Journal of Artificial Intelligence Research 69 (2020) 1473-1532 Submitted 05/2020; published 12/2020

Diagnosis of Deep Discrete-Event Systems

Gianfranco Lamperti GIANFRANCO.LAMPERTI@ UNIBS.IT
Marina Zanella MARINA.ZANELLA @ UNIBS.IT

Department of Information Engineering, University of Brescia
Via Branze 38, 25123 Brescia, Italy

Xiangfu Zhao XIANGFUZHAO @ GMAIL.COM
School of Computer and Control Engineering, Yantai University
30, Qingquan RD, Laishan District, Yantai 264005, China

Abstract

An abduction-based diagnosis technique for a class of discrete-event systems (DESs), called
deep DESs (DDESs), is presented. A DDES has a tree structure, where each node is a network
of communicating automata, called an active unit (AU). The interaction of components within an
AU gives rise to emergent events. An emergent event occurs when specific components collectively
perform a sequence of transitions matching a given regular language. Any event emerging in an AU
triggers the transition of a component in its parent AU. We say that the DDES has a deep behavior,
in the sense that the behavior of an AU is governed not only by the events exchanged by the compo-
nents within the AU but also by the events emerging from child AUs. Deep behavior characterizes
not only living beings, including humans, but also artifacts, such as robots that operate in contexts
at varying abstraction levels. Surprisingly, experimental results indicate that the hierarchical com-
plexity of the system translates into a decreased computational complexity of the diagnosis task.
Hence, the diagnosis technique is shown to be (formally) correct as well as (empirically) efficient.

1. Introduction

Diagnosis is the task of finding the possible causes of given symptoms. As such, it can be applied
not only to living creatures, including humans, but also to possibly complex engineering artifacts,
such as aircraft or nuclear power plants. As several other tasks, diagnosis can be automated to vary-
ing degrees based on different paradigms. Among them is model-based diagnosis (Reiter, 1987;
Hamscher, Console, & de Kleer, 1992), where the discrepancy between the expected behavior of
the system (inferred by a given model) and the actual observation allows for the generation of can-
didate diagnoses, each candidate being a set of faulty components, i.e., a minimal set such that
assuming that all the components in it do not behave normally while all the others do is consistent
with the observation. Although being general in nature, this consistency-based diagnosis technique
was initially conceived for static systems, such as combinational circuits. When time-varying (dy-
namical) systems come into play, consistency-based diagnosis is far less adopted. Some notable
exceptions can be recorded in the realm of diagnostic reasoning about formal requirements (Schup-
pan, 2012; Pill & Quaritsch, 2013) expressed in Linear Temporal Logic (LTL) (Pnueli, 1977) or
about discrete-event systems (DESs) (Pencolé, Steinbauer, Miihlbacher, & Travé-Massuyes, 2018).
Dynamical systems can be modeled as DESs (Cassandras & Lafortune, 2008), these typically being
represented by finite automata (FAs), possibly communicating with one another (Brand & Zafirop-
ulo, 1983). Model-based diagnosis of DESs is grounded on the seminal work by Sampath et al.
(1996). Compared with the technique by Reiter (1987), the approach by Sampath et al. (1996) is

©2020 AI Access Foundation. All rights reserved.

LAMPERTI, ZANELLA, & ZHAO

characterized (among others) by two peculiarities: (1) the system specification involves not only
the normal behavior of the DES but also its abnormal (faulty) behavior, and (2) the diagnosis ap-
proach is not consistency-based but rather abduction-based as each candidate is the set of all the
(component) faults included in a trajectory (i.e. a sequence of state changes) of the DES that entails
the observation. In abduction-based diagnosis of DESs, the behavior of the system (or a diagnosis-
oriented surrogate of it, typically a diagnoser) is checked against a given sequence of observable
events in order to elicit the trajectory (or trajectories) of the DES that explain the observation. This
way, faulty events within abnormal trajectories (that produce the given observation) are filtered out
as diagnosis results.

Active systems (ASs) are a special class of asynchronous DESs, for which abduction-based
diagnosis techniques were proposed more than two decades ago (Baroni, Lamperti, Pogliano, &
Zanella, 1998, 1999, 2000). At that time, a novelty consisted in the diagnosis task not requiring the
generation of the global model of the system, which was instead necessary to generate the diagnoser
in in the approach by Sampath et al. (1996).!

The evolution from ASs to deep DESs (DDESs) was not instantaneous. It was spurred by the
idea of injecting some sort of semantics into diagnosis of ASs (Lamperti & Zanella, 2010), based
on the consideration that there is a gap between the model of a complex DES, which integrates
several components, and its diagnosis, which is still anchored to individual components. Trivially,
a (sub)AS is faulty only if it includes a faulty component. A candidate diagnosis of an AS is a set
of component faults, irrespective of the role each component plays within the aggregate it belongs
to and within the system. The idea of enriching diagnosis results with some semantics then evolved
into the notion of context-sensitive diagnosis, proposed by Lamperti and Zanella (2011) and refined
by Lamperti and Zhao (2014). Diagnosis is context-sensitive when faults are defined for a hierarchy
of abstractions describing the system. The notion of a context-sensitive fault has progressively
been extended as the notion of context has progressively been generalized. In the current paper,
a context-sensitive (or contextual) fault is not necessarily a fault in the traditional sense, i.e. the
record of something that has broken, instead it can correspond, for instance, to a violation of the
expected function of a subsystem, a violation that has possibly taken place even if no component has
broken: in this example, the context is the subsystem and the role it has to play within the considered
system. ASs with a deep behavior, that is, where the behavior (both normal and abnormal) of lower
hierarchical levels can affect the behavior of upper levels, were first introduced by Lamperti and
Zhao (2013a, 2013b). From a terminological point of view, the attribute ‘deep’ takes inspiration
from deep learning, by analogy with the structure of neural networks in Machine Learning as far as
the presence of several layers is concerned. In the domain of DDESs, deep behavior is equivalently
called behavior stratification. Considering different levels of abstraction is a common means to
face the complexity of both natural systems and artifacts, for it induces a separation of concerns.
For instance, in biology, the human brain is regarded as being organized in multiple layers: the
primitive reptilian brain at the bottom, the emotional mammal brain in the middle, and the rational
primate brain on top, with each brain being composed of several parts (amygdala, prefrontal cortex,
temporal lobes, etc.). The OSI model, the layered architecture of a software system or an operating
system, a cognitive architecture, all are examples of stratification in artifacts.

1. In the worst case, if the DES includes n components and each component model includes k states, then the global
model of the DES will include up to k™ states, a number that can be very large even for a few tens of components.
With this numbers, the generation of the global model (and thus of the diagnoser) in real systems (possibly involving
thousands of components) is quite out of the question, even if performed offline.

1474

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Basically a DDES consists of several ASs; each AS is a node in a hierarchy. A child AS exerts
its influence over its parent AS by sending special events to it, called emergent events. An AS
can trivially be regarded as a DDES consisting just of one AS, in which case there is no need for
emergent events. If the DDES consists of a single AS, the method for carrying out the diagnosis task
is the same as for ASs. Although some existing AS models can be regarded as a DDES consisting of
more than one hierarchical layer, in general the ‘translation’ of an AS to/from a DDES with several
layers is not straightforward (and it is out of the scope of the paper). Modeling and processing
an AS as a multi-layer DDES? is beneficial from the point of view of both the CPU time and the
RAM storage, as shown by the experimental results reported in Section 6.7. However, efficiency
is not the reason for DDESs have been introduced. The rationale behind the proposal of DDESs is
that a deep behavior representation can be much more intuitive and natural for the design, analysis,
monitoring, and diagnosis of dynamical systems operating at different abstraction levels, such as
robots (Khalastchi & Kalech, 2018), as they have a dynamic context nature natively. Remarkably, a
robot can perform a variety of tasks in a changing environment: its current operating context consists
in the specific environment with which the robot is interacting (as sensed by the robot itself) and the
specific task it is accomplishing. Observations that are legitimate under one context might not be
legitimate under another: the latter are clues about contextual faults. For instance, a zero airspeed
value is not legitimate while an unmanned aerial vehicle (UAV) is flying. A DDES allows for the
leaf ASs of the hierarchy to represent simple contexts, while intermediate ASs in the hierarchy
can represent an aggregate of contexts, along with the transitions from a simple context, dealt with
as a unit, to another context, and so on. The AS at the root of the hierarchy can represent the
transitions from a context aggregate to another context aggregate. The bottom-up communications
in the hierarchy can represent, among other things, how (far) contextual faults can propagate.

Diagnosing a (flat) AS amounts to reconstructing its behavior by performing the asynchronous
composition of the behaviors of all its components as constrained by the given observation. The
diagnosis method inherited from the framework of ASs can be adapted to be used also for DDESs.
Applying this method amounts to reconstructing the overall behavior of the DDES, by performing
the asynchronous composition of the reconstructed behaviors of all the ASs it includes, as con-
strained by the given observation, and then to ‘decorating’ the states with the set of faults relevant
to the trajectories leading to them. Being a DDES a container of ASs, its size is usually larger than
that of an AS, hence the space limits are soon reached, as illustrated in Section 6.7. However, a
more efficient diagnosis technique that is able to exploit the specificities of DDESs (thus avoiding
the reconstruction of the overall behavior of the considered DDES) is available. In fact, in order
to diagnose a DDES, the behavior of each single node in the hierarchy, as constrained by the given
observation and by the events coming from its child nodes, is computed starting from the leaf nodes
and going upward in the hierarchy. Once the behavior of a parent node has been constructed, the
constraints relevant to this behavior are propagated to its children, so as only the diagnoses (sets of
faults) that comply with the parent behavior are considered. These diagnoses are properly combined
with those relevant to the parent node; therefore, once the parent node has been processed, its asso-
ciated diagnoses are relevant to the whole subtree rooted in it and they comply with the observations
of all the nodes in the subtree. This way, once the root node has been processed, its associated set
of diagnoses turns out to be a sound and complete set of candidates relevant to the whole hierar-

2. Modeling an existing system requires adherence to reality; this means that we have not to model an AS as a multi-
layer DDES if this is far from the way the real system works. Instead, modeling a new system as a multi-layer DDES
can provide useful hints for the system design, in order to enhance its understandability and explainability.

1475

LAMPERTI, ZANELLA, & ZHAO

chy, that is, to the whole DDES. According to this method, each single AS, is processed separately,
which is usually manageable. An analogous viable technique for the diagnosis of ASs having a deep
behavior was first presented by Lamperti et al. (2016, 2016b) and subsequently extended (2016a).
However, neither the formalization of the technique nor support for its correctness (soundness and
completeness) was provided.

This paper integrates and extends the authors’ previous research by formalizing the abduction-
based diagnosis technique for DDESs briefly described above, including a proof of correctness and
experimental results that show that its efficiency is greater than that of the AS diagnosis method, as
adapted to DDESs. To the best of our knowledge, apart from the works cited above, no approach
to diagnosis of DDESs has been proposed so far. Still, several works can be related to this paper in
varying degrees, as discussed at the end of the paper.

In the rest of this paper, Section 2 recalls the notion of an AS and the relevant technique for
solving a diagnosis problem. Section 3 introduces the notion of an active unit (AU), the building
block of a DDES, along with emergent events, the basic means of upward hierarchical communica-
tion between AUs within the DDES. Section 4 defines the notion of a DDES and a corresponding
diagnosis problem. It also highlights the inadequacy of the problem-solving technique adopted for
ASs if we are willing to adapt it to DDESs. Section 5 presents a method for preprocessing DDES
specifications in order to support effective detection of emergent events during the diagnosis task.
Section 6 outlines a technique specifically designed for solving DDES diagnosis problems, which
is feasible as well as sound and complete, along with relevant experimental results. Section 7 illus-
trates the genesis of DDESs and their advantages. Section 8 compares the proposal with a selection
of related works. Conclusions are drawn in Section 9.

2. Active Systems

This background section defines the concept of an AS, upon which the next sections will progres-
sively build the new notion of a DDES. First, the modeling primitives of an AS are described.
Later, the diagnosis problem, relevant to an AS and a specific observation, is defined, along with an
abductive method for the generation of the set of candidate diagnoses.

An AS is a network of (active) components (ACs), with each AC being modeled by a (possibly
nondeterministic) communicating automaton M = (S, 7, X, O, Y, 7), where S is the set of states,
I the set of input events, X the set of input terminals, O the set of output events, Y the set of output
terminals, and t the transition function, 7 : § X (I x X) x 2(0xY) 28 p general, a transition ¢ of
a component ¢ from a state s to a state s’ is triggered by an event e € [at an input terminal x € X,
and generates a (possibly empty) set of output events {e1(y1),...,ex(yr)}, where Vi € [1..k],
e; € 0,y; €Y, denoted by the triple

(€)= (5. ((x). ter (). ... ek (a)). 5).

When e(x) is consumed, the state s” is reached and the output events (if any) are generated
at the relevant output terminals. An AC can change its state without the need for a ready event
on any input terminal: this is a spontaneous transition, which is typically used for modeling state
changes caused by external events (e.g. a lightning may cause the reaction of a sensor in a protection
system). The absence of an event on the input terminal x is denoted by e(x) = &, where ¢ is the
empty event. Components within an AS are connected with one another through links. A link [is a
pair (y, x’), where y is an output terminal of a component ¢ and x’ is an input terminal of another

1476

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Gy o e DD
bg

Figure 1: Active system #4 (center), and models of the sensor s (left) and of the breaker b (right).

component ¢’, with ¢/ # ¢. When a transition of ¢ generates an output event e(y), the event e is
ready at the input terminal x’, namely e(x’) is ready. If e(x’) is ready, then the link / is loaded and
no further transition of ¢ generating an output event at y can occur. Each terminal can be connected
with (at most) one link.> Hence, if an (either input or output) terminal z is connected with a link,
the latter can be identified as link(z). If a terminal is not connected with a link, then the terminal
is dangling. We assume that only input terminals can be dangling in an AS. If an AS # includes
dangling terminals, then #4 is open. Based on this terminology, the transition ¢(c) is triggerable
(can occur) iff: (a) the input terminal x is dangling® or e(x) = ¢ or e(x) is ready, and (b) all links
exiting the output terminals yq, ..., yi are empty (not loaded). An AS is succinctly represented by
atriple A = (C, L, D), where C is the array of components, L the array of links, and D the array
of dangling (input) terminals.

Notice that the above modeling does not make any distinction between normal and faulty behav-
ior. Since this distinction is crucial in order to perform abductive diagnostic reasoning (which, in
our approach, means finding out all the behaviors that entail a given observation), further modeling
primitives are needed: they will be introduced in subsequent sections.

Example 1 Outlined in Figure 1 is an AS # that includes two components, a sensor s and a breaker
b. These components are connected through a link (y, x), where y is the output terminal of s and x
the input terminal of b. +4 is designed to protect a device from short circuits. In a normal behavior,
when a short circuit is detected by the sensor, the latter commands the breaker to open. Likewise,
when the short circuit is extinguished, the sensor commands the breaker to close. The component
models of s and b are depicted on the left and right side of Figure 1, respectively. Specifically,
the transitions within the model of the sensor s are: s1 = (idle, (¢, {op(y)}), awaken): s detects a
short circuit and outputs op(y); s2 = (awaken, (g, {cl(y)}), idle): s detects the end of the short and
outputs cl(y); s3 = (idle, (s,{cl(y)}), awaken): s detects a short circuit and outputs cl(y); s4 =
(awaken, (e, {op(y)}), idle): s detects the end of the short and outputs op(y). Transitions within the
model of breaker b are: by = {(closed, (op(x), @), open): b consumes event op(x) and opens; by =
{open, (cl(x), D), closed): b consumes event c/(x) and closes; b3 = (closed, (op(x), D), closed): b
consumes op(x) and keeps being closed; by = (open, (cl(x), @), open): b consumes cl(x) and keeps
being open; b5 = (closed, (cl(x), D), closed): b consumes event c/(x) and keeps being closed;
be = (open, (op(x), D), open): b consumes op(x) and keeps being open. Notice how the transitions

3. If a component transition generates two output events that are input to the same component, then we need two distinct
links between such components, with each link connecting two distinct pairs of terminals.

4. In this case, we assume that the terminal x is connected with another component outside the AS +. This occurs when
s, which is the focus of the diagnosis task, is a portion of a larger AS. In principle, output terminals too could be
dangling. However, as clarified in Section 3, in the context of a DDES, only dangling input terminals are eventually
connected with special links aimed at connecting “extended” ASs to one another. That way, the DDES turns out to
be “closed” (without dangling terminals).

1477

LAMPERTI, ZANELLA, & ZHAO

s3 and s4 in the sensor, and b3 and b4 in the breaker, are somehow abnormal (faulty); the model of
4, however, does not identify the faulty transitions.

2.1 Space and Trajectory

Like an AC, an AS A can be in different states, each AS state corresponding to the array of states
of its components and the array of events stored in links. Assume that # is in the initial state o
where all links are empty. At the occurrence of a transition of a component ¢, # moves from o to a
new state, say o1, where the state of ¢ is changed and possibly output events are placed within some
links. The presence of events ready at the input terminals of other components causes # to change
its state by means of new component transitions. This process continues until all links become
empty anew, namely when # has reached a final (quiescent) state’. We say that # has performed
a trajectory in its space, where the space of «+ is a deterministic finite automaton (DFA) whose
language over the alphabet of all the component transitions is the set of all possible trajectories of
s starting at g. All these concepts are formalized below.

Definition 1 (Space) Let A = (C, L, D) be an AS, where C = (c1,...,cp)and L = (I1, ..., ly).
The space of A, denoted A*, is a DFA®

eAu* = (E,A,‘L',O{(),Af) (l)

where the alphabet X is the set of transitions of components in C; A is the set of states (S, E),
where S is the array of states of the components in C and E is the array of the (possibly empty)
events loaded in links in L; ag = (So, Eg) is the initial state, where all events in Eo are empty;
Ar € A is the set of final states (Sg, Er), where all events in Eg are empty; T is the transition
function, T : A x X +— A, where: ((S,E),t(c;), (S, E")) € T iff:

o 1(c;) = (5, (e(x). {e1(y1).....ex(yk)}).5!) is triggerable;

o S =(s1,....80), S =(s].....80), 8i =5, Vje[l.n]:ifj :ithens;- = 5], otherwise
s} = 5.

o E =(e1,....em), E' = (e}.....e},), if x is not dangling and e(x) # ¢ then E [link(x)] =
e’ and E'[link(x)] = &, and V¥ j € [1..m]: ife(y) is an output event in t (c;) and link(y) = I;
then e} = e, otherwise e} = ej.

Example 2 With reference to the AS 4 defined in Example 1, assume that, in the initial state, the
sensor s is idle, the breaker b is closed, and the link (y, x) is empty, namely a9 = (So, Eo) =
((idle, closed), (¢)). Outlined on the left side of Figure 2 is A*, the space of +4, where final states
(double circled) are og, @3, 04, and o171. Details on state contents are provided on the right side.

5. The reachability of a quiescent state (where all links are empty) is a simplifying assumption.

6. Despite the transitions of components in #4 being possibly nondeterministic, the space #4™ is deterministic because its
alphabet is the set of component transitions rather than the set of triggering events. Still, the intrinsic nondeterminism
of the behavior of a component is somewhat embodied in A™* because two (different) component transitions exiting
a state in A* may be triggered by the same input event.

7. The index of E can be either an integer i € [1..m] or a link, as here.

1478

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

State N E
oo (idle, closed) (e)
o] (awaken, closed) (op)
ay | (awaken, closed) (cl)

a3 (awaken, open) (¢)
oy | (awaken, closed) (g)
os (idle, open) (cD)
e (awaken, open) (op)
a7 (idle, open) (op)
og (awaken, open) (cl)

a9 (idle, closed) (c)
10 (idle, closed) (op)
o1 (idle, open) (e)

Figure 2: Space 4™ of AS A (left), along with state details (right).

Definition 2 (Trajectory) A trajectory T within a space A* = (X, A, T, 0, Af) is a finite sequence
of contiguous transitions of components in 4, namely T = [t1(c1), ..., t4(cq)], such that

Viel[l..ql,(@i-1.ti(c;),@;) € T, and oy € As. 2

The (possibly infinite) set of trajectories of A* is denoted ||A*|. A prefix of a trajectory T is a
semi-trajectory within A*. A contiguous subsequence of T is a subtrajectory within A*.

Example 3 A trajectory within the space A™* outlined in Figure 2 is T = [s1, b3, 52, b5].

2.2 Viewer and Temporal Observation

The modeling of an AS A does not provide any information on the observability of #. Provid-
ing information about observability means defining, for each component in +, which transitions
are observable and which ones are unobservable. A transition is observable if, when occurring, it
generates a label that can be perceived by an external observer; otherwise, the transition is unobserv-
able. Therefore, specifying the observability of 4 amounts to defining a mapping from observable
transitions to corresponding observable labels. This is captured by the notion of a viewer.

Definition 3 (Viewer) Let A be an AS, and §2 a domain of observable labels. A viewer 'V for &4 is
a surjective mapping from a subset of the transitions of the components in A to 2.8 If (t(c), L) € V,
then the transition t(c) is observable; otherwise, t(c) is unobservable.’

Example 4 With reference to the AS 4 introduced in Example 1, a viewer V is defined as follows:
V = {(s1,awk), (s2,ide), (s3,awk), (s4, ide), (b1, bop), (b2, bcl)}, with observable labels having
the following meaning: awk = the sensor awakes, ide = the sensor becomes idle, bop = the breaker
opens, and bcl = the breaker closes.

8. Since the mapping is surjective, each label in §2 is associated with (at least) one of these transitions.
9. In fact, V can be represented as a set of pairs ((c), £), where t(c) is a transition of the component ¢ and ¢ is the
associated observable label.

1479

LAMPERTI, ZANELLA, & ZHAO

Definition 4 (Temporal Observation) Ler T be a trajectory in A* and 'V a viewer for A. The
temporal observation of T based on 'V, written Obs(T,'V), is the sequence of observable labels
associated with the observable transitions of T,

Obs(T, V) = [£ | t(c) € T, (t(c), L) € V]. 3)

Example 5 With reference to the trajectory 7" in Example 3 and the viewer V in Example 4, the
temporal observation of 7 based on 'V is the sequence Obs(T, V) = [awk, ide].

2.3 Ruler and Diagnosis

As remarked already, the modeling of an AS + does not make any distinction between normal and
faulty behavior. Providing specification for this distinction means defining, for each component in
4, which transitions are normal and which ones are faulty. In other words, faults are associated with
component transitions. This way, a transition («, #(c), &’) of +4 is faulty if and only if #(c) is faulty.
Thus, specifying the abnormal behavior of 4 amounts to defining a mapping from faulty component
transitions to faults, just as specifying the observability of 4 amounts to defining a mapping from
observable component transitions to observable labels. This is captured by the notion of a ruler.

Definition 5 (Ruler) Let A be an AS, and F a domain of faults. A ruler R for A is a surjective
mapping from a subset of transitions of components in A to F. If (t(c), L) € R, then the transition
t(c) is faulty; otherwise, t(c) is normal.

Example 6 With reference to the AS # introduced in Example 1, a ruler R is defined as follows:
R = {(s3,f50), (s4,f5¢), (b3, fbo), (ba, fbc)}, where faults have the following meaning: fso = failure
of s in sending the opening command, fsc = failure of s in sending the closing command, fbo =
failure of b in opening, and fbc = failure of b in closing.

Definition 6 (Diagnosis) Let T be a trajectory within A™ and R a ruler for 4. The diagnosis of T
based on R, denoted Dgn(T, R), is the set of faults involved in the faulty transitions of T, namely

Dgn(T,R) ={f [t(c) e T.(1(c). f) € R}. “)

Since a diagnosis is a set (rather than a sequence), the same fault cannot be duplicated within
the diagnosis. Consequently, two trajectories covering the same subgraph within 4™ by traversing
the same cycle a different number of times yield the same diagnosis. This is why the set of possible
diagnoses is always finite, regardless the set of trajectories being possibly infinite.

Proposition 1 Let F be the set of faults involved in the ruler of an AS A. The set of possible
diagnoses of 4 is finite, specifically a subset of the powerset 2F .

Example 7 With reference to the trajectory 7" in Example 3 and the ruler R in Example 6, the
diagnosis of 7" based on R is the singleton Dgn(T, R) = {fbo }.

A handy (binary) operator to combine sets of diagnoses is defined as follows.
Definition 7 (Join) Ler A1 and A, be two sets of diagnoses. The join operator “®” is defined as

A1®A2={5|5=51U82,51€A1,82€A2}. 5)

1480

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

The join is commutative, namely A; ® A, = A; ® A;. The neutral element of the join is the
singleton {@}, since A ® {#} = {0} ® A = A.

Example 8 Let A; = {{fso, fbo}, {fsc,fbc}} and Ay = {{fso,fbc}, {fso}}. We have A1 ® Ay =
{{fso, fbo, fbc}, {fso, fbo}, {fso, fsc, fbc}}. Notice how, owing to the removal of the duplicated
diagnosis {fso, fsc, fbc}, the cardinality of A1 ® A, is less than the product of the cardinality of A;
and the cardinality of A,.

2.4 Diagnosis Problem

Assume that an AS # performs a trajectory starting from the initial state «g. The temporal obser-
vation @ of this trajectory is a sequence of observable labels based on a viewer V of 4. Assume
further that (R is the ruler for 4. Now comes the question: What can we say about the behavior
of A based on the information we have, namely the initial state a, the viewer 'V, the temporal
observation O, and the ruler R ? This is formalized by the notion of a diagnosis problem.

Definition 8 (Diagnosis Problem) Ler A be an AS, ay the initial state of A, 'V a viewer for 4, O
a temporal observation of A, and R a ruler for A. The quadruple

p(A) = (20. V. 0. R) (6)

is a diagnosis problem for 4. The solution fo (), denoted A(gp(A)), is the set of (candidate)
diagnoses defined as

A(p(A) = {Dgn(T.R) | T € A*,0bs(T,V) =0 }. (7)
When Obs(T,V) = O, we say that T implies ©.

Example 9 Consider the AS 4 introduced in Example 1. A diagnosis problem for 4 is p(A) =
(o, V,0,R), where g = (So, Eg) = ((idle, closed), (¢)), the viewer 'V is defined in Example 4,
O = [awk, ide], and the ruler R is defined in Example 6. According to the space 4™ outlined
in Figure 2, there are four trajectories 7' such that Obs(T,V) = O, namely T1 = [s1, b3, 52, bs],
T = [s1,b3,54,b3], T3 = [s3, b5,52,b5], and T4 = [s3, bs, 54, b3]. Based on eqn. (7), the solution
to 50(:7%) is A((SO(A)) = {51,52, 83,54}, where 51 = Dgn(Tl, C{R) = {ﬂ?O}, 82 = Dgn(Tz, JR) =
{fbo, fsc}, 63 = Dgn(T3, R) = {fso}, and 84 = Dgn(T4, R) = {fso, fsc, fbo}.

Still, generating the solution to a diagnosis problem based on eqn. (7) is impractical for two rea-
sons: (a) A* is not available, as its materialization is prohibitively expensive in real systems, and
(b) possibly, an infinite set of trajectories should be considered. As to point (a), a more practical
technique is required, which exploits the constraints imposed by the temporal observation (cf. Sec-
tion 2.5). As to point (b), only a significant finite set of trajectories is considered, which is however
sufficient to determine the solution to the diagnosis problem (cf. Section 2.6).

2.5 Constrained Space

According to eqn. (7), what is essential to generate a candidate diagnosis is a trajectory of A that
implies the temporal observation (9. The set of trajectories implying the temporal observation O is a
subset of ||A*||. If the set of trajectories of A™ is infinite, then the subset of trajectories implying O

1481

LAMPERTI, ZANELLA, & ZHAO

State S E
Bo (idle, closed) (e)
B1 | (awaken, closed) (op)
B2 | (awaken, closed) (cl)
B3 | (awaken, closed) (&)
Ba (idle, closed) (cD)
Bs (idle, closed) (op)
Be (idle, closed) (e)

e

NN == =0

Figure 3: @-constrained space g of AS A (left), along with state details (right).

can be infinite too. The point is, since 4™ is a DFA embodying (in its language) a possibly infinite
set of trajectories, chances are we can devise a technique for generating a DFA whose language is
exactly the subset of the language of A* that includes all (and only) the trajectories implying the
temporal observation. We call this DFA the @-constrained space of «#, as defined below.

Definition 9 (O-constrained Space) Ler A be an AS, g the initial state of A, 'V a viewer for A,
and O = [£q,...,¢,] a temporal observation of A. The OQ-constrained space of A is a DFA

Ay = (X, B, 7, fo, Br) ()

such that the set of trajectories in ‘A(*D is a subset of the set of trajectories in A*, namely
[Agll S [|A*]l, where X equals the alphabet of A*; B is the set of states (S, E,), where (S, E)
is a state of A*, and J is an index of @, namely I € [0..n]; Bo = (So. Eg,0) is the initial state,
where (So, Eo) = ag;, Br C B is the set of final states (S, Et, n), where (St, Er) is a final state
of A*; T is the transition function, T : B x X — B, where {(S,E,%),t(c), (S, E",J)) € 1 iff
((S,E),t(c),(S’, E)) is a transition in A*, and

4

1 i l Vandl = L
N - +1 if(t(c).f) € Van S+1 ©)

if t(¢) is unobservable.

LR

Example 10 Let A™* be the space of + displayed in Figure 2, and O = [awk,ide]. The O-
constrained space of /4, namely sy, is outlined in Figure 3. Notice that s includes the trajectories
Ty, T, T, and T4 defined in Example 9, each one implying O.

2.6 Decoration and Solution

Building the (O-constrained space AZ is the first step of the diagnosis technique. Then, we need to
associate with each trajectory in /g the corresponding diagnosis. At a first glance, when the set
of trajectories is infinite, this might seem an endless task, as we have to consider each trajectory
one by one in order to generate the associated diagnosis. However, the set of diagnoses is always
finite because a diagnosis is a set (rather than a multiset) of faults, so that duplicated faults within
the same trajectory are removed. This means that, for the purpose of diagnosis generation, only a
finite set of trajectories suffices to be considered. This finite set is composed of all the trajectories in
which possible cycles are traversed once at most. This is good news because we can associate with

1482

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

State Diagnosis set
Bo {9}
p1 {9}
B2 {{fso}}
B3 {{fbo}, {fso}}
Ba {{fbo}., {fs0}}
/35 {{fbovfsc}s {fSO,fSC}}
:36 {{ﬂ?O}, {ﬂ?(),fSC}, {fSO}, {fSO,fSC,be}}

Figure 4: Decoration of the @-constrained space #47%,, with diagnosis sets detailed on the right side.

each state B of /Ay, a finite set of diagnoses, with each diagnosis corresponding to a semi-trajectory
T ending at 8, such that T does not traverse a cycle more than once. That is, we can generate the set
of diagnoses associated with the state 8 by considering only a finite subset of the (possibly infinite)
set of semi-trajectories ending at 8. Generating the set of diagnoses associated with each state of
the constrained behavior is the second step of the diagnosis technique, as detailed below.

Definition 10 (Decorated Constrained Space) Let A(*9 be the O-constrained space of an AS A,
and R a ruler for A. The decorated (-constrained space of 4, denoted A?g, is the DFA obtained
from Ag by marking each state B of the latter with a diagnosis set (or decoration) A(B) based on
the application of the following two rules:

1. (Basis) For the initial state By, @ € A(Bo);

2. (Induction) For each transition (B,t(c),B’), for each § € A(B), if (t(c), f) € R, then
SU{f} e A(B)), else 5 € A(B).

Based on the first rule in Definition 10, the empty diagnosis corresponds to the empty semi-
trajectory. Based on the second rule, if the decoration of the state B includes a diagnosis §, then
there is at least one semi-trajectory 7', ending at 8, whose diagnosis is §.!° Consequently, there is a
semi-trajectory T U [#(c)]! ending at B’ whose diagnosis is either the extension of § by the fault
f associated with 7(¢) in R, when (¢(c),) € R, or §, when (¢(c), f) ¢ R.

Unlike the first rule, which represents the base case and is applied only once, the second rule is
inductive in nature. This means that, for the sake of completeness of the decoration, the second rule
should be continuously applied until the decoration of the behavior cannot be changed. As such, if
p is a final state of .A?g, then, for each trajectory 7" € || A‘(lg | ending in B, the diagnosis of T', namely
8, is part of the decoration of 8, that is, 6 € A(B).

Proposition 2 Let p(A) = (xo,V, O, R) be a diagnosis problem and ,A‘(jg the decorated O-
constrained space of 4. The solution to p(A) is

A(p(A)) = U A(B), where B is a final state of A‘(jg. (10)

10. The notion of a diagnosis defined in eqn. (4) for a trajectory is applicable to semi-trajectories too.
11. When the (overloaded) operator U is applied to sequences, it denotes concatenation.

1483

LAMPERTI, ZANELLA, & ZHAO

Example 11 Consider the @-constrained space # displayed in Figure 3. Outlined on the left side
of Figure 4 is the same space where the identifiers of the faulty transitions are replaced with the
corresponding faults. The diagnosis sets associated with each state are listed on the right side of
the figure. According to Proposition 2, the solution to g(+) is the diagnosis set associated with the

final state B¢, namely A(p(A)) = A(Bs) = {{fbo}, {fbo, fsc}, {fso}, {fso, fsc, fbo}}, which in fact
equals the solution determined in Example 9 based on eqn. (7).

3. Active Units

As described in the previous section, an AS is a network of communicating ACs. Within an AS
/A, communication from a component ¢ to a component ¢’ is achieved by the generation of output
events at the occurrence of a transition in ¢. Since c¢ is assumed to be connected with ¢’ by links, the
events generated by ¢ are available (ready) at the input terminals of ¢’. This allows for a temporal
cascade of component transitions within +, namely a trajectory of 4 (cf. Section 2.1).

Intuitively, an active unit (AU) is meant to allow an AS to communicate with other ASs via
special events. In order to make an AS A communicate with another AS A’, we need to: (1) equip 4
with output terminals, (2) equip »’ with input terminals, (3) provide links from the output terminals
of # to the input terminals of 4’, and (4) specify the circumstances under which the output events
are generated by «+. Of the four points listed above, the last is the most critical one. Unlike an AC,
whose behavior is specified by a communicating automaton, no behavior is explicitly defined for an
AS. In a sense, the behavior of the AS # is its space 4™, which is determined by the interaction of
components. In this space, a transition of +4 is caused by a transition of one component of 4. That
is, the behavior of 4 corresponds to the mode in which the components perform state transitions
and interact with one another by means of exchanged events. In so doing, # does not generate any
output event on its own, specifically directed toward another AS. In other words, no deep behavior
exists. To enable deep behavior, we associate with +4 a set of events that are generated upon the
occurrence of a string (sequence) of component transitions matching a given regular expression (cf.
Section 3.1). To stress the mode in which these events occur, they are called emergent events.'?
Since each emergent event e in # is associated with one output terminal y of A, the occurrence of
e places the latter on the terminal y, exactly like the generation of an output event by a component
¢ places the event on a specific output terminal of c¢. Therefore, in order for 4 to communicate with
the AS A/, a link from the output terminal y of # to an input terminal x" of 4’ should be defined
(point 3 above). To this end, we require that each dangling (input) terminal of A’ be connected
with an output terminal of another AS. That is, the input terminals of A’ are the dangling input
terminals of its components. For instance, if a link is defined from the output terminal y of +4 to the
input terminal x” of A’, with x” being a dangling input terminal of a component ¢’ in ', then the
occurrence of an emergent event e(y) makes e ready at the terminal x” of ¢’. Once ready, e(x’) can
be consumed by a transition of ¢’, just like any other event generated by a component in #4’. The
enhancement of an AS by input terminals, output terminals, and emergent events leads to the notion
of an AU defined below.

12. The qualifier “emergent” applied to these events is inherited from the science of complex systems, which inspired
the present work. The basic characteristics of a complex system is the emergence of unpredictable behavior resulting
from the interaction among individual components. This emergent behavior cannot be explained by the superimpo-
sition of the behavior of the interacting components. This paradigm is applicable to natural systems, such as animals,
as well to artificial systems, such as cities, companies, and economies (Atay & Jost, 2004; Bossomaier & Green,
2007; Licata & Sakaji, 2008; Goles & Martinez, 2001).

1484

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

e(y) | Regular expression | Description
Y di | b Disconnection
m co | by Connection
nd | s3|s1b3 Failure in disconnecting
nc | S4|S2bs Failure in connecting

Figure 5: AU & (left) and corresponding emergent events (right).

Definition 11 (Active Unit) An active unit is a quadruple U = (A, I, O, E) where A is an AS, 1
the set of input terminals, these being the dangling input terminals of all the components in A, O
is the set of output terminals, and E is the set of emergent events; each emergent event is defined
by a pair (e(y),r), where e is the event, y € O, and r is a regular expression on transitions of
components in A.

Example 12 Consider the AS A defined in Example 1 and depicted in Figure 1. Outlined on the
left side of Figure 5 is an AU P = (4, I, O, E) derived from +4, where I = 0, O = {y}, and
the set £ of emergent events is {di, co, nd, nc}, with the following meaning: di = disconnected, co
= connected, nd = not disconnected (failure), and nc = not connected (failure). The regular expres-
sions of the emergent events are defined on the right side of Figure 5, the alphabet of each regular
expression being X = {s1, 52, 53, 54, b1, b2, b3, b4, bs, be}.!3 For instance, nd (failure in discon-
necting) occurs when either the sensor s detects the short circuit but sends the wrong command to
the breaker b, namely the transition s3, or s detects the short circuit and commands b to open but b
keeps being closed, namely the transition s, followed by the transition b3.

The notions of viewer, ruler, and temporal observation for ASs are applicable to AUs also.

3.1 More on Emergent Events

As pointed out in Section 2, within an AS +4, events are generated upon the occurrence of component
transitions. These events are called internal events, meaning that they are generated (and consumed)
within 4. When an AU U = (A, I, O, E) is considered, a new class of events is specified, namely
the class of emergent events, those defined in E. Specifically,

E={(e1(y1).71),....(en(yn).rn)} (11)

where Vi € [1..h], e¢; is an event, y; an output terminal of U (y; € O), and r; a regular
expression whose alphabet X' is a (not necessarily strict) subset of the transitions of components
in 4. Given (e(y),r), the emergent event e occurs in U (and is placed at the output terminal y)
whenever a subtrajectory S within 4™ matches r, in other words, whenever S € ||| (S is a string
of the regular language of r). In order to keep tracking the matching of any subtrajectory with r, a
DFA is generated (cf. Section 5), called the matcher of (e(y), r), denoted w(e(y), r). As clarified in

13. Basically, a regular expression is defined inductively on an alphabet X as follows. The empty symbol ¢ is a regular
expression. If @ € X, then a is a regular expression. If x and y are regular expressions, then the followings are
regular expressions: x | y (alternative), xy (concatenation), x? (optionality), x* (repetition zero or more times),
and xT (repetition one or more times). When parentheses are missing, the concatenation has precedence over the
alternative; for example, ab | ¢ equates to (ab) | c.

1485

LAMPERTI, ZANELLA, & ZHAO

Figure 6: Matcher j1(e(y),r), where r = t; (t2 | 13) 12, ¥ = {t1,t2.13}.

Section 5, a matcher u(e(y), r) is not simply the DFA recognizing the language of r, as the strings
in r may overlap in a trajectory.

Example 13 Let U = (4,1, O, E) be an AU, (e(y),r) an emergent event in U, and ¥ =
{t1,t2,13} the alphabet of r, where r = t; (t2 |t3) 1, is the regular expression associated with
e(y). Assume the following trajectory for #:

T =[t2,13,11,02,11, 13,12, 14,11, 11,12, 13,13, 12,13] (12)
| I— | e — |
T/ T//
where the two subtrajectories of 7" matching the regular expression r are T’ = [t1,13, 3] and

T" = [t1, 12,13, 3, 12]. Accordingly, the emergent event e(y) is generated at the occurrence of the
last transition in either subtrajectory, namely 5.

The matcher p(e(y),r) is displayed in Figure 6, where the final state 3 is marked with the
emergent event e(y).!* Starting from the initial state 0, a state transition is performed in u(e(y), r)
at any component transition #; € T belonging to the alphabet X'. If no transition exiting the current
state is marked with ¢;, then such a mismatch causes the current state to become the initial state 0.

Shown in Table 1 is the association between each component transition in the trajectory T
(top), the corresponding state in the matcher p(e(y), r) (middle), and the occurrences of emergent
events (bottom). The instances of the final state 3 in bold correspond to the generation of the two
occurrences of the emergent event e(y).

e(y) e(y)

Table 1: Detection of emergent events.

3.2 Unit Space

Since an AU U is an extension of an AS 4 by means of a set of output terminals and a set of emer-
gent events generated on these terminals (defined by regular expressions on component transitions),
the notion of a space for +, namely #4*, can be naturally extended to U, namely U*. In so doing, a
state in U™ is the extension of a state in A™, namely (S, E), by an additional field M representing
the array of states of the matchers of the regular expressions associated with the emergent events.
Hence, a state in U™ is a triple (S, E, M) where (S, E) is a state in 4A*. When U moves to a state

14. Details on the construction of a matcher are given in Section 5.

1486

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

! ! { !
© © © ©
b, b, 51
b, b,
o i Y (o I
di(y) co(y) H 53 He Ss
o o

nd(y)

Figure 7: Matchers of the emergent events di, co, nd, and nc, at the output terminal y of the AU &.

in which M includes a final state of the matcher associated with an emergent event e(y), the event
e is generated at the output terminal y of U.

Definition 12 (Unit Space) Let U = (A, I, O, E) be an AU, where A* = (X, A, 14, g, At), and

E = ((e1(31),71), -..,(en(yn), rn)) with corresponding array of matchers w(E) = (i1, ..., bp).
The space of U, denoted U*, is a DFA

U* = (2,U,7,u,, Uy) (13)

where: the alphabet X is the set of transitions of the components in 4 (the same alphabet as that of
A*); U is the set of states (S, E, M), where (S,E) € A, and M = (my,...,my,) is the array of
states of the matchers in w(E); ug = (So, Eo, M) is the initial state, where (So, Eo) = oo and
Mo = (myg, ..., mpg) is the array of initial states of the matchers in w(E); Ur C U is the set of
final states (S¢, Et, M), where (S, Ef) € Ay, T is the transition function, T : U x X + U, where
((S,E,M),t(c),(S",E'",M")) € Tiff: (1) {(S,E),t(c),(S", E")) € t4 (the transition function
of A%), and (2) M = (my,...,my), M’ = (m},...,m}), and Vi € [1.. h] we have

mi ift(c) € X(r;) and (m;,t(c).m;i) € i
m; = {mjo ift(c) € X(r;) and no transition marked with t(c) exits m; in i; (14)

miift(c) & X(ri).

Example 14 With reference to the AU & defined in Example 12, displayed in Figure 7 are the
matchers of the emergent events di, co, nd, and nc, where the alphabet of the regular expressions
is assumed to be the totality of the transitions of the components in J. Outlined on the left side of
Figure 8 is the unit space &#*, where relevant states are marked with the emergent events (the output
terminal y is omitted). The details of the states are listed on the right side of the figure, where a bold
state in M indicates the detection of an emergent event by the corresponding matcher (cf. Figure 7).

The notions of trajectory, semi-trajectory, and subtrajectory introduced in Section 2.1 are still
valid when AU spaces are considered.

4. Deep Discrete-Event Systems

Intuitively, a DDES is a hierarchical network of AUs. Like components within an AS, AUs are
connected with one another through links. Specifically, a link / connects an output terminal y of an

1487

LAMPERTI, ZANELLA, & ZHAO

State S E M
Ug (idle, closed) (¢) (0,0,0,0)
uy | (awaken,closed) (op) (0,0,1,0)
Us (idle, closed) (c)) (0,0,0,1)
us | (awaken,closed) (cl) (0,0,2,0)
Uy (awaken, open) (e) (1,0,0,0)
us | (awaken,closed) (g) (0,0,2,0)
ue¢ | (awaken,closed) (¢) (0,0,0,0)
u7 (idle, open) () (0,0,0,1)
ug (idle, open) (op) (0,0,0,2)
ug | (awaken,closed) (¢) (0,1,0,0)
U1o (idle, closed) (op) (0,0,0,2)
Uil (idle, closed) (e) (0,1,0,0)
Uiz (idle, open) (e) (0,0,0,2)
U3 (idle, open) (¢) (0,0,0,0)
Ulg (idle, open) (e) (1,0,0,0)
uis | (awaken,closed) (op) (0,0,0,2)
uie | (awaken,closed) (cl) (0,0,0,1)
U7 (awaken, open) (op) (0,0,1,0)
Uis (awaken, open) (cl) (0,0,2,0)
Ulg (awaken, open) (¢) (0,0,0,0)

Figure 8: Space of the AU & (left) and content of the states (right).

AU U with an input terminal x’ of another AU U’. When an emergent event e occurs at the terminal
y and is loaded in the link /, e(x’) is ready to be consumed by the component in U’ having x’ as
an input terminal.!> The mode in which the AUs are linked together should be consistent with the
following topological constraints (cf. Figure 9): (1) all links exiting an AU U enter the same AU
U, where U is called a child of U’ and U’ the parent of U, (2) every output terminal of U is exited
by exactly one link, and (3) every input terminal of U’ is entered by exactly one link. Constraint 1
forces the topology to be hierarchical, as in the abstract example outlined in Figure 9, where nodes
denote AUs and arcs denote links from child to parent AUs.

Definition 13 (DDES) A DDES X is a pair X = (U, L), where U is an array of AUs and L an
array of (external) links between these AUs.

Choosing whether to represent a physical system as a DDES rather than a DES primarily de-
pends on the complexity of the system. If the system is inherently hierarchical in structure, where
each subsystem in the hierarchy is characterized by a behavior that is more abstract than the behav-
ior of its children, then a DDES may be a better choice than a DES, because the abstractions of the
physical system can be represented in a natural way in the DDES.

For instance, for the purpose of diagnosis, an aircraft (or a part of it) may be better represented
by a DDES rather than a DES. For redundancy reasons related to safety, the “engine” of the aircraft
may be composed of several physical engines. In the DDES, the “engine” may be an AU, with
the physical engines being its child AUs. Since a fault in a physical engine does not necessarily

15. As remarked in Section 3, the input terminals of an AU U = (4, I, O, E) are all the dangling terminals of the AS
A, namely the input terminals of the components in +# that are not connected with a link in .

1488

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Figure 9: Hierarchy of a DDES: nodes are AUs and arcs are links.

jeopardize the behavior of the “engine” as a whole, this information should be reflected in the
diagnosis information.'®

Modeling a complex physical system as a DDES combines the advantages of modeling a simple
physical system as a DES at each level of the hierarchical structure. Ideally, the specification of the
behavior of each AU (each subsystem in the hierarchy) is expected to require substantially the same
effort regardless of the level in which the AU is placed in the hierarchy, just as the effort for coding
a function in a complex software system should not depend on the level of abstraction at which this
function is placed within the software architecture. In other words, hierarchical modularity is the
most significant feature of a physical system being modeled as a DDES. If a physical system is not
hierarchically modular in nature, there is (in principle) no reason to modeling it as a DDES.

In order to model a physical system as a DDES, namely X, the following steps are suggested:
(1) define the tree of X based on the hierarchical structure of the physical system; (2) associate with
each node of the tree an AU with relevant components and links; (3) specify the emergent events
for each AU; (4) for each AU, specify the model of each component in terms of a communicating
automaton; (5) for each AU, specify a viewer (observable transitions) and a ruler (faulty transitions).

In these steps, it is convenient to think with a teleological attitude, considering that the modeling
of the physical system as a DDES is meant for diagnosis purposes. In other words, the model of the
physical system expressed by the DDES X is not general-purpose in nature: it is special-purpose,
that is, oriented to the task of diagnosis. This, however, does not prevent a priori X to be exploited
for other purposes, such as simulation or monitoring.'”

Example 15 In Example 1 of Section 2 we have defined an AS # that includes a sensor and a
breaker. In Example 12 of Section 3, # has been extended to an AU J. Interestingly, & can be part
of the hierarchical structure of a DDES modeling a power transmission line. Outlined in Figure 10 is
the schema of a protected power transmission line. The line is equipped with a protection apparatus
on each side. On the left side, the apparatus involves the sensor s, the primary breaker b, the monitor
m, and the recovery breaker r. The behavior of s and b is the one described in Example 1: if a short
circuit strikes the line, then the sensor s commands the breaker b to open. To provide some sort
of fault tolerance in the protection apparatus, if a misbehavior occurs (either s does not command
b to open or, even if correctly commanded, b does not open), then the monitor m intervenes by
commanding the recovery breaker r to open and, at the same time, by informing the monitor m’ on
the opposite side to perform the same recovery action on the breaker r’. For safety reasons, once
opened, the recovery breakers cannot be closed again, thereby leaving the line isolated. The same

16. Compare with the notions of negative/positive paradox introduced by Lamperti and Zanella (2011).
17. In fact, monitoring-based diagnosis is a natural extension of the diagnosis task for DDESs proposed in this paper.

1489

LAMPERTI, ZANELLA, & ZHAO

r

O b O

s s’

Figure 10: Schema of a protected power transmission line.

applies to the protection apparatus on the right side of the line. The protected transmission line in
Figure 10 can be modeled as the DDES X displayed in Figure 11.

X incorporates four AUs, namely the protection apparata # and $’ on the bottom of the hier-
archy, the monitoring apparatus M on the middle, and the line £ on the top. The output terminals
of the AUs & and £’ are connected with the input terminals of the components m and m’ (in M),
respectively. Moreover, the AU M is equipped with two output terminals, namely y; and y,, each
one being connected with an input terminal of /. In order to complete the specification of X, we
need to provide the models of the monitor and the line, as well as the specification of the emergent
events of M. The model of the monitor is outlined in Figure 12, in terms of relevant input/output
terminals (left) and communicating automaton (right), with transitions being detailed in Table 2.
The monitor moves from state watch to trigger upon the occurrence of either the event nd (failure in
disconnecting the side of the line) emerging from the protection apparatus or the event rc (request
of recovery action) coming from the other monitor. In the first scenario, based on m21, the monitor
commands the corresponding recovery breaker to open and informs the other monitor. However,
based on my, the monitor can command the corresponding recovery breaker to open without in-
forming the other monitor. In the second scenario (consumption of rc), the monitor commands the
corresponding recovery breaker to open (transition m3). Transitions mg4 - - - m19 consume the input
event (emerging from the protection apparatus) without changing state. According to Figure 11,
the AU M is provided with the output terminals y; and y, (which have not to be confused with
the homonymous terminals of both monitors m and m’). In either terminal, three emergent events
can be placed, namely (1) nr: the corresponding side of the line cannot be reconnected, (2) ni: the
corresponding side of the line cannot be isolated, and (3) ps: the short circuit persists on the corre-
sponding side of the line. The specification of these emergent events in terms of regular expressions

Figure 11: DDES X, with AUs £, M, &, and &’.

1490

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

M
m
x> m :iz ‘ rzgge) '
® 2 " m9

Vi

Figure 12: Model of the monitor component in the DDES depicted in Figure 11.

Transition | From state Inputevent Output events To state
mi watch nd(xy) {op(y1).re(y2)} trigger
my watch nd(xy) {op(y1)} trigger
ms watch re(xz) {op(y1)} trigger
my trigger nd(xy) @ trigger
ms watch di(x1)] watch
me watch co(xy) @ watch
my watch ne(xy) @ watch
msg trigger di(x1) @ trigger
Mg trigger co(xy)] trigger

mio trigger nc(xy) @ trigger

Table 2: Transition details for the monitor automaton displayed on the right side of Figure 12.

is provided in Table 3.'® The matchers of these events are depicted in Figure 13. The model of the
line is shown in Figure 14, with the transitions being detailed in Table 4. The line moves from the
state normal to shorted, isolated, or persistent, without generating any output event. Since the input
terminals x; and x, of the line are connected with the output terminals of the AU M, the transitions
in the line are triggered by the emergent events in M.

4.1 DDES Space and Trajectory

Since a DDES X is a (hierarchical) network of AUs connected by (external) links, just as an AS is
a network of components connected by (internal) links, a state of X is identified by a pair (U, E),
where U is the array of states of the AUs in X, and E is the array of emergent events that are loaded
in the (external) links.

Definition 14 (DDES Space) Let X = (U,L) be a DDES, where U = (Uq,...,Uy), and L =
(I1,...,1m). The space of X, denoted X*, is a DFA

*=(X,X,1, %0, Xp) (15)

where the alphabet X is the union of the sets of the transitions in U, i € [1..n]; X is the set of
states (U, E), where U = (U1, ..., uy) is the array of states of the AUs inU, E = (e1,...,em) is
the array of the (possibly empty) emergent events loaded within the links in L;'° xo = (Uy, Eo) is

18. The table specifies only the emergent events at the output terminal y;. The same events generated at the terminal y,
have a similar specification, where m and r are replaced with m’ and r’, respectively.

19. If nonempty, these emergent events are ready at the corresponding input terminals of the AUs in U, so they can be
consumed by the components.

1491

LAMPERTI, ZANELLA, & ZHAO

e(y1) Alphabet ¥ Regular expression

nr(y1) {m7(m), mio(m), b1(r) } m7(m) | myo(m) | b1 (r)

ni(y1) | {mi(m),ma(m), ma(m),b3(r)} | (mi(m)|ma(m)|ma(m))bs(r)|bs(r) ma(m)
ps(y1) {ms(m), me(m) } me(m) ms(m)

Table 3: Emergent events at output terminal y; of M.

the initial state, where Uy = (U1g, .. ., Ung) IS the array of initial states of the AUs in' U, while Ey =
(e,...,¢8), that is, all emergent events in Eo are empty; X¢ C X is the set of the final states (U, Et),
where Ug = (U1, ... un,), Vi € [1..0], uj; is a final state in U, while all emergent events in E¢
are empty; T is the transition function, T : X x X +— X, where (U, E),t(U;), (U, E")) € T iff:

o U= ut,....un), U =Wl,....up), E =(e1,....em), E' = (e].....e},);

(W) = (ui,1(c),i;), t1(c) = (s,(e(x),E),s’), where {e1(y}),....e,(y})} S E is the
subset of the output events generated by t(c) at the output terminals of U;;

. , (@ ifi=j)
viell.n] (uj _{ u; otherwise)

If x is an input terminal of U;, then E (x) = e;
vj el n(Ew) =¢);

e/ ifel(y)) e E,i €[l..h], and link(y}) = I;
Vie[l.m]| E'[j]l=1 ¢ if x is an input terminal of U; and link(x) = I;
E[j] otherwise

A trajectory T = [t1(c1),....14(cq)] within the space X* = (X, X, t,x0., Xt) is a finite se-
quence of transitions of the components within the AUs in U such that, Vi € [1..q],

(xic1. 81 (U)). xi) € 7.0 (U)) = (u, ti(ci), u'), and x4 € X¢. (16)

The set of all the trajectories in X* is written || X .

Figure 13: Matchers of emergent events nr, ni, and ps, generated at terminal y; of M (cf. Table 3).

1492

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

xpol ey,

Figure 14: Model of the line component (cf. Figure 11).

Transition | From state Input event Outputevents To state
I normal ni(xy)] shorted
lr shorted ni(xy) @ shorted
[3 normal ni(xz) @ shorted
lg shorted ni(xz) @ shorted
I5 normal nr(xy)] isolated
le isolated nr(xy) @ isolated
I7 normal nr(xz)] isolated
lg isolated nr(xz) @ isolated
lo normal ps(x1)] persistent
l10 persistent ps(x1) @ persistent
l11 normal ps(x2) @ persistent
l12 persistent ps(x2) @ persistent

Table 4: Transition details for the /ine automaton displayed on the right side of Figure 14.

Example 16 With reference to the DDES X in Example 15, assuming that initially the breakers are
closed, the sensors are idle, the monitors are in watch mode, and the line is normal, a trajectory in
X*is T = [s1(s),b3(b),s1(s"), b1(b"), ma(m), b1(r),l5(l), ms(m’)], which can be paraphrased
as follows: the sensor s detects a short circuit and commands the breaker b to open; however, b does
not open; the sensor s detects a short circuit and commands the breaker b’ to open; b” opens; the
monitor m detects the malfunction within the protection apparatus on the left side of the line and
commands the recovery breaker r to open without however informing the monitor m’; r opens; the
line / cannot be reconnected because, for safety reasons, the recovery breakers cannot be closed; m
acknowledges the disconnection of the left side of the line.

4.2 DDES Viewer and Temporal Observation

The notions of a viewer and a temporal observation, defined in Section 2.2 for an AS and naturally
inherited by an AU, can be extended to a DDES, as outlined below.

Definition 15 (DDES Viewer) Let X = (U, L) be a DDES, where U = (U1,..., Uy). A viewer
for X isan arrayV = (V1,...,Vy), where Vi € [1..n], V; is a viewer for U,;.

1493

LAMPERTI, ZANELLA, & ZHAO

Example 17 With reference to Example 15, a viewer for X is V = (Vp, Vo, V., Vi), where:

Vo = {(s51(s5), awk), (s2(s), ide), (s3(s), awk), (s4(s), ide), (b1 (D), bop), (b2(D), bcl)}

Vo = {(s1(5"), awk’), (s2(s"), ide'), (s3(s"), awk'), (s4(s"), ide"), (b1 (b"), bop'), (b2(b"), bel')}

Vu = {(m1(m), 1rg), (m2(m), trg), (m3(m), trg), (b1 (r), rop), (ba(r), rel), (my(m"), trg’),
(ma(m'), trg), (ma(m'), 1rg), (b1 (r'), rop"), (b2(r"), rel’)}.

Ve = 0, therefore the AU £ (line) is “unobservable”.

Definition 16 (DDES Temporal Observation) Ler T be a trajectory within a space X *. The tem-
poral observation of T based on the viewer 'V, denoted Obs(T,V), is the array Obs(T,V) =
(O1,...,0,),whereVi €[l .n], O; =[L]|t(c) e T,c € Uj, (t(c), L) € V; .

Example 18 With reference to the trajectory 7' of X in Example 16 and the viewer V of X in Ex-
ample 17, the temporal observation of T based on V is Obs(T, V) = ([awk], [awk’, bop’], [trg, rop],[]).

4.3 DDES Ruler and Diagnosis
The notions of a ruler and a diagnosis, defined in Section 2.3 for an AS and naturally inherited by

an AU, can be extended to a DDES, as detailed below.

Definition 17 (DDES Ruler) Let X = (U,L) be a DDES, where U = (Uq, ..., Uy). A ruler for
X isanarray R = (R1,...,Ry), where Vi € [1..n], R; is a ruler for U,;.

Example 19 With reference to Example 15, a ruler for X is R = (Rp, Rp/, Ry, Re), where:

Rp = {(53(5).f50). (s4(5).fsc). (b3(D).fbo). (b4(b).fbc)}

Rpr = {(53(5).fs0). (s4(s").f5¢), (b3(b"). fbo"), (ba(b").fbc')}

Ry = {(ma(m).fm), (b3(r). fro). (ma(m'). fin'), (b3 (r'). fro)}

R = (L1 (1).fls), (2(1). fls), U3 (D). fis), 4 (D), fis), (15 (D). fii), (I (1), fli), (I (1) fiT').
Us().fil"), (Is(1).flp). (110 (). fip). (L1 (D). fp"). (112(D). fip')}-

The meaning of the faults is explained in Table 5. Since, by assumption, the recovery breakers
r and r’ cannot be closed once opened, the transition by is not involved in R .

Definition 18 (DDES Diagnosis) Ler T be a trajectory in X*. The diagnosis of T based on a ruler
R = (R1,...,Ry), denoted Dgn(T, R), is the set of faults

Dgn(T,R) ={f |1(c) eT.c e Ui, (t(c), f) € Ri,i €[l..n]}.)
Example 20 With reference to the trajectory 7" in Example 16 and the ruler &R in Example 19, the

diagnosis of T based on R is Dgn(T, R) = {fbo, fm,fli }, that is, b fails to open, m fails to alert m’,
and the line / is isolated because a breaker on the left side remains open.

1494

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Fault | Meaning
Jfs0 | Sensor s in &2 commands breaker b to close instead of open
fsc¢ | Sensor s in # commands breaker b to open instead of close
fbo | Breaker b in P keeps being closed instead of opening
fbc | Breaker b in P keeps being open instead of closing
fso' | Sensor s” in $’ commands breaker b’ to close instead of open
fs¢’ | Sensor s’ in ' commands breaker b’ to open instead of close
fbo' | Breaker b’ in ' keeps being closed instead of opening
fbc’ | Breaker b’ in P’ keeps being open instead of closing
fm | Monitor m in M does not alert monitor m’ for recovery
fro | Recovery breaker r in M keeps being closed instead of opening
fm’ | Monitor m’ in M does not alert monitor m for recovery
fro' | Recovery breaker r’ in M keeps being closed instead of opening
fls | Line / in £ keeps being shorted since no breaker on the left side opened
fis' | Line [in &£ keeps being shorted since no breaker on the right side opened
fli | Line [in £ keeps being isolated since a breaker on the left side remains open
fli" | Line l in & keeps being isolated since a breaker on the right side remains open
flIp | The short on line / in &£ persists after reclosing breaker b in
flp" | The short on line [in & persists after reclosing breaker b’ in &’

Table 5: Faults defined in Example 19.

4.4 DDES Diagnosis Problem
The notion of a diagnosis problem for an AS and relevant solution, defined in Section 2.4, can be

extended to a DDES.

Definition 19 (DDES Diagnosis Problem) Let X be a DDES, xg the initial state of X, 'V a viewer
for X, O a temporal observation of X5, and R a ruler for X,. The quadruple

2(X) = (x0,V, 0, R) (18)
is a diagnosis problem for X.. The solution to ©(X) is the set of diagnoses
A(p(X)) = {Dgn(T, R) | T € || X*|, 0bs(T,V) = O }. 19)

Example 21 A diagnosis problem for the DDES X defined in Example 15is p(X) = (xo,V, O, R),
where in the initial state xq the breakers are closed, the sensors are idle, the monitors are watch, and
the line is normal, while the viewer V is defined in Example 17, @ = (Ogp,Op/, O, Og), with
Op = [awk], Op = [awk',bop’], Oy = [trg,rop)], and O¢ = [], and the ruler R is defined in
Example 19.

4.5 Practical Issues in Solving Diagnosis Problems for DDESs

Generating the solution to a diagnosis problem for a DDES based on eqn. (19) is overwhelmingly
impractical for the same reasons given in Section 2.4 for ASs. Worse still, the technique provided
in Section 2.5 and Section 2.6, namely generation and decoration of the (9-constrained space, is
bound to become inadequate for solving a diagnosis problem for a DDES. In principle, we might

1495

LAMPERTI, ZANELLA, & ZHAO

extend the notion of an (9-constrained space to a DDES, namely X 5. In so doing, a state of X
would be identified by a triple (U, E,), where (U, E) is a state in the space X™*, while J is
the array (31, ..., 3y) of indexes of the temporal observations in 9. Now, assume that, on av-
erage, each AU includes m components. In the worst case, the number of states in X (’g becomes
at least®® exponential with the product n - m, where n is the number of AUs in X. Hence, the
worst-case complexity is at least exponential with the total number (n - m) of components in X, a
disturbing perspective. Therefore, solving a DDES diagnosis problem requires more sophisticated
(and efficient) techniques than those adopted in diagnosis of ASs. Specifically, building something
analogous to the O-constrained space X is out of the question. After all, the solution to a diag-
nosis problem p(X) is a set of candidate diagnoses, not a set of candidate trajectories within Xg.
Therefore, chances are that the solution to g(X) can be determined without generating X (";. The
challenge is to design a technique for solving a diagnosis problem for X that is, on the one hand, vi-
able, thereby not requiring the generation of the (9-constrained space of X (hence, neither the space
X* nor the @-constrained space X g should be generated) and, on the other, sound and complete,
thereby providing exactly the set A(g(X)) of candidate diagnoses defined in eqn. (19).

5. Preprocessing

To speed up the task performed by the diagnosis engine online, that is, while the DDES is being
operated, a certain amount of preprocessing is to be carried out offline, before the DDES starts being
operated. Typically, the specification of X is compiled into a variety of data structures, among which
are the matchers of the regular expressions associated with the emergent events defined in the AUs
(Section 3.1). In general, for each AU U in X, a set E of emergent events is defined as in eqn. (11).
In order to trace the occurrences of each emergent event ¢;(y;) € E, i € [1..h], based on the
regular expression r;, a DFA w(e; (y;), r;) needs to be generated offline, with each final state being
marked with e; (y;). However, since strings of component transitions generating the same emergent
event may overlap, the regular language of the matcher is in general wider than the language of the
regular expression. To clarify the point, consider the example below.

Example 22 Let (e(y),r) be an emergent event in the AU U, with X = {¢1, 1,13} being the
alphabet of the regular expression r = f; 12+ 13|12 l3+ t1. Assume the following trajectory 7" in U*:

T/
—
T = [t3,t1,t2, 13,11, 3] (20)
| I |
T//

T includes two overlapping subtrajectories matching r, namely 7/ = [t1,12,t3] and T” = [t5,13,11],
where the suffix [75,73] of T is a prefix of T”. Hence, two occurrences of the emergent event e(y)
are expected in T in correspondence of the last transition of 7" and T, respectively.

Assume further to trace the occurrences of e(y) based on the recognizer of r on the left side
of Figure 15, a DFA with the same regular language as r, whose final state is marked with the
emergent event e(y). When the final state 5 is reached, the emergent event e is generated at the
output terminal y of U. The sequence of states of this recognizer is outlined in the second row of
Table 6, where each state is reached by the corresponding transition of T listed in the first row of

20. For more accurate figures (and even increasing complexity), we also need to account for the combinations of arrays
of events in links.

1496

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

| state | NFA states

0 {0}

1 {0, 1}

2 {0,2}

3 {0,2,3}
4 {0, 4}

5 {0,4,5}
6 {0,1,5}

Figure 15: From left to right: (1) recognizer of r = 1; 1,‘2+ 13|12 t;r t1, where X = {t1,12,13}; (2)
NFA obtained by the insertion of the e-transitions; (3) matcher p(e(y), r) resulting from
the determinization of the NFA; and (4) state details for the matcher ju.

the table. As indicated in the third row, the emergent event e(y) is correctly generated at the fourth
transition in 7', which is the last transition of the subtrajectory 7’. At this point, since no transition
exits the final state 5, the recognizer starts again from the initial state O in order to keep matching.
It first changes state to 1 in correspondence of #1, and with 73 (mismatch) it returns to 0. The result
is that, owing to the overlapping of the subtrajectories 7’ and T", the second occurrence of e(y) is
not detected.

Given the pair (e(y), r), in order to recognize all (possibly overlapping) instances of r, we need
to transform the recognizer of r into a matcher of r, as follows:

1. An e-transition is inserted into the recognizer from each non-initial state to the initial state;!

2. The nondeterministic finite automaton (NFA) obtained in step 1 is determinized into an equiv-
alent DFA;

3. The DFA generated in step 2 is minimized, thereby obtaining the matcher of r.

The final states of the minimized DFA (the matcher) are marked with the emergent event e(y).

Example 23 With reference to Example 22, consider the recognizer of the regular expression r
displayed on the left side of Figure 15. Outlined on the right of the recognizer is the NFA obtained
by inserting five e-transitions (dashed arrows) toward the initial state (step 1). The DFA resulting
from the determinization of the NFA is displayed next to the NFA (step 2), with states being detailed
in the table. Incidentally, this DFA is also minimal, thus minimization (step 3) is not applied. In
conclusion, the DFA on the right side of Figure 15 is the matcher w(e(y), r), with the final states
5 and 6 being marked with e(y). The dynamics of the matching performed by p(e(y), r) on the
trajectory T is outlined in the last two rows of Table 6. In sharp contrast with the recognizer of r,
which produces only one e(y), the matcher correctly detects the emergent event twice, based on
the two overlapping subtrajectories of T, namely T’ = [#1,12,¢3] and T” = [t2,13,11]. Unlike
the recognizer of r, after reaching the state 5 and generating e(y), the next transition #; moves the
matcher to the other final state 6, thereby generating the second occurrence of e(y) correctly.

1497

LAMPERTI, ZANELLA, & ZHAO

Transitions in T’ t3 11 ta 3 151 13
States of recognizer of r 0 1 3 5 1 0
Detected emergent events e(y)

States of matcher w(e(y),r) | 0 1 3 5 6 0
Detected emergent events e(y) e(y)

Table 6: Detection of emergent events with overlapping.

A formal peculiarity of a matcher is that, since it is a DFA, it is always in a single state regardless
of the trajectory under consideration. Specifically, whatever the number of overlapping events, the
mode in which the matcher is derived from the NFA (where the e-transitions are inserted) allows the
matcher to account for the recognition of all these events by means of a single state (simultaneously).
But, is the set of emergent events detected by a matcher actually sound and complete? The answer
to this question is given by the following proposition.

Proposition 3 Let w(e(y), r) be a matcher for an active unit U. The set of emergent events detected
by pu(e(y), r) is sound and complete.

Proof. Grounded on Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.4.

Lemma 3.1 Let N be the NFA from which the matcher p(e(y), r) is generated by Subset Construc-
tion. Each state of u(e(y), r) includes the initial state of N.

Proof. Since N is the NFA obtained from the recognizer p of r by the insertion of an &-
transition from each state of p to the initial state of p, each state of the matcher generated by Subset
Construction by means of an e-closure will include the initial state of N . O

Lemma 3.2 Let m be a state of the matcher ju(e(y),r) and T a string in the language of r. There
exists a sequence of transitions in the matcher, from m to a final state, that generates T .

Proof. According to Lemma 3.1, the state m includes the initial state o of the NFA . Thus,
m includes the e-closure of ng, namely the initial state mo of the matcher. Let T = [tq,...,]
Since 1 exits my, 1 exits m also. By induction on T, since T leads to a final state m¢ of the matcher,
the state m’ reached by m with T will include the set of N states identifying m¢. Hence, m’ is final
also; in other words, T is generated starting from m. O

Lemma 3.3 (Soundness) Letu = (S, E, M) be a state of U* where the state m in M relevant to
w(e(y),r) is final. There exists a subtrajectory T;; entering u such that the subsequence T;; (X') of
T;; that includes the transitions in the alphabet X of r is a string in the language of r.

Proof. By contradiction. Assume that there is no such 7;; in U*. If so, either there is a set of
subtrajectories entering u such that the subsequence of a prefix of them that includes the transitions
in X is a prefix of a string in the language of r or not. If these subtrajectories exist, the state i in
M relevant to w(e(y), r) cannot be final. If no such subtrajectory exists, based on Definition 12, m
equals the initial state of w(e(y), r). Both cases contradict the assumption that m is final. O

21. So, if the recognizer includes n states, then the number of e-transitions will be n — 1.

1498

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Lemma 3.4 (Completeness) Let T;j = [ti,ti+1,...,t;] be a subtrajectory of U entering a state
(S, E, M) of the unit space U*. Let T;j (X)) be the subsequence of T;; that includes the transitions
in the alphabet X of r. If T;; (X) is a string in the language of r, then the state m in M relevant to
the matcher (e(y), r) is marked with the emergent event e(y).

Proof. Let m be the state of the matcher p(e(y), r) when 7T;; (X') starts being recognized. By
virtue of Lemma 3.2, T;; (X) is generated from m to a final state of the matcher, upon which the
emergent event e(y) is generated. O

Eventually, the proof of Proposition 3 comes from Lemma 3.3 and Lemma 3.4. O

6. Lazy Problem-Solving

As pointed out in Section 4.5, solving a diagnosis problem for a DDES X by adapting the technique
designed for solving diagnosis problems of (plain) ASs is impractical. Specifically, we can no
longer rely on the generation of the (9-constrained space of X (cf. Section 2.5). On the other hand,
whatever the alternative problem-solving technique, soundness and completeness are required. In
other words, any (viable) alternative technique is expected to generate the solution to the diagnosis
problem defined in eqn. (19), that is, exactly the same set of candidate diagnoses.

This section introduces a lazy technique for solving a DDES diagnosis problem. The technique
is called lazy inasmuch it does not require the generation of the (J-constrained space of the (whole)
DDES X. Instead, it generates an extended constrained space of each AU incorporated in X.

Basically, the idea stems from the following considerations. Since the AUs in X are accommo-
dated hierarchically, and since the events emerging in one unit U are consumed by the parent unit
U’ only, it follows that U can influence the behavior of U’. Conversely, since an emergent event
in U cannot be generated if the corresponding link is not empty, it follows that U’ (which may or
may not consume the emergent event already stored in the link) may influence the behavior of U.
Hence, the behavior of each AU is constrained by the behavior of other units only loosely, that is,
through emergent events.

This opens the way to the possibility of focusing on the generation of the subspace of each
single AU U based on the constraints coming from its child units. In generating this new sort of
constrained space of U, a subset of the behavior of any child unit of U can be inconsistent and, as
such, it is pruned. The same applies to the behavior of U when considered in the generation of the
constrained space of its parent unit, up to the root node of the hierarchy.

In summary, we can envisage a viable technique that generates the constrained behavior of each
AU rather than the constrained behavior of the whole system. The behavior is constrained not only
by the temporal observation of the unit, but also by the emergent events generated by the child AUs.

The question now becomes: How is it possible to focus on the constrained space of each single
AU and, at the same time, guarantee the soundness and completeness of the diagnosis result? The
answer to this question stems from the mode in which the constraints from child AUs are enforced.
In fact, it is not the constrained space of a child AU that is considered but, rather, its interface. The
interface of a constrained space carries information on the emergent events generated by the child
AU U and the associated candidate diagnoses relevant to all the AUs in the DDES rooted in U.??

It is of utmost importance noticing that, in addition to the emergent events, the interface carries
absolutely no information on the trajectories relevant to the sub-DDESs rooted in the child units, but

22. Roughly, any subtree in the DDES hierarchy is a (sub-)DDES on its own.

1499

LAMPERTI, ZANELLA, & ZHAO

only the diagnoses relevant to these trajectories. Thus, the top-down influence of a parent unit on its
child units translates to the removal of the set of diagnoses associated with inconsistent emergent
events. This way, both types of influence on the behavior, namely from children to parent and
from parent to children, can be managed in a single bottom-up traversing of the DDES, where the
influence of the parent unit on the child units is accounted for by pruning the inconsistent emergent
events along with the associated diagnosis sets (as underlined above, the diagnosis sets associated
with the emergent events coming from a child unit U are relevant to all the AUs in the DDES
rooted in U). Eliminating the set of diagnoses associated with the inconsistent emergent events is
equivalent to removing the inconsistent trajectories of the sub-DDESs rooted in the child units.

As a result, when generating the constrained space of the root node U, of X, the transitions are
marked with the candidate diagnoses of the subtrees rooted in the child units of U,. By exploiting
this extra piece of diagnosis information on child units, the eventual decoration of the constrained
space of U, will generate the (sound and complete) set of candidate diagnoses for X, as proven
in Theorem 1 (Appendix A). The formalization of the lazy diagnosis technique is presented in the
next sections, where the (circular) notions of interface constraint (Section 6.1), constrained unit
space (Section 6.2), fragment (Section 6.3), interface (Section 6.4), and hidden set (Section 6.5) are
introduced.

6.1 Interface Constraint

The lazy problem-solving technique generates an extended constrained space for each AU of the
DDES. This is carried out bottom-up, starting from leaf AUs up to the root of the hierarchy. For
each AU U, the corresponding constrained space is generated based on an inferface constraint.

Definition 20 (Interface Constraint) Let U be an AU, ug the initial state of U, V a viewer for
U, O a temporal observation of U, R the array of rulers for the AUs in the subtree rooted in U,
(U1, ..., Uy) the (possibly empty) array of child AUs of U, and 1 the array of interfaces of the
constrained AU spaces ‘L(’fél, el ?,(Zsk.B The 5-tuple

&€= (uo,V,0,R,I 21
is an interface constraint for U.

The interface constraint £ may be thought of as a sort of extended diagnosis problem for U, with the
additional field I. This way, the unit space constrained by & (Section 6.2) accounts not only for the
model and the temporal observation of U, but for the mode in which emergent events are generated
by the child AUs and consumed by U. Notice that, if U is a leaf node, then the array I is null.

Example 24 Consider the AU & within the DDES X defined in Example 15 (Figure 11). An
interface constraint for P is £p = (ug, Vo, Op, (Rep),1p), where ug = (idle, closed), Vo is the
viewer defined in Example 17, O » is the temporal observation defined in Example 21, R » is the
ruler defined in Example 19, and I is null (£ is a leaf AU in the hierarchy of X’). Similarly, an
interface constraint for the AU ' is £p/ = (ug, Vo, Opr, (Rpr), Ipr), where ug = (idle, closed),
Vg is the viewer defined in Example 17, O »/ is the temporal observation defined in Example 21,
R is the ruler defined in Example 19, and I/ is null (' is a leaf AU in X).

23. As detailed in Section 6.4, an interface is a DFA derived from a constrained unit space (Section 6.2).

1500

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

6.2 Constrained Unit Space

As outlined in Section 6.1, within an interface constraint £ = (ug, V, @, R, 1), the i-th element
of the array I, i € [1..k], is the interface of the constrained space of the i-th child AU of U, de-
noted Int(U} £). As formalized in Section 6.4, Int(U} Ei) is a DFA whose alphabet is a set of pairs
(E, A), where E is a set of (output) emergent events in U;, while A is a set of diagnoses associated
with the trajectories of the DDES rooted in U;. The interfaces of the child AU constrained spaces
are exploited for the generation of the constrained space of the parent AU U by maintaining the
configurations of the links exiting the output terminals of the child units, thereby enforcing the con-
straints imposed by the interaction of the child units with the parent unit. In particular, a transition
of the constrained space of U is marked either by a transition of a component in U (along with the
associated emergent output events in U and associated fault, if any), or by the pair marking a tran-
sition in one of the child-unit constrained-space interfaces. In other words, the constrained space of
U carries mixed information in its transitions, specifically either:

e A triple (¢(c), E, {6}), where (c) is a component transition in U, E is the set of emergent
output events of U occurring at (c), and § is either @, if (c¢) is normal, or { f}, if f is the
fault associated with the faulty transition ¢ (c); or

e Apair (E, A), where E is the set of emergent events occurring in one child AU, and A is the
set of diagnoses of the trajectories of the DDES rooted in the child unit that are associated
with the occurrence of E.

Compared with a state of the unit space defined in Section 3.2, namely (S, E, M), a state of
the constrained unit space will involve three additional fields, namely:

e H, the array of (possibly empty) emergent events stored in the links exiting the output termi-
nals of the child AUs;

e [, the array of states of the interfaces of the constrained child units;

e 3 the index of the temporal observation.

Definition 21 (Constrained Unit Space) Ler U* = (X, U, 1y, ug, Ur) be the space of an AU U
and & = (ug,V, 0, R, 1) an interface constraint for U, where O = [{1,...,L,] and Ry € R the
ruler relevant to U. The spurious space of U constrained by £ is a DFA

Up = (2, W, 7, w0, Wp). (22)

Specifically, the alphabet X is (T x 2F x {{8}}) UX1U...UXy, where T is the set of transitions
of components in U, E the set of emergent events defined in U, § either @ or the singleton { f }, with
f being a fault of the ruler Ry, and X;, i € [1..k], the alphabet oflnt(‘ul’."si). W is the set of
states (S, E,M,H,I,%), where (S,E,M) is a state in U, H = (eq,...,ep) the array of the
(possibly empty) emergent events ready at input terminals of U, I = (14, ..., I;) the array of states
of the interfaces in 1, and I an index of Q. The initial state is wo = (S, Eo, Mo, Hy, Io,0), where
(So, Eo, My) is the initial state ug of U*, Hy = (e,...,¢), and Iy = (I1g, ..., Ixg) the array
of initial states of the interfaces in 1. Wy C W is the set of final states (S, E, M, H, I,n), where

1501

LAMPERTI, ZANELLA, & ZHAO

(S,E,M) e U, H = (e,...,8), I = (I1,...,1I) such that Vi € [1..k], I; is final in the i-th
interface in L. The transition functionis t : W x X +— W, where either:

or

(S.E.M.H.I.%).(Ej.A}).(S.E.M.H'.I'¥)) e 1 (23)
if and only if:
. <1j,(/Ej,Aj),1;> is a transition in the j-th interface in X, j € [1..k];
o Ve(y) € E;, H[link(y)] = ¢&;

e ife(y) € E; and link(y) = ;
HIi] otherwise;

b ape
Ij ifi=j

I[i] otherwise;

o Viel[l.hl,Hi]= %
o Viell. .kl,I'li]= {

(S,E,M,H,1,%),(t(c;),E.A) (S E' M H' I,3) ez (24)
if and only if:
o (S.E.M).1(c;). (S’ E', M")) is a transition in U*;

E is the set of emergent events generated by the above transition in U*, on condition that E
includes at most one event for the same output terminal, that is, {e(y),e'(y)} € E;

o 1(cj) = (s, (e(x). {e1(¥1). - .. ev(yu)}). 5");

e ¢(x) = & or x is not linked with an input terminal of U**, or x is linked with an input
terminal of U and H [link(x)] = e;

e If x is not linked with an input terminal of U then H' = H, else

€ if link(x) = [;

Vie LKL HTI=0 pit omerwise:

. _{ S+1 if(t(cj),b) e Vand { = x4
R N if (t(cj),0) ¢ V;

R A_—{ U e, f) € Ru

| {8} otherwise.

The space of U constrained by &, namely ‘L{; is the DFA obtained from the (spurious) ‘l_,{;

by pruning all states and transitions that are not connected with any final state. A pathp within
‘L(; = (X, W, 1, wo, W) is a finite sequence of contiguous transitions in t,

p = [<w07017 wl)’ (w17027 w2)5 L] (wq—1’0q1 wq)] (25)

whereo; € X, i € [1..q], and wy € Wr. The (finite) sequence (071, . . ., 04] of symbols marking the
transitions of p is denoted X (p). The (possibly infinite) set of paths within ‘U’g is denoted || ‘ug II.

24. In this case, it means that x is connected with a link embedded in U.

1502

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

State S E M

0 (idle, closed) (¢) (0,0,0,0)
1 (awaken, closed) (op) (0,0,1,0)
2 (awaken, closed) (cl) (0,0,2,0)
3 (awaken, closed) () (0,0,2,0)
4 (awaken, closed) (¢) (0,0,0,0)

—_ = = O LR

Figure 16: Constrained space 2 of the AU & (left); the state contents are detailed in the table on
the right side (bold states in M indicate the detection of the output emergent event).

Example 25 Consider the interface constraint £ defined in Example 24. The space of & con-
strained by £», namely !PS’; is displayed in Figure 16 (left), along with state details (right). Since
P is a leaf AU in X, the fields 7/ and H are empty (that’s why they are not considered). Like-
wise, displayed in Figure 17 is the space of the AU £’ constrained by &g/, which is defined in
Example 24.

6.3 Fragment

To define the interface of a constrained AU space (Section 6.4), we first need to introduce the notion
of a fragment of a constrained AU space ‘L{’g This is because a state of the interface is a set of
fragments. A fragment is associated with a state of ‘L(;, starting from the initial state wo. Roughly,
given a state w of ‘U’g, the corresponding fragment ‘L(’g (w) is the subgraph of ‘U’g that is reachable
from w by transitions either marked with a pair (E, A) or a triple (¢(c), @, {§}), that is, where
no emergent event is generated upon (c). Besides, each state w incorporated in the fragment is
extended with a diagnosis information, namely the set of diagnoses relevant to the paths connecting
w with w. These diagnoses are generated by joining the diagnoses marking the transitions in each
path (by means of the join operator “®” defined in Section 2.3). This way, each state of the fragment
carries (partial) diagnosis information of the entire (sub-)DDES rooted in U.

(s,(s"), 8,0 &) State S E M R}

0 (idle, closed) (¢) (0,0,0,0) O

0 1 (awaken, closed) (op) (0,0,1,0) 1
(bi(b').(di"},(}) 2 (awaken,open) (¢) (1,0,0,0) 2

*

Figure 17: Constrained space &’ £ of the AU &’ (left); the state contents are detailed in the table
on the right side (bold states in M indicate the detection of the output emergent event).

1503

LAMPERTI, ZANELLA, & ZHAO

¥
PIOLCEALING P

Figure 18: Fragment relevant to the initial state of the constrained space of AU & in Figure 16.

Definition 22 (Fragment) Ler U} = (X, W, 1/, wo, W;) be a constrained unit space, and v € W.
The fragment of ug rooted in state W is a DFA

UL (D) = (2. D.7.90). (26)

The set of states is ® C W x 28, where § is the domain of the possible diagnoses including the
faults involved in the array of rulers in the constraint £.

The transition function T : @ X X +— @ is defined as follows. Each state (w, A) € @ is such
that A is the minimal set defined by the following two rules:

1. Ifw =, then @ € A;
2. If((w', A, (E, A), (w, A)) € T or ((w', A'), (t(c). 0, A), (w, A)) € 7, then (A’ ® A) C A.
@o = (W, A) is the initial state. The transition function is defined as follows:

((w, A), (E,A), (', A")) €t ifand only if (w,(E,A),w') e’

or

((w, A), (t(c), @, A_), (w’, A/)) € 1 ifand only if (w, (t(c), @, A_), w’) et

Example 26 With reference to the constrained space ﬂ’g;) displayed in Figure 16 (Example 25), the
fragment relevant to the initial state, namely :7’5;) (0), is shown in Figure 18.

6.4 Interface

As outlined in Section 6.2, the constrained space of an AU must comply with the interfaces of
the child AU constrained spaces. The interface of a constrained space of an AU U is a DFA where
states are sets of fragments of the constrained space, while transitions are marked with pairs (£, A),
where E is a set of output emergent events, and A is the associated set of diagnoses for the DDES
rooted in U. Thus, each diagnosis in A may involve faults relevant to any unit in the subtree rooted
in U. More precisely, each diagnosis in A is relevant to a subtrajectory of the DDES U rooted in
U. As such, A is the diagnosis surrogate of the (possibly infinite) set of semi-trajectories of the
DDES U within the fragment (including the component transition in U exiting the fragment).

Definition 23 (Interface) Let U} = (X', W, 1/, wo, W;) be a constrained unit space, where § =
&
(uo,V, O, R,). The interface of ‘ug namely Int(‘ug), is a DFA:

Int(U}) = (2.1.7.io. Iy). Q27

Specifically, the alphabet is ¥ = 2F x 25 where E is the set of emergent events in U, and
8 is the domain of possible diagnoses that include faults relevant to R. The set of states is I =

1504

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Figure 19: Interface of the constrained space of the AU & in Figure 16, namely Int(?g)) (left) and
interface of the constrained space of the AU #’ in Figure 17, namely Int(P’ ;?,) (right).

22 where @ is the set of all fragments of ‘L(’g. The initial state is the singleton including the
fragment relevant to wo, namely iy = {‘u; (wo) }. The set of the final states is Iy C I, where
Vir € It (@ €if, (w, A) € @(¢),w € Wy). The transition function is t : I x X + I, where:
(i,(E,A),i"Y etiffe €i, (w,A) € D(p), (w, (t(c), E,A*),w') et E #0, A= AQA* and
‘U’g (w') € i’. A pathp within an interface Int(‘uz‘) is a finite contiguous sequence of transitions in
T, p = [(io. (E1, A1).i1). (i1, (B2, A2).i2), ... (ig—1. (Eq. Ag).iq)], where iy € I. The (finite)
sequence [(E1, A1), ..., (Eq, Ag)] of symbols marking the transitions of p is denoted X (p). The
(possibly infinite) set of paths within Int(‘l,{;) is denoted ||1m(‘u;) IR

Example 27 With reference to Example 25, consider the constrained spaces ‘7);&*3) and P’ ;{P/ dis-

played in Figure 16 and Figure 17, respectively. The corresponding interfaces Int({/’é’;) and Int(P’ ;ﬂ),)
are shown in Figure 19. Based on these interfaces, we can determine the constrained space of the AU
M, the monitoring apparatus (Figure 11), along with the corresponding interface. An interface con-
straint for M is £ = (Mo, Vu, Opm. (Rp, Rpr, Ry), Iy), where mog = (watch, closed, watch,
closed), 'V is the viewer defined in Example 17, @ 4 is the temporal observation defined in Exam-
ple 21, Rp, Rp/, and R g are the rulers defined in Example 19, and Iy = (Int(e?g;)), Int(ﬂ)’;?/)).
The space of M constrained by £ ¢, namely ,MZ;M is shown in Figure 20, with details of the states
being listed in Table 7. The interface, namely Int(M;M) is outlined in Figure 21.

6.5 Hidden Set

As pointed out in Section 6.2, the transitions within the constrained space of an AU U are marked
with sets of diagnoses relevant either to U or to the DDESs rooted in the child units of U. Thus,
joining together the set of diagnoses relevant to a path in the constrained space is bound to generate
a set of candidate diagnoses for the DDES rooted in U. In particular, if U is the root node of the
hierarchy of the DDES X, then these should be the candidate diagnoses of X, that is, a subset of
the solution to the diagnosis problem for X.2> However, if we consider how the constrained space

25. To obtain all the candidate diagnoses, we need to consider every path in the constrained space.

1505

LAMPERTI, ZANELLA, & ZHAO

Figure 20: Constrained space M;‘M of the AU M the content of the states is detailed in Table 7.

is generated, we will find out that some diagnosis information is missing. Specifically, there is a
set of diagnoses that is hidden in the constrained space, which we call the hidden set. To simplify
the picture, consider a DDES X, with U being the root node, and U; and U, the child units of
U. No other AU is included in X (hence, U; and U, are leaf nodes). Consider a path p within
the constrained space of U, from the initial state wo to a final state wy. Let [Ag, Ay,..., A4]
be the sequence of diagnosis sets involved in p. The combination of such diagnosis sets, namely
A* = Ag® A1 ® -+ ® Ay, generates a set of diagnoses for X. However, in order for a set § of
faults to be a candidate diagnosis of X, § shall be relevant to a complete trajectory of X. To this
end, we need to consider the tail of the trajectories of X that are encapsulated within the fragments
included in the final states /; and I of the interfaces of the constrained spaces of Uy and U,,
which are part of the final state w, of the path p. Considering a set of faults §* € A*, in order
for §* to be a candidate diagnosis of X, we need to extend §* with a diagnosis in A; such that
(wy, A_l) is a state of a fragment in /; where w is final, and a diagnosis in A, such that (wa, A_z)
is a state of a fragment in 7, where wj is final. This way, we enrich §* with the set of faults relevant
to the transitions of the components in U; and U, that complete a trajectory in X. To obtain the
complete set of candidate diagnoses, this operation should be performed for each §* € A* and for
each state (w, A) within the fragments relevant to /1 and /5, respectively, such that w is final in the
corresponding constrained space.

Definition 24 (Hidden Set) Let X be a DDES, U an AU in X, ‘u; = (X, W, t,wg, W) the unit
space constrained by £ = (uo, V, 0, R, 1), andw = (S, E, M, H, I,3) a state in W. The hidden
set of w, namely V(w), is the set of diagnoses recursively defined as follows:

V(w) = 93 if Wis a leaf node in X

®jer V(i) otherwise (28)

1506

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

State S E M H I

(watch, closed, watch, closed) (e,e,e,8) (0,0,0,0,0,0) (g,8) (0,0)
(watch, closed, watch, closed) (e,e,e,¢) (0,0,0,0,0,0) (nd,e) (1,0)
(watch, closed, watch, closed) (e.e,e,8) (0,0,0,0,0,0) (e.di’) (0,1)
(watch, closed, watch, closed) (e,e,e,8) (0,0,0,0,0,0) (nd,e) (2,0)
(trigger, closed, watch, closed) (op,e,e,e) (0,1,0,0,0,0) (g, 8) (1,0)
(watch, closed, watch, closed) (e,6,6,6) (0,0,0,0,0,0) (nd,di’) (1,1)
(watch, closed, watch, closed) (e,e,6,¢) (0,0,0,0,0,0) (e,8) 0,1)
(watch, closed, watch, closed) (g,e,e,¢) (0,0,0,0,0,0) (nd,di') (2,1)
(trigger, closed, watch, closed) (op,e,e,e) (0,1,0,0,0,0) (g, 8) (2,0)
(trigger, open, watch, closed) (e,e,6,¢) (1,1,0,0,0,0) (g, 8) (1,0)
(trigger, closed, watch, closed) (op.s,e,e) (0,1,0,0,0,0) (e,di’) (1,1)
(watch, closed, watch, closed) (e,e,e,6) (0,0,0,0,0,0) (nd,e) (1,1)
(watch, closed, watch, closed) (e,e,6,¢) (0,0,0,0,0,0) (nd,e) (2,1)
(trigger, closed, watch, closed) (op.e,e,e) (0,1,0,0,0,0) (s,di’) (2.1)
(trigger, open, watch, closed) (e,e,8,8) (1,1,0,0,0,0) (g, 8) (2,0)
(trigger, open, watch, closed) (e,e,e,¢) (1,1,0,0,0,0) (e, di’) (1,1)
(trigger, closed, watch, closed) (op,e,e,e) (0,1,0,0,0,0) (g, 8) (1, 1)
(trigger, closed, watch, closed) (op,e,e,e) (0,1,0,0,0,0) (g, 8) 2,1)
(trigger, open, watch, closed) (e,e,e,e) (1,1,0,0,0,0) (e,di’) (2,1)
(trigger, open, watch, closed) (e,e,e,8) (1,1,0,0,0,0) (g, 8) (1, 1)
(trigger, open, watch, closed) (e,¢,e,¢) (1,1,0,0,0,0) (s,¢) (2,1)

o]

X SEnEDRESe®wuauswn—o
NN = =N = OO == OO0 —=0O oo 0o

[}
(e

Table 7: Transition details for the states in the constrained space of M displayed in Figure 20.

where V(i) is the hidden set of an interface state i, defined as follows:*°

V(i) = U (ar® vawn) . (29)

pei,(wg, Ap) €D (@), wreWr

Example 28 In order to see a meaningful example, we assume a hypothetical scenario in which the
constrained space of the AU £ includes a final state w such that / = (i), where i is a state of the
interface of the constrained space of M. We assume that i includes just one fragment involving two
final states, namely w; and w,, with associated diagnosis sets A(wy) = {{fin,fro}} and A(w;) =
{@}. On their turn, w; involves the field 7 = (i1, i]), while wy involves the field I = (i2,i}).
We assume that the states iy, {, i», and ié include one fragment each, involving one final state,
namely Wi, W, W}, and w5, respectively, where A(w1) = {{fso}, {fbo}}, A(w2) = {0}, A(W)) =
{{fsc’. fbo'}}, and A(wh) = {{fsc’}, {fso’,fbo}}. According to eqn. (28) and eqn. (29), the hidden

26. Note the circular dependency between A(w) and V(7).

1507

LAMPERTI, ZANELLA, & ZHAO

Figure 21: Interface of M;M (Figure 20); in fragments, only the diagnosis sets associated with the
states are outlined, with the labels associated with the transitions being omitted.

set of w is

V(w) = V(i) = (A(w1) @ V(w1)) U (A(w2) ® V(w2))
= (A(w1) ® (V(i1) ® V(i1))) U (Aw2) ® (V(i2) ® V(i3)))
= A(wy) ® (A1) ® {0}) ® (A(wy) ® {0})) U
A(wz) ® ((A2) ® {0}) ® (A(w3) ® {0}))
= {{fin.fro}} ® ({{fs0}, {fbo}} ® {0}) ® ({{fsc’,fbo'}} ® {0}) U
{9} ® (19} ® {0}) ® ({{fsc’}., {fso . fbo'}} ® {0})
= {{fin. fro}} ® {{fso}, {fbo}} & {{fsc’, fbo'}} U {{fsc'}, {fso’, fbo'}}
= {{fin, fro, fso, fsc',fbo’}, {fm, fro, fbo, fsc', fbo'}, {fsc’}, {fso, fbo’}}.

Each diagnosis in the hidden set of w includes the faults relevant to the inferior AUs in the
hierarchy, namely M, &, and &’.
6.6 Final Decoration

Assume that U is the root node of a DDES X.. Once the constrained space of U, namely ‘U;, has
been generated, we are ready to derive the solution to the diagnosis problem for X by means of a
decoration technique similar to that outlined in Section 2.6 for (plain) ASs. Intuitively, we have to

1508

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

consider each path p € || ‘u; I, and combine the diagnosis sets marking p along with the hidden set
of the final state of p. Practically, we perform a decoration of U;, where the final states are marked
with the candidate diagnoses of X.

Definition 25 (Decorated Constrained Space) Let X be a DDES, U the root node of X, and
‘ug = (X, W, t,we, W) the unit space of U constrained by ¢ = (ug,V, O, R,I). The decorated

constrained space of U is the DFA ‘ug obtained from ‘L(’g by marking each state w with the minimal
set A(w) of diagnoses based on the following two rules:

1. 0 € A(wo),‘
2. Ifeither(w, (/E A_), w/) et or(w, (t(c), E, A_), w’) € 1, then A(w') C [A(w) ® A_] .

The diagnosis set of UY, A(‘L{g), is the set of diagnoses

A (‘ug) - U (A(wf) ® V(wf)] . 30)

wrE VVf

Remarkably, A(‘Ug) is the solution to the diagnosis problem g(X) defined in eqn. (19) of
Section 4.4, as claimed in Theorem 1.

Theorem 1 Let p(X) = (xo,V, O, R) be a diagnosis problem for the DDES X,, U the root node
in X, and ‘ug the decorated constrained space of U. We have

Ap(x)) = A (ug). 31)

A proof of Theorem 1 is given in Appendix A. The proof makes use of four additional defini-
tions, namely Definition 26 (diagnosis set resulting from the join of a sequence of sets of diagnoses),
Definition 27 (path of a constrained unit space ‘L(’g and relevant diagnosis set, along with the diagno-
sis set of ‘L(’g), Definition 28 (path of an interface Int(‘li;) and relevant diagnosis set, along with the
diagnosis set of Int(‘u;)), and Definition 29 (projection of a diagnosis problem on a subtree of the
DDES). Besides, two ancillary propositions are introduced, namely Proposition 4 and Proposition 5.
Proposition 4 claims that the projection 7 of a trajectory T in X* on the subtree U of X rooted
on an active unit U, with @ being the temporal observation relevant to 7', is such that 7 € U* and

Soundness

Figure 22: Dependency graph of the proof of Theorem 1 (cf. Appendix A).

1509

LAMPERTI, ZANELLA, & ZHAO

the temporal observation relevant to 7' equals the projection of @ on U. Proposition 5 claims that
the diagnosis set of a unit space U} equals the diagnosis set of Int(‘u;). In other words, the set of
diagnoses associated with the paths in the respective graphs are the same.

The actual proof of Theorem 1 is based on four lemmas, namely Lemma 1.1, Lemma 1.2,
Lemma 1.3, and Lemma 1.4. The dependencies between the theorem, the relevant lemmas, and the
ancillary propositions are depicted in Figure 22.

Lemma 1.1 claims that, given a diagnosis problem p(X), a relevant projection p(U), and a
constraint £ for U involving the parameters of p(U), if § € A(p(U)), with T being a trajectory
generating &, then (1) ‘ug contains a path p whose diagnosis set equals §, and (2) the sequence of
component transitions in U within the triples marking p equals the subsequence of T" involving the
transitions of components in U only. Roughly, this means that each diagnosis within the solution
to o(U) is included in the diagnosis set of the constrained space ‘u; (completeness of A(U;)). As

such, this lemma supports the proof of Lemma 1.2, which states the completeness of A(‘Ug), that
is, A(U) 2 A(p(X)).

In an analogous way, Lemma 1.3 claims that, given a diagnosis problem ©(X), a relevant pro-
jection p(U), and a constraint £ for U involving the parameters of ©(U), if § € A(‘u;), with §

being a diagnosis relevant to a path p in UZ, then (1) § € A(p(U)), with T being the trajectory

in U generating §, and (2) the sequence of component transitions in U within the triples marking
p equals the subsequence of 7" involving the transitions of components in U only. Roughly, this
means that each diagnosis within the diagnosis set of the constrained space ‘UZ; is included in the

solution to ©(U) (soundness of A(‘L{;)). As such, this lemma supports the proof of Lemma 1.4,
which states the soundness of A(‘ug), that is, A(‘L{g) C A(p(X)).

Eventually, soundness (Lemma 1.3) and completeness (Lemma 1.1) of A(‘ug) prove the cor-
rectness of Theorem 1.

Example 29 Consider the interface of the constrained space of the AU M, namely Int(,MZ;M), dis-
played in Figure 21. Based on this interface, we can determine the constrained space of the AU
&£, the line (cf. Figure 11), along with its decoration. An interface constraint for £ is £ =
(lo, V¢,0¢, R, 1), where lyg = (normal), V¢ = @, Og is empty, R is the ruler defined in Ex-
ample 19, and Iy = (Int(M;M)). The space of &£ constrained by £¢, namely éC*I, is shown on

State S H I
0 (normal) (g,¢) (0)
1 (normal) (nr,e) (1)
2 (normal) (nr,e) (2)
3 (normal) (nr,e) (3)
4 (isolated) (e,e) (1)
5 (isolated) (e,e) (2)
6 (isolated) (e,e) (3)

2]

S o oo oo O

{{fpo. fin, fii),{ foo, fin, fii))

Figure 23: Constrained space of the AU £ (left), details of states where the empty fields £ and
M are omitted (center), and corresponding decorated constrained space where labels
associated with transitions are omitted (right).

1510

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

the left side of Figure 23. The decorated space $§$ is depicted on the right side. According to
eqn. (30), the relevant diagnosis set is A(ingx) = (A RVH4)UAB)®V(5))U(A(6) RV (6)),
where, based on the state details in Figure 23, V(4) = A(1), V(5) = A(2), and V(6) = A(3),
where 1, 2, and 3 are the final states of Int(M;M) (cf. Figure 21). Specifically, A(1) is (A(19) ®
V(19) U (A(19) @ V(19) U (A(19) @ V(19)) = (A(19) @ V(19)) = {0} ® {0} = {0}. Likewise,
A(2) = A(3) = {0}. Hence, A(£g,) = {{fbo. fm. fli}} ® (B} U {{fbo, fim. fii}, {fso. fm fli}} ® {0}
U {{fso, fin,fli}} ® {0} = {{fbo, fm, fli}, {fso, fm,fli}}. Based on Theorem 1 in Appendix A, A(:Cgi)
is the solution to the diagnosis problem g (X) defined in Example 21, embodying two candidate di-
agnoses. Since the subset {fin, fli} is included in both candidates, it follows that we know for sure
that the monitor m failed to alert the monitor 7’ and the line / was isolated. Instead, as to the cause
of the malfunction in &, we are uncertain: either the breaker b failed to open (fbo) or the sensor s
sent the wrong command to the breaker b (fs0).

6.7 Experimental Results

In Section 2, the usual technique adopted to solve a diagnosis problem relevant to an AS (which
is a net of interconnected ACs) has been described. This technique reconstructs the overall AS
behavior as constrained by the given observation, then it decorates the states in the FA representing
this behavior with the relevant sets of faults: the collection of all the sets of faults relevant to the
final states is the global diagnosis result. In Section 3, the notion of an AU has been introduced, this
basically being an AS that can both receive and generate emerging events. Section 4 has defined the
notion of a DDES, this being a hierarchy of AUs, which means that each AU in a DDES can receive
emerging events only from its child AUs and can send emerging events only to its parent AU. An
emergent event is generated by an AU whenever the ACs contained in it have followed a pattern
of state transitions; a DFA, called a matcher, is able to detect whether a pattern has been matched
(Section 5). A technique similar to that adopted for ASs can be applied to solve diagnosis problems
relevant to DDESs. Basically, the behavior of each AU as constrained by the given observation is
reconstructed, where each state includes also the states of the external links exiting the AU itself.
Then, the constrained behaviors of all the AUs is combined into a global behavior, which is later
decorated. Finally, the sets of faults relevant to the final states are extracted in the global diagnosis
result. Here, this technique is referred to as greedy.

However, a new technique, which is able to find a sound and complete set of candidates relevant
to a DDES, has been described in the current Section 6. This technique is here referred to as lazy, as
it does not compute the global trajectories of the DDES, these being unnecessary in order to find the
global candidates. Both the greedy and the lazy techniques encompass the same preprocessing step
in order to build the matchers, each relevant to a distinct pattern (regular expression) given as input.
Both techniques perform the reconstruction of the behavior of each AU, as constrained by the given
local observation. As briefly mentioned in Section 4.5, the time needed for this reconstruction has
an upper bound that is exponential in the number of ACs and (internal) links of the considered AU.
The other steps are different in the two techniques, however. An activity was carried out in order to
experimentally show that the lazy technique outperforms the greedy one.

It is well known that the task of model-based diagnosis, even in the form defined by Reiter
(1987) for static systems, suffers from two potential combinatorial problems: computing a diagno-
sis is NP-hard, and the number of diagnoses can be exponential in the number of distinct faults.
Lamperti and Zanella (2013) proved that, for distributed DESs, checking the existence of a trajec-

1511

LAMPERTI, ZANELLA, & ZHAO

o Greedy
Processing time == Laz Memory allocation
300 1 1 1 3500 1 : :
‘ ‘ ‘ A : : : A
250 F o 3000 seegeeens e B
h '
| o 2500 o
L ..y om K
- 200 : s !
E‘ 1 g 2000 B
£ H £ 1500 [t -A
LR R RS S A 5 ‘ ‘ S
3 : o = 2000 [
:
5O [roore el 500 |- oem i AL
o AA
0 eedooo. (1 0000000000000 8000800
0 5 15 20 0 15 20

10 5 10
Components Components

Figure 24: Comparison between greedy diagnosis and lazy diagnosis (CPU time and memory).

tory that produces the given observation is NP-hard. The experimental results recorded by solv-
ing a number of diagnosis problems relevant to DDESs by adopting the lazy technique may look
somewhat surprising, since the computation time is linear in the number of ACs included in each
considered DDES. An interpretation of these results is given in Section 9.

Diagnosis of DDESs has been prototyped in C++ under Linux Ubuntu 15.10, on a notebook
with an Intel Core i5 CPU (2.40GHz) and 4GB of RAM, using a single thread. The diagnosis
framework includes a compiler for offline preprocessing and an online diagnosis engine. A language
was designed to specify DDESs in terms of ACs, AUs, and emerging events, as well as diagnosis
problems in terms of viewer, observation, and ruler. The simulated systems have been generated
semi-automatically based on a given template. The diagnosis engine can run in either greedy or
lazy mode, thereby enabling the comparison of the performances of the two techniques. As already
explained, the greedy mode requires the reconstruction of the overall DDES behavior as constrained
by the given observation, exactly like in diagnosis of ASs (Lamperti, Zanella, & Zhao, 2018b),
whereas the lazy mode embodies the diagnosis method specific to DDESs described in the (previous
subsections of the) current section of the paper. The implementation and experimentation have been
conducted in a master thesis work at the University of Brescia.

Each DDES adopted for the experiments represents a power transmission system consisting of
several contiguous protected lines. The schema of a protected line is a variant of that outlined in
Figure 10; in this variant, the protection apparatus at either end of the line includes two breakers
and (only) one sensor, the same as in the paper by Lamperti and Zhao (2013a). Each leaf AU in the
DDES hierarchy represents a protection apparatus, hence it includes three ACs. A leaf AU sends the
emergent events di, co, nc, and nc to its parent AU. Each pair of leaf AUs are the children of a distinct
AU, positioned in the next upper level; this AU represents a kind of monitoring process inherent to a
single protected line. Each monitoring AU sends the emergent events ni, nr, and ps to its parent AU,
which includes either two or three ACs, each representing a line. Hence, altogether, each parent
AU represents either two or three contiguous lines. Each pair of these AUs are the children of a
higher level AU (if any), which thus cumulatively represents either four or six contiguous lines. An
agglomerate of several lines is called a superline. For each of the next higher levels of the hierarchy
up to the root, each AU (if any) represents the union of the pair of its child superlines. Specific
rulers have been defined for each superline, whose faults are based on the emergent events coming

from the child AUs (be they lines or superlines).

1512

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Processing time Memory allocation
35 S S S B 70 [
35 4
25 b
w
Z Lt |
(]
£
[T
ir 4
0.5 b
S S A R P I S S
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Components Components

Figure 25: Experimental results with lazy diagnosis only (CPU time and memory).

The above modeling choices allowed for a modular construction of DDESs representing power
transmission systems of increasing size. As already remarked, in the third layer from the bottom,
AUs aggregating either two or three lines can be adopted. If in this layer only aggregates of two
lines are built, the overall system represents a number of lines which is a power of two, e.g. n =
2,4,8,...,64. For instance, with 64 lines, the resulting DDES is composed of 255 AUs and 638
components (i.e. ACs), which are accommodated within a balanced binary tree having 8 layers.
Every AU in the bottom layer has three ACs, while every AU in the other layers has two ACs. If
instead, in the third layer from the bottom, agglomerates of three lines are created, despite the DDES
hierarchy being a binary tree, the overall system represents a number of protected lines that is not a
power of two. All the DDES hierarchies in the experiments has a binary tree structure, however the
tree is not necessarily a balanced one.

Comparison results are shown in Figure 24, both in CPU processing time (left) and in memory
allocation (right). The horizontal axis indicates DDESs of increasing size, up to 20 components
(ACs). The size of the DDES is limited because, as indicated by the figure, at a certain point (around
15 components), both the processing time and the memory allocation in greedy mode explode. For
instance, in the last (and largest) DDES, the processing time in greedy mode is 270 seconds, while
in lazy mode it is 0.032 seconds. Similarly, in the last DDES, the allocated memory in greedy mode
is 3300 MB, while in lazy mode it is 10.5 MB.

In order to test the experimental complexity of lazy diagnosis only, another set of experiments
was done, as shown in Figure 25. Nine DDESs have been considered, from 9 to 638 components.
The number of AUs in each DDES ranges from 4 to 255. As shown in the graphs, both processing
time and memory allocation are practically linear in the number of components. For instance, with
318 components (127 AUs), the processing time is 1.61 seconds and the memory requires 36.18 MB;
with 638 components (255 AUs), the processing time is 3.20 seconds and the required memory is
68.87 MB.

It is worth highlighting that the comparison of the outputs produced by greedy diagnosis and
lazy diagnosis in the experiments have also indicated that both diagnosis engines invariably generate
the same set of candidates, which is in fact the solution to the diagnosis problem. This outcome was
expected and reinforces in empirical terms the theoretical claim of Theorem 1, which proves the
soundness and completeness of lazy diagnosis.

Evidence from the experiments points out that diagnosing a DDES of significant size would
be impossible adopting the classical abduction-based technique requiring the generation of the -

1513

LAMPERTI, ZANELLA, & ZHAO

constrained space. Whether an application for “real” systems might be actually developed using
the lazy technique is still an open question. Yet, given the reported results, the feeling is that lazy
diagnosis of DDESs may be a viable solution.

7. Discussion

In the 1990s, a new class of DESs was introduced, coined active systems, as they are meant to
represent systems that act in order to affect the external world and to react to events coming from
it. Although conceived independently, when ASs appeared in the literature (Baroni et al., 1998),
a major contribution about diagnosability and diagnosis of DESs, namely the diagnoser approach
(Sampath, Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995; Sampath et al., 1996), had
already been delivered. The diagnoser approach proposed to model a distributed DES as a network
of synchronous FAs, where each FA represents the behavior of a component, this being a monolithic
DES. In other words, according to the diagnoser approach, a component can influence the behavior
of other components since some state transitions occur at the same time in distinct components.
ASs, instead, are asynchronous by nature, that is, in a distributed AS, each component (a monolithic
DES whose behavior is modeled by an FA, the same as in the diagnoser approach) can influence
the behavior of other components by communicating asynchronously with them: this is achieved by
making the components exchange (internal) events through finite directed buffers, called (internal)
links. Hence, the notion of an AS relies on the notion of a link: a specific modeling primitive is used
for representing a link, and a diagnostic engine relevant to ASs has to be able to process it correctly.
However, including links in a DES model is a matter of expressive power, not of computational
power. A link, whichever its capacity and its policy (FIFO, LIFO, etc.)?’, could be represented
as a (synchronous) component itself (Lamperti & Zanella, 2013), that is, as an FA. The class of
DESs described by using links, that is, the class of ASs, is a subset of the class of DESs described
as interacting synchronously?®, since an asynchronous communication can be modeled through
the primitive for synchronous communication (i.e. the synchronous transition). Adopting specific
primitives for asynchronous automata communication comes with several advantages. First, the link
primitive is generic (it specifies just the capacity and the policy), that is, independent of the number
and types of exchanged events, while the component model of a link depends on them; second, the
component model of a link includes a (possibly large) number of states that equals Y/, d ! where
d is the cardinality of the set of communication events and # is the capacity of the link; third, the
link primitive is processed more efficiently (by ad hoc algorithms) than the component model of a
link. These advantages are not the reason for ASs were proposed.

This paper has introduced the class of DDESs, which adopts additional links, the external ones,
to convey a new kind of events, the emergent events. Hence, new primitives have been added to
the ones already available to model ASs. Specifically, in order to represent an emergent event, we
need to specify regular expressions since an emergent event is generated whenever a subtrajectory
matches a given regular expression. Hence, the notion of a DDES relies on the notions of AS and
regular expression. Once again, including ad hoc primitives for such notions in a DES model is a

27. In the previous sections, it has been assumed that every link can store a single event (so its capacity is one) and that
no event can be sent to the link when the link is full (this policy is called WAIT). However, more generically, other
finite capacities and different policies can be adopted for links in the AS approach.

28. The class of DESs interacting synchronously does not equal the class of DESs defined in the diagnoser approach,
instead it is a superset of it. In fact, the diagnoser approach assumes the liveliness of both the language of transitions
and the observational language. Such assumptions are relaxed in the AS approach.

1514

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

matter of expressive power, not of computational power. All the ASs included in a DDES can be
represented as distributed synchronous DESs; external links could be represented as synchronous
DES components; each regular expression could be represented by its matcher, an FA that could
be dealt with in the same way as all the behavioral descriptions of synchronous DES components.
Hence, the class of DDESs is a subset of the class of synchronous DESs (and the class of DDESs
includes the class of ASs since each AS can be seen as DDES trivially consisting in just one AU).
Modeling an existing AS as a DDES with multiple layers®® comes with advantages, first of all a more
efficient diagnosis method. Still, these advantages are not the reason for DDESs were proposed.

So, what is the rationale behind ASs and DDESs? It is, first of all, the simplicity, intuitiveness,
readability, and understandability of the models. If you have to model a DES whose components
interact asynchronously, describing it as an AS is much more natural and easier than representing
it as a distributed DES, where components interact synchronously and some components are really
active whereas other are indeed passive as they are a trick to model buffers. If you have to model
the hierarchical abstractions of a DES, specifying it as a DDES is more natural and easier than
describing it as a flat DES consisting of synchronous components or even as a flat AS.

In order to substantiate this allegation, take the DES (power transmission line) described in Ex-
ample 15. If it were represented as an AS, then J” would not be an AU that generates emergent
events di, co, nd, nc directed to monitor m, instead it would be a pair of components (b and s)
sending internal events to component m. Each emergent event communicates a distinct circum-
stance the target component has to take care of, where such a circumstance may be the result of
an evolution involving several components (as it is possibly the case with emergent events nd and
nc). The circumstances m is interested in are disconnection (emergent event di), connection (co),
failure in disconnecting (nd), and failure in connecting (nc). If the DES is represented as an AS,
such circumstances are not communicated to the monitor as emergent events, hence the monitor has
to be able to intercept them based on the internal events coming separately from the breaker and
the sensor. This means that the model of the monitor would not be that displayed on the right of
Figure 12, instead it would be more complex and less readable as it should represent also the be-
havior needed to discriminate between the four different circumstances of the protection apparatus
instead of just the behavior to react to them. Analogously, if the DES were described as an AS, the
four components m, m’, r and r’ would not be regarded as a unit (AU M) that sends to line / the
emergent events specifying that a side of the line cannot be reconnected (nr) or isolated (ni) or that
it is affected by a persisting short circuit (ps). Instead, line / would receive internal events coming
separately from components m, m’, r and r’; therefore, the model of / would not be that depicted
on the right of Figure 14, instead it should include also the behavior needed to discriminate what
is going on on either side of the line. The behavior (displayed in Figure 14) of / when the system
is represented as a DDES is quite simple to design and understand: it includes just four states, that
clarify the real situation of the line (which can be normal, isolated, or shorted since a breaker has
not opened, or even persistently shorted after a breaker has been closed). If the DES were modeled
as an AS, the model of the line / would be quite larger (compactness of representation is an asset of
DDESs), and its states would be less understandable since there would be intermediate states just

29. An AS can easily be represented as a DDES if the set of its components can be partitioned such that each part is a
node in a hierarchy where the components in each node communicate, through links, only with the components in a
single node in the next upper level and the communication is unidirectional and each link can store just one kind of
events.

1515

LAMPERTI, ZANELLA, & ZHAO

inherent to the process of discriminating the actual situation of the line and link states representing
the actual situation that has been found out.

The diagnosis of a flat AS is provided at the component level (e.g. breakers and protection
devices): the whole system is faulty only if it includes some faulty component(s). Since no function-
based interpretation of what has happened is given, it may be difficult for an operator to decide the
correct actions to carry out. By contrast, the context-sensitive diagnosis provided for a DDES is
bound to result in a clearer understanding of the risks associated with the actions. For instance,
the faults relevant to the line in the DDESs described in Example 15 are not actually faults in the
traditional sense that something in the line has broken. In fact, nothing in the line can break; the
faults associated with the AU including just the line component, which is the root of the hierarchy,
provide an interpretation of what has happened at system level (e.g. fault fli denotes that the line
keeps being isolated since a breaker on the left side remains open). This considerably enhances the
explainability of the diagnosis results.

In addition, modeling complex systems as DDESs provides a support for integration. If we have
several DESs, each one devoted to a specific task, and we want to integrate them into a new DES in
order to control all DESs at a higher abstraction level, then the new DES can be conveniently mod-
eled as a DDES, which is sensitive to specific behavioral patterns of the integrated DESs (emergent
events). This way, monitoring and diagnosing the DDES is far more natural than interpreting (pos-
sibly overwhelming) streams of low-level events generated by individual DESs, such as the alarms
detected in a control room. The key point is that the DESs are integrated in a new system not just by
connecting them with one another by means of new (internal) links between components belonging
to different DESs. Instead, besides this physical integration, a semantic integration is achieved too,
so that the new DDES is not just the union of the DESs: it is a higher-level system with its proper
behavior.

Semantic patterns specified as regular expressions were first introduced in the AS approach by
Lamperti and Zanella (2010). The work, in order to assign a different status to diagnosis candidates
that cause a (sub)system to misbehave with respect to candidates that do not cause any misbehavior,
defines the concept of pattern rule. A pattern rule is a regular expression over the alphabet of the
transitions of the components contained in the considered (sub)system, where distinct subsystems
may overlap. Any sequence of transitions matching the same expression denotes a specific malfunc-
tion. There are distinct rules for distinct malfunctions. In this respect, a pattern rule resembles the
regular expression for the generation of an emergent event: a detected malfunction is indeed an ex-
ample of emergent event, that can propagate higher in the hierarchy since a misbehaving subsystem
can cause the misbehavior of another. In fact, in the paper by Lamperti and Zanella (2010) a DAG,
called dependency graph, is adopted in order to mimic this malfunction propagation. Still, the gen-
eration of emergent events in DDESs can represent further phenomena in addition to malfunction
propagation; for instance, it can represent causal chains of faults.

The next step in the research leading to DDESs is related to the work by Lamperti and Zanella
(2011), which remarks that the topology of a complex DES, as defined in another work of the
same authors (2010), is organized in a hierarchy, where the root corresponds to the whole system,
leaves to components, and intermediate nodes to subsystems. This topology, which is called context
hierarchy by Lamperti and Zhao (2014), suggests to organize the diagnosis rules within a hierarchy
that parallels the structure of the DES: each subsystem has its proper set of diagnosis rules, which
may or may not depend on the rules of inner subsystems (nodes in the next lower layer of the
hierarchy). Candidate diagnoses can be generated at the different levels of the hierarchy. This

1516

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

approach, called context-sensitive diagnosis, provides the example of a possible DDES: the above
complex topology can be accommodated in the hierarchical structure of a DDES. However, the
hierarchical structure of a DDES can be exploited to represent several abstractions other than a
containment hierarchy.

The awareness that a hierarchical structure can represent any abstraction that is profitable for
a given purpose is gained in the works by Lamperti and Zhao (2013a, 2013b), where the notion
of behavior stratification, which is adopted in DDESs, was introduced. Hence a context is not
necessarily a (sub)system in a containment hierarchy, instead, it is a node in an abstraction hierarchy.
Behavior stratification means that the behavior of each context, placed in a layer of the hierarchy,
possibly depends on the behaviors of its child contexts, placed in the adjacent lower layer. This is a
significant change w.r.t. to the work by Lamperti and Zanella (2011), where it is the diagnosis rules
of a (sub)system that can be affected by the diagnosis rules of lower layer (sub)systems, whereas
the behavior of a (sub)system is invariably implicitly given by the composition of the behaviors
of its components. In the works by Lamperti and Zhao (2013a, 2013b), instead, each node in
the hierarchy has its own behavioral model, which does not coincide with the composition of the
behavioral models of its components, as two distinct nodes consisting of the same components
can be affected by the behavior of their lower level nodes in different ways. The communication
between subsystems at different levels relies on complex events, occurring when specific patterns of
transitions are matched. These patterns are defined based on the transitions of contained subsystems,
where each subsystem has its own modeled behavior.

The current notion of DDESs can support any hierarchical abstraction. When a context is made
up of components only, a regular expression defines a pattern of transitions for such components. In
the general case, when a context is made up of subcontexts, the regular expression defines a pattern
of interface symbols associated with its subcontexts, with each interface symbol being associated
with a regular expression in the subcontexts. Basically, its strength consists in providing the modeler
with the capabilities for (i) representing the behavior of a subsystem/context concisely and effec-
tively, as the reaction (also) to complex phenomena that have taken place in other parts/contexts
of the system, and (i i) separating the model of this behavior from the representation of such phe-
nomena. The former model can include (the representation of) faults that cannot be simply inferred
from the faults of lower-level contexts, while the latter models are free of faults. A DDES highlights
that each subsystem has a combined behavior, partly depending on its components and partly on the
function this subsystem is assigned within the system.

8. Related Work

In this work, each event emerging from a layer in a DDES hierarchy, directed to the adjacent upper
layer, corresponds to the occurrence of a string of component transitions in a regular language. In
other words, an emergent event is generated when a behavioral pattern is recognized. Superficially, a
behavioral pattern looks like a fault supervision pattern, defined by Jéron et al. (2006). However, the
two categories of patterns are orthogonal: supervision patterns are meant to generalize the concept
of a fault for both diagnosis and diagnosability of flat DESs, while patterns for the generation of
emergent events aim to support behavior stratification in DDESs.

In the work by Console, Picardi, and Theseider Dupré (2003), temporal patterns about observ-
ables are represented by so-called temporal decision trees. These trees are knowledge compilation
schemes that can be used for both qualitative and quantitative temporal constraints relevant to the

1517

LAMPERTI, ZANELLA, & ZHAO

history of observables once a fault has been detected without being isolated. The values of the
observables are assumed to be acquired at discrete times. The compiled knowledge is exploited to
perform fault isolation so as to carry out a recovery action before a given hard deadline, which has
been set by keeping safety and integrity of the physical system into account. Although a temporal
decision tree is a means to represent a temporal pattern, the same as a matcher in the current ap-
proach, its alphabet, semantics, and purpose are quite different. The alphabet of a temporal decision
tree is the set of values of an observable, whereas the alphabet of a matcher is a set of transitions. A
temporal decision tree is based on the assumption that observations are performed at regular times,
whereas the current approach assumes to intercept each value change whenever it occurs. The
temporal decision tree represents a finite temporal horizon (the deadline within which the recovery
action has to be carried out), whereas a matcher is not constrained by any time limit. A temporal
decision tree is the result of a knowledge compilation process, whereas a matcher is not. Finally,
the purpose of a temporal decision tree is to discriminate a fault, whereas the purpose of a matcher
is to detect the occurrence of an emergent event.

DDESs are endowed with a tree-shaped hierarchical structure similar to that of hierarchical
finite state machines (HFSMs), which are inspired by state-charts (Harel, 1987). Diagnosis of HF-
SMs is considered by Idghamishi and Zad (2004) and by Paoli and Lafortune (2008). However,
in contrast with DDESs, the complexity of HFSMs is confined to the structure, without emergent
events or behavior stratification.

A jointree structure that is similar to the hierarchical structure of DDESs is mentioned by Dar-
wiche (1998). Jointrees, also called junction trees, cluster trees, clique trees, or trees of belief uni-
verses in the literature (Huang & Darwiche, 1996), are adopted in various Al fields, including prob-
abilistic reasoning (Shenoy & Shafer, 1986; Huang & Darwiche, 1996) and constraint processing
(Dechter, 2003). Darwiche (1998) proposes a symbolic logic characterization of consistency-based
diagnosis of static systems that is alternative to the classical one (Reiter, 1987; de Kleer & Williams,
1987; de Kleer, Mackworth, & Reiter, 1992). The traditional behavioral system description is aug-
mented with a system structure (a DAG explicating the interconnections between components): this
pair of representations is altogether called a structured system description. By exploiting the novel
characterization, the paper proposes a new diagnostic method and tries to minimize the computa-
tional complexity of such a method by graphically transforming the system structure into a jointree.
The contribution includes a number of guidelines for creating models that can be processed by di-
agnostic algorithms efficiently, and provides computational guarantees based on the topology of the
system structure. However, the addressed systems are static, the diagnosis method is consistency-
based, and no deep behavior is conceived, as the jointree structure is solely meant to reduce the
computational effort.

Darwiche and Provan (1996) apply the notion of a structured system description (Darwiche,
1998) to continuous dynamic systems, each governed by a discrete controller, a device that issues
control commands at discrete time points. While for static systems the structure is a DAG with
nodes representing the inputs and outputs of the system components, and arcs depicting their inter-
connections, for dynamic systems the structure has been extended with directed cycles (satisfying
specific conditions). The behavior of each system component is specified by a propositional tempo-
ral logic with quantification over discrete time (temporal sentences have to fulfill some conditions),
and component descriptions are accommodated in a symbolic causal network, which represents the
overall system model. The pair (system model, system structure), called dynamic system descrip-
tion, is then turned into the system description defined by Darwiche (1998) in linear time. This

1518

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

phase, called expansion, can be carried out offline and consists in creating a causal network for each
time point in the time-step cycle of the system and connecting each network with the next time-point
network. After that, the diagnosis approach for static systems described by Darwiche (1998) is ex-
ploited. The most computationally intensive phase depends on the topology of the system structure.
Like in the work by Darwiche (1998), in order to enhance the efficiency of the diagnosis process
one can first convert the system structure into a jointree. The notion of a dynamic system adopted
by Darwiche and Provan (1996) is far from that of a DES of the current paper, let alone from that of
a DDES. Once again, the jointree is not regarded as an abstraction hierarchy, instead it is exploited
to reduce the diagnosis computation time.

Likewise, no deep behavior is conceived by Stumptner and Wotawa (2001), where an algorithm
for computing minimal diagnoses of tree-structured systems is presented. The goal is to improve the
efficiency of the diagnosis task by exploiting the structure of the system. Subdiagnoses, which are
generated by traversing the tree top-down, are eventually combined to yield the candidate diagnoses
of the whole system. The considered systems are static while DDESs are dynamic, and the diagnosis
method is consistency-based, whereas the method described in this paper for DDES diagnosis is
abductive and processes the tree structure bottom-up.

Jointrees are exploited also in DES diagnosability analysis. In contrast with the technique for
diagnosability-checking of DESs proposed by Sampath et al. (1995), which suffers from exponen-
tial complexity, the twin plant method (Jiang, Huang, Chandra, & Kumar, 2001; Yoo & Lafortune,
2002) exhibits a polynomial complexity. However, the construction of a global twin plant, which
corresponds to the synchronization based on (all) observable events of two identical instances of
the automaton representing the whole DES behavior, is often impractical. The scalability of the
approach is increased by Schumann and Huang (2008) by taking advantage of the distribution of
a DES to build a local twin plant for each component. Then, the DES components (and their rel-
evant local twin plants) are organized into a jointree. Both the method by Schumann and Huang
(2008) and that presented in this paper are distributed. However, the tasks accomplished by the two
methods are profoundly different, as the transformation of the DES into a jointree by Schumann and
Huang (2008) is an artifice for reducing the complexity of the diagnosability analysis task, whereas
the tree-shaped structure is an integral part of the topological and behavioral abstraction in DDES
modeling.

A decentralized/distributed approach to diagnosis of DESs was introduced by Kan John and
Grastien (2008), with the aim of computing local diagnoses that are globally consistent. By defini-
tion, a diagnosis is a trajectory that complies with the given observation. The observation is a set of
sequences of observable events, each sequence being inherent to a distinct component. The paper
enhances the proposal by Su and Wonham (2005) in order to achieve global consistency in local
diagnoses of distributed DESs without generating either any global diagnosis or the global system
model. It is well known that local (pairwise) consistency does not ensure global consistency, and
that an algorithm that iteratively refines local diagnoses pairwisely until stability is reached (that is,
no local diagnosis changes anymore) may not terminate. However, local consistency ensures global
consistency when the connections between components form a tree. Thus, the proposal by Kan John
and Grastien (2008) is to convert the connections between the components of the distributed DES,
which, in the general case, form a graph, into a jointree. Each node in the tree is a cluster of compo-
nents (a subsystem) of the DES, where all such components are interconnected in the system, that
is, each pair of them share at least one event. Although clusters differ from one another, nonetheless
distinct clusters may partially overlay and their union gives the set of all system components. Two

1519

LAMPERTI, ZANELLA, & ZHAO

subsystems (nodes of the jointree) that share an event are connected through an edge of the jointree,
or through a chain of edges, where intermediate subsystems also share this event. Building an opti-
mal jointree is NP-complete but, by exploiting heuristics (Huang & Darwiche, 1996), the algorithm
that transforms a graph into a jointree achieves polynomial-time while still producing a high quality
tree (the fewest nodes, associated with the smallest clusters). Diagnosis (the construction of all the
trajectories) is performed locally on each cluster by the classical synchronous composition of com-
ponent models and observations. After a cluster has been picked to be the root of the jointree, the
consistency of each local diagnosis with the local diagnoses inherent to neighbor nodes in the tree
is achieved according to a strategy, called global propagation (Huang & Darwiche, 1996), which
consists of two phases. In the former, called gather phase, local consistency starts from leaf nodes
and is performed up to the root. In the latter, called distribute phase, local consistency is performed
in the opposite direction, from the root down to the leaves. The set of all globally-consistent local-
diagnoses is the distributed diagnosis of the system. The aim of Kan John and Grastien (2008) is
slightly different from that of the current paper: the former computes (globally consistent) local
diagnoses whereas we compute (globally consistent) global diagnoses. The notion of diagnosis is
different in the two papers: for Kan John and Grastien (2008), a diagnosis is (a possibly infinite)
set of trajectories whereas in our paper a diagnosis is a (finite) set of candidates, a candidate being
a (finite) set of faults. Although the DESs dealt with in both papers are distributed, they differ as in
the work by Kan John and Grastien (2008) they are plain, synchronous, with no deep behavior, and
they are not explicitly modeled, that is, a DES (component) is a regular language; instead, in this
paper, the systems are asynchronous, they feature behavior stratification and a DES component is
explicitly modeled as an FA. While for Kan John and Grastien (2008) any node of the tree (and then
the root also) is a subsystem, possibly structurally overlapping with the other subsystems, in the
current approach a node is the representation of a (sub)system at some abstraction level and there is
no overlapping. Finally, the root of a DDES is the representation of the whole system at the highest
abstraction level, whereas the root of a jointree is chosen arbitrarily.

An approach to consistency-based diagnosis supported by structural abstraction (which aggre-
gates components to represent a static system at different levels of structural detail) is described
by Chittaro and Ranon (2004) as a remedy for the high computational complexity of model-based
diagnosis. Evidence from experimental evaluation indicates that, on average, the technique per-
forms favorably with the algorithm of Mozeti¢ (1992). Still, differently from the topic of this paper,
the approach is consistency-based, the considered systems are static, and no emergent behavior is
conceived.

Siddiqi and Huang (2011) exploit structural abstraction in order to reduce the cost of sequential
diagnosis, this being a model-based diagnosis task where, once the candidates relevant to a given
observation have been computed, faults are isolated by exploiting the evidence provided by a se-
quence of measurements. The diagnostic cost is the number of the measurements that are needed
until all the actual faults are identified. The measurements and the order in which they have to be
taken are selected heuristically. The structural abstraction dealt with in the paper is based on hier-
archical diagnosis (Siddiqi & Huang, 2007), which can decompose the system into self-contained
subsystems, each of which is regarded as a single component at a higher abstraction level. This
means that a single health variable and failure probability is adopted for the entire subsystem, thus
scaling the approach to handle larger systems. If a subsystem is identified as faulty in the top ab-
straction level, it can then be processed separately in a recursive fashion. In fact, a subsystem may
contain further subsystems, leading to a hierarchy of subsystems. A system can be abstracted by

1520

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

treating all its maximal subsystems as black boxes. In addition, Siddiqi and Huang (2011) proposed
a method that systematically modifies the structure of a system to reduce the size of its abstraction.
The attention of such a method is focused on the components that are not part of any subsystem
and hence cannot be abstracted away in hierarchical diagnosis. The idea is to create a sufficient
number of clones of each of such components so that the original component and each of its clones
become part of some subsystems and hence can participate in the abstraction. The abstraction dealt
with by Siddiqi and Huang (2007, 2011), unlike the one proposed in the current approach, is purely
structural and is meant to scale diagnosis to large systems. Moreover, the examples of systems taken
into account by Siddiqi and Huang (2007, 2011) are combinational circuits, hence static systems,
although the authors claim that their sequential diagnosis framework applies as well to other types
of systems as long as the system behavior is described by a probabilistic model.

9. Conclusion

The shift from ASs to DDESs, which is motivated by ergonomics in the modeling task, does not
come with any additional cost in the diagnosis task, which is not only sound and complete, but also
viable. Since a state of the AS includes the states of all components and the states of all links,
the complexity of the abduction of the whole AS in diagnosis of ASs is exponential both in the
number of components and in the number of links. This theoretical expectation is confirmed by
the experimental results presented in Section 6.7. Two diagnosis engines have been implemented in
order to diagnose DDESs. The former engine makes use of the same technique adopted in diagnosis
of ASs (Lamperti et al., 2018b), while the latter engine operates according to this paper. The results
clearly show that the processing time of the latter engine increases almost linearly with the size of
the system, in contrast with the processing time of the former engine, which grows exponentially.

We believe that there are two reasons for this surprising difference in the performances of the two
implementations: (a) the new technique is able to distill from each AS the essential constraints to be
propagated upward in the hierarchy in order to guarantee that the trajectory reconstruction relevant
to an AS complies with the global observation as projected on the AS itself and all its descendant
ASs, without any need for performing the asynchronous product of the reconstructed behaviors
of distinct ASs, and (b) the new method, being specific for DDESs, is able to take advantage of
their hierarchical structure, while the previous method, being general, handles all systems the same
way, independently of their structure. The latter point possibly corroborates several findings in the
literature (Darwiche & Provan, 1996; Darwiche, 1998; Schumann & Huang, 2008; Kan John &
Grastien, 2008), according to which the computation time of diagnosis and diagnosability analysis
can be reduced by transforming the system structure into a tree structure. In turn, this suggests
that the performance of existing methods for DES diagnosis can be enhanced by modeling the
DES as a DDES. Moreover, we expect that the technique proposed in this paper can still save more
computation time by performing a powerful knowledge compilation, as suggested in previous works
(Lamperti, Zanella, & Zhao, 2018a, 2018c), and by processing online independent AUs in parallel.
These remarks are the spurs to future investigation on DDESs.

Further research paths can be envisaged. First, the tree-based topology of the DDES can be
relaxed to a directed acyclic graph (DAG), where an AU can have several parent units. Second,
the diagnosis task, which in this paper is assumed to be a posteriori, that is, carried out once a
complete temporal observation has been gathered, can be made reactive, where diagnosis is per-
formed as soon as a piece of observation is received. Third, knowledge compilation can be adopted

1521

LAMPERTI, ZANELLA, & ZHAO

in order to generate a fast diagnoser, that is, a DFA whose language includes all possible temporal
observations of the DDES. Fourth, the patterns defining emergent events can be extended beyond
regular languages, based on more powerful grammars, possibly enriched by semantic rules. Finally,
in order to avoid the generation of the whole set of candidate diagnoses, the search space might be
pruned based on domain-specific criteria.

Acknowledgments

The authors would like to acknowledge the anonymous reviewers for their constructive comments
and inspiring suggestions, which resulted in a considerable improvement of the quality of the fi-
nal manuscript. Gianfranco Lamperti also expresses his gratitude to Giulio Quarenghi, who imple-
mented the compiler of the DDES specifications and the diagnosis engine in C++, thereby providing
the experimental results in his master thesis. This work was supported in part by Regione Lombar-
dia (Smart4CPPS, Linea Accordi per Ricerca, Sviluppo e Innovazione, POR-FESR 2014-2020 Asse
I) and by the National Natural Science Foundation of China (grant number 61972360).

Appendix A. Proof of Theorem 1

In this appendix, a proof of soundness and completeness of the technique presented in Section 6
is provided (Theorem 1). This guarantees that the diagnosis set based on eqn. (30) equals the
solution to the diagnosis problem of a DDES, as defined in eqn. (19). In so doing, four definitions
are given (Definition 26, Definition 27, Definition 28, and Definition 29), along with two ancillary
propositions (Proposition 4 and Proposition 5).

Definition 26 Let A = [Ay, ..., Ay be a (possibly empty) sequence of sets of diagnoses. The
diagnosis set of A is a set of diagnoses defined as follows:

{0} ifA =[]
A(4) =1 M if A =[Aq] (32)
AMRQAR...Q A, otherwise.
Definition 27 Let p be a path within a constrained unit space U} = (X, W, t, wo, Wr), namely

p = [(wo.01.w1). (w102, w2). ... (wg—1.04. wg)] (33)

and A the sequence of diagnosis sets A; involved in o;, where either 0; = (E;, A;) or 0; =
(t(c), E;, A;), i € [1..q]. The diagnosis set of p, denoted A(p), is defined as>

A(p) = A(4) ® V(wy). (34)

The diagnosis set of ‘U; is defined as

A(u;): U aw. (35)

peluzll

30. A(A) and V(w) are defined in eqn. (32) and eqn. (28), respectively.

1522

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Definition 28 Let p be a path within an interface Int(‘ug),

and A = [Ay, ..., Ag]. The diagnosis set of p, denoted A(p), is defined as®!
A(p) = A(4) ® V(ig). (37

The diagnosis set of Int(‘ug‘) is defined as

A(Int(‘u;))z U 4. (38)

pElln(UD)||

Definition 29 Let p(X) = (x0,V, O, R) be a diagnosis problem fora DDES X, = (U,L), U € U,
xo = (Ug, Eo), and let U = (U,L) be the DDES corresponding to the subtree of X rooted
in U. The projection of p(X) on U is the diagnosis problem p(U) = (ig, V, O, R), where
Uy = (ZZ_JO, Eo), IZ_]O is the restriction of Ug on the states of AUs in U,]Eo is the restriction of Eg on
the events within the links between AUs in U, 'V is the restriction of 'V on the viewers of the AUs in
U, O is the restriction of O on the temporal observations of the AUs in U, and R is the restriction
of R on the rulers of the AUs in U.

Proposition 4 Let p(X) = (xo,V, 0, R) be a diagnosis problem for the DDES X, U an AU
within X, U the DDES rooted in U, (W) = (iig, V, O, R) the projection of 9(X) on U, T €
|1 5C* || such that Obs(T,V) = O, and T the subsequence of T relevant to transitions of components
in U. We have T € | U*||, Obs(T, V) = O.

Proof. Based on the definitions of the space of X in Section 4.1 and the temporal observation
of T in Section 4.2, the component transitions in 7" are constrained by the configurations of the links
in X and by the array of the temporal observations in . Since T is the projection of T on U, in
particular, T is constrained by the configurations of the links in U and by the array of the temporal
observations in (9, where @ is the array obtained by removing from @ the temporal observation
relevant to the root AU of X. Thatis, T € |U*| and Obs(T,V) = O, where 'V is the array
obtained by removing from 'V the viewer relevant to the root AU of X. O

Proposition 5§ Let ‘U; be a constrained unit space, where & = (iig, V, O.R,). Then,

A(UY) = A (Int (ug)) . (39)
Proof. Grounded on Lemma 5.1 and Lemma 5.2.

Lemma 5.1 If§ € A(U) then § € A (Inz (‘us))
Proof. According to Definition 27, there is a path p € || ‘u; || such that § € A(p),

p = [(wO,UI, wl)’ (w19027 w2>’ L] (wq—lvaqa wq)] (40)

31. V(i) is defined in eqn. (29).

1523

LAMPERTI, ZANELLA, & ZHAO

where, according to eqn. (34), A(p) = A(A) ® V(wy), with A being the sequence of the
diagnosis sets A relevant to the elements in ¥ (p) = [o1,...,04], and V(wy) is the hidden set of
wy defined in eqn. (28). Let

Z(p)=Z1U[o1]U X2 U[05]U...U Xy Ufoy]U Zgrp 41)

such that [0{,...,0(/1,] is[o|o € X(p),o = (t(c),E,A),E # @] = [(t1(c1), E1, Ay),
oo (tgr(eqr), Eqr, Agr)]. Hence, based on the definitions of a fragment (Section 6.3) and an in-
terface (Section 6.4), there is a path p’ € ||1m(‘ug)||,

P’ = (0. (Bf, A0, ir).fir. (B3, Ay). o). . {ig—1. (Bgr. M) i) (42)

suchthat Vj € [1..4'], E j’ = E;, where E; is the (nonempty) set of emergent events involved in
aj/.. Moreover, since each state i; of p’, j € [1..4¢'], includes (at least) one fragment (Section 6.3)
¢ of U} in which each state is marked with the set of diagnoses relevant to all the subpaths of p
starting in the initial state of ¢, we also have

vjell.q1(4) 2 44) ® 4)) 43)
where A; = [A| Aisinvolvedino,o € X;], while A; is relevant to aj/. = (tj(cj), Ej, Aj).
Finally, we have

V(ig) 2 A(Ag+1) ® V(wg). (44

In fact, on the one hand, X4 is relevant to a subpath in a fragment in iy, up to the state
(wg, Ag). On the other, based to eqn. (29), V(igr) 2 Ay ® V(wy). Hence, based to Definition 28,

eqn. (43), and eqn. (44), we have § € A(p’) and, hence, based on eqn. (38),§ € A (Int (‘u:;)) O

Lemma 5.2 If§ € A (Im (ug)), then § € ACUY).

Proof. Based on Definition 28, there is a path p € ||1m(u;)|| such that § € A(p),

p = [lio. (E1. A1) i), (i1, (B2, A2).i2). ... ig—1. (Eq. Ag). ig)] (45)

where, according to eqn. (37), A(p) = A(A) ® V(ig), with A = [Ay, ..., Ay], while V(iy)
is the hidden set of i, defined in eqn. (29). Based on the definitions of a fragment (Section 6.3) and
an interface (Section 6.4), there is a path p’ € || ug I,

P = [(wo. 01, w1), (W1,02, w2), ... (Wg—1. 047, Wy')] (46)

such that X(p’) = X1 U [o7]] U Za U [03] U ... U Xy U [0,] U Xgy1, where [o7, ..., 0,] is
[0 | 0" € X(p),0" = (t'(c), E", A"), E" # 0] = [(t1(c1), E{, A, ..., (tz(cq), Eg, Ay)] such
that Vj € [l..q], E j/ = Ej, with E; being the (nonempty) set of the emergent events involved in
the j-th transition of the interface path p in eqn. (45). Moreover, since each state i; of the interface
path p, j € [1..q], includes (at least) one fragment ¢ of ‘u; in which each state is marked with the
set of diagnoses relevant to all the subpaths of constrained unit-space path p’ starting in the initial
state of ¢, we also have

Vjell.q] (Aj > A(A,-)@A;.) 47)

1524

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

where A; = [A | Aisinvolvedino,0 € X}], while A} is relevant to ajf = (ZJ/.(cj),JE’., A}).
Finally, we have

V(ig) 2 A(44+1) ® V(wg). (48)

In fact, on the one hand, X, is relevant to a subpath within a fragment in i, up to the state

(wg’, Agr). On the other, according to eqn. (29), V(iy) 2 Ay ® V(wyr). In conclusion, according

to Definition 28 and based on eqn. (47) and eqn. (48), we have § € A(p’) and, hence, based on
eqn. (35), 6 € A(‘M;). O

Theorem 1 Let p(X) = (xo,V, O, R) be a diagnosis problem for the DDES X,, U the root node
in X, and U‘é the decorated constrained space of U (defined in Section 6.6). We have

Ap(x) = 4 (Uf). (49)
Proof. Grounded on Lemma 1.1, Lemma 1.2, Lemma 1.3, and Lemma 1.4.

Lemma 1.1 Ler p(X) = (xo,V, O, R) be a diagnosis problem, U an AU in X, U the DDES
rooted in U, p(U) = (g, V, O, R) the projection of 9(X) on U, and & = (iig, V, O, R.1) an
interface constraint for U. If § € A(p(WU)), with § = Dgn(T, R), then there is a path p € ||‘L(’§|< I
such that: (1)8 € A(p), and (2) the sequence [t(c) | (t(c), E, A) € X (p)] equals the subsequence
of T involving only transitions of components in U.

Proof. By induction on the tree of AUs in X . o
(Basis) If U is a leaf node in X then ‘U’g is such that £ = (ig, V, 9, R,I) where I is empty

(no interface constraints). Hence, ‘u; is constrained by O only, in other words, ‘u; = ‘l_,(*@. Thus,

if 6 e_A(p(‘l_,()), where § = Dgn(T, R), T = [ti(c1).. ... tq(cg)], then there will be a path
p e Uy,

p = [(wo, (tr1(c1). E1, A1), wi), (w1, (12(c2), E2, A2), w2), (wg—1, (tg(cq), Eq. Ag), wg)]
(50)

viell.d (Ai ={ {hY if i), fi)eR) 51)

{0} otherwise

such that

According to eqn. (34) and eqn. (28), A(p)is A(A)Q@V(wy) = A1QA2R...0 A, {0} = {5}.
In other words, § € A(p) (condition 1 of the lemma). Condition 2 of the lemma is grounded on
eqn. (50), namely [£(c) | (t(¢). E. A) € Z(p)] = [11(c1). tg(cq)]

(Induction) Assurr_le that U is an interna_l node of X with children Uy, ..., Uy, suchthat, Vj €
[1..k],if 6; € A(p(U;)), §; = Dgn(T;, R;), then p; € ||‘11;ij || such that: (1) §; € A(p;), and

(2) the sequence [l(c) | (t(c), E, A) e X(pj)] equals the subsequence of trajectory 7 involving
only transitions of components in AU U;.

Assume that § € A(p(U)), where § = Dgn(T, R), with T being a trajectory within the space
U*. Let T;, j € [1..k], denote the subsequence of T including the transitions relevant to the
components within the DDES U j. Based on Proposition 4, T} is a trajectory in ﬂj* such that

Obs(T;,V;) = O;, where (9; is the temporal observation relevant to (U j)- Consequently, ac-
cording to eqn. (19), T; is also a trajectory involved in the solution to g(U;), in other words,

1525

LAMPERTI, ZANELLA, & ZHAO

8; € A(p(Uy)), where §; = Dgn(T;, R;), with R; being the ruler relevant to p(U;). Hence,
by the induction hypothesis, there is a path p; € ||‘L{}'.‘E. | such that: (1) 6; € A(pj), and (2)
J
Tjuj = [t(c) | (t(c), E, A) € Z‘(pj)] equals the subsequence of trajectory 7; involving transi-
tions of components in U; only. Based on Proposition 5, there is a path p} € ||Im(‘l,(;.k E')” such
J

that §; € A(pj’.), where

p; = [(io,(El_,-,Alj),h),(iL(/Ezj,Az_,-),iz),..-,<q}_1,(Eq},Aq}),iq;>] (52)
and, according to eqn. (34), A(pj’.) equals
AA) ® V(iq}) =A;, @42, ®...Q Aq} ® V(iq}). (53)

Moreover, Vj’ € [1..4'], we have E J; =% (3, where E J; is the set of emergent events generated
by a corresponding transition in 7} U, Let Tje = [tlej (c1;)--- -, tg} (cq;)] denote the subsequence
of Tj U, involving the transitions generating emergent events. Since all transitions in 7} are included
in T, j € [1..k], T includes all transitions in 7¢ as well. Let T¢ denote the subsequence of
T involving the transitions in all Tje, J € [1..k]. As such, the transitions in 7 are constrained
by the temporal observations in O relevant to the AUs U1, ..., U, respectively, and by the load
configuration of the links entering the input terminals of U. Since the generation of ‘L(’g too is based
on these two constraints, there is a path p € ||=u;|| involving all the diagnosis sets marking the

transitions in all p},j € [1..k], namely Alla""Aq’lva?'"7Aq§a""A1kv"'qu;c’
p = [(w()vo—l’wl)’ (w1,02, w2)77<wq—1’o—q9wq)] . (54)

Let Ty, denote the subsequence of T composed of the transitions relevant to the components in
U only. As such, the transitions in Tq; are constrained by the temporal observation in O relevant to
the AU U, and by the load configuration of the links entering the input terminals of U. Since the
generation of U too is based on these two constraints, the path p € || ‘u; || in eqn. (54) involves all
transitions in 7T4q;. Finally, according to eqn. (34),

Ap) = AA) V(i) = A1 ®...0 Ay ® V(w,) (55)

where Ay, ..., A, are the diagnosis sets involved in o1, ..., 04, respectively. Still, comparing
eqn. (55) to eqn. (53), with j € [1..k], in order for § € A(p), we need to show that V(wy) =
V(iqi) ® V(iqé) R...® V(iq]r(). Based on eqn. (28), as U is assumed not to be a leaf node, we have

V(wg) = Q) V(i) (56)

iel

where, according to Section 6.2, wy, = (S, E,M,H,1,3), with I = (i1,...,ix) being the

array of final states in the interfaces Int(‘u’fgl Yoo oos Int (UL Sk)’ respectively. The conclusion of the
proof of the induction step, as well as of Lemma 1.1, lies in that each state i; € I, j € [l .. k], isin
fact the final state iq} of the path p]’. in eqn. (52). O

Lemma 1.2 (Completeness) Let U be the root node of X.. If § € A((X)), then § € A (‘ug)

1526

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Proof. According to eqn. (30), the diagnosis set of the decorated constrained space ‘ug is

a(u)= U (awnevw) (57)

UJfEVVf

where W% is the set of final states of ‘U;, A(wy) the diagnosis set (decoration) of we, and V (wy)
the hidden set of wr defined in eqn. (28). Specifically, each state w in ‘u; is decorated based on
the following two rules: (1) if wy is the initial state, then @ € A(wy), and (2) if (w, o, w’) is a
transition in ‘Ug‘ with A being the diagnosis set involved in o, then A(w’) 2 (A(w) ® A_] . From
Lemma 1.1, if § € A(p(X)), then there is p € ||‘L(’£|| such that § € A(p), where

A(p) = A(4) ® V(wg) (58)

where A = [Ay, ..., Aq]is the sequence of diagnosis sets marking the transitions in p and wy

is the final state of p. By 1nduct10n on p we show that, for each prefix p of p ending at state w, if
6 € A(A) then § € A(W), where A is the sequence of dlagn051s sets marklng the transitions in p.

(Basis) If w = wy then, according to eqn. (32), A(A) = {0}, where A= []. On the other
hand, based on the first decoration rule, @ € A(wy).

(Induction) Assume that, for a prefix p of p, with p ending at the state w, if § e A(A), then
§ e A(wW). Let p’ be the prefix of p obtained by extending p with the transition exiting W in P,
namely (¥, o”, ﬁ)’) with A being the diagnosis set involved in o”. Let 8’ be a diagnosis in A(A),
where A’ = A U [A']. As such, §' is obtained by extending § by a diagnosis 8’ € A’. On the
other hand, according to the second decoration rule, the same applies for A(’), based on that

AW’ 2 [A(lf)) ® A’] . Considering the final state w, of p, based on eqn. (58), § is obtained by

joining a diagnosis Sq € A(A) with a diagnosis in the hidden set V(wg), which is exactly the way
a diagnosis in A(‘L(’g) is obtained based on eqn. (57). O

Lemma 1.3 Let p(X) = (x0,V, 0, R) be a diagnosis problem, U an AU in X, U the DDES
rooted in U, p(U) = (g, V, O, R) the projection of g(X) on U, and & = (f19, V., 0, R, I) an
interface constraint for U. If § € A(‘U), where § € A(p), p € ||‘L(*||, then: (1) 8 € A(p(W)),
where § = Dgn(T, R), and (2) the sequence [t(c) | (t(c), E, A) € E(p)] equals the subsequence
of T involving only transitions of components in U.

Proof. By induction on the tree of AUs in X .

(Basis) If U is a leaf node in X then ‘U; is such that £ = (iig, V, @, R,) where I is empty (no

interface constraints). Hence, ‘ug is constrained by o only, in other words, ‘L{; = ‘l_,lg Thus, path
pEll u; || relevant to & is such that

p = [{wo. (t1(c1). E1, A1), wl), (wi, (t2(c2), E2, Az), w2). ... (wg—1. (tq(cq). Eq. Ag), wy)]
(59)

Vi e[l..q] (Ai _ { Wty if (i), fi) € R) (60)

where

{0} otherwise

1527

LAMPERTI, ZANELLA, & ZHAO

According to eqn. (34) and eqn. (28), A(p) is A(A)@V(wy) = A1®A2®...QA,;®{0} = {4}.
On the other hand, this also means that there is a trajectory T € || U*|| such that Obs(T, V) = O
and Dgn(T, R) = 8. In other words, based on eqn. (19), § € A(p(U)).

(Induction) Assume that U is an internal node of X with children Uy, ..., Uy, suchthat, Vj €
[1..k],if8; € A(u;féj), where §; € A(p;)), pj € ||‘u;‘$j |, then: (1) 8; € A(p(U,)), where §; =
Dgn(T;, J/_?j), with !/_?j being the ruler of p(ﬂj), and (2) the sequence [t(c) | (t(c), E, A) € X(pj)]

equals the subsequence of 7 involving only transitions of components in AU U;. Assuming
8 e A(‘u;), specifically 6 € A(p), p € ||‘L(’g||, we have

p= [(wo,al, wi), (w1, 02, w2), ..., (wq_l,aq, wq)] 61)

such that, based on eqn. (34), A(p) = A(A) ® V(wy), where A = [Ay,..., Ay] is the
sequence of the diagnosis sets involved in o071, ..., 04, respectively, while, based on eqn. (28), the
hidden set of wy = (S, E, M, H,I,%), where [= (i1,...,ig),is V(wg) = V(i1) ® V(i2) ®
...® V(ir). In summary, § € A(p), where A(p) = A1®...04;®V(i1)@V(i2)®...® V(iy).
So, A(p) can be expressed as the join of k + 1 join expressions A(p) = A/ A|Q A, ®...Q A7,
where
A =1{8) = X A (62)
(t(c),E,A)eX(p)
and, Vj € [1..k], we have

A = (039 Al ®V3i)). (63)

ceX(p),0=(E,A),o relevant to Im(‘u;‘é))
J

Hence, § can be expressed as the union of k + 1 sets of faults, § = 8’ US; U, U... U 8;{,
where §' € A" = {§'}, while §; € A, j € [1..k]. Moreover, based on the definition of constrained
unit space (Section 6.2), Vj € [1..k], there is a path p} € ||Int(‘l,(}'-‘§.)|| such that §; € A(p}).

J

According to Proposition 5, there is a path p; € ||‘L(;" g || such that 81/. € A(pj), in other words,
8]’. € A(‘L(;’.‘El_). Hence, by point 1 of the induction step, 8]’. € A(p(U;)). According to eqn. (19), 8}
is the diagnosis of a trajectory T € || ‘L(]* | based on the ruler R, such that Obs(T;,V;) = O;, with
O, being the temporal observation and V; the viewer in (U). In order for 7} to be a subsequence
of atrajectory T € || ‘L{’("-D ||, the constraints on load configuration of links entering the input terminals

of U should be respected.?” Since these constraints are in fact respected in the generation of U} too,
all the transitions of the trajectory 7} are interspersed (with same relative order) within 7". Besides,
based on point 2 of the induction step, the elements (E, A) in X'(p) are relevant to the transitions of
the components in U ;, where E # @ is the set of emergent eventsin U, j € [1 .. k]. Consequently,
the mode in which emergent events are generated in U; and consumed in the construction of U} is
the same as in 7. In other words, the sequence of transitions ¢ (c) involved in the triples of eqn. (62)
is also the projection of 7" on the transitions of the components in U. In summary, we have

Dgn(T.R) =8 U8 USU...U§, =8, (64)

32. Specifically, no transition in U; generating an emergent event on a nonempty terminal can be triggered.

1528

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Hence, the first condition of Lemma 1.3 holds. Finally, the second condition of Lemma 1.3 is
grounded on eqn. (62). O

Lemma 1.4 (Soundness) Let U be the root node of X. If § € A (‘ug), then § € A(p(X)).

Proof. According to Section 6.6 and eqn. (30), we have

A = {J (Aw) e V) (65)

wreW;

where W is the set of final states of ‘U’g, A(wy) the diagnosis set of wg, and V (wy) the hidden

set of wr defined in eqn. (28). Specifically, each state w in u; is decorated based on the following

two rules: (1) if wg is the initial states of ‘L{Z; then @ € A(wog), and (2) if (w, o, w’) is a transition

in ‘U;,
rules, if § € A(‘ug), then there is a path p € ||‘L(; I, namely

with A being the diagnosis set involved in o, then A(w’) 2 (A(w) ® A_] . Based on these

p = [(wO,Ul, wl)’ (wl’Uz, w2>’] (wq—lvaqa wq)] (66)

where wy, is one of final states wy in eqn. (65), such that§ € {#}® A1 ®A2Q...®A;®V(wy),
where, Vi € [1..q], A; is involved in 07, that is § € A(A4) ® V(wg), where A = [Ay,..., A4].
Hence, according to eqn. (34), § € A(p). Also, based on Lemma 1.3, § € A(p(U)). Since U is

the root node of X', we have U = X and, therefore, § € A(p(X)). O
Eventually, the proof of Theorem 1 comes from Lemma 1.2 and Lemma 1.4. O
References

Atay, F., & Jost, J. (2004). On the emergence of complex systems on the basis of the coordination
of complex behaviors of their elements: synchronization and complexity. Complexity, 10(1),
17-22.

Baroni, P, Lamperti, G., Pogliano, P., & Zanella, M. (1998). Diagnosis of active systems. In Thir-
teenth European Conference on Artificial Intelligence (ECAI 1998), pp. 274-278, Brighton,
United Kingdom.

Baroni, P., Lamperti, G., Pogliano, P., & Zanella, M. (1999). Diagnosis of large active systems.
Artificial Intelligence, 110(1), 135-183.

Baroni, P., Lamperti, G., Pogliano, P., & Zanella, M. (2000). Diagnosis of a class of distributed
discrete-event systems. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Sys-
tems and Humans, 30(6), 731-752.

Bossomaier, T., & Green, D. (2007). Complex Systems. Cambridge University Press, Cambridge.

Brand, D., & Zafiropulo, P. (1983). On communicating finite-state machines. Journal of the ACM,
30(2), 323-342.

Cassandras, C., & Lafortune, S. (2008). Introduction to Discrete Event Systems (second edition).
Springer, New York.

1529

LAMPERTI, ZANELLA, & ZHAO

Chittaro, L., & Ranon, R. (2004). Hierarchical model-based diagnosis based on structural abstrac-
tion. Artificial Intelligence, 155(1-2), 147-182.

Console, L., Picardi, C., & Dupré, D. T. (2003). Temporal decision trees: Model-based diagnosis of
dynamic systems on-board. Journal of Artificial Intelligence Research, 19, 469-512.

Darwiche, A. (1998). Model-based diagnosis using structured system descriptions. Journal of
Artificial Intelligence Research, 8, 165-222.

Darwiche, A., & Provan, G. (1996). Exploiting system structure in model-based diagnosis of
discrete-event systems. In 7th International Workshop on Principles of Diagnosis (DX 1996),
pp- 95-105, Montreal, CDN.

de Kleer, J., Mackworth, A. K., & Reiter, R. (1992). Characterizing diagnoses and systems. Artificial
Intelligence, 56(2-3), 197-222.

de Kleer, J., & Williams, B. (1987). Diagnosing multiple faults. Artificial Intelligence, 32(1), 97—
130.

Dechter, R. (2003). Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence.
Morgan Kaufmann Publishers Inc., San Francisco, CA.

Goles, E., & Martinez, S. (Eds.). (2001). Complex Systems. Springer, Dordrecht, The Netherlands.

Hamscher, W., Console, L., & de Kleer, J. (Eds.). (1992). Readings in Model-Based Diagnosis.
Morgan Kaufmann, San Mateo, CA.

Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of Computer Pro-
gramming, 8(3), 231-274.

Huang, C., & Darwiche, A. (1996). Inference in belief networks: A procedural guide. International
Journal of Approximate Reasoning, 15(3), 225-263.

Idghamishi, A., & Zad, S. (2004). Fault diagnosis in hierarchical discrete-event systems. In 43rd
IEEE Conference on Decision and Control, pp. 63—68, Paradise Island, Bahamas.

Jéron, T., Marchand, H., Pinchinat, S., & Cordier, M. (2006). Supervision patterns in discrete event
systems diagnosis. In Seventeenth International Workshop on Principles of Diagnosis (DX
2006), pp. 117-124, Penaranda de Duero, Spain.

Jiang, S., Huang, Z., Chandra, V., & Kumar, R. (2001). A polynomial algorithm for testing diagnos-
ability of discrete event systems. IEEE Transactions on Automatic Control, 46(8), 1318-1321.

Kan John, P., & Grastien, A. (2008). Local consistency and junction tree for diagnosis of discrete-
event systems. In Eighteenth European Conference on Artificial Intelligence (ECAI 2008),
pp- 209-213, Patras, Greece. IOS Press, Amsterdam.

Khalastchi, E., & Kalech, M. (2018). On fault detection and diagnosis in robotic systems. ACM
Comput. Surv., 51(1).

Lamperti, G., & Quarenghi, G. (2016). Intelligent monitoring of complex discrete-event systems. In
Czarnowski, 1., Caballero, A., Howlett, R., & Jain, L. (Eds.), Intelligent Decision Technolo-
gies 2016, Vol. 56 of Smart Innovation, Systems and Technologies, pp. 215-229. Springer
International Publishing Switzerland.

1530

DIAGNOSIS OF DEEP DISCRETE-EVENT SYSTEMS

Lamperti, G., & Zanella, M. (2010). Injecting semantics into diagnosis of discrete-event systems. In
21st International Workshop on Principles of Diagnosis (DX 2010), pp. 233-240, Portland,
OR.

Lamperti, G., & Zanella, M. (2011). Context-sensitive diagnosis of discrete-event systems. In
Walsh, T. (Ed.), Twenty-Second International Joint Conference on Artificial Intelligence (1J-
CAI 2011), Vol. 2, pp. 969-975, Barcelona, Spain. AAAI Press.

Lamperti, G., & Zanella, M. (2013). Preliminaries on complexity of diagnosis of discrete-event
systems. In 24th International Workshop on Principles of Diagnosis (DX 2013), pp. 192—
197, Jerusalem, Israel.

Lamperti, G., Zanella, M., & Zhao, X. (2018a). Abductive diagnosis of complex active systems with
compiled knowledge. In Thielscher, M., Toni, F., & Wolter, F. (Eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixteenth International Conference (KR
2018), pp. 464-473, Tempe, Arizona. AAAI Press.

Lamperti, G., Zanella, M., & Zhao, X. (2018b). Introduction to Diagnosis of Active Systems.
Springer, Cham.

Lamperti, G., Zanella, M., & Zhao, X. (2018c). Knowledge compilation techniques for model-
based diagnosis of complex active systems. In Holzinger, A., Kieseberg, P., Tjoa, A. M., &
Weippl, E. (Eds.), Machine Learning and Knowledge Extraction, Vol. 11015 of Lecture Notes
in Computer Science, pp. 43—64. Springer, Cham.

Lamperti, G., & Zhao, X. (2013a). Diagnosis of higher-order discrete-event systems. In Cuzzocrea,
A., Kittl, C., Simos, D., Weippl, E., & Xu, L. (Eds.), Availability, Reliability, and Security in
Information Systems and HCI, Vol. 8127 of Lecture Notes in Computer Science, pp. 162—177.
Springer, Berlin, Heidelberg.

Lamperti, G., & Zhao, X. (2013b). Specification and model-based diagnosis of higher-order
discrete-event systems. In IEEFE International Conference on Systems, Man, and Cybernetics
(SMC 2013), pp. 2342-23477, Manchester, United Kingdom.

Lamperti, G., & Zhao, X. (2014). Diagnosis of active systems by semantic patterns. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 44(8), 1028—1043.

Lamperti, G., & Zhao, X. (2016a). Diagnosis of complex active systems with uncertain temporal
observations. In Buccafurri, F., Holzinger, A., Tjoa, A. M., & Weippl, E. (Eds.), Availability,
Reliability, and Security in Information Systems, Vol. 9817 of Lecture Notes in Computer
Science, pp. 45-62. Springer International Publishing AG Switzerland.

Lamperti, G., & Zhao, X. (2016b). Viable diagnosis of complex active systems. In IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC 2016), pp. 457-462, Budapest.

Licata, 1., & Sakaji, A. (2008). Physics of Emergence and Organization. World Scientific.

Mozetic, 1. (1992). Hierarchical diagnosis. In Hamscher, W., Console, L., & de Kleer, J. (Eds.),
Readings in Model-Based Diagnosis. Morgan Kaufmann.

Paoli, A., & Lafortune, S. (2008). Diagnosability analysis of a class of hierarchical state machines.
Journal of Discrete Event Dynamic Systems: Theory and Applications, 18(3), 385—413.

Pencolé, Y., Steinbauer, G., Miihlbacher, C., & Travé-Massuyes, L. (2018). Diagnosing discrete
event systems using nominal models only. In Zanella, M., Pill, I., & Cimatti, A. (Eds.),

1531

LAMPERTI, ZANELLA, & ZHAO

28th International Workshop on Principles of Diagnosis (DX’17), Vol. 4, pp. 169—183. Kalpa
Publications in Computing.

Pill, I., & Quaritsch, T. (2013). Behavioral diagnosis of LTL specifications at operator level.
In Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI 2013), pp.
1053-1059. AAAI Press.

Pnueli, A. (1977). The temporal logic of programs. In 8th Annual Symposium on Foundations of
Computer Science, SFCS °77, pp. 46-57, Washington, DC, USA. IEEE Computer Society.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32(1), 57-95.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995). Diagnos-
ability of discrete-event systems. [EEE Transactions on Automatic Control, 40(9), 1555-
1575.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1996). Failure

diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology,
4(2), 105-124.

Schumann, A., & Huang, J. (2008). A scalable jointree algorithm for diagnosability. In Twenty-
Third National Conference on Artificial Intelligence (AAAI 2008), pp. 535-540, Chicago, IL.

Schuppan, V. (2012). Towards a notion of unsatisfiable and unrealizable cores for LTL. Sci. Comput.
Program., 77(7-8), 908-939.

Shenoy, P., & Shafer, G. (1986). Propagating belief functions with local computations. /IEEE Expert,
1(3), 43-52.

Siddiqi, S., & Huang, J. (2007). Hierarchical diagnosis of multiple faults. In 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 581-586, Hyderabad, India.

Siddiqi, S., & Huang, J. (2011). Sequential diagnosis by abstraction. Journal of Artificial Intelli-
gence Research, 41, 329-365.

Stumptner, M., & Wotawa, F. (2001). Diagnosing tree-structured systems. Artificial Intelligence,
127(1), 1-29.

Su, R., & Wonham, W. (2005). Global and local consistencies in distributed fault diagnosis for
discrete-event systems. IEEE Transactions on Automatic Control, 50(12), 1923-1935.

Yoo, T., & Lafortune, S. (2002). Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Transactions on Automatic Control, 47(9), 1491-1495.

1532

