
Journal of Artificial Intelligence Research 69 (2020) 109-141 Submitted 06/2020; published 09/2020

Contiguous Cake Cutting:
Hardness Results and Approximation Algorithms

Paul W. Goldberg paul.goldberg@cs.ox.ac.uk
Alexandros Hollender alexandros.hollender@cs.ox.ac.uk
University of Oxford
Oxford, United Kingdom

Warut Suksompong warut@comp.nus.edu.sg

National University of Singapore

Singapore

Abstract

We study the fair allocation of a cake, which serves as a metaphor for a divisible
resource, under the requirement that each agent should receive a contiguous piece of the
cake. While it is known that no finite envy-free algorithm exists in this setting, we exhibit
efficient algorithms that produce allocations with low envy among the agents. We then
establish NP-hardness results for various decision problems on the existence of envy-free
allocations, such as when we fix the ordering of the agents or constrain the positions of
certain cuts. In addition, we consider a discretized setting where indivisible items lie on a
line and show a number of hardness results extending and strengthening those from prior
work. Finally, we investigate connections between approximate and exact envy-freeness, as
well as between continuous and discrete cake cutting.

1. Introduction

We consider the classical cake cutting problem, where we wish to divide a cake among a
set of agents with different preferences over different parts of the cake. The cake serves
as a metaphor for any divisible resource such as time or land, and our aim is to perform
the division in a fair manner. This problem has a long and storied history that dates
back over 70 years (Steinhaus, 1948; Dubins & Spanier, 1961; Stromquist, 1980; Brams
& Taylor, 1995; Su, 1999; Stromquist, 2008; Edmonds & Pruhs, 2011; Aziz & Mackenzie,
2016) and has received considerable attention from artificial intelligence researchers in the
past decade (Caragiannis et al., 2011; Bei et al., 2012; Aumann et al., 2013; Balkanski et al.,
2014; Brânzei & Miltersen, 2015; Alijani et al., 2017; Menon & Larson, 2017; Bei et al.,
2018; Segal-Halevi, 2018; Hosseini et al., 2020).

In order to reason about fairness, we need to specify when a division is considered to be
fair. One of the most commonly used definitions is envy-freeness, which means that no agent
envies another with respect to the division. In other words, among the pieces in the division,
every agent receives their first choice. An early result by Dubins and Spanier (1961) shows
that an envy-free allocation always exists for arbitrary valuations of the agents. However,
as Stromquist (1980) noted, this result depends on a liberal definition of what constitutes a
piece of cake, and an agent “who hopes only for a modest interval of cake may be presented
instead with a countable union of crumbs.”

c©2020 AI Access Foundation. All rights reserved.

Goldberg, Hollender, & Suksompong

In light of this concern, Stromquist (1980) strengthened the result of Dubins and Spanier
by showing that it is possible to guarantee an envy-free allocation in which every agent
receives a contiguous piece of the cake. Stromquist’s result, together with its topological
proof, is widely regarded as a cornerstone of the cake-cutting literature. Nevertheless, since
the result focuses only on the existence of a contiguous envy-free allocation, it leaves open
the question of how to compute such an allocation. Almost 30 years later, Stromquist
himself addressed this question and showed that under the Robertson-Webb model, where
an algorithm is allowed to discover the agents’ valuations through cut and evaluate queries,
no finite algorithm can compute a contiguous envy-free allocation when there are at least
three agents (Stromquist, 2008).1

Although Stromquist’s later result rules out the possibility of computing contiguous
envy-free allocations in general, several important questions still remain. For instance,
can we compute a contiguous allocation with low envy between the agents, and if so, how
efficiently? How does the answer change if we know that the agents’ valuations belong to
a restricted class? What happens if we add extra requirements on the allocation, such as
fixing a desired ordering of the agents or constraining the positions of certain cuts? The
goal of this paper is to shed light on the complexity of contiguous cake cutting by addressing
these questions.

1.1 Our Contributions

In this paper, we present several algorithmic and hardness results on contiguous cake cut-
ting. We begin by highlighting two representative results; as is standard in the cake-cutting
literature, we represent the cake by the interval [0, 1] and normalize the agents’ valuations
so that each agent has value 1 for the entire interval.

• We design a quadratic-time algorithm that works for general additive valuations under
the Robertson-Webb model and produces a contiguous allocation in which any agent
has additive envy no more than 1/3 towards any other agent (Theorem 3.1). In other
words, any agent i’s value for her own piece is at most 1/3 less than her value for any
other agent j’s piece, where her value for the entire cake is 1.

• We consider variants of the cake-cutting problem where we impose constraints on
the desired allocation (Section 4). We show that for several natural variants, the
decision problem of whether there exists a contiguous envy-free allocation satisfying
the corresponding constraints is NP-hard. In particular, this holds for the variants
where (i) a certain agent must be allocated the leftmost piece; (ii) the ordering of
the agents is fixed; and (iii) one of the cuts must fall at a given position. Fixing
the ordering of the agents is relevant when there is a temporal ordering in which the
agents must be served, e.g., due to notions of seniority or the ease of switching from
one agent to another in the service. Likewise, fixing a cut point is applicable when
we divide a parcel of land and there is a road crossing the parcel, so the road must

1. For two agents, the well-known cut-and-choose protocol, which lets the first agent cut the cake into two
equal pieces and lets the second agent choose the piece that she prefers, computes a contiguous envy-free
allocation.

110

Contiguous Cake Cutting

correspond to one of the cut points. Moreover, our construction serves as a general
framework that can be used to obtain hardness results for other related variants.

We now describe the remaining results of our paper. On the algorithmic front, we present
another algorithm specific to valuations where each agent only desires a single subinterval
and has a uniform value over that interval—for such valuations, the algorithm produces
a contiguous allocation with a lower envy of at most 1/4 (Theorem 3.2). Like our first
algorithm, this algorithm runs in quadratic time.

On the hardness front (Section 5), we investigate a discrete analog of cake cutting
(henceforth, “discrete cake cutting”), where there are indivisible items on a line and each
agent is to be allocated a contiguous block of items. The discrete setting can be viewed as a
type of restriction for the continuous setting, where cuts can only be placed between discrete
items. In addition to envy-freeness, we work with two other well-studied fairness notions:
proportionality and equitability.2 Using a single reduction, we show that deciding whether
there exists a contiguous fair allocation is NP-hard for each of the three fairness notions
as well as any combination of them; our result holds even when all agents have binary
valuations3 and moreover value the same number of items. This significantly strengthens
a result of Bouveret et al. (2017), who established the hardness for proportionality and
envy-freeness using additive but non-binary valuations. Moreover, we show that even if we
consider approximate envy-freeness instead of exact, the decision problem remains NP-hard
for binary valuations. We also prove that when the valuations are binary and every agent
values a contiguous block of items, deciding whether a contiguous proportional allocation
exists is NP-hard. From the technical point of view, our hardness results in Sections 4
and 5 make use of reductions from 3-sat with constructions involving clause-gadgets and
variable-gadgets; the use of such gadgets is new in fair division to the best of our knowledge
and may help in establishing hardness for other related problems.

Finally, we present a number of connections between approximate and exact envy-
freeness, as well as between the continuous and discrete settings (Section 6). First, we
prove that for piecewise constant valuations, finding an approximately envy-free allocation
is as hard as finding an exactly envy-free allocation. Then, we reveal some relationships
between continuous and discrete cake cutting—among other things, we show that a special
case of the continuous problem for piecewise constant valuations is computationally equiva-
lent to a discrete cake-cutting problem where every item is positively valued by at most one
agent. This means that any algorithm or hardness result for one problem will immediately
transfer over to the other.

1.2 Further Related Work

Since the seminal work of Stromquist (1980, 2008), a number of researchers have studied
cake cutting in view of the contiguity condition. Su (1999) proved the existence of contiguous
envy-free allocations using Sperner’s lemma arguments. Deng et al. (2012) showed that con-
tiguous envy-free cake cutting is PPAD-complete; however, the result requires non-standard
(e.g., non-additive, non-monotone) preference functions. Aumann et al. (2013) considered
the problem of maximizing social welfare with contiguous pieces, while Bei et al. (2012)

2. See the definitions in Section 5.
3. That is, the valuations are additive and each agent values each item either 0 or 1.

111

Goldberg, Hollender, & Suksompong

tackled the same problem with the added requirement of proportionality. Cechlárová and
Pillárová (2012) and Cechlárová et al. (2013) examined the existence and computation of
contiguous equitable allocations—among other things, they showed that such an allocation
is guaranteed to exist even if we fix the ordering of the agents. Aumann and Dombb (2015)
analyzed the trade-off between fairness and social welfare in contiguous cake cutting. Segal-
Halevi et al. (2016) circumvented the impossibility result of Stromquist (1980) by presenting
bounded-time contiguous envy-free algorithms that may not allocate the entire cake but
guarantee every agent a certain positive fraction of their value.4 Contiguity has recently
been studied in a more general model where the cake can be represented by an arbitrary
graph (Bei & Suksompong, 2019).

The contiguity requirement has also been considered in the context of indivisible items.
Marenco and Tetzlaff (2014) proved that if the items lie on a line and every item is positively
valued by at most one agent, a contiguous envy-free allocation is guaranteed to exist. When
each item can yield positive value to any number of agents, Barrera et al. (2015), Bilò
et al. (2019), and Suksompong (2019) showed that various relaxations of envy-freeness can
be fulfilled. Similarly to cake cutting, contiguity has been studied in the more general
model where the indivisible items lie on an arbitrary graph (Bouveret et al., 2017; Igarashi
& Peters, 2019; Bei et al., 2019). Like us, Igarashi and Peters (2019) also showed hardness
results for binary valuations.

Recently, Arunachaleswaran et al. (2019) developed an efficient algorithm that com-
putes a contiguous cake division with multiplicatively bounded envy—in particular, each
agent’s envy is bounded by a multiplicative factor of 3. We remark that our approximation
algorithms are incomparable to their result. On the one hand, their algorithm may return
an allocation wherein an agent has value 1/4 for her own piece and 3/4 for another agent’s
piece—this corresponds to an additive envy of 1/2. On the other hand, our algorithms may
leave some agents empty-handed, leading to unbounded multiplicative envy. We also note
that additive envy is the more commonly considered form of approximation, both for cake
cutting (Deng et al., 2012; Brânzei & Nisan, 2017, 2019) and for discrete items (Lipton
et al., 2004; Caragiannis et al., 2019). In particular, for discrete items, a significant stream
of work in the last few years has focused on the notions envy-freeness up to one item (EF1)
and envy-freeness up to any item (EFX). While an EF1 allocation is guaranteed to exist in
any instance (Lipton et al., 2004), the existence question for EFX remains open even in the
case of four agents (Caragiannis et al., 2019; Chaudhury et al., 2020; Plaut & Roughgarden,
2020).

2. Preliminaries

For any positive integer n, let [n] = {1, 2, . . . , n}. In our cake cutting setting, we consider the
cake as the interval [0, 1]. There are n agents whose preferences over the cake are represented
by valuation functions v1, . . . , vn. Assume that these valuation functions are non-negative
density functions over [0, 1]. We abuse notation and let vi(a, b) = vi([a, b]) =

∫ b
a vi(x)dx for

0 ≤ a ≤ b ≤ 1. It follows that the valuations are non-negative, additive, and non-atomic

4. Without this guarantee, it would be much easier to find a contiguous envy-free allocation—just don’t
allocate any of the cake!

112

Contiguous Cake Cutting

(i.e., vi(a, a) = 0). We assume further that the valuations are normalized so that vi(0, 1) = 1
for every i ∈ [n].

A contiguous allocation of the cake is a partition of [0, 1] into n (possibly empty) inter-
vals, along with an assignment of each interval to an agent, so that every agent gets exactly
one interval. Note that this means that we cut the cake using n − 1 cuts. Formally, a
contiguous allocation is represented by the cut positions 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ 1 and
a permutation π : [n]→ [n] that assigns the intervals to the agents so that agent i receives
the interval [xπ(i)−1, xπ(i)], where we define x0 = 0 and xn = 1 for convenience.

We are interested in finding a contiguous allocation that is envy-free, i.e., no agent
thinks that another agent gets a better interval. Formally, the contiguous allocation (x, π)
is envy-free if for all i, j ∈ [n], we have vi(xπ(i)−1, xπ(i)) ≥ vi(xj−1, xj). In some cases we
will be interested in finding a contiguous allocation that is only approximately envy-free.
For ε ∈ [0, 1], the contiguous allocation (x, π) is ε-envy-free if for all i, j ∈ [n], we have
vi(xπ(i)−1, xπ(i)) ≥ vi(xj−1, xj) − ε. In other words, any agent has envy that is at most a
fraction ε of her value for the whole cake.

A typical way for an algorithm to access the valuation functions is through queries in
the Robertson-Webb model : the algorithm can make evaluate queries—where it specifies
x, y and asks agent i to return the value vi(x, y)—and cut queries—where it specifies x, α
and asks agent i to return the leftmost point y such that vi(x, y) = α (or say that no such y
exists). The rationale behind the Robertson-Webb model is that cake valuation functions do
not always admit a finite representation, so it does not make sense to include them as part
of the input. Algorithms in this model are sometimes measured by the number of queries
that they make; an algorithm that uses polynomial time clearly makes only a polynomial
number of queries, but the converse does not necessarily hold.

While general valuation functions can be quite complex, a more restrictive class of
valuations is that of piecewise constant valuations. A piecewise constant valuation function
is defined by a piecewise constant density function on [0, 1], i.e., a step function. This class
of valuations can be explicitly represented as part of the input. A subclass of piecewise
constant valuations is the class of piecewise uniform valuations, where the density function
of agent i is either some fixed rational constant ci or 0. Our Theorem 3.1 works under the
Robertson-Webb model, whereas all other results assume that the valuations are included
as part of the input.

3. Approximation Algorithms

In this section, we present two algorithms for approximate envy-free cake cutting. Algo-
rithm 1 works for arbitrary valuations and returns a 1/3-envy-free allocation. On the other
hand, Algorithm 2 can be used for piecewise uniform valuations with a single value-block
and outputs a 1/4-envy-free allocation. Note that such valuations are relevant, for example,
when the agents are dividing machine processing time: each agent has a release date and
a deadline for her job, so she would like to maximize the processing time she obtains after
the release date and before the deadline.

While Algorithm 1 can be implemented for general valuations under the Robertson-
Webb model, it also allows a simple interpretation as a moving-knife algorithm. In this
interpretation, the algorithm works by moving a knife over the cake from left to right.

113

Goldberg, Hollender, & Suksompong

Algorithm 1 1/3-Envy-Free Algorithm for Arbitrary Valuations

1: procedure ApproximateEFArbitrary
2: `← 0, N ← [n]
3: for i ∈ N do
4: Mi ← ∅
5: while some agent in N values [`, 1] at least 1/3 do
6: for i ∈ N do
7: if vi(`, 1) ≥ 1/3 then
8: ri ← leftmost point such that vi(`, ri) = 1/3
9: else

10: ri ← 1

11: j ← arg mini∈N ri, r ← mini∈N ri
12: Mj ← [`, r]
13: `← r, N ← N\{j}
14: if N 6= ∅ then
15: j ← arbitrary agent in N
16: Mj ← [`, 1]
17: else
18: j ← last agent removed from N
19: Mj ←Mj ∪ [`, 1]

20: return (M1, . . . ,Mn)

Whenever the current piece has value 1/3 to at least one remaining agent, the piece is
allocated to one such agent. If the knife reaches the right end of the cake, then the piece
is allocated to an arbitrary remaining agent if there is at least one remaining agent, and to
the agent who received the last piece otherwise.

Theorem 3.1. For n agents with arbitrary valuations, Algorithm 1 returns a contiguous
1/3-envy-free allocation and runs in time O(n2) assuming that it makes queries in the
Robertson-Webb model.

Proof. Every agent receives a single interval from the algorithm; the only possible exception
is agent j in line 19. However, since j is chosen as the last agent removed fromN , the interval
Mj allocated to j earlier is adjacent to [`, 1], meaning that j also receives a single interval.
Hence the allocation is contiguous. Moreover, the algorithm only needs to make queries in
lines 5, 7 and 8, and the number of necessary queries is O(n2). The remaining steps can be
implemented in time O(n2) as well.

We now prove that the envy of an agent i towards any other agent is at most 1/3. If
i is assigned a piece in the while loop (line 5), i receives value at least 1/3. This means
that i’s value for any other agent’s piece is at most 2/3, so i’s envy is no more than 1/3.
Alternatively, after the while loop, i still has not received a piece, meaning that N 6= ∅ in
line 14. By our allocation procedure in the while loop, i values any piece assigned in the
while loop at most 1/3. Furthermore, when the algorithm enters line 14, i values the interval
[`, 1] less than 1/3. Since [`, 1] is assigned to an agent who did not receive an interval earlier,
it follows that i does not envy any other agent more than 1/3, as claimed.

114

Contiguous Cake Cutting

Note that if we are only interested in having an algorithm that makes a polynomial
number of queries, Brânzei and Nisan (2017) showed that for any ε > 0, a contiguous
ε-envy-free allocation can be found using O(n/ε) queries, which is polynomial in n for
constant ε. Their algorithm works by cutting the cake into pieces of size 1/ε and performing
a brute-force search over the space of all contiguous allocations with respect to these cuts;
this algorithm therefore has exponential computational complexity (even for constant ε).
By contrast, in the absence of the contiguity constraint, Procaccia (2016) gave a simple
polynomial-time algorithm that computes an ε-envy-free allocation for any constant ε. His
algorithm also starts by cutting the cake into pieces of size 1/ε and then lets agents choose
their favorite pieces in a round-robin manner; consequently, the resulting allocation can be
highly non-contiguous.

While we do not know whether the bound 1/3 in our approximation can be improved
under the computational efficiency requirement,5 we show next that if the agents have
piecewise uniform valuations and each agent only values a single interval, the envy can be
reduced to 1/4. Alijani et al. (2017) showed that if the valuations are as described and
moreover the n valued intervals satisfy an “ordering property”, meaning that no interval
is a strict subinterval of another interval, then a contiguous envy-free allocation can be
computed efficiently. Nevertheless, the ordering property is a very strong assumption, and
indeed reducing the envy to 1/4 without this assumption already requires significant care
in assigning the pieces.6

At a high level, Algorithm 2 first orders the agents from shortest to longest desired
interval, breaking ties arbitrarily. For each agent in the ordering, if an interval of value 1/4
containing the midpoint of her valued interval (perhaps at the edge of the former interval)
has not been taken, the agent takes one such interval. Else, if an interval of value 1/4 is
available somewhere, the agent takes one such interval; here, if there are choices on both
sides of the midpoint, the agent may need to be careful to pick the “correct” one. Otherwise,
if no interval of value 1/4 is available, the agent takes a largest available interval. At the end
of this process, part of the cake may remain unallocated. If some pair of assigned intervals
are adjacent, pick one such pair, and allocate the remaining cake by extending pieces away
from the border between this pair. Else, extend the pieces arbitrarily to cover the remaining
cake.

Theorem 3.2. For n agents with (explicit) piecewise uniform valuations such that each
agent only values a single interval, Algorithm 2 returns a contiguous 1/4-envy-free allocation
and runs in time O(n2).

Proof. One can check that Algorithm 2 assigns a single interval to every agent and can be
implemented in time O(n2)—for each agent i, determining the interval Mi takes linear time.
It remains to show that the algorithm returns an allocation such that for any two agents
i, j, agent i has envy at most 1/4 towards agent j. For the purpose of this proof, when we

5. For the case n = 3, Deng et al. (2012) gave a fully polynomial-time approximation scheme (FPTAS)
that computes a contiguous ε-envy-free allocation for any ε > 0.

6. Alijani et al. (2017) also showed that for piecewise uniform valuations where each agent only values
a single interval (without the ordering property assumption), one can efficiently compute an envy-free
allocation with at most 2n− 1 intervals in total. Moreover, they showed that for a constant number of
agents with piecewise constant valuations, a contiguous envy-free allocation can be computed efficiently.

115

Goldberg, Hollender, & Suksompong

refer to an interval Mi, we mean the interval before it is extended in the final phase of the
algorithm (the extension phase starting at line 16). We denote by M+

i the corresponding
extended interval that is returned by the algorithm. For any agent i and any interval I, the
i-value of I is the value of I for agent i, i.e., vi(I).

Algorithm 2 1/4-Envy-Free Algorithm for Uniform Single-Interval Valuations

. Ri : the single interval valued by agent i

. mid(i) : the midpoint of Ri

. Ai : part of Ri that is unallocated at the start of agent i’s turn

. an interval is restrained if it is adjacent to an interval that has already been allocated
1: procedure ApproximateEFSingleInterval
2: Order the agents 1, . . . , n so that |Ri| ≤ |Rj | for all i < j
3: for i = 1, . . . , n do
4: if there exists a restrained interval I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I then
5: . Case 1
6: Mi ← I
7: else if there exists an interval I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I then
8: . Case 2
9: Si ← {j > i | vi(min(mid(i),mid(j)),max(mid(i),mid(j))) ≤ 1/4}

10: k ← minSi
11: Mi ← an interval I ⊆ Ai with vi(I) = 1/4, mid(i) ∈ I and mid(k) ∈ ∂I (i.e., an

endpoint of I)
12: else if there exist ` < i with mid(i) ∈ M` and an interval I ⊆ Ai adjacent to M`

with vi(I) = 1/4 then . Case 3
13: Mi ← I
14: else . Case 4
15: Mi ← a largest restrained interval I ⊆ Ai with vi(I) ≤ 1/4

16: if some two intervals Mq,Mr are adjacent (say, Mq is to the left of Mr) then
17: Extend Mq and all assigned intervals to its left as far as possible to the left.
18: Extend Mr and all assigned intervals to its right as far as possible to the right.
19: else
20: Extend assigned intervals arbitrarily to cover the remaining cake.

21: return (M1, . . . ,Mn)

When agent i’s turn comes in the for-loop, it falls into exactly one of four possible cases:
Case 1 (line 4), Case 2 (line 7), Case 3 (line 12) or Case 4 (line 14). Depending on which
case applies, Mi is chosen accordingly. We say that the single-direction extension (SDE)
property holds if at least one agent does not fall into Case 2. It is easy to check that if the
SDE property holds, then there are at least two allocated intervals Mq and Mr that are
adjacent before the extension phase begins, and thus every interval Mi will be extended in
a single direction.

It is clear that vi(M
+
j) ≥ vi(Mj) for all i, j. Furthermore, in all four cases it holds

that agent i is allocated an interval of value at most 1/4, i.e., vi(Mi) ≤ 1/4 for all i. Since

116

Contiguous Cake Cutting

Mi ⊆ Ri and because of the way the agents are ordered, it follows that

vi(Mj) ≤ 1/4 for all j ≤ i (1)

We now show that any agent i has envy at most 1/4 at the end of the algorithm.
Namely, we prove that for any agents i, j we have vi(M

+
j) ≤ vi(M

+
i) + 1/4. We treat the

four different cases that can occur during agent i’s turn.
Cases 1 and 2. In both cases, Mi contains mid(i) and has i-value 1/4. This also holds

for M+
i ⊇ Mi. Since the midpoint of Ri is contained in M+

i , any other interval M+
j has

i-value at most 1/2. Thus, agent i has envy at most 1/4.
Case 3. In this case, we again have vi(Mi) = 1/4. However, this time we have mid(i) ∈

M`, which implies that vi(M
+
j) ≤ 1/2 for all j 6= `. Thus, it remains to show that vi(M

+
`) ≤

1/2. Since ` < i, we have vi(M`) ≤ 1/4. Thus, we need to show that the extension of M`

to M+
` increases the i-value by at most 1/4. Since Mi was chosen to be adjacent to M`, it

suffices to show that there is at most 1/4 i-value available on the other side of M`.
To this end, we prove that at the start of agent i’s turn, M` cannot have at least 1/4 of

i-value available both on the left side and on the right side. Assume on the contrary that
this is the case. Note, in particular, that M` is not restrained. Thus, M` was allocated
in agent `’s turn by Case 2. We also know that i ∈ S`, because mid(i),mid(`) ∈ M` and
v`(M`) = 1/4. Now there are two cases:

• If i = minS`, then mid(i) ∈ ∂M` (i.e., an endpoint of M`). But in that case, at the
start of agent i’s turn, there exists a restrained interval I ⊆ Ai with vi(I) = 1/4 and
mid(i) ∈ I. Thus, agent i would have been in Case 1 instead of 3.

• If i > k = minS`, then in agent k’s turn, Case 1 will apply. Indeed, mid(k) ∈ ∂M`

and thus there is at least 1/4 of k-value available that contains mid(k) (because there
is enough space for 1/4 of i-value and i > k). But if Case 1 applies, then Mk will be
chosen to be adjacent to M` (since they both contain mid(k)), and M` will not have
space available on both sides when agent i’s turn comes.

Case 4. First, suppose that vi(Mi) < 1/4. This means that Mi was a largest available
interval in Ri. It follows that any agent j > i can obtain an interval of i-value at most
vi(Mi), since it is processed after i. For j < i, since agent i is in Case 4, the SDE property
holds. Thus, Mj can be extended by at most vi(Mi), i.e., vi(M

+
j) ≤ vi(Mj) + vi(Mi) for all

j. With (1) it follows that the envy is at most 1/4.
Now, consider the case where vi(Mi) = 1/4. Any agent j > i can obtain i-value no more

than 1/2—otherwise, agent i would have fallen in Case 1 or 2. Consider any j < i:

• if mid(i) ∈ Mj , then both on the left and right side of Mj the space available has
i-value < 1/4 (otherwise agent i would be in Case 1 or 3). Since the SDE property
holds, it follows that vi(M

+
j) ≤ vi(Mj) + 1/4 ≤ 1/2 with (1).

• if mid(i) /∈ Mj , then vi(M
+
j) < 1/2. Otherwise, it means that Mj is extended in a

single direction (SDE property) and takes over an interval of i-value at least 1/4 that
contains mid(i). But then, agent i would be in Case 1 or 2.

This completes the proof.

117

Goldberg, Hollender, & Suksompong

While the approximations of 1/3 and 1/4 may not seem impressive, they represent the
first non-trivial approximations for polynomial-time algorithms in the context of contiguous
cake cutting (besides the very recent algorithm of Arunachaleswaran et al. (2019), achiev-
ing the weaker additive approximation of 1/2 as discussed in Section 1.2). Indeed, even
the classical Dubins-Spanier protocol, which guarantees every agent a value of 1/n, may
allocate a piece which an agent values 1/n and another piece to a second agent which the
first agent values (n − 1)/n—this leads to an envy of (n − 2)/n, which converges to 1 for
large n. Improving these approximations or establishing lower bounds is an interesting and
important question for future research. The situation may be similar to results for approx-
imate Nash equilibrium, a problem that also belongs to the complexity class PPAD and
whose hardness led to interest in additive approximations. The basic problem (bimatrix
games, additive error ε) has seen little recent progress. For ε-Nash equilibrium computation,
the work of Tsaknakis and Spirakis (2008) is the most recent of a sequence of incremental
improvements to the value of ε achievable in polynomial time: for bimatrix games with
payoffs in [0, 1] this work achieves ε ≈ 0.3393. When a well-supported equilibrium is sought
(in which no strategy that pays more than ε less than the best response is played with
positive probability), the best value of ε is even higher, at just below 2/3 (Fearnley et al.,
2016). While a polynomial-time approximation scheme for this problem has been ruled out
by Rubinstein (2016), improvements on these achievable constants would still be of interest,
but seem elusive.

4. Hardness for Cake-Cutting Variants

In this section, we establish hardness results for a number of decision problems on the
existence of contiguous envy-free allocations.

Theorem 4.1. The following decision problems are NP-hard for contiguous cake cutting,
even if we restrict the (explicit) valuations to be piecewise uniform:

• Does there exist an envy-free allocation in which agent 1 obtains the leftmost piece?

• Does there exist an envy-free allocation in which the pieces are allocated to the n agents
in the order 1, 2, . . . , n?

• Does there exist an envy-free allocation such that there is a cut at position x, for x
given in the input?

These problems remain NP-hard if we replace envy-freeness by ε-envy-freeness for any
ε ≤ 0.01.

This list is not exhaustive: additional results of the same flavor can be found in the full
proof (Section 4.1). The following proof sketch conveys the main ideas behind these results.

Proof Sketch. In order to prove that these decision problems are NP-hard, we reduce from
3-sat. Namely, given a 3-sat formula, we construct a cake-cutting instance such that the
answer to the decision problem is “Yes” if and only if the 3-sat formula is satisfiable. A
bonus of our proof is that we construct a single cake-cutting instance that works for all of
the decision problems mentioned in the theorem statement and even a few more.

118

Contiguous Cake Cutting

C1
i

C2
i

C3
i

Figure 1: Clause-Gadget for clause Ci: the valuations of its three agents inside the gadget.
Every block in this figure has value 0.24.

Lj

all agents A:
`(A) = xj

all agents A:
`(A) = xj

Rj

Figure 2: Variable-Gadget for variable xj : the valuations of its two agents Lj and Rj , as
well as the Clause-Gadget agents that have value in this gadget. The large blocks have
value 1 each and the small blocks have value 0.28 each.

Let us give some insight into how this instance is constructed. Consider a 3-sat formula
C1 ∨ · · · ∨ Cm, where the Ci are clauses containing 3 literals using the variables x1, . . . , xn
and their negations. The cake-cutting instance is constructed by putting together multiple
small cake-cutting instances, so-called gadgets. For every clause Ci we introduce a Clause-
Gadget with its three corresponding agents C1

i , C2
i and C3

i . The intuition here is that C1
i is

associated to the first literal appearing in Ci, C
2
i to the second one, and C3

i to the third one.
For any Clause-Gadget agent A, we let `(A) denote the associated literal. The valuations
of these agents inside the gadget are as shown in Figure 1. We say that the gadget operates
correctly if it contains exactly two cuts and the three resulting pieces go to the three agents
C1
i , C2

i and C3
i . At this point we can already make a first key observation: if the gadget

operates correctly, at least one of the three agents must be sad, i.e., obtain at most one out
of its three blocks of value in this gadget.

For every variable xj we introduce a Variable-Gadget with its two corresponding agents
Lj and Rj . Apart from these two agents, some Clause-Gadget agents will also have a value-
block inside this gadget. In more detail, all the Clause-Gadget agents that correspond to xj
or xj will have a block of value inside the Variable-Gadget for xj . Figure 2 shows how the
value-blocks are arranged inside the gadget. We say that the gadget operates correctly if it
contains exactly one cut and the two resulting pieces go to Lj and Rj . There is a second
key observation to be made here. Assume that all gadgets operate correctly. If some agent
Cki with `(Cki) = xj (or xj) is sad, then the value-block of Cki in the Variable-Gadget for xj
has to contain a cut (otherwise Cki would be envious). Since the Variable-Gadget contains
exactly one cut, it is impossible to have agents A and B with `(A) = xj and `(B) = xj that
are both sad.

The instance is constructed by positioning the gadgets one after the other on the cake.
Starting from the left and moving to the right, we first put the Clause-Gadget for C1, then
C2, and so on until Cm, and then the Variable-Gadget for x1, then x2, and so on until xn.

119

Goldberg, Hollender, & Suksompong

Between adjacent gadgets we introduce a small interval without any value-blocks. We say
that an envy-free allocation is nice if all the gadgets operate correctly.

Let us now see how a nice envy-free allocation yields a satisfying assignment for the
3-sat formula. For any agent Cki that is sad, we set the corresponding literal `(Cki) to be
true. This means that if `(Cki) = xj , then we set xj to be true, and if `(Cki) = xj , then we
set xj to be false. The first key observation above tells us that every Clause-Gadget has
at least one sad agent. Thus, this assignment of the variables ensures that every clause is
satisfied. However, we have to make sure that this assignment is consistent, i.e., we never
set xj to be both true and false. This consistency is enforced by the Variable-Gadget for
xj and the second key observation above.

Conversely, given a satisfying assignment for the 3-sat formula, it is not too hard to
construct a nice envy-free allocation. This proves NP-hardness for the decision problem
“Does there exist a nice envy-free allocation?”. In order to prove the result for the more
natural decision problems stated in Theorem 4.1, the construction has to be extended with
some additional work.

4.1 Proof of Theorem 4.1

We provide a full proof of NP-hardness for the following decision problems:

1. Does there exist an envy-free allocation in which agent 1 gets the leftmost piece?

2. Does there exist an envy-free allocation in which agents 1, 2, . . . , k get the k leftmost
pieces, in that order? (for any constant k ≥ 1)

3. Does there exist an envy-free allocation in which all the agents 1, 2, . . . , n are assigned
pieces in that order from left to right?

4. Does there exist an envy-free allocation such that there is a cut at position x? (x
given in the input)

5. Does there exist an envy-free allocation such that the leftmost cut is at position x?
(x given in the input)

6. Does there exist an envy-free allocation such that there are cuts at positions x1, . . . ,
xk? (x1, . . . , xk given in the input, k any constant)

The problems remain NP-hard if we replace envy-freeness by ε-envy-freeness for any ε ≤
0.01.

Remark. The list of NP-hard problems that we have provided is by no means exhaustive.7

The construction we provide below should be viewed as a framework for obtaining these
kinds of results. Indeed, with some simple modifications, one can prove additional results

7. However, if we fix all n− 1 cuts, the problem becomes solvable in polynomial time (Robertson & Webb,
1998, Chapter 6). Indeed, with all the cuts fixed, the resulting pieces are also all fixed. We can therefore
construct a bipartite graph with the agents on one side and the pieces on the other side, where there is
an edge between an agent and a piece exactly when receiving the piece would make the agent envy-free.
The problem of determining whether an envy-free allocation exists therefore reduces to deciding the
existence of a perfect matching, which can be done in polynomial time.

120

Contiguous Cake Cutting

of the same general flavor. In particular, one can change the constraint to “agent 1 gets the
kth piece from the left (k ≥ 1 constant)” or to “the k leftmost cuts are at positions x1, . . . ,
xk”.

Let I be an instance of 3-sat with m clauses C1, . . . , Cm, where each clause is made out
of 3 literals using the variables x1, . . . , xn and their negations. Note that m is polynomial
in n and thus we can use n as the complexity parameter for the instance. Let ε ≤ 0.01 be
arbitrary.

We will construct an instance where the cake is the interval [0, p(n)] (for some polynomial
p), instead of the usual [0, 1]. This is just for convenience as it is easy to obtain a completely
equivalent instance on [0, 1] in polynomial time. Indeed, it suffices to divide the position of
every block by p(n) and multiply its height by p(n). Note that our construction also gives
NP-hardness if the valuations are given in unary representation, since the positions and
heights of blocks will have numerator and denominator bounded by some polynomial (even
after we scale down to [0, 1]). All the valuations we construct will be piecewise uniform,
and in fact all blocks of all agents will have height 1 (before scaling the cake to [0, 1]), but
variable length. Furthermore, value-blocks of different agents will not overlap.

Clause-Gadget. Consider any clause Ci in the instance I. Ci will be represented by a
Clause-Gadget in the cake cutting instance. The Clause-Gadget for Ci requires an interval
of length 9 on the cake, say [ai, ai + 9], where only three specific agents are allowed to
have any value. These agents are denoted by C1

i , C2
i and C3

i . The interpretation is that
C1
i corresponds to the first literal appearing in clause Ci, C

2
i to the second one, and C3

i

to the third one. The valuation of agent C1
i contains three blocks of value in the interval

[ai, ai + 9]: one in each of the subintervals [ai, ai + 1], [ai + 3, ai + 4] and [ai + 6, ai + 7].
Each of these blocks has value 0.24 (i.e., length 0.24 and height 1). Agents C2

i and C3
i have

the same blocks as C1
i , but shifted by 1 and 2 to the right respectively. The valuations of

the three agents inside the Clause-Gadget are shown in Figure 1.
Note that each of the three agents has value 0.72 inside the Clause-Gadget. The re-

maining 0.28 value will be situated in a different gadget that we introduce next.
Variable-Gadget. For every variable xj we introduce a Variable-Gadget in the cake

cutting instance. The Variable-Gadget for xj requires an interval of length 4, say [bj , bj+4],
and introduces two new agents Lj and Rj . Lj has a block of value 1 in the subinterval
[bj , bj + 1], and Rj has a block of value 1 in the subinterval [bj + 3, bj + 4]. For every
clause Ci that contains xj (respectively xj) in the `th position (` ∈ {1, 2, 3}), the agent C`i
has a block of value 0.28 lying at the center of the subinterval [bj + 1, bj + 2] (respectively
[bj + 2, bj + 3]). See the illustration in Figure 2.

Instance. Now consider the cake-cutting instance constructed as follows: starting from
the left, position all the Clause-Gadgets one after the other, leaving an interval of length 3
after every gadget. Then, position all the Variable-Gadgets one after the other, again leaving
an interval of length 3 after every gadget. Thus, the cake is the interval [0, 12m+7n], where
the first Clause-Gadget occupies the interval [0, 9], and the first Variable-Gadget occupies
the interval [12m, 12m + 4]. There are 3m + 2n agents so far. Note that adjacent gadgets
are separated by intervals of length 3 that we call Isolating Intervals. There are exactly
m+ n− 1 Isolating Intervals.

The kth Isolating Interval from the left is denoted Ik. The Isolating Interval Ik =
[a, a + 3] is divided into three subintervals: Ik[1] = [a, a + 1], Ik[2] = [a + 1, a + 2] and

121

Goldberg, Hollender, & Suksompong

S0

S′
0

S1

S2

I0 I1 I2

Figure 3: The Initiation Interval I0 and the Isolating Intervals I1 and I2, along with the
valuations of all agents who have positive value in any of these three intervals. The vertical
dotted lines indicate the position of the cuts in the envy-free allocation that we construct
from a satisfying assignment.

Ik[3] = [a+ 2, a+ 3]. Furthermore, we also add an interval of length 3 on the left end of the
cake: the Initiation Interval. We denote it by I0 and it is similarly subdivided into I0[1],
I0[2] and I0[3]. The cake is now represented by the interval [0, 12m+ 7n+ 3].

We add two new agents S0 and S′0. Agent S0 has a block of value 1/7 in I0[1], a block
of value 2/7 in each of I0[3], I1[1] and I1[3]. Agent S′0 has a block of value 1 in I0[2]. For
k ∈ [m+ n− 2] we define an agent Sk that has a block of value 0.2 in Ik[2] and a block of
value 0.4 in each of Ik+1[1] and Ik+1[3]. We also define an agent Sm+n−1 that has a block
of value 1 in Im+n−1[2]. Figure 3 shows the valuations of the agents in I0, I1 and I2. The
total number of agents is (3m+ 2n) + (m+n+ 1) = 4m+ 3n+ 1, so there are 4m+ 3n cuts
in any solution.

Let ε ≤ 0.01. Since an envy-free allocation always exists, the cake-cutting instance we
have constructed admits an envy-free allocation (in particular also ε-envy-free). In order
to ensure that a solution only exists if the 3-sat formula is satisfiable, we have to add an
additional constraint. An ε-envy-free allocation is said to satisfy the Isolation property if
together all the Clause- and Variable-Gadgets contain at most 2m+ n cuts strictly within
them.

Lemma 4.2. Let ε ≤ 0.01. Any ε-envy-free allocation that satisfies the Isolation property
yields a satisfying assignment for the 3-sat formula.

Proof. Consider any ε-envy-free allocation. If there is at most one cut strictly inside the
Clause-Gadget of Ci, then there is an agent Cki (k ∈ {1, 2, 3}) who does not obtain any
of its value from this Clause-Gadget. Thus, agent Cki gets value at most 0.28 (from its
corresponding Variable-Gadget). However, since the Clause-Gadget of Ci is divided into at
most two parts, some agent gets at least 0.72/2 = 0.36 according to agent Cki ’s valuation,
which contradicts ε-envy-freeness. Thus, every Clause-Gadget contains at least two cuts
strictly within them.

If the Variable-Gadget for xj does not strictly contain any cut, then all of it is allocated
to a single agent. Necessarily, agent Lj or Rj would have envy 1 > ε. Thus, every Variable-
Gadget strictly contains at least one cut.

Now consider an ε-envy-free allocation that also satisfies the Isolation property. Since
the property permits at most 2m + n cuts strictly inside gadgets, we get that these lower

122

Contiguous Cake Cutting

bounds on the number of cuts inside gadgets are actually tight. Thus, there are exactly two
cuts strictly inside every Clause-Gadget and exactly one cut strictly inside every Variable-
Gadget.

Since there is exactly one cut strictly inside the Variable-Gadget of xj , the two resulting
parts must go to agents Lj and Rj . Indeed, if one of these two agents does not get one of
the two parts, then the agent would have envy at least 1/2 > ε. Similarly, since there are
exactly two cuts strictly inside the Clause-Gadget of Ci, the three resulting parts must go
to agents C1

i , C2
i and C3

i . Indeed, if one of these three agents does not get one of the three
parts, the agent would have value 0 (as she cannot get any value from the corresponding
variable gadget) and therefore have envy at least 0.24 > ε.

We now show how such a solution yields a satisfying assignment to the 3-sat instance.
Consider the Clause-Gadget of Ci. As we showed above, there are exactly two cuts strictly
inside the gadget and the three resulting parts go to the agents C1

i , C2
i and C3

i . Any of
these three agents who obtains at most 0.24 of its own value is called sad. By inspection of
the construction of the Clause-Gadget it follows that at least one of the three agents must
be sad. Indeed, it is easy to check that if C1

i is not sad, then at least one of the other two
must be. The fact that any Clause-Gadget must have at least one sad agent will be used
to encode the fact that any clause of the 3-sat instance must have at least one literal set
to 1. Thus, if Cki is sad, this means that we set the literal corresponding to Cki to have the
value 1.

It remains to check that this is consistent, i.e., that we never set the two literals xj and
xj to both be 1. In other words, we have to check that if some agent Cki corresponding to the
literal ` ∈ {xj , xj} is sad, then all agents corresponding to ` are not sad. If agent Cki is sad,
then it gets value at most 0.24. Agent Cki has a block of value 0.28 in the Variable-Gadget
of xj . This block must contain a cut, otherwise Cki would have envy at least 0.04 > ε. But
since there is a single cut inside the Variable-Gadget, the blocks of all agents corresponding
to ` are not cut. As a result, these agents cannot be sad.

Claim 1. Let ε ≤ 0.01. In any ε-envy-free allocation for this instance, every agent obtains
a nonzero value.

Proof. Assume on the contrary that some agent X0 obtains value 0. Note that X0 (like all
agents) has a block of value at least 0.2 somewhere on the cake such that no other agent has
any value there. Since the allocation is ε-envy-free, it follows that this block must be cut
into slices of value at most ε. Let X1 be an agent that is assigned one of the slices strictly
contained in this block. Agent X1 also obtains value 0, and it must also have a block of
value at least 0.2 somewhere on the cake such that no other agent has any value there. This
block must also be cut in slices of value at most ε, and since there are at least two slices
that lie strictly inside the block, there exists such a slice that is not assigned to agent X0,
but rather to some agent X2. We continue this procedure, always ensuring that we pick
some agent that is not X0 (which is always possible). Since the number of agents is finite,
there exist i < j such that Xi = Xj . If i > 0, then one can check that we necessarily have
Xi−1 = Xj−1. Thus, there exists ` > 0 such that X0 = X`. However, this is impossible due
to our choice of X`, a contradiction.

Fixing the ordering of agents.

123

Goldberg, Hollender, & Suksompong

Claim 2. Let ε ≤ 0.01. If there exists an ε-envy-free allocation in which agent S0 gets the
leftmost piece, then the 3-sat formula is satisfiable.

Proof. In any ε-envy-free allocation in which agent S0 gets the leftmost piece, the piece
allocated to S0 will be a strict prefix of I0[1] ∪ I0[2] = [0, 2]. Indeed, if S0 were allocated
all of [0, 2], then agent S′0 would have envy 1. It follows that agent S0 will obtain value at
most 1/7. As a result, the three blocks of value 2/7 of S0 must each contain at least one
cut. Also, note that the Initiation Interval I0 contains at least two cuts.

We now know that the two blocks of value of S0 in I1[1] and I1[3] must each contain a
cut. We show that agent S1 must be allocated some interval in I1. Suppose for the sake of
contradiction that this is not the case. Then, some agent X0 must be allocated an interval
in I1, since there are at least two cuts inside I1. But this agent cannot be S0 or S1, so it
will obtain value 0. However, by Claim 1, this is impossible.

Thus, S1 must be allocated some interval in I1. It follows that S1 obtains value at most
0.2. This, in turn, implies that the two blocks of value 0.4 of S1 in I2 must each contain a
cut. This means that we can repeat the argument above to show that S2 must be allocated
an interval in I2. By induction it follows that every Isolating Interval contains at least 2
cuts. Thus, we have shown that at least 2 + 2(m+ n− 1) = 2m+ 2n cuts do not lie inside
any Clause- or Variable-Gadget. This means that at most (4m+ 3n)− (2m+ 2n) = 2m+n
cuts lie strictly inside a Clause- or Variable-Gadget, and so the Isolation property holds.
By Lemma 4.2, any ε-envy-free allocation in which S0 gets the leftmost piece will yield a
satisfying assignment to the 3-sat instance.

We define the standard ordering of allocation as follows. Starting from the left, the
first piece goes to agent S0 and the second piece to S′0. The rest of the agents are ordered
according to the order of appearance of their gadget in the instance. For this purpose,
we treat every Isolating interval Ik as a gadget with corresponding agent Sk. Within the
Clause-Gadget for Ci, the corresponding agents appear in the order C1

i , C2
i , C3

i . Within the
Variable-Gadget for xj , the corresponding agents appear in the order Lj , Rj . This yields a
unique full ordering of all the agents in the instance.

Claim 3. If the 3-sat formula is satisfiable, then there exists an envy-free allocation in
which the pieces are allocated to the agents according to the standard ordering.

Proof. Given a satisfying assignment, we show how to construct an envy-free allocation
such that the pieces are allocated to the agents according to the standard ordering. Place
a cut at position 1 and through the middle of every block of S0 of value 2/7. Also place a
cut through the middle of every block of value 0.4 of Sk, 1 ≤ k ≤ m+ n− 2. Allocate the
leftmost piece to S0 and the next piece to S′0. Allocate the piece between the two cuts in
the Isolating interval Ik to agent Sk. Note that no matter how we allocate the remaining
parts of the cake, the agents S′0, S0, S1, . . . , Sm+n−1 will definitely be envy-free. S′0 and
Sm+n−1 have obtained all of their value. S0 has obtained value 1/7, but its three blocks of
value 2/7 have all been cut in half. Finally, for 1 ≤ k ≤ m + n − 2, Sk has obtained value
0.2, but its two blocks of value 0.4 have also been cut in half. Figure 3 shows the positions
of the cuts in I0, I1 and I2.

124

Contiguous Cake Cutting

Depending on whether xj = 1 or xj = 1 place a cut in the middle of the region corre-
sponding to xj or xj respectively inside the Variable-Gadget of xj . Allocate the left piece
to Lj and the right piece to Rj . Note that Lj and Rj obtain all of their value.

Finally, for every clause Ci pick one of its literals that is 1 and let Cki be the associated
agent. We position two cuts inside the gadget such that Cki gets one block of its own value,
and the other two Clause-Gadget agents each get two blocks of their own value. While doing
so, we also ensure that these other two agents each get one of the two remaining blocks
of Cki inside the gadget. Note that this is always possible and in fact we can also ensure
that the three pieces are allocated to the agents C1

i , C
2
i , C

3
i in that order from left to right.

Cki has thus obtained value 0.24 and its two other 0.24-blocks have been allocated to two
distinct agents. The last remaining block, which has value 0.28 and lies in the corresponding
Variable-Gadget, has been cut in half according to the procedure above describing how to
place the cut in a Variable-Gadget. Thus, Cki is envy-free. Now consider any of the two
other agents of this Clause-Gadget. Such an agent has obtained 0.48 of its value. 0.24 of
its value has been allocated to other agents in this Clause-Gadget, and 0.28 of its value has
been allocated to Variable-Gadget agents. Thus, this agent is also envy-free.

Using these two claims we immediately obtain that the decision problems 1, 2, and 3
are NP-hard (with envy-freeness or ε-envy-freeness).

Fixing cuts.

Claim 4. Let ε ≤ 0.01. In any ε-envy-free allocation in which there is a cut at position 1,
the leftmost piece must be assigned to agent S0.

Proof. Since there is a cut at position 1, the leftmost piece can only contain value for agent
S0. Thus, by Claim 1 it cannot be allocated to any other agent.

On the other hand, given a satisfying assignment for the 3-sat formula, we can always
ensure that the corresponding envy-free allocation that we construct has a cut at position 1.
In fact, there are many more cuts that are fixed (and do not depend on what the satisfying
assignment is), namely, the two cuts in each Isolating interval.

Using this observation along with the claim above, we get that the decision problems 4,
5, and 6 are NP-hard (with envy-freeness or ε-envy-freeness).

5. Hardness for Indivisible Items

We now turn to a discrete analog of cake cutting, where we wish to allocate a set of
indivisible items that lie on a line subject to the requirement that each agent must receive
a contiguous block. As in cake cutting, we assume that the valuations of the agents over
the items are additive, and that all items must be allocated. Besides envy-freeness, we
consider the classical fairness notions of proportionality and equitability. An allocation is
proportional if every agent receives value at least 1/n times her value for the whole set of
items, and equitable if all agents receive the same value.

Unlike in cake cutting, for indivisible items there may be no allocation satisfying any
of the three fairness properties, e.g., when two agents try to divide a single item. Bouveret
et al. (2017) showed that deciding whether an envy-free allocation exists is NP-hard for

125

Goldberg, Hollender, & Suksompong

additive valuations, and the same is true for proportionality; they did not consider equi-
tability. In this section, we extend and strengthen their results in several ways. We consider
binary valuations, which are additive valuations such that the value of each agent for each
item is either 0 or 1. In other words, an agent either “wants” an item or not. Even though
binary valuations are much more restricted than additive valuations, as we will see, several
problems still remain hard even for this smaller class.

First, we show that deciding whether a fair allocation exists is NP-hard for each of the
three fairness notions mentioned. This hardness result holds for any non-empty combination
of the three notions and even if all agents want the same number of items. Moreover, we
present a reduction that establishes the hardness for all combinations in one fell swoop. We
remark that the techniques of Bouveret et al. (2017) do not extend to the binary domain
because each agent can have different values for different items in their construction. One
may try to fix this by breaking items into smaller items to obtain a binary valuation, but each
agent will require a different way of breaking items, and moreover there will be allocations
in the new instance that cannot be mapped back to those in the original instance.

Xj

Xj

Xj

Xj

Xj C
kp
ip

C
kp
ip

. . . C
kq
iq

C
kq
iq

Xj

Xj

Ckrir Ckrir
. . . Cksis Cksis Xj

Figure 4: Variable-Gadget for variable xj . Every item is represented by a rectangle con-
taining the agent(s) who value it.

Theorem 5.1. Let

F = {envy-freeness, proportionality, equitability},

and let ∅ 6= X ⊆ F . Deciding whether an instance with indivisible items on a line admits
a contiguous allocation satisfying all properties in X is NP-hard, even if all agents have
binary valuations and value the same number of items.

Proof. We prove this result with a single reduction. Let I be an instance of 3-SAT with m
clauses C1, . . . Cm using the variables x1, . . . , xn and their negations. We create the following
gadgets.

• Clause-Gadget: For every clause Ci we introduce three agents: C1
i , C

2
i , C

3
i . Each of

these agents is associated with one of the three literals that appear in clause Ci. We
denote by `(Cki) the literal associated with Cki . For every clause Ci we construct a
Clause-Gadget. The gadget consists of four contiguous items that are all valued by
all three agents C1

i , C
2
i , C

3
i , and by no one else.

• Variable-Gadget: For every variable xj we introduce two agents, Xj and Xj , and
construct a Variable-Gadget as follows (Figure 4). Starting from the left, create two
items that are valued by both Xj and Xj (and no one else). Then, create one item
that is valued only by Xj . Then, for every Cki such that `(Cki) = xj , create two items
that are valued only by Cki . Then, create an item that is valued by both Xj and Xj .
Then, for every Cki such that `(Cki) = xj , create two items that are valued only by
Cki . Finally, create an item that is valued only by Xj .

126

Contiguous Cake Cutting

We combine these gadgets to create the instance R as follows. Starting from the left,
construct the Clause-Gadget for each clause Ci. Then, construct the Variable-Gadget for
each variable xj . Thus, we obtain an instance with 3m+ 2n agents and 4m+ (5n+ 6m) =
5n+ 10m items.

Claim 5. The following statements hold:

• Any contiguous allocation in R where every agent gets at least two items they value
yields a satisfying assignment for I. This holds even if the allocation is partial, i.e.,
some items are not allocated.

• Any satisfying assignment for I yields a contiguous envy-free allocation in R where
every agent gets exactly two items they value (and possibly other items they do not
value).

Proof of Claim. Consider any (possibly partial) contiguous allocation in R where every
agent gets at least two valued items. All of the items valued by Xj or Xj lie in the
Variable-Gadget for xj . Let T denote the second item in this gadget. Note that this item
must necessarily be allocated to Xj or Xj (and it cannot remain unallocated, even in a
partial allocation). If Xj obtains T , then we set aj = 1. If Xj obtains T , we set aj = 0.
We now claim that a is a satisfying assignment for I. Consider any clause Ci and the three
associated agents C1

i , C
2
i , C

3
i . At most two of those agents can obtain their two items from

the Clause-Gadget for Ci. Thus, there exists k ∈ [3] such that Cki is allocated a valued item
outside the Clause-Gadget. But the only other place with items valued by Cki is inside the
Variable-Gadget for the variable of `(Cki) (the literal in clause Ci corresponding to agent
Cki). Since Cki obtains an item in this gadget, one can check that the agent corresponding
to the literal `(Cki) must obtain the second item in the gadget. It follows that the literal
`(Cki) has value 1 in the assignment a, and thus clause Ci is satisfied by a.

Conversely, let a be any satisfying assignment for I. For every clause Ci, there exists
an agent Cki such that the literal `(Cki) is true in a. Allocate the four items in the Clause-
Gadget for Ci to the other two clause agents (two contiguous items for each). Then, Cki has
only two valued items remaining, namely the ones in the Variable-Gadget corresponding to
`(Cki). Allocate them to Cki . Once this is done for all clauses, we move on to the Variable-
Gadget agents. Assume that aj = 1; the case where aj = 0 can be treated analogously.
Then, the first two items of the Variable-Gadget for xj are allocated to Xj , while Xj obtains
the only two remaining items that it values (which are not adjacent). However, no clause
agent Cki has been allocated any item in this interval, because items there are only valued
by Cki with `(Cki) = xj and those agents have been allocated items within their respective
Clause-Gadget (because aj = 1); therefore we may allocate all items in this interval to Xj .
At this point, some items in the Variable-Gadget might still be unallocated, namely items
that lie in the interval starting from the third item up to the last item not allocated to
Xj . If all of these items are unallocated, then allocate them all to Xj . Note that the items
allocated to Xj are indeed contiguous. If some of these items are already allocated, then
they are allocated to clause agents. Simply extend the intervals allocated to these clause
agents until they form a partition of this region. This construction ensures that every agent
A obtains exactly two items they value. Moreover, for every other agent B, A obtains at
most two items valued by B.

127

Goldberg, Hollender, & Suksompong

The final step of the proof is to introduce one last gadget. The Special-Gadget creates
3m+ 2n+ 7 new agents. We denote the set of these new agents by N . The gadget consists
of 2(3m+ 2n) + 14 = 6m+ 4n+ 14 new items. These items are valued by all agents in N .
For every i ∈ [m] and k ∈ [3], Cki values all new items except the rightmost six. For every
j ∈ [n], Xj and Xj value all new items except the rightmost four.

The Special-Gadget is added to the right end of R and yields the final instance R′. Note
that in R′ there are 6m+ 4n+ 7 agents and every agent values exactly 6m+ 4n+ 14 items.
Now consider any contiguous allocation for R′.

• If the allocation is proportional, then every agent gets at least d(6m+4n+14)/(6m+
4n+ 7)e = 2 items they value. It follows that the agents in N get all the new items,
because 2|N | = 2(3m + 2n + 7) = 6m + 4n + 14. This means that the other agents
get at least two items they value in R. By the claim above, we obtain a satisfying
assignment.

• If the allocation is equitable, then all agents get exactly s items they value, for some
s ≥ 0. The Special-Gadget contains an item (in fact, many) that is valued by all
agents. Since this item will be allocated to someone, s = 0 is not possible. Also s ≥ 3
is not possible, because the 3m+2n+7 agents inN all like the exact same 2(3m+2n+7)
items. Now, since all 6m+4n+7 agents value the first (6m+4n+14)−6 = 6m+4n+8
items in the Special-Gadget, at least one of them will be allocated to two of those (by
the pigeonhole principle). It follows that s = 1 is also impossible. Thus, only s = 2
remains, and we again obtain a satisfying assignment by the claim.

Since envy-freeness implies proportionality, it follows that any X-allocation for R′ yields
a satisfying assignment for the 3-SAT instance I, for any non-empty X ⊆ {envy-free,
proportional, equitable}. On the other hand, any satisfying assignment for the 3-SAT
instance yields an envy-free and equitable allocation for R′, by assigning two contiguous
Special-Gadget items to each agent in N and then using the claim.

In the construction used for our proof of Theorem 5.1, each agent values at most four
contiguous blocks of items. In light of this result, one may naturally wonder whether the
hardness continues to hold if, for example, every agent values a single block of items. We
show that this is the case for proportionality, provided that we drop the requirement that
all agents value the same number of items. Note that if each agent values a contiguous block
of items and all agents value the same number of items, deciding whether a proportional
allocation exists can in fact be done in polynomial time. Indeed, we can view the problem
as a scheduling problem on a single machine, with each agent having a task to be completed
by a machine. For a given task, its release time is where the corresponding agent’s valued
block starts, its deadline is where the block ends, and its length is the number of items
that we need to give the agent in order to satisfy proportionality. When all tasks have the
same length, which is true in our setting, polynomial-time algorithms have been proposed
by Simons (1978) and Garey et al. (1981).

Theorem 5.2. Deciding whether an instance with indivisible items on a line admits a
contiguous proportional allocation is NP-hard, even if the valuations are binary and every
agent values a contiguous block of items.

128

Contiguous Cake Cutting

Proof. We reduce from the 3-partition problem. An instance of the 3-partition problem
consists of 3n positive integers x1, . . . , x3n with sum nB, and the goal is to partition them
into n sets of size three each so that the three numbers in each set sum to B. The problem
is NP-hard, and remains so when B/4 < xi < B/2 for all i (Garey & Johnson, 1979).

Given an instance of 3-partition, we create an instance of our problem as follows.
There are m := n(B + 1) + 4nk2 items on the line, where k = 4B. Each item belongs
to one of the three types: special, normal, and dummy. From left to right, the last 4nk2

items are dummy items. The remaining n(B + 1) items are partitioned into n blocks of
size B + 1—the leftmost item of each block is a special item (so n special items in total),
and the remaining B items of the block are normal items (so nB normal items in total).
There are n′ := 4n(k + 1) agents: n special, 3n normal, and 4nk dummy. Each of the n
special agents values a distinct special item and nothing else. Each dummy agent values all
dummy items and nothing else. For 1 ≤ i ≤ 3n, the ith normal agent values the leftmost
n′xi items. Note that this is well-defined because n′xi < 2n(k + 1)B < 4nkB = nk2 < m.
Moreover, n′xi > n(k + 1)B > 2nB > n(B + 1), so each normal agent values all normal
items (along with other items).

First, suppose that there is a valid solution to the 3-partition instance. We construct
a proportional allocation. Give each special agent her valued item, and each dummy agent k
consecutive dummy items. For each part {xa1 , xa2 , xa3} in the solution to the 3-partition
instance, we pick a block of B normal items and give xai consecutive items to the aith
normal agent. One can check that the resulting allocation is proportional; in particular,

each dummy agent needs at least
⌈

4nk2

n′

⌉
=
⌈

4nk2

4n(k+1)

⌉
= k valued items, and that is exactly

what they get.
Conversely, suppose that our construction admits a proportional allocation. In this

allocation, each special agent must get her valued item and, as above, each dummy agent
needs at least k valued items. Since there are 4nk dummy agents and they value the same
4nk2 items, each dummy agent must receive exactly k valued items. This leaves only the nB
normal items to be allocated to the 3n normal agents. Normal agent i needs to get at least
xi items, so given that

∑3n
i=1 xi = nB, all normal items must be allocated to the normal

agents, and normal agent i must receive exactly xi items. Finally, since B/4 < xi < B/2 for
all i, each block of B normal items is allocated to exactly three agents. Hence the allocation
yields a valid solution to the 3-partition instance, as desired.

Next, we show that under the same conditions as Theorem 5.2, deciding whether there
exists a proportional and equitable allocation, or an equitable allocation that gives the
agents positive value, are both computationally hard. Since agents do not all value the
same number of items (unlike in Theorem 5.1), we normalize the valuations so that if agent
i values xi items, she has value 1/xi of each of them (so her total value is 1).

Theorem 5.3. Deciding whether an instance with indivisible items on a line admits

• a contiguous allocation that is both proportional and equitable;

• a contiguous equitable allocation in which the agents receive positive value

are both NP-hard, even if the valuations are binary and every agent values a contiguous
block of items.

129

Goldberg, Hollender, & Suksompong

Proof. The reduction is similar to the one in Theorem 5.2. We again reduce from 3-
partition, but this time we also assume that xi > n for all i. Note that we can ensure
that this is the case by multiplying all xi and B by n.

Let K = nB. The main building block of this reduction is a K-block : K consecutive
items with K agents who only value these K items. The instance is constructed as follows.
Starting from the left end of the line, there are B consecutive K-blocks. Note that each
K-block has its own K agents. We call this the “left region” of the instance. The “right
region” of the instance consists of n blocks of K + B items each. The leftmost K items of
such a block form a K-block, and there are B items to the right of that K-block. Finally, we
introduce new agents a1, . . . , a3n. For each i ∈ [3n], agent ai values the Kxi rightmost items
on the line. Note that this is well-defined, since there are BK+n(K+B) ≥ BK ≥ Kxi items
overall. Furthermore, agent ai values all items in the right region, because Kxi ≥ n(K+B)
(since K = nB and xi > n). Note that every agent values a contiguous block of items.

Now consider any equitable allocation in which the agents receive positive value. Every
agent must get at least one item that they value. Consider any K-block. Since its K agents
only value these K items, it follows that they each obtain exactly one. Thus, they each get
value exactly 1/K, and all other agents in the instance must also get value exactly 1/K.
This means that agent ai must obtain exactly xi of its valued items. Since B/4 < xi < B/2
for all i, each block of B items in the right region are allocated to exactly three agents ai.
Hence, we obtain a solution to the 3-partition instance. Note that a proportional and
equitable allocation yields positive value to the agents, so it also gives rise to a solution to
the 3-partition instance.

Conversely, given a solution to the 3-partition instance, one can construct an equitable
allocation in which the agents receive positive value by following the previous paragraph.
Note that this allocation is also proportional, since each agent receives value 1/K and there
are more than K agents. This completes the proof.

Finally, we consider approximate versions of these fairness notions for the discrete set-
ting. In fact, by inspection of the proofs of Theorems 5.1, 5.2 and 5.3, it follows that
the statements also hold if we consider the corresponding ε-approximate fairness notions
for ε = 1/p(n), where p is some polynomial and n is the number of agents.8 Below, we
show that even for (a sufficiently small) constant ε, deciding whether there exists an ε-
envy-free allocation is NP-hard; this holds even if we restrict the valuation functions as in
Theorem 5.1.

Theorem 5.4. For any ε < 1/13, deciding whether a contiguous ε-envy-free allocation
exists is NP-hard, even if all agents have binary valuations and value the same number of
items.

Proof. Consider an instance of 3-SAT with m clauses C1, . . . , Cm using the variables
x1, . . . , xn and their negations. We will make use of the following gadgets:

• Clause-Gadget: For every clause Ci we introduce three agents C1
i , C

2
i , C

3
i . Each of

these agents is associated with one of the three literals appearing in clause Ci, and

8. We say that an allocation is ε-proportional if every agent receives value at least 1/n− ε, and ε-equitable
if the values that any two agents receive differ by at most ε, where in both cases we normalize each
agent’s value for the entire set of items to 1.

130

Contiguous Cake Cutting

we denote by `(Cki) the literal associated to Cki . For every clause Ci we construct a
Clause-Gadget as follows. Starting from the left, the first three items are valued by
C1
i (and no one else), the next three items are valued by C2

i , and the next three by
C3
i . We repeat this three times. Thus, the Clause-Gadget for Ci consists of 27 items

and every agent Cki values exactly 9 of these items.

• Variable-Gadget: For every variable xj we introduce two agents Lj and Rj and con-
struct the Variable-Gadget for xj as follows. Starting from the left, the first 13 items
are valued by Lj . The next 4 items are valued by every agent Cki such that `(Cki) = xj
(i.e., every agent corresponding to the literal xj). The next 4 items after that are val-
ued by every agent Cki such that `(Cki) = xj . Finally, the next 13 items are valued by
Rj .

• Isolation-Gadget: An Isolation-Gadget consists of 13 items and 5 agents. The 5 agents
value each of the 13 items and no other items in the instance.

The instance is then constructed as follows. Starting from the left, we construct the Clause-
Gadget for C1, then for C2, and so on up to Cm. Then, we construct the Variable-Gadget
for x1, for x2, and so on up to xn. Finally, we introduce an Isolation-Gadget between any
two adjacent gadgets. Thus, there are m + n − 1 Isolation-Gadgets, and the instance has
3m+ 2n+ 5(m+ n− 1) = 8m+ 7n− 5 agents.

Note that in this construction every agent values exactly 13 items. Since all of the valu-
ations are binary, this means that for the normalized valuations, any ε-envy-free allocation
with ε < 1/13 must actually be (exactly) envy-free.

Consider any contiguous envy-free allocation for this instance. The Variable-Gadget
for xj must contain at least one cut strictly inside it—otherwise, Lj or Rj would not be
envy-free. Furthermore, the Clause-Gadget for Ci must strictly contain at least two cuts.
If it contained at most one cut, then at least one of the agents Cki would not obtain any
item in this gadget. Thus, Cki would be able to obtain at most 4 valued items (from the
Variable-Gadget for the variable of `(Cki)). However, since the Clause-Gadget for Ci has
been divided into at most two pieces and Cki values 9 items in this gadget, one of those
pieces contains at least 5 items valued by Cki . Thus, Cki would envy the agent receiving
that piece.

Finally, any Isolation-Gadget must strictly contain at least 6 cuts. It is easy to see
that it must contain at least 4 cuts, so that each of the 5 agents that values all of the 13
items can obtain something. However, 4 cuts are not enough, because the 5 resulting pieces
cannot contain exactly the same number of items and thus one of the 5 agents would not
be envy-free. It turns out that 5 cuts are also not enough. Indeed, in that case there are 6
pieces and 5 of those must be given to the 5 agents of the gadget. However, it is impossible
to divide 13 items into 6 pieces in such a way that 5 of the pieces contain the same number
of items and the 6th piece contains at most that many items.

Since the instance has 8m+7n−5 agents, there are 8m+7n−6 cuts. With the arguments
above we have accounted for exactly 2m+ n+ 6(m+ n− 1) = 8m+ 7n− 6 cuts. It follows
that every Clause-Gadget strictly contains exactly 2 cuts and every Variable-Gadget strictly
contains exactly 1 cut. Thus, similarly to the divisible case, we have ensured that a certain
Isolation property holds. The proof that this allocation yields a satisfying assignment for
the 3-SAT instance is analogous to the divisible case (Lemma 4.2).

131

Goldberg, Hollender, & Suksompong

Conversely, given a satisfying assignment of the 3-SAT instance, it is not hard to con-
struct an envy-free contiguous allocation for the instance. In fact, the only difference from
the divisible case is with respect to the Isolation-Gadgets. Here, the 6 cuts inside every
Isolation-Gadget are placed as follows: place a cut after the first item, then a cut every two
items, and give the 5 central pieces of size 2 to the 5 agents of the gadget.

6. Connections Between Various Cake-Cutting Problems

In this section, we uncover several new connections between different cake-cutting settings.
In particular, in Section 6.1 we show that for piecewise constant valuations, finding an
approximate envy-free allocation is as hard as finding an exact one. Then, in Section 6.2 we
exhibit connections between a number of continuous and discrete cake-cutting problems.

6.1 Approximate and Exact Envy-Freeness

We begin by proving the following result, which relates approximate and exact envy-freeness
for a restricted yet quite expressive class of valuations.

Theorem 6.1. For (explicit) piecewise constant valuations, computing a contiguous envy-
free allocation reduces to computing a contiguous ε-envy-free allocation for a sufficiently
small ε (which may depend on the number of agents and the valuations).

In particular, this means that for such valuations there always exists a contiguous envy-
free allocation in which all cut points are rational.9 Theorem 6.1 is implied by the following
result:

Lemma 6.2. Let v1, . . . , vn be (explicit, normalized) piecewise constant valuations, and
M ≥ 3 and k be positive integers such that

• for all i ∈ [n], all of the numbers in the explicit description of vi (i.e., the step heights
and step change positions) have numerator and denominator at most M ;

• for all i ∈ [n], vi has at most k value-blocks.

Then from any M−20kn-envy-free solution, we can efficiently obtain an envy-free solution.

Proof. We apply the technique that was used by Etessami and Yannakakis (2010) to show
that finding an exact fixed point of a LinearFIXP circuit reduces to finding a (sufficiently
good) approximate fixed point.

Let (x̂, π) be a contiguous ε-envy-free allocation, where 0 ≤ x̂1 ≤ · · · ≤ x̂n−1 ≤ 1.
Without loss of generality assume that π(i) = i for all i (by reordering the agents). For
i ∈ [n] and j ∈ [n − 1], let `ij be the position of the closest step change in vi on the left

of x̂j . Similarly, define rij to be the closest step change position on the right. (If x̂j lies

on a step change position of vi, then we set `ij = rij = x̂j .) Finally, set `j = maxi `
i
j and

rj = mini r
i
j . Note that all valuation densities are constant on the interval [`j , rj]. Thus,

the corresponding cumulative valuation functions are linear. For i ∈ [n] and j ∈ [n− 1], let
hij denote the (constant) value of the density function of vi in [`j , rj] (if `j = rj then hij can
be defined as any arbitrary value).

We solve the following linear program (LP) with variables x1, . . . , xn−1, z:

9. This is not the case for more general valuations (Stromquist, 2008).

132

Contiguous Cake Cutting

min z
`j ≤ xj ≤ rj ∀j ∈ [n− 1]
xj ≤ xj+1 ∀j ∈ [n− 2][

hij(xj − `j)− hij−1(xj−1 − `j−1) + vi(`j−1, `j)
]

−
[
hii(xi − `i)− hii−1(xi−1 − `i−1) + vi(`i−1, `i)

]
≤ z ∀i, j ∈ [n]

where we define x0 = `0 = 0 and xn = `n = 1 for ease of exposition. Note that the left-hand
side of the last line is equal to vi(xj−1, xj) − vi(xi−1, xi), i.e., the envy of agent i towards
agent j. Thus, minimizing z corresponds to minimizing the maximum envy experienced by
any agent. The LP does the following: it allows any cut in (x̂, π) to move slightly to the
left or the right, as long as it does not fall into a different step (in any of the valuations)
and as long as the relative order of the cuts does not change. Furthermore, the order of
assignment of the intervals to the agents (i.e., π) does not change.

Clearly, (x̂, ε) is a feasible solution of the LP. For now assume that we know that the
LP has an optimal (rational) solution (x∗, z∗) such that all denominators are bounded by
some positive integer d (that only depends on M , k and n). Then, if we pick ε < 1/d, it
will follow that z∗ < 1/d, which implies that z∗ = 0 (z∗ ≥ 0 is implicitly forced by the
constraints). Thus, solving the LP will give us a contiguous envy-free allocation.

It remains to find a bound d such that the LP is guaranteed to have an optimal solution
with all denominators bounded by d. The LP must have a solution (x∗, z∗) that is a vertex
of the feasible polytope—the polytope defined by the constraints. Note that for (x∗, z∗), at
least n constraints must be tight, i.e., satisfied with equality. Furthermore, (x∗, z∗) must be
the unique point that satisfies all these tight constraints with equality (otherwise, it would
not be a vertex of the feasible polytope). Thus, by picking a linearly independent subset
of these tight constraints, we get that y = (x∗, z∗) is the unique solution of a linear system
Ay = b with n variables and n equations.

In order to investigate the denominator size of solutions of Ay = b, we first turn it
into an equivalent linear system A′y = b′ where A′ and b′ are integral. Specifically, we will
multiply the mth line of the linear system by some value Cm so that all of the coefficients
become integers. Inspection of the LP reveals that any line m contains at most 6 non-zero
entries, i.e., at most 6 entries out of am,1, . . . , am,n, bm are not zero. Furthermore, at most
5 of them are non-integral, because the coefficient of z is integral. Out of these, at most
one (namely bm) can have a denominator that is larger than M . This corresponds to the
case where bm = −hij`j + hij−1`j−1 + hii`i − hii−1`i−1 + vi(`j−1, `j)− vi(`i−1, `i).

The first 4 terms in the expression of bm have denominator at most M2 (since they are
of the form p1 ·p2, where p1, p2 have denominator at most M). The term vi(`j−1, `j) can be
computed by summing up the values of the blocks between `j−1 and `j with respect to vi.
The value of each block has denominator at most M3 (since it is of the form (p1 − p2) · p3,
where p1, p2, p3 have denominator at most M). Since there are at most k blocks in vi, the
denominator of vi(`j−1, `j) is at most M3k. The same also holds for vi(`i−1, `i). Thus, the
denominator of bm is at most M6k+8.

It follows that there exists some integer Cm ≤ M4 ·M6k+8 = M6k+12 such that multi-
plying the mth line of the linear system by Cm makes the coefficients integral. Doing this
for every line yields an equivalent linear system A′y = b′ that is integral. Notice that A′ has
at most 5 non-zero entries per line and each of these values is bounded (in absolute value)

133

Goldberg, Hollender, & Suksompong

by M6k+13. Cramer’s rule tells us that z∗ = det(C)
det(A′) , where C is the matrix A′ with the last

column replaced by b′. Since det(C) is an integer, it suffices to bound | det(A′)| in order to
bound the denominator of z∗.

Using Hadamard’s inequality, we get that |det(A′)| ≤
∏n
m=1 ‖A′m‖2, where A′m is the

mth line (i.e., row) of A′. It follows that ‖A′m‖2 ≤
√

5M6k+13 ≤ M6k+14 (since M ≥ 3).
Thus, we get that z∗ has denominator at most d := M (6k+14)n ≤M20kn.

Remark. The same proof also yields the following result: If for all i ∈ [n], all numbers in
the description of vi have denominator exactly M , then from any M−4n-envy-free solution,
we can efficiently obtain an envy-free solution. Indeed, in this case bm has denominator
M2, so we get Cm = M2 and ‖A′m‖2 ≤M4 for every m.

Note that while computing an approximately envy-free allocation with contiguous pieces
may well be a hard problem when the permitted error is sufficiently small, the analogous
problem can be solved efficiently for exact proportionality (Dubins & Spanier, 1961) and
approximate equitability (Cechlárová & Pillárová, 2012).

6.2 Continuous and Discrete Cake Cutting

We now establish the computational equivalence between some continuous and discrete
cake-cutting problems. Let us start by defining the computational problems that we will
consider.

Definition 6.3. The problem unary-ε-EF-Cake-Cutting is defined as: given ε > 0 (in
unary) and (explicit, normalized) piecewise constant valuations v1, . . . , vn on [0, 1], find a
contiguous ε-envy-free allocation (x, π).

This corresponds to the standard contiguous ε-envy-free cake-cutting problem with
piecewise constant valuations, except that ε is provided in unary representation. This
means that ε can no longer have exponential precision with respect to the size of the input.
We also define a (seemingly) more restricted version of this problem.

Definition 6.4. The problem simple-ε-EF-Cake-Cutting is defined exactly as unary-
ε-EF-Cake-Cutting, except that we are also given some positive integer M (in unary)
and for all i ∈ [n] we have that the piecewise constant valuation vi satisfies:

• all heights of value-blocks of vi are integral;

• the height of vi can only change at points of the form k/M where k ∈ [M].

Next, we consider discrete cake cutting. While an envy-free allocation is not guaranteed
to exist in this setting (cf. Section 5), such an allocation always exists for some restricted
classes of valuations. We say that indivisible item valuations v1, . . . , vn are disjoint if
every item is valued by at most one agent. Marenco and Tetzlaff (2014) proved that if
the valuations are disjoint, then an envy-free allocation necessarily exists. We define a
computational search problem based on this existence theorem, where we restrict ourselves
to the binary valuation case. Note that binary valuations correspond to piecewise uniform
valuations once normalized (i.e., if an item is valued by an agent, then it is valued the same
as any other item valued by that agent).

134

Contiguous Cake Cutting

Definition 6.5. The problem Disjoint-Discrete-EF-Cake-Cutting is defined as: given
disjoint binary valuations v1, . . . , vn on a discrete cake, find a contiguous envy-free alloca-
tion.

Perhaps surprisingly, it turns out that all of these problems are computationally equiv-
alent. Thus, any algorithm or hardness result for one of them would immediately extend to
all of them.

Theorem 6.6. The following problems are polynomial-time equivalent:

(1) unary-ε-EF-Cake-Cutting

(2) simple-ε-EF-Cake-Cutting

(3) Disjoint-Discrete-EF-Cake-Cutting

(4) Disjoint-Discrete-EF-Cake-Cutting, where all agents value the same number of
items.

The rest of this section is devoted to proving this theorem. The reductions (2) → (1)
and (4) → (3) are trivial, because we are reducing from a special case of a problem to a
more general case. Thus, in order to establish the theorem, it remains to show that (1)
reduces to (4) (Proposition 6.7), and that (3) reduces to (2) (Proposition 6.8).

Proposition 6.7. unary-ε-EF-Cake-Cutting reduces to Disjoint-Discrete-EF-Cake-
Cutting where all agents value the same number of items.

Proof. We follow the same idea that was used by Filos-Ratsikas and Goldberg (2018) to
show that ε-Consensus-Halving reduces to Necklace-Splitting when ε is given in
unary representation (i.e., it is inversely polynomial).

Let m denote the maximum number of value-blocks in the piecewise constant valuation
of any agent 1 ≤ i ≤ n. Since the piecewise constant valuations are provided explicitly in
the input, it follows that m is bounded by the size of the input. Let δ ≤ ε/(m+ 2) be such
that 1/δ is integral.

For each agent i and each value-block of vi we do the following. Let [a, b] denote the
subinterval covered by the block and let h be its height. We divide the block into sub-blocks
of value δ each, starting from the left. Namely, the first sub-block covers [a, a + δ/h], the
second sub-block covers [a + δ/h, a + 2δ/h], and so on. If (b − a)h/δ is not an integer,
then the last sub-block will be incomplete and we will ignore it. Thus, we have obtained
b(b − a)h/δc complete sub-blocks. For each such sub-block, we compute its midpoint and
place an item valued by agent i at that position in [0, 1].

After we have done this for every block of every agent, we perform some post-processing.
Note that all agents might not value the same number of items. Indeed, since incomplete
sub-blocks are dropped, an agent might value less than 1/δ items. However, since every
agent has at most m blocks of value, she can have at most m incomplete sub-blocks. Thus,
every agent values at least 1/δ−m items. Now, for any agent that values strictly more than
1/δ −m items, we remove items from the instance until she values exactly 1/δ −m items.
The items to be removed are picked arbitrarily—since every item is valued by exactly one

135

Goldberg, Hollender, & Suksompong

agent, this is straightforward to do. After this is done, every agent values exactly 1/δ −m
items. In particular, exactly mδ of every agent’s original value is unaccounted for by the
discretized instance.

From here we obtain an instance of Disjoint-Discrete-EF-Cake-Cutting by simply
arranging the items in the order in which they appear in the interval [0, 1]. Note that it
is possible that items have the exact same position in [0, 1]—in that case, we resolve the
tie arbitrarily. Every item is valued 1/(1/δ −m) by exactly one agent, and 0 by all other
agents.

Consider any solution of this Disjoint-Discrete-EF-Cake-Cutting instance. This
allocation of the items gives rise to an allocation of the cake: for every cut in the discretized
version, we place the corresponding cut in the continuous version between the positions of
the items on either side of the cut (e.g., halfway between the positions of the two items). In
particular, if the two items share the same position in [0, 1], then the cut is placed at that
same position.

We now argue that the resulting allocation is an ε-approximate solution to the unary-
ε-EF-Cake-Cutting instance. Let vij denote the i-value (i.e., the value for agent i) of
the interval assigned to agent j. Let Vij denote the value for agent i of the items assigned
to agent j in the discretized instance, but where we let every item have value δ (instead of
1/(1/δ−m)). Then, we have Vii ≥ Vij for all i, j. Consider the interval assigned to agent i
and compare it to the items assigned to agent i. It is possible that even though an item was
assigned to agent i, the cut in the continuous instance cuts through the corresponding sub-
block of value δ. However, in that case agent i gets at least δ/2 from that sub-block, i.e., she
lost at most δ/2. Since this can happen at both extremities of the interval assigned to agent
i, we get vii ≥ Vii−δ. Now consider the i-value of the interval assigned to agent j. The same
idea as above about the extremities of the interval means that the continuous allocation
might increase the i-value by δ with respect to the discrete allocation. Furthermore, there is
also mδ of agent i’s available value that is unaccounted for in the discrete allocation. In the
worst case, all of it lies in the interval allocated to agent j. Thus, we obtain vij ≤ Vij+δ+mδ.
Putting everything together, we then get vii ≥ vij − (m+ 2)δ ≥ vij − ε.

Proposition 6.8. Disjoint-Discrete-EF-Cake-Cutting reduces to simple-ε-EF-Cake-
Cutting.

Proof. Consider an instance of Disjoint-Discrete-EF-Cake-Cutting with m items and
n agents with disjoint binary valuations v1, . . . , vn. For i ∈ [n], let mi denote the number of
items that agent i values. Note that the valuations are provided explicitly in the input, so
n, m, and the mi’s are bounded by the size of the input. We start by providing a reduction
to unary-ε-EF-Cake-Cutting.

We construct a continuous cake-cutting instance as follows. Divide the continuous cake
[0, 1] into m regions of size 1/m, i.e., Ij = [(j − 1)/m, j/m] for j ∈ [m]. If item j ∈ [m]
is valued by agent i, then put a block of length 1/m and height m/mi in interval Ij of
the valuation wi. This yields piecewise constant valuations w1, . . . , wn on [0, 1] that are
normalized. Finally, set ε := mini 1/(nmi). Note that ε can be efficiently represented in
unary.

Let (x, π) be a contiguous ε-envy-free allocation for this continuous cake-cutting in-
stance. For i ∈ [n], let Ai denote the interval allocated to agent i. We now provide a

136

Contiguous Cake Cutting

rounding procedure to turn this ε-envy-free allocation into an envy-free allocation where all
cuts lie on points of the form j/m with j ∈ [m]. It is easy to see that this yields a solution
to the Disjoint-Discrete-EF-Cake-Cutting instance.

Consider any “bad cut”, i.e., a cut that lies strictly within an interval Ij = [(j −
1)/m, j/m]. If item j is not valued by any agent, then we can move this cut to either side
without changing the value of any agent for any of the allocated intervals. Otherwise, item
j is valued by exactly one agent i; in that case we say that this cut is an i-cut. If the interval
Ai allocated to agent i has an i-cut on the left or right endpoint, then we can immediately
round it in favour of agent i, i.e., making Ai larger. Indeed, this does not decrease wi(Ai),
does not increase wi(A`), and does not change w`(Ak) for any k, ` ∈ [n] with ` 6= i. Thus,
we still have an ε-envy-free allocation and wi(Ai) is of the form ti/mi where ti ∈ [mi] (and
will no longer change).

If we had an envy-free allocation, then the rest of the rounding would be straightforward:
simply round every remaining bad cut to the right (or alternatively round every bad cut
to the nearest ·/m value). With this rounding, agent i would have envy strictly less than
1/mi, and thus envy 0. However, we only have an ε-envy-free allocation, so we need to do
come up with a more involved rounding scheme. We now show how to round all i-cuts; the
same procedure can be applied for every i ∈ [n].

An i-chain is a set of consecutive cuts that are all i-cuts, and such that it has maxi-
mal length (i.e., the first cut to the left and right is not an i-cut). Every i-chain can be
handled separately as follows. Consider an i-chain consisting of k consecutive i-cuts. Let
A`1 , . . . , A`k+1

be the allocated intervals delimited by those cuts, from left to right. Note
that `1, . . . , `k+1 6= i.

We start with the leftmost i-cut: the one lying between A`1 and A`2 . Suppose that it lies
strictly within the interval [(j − 1)/m, j/m]. There are two possible rounding positions for
this cut: to the left or to the right. If we round to the left then wi(A`1) = t/mi for some t,
while if we round to the right we get wi(A`1) = (t+ 1)/mi. If (t+ 1)/mi ≤ ti/mi = wi(Ai),
then we round to the right. On the other hand, if (t+ 1)/mi > ti/mi, then t = ti (because
ε < 1/mi) and A`1 was taking at most ε value from the block at [(j − 1)/m, j/m] (since
wi(A`1) ≤ ti/mi + ε before moving the cut). This means that by rounding to the left, we
have added at most ε value to wi(A`2). Thus, we now have wi(A`2) ≤ ti/mi + 2ε.

We now proceed to round the second cut of the i-chain. Again, if we round to the left
then wi(A`2) = t/mi for some t, and if we round to the right wi(A`2) = (t + 1)/mi. If
(t+ 1)/mi ≤ ti/mi, then we round to the right. On the other hand, if (t+ 1)/mi > ti/mi,
then t = ti (because 2ε < 1/mi) and A`2 was taking at most 2ε value from the block
that is cut by the i-cut. Thus, rounding to the left ensures that wi(A`2) = ti/mi and
wi(A`3) ≤ ti/mi + 3ε. We keep repeating this until the rightmost i-cut of the i-chain has
been rounded. At the end, we get that wi(A`k+1

) ≤ ti/mi + (k + 1)ε. However, we have
(k + 1)ε < 1/mi since k + 1 ≤ n− 1 (Ai cannot be one of the intervals). After we perform
this procedure for all i-chains, agent i will not envy any other agent.

We have shown a reduction to unary-ε-EF-Cake-Cutting. In order to obtain a re-
duction to simple-ε-EF-Cake-Cutting, we combine this reduction with Proposition 6.7.
Indeed, this yields a reduction from Disjoint-Discrete-EF-Cake-Cutting to Disjoint-
Discrete-EF-Cake-Cutting where all agents value the same number of items. This
means that we now have mi = mj for all i, j ∈ [n]. By adding additional items that are

137

Goldberg, Hollender, & Suksompong

not valued by anyone, we can also ensure that the number of items m is a multiple of mi.
Applying the same reduction described in the first part of this proof to this instance yields
an instance of simple-ε-EF-Cake-Cutting with M = m.

7. Conclusion

In this paper, we study the classical cake cutting problem with the contiguity constraint and
establish several hardness results and approximation algorithms for this setting. It is worth
noting that while our 1/3-envy-free algorithm (Algorithm 1) is simple, lowering the envy
to 1/4 for the restricted class of uniform single-interval valuations (Algorithm 2) already
requires significantly more work. Pushing the approximation factor down further even
for this class or the class of piecewise uniform valuations while maintaining computational
efficiency is therefore a challenging direction. Of course, it is possible that there are hardness
results for sufficiently small constants—this is not implied by the work of Deng et al. (2012),
as their PPAD-completeness result relies on more complex preference functions.

On the hardness front, we provide constructions that serve as frameworks for deriving
NP-hardness results for both cake cutting and indivisible items. Nevertheless, our frame-
works do not cover questions related to the utilities of the agents, for instance whether
there exists a contiguous envy-free allocation of the cake in which the first agent receives at
least a certain level of utility. Extending or modifying our constructions to deal with such
questions is an intriguing direction for future research.

Finally, while we have established a number of connections between continuous and
discrete cake-cutting in this paper, much still remains to be explored. For example, Suk-
sompong (2019) showed in the discrete setting that if the valuations are binary, then an
“envy-free up to one item” allocation is guaranteed to exist under the contiguity require-
ment. Similarly, for additive (and even monotonic) valuations, Bilò et al. (2019) proved the
existence of an allocation that is envy-free up to two items. It would be interesting to see
how these problems can be related to the continuous setting.

Acknowledgments

This work was partially supported by the European Research Council (ERC) under grant
number 639945 (ACCORD) and by an EPSRC doctoral studentship (Reference 1892947).
The work was done while the third author was at the University of Oxford. A preliminary
version appeared in Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI 2020). We would like to thank the anonymous reviewers of the 34th AAAI Confer-
ence on Artificial Intelligence (AAAI 2020) and Journal of Artificial Intelligence Research
(JAIR) for their valuable comments.

References

Alijani, R., Farhadi, M., Ghodsi, M., Seddighin, M., & Tajik, A. S. (2017). Envy-free mech-
anisms with minimum number of cuts. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence (AAAI), pp. 312–318.

138

Contiguous Cake Cutting

Arunachaleswaran, E. R., Barman, S., Kumar, R., & Rathi, N. (2019). Fair and efficient
cake division with connected pieces. In Proceedings of the 15th Conference on Web
and Internet Economics (WINE), pp. 57–70.

Aumann, Y., & Dombb, Y. (2015). The efficiency of fair division with connected pieces.
ACM Transactions on Economics and Computation, 3 (4), 23:1–23:16.

Aumann, Y., Dombb, Y., & Hassidim, A. (2013). Computing socially-efficient cake divi-
sions. In Proceedings of the 12th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 343–350.

Aziz, H., & Mackenzie, S. (2016). A discrete and bounded envy-free cake cutting protocol for
any number of agents. In Proceedings of the 57th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 416–427.

Balkanski, E., Brânzei, S., Kurokawa, D., & Procaccia, A. D. (2014). Simultaneous cake cut-
ting. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI),
pp. 566–572.

Barrera, R., Nyman, K., Ruiz, A., Su, F. E., & Zhang, Y. (2015). Discrete envy-free division
of necklaces and maps. CoRR, abs/1510.02132.

Bei, X., Chen, N., Hua, X., Tao, B., & Yang, E. (2012). Optimal proportional cake cutting
with connected pieces. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI), pp. 1263–1269.

Bei, X., Huzhang, G., & Suksompong, W. (2018). Truthful fair division without free disposal.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 63–69.

Bei, X., Igarashi, A., Lu, X., & Suksompong, W. (2019). The price of connectivity in fair
division. CoRR, abs/1908.05433.

Bei, X., & Suksompong, W. (2019). Dividing a graphical cake. CoRR, abs/1910.14129.

Bilò, V., Caragiannis, I., Flammini, M., Igarashi, A., Monaco, G., Peters, D., Vinci, C., &
Zwicker, W. S. (2019). Almost envy-free allocations with connected bundles. In Pro-
ceedings of the 10th Innovations in Theoretical Computer Science Conference (ITCS),
pp. 14:1–14:21.

Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., & Peters, D. (2017). Fair division
of a graph. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 135–141.

Brams, S. J., & Taylor, A. D. (1995). An envy-free cake division protocol. American
Mathematical Monthly, 102 (1), 9–18.

Brânzei, S., & Miltersen, P. B. (2015). A dictatorship theorem for cake cutting. In Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pp.
482–488.

Brânzei, S., & Nisan, N. (2017). The query complexity of cake cutting. CoRR,
abs/1705.02946.

Brânzei, S., & Nisan, N. (2019). Communication complexity of cake cutting. In Proceedings
of the 20th ACM Conference on Economics and Computation (EC), p. 525.

139

Goldberg, Hollender, & Suksompong

Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N., & Wang, J. (2019).
The unreasonable fairness of maximum Nash welfare. ACM Transactions on Eco-
nomics and Computation, 7 (3), 12:1–12:32.

Caragiannis, I., Lai, J. K., & Procaccia, A. D. (2011). Towards more expressive cake cutting.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI), pp. 127–132.

Cechlárová, K., Doboš, J., & Pillárová, E. (2013). On the existence of equitable cake
divisions. Information Sciences, 228, 239–245.

Cechlárová, K., & Pillárová, E. (2012). On the computability of equitable divisions. Discrete
Optimization, 9 (4), 249–257.

Chaudhury, B. R., Garg, J., & Mehlhorn, K. (2020). EFX exists for three agents. In
Proceedings of the 21st ACM Conference on Economics and Computation (EC), pp.
1–19.

Deng, X., Qi, Q., & Saberi, A. (2012). Algorithmic solutions for envy-free cake cutting.
Operations Research, 60 (6), 1461–1476.

Dubins, L. E., & Spanier, E. H. (1961). How to cut a cake fairly. The American Mathematical
Monthly, 68 (1), 1–17.

Edmonds, J., & Pruhs, K. (2011). Cake cutting really is not a piece of cake. ACM Trans-
actions on Algorithms, 7 (4), 51:1–51:12.

Etessami, K., & Yannakakis, M. (2010). On the complexity of Nash equilibria and other
fixed points. SIAM Journal on Computing, 39 (6), 2531–2597.

Fearnley, J., Goldberg, P. W., Savani, R., & Sørensen, T. B. (2016). Approximate well-
supported Nash equilibria below two-thirds. Algorithmica, 76 (2), 297–319.

Filos-Ratsikas, A., & Goldberg, P. W. (2018). Consensus halving is PPA-complete. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pp. 51–64.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman.

Garey, M. R., Johnson, D. S., Simons, B. B., & Tarjan, R. E. (1981). Scheduling unit-time
tasks with arbitrary release times and deadlines. SIAM Journal on Computing, 10 (2),
256–269.

Hosseini, H., Igarashi, A., & Searns, A. (2020). Fair division of time: Multi-layered cake
cutting. In Proceedings of the 29th International Joint Conference on Artificial Intel-
ligence (IJCAI), pp. 182–188.

Igarashi, A., & Peters, D. (2019). Pareto-optimal allocation of indivisible goods with con-
nectivity constraints. In Proceedings of the 33rd AAAI Conference on Artificial Intel-
ligence (AAAI), pp. 2045–2052.

Lipton, R. J., Markakis, E., Mossel, E., & Saberi, A. (2004). On approximately fair allo-
cations of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic
Commerce (EC), pp. 125–131.

140

Contiguous Cake Cutting

Marenco, J., & Tetzlaff, T. (2014). Envy-free division of discrete cakes. Discrete Applied
Mathematics, 164, 527–531.

Menon, V., & Larson, K. (2017). Deterministic, strategyproof, and fair cake cutting. In Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 352–358.

Plaut, B., & Roughgarden, T. (2020). Almost envy-freeness with general valuations. SIAM
Journal on Discrete Mathematics, 34 (2), 1039–1068.

Procaccia, A. D. (2016). Cake cutting algorithms. In Brandt, F., Conitzer, V., Endriss,
U., Lang, J., & Procaccia, A. D. (Eds.), Handbook of Computational Social Choice,
chap. 13, pp. 311–329. Cambridge University Press.

Robertson, J., & Webb, W. (1998). Cake-Cutting Algorithms: Be Fair if You Can. Pe-
ters/CRC Press.

Rubinstein, A. (2016). Settling the complexity of computing approximate two-player Nash
equilibria. In Proceedings of the 57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 258–265.

Segal-Halevi, E. (2018). Redividing the cake. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 498–504.

Segal-Halevi, E., Hassidim, A., & Aumann, Y. (2016). Waste makes haste: Bounded time
algorithms for envy-free cake cutting with free disposal. ACM Transactions on Algo-
rithms, 13 (1), 12:1–12:32.

Simons, B. (1978). A fast algorithm for single processor scheduling. In Proceedings of the
19th Annual Symposium on Foundations of Computer Science (FOCS), pp. 246–252.

Steinhaus, H. (1948). The problem of fair division. Econometrica, 16 (1), 101–104.

Stromquist, W. (1980). How to cut a cake fairly. The American Mathematical Monthly,
87 (8), 640–644.

Stromquist, W. (2008). Envy-free cake divisions cannot be found by finite protocols. The
Electronic Journal of Combinatorics, 15, #R11.

Su, F. E. (1999). Rental harmony: Sperner’s lemma in fair division. The American Mathe-
matical Monthly, 106 (10), 930–942.

Suksompong, W. (2019). Fairly allocating contiguous blocks of indivisible items. Discrete
Applied Mathematics, 260, 227–236.

Tsaknakis, H., & Spirakis, P. G. (2008). An optimization approach for approximate Nash
equilibria. Internet Mathematics, 5 (4), 365–382.

141

