. Define
σ : F ∪O → F ∪O such that σ(〈v, d〉) = 〈ψ(v), d〉 for 〈v, d〉 ∈ F and extend it to O in the
natural way. We verify that σ is a structural symmetry, i.e. it is a permutation on F , a
permutation on O, and it satisfies conditions 1-3 of Definition 3. We first remind the reader
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that there is a one-to-one correspondence between the vertices in N ′ and the variables in
V. We will abuse notation and view ψ as a function on V whenever convenient. With this
convention, it follows immediately that σ is a permutation on F since ψ is a permutation
on V. We continue with the other conditions.

1. σ(Fv) = σ({〈v, 0〉, 〈v, 1〉}) = {〈ψ(v), 0〉, 〈ψ(v), 1〉} = Fu for some u ∈ V. Since ψ is a
permutation on V, it follows that σ(FV) = FV .

2. We consider the two types of actions.

(a) Inner actions. Arbitrarily choose an inner action a = 〈{〈v, 0〉}, {〈v, 1〉}〉 and
note that σ(a) = 〈{〈ψ(v), 0〉}, {〈ψ(v), 1〉}〉. Hence, σ(a) is an inner action, too.
Consequently, σ(Oi) = Oi since ψ is a permutation on V.

(b) Outer actions. Observe that each edge (u, v) ∈ E′ has a one-to-one correspon-
dence with an outer action a = 〈{〈u, 0〉}, {〈v, 0〉}〉. Arbitrarily choose an outer
action a = 〈{〈u, 0〉}, {〈v, 0〉}〉. We see that 〈{〈u, 0〉}, {〈v, 0〉}〉 ∈ O ⇐⇒ (u, v) ∈
E′ ⇐⇒ (ψ(u), ψ(v)) ∈ E′ ⇐⇒ 〈{〈ψ(u), 0〉}, {〈ψ(v), 0〉}〉 ∈ O. Note that
〈{〈ψ(u), 0〉}, {〈ψ(v), 0〉}〉 = σ(a) so σ(a) is an outer action. We conclude that
σ(Oo) = Oo since ψ is a permutation on V.

3. σ(〈v, 1〉) = 〈ψ(v), 1〉 ∈ G for all v ∈ V. Since ψ is a permutation on V, it follows that
σ(G) = G.

Finally, 2(a) and 2(b) directly implies that σ is a permutation on O. We have thus
verified that Φ : Aut(Π)→ Aut(CGΠ) is a surjective homomorphism.

Φ is injective. We use Theorem 2 for proving injectivity; it is thus sufficient to prove that
ker(Φ) = {idCG} where idCG is the identity element in Aut(CGΠ).

Arbitrarily choose σ ∈ Aut(Π) such that Φ(σ) = idCG. This means that Φ(σ)(nv) = nv
for all v ∈ V. By the construction of Π, we know that 〈v, 0〉 is a fact in the initial state and
〈v, 1〉 is a fact in the goal state for arbitrary v ∈ V. Hence, σ(〈v, 1〉) = 〈v, 1〉 and σ(〈v, 0〉) =
〈v, 0〉 for each v ∈ V and, consequently, σ(f) = f for every fact f ∈ F . The function σ is a
structural symmetry so it satisfies σ(pre(o)) = pre(σ(o)) and σ(eff(o)) = eff(σ(o)) for every
o ∈ O by Definition 3. Arbitrarily choose an action o = 〈p, e〉 in O, where p ⊆ F and e ⊆ F
are precondition and effect, respectively. We see that

σ(o) = σ(〈p, e〉) = 〈σ(p), σ(e)〉 = 〈p, e〉 = o.

Thus, we have proved that σ(x) = x for all x ∈ F ∪O so σ is the identity function and the
kernel of Φ is trivial.

We conclude that Φ is an isomorphism between Aut(Π) and Aut(CGΠ) and that Aut(Π) =
Aut(CGΠ) = Aut(G).

We can finally prove the main result of this section by combining the GI-hardness of
AGEN (Theorem 4) with Lemma 6 and a result due to Zemlyachenko et al. (1985).
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Theorem 6. StructSym is GI-hard even if restricted to instances with the following
properties:

1. variable domains are {0, 1},

2. every action has cost 1,

3. actions have at most one precondition 〈v, 0〉, and

4. actions have one effect.

Proof. Let StructSymR denote StructSym restricted to instances with the properties
listed above. Let G be an arbitrary undirected graph. It is possible to construct a directed
graph G′ such that Aut(G) = Aut(G′) in polynomial time (Zemlyachenko et al., 1985). There
is a planning task Π such that Aut(G′) = Aut(Π) and Π can be computed in polynomial
time by Lemma 6. It can easily be verified that the planning task Π satisfies restrictions
1–4 by inspecting the proof of Lemma 6. Thus, there is a polynomial-time reduction from
AGEN to StructSymR. We know that AGEN is GI-complete by Theorem 4 and this
concludes the proof.

By combining Theorems 5 and 6, we conclude that the StructSym problem is GI-
complete. This implies that this problem can be solved in quasi-polynomial time but it is
unlikely that it can be solved in polynomial time. It may be interesting to note that The-
orem 6 implies that the StructSym problem can be GI-hard even for classes of planning
tasks that are polynomial-time solvable. Tasks that satisfy restrictions 1–4 have properties
U, B, and S (Bäckström & Nebel, 1995) and the plan existence problem can consequently
be solved in polynomial time.

5. Polynomial-Time Computation of Symmetries

The goal of this section is to exhibit a fragment of FDR planning where the computation of
structural symmetries can be performed in polynomial time. The idea is to exploit connec-
tions between the planning task and its causal graph in such a way that the corresponding
PDG has bounded degree. This allows us to use an algorithm by Luks (1982) to solve
StructSym in polynomial time. Let G = 〈N,E〉 be a directed graph and let n ∈ N . We
let degin(n,G) denote the in-degree of n, i.e. |{(n′, n) ∈ E | n′ ∈ N}|, and we define the
out-degree of n (degout(n,G)) analogously. The degree of n is deg(n,G) = degin(n,G) +
degout(n,G) and the degree of the graph G is deg(G) = max{degin(n) + degout(n) | n ∈ N}.

Definition 6. Arbitrarily choose B,C,D ∈ N. Define X(B,C,D) to be the set of planning
tasks Π = 〈V,O, s0, G〉 that satisfies the following three conditions:

1. deg(CGΠ) ≤ B,

2. CO = |{cost(o) | o ∈ O}| ≤ C, and

3. |D(v)| ≤ D for all v ∈ V.
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The plan existence problem for instances in X(B,C,D) becomes NP-hard even for small
values ofB, C, andD: for instance, choosingB = 2, C = 1, andD = 5 is sufficient (Giménez
& Jonsson, 2009).

In what follows we make some assumptions on planning tasks Π: we assume that there
are no two identical actions with different names and we assume that every action in Π has
at least one effect. Note that actions violating these conditions can be removed from the
planning task without loss of generality and this can be done by straightforward polynomial-
time preprocessing.

We will now prove that every PDGΠ has bounded degree when Π = 〈V,O, s0, G〉 ∈
X(B,C,D). Recall from Definition 4 that the vertices of PDGΠ can be divided into four
sets

N = NV ∪
⋃
v∈V

ND(v) ∪N
pre
O ∪N

eff
O .

The proof is easy for the subsets NV , Npre
O , and N eff

O while more effort is needed for the
subset

⋃
v∈V ND(v). Thus, we divide the proof into two parts where we first analyse the

vertices in
⋃
v∈V ND(v) (Lemma 7) and consider the three other sets in Lemma 8.

Lemma 7. For arbitrary B,C,D ∈ N,

deg(n,PDGΠ) ≤ D + C · (D + 1)B+1 + C · (B + 1) · (D + 1)2B+1.

when Π = 〈V,O, s0, G〉 ∈ X(B,C,D) and n ∈
⋃
v∈V ND(v).

Proof. Arbitrarily choose Π = 〈V,O, s0, G〉 ∈ X(B,C,D) and assume CGΠ = 〈M,E〉 with
M = {mv | v ∈ V}. Let Bin and Bout denote the maximum in-degree and out-degree of
CGΠ, respectively. Let f = 〈v, d′〉 be a fact and let nf ∈ ND(v) be the corresponding fact
vertex. There are three types of vertices that are attached to nf : variable vertices, action
effect vertices, and action precondition vertices. We divide the proof into three parts where
the different types of vertices are analyzed.

Variable vertices. There are at most D variable vertices connected to nf by the construction
of PDGs.

Action effect vertices. We compute the maximal number of same-cost actions that can have
f as their effect. Recall that degin(mv,CGΠ) ≤ Bin and

degin(mv,CGΠ) = |{u ∈ V | ∃o ∈ O : u ∈ vars(pre(o)) ∪ vars(eff(o)) ∧
v ∈ (vars(eff(o))} \ {v})|.

Let o′ ∈ O be an action such that f = 〈v, d〉 ∈ eff(o′). Thus,

vars(pre(o′)) ∪ vars(eff(o′)) ⊆ {u ∈ V | ∃o ∈ O : u ∈ vars(pre(o)) ∪ vars(eff(o))∧
v ∈ vars(eff(o))}.

Thus, we have |vars(pre(o′))| ≤ Bin + 1 and |vars(eff(o′))| ≤ Bin + 1. This means that there
are at most Bin + 1 variables that can be in the precondition of o′ (including v itself), and
there are Bin variables that can be in the effect of the action (v is set to d). The domain of
each variable has a size of at most D, plus 1, since the variable can be also undefined for
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this action. We conclude that there are at most (D + 1)2Bin+1 same-cost actions that have
the fact f in their effects, and at most C · (D+ 1)2Bin+1 ≤ C · (D+ 1)2B+1 actions in total.

Action precondition vertices. We compute the maximal number of same-cost actions that
have f as their precondition. We aim to prove that the upper bound on the number of these
actions is (D+ 1)B+1 +B · (D+ 1)2B+1. We achieve this bound by using the combinatorial
approach sometimes referred to as combinations counting. In other words, we would like to
give an upper bound on the size of the set Af = {o ∈ O | f ∈ pre(o)} where we divide Af

into three subsets:

1. Af0 = {o ∈ O | eff(o) = ∅} ∩Af ,

2. Af1 = {o ∈ O | vars(eff(o)) = {v}} ∩Af , and

3. Af2 = {o ∈ O | vars(eff(o)) \ {v} 6= ∅} ∩Af .

It holds that Af = Af0 ∪A
f
1 ∪A

f
2 so |Af | ≤ |Af0 |+ |A

f
1 |+ |A

f
2 |.

By our initial assumptions, it holds that |Af0 | = 0 since these actions have no effect on
the state variables.

Now, let o ∈ Af1 . As we have seen before, for each o ∈ O it holds that |vars(pre(o))| ≤
Bin + 1. Every action in Af affects the variable v so∣∣∣∣∣∣

⋃
o∈Af

vars(pre(o))

∣∣∣∣∣∣ ≤ Bin + 1,

since, otherwise, it contradicts the fact that degin(mv) ≤ Bin. Let us now count these

actions. For each action in o ∈ Af1 , one of the preconditions is already fixed to be f ,
i.e., f ∈ pre(o). Thus we have pre(o) \ {f} ≤ Bin and there are at most Bin other facts
in pre(o), each corresponding to a different variable. To determine each of these facts we
need to choose Bin variable/value pairs. There are at most D + 1 values for each variable
(including “undefined”). Thus, we have a multiplicative factor of (D + 1)Bin . We continue
by determining the effect of o. Note that vars(eff(o)) = {v} so v cannot take the undefined
value. It also holds that f ∈ pre(o) thus f /∈ eff(o). This means that v can take at most
D − 1 different values. Multiplying these factors results in

|Af1 | ≤ (D − 1)(D + 1)Bin ≤ (D + 1)Bin+1.

Lastly, we estimate the size of Af2 . Arbitrarily choose o ∈ Af2 . We claim that

|Af2 | ≤ Bout ·D · (D + 1)2Bin ,

and justify the multiplicative factors as follows.

1. Bout – Let u ∈ vars(eff(o)) such that u 6= v. Choosing u is equivalent to choosing
an outgoing edge of mv ∈ M , for example, (mv,mu) ∈ E. Note that there can be at
most Bout such edges.

2. D – Pick a value d′ of u, i.e., f ′ = 〈u, d′〉 ∈ eff(o). By our initial assumptions,
|D(u)| ≤ D.
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3. (D + 1)2Bin – Since we need to estimate the number of effect edges of nf ′ , we repeat
the argument that we used for analysing the number of effect edges of nf . Recall that
we have established that f ∈ pre(o) and f ′ ∈ eff(o). Each action of the form of o has
at most Bin precondition variables since, otherwise, it would contradict the fact that
degin(mu) ≤ Bin. Note that the action o has Bin affected variables (u excluded) by
the same argument. Each of these variables can take at most D values together with
one “extra value” if the variable is undefined for this action.

Hence, we have

|Af2 | ≤ Bout ·D · (D + 1)2Bin ≤ Bout · (D + 1)2Bin+1.

The three estimations above sum up to the following

|Af | ≤ (D + 1)Bin+1 +Bout · (D + 1)2Bin+1 ≤ (D + 1)B+1 +B · (D + 1)2B+1.

Finally, there are at most C distinct action costs so

deg(nf ,PDGΠ) ≤ C · (D + 1)B+1 + C ·B · (D + 1)2B+1.

Conclusion. The calculations above imply that

deg(nf ,PDGΠ) ≤ D + C · (D + 1)2B+1 + C · (D + 1)B+1 + C ·B · (D + 1)2B+1

= D + C · (D + 1)B+1 + C · (B + 1) · (D + 1)2B+1,

whenever nf ∈
⋃
v∈V ND(v).

Lemma 8. For arbitrary B,C,D ∈ N, there exists a constant K = K(B,C,D) ∈ N such
that deg(PDGΠ) ≤ K when Π ∈ X(B,C,D).

Proof. Let Π = 〈V,O, s0, G〉 ∈ X(B,C,D) and assume CGΠ = 〈M,E〉 with M = {mv | v ∈
V}. Let Bin and Bout denote the maximum in-degree and out-degree of CGΠ, respectively.
Definition 4 tells us that the vertex set N of PDGΠ is the union of four sets

N = NV ∪
⋃
v∈V

ND(v) ∪N
pre
O ∪N

eff
O .

The set
⋃
v∈V ND(v) was analyzed in Lemma 7 so it is sufficient to cover the other three

sets.
Let nv ∈ NV be the vertex associated with the variable v. We see that

deg(nv,PDGΠ) = |{(nv, n〈v,d〉) | d ∈ D(v)}| = |D(v)| ≤ D.

We continue with the vertices in Npre
O and N eff

O . Arbitrarily choose an action o ∈
O. Let npre

o ∈ Npre
O be the vertex associated with the preconditions of action o. We

know that |eff(o)| ≥ 1. Arbitrarily choose u ∈ V such that variable u is affected by o.
Assume deg(npre

o ,PDGΠ) > Bin + 1. This implies that |pre(o)| > Bin and, in turn, that
degin(mu,CGΠ) > Bin and we have a contradiction. Thus, deg(npre

o ,PDGΠ) ≤ Bin + 1 ≤
B + 1.
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Let neff
o ∈ N eff

O be the vertex associated with the effects of action o and arbitrarily
choose a variable v ∈ V that is affected by o. Assume deg(npre

o ,PDGΠ) > Bin + 2. Then,
|eff(o)| > Bin + 1 which implies that degin(mv,CGΠ) > Bin so we have once again reached
a contradiction. Thus, deg(npre

o ,PDGΠ) ≤ Bin + 2 ≤ B + 2.

We conclude the proof by combining the bounds above with Lemma 7. Arbitrarily
choose a vertex n with maximal degree in PDGΠ and note that deg(n,PDGΠ) is bounded
by

D + (Bin + 1) + (Bin + 2) + (D + C · (D + 1)B+1 + C · (B + 1) · (D + 1)2B+1).

We see that K ≥ deg(PDGΠ) = maxn∈V deg(n,PDGΠ) can be expressed as a function
in the parameters B, C, and D.

We can now prove the main result of this section.

Theorem 7. Arbitrarily choose B,C,D ∈ N. The problem of computing generators for
Aut(Π) is polynomial-time solvable when the set of inputs is restricted to X(B,C,D).

Proof. Arbitrarily choose Π in X(B,C,D). Compute (in polynomial time) PDGΠ. This
colored graph has at most degree K = K(B,C,D) by Lemma 8. By using label structures,
we can in polynomial time construct an uncolored undirected graph G such that Aut(G) =
Aut(PDGΠ) by Lemma 1. The graph G has degree at most max{4, 1 +K}. Mathon (1979)
has proved that AGEN ≤p GI. By inspecting Mathon’s original proof, one can see that
if the input is restricted to graphs with degrees bounded by K ′, then graph isomorphism
testing will exclusively be performed on graphs with degrees bounded by some K ′′ that only
depends on K ′. Luks (1982) have shown that the GI problem is polynomial-time solvable
when restricted to graphs of bounded degree. The combination of these two facts concludes
the theorem.

Luks’ algorithm runs in nO(d) time where d is the maximum degree of the given graph.
Algorithms for isomorphism testing of degree-bounded graph is an active area of research:
faster algorithms than Luks’ original algorithm have been presented by, for instance, Babai,
Kantor, and Luks (1983) and Grohe, Neuen, and Schweitzer (2018). The algorithm by
Babai et al. runs in nO(d/ log d) time and the algorithm by Grohe et al. runs in nO(log(d)c)

time for some univeral constant c.

6. General Symmetries of State Transition Graphs

We consider general symmetries of state transition graphs in this section. Computing a set
of generators for the automorphism group of an FDR state transition graph is a very costly
operation: the state transition graph of a k variable instance contains dk vertices (where
d is the domain size), and the smallest set of generators for the automorphism group may
contain up to dk − 1 elements. However, important information may be extracted from
the state transition graph anyway. Consider, for instance, the following problem: given a
graph G and two vertices s, t, is there an automorphism that maps s to t? If this problem is
efficiently solvable, then it may provide information that is relevant for reducing the search
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space even though the full automorphism group (or its generators) is not constructed. It is
easy to see that this problem is in GI if the graph G is given explicitly. However, the state
transition graph in a planning task is only implicitly given and this may affect the complexity
adversely. This is indeed the case: we prove that this problem for FDR planning tasks is
PSPACE-hard and, thus, at least as hard as the planning problem itself. We do not have
matching upper bounds for the symmetry problem so it may, in fact, be computationally
harder than the planning problem. Unfortunately, upper bounds for this kind of problem
seem hard to obtain. For instance, Das, Scharpfenecker, and Torán (2017) have considered
similar problems related to isomorphisms and failed to obtain matching upper and lower
bounds.

The rest of this section is divided into two parts. Section 6.1 contains a formal definition
of the computational problem that we will analyse together with some auxiliary results, and
the PSPACE-hardness proof is presented in Section 6.2.

6.1 Computational Problems

We simplify the presentation by using FDR structures: we say that 〈V,O〉 is a FDR struc-
ture whenever V and O are sets of variables and actions, respectively. If Π = 〈V,O, s0, G〉
is a FDR task, then the state transition graph TΠ is fully determined by the underlying
FDR structure 〈V,O〉. Recall that the states of a transition graph are S =×v∈V D(v)
(Definition 1) and this product also defines the states of the FDR structure.

The problem that we will analyse is the following.

Problem. State Transition Graph Symmetry (SGS)
Instance. An FDR structure Θ = 〈V,O〉 and two states s, t ∈ S.
Question. Does TΘ admit an automorphism ρ : S ∪ O → S ∪ O such that ρ(s) = t?

We remind the reader that TΘ is a labelled graph so an automorphism must preserve
both the structure of the graph and its labels, i.e., a labeled edge (s, s′; o) is in TΘ iff its
counterpart (ρ(s), ρ(s′); ρ(o)) is also an edge of TΘ.

All results presented in this section hold even if the planning tasks are restricted to
variable domain D2 = {0, 1} and all action costs are 1. This is a strengthening of the

results since we only present hardness results. Note that the state space S = D|V|2 can
be viewed as a set of 0/1 |V|-dimensional vectors: assume that the variables are ordered
v1, v2, . . . and let the i:th entry of the vector denote the value of the i:th variable.

We streamline the forthcoming proofs by making certain assumptions about the FDR
structures that we consider. An FDR structure Θ = 〈V,O〉 is invertible3 if for every
s ∈ S = D|V| and every action o ∈ O that is applicable in s, there exists an action o′ ∈ O
such that (sJoK)Jo′K = s. We say that o′ is the inverse of o. Various related concepts appear
in the literature and we refer the reader to the paper by Morak, Chrpa, Faber, and Fiser
(2020) for an in-depth discussion. If Θ is invertible, then one can view TΘ as an undirected
graph. The planning problem becomes no easier when restricted to tasks based on invertible
FDR structures.

3. The original term used by Jonsson, Haslum, and Bäckström (2000) is symmetric. We do not want to
overload this term with yet another meaning.
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Lemma 9 (Theorem 18 in Jonsson et al. (2000)). The plan existence problem is PSPACE-
complete for invertible FDR instances with binary domains.

We slightly strengthen the previous result by showing that the planning problem is
PSPACE-complete even if we “standardize” the initial and goal state.

Lemma 10. The plan existence problem is PSPACE-complete for invertible FDR in-
stances with binary domains, even when restricted to instances 〈V,O, s0, G〉 (with V = {vi |
i ∈ [n]}) such that s0 = {〈vi, 0〉 | i ∈ [n]} and G = {〈vi, 1〉 | i ∈ [n]}.4

Proof. Membership in PSPACE is straightforward. We show PSPACE-hardness via a
polynomial-time reduction from the problem without restrictions on initial and goal states;
this problem is PSPACE-hard by Lemma 9. Hence, let Π = 〈V,O, s0, G〉 be an arbitrary
invertible FDR instance with V = {vi | i ∈ [n]} and domain D2 = {0, 1}. Introduce two
fresh variables zi, zg and let V ′ = V ∪ {zi, zg}. The variable zi will be used for indicating
when we have reached a state that is compatible with the initial state s0 and zg for indicating
when we have reached a goal state.

We create a new set of actions O′ as follows. First of all, let O+ contain all actions in O
extended with the precondition {〈zi, 1〉, 〈zg, 0〉}. Then, let O′ denote the set O+ together
with the following actions.

init+ : 〈{〈v, 0〉 | v ∈ V ′}, s0 ∪ {〈zi, 1〉, 〈zg, 0〉}〉
init− : 〈s0 ∪ {〈zi, 1〉, 〈zg, 0〉}, {〈v, 0〉 | v ∈ V ′}}〉
goal+ : 〈G, {〈zg, 1〉}〉
goal− : 〈G, {〈zg, 0〉}〉
chng(v)+ : 〈{〈zg, 1〉}, {〈v, 1〉}〉 for all v ∈ V ′ \ {zg}
chng(v)− : 〈{〈zg, 1〉}, {〈v, 0〉}〉 for all v ∈ V ′ \ {zg}

We first verify that the structure 〈V ′,O′〉 is invertible by showing that each action in O′
has an inverse. Every action in O+ has an inverse since the instance Π is invertible. The
action init+ is only applicable in the state 〈{〈v, 0〉 | v ∈ V ′}〉 and it transforms this state
into

s0 ∪ {〈zi, 1〉, 〈zg, 0〉} = 〈{〈v, 0〉 | v ∈ V ′ \ {zg}} ∪ {〈zg, 1〉〉.

Similarly, the action init− is only applicable in the state 〈{〈v, 0〉 | v ∈ V ′ \ {zg}} ∪ {〈zg, 1〉〉
and it transforms this state into 〈{〈v, 0〉 | v ∈ V ′}〉. Hence, init− is the inverse of init+ and
vice versa. The action goal+ is applicable in four different states since G = {〈vi, 1〉 | i ∈ [p]}.
It changes such a state by setting zg to 1. The action goal− is applicable in the same four
states and it changes zg to 0. We conclude that goal− is the inverse of goal+ and vice versa.
Finally, the action chng(v)+ with v ∈ V ′ \ {zg} is applicable in every state with zg = 1 and
it sets v = 1. We see that chng(v)− is its inverse. Analogously, chng(v)+ is the inverse of
chng(v)−.

We continue by proving that Π = 〈V,O, s0, G〉 has a solution if and only if Π′ =
〈V ′,O′, s′0, G′〉 has a solution where s′0 = {〈v, 0〉 | v ∈ V ′} and G′ = {〈v, 1〉 | v ∈ V ′}.
Assume that Π has a solution. In the state s′0, action init+ is applicable and its application
yields the state s0 ∪ {〈zi, 1〉, 〈zg, 0〉}. By using the actions in O+, we can now reach a state

4. Note that G is a total assignment to the state variables so G can be referred to as a state.
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that satisfies G. We apply action goal+ and then use the actions chng(v)+ for reaching the
goal state G′.

Assume instead that Π does not have a solution. The only action that is applicable in
s′0 is init+ and its application results in the state s0 ∪{〈zi, 1〉, 〈zg, 0〉}. The instance Π does
not have a solution, so we are not able to reach a state satisfying G using the actions in O+.
Note here that the (possibly dangerous) actions chng(v)+ and chng(v)− are not applicable
before a state satisfying G has been encountered. We conclude that Π′ has no solution.

6.2 PSPACE-Hardness of SGS

The basic ingredients of our PSPACE-hardness result are two methods for constructing
planning structures. These two methods make it easier to understand the structure of the
state transition graphs of the FDR structures that we work with in the proof. The first
one (direct union) takes two FDR structures Θ,Θ′ and produces an FDR structure whose
state transition graph can be viewed as the union of TΘ and TΘ′ together with a number of
isolated vertices. A hole in an undirected graph (also known as an induced simple cycle) is
a simple cycle within the graph such that no two vertices of the cycle are connected by an
edge that does not itself belong to the cycle. To simplify the presentation, we will also say
that a n-vertex graph is a hole if it contains a hole of length n, i.e. the graph is isomorphic
to the graph 〈{1, . . . , n}, {(i, i + 1) | i ∈ [n − 1]} ∪ {n, 1}〉. Our second construction (hole
extension) takes an FDR structure Φ, a hole length and a state, and produces an FDR
structure Ψ whose state transition graphs contain TΦ but with a hole of the specified length
attached to the chosen state. The resulting graph will additionally contain a number of
isolated vertices, just as the direct union construction.

We begin by presenting the direct union. Let Θ = 〈V,O〉 and Θ′ = 〈V ′,O′〉 denote two
FDR structures. Assume without loss of generality that V ∩ V ′ = ∅. Introduce a fresh
variable z and extend the preconditions of the actions in O with {〈z, 1〉} ∪ {〈v, 0〉 | v ∈ V ′}
and the preconditions of the actions in O′ with {〈z, 0〉} ∪ {〈v, 0〉 | v ∈ V}. Let O′′ be the
resulting set of extended actions. We let the direct union of Θ and Θ′ (denoted Θ d Θ′)
consist of variable set V ∪ V ′ ∪ {z} together with the actions in O′′. We refer to z as the
control variable. It is clear that Θ d Θ′ can be computed in polynomial time.

The state transition graph TΘdΘ′ can be divided into three distinct parts.

1. A subgraph that is isomorphic to TΘ. This subgraph is spanned by the vertices/states
such that z = 1 and all variables in V ′ equal to 0.

2. A subgraph that is isomorphic to TΘ′ . This subgraph is spanned by the vertices/states
such that z = 0 and all variables in V equal to 0.

3. A number of isolated vertices that correspond to mixed states. A mixed state is a state
such that at least one variable in V equals 1 and at least one variable in V ′ equals 1.
Due to the construction, such states have no arcs attached to them.

The direct union construction is illustrated in Figure 6.

Before we present the hole extension, we recapitulate the machinery behind coun-
ters. They have been used for various purposes in the study of planning complexity, cf.
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Θ Θ′Θ

Θ Θ′

Θ d Θ′

Figure 6: The state-transition graph of the direct union of structures Θ and Θ′. The dots
to the right represent mixed states.

Bäckström and Nebel (1995), Jonsson (1999), and Bäckström and Jonsson (2017). Let
Vn = {v1, . . . , vn} and let On contain the following 2(n+ 1) actions.

o+
1 : 〈{〈v1, 0〉}, {〈v1, 1〉}〉
o+
i : 〈{〈v1, 1〉, 〈v2, 1〉, . . . , 〈vi−1, 1〉, 〈vi, 0〉},

{〈v1, 0〉, 〈v2, 0〉, . . . , 〈vi−1, 0〉, 〈vi, 1〉}〉 (2 ≤ i ≤ n)
o+
n+1 : 〈{〈vj , 0〉 | j ∈ [n]}, {〈vj , 1〉 | j ∈ [n]}〉

o−1 : 〈{〈v1, 1〉}, {〈v1, 0〉}〉
o−i : 〈{〈v1, 0〉, 〈v2, 0〉, . . . , 〈vi−1, 0〉, 〈vi, 1〉},

{〈v1, 1〉, 〈v2, 1〉, . . . , 〈vi−1, 1〉, 〈vi, 0〉}〉 (2 ≤ i ≤ n)
o−n+1 : 〈{〈vj , 1〉 | j ∈ [n]}, {〈vj , 0〉 | j ∈ [n]}〉

Let Hn denote the FDR structure 〈Vn,On〉 and note that the state transition graph of Hn

corresponds to a hole of length 2n (see Figure 7).

We continue by defining hole extensions. Given an FDR structure Ψ = 〈U ,OΨ〉 (where
U = {ui | i ∈ [m]}), a total state s = {〈u1, b1〉, . . . , 〈um, bm〉} (where bi ∈ D2 for each
i ∈ [m]), and an integer k, we define an FDR structure Φ = 〈V,O〉 that combines Ψ with
the counter Hk = (Vk,Ok). We let V = V ∪ U ∪ {z} (where z is a fresh variable) and
O = O′H ∪ O′Ψ where

• O′H contains the actions in the counter Hk extended with the precondition s∪{〈z, 1〉},
together with the two actions

1. 〈s ∪ {〈v1, 0〉, . . . , 〈vk, 0〉, 〈z, 0〉}, {〈z, 1〉}〉 and

2. 〈s ∪ {〈v1, 0〉, . . . , 〈vk, 0〉, 〈z, 1〉}, {〈z, 0〉}〉.
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000 010 001 011

100 110 101 111

Figure 7: State transition graph of H3.

k−var.
hole

t1 t0 Ψ

Figure 8: The state-transition graph of structure Ψ extended with an k-variable hole
at state (b1, . . . , bm). The state t0 is (b1, . . . , bm, 0, . . . , 0, 0) and t1 is state
(b1, . . . , bm, 0, . . . , 0, 1). The dots to the right represent mixed states.

• O′Ψ contains the actions in OΨ extended by preconditions {〈v1, 0〉, . . . , 〈vk, 0〉, 〈z, 0〉}.

The state transition graph of structure Φ may be viewed as follows. The graph TΦ

contains subgraphs TΨ, a hole of length 2k, and a number of isolated vertices corresponding
to mixed states (in the analogous sense as mixed states were used in connection with the
direct union). There is just one connection between TΨ and the hole: the states

(b1, . . . , bm︸ ︷︷ ︸
U

, 0, . . . , 0︸ ︷︷ ︸
Vk

, 0︸︷︷︸
z

)

and
(b1, . . . , bm︸ ︷︷ ︸

U

, 0, . . . , 0︸ ︷︷ ︸
Vk

, 1︸︷︷︸
z

)

are connected by arcs in both directions. Note that this is an important difference between
this construction and the direct union of two instances. We say that Ψ is extended by a
k-variable hole at state s. The construction is depicted in Figure 8. Hole extensions can
trivially be computed in polynomial time.

We are now ready to prove the PSPACE-hardness of SGS. The formal proof will be
discussed in intuitive terms immediately afterwards.
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TΠ2

TΠ1

n+ 1−var.
hole

s0 TΠ G

TΠ′
1

n+ 2−var.
hole

s′0 TΠ′ G′

Figure 9: Schematic figure of the state transition graph of Π2 in Theorem 8. The mixed
states are not shown in the figure.

Theorem 8. SGS is PSPACE-hard even when restricted to invertible FDR structures
with variable domain D2 = {0, 1}.

Proof. We present a polynomial-time reduction from planning tasks that satisfy the condi-
tions of Lemma 10. The reduction will prove the following:

1. if the given FDR task has a solution, then the resulting SGS instance will be a
“no”-instance, and

2. if the given FDR task has no solution, then the resulting SGS instance will be a
“yes”-instance.

Such a reduction will prove PSPACE-hardness of SGS since PSPACE is closed under
complementation, i.e. PSPACE=co-PSPACE.

Arbitrarily choose an invertible FDR task Π = 〈V,O, s0, G〉 with variable domain {0, 1}
where V = {vi | i ∈ [n]}, s0 = {〈vi, 0〉 | i ∈ [n]}, and G = {〈vi, 1〉 | i ∈ [n]}. The
plan existence problem for such FDR tasks is PSPACE-complete by Lemma 10. Let
Π′ = 〈V ′,O′, s′0, G′〉 be the very same task but with variables renamed such that V ′ = {ui |
i ∈ [n]}. Define the following FDR tasks.

• Let Π1 denote Π extended by an n+ 1-variable hole at state s0.

• Let Π′1 denote Π′ extended by an n+ 2-variable hole at state s′0.

• Let Π2 denote the direct union of Π1 and Π′1 with control variable z.

The graph TΠ2 is outlined in Figure 9. We observe that the structure Π2 is invertible and
its variable domain is {0, 1}. We henceforth view a state of Π2 as a vector

(a,b, c,d, e, f, z),
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where

1. a are the variables in Π1 corresponding to Π,

2. b are the variables in Π1 corresponding to the n+ 1-variable hole,

3. c is the auxiliary variable in the construction of Π1,

4. d are the variables in Π′1 corresponding to Π,

5. e are the variables in Π′1 corresponding to the n+ 2-variable hole,

6. f is the auxiliary variable in the construction of Π′1, and

7. z is the control variable in the construction of Π2.

We claim that Π has a solution if and only if TΠ2 does not admit an automorphism σ
that maps

(1, . . . , 1︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, 0, . . . , 0︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 1︸︷︷︸
z

)

into
(0, . . . , 0︸ ︷︷ ︸

a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, 1, . . . , 1︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 0︸︷︷︸
z

).

Colloquially speaking, the automorphism σ swaps the goal states in the two components
of Π2 corresponding to Π1 and Π′1.

Assume Π has a solution and that such an automorphism σ exists. The automorphism
σ swaps the goal states, and this implies that if there is a path from some state s to G in
TΠ1 , then σ(s) must be a state in TΠ′

1
, too. Note that there is a path in TΠ1 from s0 to G.

If we look at TΠ1 , then it contains a hole of length 2n+1 connected via a path of length,
say, m that ends in the state G. If we instead look at TΠ′

1
, then it contains a hole of length

2n+2 connected via a path of length m to G′. The automorphism σ must thus map the hole
of length 2n+1 in TΠ1 into a hole of length 2n+1 in TΠ′

1
, and the hole of length 2n+2 in TΠ′

1

into a hole of length 2n+2 in TΠ1 . We know that TΠ1 does not contain any holes of length
2n+2 – recall that Π only contains n variables. Similarly, TΠ′

1
does not contain any hole of

length 2n+1. Hence, σ does not exist.
Assume Π has no solution. Then both TΠ1 and TΠ′

1
are disconnected graphs where s0

and G (and s′0 and G′) appear in different components. This follows from the fact that Π
is invertible and TΠ can be viewed as an undirected graph: there is no path from s0 to G if
and only if s0 and G are members of distinct strongly connected components. Let

S = {G} ∪ {s | there is a path from s to G in TΠ1}

and
S′ = {G′} ∪ {s′ | there is a path from s′ to G′ in TΠ′

1
}.

The structure Π′ is a copy of Π where variable and action names are different. However,
the variable and action names in Π and Π′ are in a one-to-one correspondence. This implies
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n+ 1−var.
hole

s0 TΠ G

n+ 2−var.
hole

s′0 TΠ′ G′

Figure 10: The state transition graph of Π2 when Π has a solution.

that TΠ and TΠ′ are isomorphic and it also implies that the graph TΠ1 restricted to vertex
set S is isomorphic to TΠ′

1
restricted to vertex set S′. Define a function σ on the states of

Π2 as follows:

σ(b1, . . . , bn︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, 0, . . . , 0︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 1︸︷︷︸
z

) =

(0, . . . , 0︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, b1, . . . , bn︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 0︸︷︷︸
z

)

if {〈v1, b1〉, . . . , 〈vn, bn〉} ∈ S,

σ(0, . . . , 0︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, b1, . . . , bn︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 1︸︷︷︸
z

) =

(b1, . . . , bn︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, 0, . . . , 0︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 0︸︷︷︸
z

)

if {〈u1, b1〉, . . . , 〈un, bn〉} ∈ S′, and σ(x) = x otherwise. First note that σ is a bijective
function since σ ◦ σ is the identity function. We see that σ swaps the two components that
are connected to G and G′ but it does not change any other states. We have verified that
these two components are isomorphic so σ is indeed an automorphism.

We know that G = {〈v1, 1〉, . . . , 〈vn, 1〉} and G′ = {〈u1, 1〉, . . . , 〈un, 1〉}. Hence, σ maps

(1, . . . , 1︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, 0, . . . , 0︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 1︸︷︷︸
z

)

into
(0, . . . , 0︸ ︷︷ ︸

a

, 0, . . . , 0︸ ︷︷ ︸
b

, 0︸︷︷︸
c

, 1, . . . , 1︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
e

, 0︸︷︷︸
f

, 0︸︷︷︸
z

).

We conclude that SGS is a PSPACE-hard problem.

We illustrate the proof of Theorem 8 in Figures 10 and 11. Pick a planning task Π (that
satisfies the preconditions of the theorem) and assume that it contains n variables. Assume
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n+ 1−var.
hole

s0 TΠ TΠ G

n+ 2−var.
hole

s′0 TΠ′ TΠ′ G′

Figure 11: The state transition graph of Π2 when Π has no solution.

first that the planning task Π has a solution and consider the state transition graph of Π2

as depicted in Figure 10. The light gray areas correspond to the states that are connected
to G and the dark gray areas correspond to the states that are connected to G′. There may
additionally be states that are not connected to G or G′ but they are not interesting for our
argument. If there exists an automorphism σ that moves G into G′ and G′ into G, then σ
must move every light gray state into a dark gray state (in a structure-preserving way) and
vice-versa. This is not possible due to the holes of length 2n+1 and 2n+2: these two holes
are not isomorphic and there cannot exist holes of suitable lengths within the Π1 and Π′1
areas since they are based on variable sets with n variables (and thus can contain holes of
length at most 2n).

Assume instead that Π has no solution. The state transition graph of Π is undirected
so Π has no solution if and only if the initial state and goal state appears in two distinct
connected components of the graph – note that this statement is not true for directed
graphs. Thus, the state transition graph of Π2 has the general appeareance depicted in
Figure 11. Here, the light gray states and the dark gray states form isomorphic graphs
(since TΠ and TΠ′ are isomorphic graphs) and there is indeed an automorphism that moves
G into G′ and G′ into G.

7. Conclusions

We have proved that the StructSym problem is GI-complete. We pointed out in the
introduction that this may be considered both “bad” and “good” news. The “bad” news is
that the problem is probably not solvable in polynomial time while the “good” news is that
the problem is solvable much faster than most computationally hard problems encountered
in AI (under plausible complexity-theoretic assumptions such as the strong exponential time
hypothesis).

The “bad” news implies that there are reasons to identify classes of planning tasks where
the StructSym problem can be solved in polynomial time – we are obviously interested
in finding structural symmetries as fast as possible. The tractability results in Section 5
exploit connections between structural symmetries and the causal graph: in particular, the
degree of the causal graph turns out to be important. A natural starting point for analysing
causal graphs with unbounded degree is to consider special cases such as forks, inverse forks,
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and more generally, polytrees. Even though the structure of such causal graphs may appear
simple, we do not understand the borderline between tractability and GI-hardness of the
corresponding StructSym problem. A more ambitious project is to study problems with
acyclic causal graphs and where certain graph-theoretic parameters are bounded. One
interesting parameter is the treewidth of the undirected graph underlying the causal graph;
this parameter has been exploited by, for instance, Brafman and Domshlak (2006). A broad
range of combinatorial problems defined on graphs can be efficiently solved by dynamic
programming as long as the graphs under consideration have treewidth bounded by some
constant. It is thus not very surprising that the graph isomorphism problem restricted to
graphs of bounded tree-width can be solved in polynomial-time (Bodlaender, 1990). With
this in mind, it seems plausible that polynomial-time solvable cases can be identified this
way. We additionally note that this parameter connects in a natural way to polytrees since
the underlying undirected graph of a polytree is a tree and thus has treewidth 1.

The “good” news implies that there are reasons to investigate stronger symmetries
than the structural symmetries considered in this article: there may exist symmetries that
are better at pruning the search space and at the same time being reasonably efficient to
compute. The main result of Section 6 shows that defining such symmetries is a non-trivial
task: considering automorphisms of the full state transition graph is a natural idea, but we
immediately run into problems. The set of generators for the automorphism group is huge
and may, in the worst case, take exponential time just to write down. If we circumvent
this problem by accessing the automorphism group via the State Transition Graph
Symmetry problem, then this problem is PSPACE-hard and consequently at least as
hard as the FDR planning problem itself. We are thus facing a delicate balancing problem
between pruning power and computational complexity. A possible source of inspiration for
future work is factored symmetries that have been introduced in the context of merge-and-
shrink heuristics (Sievers, Wehrle, Helmert, Shleyfman, & Katz, 2015).
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