
Journal of Artificial Intelligence Research 69 (2020) 501–529 Submitted 06/2020; published 10/2020

Properties of Switch-List Representations
of Boolean Functions

Ondřej Čepek ondrej.cepek@mff.cuni.cz

Miloš Chromý miloschromy@gmail.com

Dept. of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics, Charles University

Prague, Czech Republic

Abstract

In this paper, we focus on a less usual way to represent Boolean functions, namely on
representations by switch-lists, which are closely related to interval representations. Given
a truth table representation of a Boolean function f the switch-list representation of f is a
list of Boolean vectors from the truth table which have a different function value than the
preceding Boolean vector in the truth table. The main aim of this paper is to include this
type of representation in the Knowledge Compilation Map by Darwiche and Marquis and to
argue that switch-lists may in certain situations constitute a reasonable choice for a target
language in knowledge compilation. First, we compare switch-list representations with a
number of standard representations (such as CNF, DNF, and OBDD) with respect to their
relative succinctness. As a by-product of this analysis, we also give a short proof of a long-
standing open question proposed by Darwiche and Marquis, namely the incomparability of
MODS (models) and PI (prime implicates) representations. Next, using the succinctness
result between switch-lists and OBDDs, we develop a polynomial time compilation algo-
rithm from switch-lists to OBDDs. Finally, we analyze which standard transformations and
queries (those considered by Darwiche and Marquis) can be performed in polynomial time
with respect to the size of the input if the input knowledge is represented by a switch-list.
We show that this collection is very broad and the combination of polynomial time trans-
formations and queries is quite unique. Some of the queries can be answered directly using
the switch-list input, others require a compilation of the input to OBDD representations
which are then used to answer the queries.

1. Introduction

A Boolean function on n variables is a mapping from {0, 1}n to {0, 1}. This concept
naturally appears and is extensively used in several areas of mathematics and computer
science. There are many different ways in which a Boolean function may be represented.
Common representations include truth tables (TT) with 2n rows (where a function value is
explicitly given for every binary vector), list of models (MODS), i.e. a list of binary vectors
on which the function evaluates to 1, various types of Boolean formulas (including CNF and
DNF representations), various types of binary decision diagrams (BDDs, FBDDs, OBDDs),
and negational normal forms (NNF, DNNF, d-DNNF).

The task of transforming one of the representations of a given function f into another
representation of f (e.g. transforming a DNF representation into an OBDD or a DNNF
into a CNF) is called knowledge compilation. For a comprehensive review paper on knowl-
edge compilation see (Darwiche & Marquis, 2002), where a Knowledge Compilation Map

c©2020 AI Access Foundation. All rights reserved.

Čepek & Chromý

(KCM) is introduced. KCM systematically investigates different representation languages
with respect to (1) their relative succinctness, (2) the complexity of common transforma-
tions, and (3) the complexity of common queries. The succinctness of representations
roughly speaking describes how large the output representation in language B is with re-
spect to the size of the input representation in language A when compiling from A to B.
A precise definition of this notion will be given later in this text. Transformations include
negation, conjunction, disjunction, conditioning, and forgetting. The complexity of such
transformations may differ dramatically from trivial to NP-hard depending on the chosen
representation language. The same is true for queries such as consistency check, validity
check, clausal and sentential entailment, equivalence check, model counting, and model
enumeration.

In (Le Berre, Marquis, Mengel, & Wallon, 2018) the authors included Pseudo-Boolean
constraint (PBC) and Cardinality constraint (CARD) languages into KCM by showing
succinctness relations among PBC, CARD, and languages already in the map, and by
proving the complexity status of all queries and transformations introduced in (Darwiche
& Marquis, 2002). In this paper, we aim at achieving exactly the same goal for switch-list
representations.

We start by introducing the closely related interval representations. Let f be a Boolean
function and let us fix some order of its n variables. The input binary vectors can be now
thought of as binary numbers (with bits in the prescribed order) ranging from 0 to 2n − 1.
An interval representation (IR) is an abbreviated MODS representation, where instead of
writing out all the models, we write out only those models x (i.e. f(x) = 1) for which
f(x− 1) = 0 (x− 1 is a non-model of f) and those models y for which f(y+ 1) = 0 (y+ 1 is
a non-model of f). Function f is then represented by an ordered list of such pairs [x, y] of
integers, each pair specifying one interval of models. Note that x = y for those pairs which
represent an interval with a single model.

Interval representations of Boolean functions were introduced in (Schieber, Geist, &
Zaks, 2005), where the input was considered to be a function represented by a single in-
terval (two n-bit numbers x, y) and the output was a DNF representing the same Boolean
function f on n variables, i.e. a function which is true exactly on binary vectors (num-
bers) from the interval [x, y]. This knowledge compilation task originated from the field of
automatic generation of test patterns for hardware verification (Lewin, Fournier, Levinger,
Roytman, & Shurek, 1995; Huang & Cheng, 1999). In fact, the paper (Schieber et al., 2005)
achieves more than just finding some DNF representation of the input 1-interval function
— it finds in polynomial time the shortest such DNF, where “shortest” means a DNF with
the least number of terms. Thus (Schieber et al., 2005) combines a knowledge compila-
tion problem (transforming an interval representation into a DNF representation) with a
knowledge compression problem (finding the shortest DNF representation).

In (Čepek, Kronus, & Kučera, 2008) the reverse knowledge compilation problem was
considered. Given a DNF, test if all models form a single interval under some permutation
of variables, and in the affirmative case output the permutation and the two n-bit numbers
defining the interval (note, that changing the order of variables may dramatically change the
length of interval representations from O(n) to Ω(2n) — see Section 3 for examples). This
problem can be easily shown to be co-NP hard in general (it contains tautology testing for
DNFs as a subproblem), but was shown in (Čepek et al., 2008) to be polynomially solvable

502

Properties of Switch-List Representations of Boolean Functions

for tractable classes of DNFs (where tractable means that DNF falsifiability can be decided
in polynomial time for the inputs from the given class). The algorithm presented in (Čepek
et al., 2008) runs in O(n`f(n, `)) time, where n is the number of variables and ` the total
number of literals in the input DNF, while f(n, `) is the time complexity of falsifiability
testing on a DNF on at most n variables with at most ` total literals. This algorithm serves
as a recognition algorithm for 1-interval functions given by tractable DNFs. This result
was later extended in (Kronus & Čepek, 2008) to monotone 2-interval functions, where an
O(`) recognition algorithm for the mentioned class was designed. Recently, these results
were further extended to k-interval functions for arbitrary k (a function is k-interval if
there exists a permutation of variables for which the interval representation consists of at
most k intervals). Paper (Čepek & Hušek, 2017) presents a recognition algorithm that runs
in polynomial time in the length of the input DNF for any constant k (the complexity is
exponential in k).

In fact, (Čepek & Hušek, 2017) departs from interval representations and introduces
closely related switch-list representations which we shall use in this paper. Given a fixed
order of variables of function f , a switch of f is a vector (binary number) x such that
f(x−1) 6= f(x). A switch-list is an ordered list of all switches of a given function. A switch-
list of f together with the function value f(0, 0, . . . , 0) forms a switch-list representation
(SLR) of f . It is important to note that switch-lists are ordered by the natural order on
binary numbers (as opposed to maintaining sets of switches) as this helps to lower the
complexity of several query and transformation algorithms described later in this paper.

SLRs have an added advantage over the IRs, namely that a function and its negation
have the same switch-lists and the two representations differ only by the opposite values
of f(0, 0, . . . , 0). The ease of taking a negation for SLRs allows a trivial translation of any
result relating SLR and DNF to a result relating SLR and CNF (and vice versa). This is due
to the fact that given a DNF, its logical negation can be represented by a CNF of the same
length (and vice versa), and the transformation is purely mechanical (replace disjunctions
by conjunctions, conjunctions by disjunctions, and negate all literals). Taking a negation
is not as straightforward for interval representations, where the interval representations of
a function and its negation may significantly differ, and even the number of intervals may
be different (although the difference is at most one). For this reason, we shall use SLRs
throughout this paper. It is not a limiting assumption in any way: clearly, the list of
intervals can be easily compiled in linear time from the list of switches and the function
value f(0, 0, . . . , 0), and vice versa. In fact, we shall use this compilation between SLRs
and interval IRs later in this paper, since some algorithms (e.g. the one for the forgetting
transformation) are more naturally designed for IRs than for SLRs.

The languages of SLRs and IRs may be in some situations quite a good choice as a target
compilation language. In the succinctness map these languages are placed strictly above TT
and MODS, incomparable to prime implicates (PI) and prime implicants (IP), and strictly
below CNF, DNF, and OBDD languages. However, compared to CNF, DNF, and OBDD
(and even IP and PI) they have a wider set of supported queries and transformations.

SLRs support all the queries from (Darwiche & Marquis, 2002) in polynomial time (see
Table 1), which is of course better than CNFs and DNFs but also better than IP and PI
which do not support model counting. It is also better than general OBDDs which do not
support sentential entailment if the two input OBDDs respect different orders of variables.

503

Čepek & Chromý

The only language considered in (Darwiche & Marquis, 2002) with the same set of supported
queries is the language of OBDDs with a fixed order of variables. Hence, the advantage
of SLR is that it does not require the same order of variables for all inputs to guarantee
polynomial time bounds on all queries. Moreover, an added advantage of SLRs lies in the
computational simplicity of answering most queries. Validity and consistency checks are
trivial (constant time), clausal entailment, implicant check, and model counting take linear
time (w.r.t. the input size), and model enumeration takes linear time w.r.t. the output
size. The only queries that are time-consuming are sentential entailment and equivalence
check. We do not have direct algorithms that manipulate SLRs for these queries at the
present moment. Instead, we compile both input SLRs into OBDDs (both respecting the
same order of variables) and run the query algorithms for these OBDDs. The polynomial
time compilation algorithm from a SLR to an OBDD with different variable orders on the
input and on the output is one of the main contributions of this paper. Finding direct
algorithms for sentential entailment and equivalence check which would avoid compilation
into OBDDs may be a good research topic.

L CO VA CE IM EQ SE CT ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF X ◦ X ◦ ◦ ◦ ◦ X
d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

FBDD X X X ? ◦ ◦ X X
OBDD X X X X X ◦ X X

OBDD< X X X X X X X X
CNF ◦ X ◦ X ◦ ◦ ◦ ◦
DNF X ◦ X ◦ ◦ ◦ ◦ X

IP X X X X X X ◦ X
MODS X X X X X X X X
CARD ◦ X ◦ X ◦ ◦ ◦ ◦
PBC ◦ X ◦ X ◦ ◦ ◦ ◦
SL X X X X X X X X

SL< X X X X X X X X

Table 1: Languages introduced by (Darwiche & Marquis, 2002) and (Le Berre et al., 2018)
and their polytime queries. Xmeans “satisfies” and ◦ means “does not satisfy
unless P=NP”. Languages SL and SL< are defined in Section 2

The biggest advantage of SLRs over the strictly more succinct representations such as
CNFs, DNFs, and OBDDs rests in the collection of supported transformations (see Table 2).
SLRs support negation (in constant time) unlike CNFs, DNFs, and MODS, for which the
size of negation can grow exponentially. SLRs also support conditioning (but all common
representations do, so this is not an advantage) and more importantly forgetting (the general
case, not just singleton forgetting) which distinguishes it from OBDDs that do not support
forgetting. SLRs also support unbounded conjunction and disjunction under the additional
restriction that all conjuncts (disjuncts) are defined on the same set of variables and with

504

Properties of Switch-List Representations of Boolean Functions

the same order of variables, i.e. all switches are vectors of the same length with individual
coordinates indexed by the same variables for all input SLRs (this is not shown in Table 2
where only the general forms of conjunction and disjunction are tabulated). It should be
noted here that OBDDs and even OBDDs with prescribed variable order fail to support
unbounded conjunction and disjunction even in this restricted case. Of course, DNFs do
not support unbounded conjunction, and CNFs do not support unbounded disjunction.
If we allow different conjuncts (disjuncts) to be defined on different sets of variables, the
output SLR may grow exponentially if we prescribe a variable order on the output. For the
non-prescribed order of variables (on the output), we have no results at all, the complexity
of conjunction and disjunction is open in this case.

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

DNNF X X X ◦ ◦ X X ◦
d-NNF X ◦ X X X X X X
BDD X ◦ X X X X X X

FBDD X • ◦ • ◦ • ◦ X
OBDD X • X • ◦ • ◦ X

OBDD< X • X • X • X X
CNF X ◦ X X X • X •
DNF X X X • X X X •

IP X • • • X • • •
MODS X X X • X • • •
CARD X ◦ ? X X • • •
PBC X • • X X • • •
SL X X X ? ? ? ? X

SL< X X X • • • • X

Table 2: Classes introduced by (Darwiche & Marquis, 2002) and (Le Berre et al., 2018) and
their polytime transformations. Xmeans “satisfies”, • means “does not satisfy”
and ◦ means “does not satisfy unles P=NP”. Languages SL and SL< are defined
in Section 2

The collection of supported queries and transformations suggests that SLRs may be a
good choice in cases when many queries (such as model counting) have to be answered
under many different additional assumptions such as a partial substitution of binary values
to subsets of variables (i.e. conditioning) or existential quantification of subsets of variables
(i.e. forgetting). None of the above mentioned more succinct representation would support
such a scenario in polynomial time. An obvious problem for this approach is a lack of
compilation algorithms with SLR as the target representation. The only interesting example
is the recognition algorithm from (Čepek & Hušek, 2017), which may be in this context
viewed as a compilation algorithm from tractable classes of DNFs into SLRs (and also from
tractable CNFs by taking a negation of the input, compiling into a switch-list and then
taking a negation on the output). Note that the algorithm has a parameter k on its input,
and the compilation which runs in time exponential in k is successful if and only if there
exists a target SLR with at most k switches. Another representation that is also easy to

505

Čepek & Chromý

compile into a SLR is a binary decision tree with a fixed order of variables on all branches.
By traversing the leaves of such a tree from left to right one can easily construct a SLR
of the given function. This procedure is in some sense just the reverse of the algorithm
presented in Section 4.1.

This is a theory paper that establishes the properties of SLRs and places the languages
based on SLRs into KCM. We believe that the proven properties of SLRs will motivate an
interest to find other classes of CNF, DNF, OBDD, or other representations, which can be
efficiently compiled into SLRs.

As a final remark let us note that the combination of results from (Čepek et al., 2008)
and (Schieber et al., 2005) gives a polynomial time minimization (optimal compression) algo-
rithm for the class of 1-interval functions given by tractable DNFs, or in other words, for the
1-interval subclass of DNFs inside any tractable class of DNFs. DNF minimization (optimal
compression) is a notoriously hard problem. It was shown to be Σp

2-complete (Umans, 2001)
when there is no restriction on the input DNF (see also the review paper (Umans, Villa, &
Sangiovanni-Vincentelli, 2006) for related results). It is also long known that this problem
is NP-hard already for some tractable classes of DNFs — maybe the best known example
is the class of Horn DNFs (a DNF is Horn if every term in it contains at most one negative
literal) for which the NP-hardness was proved in (Ausiello, D’Atri, & Sacca, 1986; Hammer
& Kogan, 1993) and the same result for cubic Horn DNFs in (Boros, Čepek, & Kučera,
2013). There exists a hierarchy of subclasses of Horn DNFs for which there are polynomial
time minimization algorithms, namely acyclic and quasi-acyclic Horn DNFs (Hammer &
Kogan, 1995), and CQ Horn DNFs (Boros, Čepek, Kogan, & Kučera, 2009). Suppose we are
given a Horn DNF. We can test in polynomial time using the algorithm from (Čepek et al.,
2008) whether it represents a 1-interval function and then (in the affirmative case) use the
algorithm from (Schieber et al., 2005) to construct a minimum DNF representing the same
function as the input DNF. Thus we have a minimization algorithm for 1-interval Horn
DNFs. It is an interesting research question in what relation (with respect to inclusion)
is this class with respect to the already known hierarchy of polynomial time compressible
subclasses of Horn DNFs (acyclic Horn, quasi-acyclic Horn, and CQ Horn DNFs).

The paper is organized as follows. In Section 2 we shall introduce the necessary termi-
nology and notation, and define the propositional languages studied in this paper. Section 3
derives the succinctness relations for the defined languages. Section 4 provides a compila-
tion algorithm from SLRs to OBDD representations respecting different prescribed orders
of variables on the input and on the output. In Section 5 we will prove a lower bound on the
size of the compiled OBDD. Next, in Section 6 we investigate the complexity of common
transformations for SLRs, and finally in Section 7 we do the same for common queries. We
finish the paper with a few concluding remarks.

This is a full version of a conference paper (Čepek & Chromý, 2020) which also includes
the compilation algorithm first presented in (Čepek & Chromý, 2020). This full version
contains all proofs omitted or shortened in (Čepek & Chromý, 2020) as well as an additional
material skipped there because of the page limit. Compared to (Čepek & Chromý, 2020)
it also studies a second representation language based on SLRs.

506

Properties of Switch-List Representations of Boolean Functions

2. Definitions and Notation

A Boolean function , or a function in short, in n propositional variables is a mapping
f : {0, 1}n → {0, 1}, where x ∈ {0, 1}n is called a Boolean vector (a vector in short).
A function f in n variables can be represented by a truth table, which is a list of all 2n

vectors together with their function values. Rather than listing all vectors, one can list only
models of f (all vectors x for which f(x) = 1). The language of all such representations of
all Boolean functions is called MODS1, and each list of models for a particular function
is called a sentence of the MODS language. Similarly we can consider sentences of non-
models (all vectors x for which f(x) = 0) which define the language ¬MODS used in this
paper for symmetry purposes.

Propositional variables x1, x2, . . . and their negations ¬x1,¬x2, . . . are called literals
(positive and negative literals respectively). An elementary conjunction of literals

T =
∧
i∈I

xi ∧
∧
j∈J
¬xj (1)

is called a term , if every propositional variable appears in it at most once, i.e. if I ∩J = ∅.
A disjunctive normal form (or DNF) is a disjunction of terms. Similarly, an elementary
disjunction of literals

C =
∨
i∈I

xi ∨
∨
j∈J
¬xj (2)

is called a clause , if every propositional variable appears in it at most once, i.e. if I∩J = ∅.
A conjunctive normal form (or CNF) is a conjunction of clauses.

It is a well-known fact, that every Boolean function can be represented by DNFs and
CNFs (typically by many different ones). By DNF we shall denote the propositional lan-
guage of all DNFs (of all functions), and similarly CNF shall denote the language of all
CNFs. Each individual DNF (or CNF respectively) is then called a sentence of the DNF
(or CNF respectively) language.

Given Boolean functions f and g on the same set of variables {x1, . . . , xn}, we denote
by f ≤ g the fact that f(x1, . . . , xn) ≤ g(x1, . . . , xn) for every vector (x1, . . . , xn), i.e. that
g is satisfied for any assignment of values to the variables for which f is satisfied. Hence,
for example, if a term t consists of a subset of literals which constitute term t′ then t′ ≤ t.
Similarly, if a clause c consists of a subset of literals which constitute clause c′ then c ≤ c′.

We call a term t an implicant of a function f , if t ≤ f . Given DNF F representing
function f it is obvious that every term t ∈ F is an implicant of f , but there are typically
many other implicants of f which are not explicitly present in F . We call t a prime
implicant of f , if t is an implicant of f and there is no implicant t′ 6= t of f , for which
t ≤ t′ ≤ f . We call DNF F representing f canonical, if it consists exactly of all prime
implicants of f . The language IP is the subset of DNF where each sentence is a canonical
DNF. Note, that unlike in the DNF language, each Boolean function is represented by
exactly one sentence in the IP language.

1. It should be noted that the MODS language is defined as a subset of the DNF language in (Darwiche
& Marquis, 2002), namely as the subset of all deterministic and smooth sentences. However, as long as
no irrelevant variables are considered, both definitions are equivalent with an obvious bijection between
models (binary vectors of length n) and terms (conjunctions of literals of length n).

507

Čepek & Chromý

Symmetrically, we call a clause c an implicate of a function f , if f ≤ c. We call c a
prime implicate of f , if c is an implicate of f and there is no implicate c′ 6= c of f , for
which f ≤ c′ ≤ c. We call CNF F representing f canonical, if it consists exactly of all
prime implicates of f . The language PI is the subset of CNF where each sentence is a
canonical CNF.

A Binary Decision Diagram (BDD) is a rooted directed graph with two terminals
labeled 0 and 1. Each non-terminal node is a decision node with exactly two outgoing
edges. Each decision node corresponds to a propositional variable and the two outgoing
edges correspond to the assignments of 0 and 1 to this variable. Each directed path from
the root to a terminal thus corresponds to a (possibly partial) assignment of truth values
to variables and the terminal specifies the function value for such an assignment. Let <
be a total order on the set PS of all propositional variables (we assume this set to be
denumerable). An Ordered Binary Decision Diagram (OBDD) with respect to < is
a BDD such that on every path from the root to a terminal no two decision nodes correspond
to the same variable and moreover every such path respects the prescribed order <. The
second condition means that there does not exist a directed path p from the root to a
terminal and two variables x < y, such that the decision node corresponding to y precedes
the decision node corresponding to x on path p. All OBDDs with respect to < form the
language OBDD< and the language OBDD is defined as the union of OBDD< languages
over all total orders on the set PS.

A Binary Decision Tree (BDT) is a rooted tree in that each internal node is a
decision node and every leaf represents a terminal labeled either 0 or 1. By merging all
leaves with label 0 to a single terminal and similarly for all leaves with label 1, we get a
special type of a BDD where each decision node (except the root) has exactly one incoming
edge.

Now we are ready to define the two principal languages of this paper.

Definition 2.1. Let < be a total order on the set PS of all propositional variables, let X
be a subset of PS of size n, and let f be a Boolean function on variables from X. Consider
vector x ∈ {0, 1}n where the bits of x correspond to the variables of X in the prescribed order
<. Each such vector x can be in natural way identified with a binary number from [0, 2n−1],
so for every x > 0 the vector x− 1 is well defined. We call x ∈ {0, 1}n a switch of f with
respect to order <, if f(x−1) 6= f(x). The list of all switches of f with respect to < is called
the switch-list of f with respect to <. The switch-list of f with respect to < together with
the function value f(0) is called the switch-list representation (SLR) of f with respect
to <. The set of switch-list representations with respect to < (of all functions) forms the
propositional language SL<. Finally, the language SL is the union of SL< languages over
all total orders on the set PS.

Let us define the following two notions. Function f is called a k-switch function if
there exists a SLR of f with respect to some order < of its variables that has at most k
switches. Two sentences (possibly from two different propositional languages) are called
logically equivalent if they represent the same function. Now we are ready to define the
most important concept of the next section.

Definition 2.2. A propositional language L is at least as succinct as a propositional
language K, denoted L ≤ K, if and only if there exists a polynomial p such that for every

508

Properties of Switch-List Representations of Boolean Functions

sentence α ∈ K there exists a logically equivalent sentence β ∈ L such that |β| ≤ p(|α|)
(where the size of a sentence is the number of bits necessary to encode it). If L ≤ K holds
and K ≤ L does not (denoted K 6≤ L), we write L < K.

The diagram in Figure 1, summarizing the succinctness relations of many commonly
used propositional languages, appeared in (Darwiche & Marquis, 2002). It is amended here
by the results from (Le Berre et al., 2018) dealing with the PBC and CARD languages.
The main aim of the next section is to add the languages SL< and SL into the framed
part of the diagram in Figure 1 by establishing the succinctness relations to the languages
already presented there.

PBC

CARD

CNF

PI

DNF

IP

MODS¬MODS

NNF

DNNF

d-DNNF

FBDD

OBDD

OBDD<

Figure 1: The diagram of succinctness relations from (Darwiche & Marquis, 2002) combined
with the results from (Le Berre et al., 2018). For symmetry reasons the language
¬MODS was added into the diagram. Each directed arc A −→ B means that A
is strictly more succinct than B, i.e. A < B.

3. Succinctness of Switch-List Representations

In this section we prove the succinctness relations for SL< and SL languages described in
Figure 2. We will use one subsection for each relation, the numbering of the subsections
corresponds to the arrow numbers in Figure 2. Let us start with the most obvious of all
the relations.

3.1 Relation between SL and SL< Languages

Proposition 3.1. SL < SL<

509

Čepek & Chromý

CNF

PI

¬MODS

DNF

IP

MODS

OBDD<

SL

SL<

55 1

4 22

33

Figure 2: Solid arrows correspond to strict succinctness results, dashed lines to incompara-
bility results, and dotted lines to known strict succinctness relations from Figure 1
which do not follow from transitivity using the solid arrows. The numbers on ar-
rows and lines correspond to subsection numbers (of Section 3) in which the
corresponding result is proved.

Proof. The inequality SL ≤ SL< follows from the fact that the language SL< is a subset of
the language SL. To show that SL< 6≤ SL let us consider function f(x1, . . . , xn, y) = y and
two orders of its variables <1 and <2 where y <1 x1 <1 . . . <1 xn and x1 <2 . . . <2 xn <2 y.
Clearly, the SLR of f with respect to <1 has a single switch (all non-models precede all
models) while the SLR of f with respect to <2 has 2n+1 − 1 switches (non-models and
models alternate, so every vector except of the very first one is a switch). Thus the SLR of
f in the language SL<2 is exponentially larger than the SLR of f with respect to <1 in the
language SL. This simple example is not fully satisfactory, because f does not depend on
variables x1, . . . , xn and so f(x1, . . . , xn, y) = f(y) is in fact a function in just one variable
(and of course the exponential blowup disappears). This can be easily fixed by switching
the last non-model of f into a model, i.e. by considering f(x1, . . . , xn, y) = y ∨ (

∧n
i=1 xi).

This function now depends on all n + 1 variables, still has a single switch with respect to
<1 (all non-models still precede all models), and still has exponential many switches with
respect to <2 (only the last two switches with respect to <2 disappeared).

3.2 Relations among SL, CNF, and DNF Languages

Proposition 3.2. CNF < SL and DNF < SL

Proof. Let us start by proving DNF ≤ SL. It was shown in (Schieber et al., 2005) that
any 1-interval function on n variables can be represented by a DNF with at most 2n − 4
terms. Obviously, the output DNF has a size which is at most quadratic in n and hence
also at most quadratic in the size of the input SLR (two vectors of length n). Now assume
we have SLR of function f with k switches on the input, which means that f has bk/2c or
bk/2c + 1 intervals of models (depending on the parity of k and the function value f(0)).
Let us construct a DNF representation for each interval using the algorithm from (Schieber

510

Properties of Switch-List Representations of Boolean Functions

et al., 2005). Obviously, the disjunction of these DNFs represents f and the size of this
aggregated DNF is O(kn2) while the size of the input is O(kn).

Now let us show CNF ≤ SL. Starting with the SLR of a function f with k switches we
can turn it in a constant time into the SLR of ¬f by negating the value of f(0) and keeping
the switch-list unchanged. Both SLRs have size O(kn). Using the construction from the
previous paragraph, we get a DNF of ¬f of size O(kn2). This DNF can be switched in
O(kn2) time into a CNF of the same size which represents f (by mechanically applying de
Morgan rules to propagate the negation on the outside of the DNF formula towards the
literals, which changes the DNF into a CNF).

In order to prove SL 6≤ DNF we shall assume by contradiction that SL ≤ DNF. Note,
that by the transitivity of succinctness relations and the above proved relation CNF ≤ SL
we could conclude CNF ≤ DNF, which is known to be false (see e.g. (Darwiche & Marquis,
2002) for a counterexample). The proof of SL 6≤ CNF proceeds in a completely similar
way, only the languages CNF and DNF exchange their roles.

3.3 Relations among SL<, MODS, and ¬MODS Languages

Proposition 3.3. SL< < MODS and SL< < ¬MODS

Proof. Consider the function f(x1, . . . , xn, y) = y ∨ (
∧n
i=1 xi) from Proposition 3.1. It

depends on all n+ 1 variables, has a single switch with respect to order y < x1 < . . . < xn
of the variables, and has 2n+ 1 models and 2n−1 non-models. This proves MODS 6≤ SL<
and ¬MODS 6≤ SL<.

The relations SL< ≤MODS and SL< ≤ ¬MODS are more or less obvious. It is easy
to see that there can be at most twice as many switches as models and symmetrically also
at most twice as many switches as non-models. Indeed, every switch x can be identified
with a pair of consecutive vectors x and x − 1 with opposite function values, and every
model (and non-model) is identified in this way with at most two switches.

3.4 Relation between SL and OBDD< Languages

Let us start this subsection with several definitions and technical lemmas.

Definition 3.4. Let f(x1, . . . , xn) be a Boolean function. A Boolean vector (y1, . . . , yl) ∈
{0, 1}l where l < n is called a relevant vector for f of length l if there exist two vectors
(xl+1, . . . , xn) ∈ {0, 1}n−l and (x′l+1, . . . , x

′
n) ∈ {0, 1}n−l such that

f(y1, . . . , yl, xl+1, . . . , xn) 6= f(y1, . . . , yl, x
′
l+1, . . . , x

′
n)

Relevant vectors are prefix vectors (for the given order of variables) which are not
sufficient for determining the value of f . The motivation behind the above definition is
the easily verifiable fact that a k-switch function (i.e. function which has k switches with
respect to the prescribed order of variables) has at most k relevant vectors of any length.

Lemma 3.5. Let f(x1, . . . , xn) be a k-switch function and 1 ≤ l ≤ n an arbitrary number.
Then there are at most k relevant vectors for f of length l.

Proof. Let yi = (yi1, . . . , y
i
n), 1 ≤ i ≤ k be the switch vectors for f and let us assume these

vectors are lexicographically ordered. That is ∀i ∈ {1, . . . , k − 1} : yi < yi+1 if we identify

511

Čepek & Chromý

switch vectors with binary numbers. Consider the vectors pi = (yi1, . . . , y
i
l), 1 ≤ i ≤ k, that

is the prefixes of the switch vectors of length l. There are at most k distinct vectors in this
set as some pairs of prefixes may coincide. We claim that no other vector (different from
p1, . . . , pk) is a relevant vector for f of length l. Let z = (z1, . . . , zl) be any such vector.
Since z differs from all pi’s, there is no switch vector among vectors (z1, . . . , zl, xl+1, . . . , xn)
for (xl+1, . . . , xn) ∈ {0, 1}n−l and thus

f(z1, . . . , zl, xl+1, . . . , xn) = f(z1, . . . , zl, x
′
l+1, . . . , x

′
n)

for any two vectors (xl+1, . . . , xn) ∈ {0, 1}n−l and (x′l+1, . . . , x
′
n) ∈ {0, 1}n−l, which proves

that z is not relevant for f .

Remark 3.6. Note that in the above proof vectors p1, . . . , pk are the only candidates for
relevant vectors of length l, however not all of them have to be relevant for f , since the
“decision” determining the value of f may be taken at an earlier index than l. A trivial
example is a 1-switch function where f(0, x2, . . . , xn) = 0 and f(1, x2, . . . , xn) = 1 for all
vectors (x2, . . . , xn). Here no (non-empty) prefix of the single switch vector (1, 0, 0, . . . , 0)
is a relevant vector for f .

Definition 3.7. Let f(x1, . . . , xn) be a Boolean function. A relevant vector (y1, . . . , yl) for
f of length l is called maximal relevant for f if neither (y1, . . . , yl, 0) nor (y1, . . . , yl, 1)
are relevant vectors for f of length l + 1.

Lemma 3.8. Let f be a k-switch function. Then there are at most k maximal relevant
vectors for f .

Proof. As we have seen in the proof of Lemma 3.5, only prefixes of the switch vectors
are candidates to relevant vectors. Moreover for each switch vector at most one length of
prefix can be a maximal relevant length, which proves the claim. (Note that for some switch
vectors no prefix is relevant so there is also no maximal relevant prefix - see Remark 3.6.)

Lemma 3.9. Let f(x1, . . . , xn) be a Boolean function and I ⊆ {x1, . . . , xn} be a subset of
variables of size |I| = i. Let xm be the variable with the smallest index in I and let us
assume that f has at most k maximal relevant vectors for f of length at least m. Then
there are at most (ik + 1) different Boolean functions that originate from f by fixing the
values of variables in I.

Proof. If k = 0, that is there is no relevant vector for f of length m or larger, then f does
not depend on variables from I. That means that all substitutions for the variables of I
lead to the same function of (n− i) variables and the claim holds ((ik+ 1) = (i ·0 + 1) = 1).

If k ≥ 1 we shall proceed by induction on |I| = i.
Base case (i = 1):
By fixing the only variable in I ⊆ {x1, . . . , xn} to 0 or 1 we get at most two different

functions of n− 1 variables, namely f(x1, . . . , xm−1, 0, xm+1, . . . , xn) and f(x1, . . . , xm−1, 1,
xm+1, . . . , xn). Since i = 1 and k ≥ 1 we get ik + 1 ≥ 2 and the base case is verified.

Induction step (i− 1 =⇒ i):
Let us assume that i > 1 and the statement of the lemma is true for 1, 2, . . . , i− 1. Let

V = {pi|1 ≤ i ≤ l}

512

Properties of Switch-List Representations of Boolean Functions

be the set of all maximal relevant vectors for f of length at least m (by assumption l ≤ k).
Consider the partition of V depending on the value of xm into

V0 = {pi|pim = 0}

V1 = {pi|pim = 1}

and denote |V0| = l0 and |V1| = l1. Clearly l0 + l1 = l.
Denote I ′ = I \{xm} and let xm′ be the variable with the smallest index in I ′ (of course

m′ > m). Consider functions of (n− 1) variables

f0(x1, . . . , xm−1, xm+1, . . . , xn) = f|xm=0

f1(x1, . . . , xm−1, xm+1, . . . , xn) = f|xm=1

There are at most l0 maximal relevant vectors for f0 of length at least m′ (and similarly
for f1). Indeed, such maximal relevant vectors can originate from vectors in V0 (or V1

respectively) by deleting pim, if those vectors are long enough (have length at least m′).
Thus we may use the induction hypothesis for f0, f1 and I ′ of size |I ′| = i− 1. We get that

1. there are at most (i − 1)l0 + 1 different Boolean functions that originate from f0 by
fixing the values of variables in I ′

2. there are at most (i − 1)l1 + 1 different Boolean functions that originate from f1 by
fixing the values of variables in I ′

This altogether implies that there are at most

(i− 1)l0 + 1 + (i− 1)l1 + 1 = (i− 1)(l0 + l1) + 2 =

= (i− 1)l + 2 ≤ (i− 1)k + 2 = ik − k + 2 ≤ ik + 1

different Boolean functions that originate from f by fixing the values of variables in I, since
k ≥ 1, which finishes the proof.

Corollary 3.10. Let f(x1, . . . , xn) be a k-switch Boolean function and I ⊆ {x1, . . . , xn} a
subset of its variables of size |I| = i. Then there are at most (ik + 1) different functions
that originate from f by fixing variables in I.

Proof. This claim is direct consequence of Lemma 3.8 and Lemma 3.9

Let us consider a k-switch function f(x1, . . . , xn), and let us consider an arbitrary re-
ordering of the variables given by some linear order <. If we start branching on variables in
the order given by <, then Corollary 3.10 states that after branching on the first i variables,
we get at most (ik + 1) different Boolean functions of the remaining variables (as opposed
to at most 2i for general functions). This is sufficient for a bound on the size of a minimal
OBDD representation of f due to the following theorem.

Theorem 3.11. (Wegener, 2000, Theorem 3.2.2). Let f be a function on variables X =
{x1, . . . , xn} and let < be a linear order on X. Then the minimal-size OBDD representa-
tion of f respecting order < contains as many xi-nodes as there are different subfunctions
|f|{xj |xj<xi}|.

513

Čepek & Chromý

Now Theorem 3.11 together with Corollary 3.10 imply the desired result.

Proposition 3.12. OBDD< < SL

Proof. Let f(x1, . . . , xn) be a k-switch function and < some linear order of the variables.
By Theorem 3.11 and Corollary 3.10 a minimum size OBDD respecting < contains at most
(ik + 1) nodes on branching level i + 1 for 0 ≤ i ≤ n − 1. Therefore such an OBDD has
at most

∑n−1
i=0 (ik + 1) = 1

2kn(n− 1) + n nodes which is polynomial in the size of the input
switch-list for f of size kn. This proves OBDD< ≤ SL.

On the other hand, it is easy to see that SL 6≤ OBDD<. A good example is the parity
function on n variables which is symmetric, and thus changing the order imposed on the
set of propositional variables changes neither the minimum size OBDD nor the minimum
size SLR. The parity function is well known to have an OBDD of linear size in n, while
the number of switches in any SLR is exponential in n. The last fact follows e.g. from an
easy observation that every second vector in the truth table that corresponds to an even
number changes its parity when the last bit is flipped from 0 to 1 to get the next odd
number. Thus every vector which corresponds to an odd number is a switch, and therefore
the parity function has Ω(2n) switches.

3.5 Relations among SL (or SL<), PI, and IP Languages

Proposition 3.13. SL is incomparable with both PI and IP

Proof. First we prove SL 6≤ IP and SL 6≤ PI. Let us proceed by contradiction as-
suming SL ≤ IP (SL ≤ PI respectively). This assumption together with the relation
OBDD< ≤ SL (proved in Proposition 3.12) would imply OBDD< ≤ IP (OBDD< ≤ PI
respectively) using the transitivity of succinctness relations. However, both OBDD< ≤ IP
and OBDD< ≤ PI are known to be false, see e.g. (Darwiche & Marquis, 2002) for coun-
terexamples.

Now we shall show PI 6≤ SL. Let us consider function f on 2n variables x1, ..., xn,
y1, ..., yn defined as follows. The models of f are the vectors {vi|i = 1, ..., n} where vi
assigns only variables xi and yi to 1, and all other variables to 0. Thus f has exactly n
models, and the size of its SLR is O(n2) (2n switches each of size 2n). Now for an arbitrary
subset of indices S ⊆ 1, ..., n, let us define a clause CS = (

∨
i∈S xi ∨

∨
i/∈S yi). We shall

show that for every S, CS is a prime implicate of f , and therefore f has at least 2n prime
implicates, showing the claim.

Take an arbitrary model vi of f which by definition satisfies both xi and yi. No matter
how S was selected, either xi or yi appears in CS satisfying it. Thus CS is an implicate
of f . Now take an arbitrary proper subclause C of CS . By the definition of C there is an
index j such that neither xj nor yj appear in C. That means that the model vj of f falsifies
C, which implies that C is not an implicate of f . Thus CS is prime.

It remains to show IP 6≤ SL. This relation is more or less a consequence of PI 6≤ SL
due to the duality between CNFs and prime implicates on one hand and DNFs and prime
implicants on the other hand. Consider the negation of the function from the previous
proof. Obviously, the SLR of ¬f has exactly the same size as the SLR of f . Vectors
{vi|i = 1, ..., n} are now the only non-models of ¬f and for every S ⊆ 1, ..., n, we can show

514

Properties of Switch-List Representations of Boolean Functions

that the term TS = (
∧
i∈S ¬xi ∧

∧
i/∈S ¬yi) is a prime implicant of ¬f . So ¬f has at least

2n prime implicants, showing the claim.
Take an arbitrary non-model vi of ¬f which by definition falsifies both ¬xi and ¬yi.

No matter how S was selected, either ¬xi or ¬yi appears in TS falsifying it. Thus TS is
an implicant of ¬f . Now take an arbitrary proper subterm T of TS . By the definition of
T there is an index j such that neither ¬xj nor ¬yj appear in T . That means that the
non-model vj of ¬f satisfies T , which implies that T is not an implicant of ¬f . Thus TS is
prime.

Since renumbering variables has no effect on the number of prime implicates or prime
implicants, we get the same result as above also for the language SL<.

Corollary 3.14. SL< is incomparable with both PI and IP

Note, that function f from the proof of Proposition 3.13 has an exponential number of
prime implicates with respect to the number of models. This, together with an obvious fact
that MODS 6≤ PI, gives a short proof of the long-standing open problem from (Darwiche
& Marquis, 2002, stated as a question mark in Table 3 on page 237).

Corollary 3.15. PI 6≤MODS and hence PI is incomparable with MODS

It should be noted that the relation PI 6≤ MODS was first proved in the master
thesis (Kaleyski, 2016). However, the construction in (Kaleyski, 2016) is much more com-
plicated and a weaker separation is achieved, namely a quasi-polynomial separation, while
the simple construction provided above gives an exponential separation between the number
of models and the number of prime implicates.

4. Compilation from SL to OBDD

In this section we shall show that the existential proof of Proposition 3.12 can be extended
into a compilation algorithm, which for an input SLR of size kn outputs an OBDD of size
O(kn2). The compilation algorithm works in two steps. First, it compiles the input SLR of
function f into a binary decision tree (BDT) which respects the same order of variables as
the input SLR. In the second step, it uses the constructed BDT to create an OBDD of f
which respects a given prescribed order of variables that may differ from the order used by
the input SLR. The output OBDD is constructed level by level and the number of nodes on
each level is bounded using Corollary 3.10. Note, that if the input order and the prescribed
output order are the same, then the first step suffices, and the constructed linear size BDT
gives the output OBDD simply by unifying all zero terminals into a single zero terminal
and the same for one terminals.

Our algorithm is similar to the approach taken in (Wegener, 2000, the proof of Theo-
rem 5.7.10). However, our implementation uses techniques that allow us to speed up the
minimization process at each level of the constructed OBDD in which we merge nodes rep-
resenting the same subfunction. To achieve this, we construct “prefix contracted” binary
decision trees, which are then used to cache different subfunctions on a given level. This
improves the worst-case time O(|H||G| log |H|) proved by (Savický & Wegener, 1997) and
matches the average case time of O(|H||G|) (Tani & Imai, 1994). Our technique accom-
plishes a worst-case time complexity O(|H||G|), where |G| is the size of the input SLR

515

Čepek & Chromý

(which is the same as the size of the BDT constructed in the first step of our algorithm)
and |H| is the size of the target OBDD representation.

4.1 Compilation from SL to BDT

Let us consider a SLR of a k-switch function f and construct an equivalent decision tree
representation with respect to the same order of variables from the SLR of f . The idea
behind the construction is quite simple. Let the order of variables in the input SLR be
x1, x2, . . . , xn. Consider the complete binary decision tree of f which branches in the pre-
scribed order, i.e. a tree with n levels of decision nodes and 2n function values on level
n + 1. Then start a bottom-up process of eliminating redundant decision nodes. In this
process, every decision node with both outgoing edges leading to the same function value t
is deleted and replaced by an edge from its parent node to function value t. This process
obviously stops with a binary decision tree that represents f . Note that this output tree
is unique, it depends only on function f and does not depend on the order in which nodes
are contracted. What is the size of this unique contracted decision tree? Consider the leaf
nodes, that is decision nodes with both outgoing edges going to terminals (function values).
Obviously, for every leaf node these two edges necessarily go to different function values
(otherwise the node would have been eliminated) and so the path from the root to any leaf
node encodes a prefix of some switch of f . Moreover, by the definition of a leaf node, no
two leaf nodes can encode a prefix of the same switch, so the number of leaf nodes is upper
bounded by the number of switches. It follows that the number of decision nodes in the
constructed decision tree is at most n times the number of leaf nodes, which is at most n
times the number of switches, which is exactly the size of the input SLR (each switch is a
vector of length n). Therefore the constructed decision tree has a linear size with respect
to the size of the input SLR.

The above considerations suffice for a proof of an existence of a linear size decision
tree equivalent to the input SLR. However, if we want to obtain also a polynomial time
compilation procedure that constructs the output decision tree, we have to avoid building
the exponentially large initial decision tree. This can be easily avoided by building the
output decision tree from top to bottom rather than bottom-up. We start by creating the
root node, assigning the interval [0, 2n − 1] and variable x1 to the root node, and inserting
the root node into a queue. Then we start processing the nodes from the queue in the
following manner. Extract the first node v with an assigned interval [a, b] and a variable xk
from the queue. Scan the input switch-list until one of the following two situations occurs:

1. (Non-constant interval) Switch x in the switch-list is found, such that, if interpreted
as a binary number, a < x ≤ b holds. In this case construct two children nodes vL, vR
of v, assign variable xk+1 to both vL and vR, and assign interval [a, (a+ b+ 1)/2− 1]
(the left half of [a, b]) to vL and interval [(a + b + 1)/2, b] (the right half of [a, b]) to
vR (a is always even, b is always odd, and the length of [a, b] is always a power of 2,
so there are no issues with rounding). Insert vL and vR to the end of the queue.

2. (Constant interval) Two consecutive switches x, y in the switch-list are found, such
that, if interpreted as binary numbers, x ≤ a and b < y hold. This means that there
is no switch in the interval [a+ 1, b], and hence all vectors in the interval [a, b] share

516

Properties of Switch-List Representations of Boolean Functions

the function value of x. So node v can be deleted from the tree of decision nodes and
replaced by an edge from the parent node of v to a terminal with function value f(x).

The procedure stops when the queue is empty and constructs exactly the same unique
decision tree as the bottom-up procedure described above. The work per decision node is
linear in the size of the input switch-list (we scan the switch-list once per node), so the
overall complexity of the compilation procedure is at most quadratic in the size of the input
switch-list2.

4.2 Compilation from BDT to OBDD

Now we shall show how to compile a BDT of f which respects the identical order of variables
x1, . . . , xn into a polynomial size OBDD of f which respects some other prescribed order of
variables y1, . . . , yn, where yj = xσ(i) for a given permutation σ. Let us start by defining a
special type of binary decision tree.

Definition 4.1. Let T be a binary decision tree on variables x1, . . . , xn which branches on
the variables (on every branch) in this prescribed order. Then T is called a prefix BDT
if every branch in T of length l contains the first l decision variables x1, . . . , xl, and T is
called a contracted BDT if for every decision node x the subtree of T rooted at x contains
both terminals 0 and 1.

Note that the BDT constructed from the input SLR of function f as described in Sec-
tion 4.1 is a contracted prefix BDT representing f . It is also an easy observation that
given a function h on variables z1, . . . , zk it has a one-to-one correspondence with its con-
tracted prefix BDT which respects the given order of variables. We have already observed
in Section 4.1 that given h and a fixed order of variables, the resulting contracted prefix
BDT is unique. The reverse direction is trivial, given a contracted prefix BDT it of course
represents exactly one function h.

The principal idea behind our algorithm is to build a minimum size OBDD of f (which
respects the order of variables y1, . . . , yn) level by level in a BFS manner, where each
node u on a level i of the constructed OBDD will be associated with a contracted pre-
fix BDT representing the corresponding subfunction fu of f in variables yi, . . . , yn defined
by fu(yi, . . . , yn) = f(u1, . . . , ui−1, yi, . . . , yn), where the vector (u1, . . . , ui−1) ∈ {0, 1}i−1

represents the path from the root of the OBDD to the node u. The uniqueness of the
contracted prefix BDT representations will allow us to efficiently detect whether two sub-
functions on the same level of the OBDD are logically equivalent, which is necessary to
build a minimum size OBDD of f .

We can encode a contracted prefix BDT T representing function h into a string on an
alphabet Σ = {0, 1, `, r, b} using a DFS traversal of T which writes ` when traversing from
a parent to its left descendant (we assume that DFS first branches left, i.e. on value 0, at

2. In fact, since the tree is built in a BFS manner level by level, the procedure can be modified to restart
the scan of the switch-list from the beginning only once per level, improving the complexity upper bound
to n times the size of the input switch-list. Using a smarter data structures which for each decision node
define not only the relevant interval of binary numbers but also the relevant interval in the switch-list,
the overall complexity can be brought further down to linear time complexity by eliminating by the
factor n.

517

Čepek & Chromý

every decision node of T), writes r when traversing from a parent to its right descendant,
writes b when backtracking from a decision node, and writes 0 or 1 when traversing from
a terminal with that function value. This procedure yields a string of length O(|T |) which
is of course also unique for h. Therefore we can check the equivalence of two functions
h1 and h2 (defined on the same set of variables) simply by comparing the encodings of
their contracted prefix BDTs which both respect the same prescribed order of variables. A
reasonable data structure to support such string comparisons is a trie. Recall, that given a
trie which represents a set R of strings and a string s of length t, one can test in O(t) time
whether s ∈ R, in the positive case output the node of the trie that represents s, and in the
negative case update the trie by inserting s into R. This gives us the following observation.

Observation 4.2. Let R be a set of encodings of contracted prefix BDTs stored in a trie
and let T be a contracted prefix BDT. Then encoding T into a string s and checking if s is
in the trie storing R can be done in O(|T |) time. Moreover, if s is not in the trie storing
R, we can add it to the trie in time O(|T |).

Our construction of the output OBDD will start with a root node (the only node on
level 1) and the associated contracted prefix BDT in variables y1, . . . , yn which respects the
order x1, . . . , xn, constructed from the input SLR as described in Section 4.1. During the
processing of nodes on level i (of the OBDD that is being built), the algorithm keeps a
trie S containing encodings of contracted prefix BDTs associated with nodes on level i+ 1
(starting with an empty S before the first node on level i is processed).

In a step processing node u on level i with an associated contracted prefix BDT Tu, let
V denote the (possibly empty) set of all already created nodes on level i+ 1, let T denote
the set of all contracted prefix BDTs associated with nodes in V, and let S denote the
trie which contains encodings of all BDTs from T . Now consider the assignment yi = 0.
It is easy to modify Tu representing f(u1, . . . , ui−1, yi, . . . , yn) into BDT T 0

u representing
f(u1, . . . , ui−1, 0, yi+1 . . . , yn). Note that Tu respects the original variable order given by
x1, . . . , xn. If Tu branches on yi in its root, then T 0

u is simply the root subtree of Tu
corresponding to yi = 0, otherwise T 0

u originates from Tu by connecting the parent of every
node v that branches on yi directly to the child of v which corresponds yi = 0 (and deleting
v). Note that T 0

u is a prefix BDT, on the other hand it is not necessarily contracted.
However, we can transform T 0

u into a contracted prefix tree by a single DFS pass over T 0
u .

When DFS gets to a node v for which both descendants are terminals with the same value
c, it connects a parent of v to a terminal c.

After building the contracted prefix BDT T 0
u we can check if T 0

u is equivalent to some
Tv ∈ T using Observation 4.2. If we find such Tv associated with a node v, we connect the
branch corresponding to yi = 0 at node u to node v. If such Tv does not exist we create
a new node w with an associated contracted prefix BDT Tw = T 0

u and connect the branch
corresponding to yi = 0 at a node u to a node w. Moreover, we add w into V, add Tw into
T , insert the encoding of Tw into S, and associate the corresponding node in the trie S
with w (so that we have a constant time access to w next time the encoding of Tw is found
in S). The procedure for yi = 1 is symmetric.

Assuming that the input k-switch function f is given by a switch-list of size kn, the
constructed OBDD has size O(kn2), and its construction takes O(k2n3) time. The com-
plexity is bound by the fact that for each of the O(kn2) nodes in the OBDD the associated

518

Properties of Switch-List Representations of Boolean Functions

contracted prefix BDT has size O(kn), and all the above-described procedure does when
processing a given node of the OBDD is linear in the size of the associated BDT.

Remark 4.3. The fact that the existential proof of Proposition 3.12 can be extended into
a compilation algorithm can be shown also in another way. In Section 6 we show that
conditioning (for any variable) can be done in linear time on an input SLR, and so the output
OBDD can be efficiently built level by level using subsequent conditioning on variables in the
order prescribed for the output. The complexity bottleneck is the same as for the approach
described above in this section, namely checking whether a node corresponding to a given
subfunction already exists on the given level of the constructed OBDD (in that case it suffices
to add an arc to such a node) or not (in which case a new node must be created). If the
SLRs for nodes on the current level (the one being built) are cached in an intelligent way
to allow such equivalence checks, the overall complexity of the compilation algorithm can
be also bounded by O(k2n3). However, it seems to us that the two-step algorithm described
above is easier to implement.

5. Lower Bound for the Size of Target OBDD

In this section, we shall show that the quadratic blowup in the number of nodes in the
compilation algorithm from Section 4 which produces an output OBDD of size O(kn2) is
unavoidable. We shall consider a case with k = 1 when the input SLR contains a single
switch and thus has size O(n), and construct a 1-switch function f for which any OBDD
w.r.t. a certain prescribed order of variables has size Ω(n2).

Let f be a function on n variables where n is even and the only switch of f with respect
to the natural ordering π : x1 < x2 < . . . < xn is s = (0, 1, 0, 1, 0, 1, . . . , 0, 1). See Figure 3a
for an OBDD of f (respecting π) with n = 8, which can be produced from the input SLR
by the first step of the compilation algorithm from Section 4 (which produces a BDT) and
a unification of both terminals. For the output OBDD representation of f we will prescribe
the ordering σ : xn < xn−2 < xn−4 < . . . < x2 < x1 < x3 < . . . < xn−3 < xn−1. See
Figure 3b for the minimal output OBDD of f (respecting σ) with n = 8. We shall prove
that any OBDD representation of f with respect to the ordering σ must have at least i
distinct nodes on every level i ≤ n/2. Thus the total number of nodes on the first n/2 levels

is at least
∑n/2

i=1 i which is Ω(n2) proving the claim.

Let us proceed by induction on i. Starting the induction for i = 1 is trivial, there is
a single node on the first level of any OBDD. For i = 2 it suffices to verify that f(xn =
0) 6= f(xn = 1) which is easy to see from Figure 3a as f(0, 1, 0, 1, 0, 1, . . . , 0, 0) = 0 while
f(0, 1, 0, 1, 0, 1, . . . , 0, 1) = 1. Thus, there must be two nodes on the second level of the
output OBDD.

For the general induction step let us assume that we have i nodes (where i ≥ 2) denoted
n0, . . . , ni−1 on the i-th level of an OBDD representing f (this level branches on variable
xn+2−2i) and these nodes correspond to pairwise distinct subfunctions f0, . . . , fi−1 in vari-
ables xn+2−2i, xn−2i, . . . , x2, x1, x3, . . . , xn−3, xn−1. We shall show that there exist i + 1
pairwise distinct subfunctions g0, . . . , gi that originate from f0, . . . , fi−1 by fixing a value of
xn+2−2i. This of course implies that there must be at least i + 1 distinct nodes m0, . . .mi

on level i+ 1 in any OBDD representing f and respecting the order σ.

519

Čepek & Chromý

(a) Original BDT. (b) Compiled OBDD.

x1

x2

x3

x4

x5

x6

x7

x8

0 1

x8

x6 x6

x4 x4 x4

x2 x2 x2 x2

x1 x1 x1 x1

x3 x3 x3

x5 x5

x7

0 1

0

1

Figure 3: OBDD with different ordering of a function f with variables x1, . . . , x8 and one
switch (0, 1, 0, 1, 0, 1, 0, 1).

First let us consider the case xn+2−2i = 0. It is clear from Figure 3a that for any vector
x ∈ {0, 1}n with xn+2−2i = 0 (note that n + 2 − 2i is even) when we fix the values of all
variables in order π, then the value of f(x) is either decided when setting xn+2−2i = 0 or
earlier. Hence, f(xn+2−2i = 0) does not depend on any variable xk for k > n+2−2i and thus
in particular on variables xn, xn−2, . . . , xn+4−2i, i.e. on those variables on which the output
OBDD respecting order σ branches on the first i − 1 levels. Therefore fixing the values of
variables xn, xn−2, . . . , xn+4−2i in all possible ways, which is how f0, . . . , fi−1 originate from
f , together with fixing xn+2−2i = 0 always produces the same function which we denote by
gi. In other words, substituting xn+2−2i = 0 into functions f0, . . . , fi−1 produces a single
function gi.

The above observation moreover implies, that every pair of vectors xj , xk ∈ {0, 1}n−(i−1)

for 0 ≤ j < k ≤ i − 1 that guarantees fj 6= fk (note that fj and fk are functions in

n−(i−1) variables with values of xn+4−2i, . . . , xn−2, xn already fixed) must satisfy xjn+2−2i =

xkn+2−2i = 1. Thus by substituting xn+2−2i = 1 into f0, . . . , fi−1 we produce i pairwise
distinct functions denoted g0, . . . , gi−1.

It remains to show that gi is distinct from every function in the set {g0, . . . , gi−1}. So
let 0 ≤ j ≤ i − 1 be arbitrary but fixed, and consider vector x = (0, 1, 0, 1, . . . 0, p, 1) ∈
{0, 1}n+3−2i, i.e. we are considering the first n + 3 − 2i variables in order π and p is in
position n+2−2i. Notice, that all variables on which the output OBDD respecting order σ
branches on levels 1, . . . , i−1 are outside of the scope of indices used by x. Now gi originates
from fj by setting p = 0. Vector x specifies only a partial assignment on variables of gi, but
this partial assignment is sufficient to enforce gi(x) = 0 as can be easily seen from Figure 3a.

520

Properties of Switch-List Representations of Boolean Functions

¬C ∧C∗ ∧BC ∧C ∨C∗ ∨BC ∨C CD SFO FO

SL< X X × × X × × X X X
SL X ? ? ? ? ? ? X X X

Table 3: Transformations for the SL and SL< languages, where Xmeans the existence of
polytime algorithm and × means that such an algorithm does not exist. Here ∧C∗

and ∨C∗ assume that all input SLRs are defined on the same set of variables.

On the other hand, gj originates from fj by setting p = 1 and the partial assignment x in
this case implies gj(x) = 1 which is again easy to see from Figure 3a. Thus gi is distinct
from gj which finishes the proof of the claim.

6. Transformations

In this section, we investigate which of the common transformations can be implemented to
run in polynomial time for languages SL< and SL. Precise definitions of the studied trans-
formations can be found in (Darwiche & Marquis, 2002), we give only a short description
here:

¬C Negation of a sentence.

∧BC Bounded conjunction of two sentences.

∧C∗ Conjunction of any finite number of sentences on the same set of variables.

∧C Conjunction of any finite number of sentences.

∨BC Bounded disjunction of two sentences.

∨C∗ Disjunction of any finite number of sentences on the same set of variables.

∨C Disjunction of any finite number of sentences.

CD Conditioning of sentence f by term α, i.e. a partial assignment of values forced by
satisfying α into f .

SFO Singleton forgetting, i.e. a transformation of f into ∃xf for a variable x.

FO Forgetting, i.e. a transformation of f into ∃Xf for is a subset X of variables .

6.1 Negation (¬C)

The negation of SLR Lf representing function f can be produced in constant time by
flipping the function value of f at the vector (0, . . . , 0) while all switches remain the same.
This is of course true for both SL and SL< languages.

521

Čepek & Chromý

6.2 Conjunctions (∧BC, ∧C∗ and ∧C)

Let us consider the conjunction of two SLRs Lf and Lg representing functions f and g. We
shall distinguish three cases.

1. Lf and Lg respect the same order of variables, and moreover f and g
are defined on the same set of variables (i.e. the switches in Lf and Lg are
vectors of the same length and their coordinates are indexed by variables in the same
order). Observe, that if x is neither a switch in Lf nor a switch in Lg, it cannot be
a switch in the SLR of f ∧ g which respects the same order of variables. Indeed, if
f(x) = f(x − 1) = 0 or g(x) = g(x − 1) = 0 then (f ∧ g)(x) = (f ∧ g)(x − 1) = 0, if
f(x) = f(x − 1) = g(x) = g(x − 1) = 1 then (f ∧ g)(x) = (f ∧ g)(x − 1) = 1. Hence
the switch-list of f ∧ g is a subset of the union of the two input switch-lists. Since
both input switch-lists are ordered, they can be easily merged into an ordered list and
during the merge each switch can be checked whether it is a switch of f ∧ g or not.
This can be done in linear time in the size of the input, and moreover this idea can be
easily extended to any number of conjuncts and hence to an unbounded conjunction.
Note, that to be able to delete duplicate switches and compute the values of f ∧ g
efficiently (when checking whether a given x is a switch of f ∧ g), it is essential that
the input SLRs are ordered. This is one of the reasons why we maintain switch-lists,
not just switch sets.

This special case unfortunately covers only a subset of the SL< language, however,
it is a subset that occurs frequently in practical applications (which deal with several
different Boolean functions on the same set of variables). It is also important to note,
that contrary to SLRs, OBDDs do not support unbounded conjunction even in this
restricted case (see Table 7 on page 242 and more details in (Darwiche & Marquis,
2002, pp. 259-261)).

2. Lf and Lg respect the same order of variables but do not use the same
set of variables. In this case, the SLR of f ∧ g that respects the same order of
variables as Lf and Lg may be exponentially large with respect to the size of Lf and
Lg. This may be true even if one of the sets of variables is a strict subset of the
other. Consider f(x1, . . . , xn) =

∨n
i=1 ¬xi (the all-one vector is the only false point

of f) and g(xn) = xn. Clearly both Lf and Lg have just one switch with respect to
the prescribed order of variables, however, function f ∧ g in variables x1, . . . , xn, has
a switch-list of size 2n − 1, because every assignment x1, . . . , xn, associated with an
odd number except of the all-one vector is a model and every assignment associated
with an even number is a non-model of f ∧ g. Thus the SL< language does not in
this case support bounded conjunction in polynomial time.

3. Lf and Lg do not respect the same order of variables. This case is open. We
conjecture that the SL language does not support bounded conjunction in polynomial
time, however, constructing examples where the conjunction is exponentially large
with respect to all permutations of variables seems to be difficult.

522

Properties of Switch-List Representations of Boolean Functions

6.3 Disjunctions (∨BC, ∨C∗ and ∨C)

The complexity status for disjunctions is the same as for conjunctions thanks to the constant
time negation.

6.4 Conditioning (CD)

Let f be a function on variables x1, . . . , xn and let xi be an arbitrary variable. We interpret
an assignment of variables x1, . . . , xi−1 as a binary number `, 0 ≤ ` ≤ 2i−1 − 1, and denote
the corresponding block of consecutive vectors sharing the same prefix ` in the truth table
of f as B`. Furthermore, we split B` into B0

` and B1
` depending on the value of xi. We

shall show how the SLR of f1 = f|xi=1 can be obtained from the SLR of f by a single pass
through the input switch-list (the process for f0 = f|xi=0 is similar). We will write the
vectors from the truth table of f as triples (`, ∗, q) where ∗ ∈ {0, 1} represents the value of
xi and 0 ≤ q ≤ 2n−i − 1 = 1 is a binary number representing xi+1, . . . , xn (note that in a
vector notation 0 is a shorthand for an all zero vector of length n− i and 1 is a shorthand
for an all one vector of length n − i). Similarly, we will write the vectors from the truth
table of f1 as pairs (`, q).

When processing a switch of the type (`, 0, q) we just count the parity p of the number
of switches having the same prefix (`, 0), i.e. the parity of the number of switches in the
block B0

` . After we pass the last switch in B0
` , let us inspect the next switch in the list. If it

differs from s = (`, 1,0) (the first vector in B1
`), p is odd, and ` > 0, we output s′ = (`,0).

In this case s′ which originates from s by removing the xi coordinate becomes a switch of
f1, replacing the odd number of switches in B0

` . This is because f1(s′) = f(s) differs from
f1(`− 1,1) = f(`− 1, 1,1). Note that (`− 1, 1,1) is the last vector in B1

`−1 and so (`− 1,1)
is a predecessor of s′ in the truth table of f1. If p is even or ` = 0 then the switches in B0

`

“disappear” without creating any switch for f1.

When processing a switch of the type s = (`, 1, q) where q > 0 we simply output
s′ = (`, q) (all such switches of course “survive” the conditioning xi = 1). If s = (`, 1,0)
(switch s is the first vector in B1

`) we output s′ = (`,0) only if p obtained from B0
` is even

(this includes the case if there are no switches in B0
`) and ` > 0. Clearly, also in this case s′

is indeed a switch of f1 because its function value differs from the last vector in B1
`−1 which

becomes its predecessor in the truth table of f1. On the other hand, if p is odd or ` = 0
then s “disappears” without creating a switch for f1.

If the input SLR has k switches, the above-described process of conditioning on xi takes
O(n) time per switch (and each switch is processed exactly once) and therefore can be
implemented to run in O(kn) time. Since the output SLR has at most as many switches as
the input SLR, we can repeat the process |S| times to achieve conditioning on any set S of
variables in O(kn2) time. However, the O(kn) time complexity can be maintained even in
this case. If we divide the truth table of f into blocks with respect to the least significant
variable in S (the rightmost one in the truth table), then instead of the alternating pattern
of disappearing and surviving blocks for |S| = 1 (as described above) we get a pattern of
possibly many disappearing blocks followed by a single surviving block. However, the idea
of conditioning can remain the same. We count the parity of the number of switches in
between two surviving blocks, treat the first vector in the next surviving block accordingly,
then output the remaining switches in the surviving block.

523

Čepek & Chromý

6.5 Forgetting (SFO and FO)

Let f be a function on variables x1, . . . , xn and let xi be an arbitrary variable. We shall
show how the SLR of fi = ∃xif can be obtained from the SLR of f in polynomial time.
The procedure can be implemented directly on SLRs, but we find it more understandable
if explained on interval representations (IRs) which actually motivated the introduction of
SLRs. We first compile the SLR of f into an IR of f , then transform this into an IR of fi,
and finally compile back into an SLR of fi. The first and third steps take linear time, so
it remains to describe the second step. We again (as for CD) consider the block structure
B` = B0

` ∪B1
` for 0 ≤ ` ≤ 2i−1 − 1 of the truth table of f and also use the (`, ∗, q) notation

for the vectors from the truth table of f and (`, q) for the vectors from the truth table of
fi.

When passing through the ordered list of intervals in the IR of f , an interval [a, b] is
processed depending on whether a ∈ B0

` or a ∈ B1
` (for some `) as follows. For a = (`, 0, q)

if

(a) b = (`, 0, r) (i.e. [a, b] is entirely inside the block B0
`) then output [(`, q), (`, r)],

(b) b = (`, 1, r) (i.e. [a, b] is entirely inside the block B` but it spans from B0
` to B1

`) then
output [(`,0), (`, r)] and [(`, q), (`,1)],

(c) b = (k, 0, r) for k > ` (i.e. [a, b] spans from B0
` to B0

k) then output [(`,0), (k, r)],

(d) b = (k, 1, r) for k > ` (i.e. [a, b] spans from B0
` to B1

k) then output [(`,0), (k,1)].

On the other hand, for a = (`, 1, q) if

(e) b = (`, 1, r) (i.e. [a, b] is entirely inside the block B1
`) then output [(`, q), (`, r)],

(f) b = (k, 0, r) for k > ` (i.e. [a, b] spans from B1
` to B0

k) then output [(`, q), (k, r)],

(g) b = (k, 1, r) for k > ` (i.e. [a, b] spans from B1
` to B1

k) then output [(`, q), (k,1)].

It is easy to check in each of the above seven cases that the models of f in the interval
[a, b] really translate to models of fi in the specified output intervals. However, the output
intervals may of course overlap (or even be identical, e.g. a pair of intervals obtained
from (a) and (e) may be identical) so another “consolidation” pass through the output is
necessary, which replaces any set of overlapping intervals with their union.

The above considerations imply that forgetting a single variable SFO can be performed
in polynomial time. To see that the same is true for FO, we must analyze more carefully
case (b), which is the only one when a single interval [a, b] of f may produce two intervals
of fi. If it does, we will call [a, b] a splitting interval. Note that if q ≤ r, the two output
intervals merge in the consolidation pass, so [a, b] = [(`, 0, q), (`, 1, r)] is splitting if and only
if q > r. Hence q 6= 0 and r 6= 1 are necessary conditions for [a, b] = [(`, 0, q), (`, 1, r)] to be
a splitting interval.

Observe also, that for a = (`, ∗,0) the interval [a, b] produces only such intervals [a′, b′]
where a′ = (`,0), and for b = (k, ∗,1) the interval [a, b] produces only such intervals [a′, b′]
where b′ = (k,1).

524

Properties of Switch-List Representations of Boolean Functions

Putting the facts from the previous two paragraphs together implies, that if we forget
the variables in the decreasing order of significance (most significant variables first), neither
of the two intervals generated by a splitting interval [a, b] can become a splitting interval
when forgetting subsequent variables. Indeed, either the suffix of the left margin of the
generated interval is all zeros (and stays all zeros from then on in subsequent forgetting), or
the suffix of the right margin of the generated interval is all ones (and stays all ones). Thus,
forgetting any subset of variables may altogether at most double the number of intervals on
the output, which implies that FO can be done in polytime by repeating SFO.

7. Queries

In this section, we investigate which of the common queries can be answered in polynomial
time for languages SL< and SL. As for transformations, precise definitions of the studied
queries can be found in (Darwiche & Marquis, 2002), we again give only a short description
here:

CO Consistency - test whether a sentence has a model

VA Validity - test whether a sentence S is a tautology (all 2n vectors are models of S)

IM Implicant Check - for a sentence S and a given term T test if T |= S

CE Clausal Entailment - for a sentence S a given clause C test if S |= C

SE Sentential Entailment - for two given sentences S, S′ test if S |= S′

EQ Equivalence - for two given sentences S, S′ test if S ≡ S′

CT Model Counting - output the number of models of a sentence

ME Model Enumeration - output all models of a sentence

Since all of the above queries can be answered in polynomial time for the OBDD< lan-
guage (see Table 1 or (Darwiche & Marquis, 2002, Table 5)), the same is true for languages
SL< and SL which can be both compiled into OBDD< in polynomial time. It is clear,
however, that for most queries direct algorithms using SLRs are much more efficient than in-
direct algorithms that first compile SLR into an OBDD (which takes O(k2n3) time for SLR
with k switches on n variables) and only then answer the query. Obviously, some queries
are completely trivial for SLRs (consistency, validity) and some can be easily implemented
using polynomial time conditioning (clausal entailment, implicant check). It should be also
noted that SLRs are very well suited for model counting — a linear number of arithmetic
operations (subtractions) on n-bit numbers suffices, and for model enumeration. However,
for (the general case of) sentential entailment and equivalence check we currently have no
direct algorithms, and so the indirect approach using a compilation to OBDD is the only
one we can use now.

In the rest of this section we will describe a polynomial time algorithm for each of the
considered queries and determine its time complexity (see Table 4 for a summary). Let
us assume that the input is a SLR consisting of k switches representing function f on n
variables (i.e. the input SLR has size O(nk)).

525

Čepek & Chromý

CO VA IM CE SE∗ SE EQ CT ME

SL< O(1) O(1) O(kn) O(kn) O(kn) O(k2n2) O(kn) O(kn) O(mn)
SL O(1) O(1) O(kn) O(kn) O(k2n3) O(k2n3) O(k2n3) O(kn) O(mn)

Table 4: Time complexity of queries for the SL< and SL languages where n is the number
of variables, k is the number of switches in the input SLR, and m is the number of
models. SE* additionally assumes that both input SLRs are defined on the same
set of variables.

7.1 Consistency (CO) and Validity (VA)

To test that f is valid (all assignments are models) it suffices to check k = 0 and f(0, . . . , 0) =
1. This takes O(1) time. To test that f is consistent (has a model) it suffices to check k > 0
or f(0, . . . , 0) = 1. This also takes O(1) time. Of course, checking consistency of a function
is the same as checking non-validity of its negation (recall from Section 6 that a negation
can be constructed in O(1) time).

7.2 Implicant Check (IM) and Clausal Entailment (CE)

Let T be a term (simple conjunction of literals). We have shown in Section 6 that condi-
tioning on a subset of literals takes O(kn) time. Therefore it suffices to set each literal in T
to true and then to check the validity of the SLR resulting from this conditioning in O(1)
time to determine whether T is an implicant of f or not.

Checking that clause C is an implicate of f is equivalent to checking whether a term
¬C is an implicant of ¬f . Thus, due to the fact that SLR of ¬f can be constructed from
the SLR of f in O(1) time, also clausal entailment can be checked in O(kn) time.

7.3 Sentential Entailment (SE)

Let f and g be two Boolean functions and Lf , Lg their SLRs with kf and kg switches
respectively. Let us denote k = max{kf , kg}. SE amounts to checking whether f implies g.
This is the same as checking that ¬f ∨ g is valid. Let us distinguish three cases in a similar
fashion as we did for conjunctions and disjunctions in Section 6.

1. Lf , Lg have the same order of variables and the same set of variables. In this case,
we can check SE in O(kn) time using negation, disjunction, and validity check.

2. Lf , Lg have the same order of variables and different sets of variables. In this case,
we cannot use the same approach as above because the SLR representation of the
disjunction may be exponentially large with respect to the input. Hence we compile
Lf , Lg into OBDDs Gf , Gg both respecting the same fixed order of variables as Lf , Lg.
This can be done in O(k2n2) time and the output is of size O(kn) since the first part
of the compilation from Section 4.1 suffices to produce Gf , Gg (no need to change
the order of variables). Now we can take a negation of Gf in O(1) time, disjoin it
with Gg in O(|Gf | × |Gg|) = O(k2n2) time, reduce the result to a canonic OBDD in
O(k2n2) time, and check validity (see (Wegener, 2000, Theorem 3.3.6. pp. 56) for the

526

Properties of Switch-List Representations of Boolean Functions

complexity of these operations with OBDDs, more details are also in (Bryant, 1986;
Meinel & Theobald, 1998)).

3. Lf , Lg have different orders of variables. In this case, we again compile into OBDDs
but this time we have to change the order of variables for one of the input repre-
sentations. So let us assume that we produce Gf of size O(kn) in O(k2n2) time as
above (we keep the order of variables) and Gg of size O(kn2) in O(k2n3) time by the
compilation algorithm from Section 4.2 (here we change the order of variables to the
one in Gf). Now we proceed as above taking a negation, disjunction and checking
validity. In this case, we need O(|Gf | × |Gg|) = O(k2n3) time.

7.4 Equivalence Check (EQ)

For EQ the situation is simpler than for SE since when testing equivalence we may assume
that f and g are defined on the same set of variables. If Lf , Lg have the same order of
variables then EQ can be obviously tested in O(kn) time by performing two SE checks. In
fact, in this case, if f ≡ g then Lf and Lg must be identical, as for a given function and a
given order of variables its SLR is uniquely defined. So instead of two SE checks we may
just test in O(kn) whether Lf and Lg are identical, which is easy to do as the switch-lists
are ordered.

If the order of variables differs, we proceed similarly as in SE by compiling Lf of size
O(kn) into Gf of size O(kn) in O(k2n2) time and Lg of size O(kn) into Gg of size O(kn2)
in O(k2n3) time. Now we can save some time by checking the equivalence of f and g by
testing the isomorphism of the reduced forms of Gf and Gg in O(kn2) time (Wegener, 2000,
Theorem 3.3.1. pp. 51), but asymptotically this does not help as the complexity of the
compilation step dominates.

7.5 Model Counting (CT) and Model Enumeration (ME)

Let p1, . . . , pk be the switches of f understood as n-bit binary numbers. If f(1, . . . , 1) = 1
then set pk+1 = 2n. Now there are two cases. If f(0, . . . , 0) = 1 then set p0 = 0 and the
number of models equals to

∑
i∈I(pi−pi−1), where I is set of odd indices, if f(0, . . . , 0) = 0

then the number of models equals to
∑

i∈I(pi − pi−1), where I is set of even indices. In
either case, the computation consists of O(k) addition and subtraction operations on n-bit
numbers which takes O(kn) time.

Model enumeration can be performed in a similar manner as above by outputting models
between pairs of switches pi−1 and pi for i ∈ I depending on the values of f(0, . . . , 0) and
f(1, . . . , 1) as in model counting. The time complexity is of course linear in the size of the
output and takes O(mn) time, where m is the number of models.

8. Conclusions

The main aim of this paper is to include the languages SL< and SL into the Knowledge
Compilation Map (Darwiche & Marquis, 2002) and to argue that they may in some situa-
tions constitute reasonable target languages for knowledge compilation. This aim is justified
by completing three subtasks: (1) derive the relative succinctness of SL< and SL compared

527

Čepek & Chromý

to the languages already considered in (Darwiche & Marquis, 2002), (2) establish the com-
plexity status of common transformations for SL< and SL, and (3) do the same for common
queries. This goal is achieved with few open problems remaining, namely the complexity of
conjunctions and disjunctions for SL.

The results in this paper are dependent on the fact that vectors in the truth table are
assumed to be ordered by the natural lexicographic order. i.e. by standard inequalities
when vectors are interpreted as binary numbers. There are other orders which are quite
natural and can be generated effectively. For instance, one can order vectors based on the
number of ones (and complement this by some natural order on the sets of vectors with
the same number of ones). Such an order has quite different properties, note that e.g. the
parity function which has an exponentially large SLR with respect to the standard order
of vectors has a linear size SLR with respect to this less standard one. Examining the
properties of SLRs with respect to non-standard orders of vectors may be the subject of a
future study.

Acknowledgements

The authors gratefully acknowledge a support by Czech Science Foundation (Grant 19-
19463S), by SVV project number 260 575 and by Charles University project UNCE/SCI/004.

References

Ausiello, G., D’Atri, A., & Sacca, D. (1986). Minimal representation of directed hyper-
graphs. SIAM Journal on Computing, 15, 418–431.

Boros, E., Čepek, O., Kogan, A., & Kučera, P. (2009). A subclass of Horn CNFs optimally
compressible in polynomial time. Annals of Mathematics and Artificial Intelligence,
57, 249–291.

Boros, E., Čepek, O., & Kučera, P. (2013). A decomposition method for CNF minimality
proofs. Theoretical Computer Science, 510, 111–126.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35 (8), 677–691.

Čepek, O., & Chromý, M. (2020). Switch-list representations in a knowledge compilation
map. In Bessiere, C. (Ed.), Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI 2020, pp. 1651–1657. ijcai.org.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal Of Artificial
Intelligence Research, 17, 229–264.

Hammer, P. L., & Kogan, A. (1993). Optimal compression of propositional Horn knowledge
bases: Complexity and approximation. Artificial Intelligence, 64, 131–145.

Hammer, P. L., & Kogan, A. (1995). Quasi-acyclic propositional Horn knowledge bases:
Optimal compression. IEEE Transactions on Knowledge and Data Engineering, 7 (5),
751–762.

528

Properties of Switch-List Representations of Boolean Functions

Huang, C.-Y., & Cheng, K.-T. (1999). Solving constraint satisfiability problem for automatic
generation of design verification vectors. In Proceedings of the IEEE International
High Level Design Validation and Test Workshop.

Kaleyski, N. S. (2016). Boolean methods in knowledge compilation. Master’s thesis, Charles
University in Prague, Faculty of Mathematics and Physics.

Kronus, D., & Čepek, O. (2008). Recognition of positive 2-interval Boolean functions.
In Proceedings of 11th Czech-Japan Seminar on Data Analysis and Decision Making
under Uncertainty, pp. 115–122.

Le Berre, D., Marquis, P., Mengel, S., & Wallon, R. (2018). Pseudo-boolean constraints
from a knowledge representation perspective. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, IJCAI18, p. 18911897. AAAI Press.

Lewin, D., Fournier, L., Levinger, M., Roytman, E., & Shurek, G. (1995). Constraint satis-
faction for test program generation. In IEEE 14th Phoenix Conference on Computers
and Communications, pp. 45–48.

Meinel, C., & Theobald, T. (1998). Algorithms and Data Structures in VLSI Design (1st
edition). Springer-Verlag, Berlin, Heidelberg.

Savický, P., & Wegener, I. (1997). Efficient algorithms for the transformation between
different types of binary decision diagrams. Acta Inf., 34 (4), 245–256.

Schieber, B., Geist, D., & Zaks, A. (2005). Computing the minimum DNF representation of
boolean functions defined by intervals. Discrete Applied Mathematics, 149, 154–173.

Tani, S., & Imai, H. (1994). A reordering operation for an ordered binary decision diagram
and an extended framework for combinatorics of graphs.. In Proceedings of the 5th
International Symposium on Algorithms and Computation., Vol. 834, pp. 575–583.

Umans, C. (2001). The minimum equivalent DNF problem and shortest implicants. J.
Comput. Syst. Sci., 63 (4), 597–611.

Umans, C., Villa, T., & Sangiovanni-Vincentelli, A. L. (2006). Complexity of two-level
logic minimization. IEEE Trans. on CAD of Integrated Circuits and Systems, 25 (7),
1230–1246.

Čepek, O., & Chromý, M. (2020). Compiling sl representations of boolean functions into
obdds. In International Symposium on Artificial Intelligence and Mathematics, ISAIM
2020, Fort Lauderdale, Florida, USA, January 6-8.

Čepek, O., & Hušek, R. (2017). Recognition of tractable dnfs representable by a constant
number of intervals. Discrete Optimization, 23, 1–19.

Čepek, O., Kronus, D., & Kučera, P. (2008). Recognition of interval Boolean functions.
Annals of Mathematics and Artificial Intelligence, 52 (1), 1–24.

Wegener, I. (2000). Branching Programs and Binary Decision Diagrams: Theory and Ap-
plications. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

529

