
Journal of Artificial Intelligence Research 69 (2020) 1077-1102 Submitted 05/2020; published 11/2020

Representing Fitness Landscapes by Valued Constraints
to Understand the Complexity of Local Search

Artem Kaznatcheev kaznatcheev.artem@gmail.com
Department of Computer Science
University of Oxford, UK

David A. Cohen d.cohen@rhul.ac.uk
Department of Computer Science
Royal Holloway, University of London, UK

Peter G. Jeavons peter.jeavons@cs.ox.ac.uk

Department of Computer Science

University of Oxford, UK

Abstract

Local search is widely used to solve combinatorial optimisation problems and to model
biological evolution, but the performance of local search algorithms on different kinds of
fitness landscapes is poorly understood. Here we consider how fitness landscapes can be
represented using valued constraints, and investigate what the structure of such represen-
tations reveals about the complexity of local search.

First, we show that for fitness landscapes representable by binary Boolean valued con-
straints there is a minimal necessary constraint graph that can be easily computed. Second,
we consider landscapes as equivalent if they allow the same (improving) local search moves;
we show that a minimal constraint graph still exists, but is NP-hard to compute.

We then develop several techniques to bound the length of any sequence of local search
moves. We show that such a bound can be obtained from the numerical values of the
constraints in the representation, and show how this bound may be tightened by considering
equivalent representations. In the binary Boolean case, we prove that a degree 2 or tree-
structured constraint graph gives a quadratic bound on the number of improving moves
made by any local search; hence, any landscape that can be represented by such a model
will be tractable for any form of local search.

Finally, we build two families of examples to show that the conditions in our tractabil-
ity results are essential. With domain size three, even just a path of binary constraints
can model a landscape with an exponentially long sequence of improving moves. With
a treewidth-two constraint graph, even with a maximum degree of three, binary Boolean
constraints can model a landscape with an exponentially long sequence of improving moves.

1. Introduction

Local search techniques are widely used to solve combinatorial optimisation problems, and
have been intensively studied since the 1980’s (Aaronson, 2006; Chapdelaine & Creignou,
2005; Johnson, Papadimitriou, & Yannakakis, 1988; Llewellyn, Tovey, & Trick, 1989; Malan
& Engelbrecht, 2013; Ochoa & Veerapen, 2018; Schaffer & Yannakakis, 1991; Tayarani-
Najaran & Prügel-Bennett, 2014). They have also played a central role in the theory of

c©2020 AI Access Foundation. All rights reserved.

Kaznatcheev, Cohen, & Jeavons

biological evolution, ever since Sewall Wright (1932) introduced the idea of viewing the
evolution of populations of organisms as a local search process over a space of possible
genotypes with associated fitness values that became known as a “fitness landscape”.

The term fitness landscape is now used to designate any structure (A, f,N) consisting of
a set of points A, a fitness function f defined on those points, and a neighbourhood function
N on those points, that indicates which pairs of points are sufficiently close to be considered
neighbours. A point x is said to be locally optimal if all neighbours are non-improving (i.e.,
∀y ∈ N(x) f(x) ≥ f(y)) and globally optimal if all points are non-improving. The local
search problem for a fitness landscape is to find such a local optimum. We say the problem
is solved by a local search algorithm if the only moves allowed in the procedure are from a
point x to a point x′ with x′ ∈ N(x) and f(x′) > f(x).

Many approaches have been developed to try to distinguish fitness landscapes where a
local or global optimal point can be found efficiently by local search from those where such
optimal points cannot be found efficiently. In the 1980’s and 90’s these attempts focused
on statistical measures such as correlation between function values at various distances
and various notions of ruggedness (Malan & Engelbrecht, 2013). But, by the late 90’s there
were several studies highlighting the existence of fitness landscapes that were not rugged and
yet were hard to optimise. Several new approaches have been developed recently, but the
performance of local search algorithms on many kinds of fitness landscapes is still poorly
understood (Malan & Engelbrecht, 2013; Ochoa & Veerapen, 2018; Tayarani-Najaran &
Prügel-Bennett, 2014).

In almost all common examples of local search problems, the points in the fitness land-
scape are tuples of values from some domain, and neighbourhoods are defined by some
appropriate notion of distance between tuples. The fitness function in such a landscape can
be defined by a collection of valued constraints, and hence the search problem can be trans-
lated into a standard valued constraint satisfaction problem (VCSP) (Cohen, Cooper, Creed,
Jeavons, & Zivny, 2013; Carbonnel, Romero, & Zivny, 2018; Färnqvist, 2012; Kolmogorov
& Zivny, 2013; Strimbu, 2019; Thapper & Zivny, 2015, 2016).

In this paper we begin the development of a novel approach to understanding local search
on fitness landscapes, based on representing the fitness function using valued constraints
and studying the properties of these representations. Using the VCSP framework allows us
to classify fitness landscapes in new ways, and hence to distinguish new classes of fitness
landscapes with specific properties.

Finding a locally optimal point on an arbitrary fitness landscape is a complete prob-
lem for the class of problems known as polynomial local search (PLS) (Johnson et al.,
1988; Schaffer & Yannakakis, 1991; Chapdelaine & Creignou, 2005). This means that it
is expected to be computationally intractable in general to find such a local optimum. In
particular, there exist known constructions to produce families of fitness landscapes where
every sequence of improving moves to a local optimum from some starting points is expo-
nentially long (Schaffer & Yannakakis, 1991). On such landscapes, from such points, any
local-search algorithm will require an exponentially long sequence of improving moves to
reach a local optimum.

A key goal, therefore, is to identify classes of fitness landscapes where finding a local
optimum is tractable (i.e., solvable in polynomial-time). We do this by identifying classes
of fitness landscapes where every sequence of improving moves from every point is at most

1078

Representing Fitness Landscapes by Valued Constraints

polynomially long. These classes are based on properties of the VCSP representation, such
as the numerical values of the constraints or the structure of the constraint graph.

We start by showing in Section 3 that for some classes of fitness landscapes it is possible
to efficiently compute a unique minimal representation as a VCSP instance (Theorems 3.4
and 3.5), giving a convenient normal form. Then in Section 4 we equate all fitness land-
scapes that have the same improving local search moves (Definition 4.1); we show that in
some important cases a unique minimal representation for each equivalence class still exists
(Theorems 4.4 and 4.7), but can be NP-hard to compute (Theorem 4.10).

Using these tools, we then develop several techniques to bound the length of any sequence
of local search moves, based on properties of the VCSP representation. In Section 5 we
show that such a bound can be obtained from the numerical values of the constraints in the
representation (Proposition 5.2), and show how this bound may be tightened by considering
equivalent representations (Examples 5.4 and 5.12). In Section 6, we prove that fitness
landscapes that can be represented by binary Boolean VCSPs with tree-structured constraint
graphs can have only quadratically long sequences of improving moves (Theorem 6.1) – hence
they are tractable for any local search algorithm. Finally, in Section 7, we give examples
of fitness landscapes that have very simple representations, but have exponentially long
sequences of improving moves (Examples 7.1 and 7.2).

Because our results are based on bounding the length of all possible sequences of im-
proving moves, they apply to all possible local search algorithms, and hence are particularly
useful for investigating properties of biological evolution, as we discuss in Section 8.

2. Background, Notation, and General Definitions

We will model the points, A, in our fitness landscapes as assignments to a collection of n
variables, indexed by the set [n] = 1, 2, . . . , n, with domains D1, . . . , Dn. Hence each point
corresponds to a vector x ∈ D1 × · · · × Dn. We will generally focus on uniform domains
(i.e., cases where D = D1 = · · · = Dn), where this simplifies to x ∈ Dn. In particular, we
will often be interested in Boolean domains, where x ∈ {0, 1}n, so each point can be seen
as a bit-vector.

The restriction of a variable assignment x to some subset of variables, with indices in a
set S ⊆ [n], will be denoted x[S], so x[S] ∈

∏
j∈S Dj . To reference the assignment to the

variable at position i, we will usually write xi unless it is ambiguous, in which case we’ll
use the more general notation x[i]. If we want to modify x by changing a single variable,
say the variable at position i, to some element b ∈ Di, then we’ll write x[i 7→ b].

Given a set of points, A, a fitness function on A is defined to be an integer-valued
function defined on A, that is, a function f : A → Z. Because we are modelling fitness,
rather than cost, we maximise our objective functions in this paper. All results can be
carried over directly to the minimisation context.

To complete the definition of a fitness landscape, we will define a neighbourhood
function on the set of points A to be a function N : A → 2A. For simplicity, we will
assume this function is symmetric in the sense that if y ∈ N(x), then x ∈ N(y), and we
will call such a pair x and y adjacent points. Throughout the paper, we will focus on the
case where the set of points A is the set of assignments D1 × · · · ×Dn and N is the 1-flip
neighbourhood defined by y ∈ N(x) if and only if there is a variable position i such that

1079

Kaznatcheev, Cohen, & Jeavons

xi 6= yi and this is the only difference (i.e., ∀j 6= i xj = yj). Hence, in the case of the
Boolean domain, the graph of the function N , where the edges are the pairs of adjacent
points, will be the n-dimensional hypercube. Note that considering larger neighbourhoods
will only increase (or keep the same) the length of the longest ascending path through the
fitness landscape.

Definition 2.1 (de Visser et al., 2009; Crona et al., 2013) Given any fitness land-
scape (A, f,N), the corresponding fitness graph G has vertex set V (G) = A and directed
edge set E(G) = {(x, y) | y ∈ N(x) and f(y) > f(x)}.

The edges of the fitness graph consist of all pairs of adjacent points which have distinct
values of the fitness function, and are oriented from the lower value of the fitness function
to the higher value; such directed edges represent the possible moves that can be made by
a local search algorithm.

A (valued) constraint with scope S ⊆ [n] is a function CS :
∏

j∈S Dj → Z. The arity
of a constraint CS is the size |S| of its scope. For unary and binary constraints we will
generally omit the set notation and just write Ci for C{i} or Cij for C{i,j}, where i < j.
We will represent the values taken by a unary constraint Ci for each domain element by an
integer vector of length |Di|, and represent the values taken by a binary constraint Cij for
each pair of domain elements by an integer matrix, where xi selects the row and xj selects
the column. A zero-valued constraint (of any arity) will be denoted by 0.

Definition 2.2 An instance of the valued constraint satisfaction problem (VCSP) is a set
of constraints C = {CS1 , . . . , CSm}. We say that a VCSP instance C implements a fitness
function f if f(x) =

∑m
k=1 CSk

(x[Sk]).

The arity of a VCSP instance is the maximum arity over its constraints; if this maximum
arity is 2, then we will call it a binary VCSP instance. The instance-size of a VCSP instance
is the number of bits needed to specify n, m and each constraint.

Given any VCSP instance C, we can take A as the set of all possible assignments, f
as the fitness function implemented by C, and N as the 1-flip neighbourhood, to obtain
an associated fitness landscape, (A, f,N), and hence an associated fitness graph, GC , by
Definition 2.1. The vertex set of GC is the set of possible assignments, A, and hence is
exponential in the size of the instance, C, in general. Each binary VCSP instance also has
an associated constraint graph, defined as follows, whose vertex set is polynomial in the size
of the instance:

Definition 2.3 Given any binary VCSP instance C, the corresponding constraint graph
has vertices V (C) = [n], edges E(C) = {{i, j} | Cij ∈ C, Cij 6= 0}, and constraint-
neighbourhood function NC(i) = {j | {i, j} ∈ E(C)}.

Each fitness landscape has a unique associated fitness graph which specifies all possible
improving moves that can be made by a local search on that landscape. On the other
hand, for each fitness landscape there may be a number of different VCSP instances that
implement the fitness function of that landscape, and they may have different constraint
graphs. This motivates the search for canonical, minimal or normalised representations of
a given landscape, which we explore in the next two sections.

1080

Representing Fitness Landscapes by Valued Constraints

3. Magnitude-Equivalence

It is clear from Definition 2.2 that different VCSP instances can implement the same fitness
function.

Example 3.1 Consider the two small VCSP instances shown in Figure 1.

Figure 1: Two VCSP instances implementing the same fitness function

Although these two instances have different constraint graphs, they both implement the
fitness function [f(00), f(01), f(10), f(11)] = [1, 2, 2, 3].

We capture this equivalence with the following definition:

Definition 3.2 If two VCSP instances C1 and C2 implement the same fitness function f ,
then we will say they are magnitude-equivalent.

We will show in this section that for binary Boolean VCSP instances each equivalence class
of magnitude-equivalent VCSP instances has a normal form: a unique, minimal, and easy
to compute representative member with special properties.

Definition 3.3 A binary Boolean VCSP instance C is simple if every unary constraint

has the form Ci =

(
0
ci

)
and every binary constraint has the form Cij =

(
0 0
0 cij

)
.

Each value ci or cij will be referred to as the weight of the corresponding constraint.
We now give a direct proof of the following simplification result which is analogous

to similar results using constraint propagation in the standard VCSP (Cooper, De Givry,
& Schiex, 2007) (and is essentially a translation of standard results for pseudo-Boolean
functions, Crama & Hammer, 2011).

Theorem 3.4 Any binary Boolean VCSP instance C′ can be transformed into a unique
simple VCSP instance C that is magnitude-equivalent to C′. Moreover, C can be constructed
from C′ in linear time.

Proof: First, two key observations:

1. Any unary Boolean constraint C ′i : {0, 1} → Z can be rewritten as a linear function:

g′i(x) = (1− xi)C
′
i(0) + xiC

′
i(1)

2. Any binary Boolean constraint C ′ij : {0, 1} × {0, 1} → Z can be rewritten as a multi-
linear polynomial of degree 2:

g′ij(x) = (1− xi)(1− xj)C
′
ij(0, 0) + (1− xi)xjC

′
ij(0, 1)

+ xi(1− xj)C
′
ij(1, 0) + xixjC

′
ij(1, 1).

1081

Kaznatcheev, Cohen, & Jeavons

From this, we can simplify C′ just by simplifying polynomials:

f(x) = C ′∅ +
n∑

i=1

C ′i(xi) +
∑

{i,j}∈E(C′)

C ′ij(xi, xj)

= C ′∅ +

n∑
i=1

g′i(x) +
∑

{i,j}∈E(C′)

g′ij(x) (1)

= C∅ +

n∑
i=1

xici +
∑

1≤i<j≤n
xixjcij (2)

where we note that Equation 1 is a sum of a constant, some linear functions, and some
multilinear polynomials of degree 2, and is thus itself a multilinear polynomial of degree 2
(or less). Equation 2 follows from Equation 1 by multiplying out into monomials and then
grouping the coefficients of each similar monomial. In particular, this gives us the following
coefficients:

ci = C ′i(1)− C ′i(0) +
∑

j | {i,j}∈E(C′)

C ′ij(1, 0)− C ′ij(0, 0) (3)

cij = C ′ij(0, 0)− C ′ij(0, 1)− C ′ij(1, 0) + C ′ij(1, 1) (4)

The above calculation can be done in linear time. As the last step in the simplification,
note that Equation 2 corresponds to a VCSP instance C comprising a nullary constraint C∅,

unary constraints Ci =

(
0
ci

)
, and binary constraints Cij =

(
0 0
0 cij

)
.

The next result shows that a simple VCSP instance has the minimal constraint graph of
any binary instance that implements the same fitness function:

Theorem 3.5 Let C be a simple binary Boolean VCSP instance. If the binary Boolean
VCSP instance C′ is magnitude-equivalent to C, then E(C) ⊆ E(C′).

Proof: Let ei ∈ {0, 1}n be a variable assignment that sets the ith variable to one, and all
other variables to zero. Similarly, let eij ∈ {0, 1}n be a variable assignment that sets the
ith and jth variables to one, and all other variables to zero. Let f be the fitness function
implemented by C. Since C is simple, we have:

f(eij)− f(ei)− f(ej) + f(0n) = cij

where we take cij = 0 if {i, j} /∈ E(C). Similarly, if C′ also implements f , we have:

f(eij)− f(ei)− f(ej) + f(0n) = C ′ij(1, 1)− C ′ij(1, 0)− C ′ij(0, 1) + C ′ij(0, 0)

If {i, j} ∈ E(C) then cij 6= 0, so C ′ij(1, 1) − C ′ij(1, 0) − C ′ij(0, 1) + C ′ij(0, 0) 6= 0 and hence
{i, j} ∈ E(C′).

1082

Representing Fitness Landscapes by Valued Constraints

4. Sign-Equivalence

In the previous section we considered the equivalence class of all VCSP instances which
implement precisely the same fitness function. However, when investigating the performance
of local search algorithms, the exact values of the fitness function are not always relevant;
it may be sufficient to consider only the fitness graph.

For example, consider a fitness function f , implemented by a VCSP instance C, where
all fitness values are distinct, but there is at least one pair i, j of positions with no constraint
Cij . Now consider the new fitness function f ′(x) = 2f(x)+Cij(xi, xj) where Cij = [0, 0; 0, 1].
The fitness graph corresponding to f ′ is unchanged (since all fitness values given by 2f(x)
differ by at least 2, every edge is still present in the fitness graph, and no orientations are
changed by the new constraint), but we cannot eliminate this new Cij constraint without
changing the precise values of the fitness function at some points. To capture this similarity
between f and f ′, we introduce a more abstract equivalence relation:

Definition 4.1 If two VCSP instances C1 and C2 give rise to the same fitness graph, then
we will say they are sign-equivalent.

As with magnitude-equivalence, we will show that for binary Boolean VCSP instances it
is possible to define a normal form or minimal representative member of each equivalence
class of sign-equivalent VCSP instances with a unique minimal constraint graph. Unfor-
tunately, we will see that, unlike the situation for magnitude-equivalence, this minimum
sign-equivalent constraint graph is NP-hard to compute.

Definition 4.2 In a Boolean fitness graph G with vertex set {0, 1}n, we will say that i
sign-depends on j if there exists an assignment x ∈ {0, 1}n such that:

(x, x[i 7→ xi]) ∈ E(G) but (x[j 7→ xj], x[i 7→ xi, j 7→ xj]) 6∈ E(G)

Note that i sign-depends on j if and only if, for any fitness function f that corresponds
to the fitness graph G, there exists x ∈ {0, 1}n such that:

sgn(f(x[i 7→ xi])− f(x)) 6= sgn(f(x[i 7→ xi, j 7→ xj])− f(x[j 7→ xj])). (5)

We will say that i and j sign-interact if i sign-depends on j, or j sign-depends on i (or
both). If i and j do not sign-interact then we will say that they are sign-independent.

Definition 4.3 A simple binary Boolean VCSP instance C with associated fitness graph GC
is called trim if for all {i, j} ∈ E(C), i and j sign-interact in GC.

Our next result is the sign-equivalence analog of Theorem 3.4, and guarantees a normal
form:

Theorem 4.4 Any simple binary Boolean VCSP instance C′ can be transformed into a trim
VCSP instance C that is sign-equivalent to C′.

1083

Kaznatcheev, Cohen, & Jeavons

To prove Theorem 4.4 we now establish two propositions: Proposition 4.5 connects the
magnitude of constraints with their effect on fitness graphs, and Proposition 4.6 connects
the magnitude of constraints to sign-interaction.

Proposition 4.5 Given a simple binary Boolean VCSP instance C implementing a fitness
function f , if removing the constraint Cij changes the corresponding fitness graph, then for
at least one k ∈ {i, j} there exists some x ∈ {0, 1}n with xi = xj = 1 such that:

cij ≥ f(x)− f(x[k 7→ 0]) > 0 or cij ≤ f(x)− f(x[k 7→ 0]) < 0 (6)

Proof: Without loss of generality (by swapping i and j in the variable numbering if neces-
sary), we can suppose that k = i. Consider two cases:

Case 1 (cij > 0): If removing Cij changes the fitness graph, then there exists some x ∈
{0, 1}n with xi = xj = 1 such that:

f(x) > f(x[i 7→ 0]) but f(x)− cij ≤ f(x[i 7→ 0]). (7)

We can re-arrange Equation 7 to get cij ≥ f(x)− f(x[i 7→ 0]) > 0.

Case 2 (cij < 0): This is the same as case 1, except that the direction of the inequalities
in Equation 7 are reversed.

Proposition 4.6 Given a simple binary Boolean VCSP instance C implementing a fitness
function f , if there exists a constraint Cij in C, some assignment x ∈ {0, 1}n with xi =
xj = 1, and some k ∈ {i, j} such that:

cij ≥ f(x)− f(x[k 7→ 0]) > 0 or cij ≤ f(x)− f(x[k 7→ 0]) < 0 (8)

then i sign-depends on j in the associated fitness graph GC.

Proof: As in the proof of Proposition 4.5, we can suppose that k = i (by swapping i and
j in the variable numbering if necessary). Also, as in the proof of Proposition 4.5, the case
for cij < 0 is symmetric (by flipping the direction of inequalities) to cij > 0. Thus, we will
just consider the case where k = i and cij > 0.

Given that Equation 8 tells us that f(x) > f(x[i 7→ 0]) (i.e., that (x[i 7→ 0], x) ∈ E(GC)),
to establish that i sign-depends on j per Definition 4.2, we need to show that f(x[j 7→ 0]) ≤
f(x[i 7→ 0, j 7→ 0]) (i.e., that (x[i 7→ 0, j 7→ 0], x[j 7→ 0]) 6∈ E(GC)). So, let us look at the
difference of the latter:

f(x[j 7→ 0])− f(x[i 7→ 0, j 7→ 0]) = f(x)− f(x[i 7→ 0])− cij ≤ 0

where the equality follows from Definition 2.2 (C implements f) and Definition 3.3 (C is
simple), and the inequality follows from the first part of Equation 8.

Proof: [of Theorem 4.4] Note that Equations 6 and 8 specify the same conditions, hence the
negation of this condition can be used to glue together the contrapositives of Proposition 4.6
(if i and j are sign-independent then Equation 6 does not hold) and Proposition 4.5 (if Equa-
tion 8 does not hold then C ′ij can be removed from C′ without changing the corresponding

1084

Representing Fitness Landscapes by Valued Constraints

fitness graph). So we can convert C′ to a trim VCSP instance that is sign-equivalent to C′
by simply removing all C ′ij ∈ C′ where i and j are sign-independent in the associated fitness
graph GC′ .

The next result is the sign-equivalence analog of Theorem 3.5. It shows that a trim VCSP
instance has the minimal constraint graph of any binary instance with the same associated
fitness graph.

Theorem 4.7 Let C be a trim binary Boolean VCSP instance. If the binary Boolean VCSP
instance C′ is sign-equivalent to C, then E(C) ⊆ E(C′).

To prove Theorem 4.7, we just need to show that constraints between sign-interacting
positions cannot be removed while preserving sign-equivalence. That is, we just need the
following proposition:

Proposition 4.8 Let C be a binary Boolean VCSP instance with associated fitness graph
GC. If i, j sign-interact in GC, then the constraint Cij in C is non-zero.

Proof: Without loss of generality, assume that i < j and we have an edge in GC from
x[i 7→ xi] to x. Thus, the fitness function f implemented by C must satisfy the following
two inequalities:

f(x) > f(x[i 7→ xi]) and f(x[j 7→ xj]) ≤ f(x[i 7→ xi, j 7→ xj]) (9)

Define gi(x) = Ci(xi) +
∑

k∈NC(i)\{j}Cik(xi, xk) and similarly for gj . Also let Kij(x) be the
part of f independent of xi, xj : i.e., f(x) = Kij(x) + gi(x) + gj(x) + Cij(xi, xj). Rewriting
(and simplifying) the two parts of Equation 9, we get:

gi(x) + Cij(xi, xj) > gi(x[i 7→ xi]) + Cij(xi, xj)

gi(x) + Cij(xi, xj) ≤ gi(x[i 7→ xi]) + Cij(xi, xj)

These equations can be rotated to sandwich the gi terms:

Cij(xi, xj)− Cij(xi, xj) > gi(x[i 7→ xi])− gi(x) ≥ Cij(xi, xj)− Cij(xi, xj)

which simplifies to Cij(xi, xj)−Cij(xi, xj) > Cij(xi, xj)−Cij(xi, xj) and – due to the strict
inequality – establishes that Cij is non-zero.

Our next result shows that the signs of the constraint weights on this minimal constraint
graph are preserved across all simple VCSPs with the same fitness graph. This gives another
motivation for calling these representations sign-equivalent.

Proposition 4.9 Let C be a simple trim binary Boolean VCSP instance. If the simple
binary Boolean VCSP instance C′ is sign-equivalent to C, then

1. for all i ∈ [n] we have that sgn(ci) = sgn(c′i); and

2. for all {i, j} ∈ E(C) we have that sgn(cij) = sgn(c′ij).

1085

Kaznatcheev, Cohen, & Jeavons

Proof: For (1), let ei ∈ {0, 1}n be the variable assignment that sets the ith variable to one,
and all other variables to zero, and let fC be the fitness function implemented by C. Note
that ci = fC(ei) − fC(0

n) and c′i = fC′(ei) − fC′(0
n). Since C and C′ are sign-equivalent,

sgn(fC(ei)− fC(0
n)) = sgn(fC′(ei)− fC′(0

n)). Hence, sgn(ci) = sgn(c′i).

For (2), assume for contradiction that cij = a and c′ij = −b for some positive integer
a and non-negative integer b (repeat this argument with −a and b for the other case).
Note that the sum of two sign-equivalent VCSP instances is sign-equivalent to both, so
C ′′ = bC + aC′ is sign-equivalent to C. But c′′ij = ba − ab = 0 so {i, j} 6∈ E(C′′). Since C is
trim, this contradicts Theorem 4.7. Hence, sgn(cij) = sgn(c′ij).

However, unlike with magnitude-equivalence, it is NP-hard to determine a minimal sign-
equivalent VCSP instance, as the next result shows:

Theorem 4.10 Let C be a simple binary Boolean VCSP instance with associated fitness
graph GC. The problem of deciding whether i, j sign-interact in GC is NP-complete.

Proof: To show that this problem is in NP, we observe that we can provide a variable
assignment x as a certificate and check that under that variable assignment either i sign-
depends on j or j sign-depends on i (or both).

We will establish NP-hardness by reduction from the SubsetSum problem, which is
known to be NP-complete (Garey & Johnson, 1979): A set of integers {s1, . . . , sn} and a
target t is a yes-instance of the SubsetSum problem if there exists some subset S ⊆ [n]
such that

∑
i∈S si = t.

Now consider a simple binary Boolean VCSP instance C on n+ 2 variables, that imple-
ments fitness function f and has associated fitness graph GC , whose constraint graph has
the shape of a star, with variable n + 2 at the centre (see Figure 2).

Figure 2: Binary VCSP instance used in the proof of Theorem 4.10

1086

Representing Fitness Landscapes by Valued Constraints

The constraints of C are given by:

• unary constraints Ci =

(
0
1

)
for all i ≤ n + 1 and Cn+2 =

(
0

−(3t + 1)

)
;

• binary constraints Ci,n+2 =

(
0 0
0 3si

)
between the central variable n + 2 and variable

i, for 1 ≤ i ≤ n; and

• binary constraint Cn+1,n+2 =

(
0 0
0 2

)
between variables n + 1 and n + 2.

Claim: 〈{s1, . . . , sn}, t〉 is a yes-instance of SubsetSum if and only if n + 1 and n + 2
sign-interact.

We clearly have that for all x ∈ {0, 1}n+2, f(x[n + 1 7→ 1]) > f(x[n + 1 7→ 0]), so
n + 1 does not sign-depend on n + 2. Thus our claim becomes equivalent to verifying the
conditions under which n + 2 sign-depends on n + 1. Let’s look at the two directions of the
if and only if in the claim:

Case 1 (⇒): If 〈{s1, . . . , sn}, t〉 ∈ SubsetSum, then there is a subset S ⊆ [n] such that∑
i∈S si = t. Let eS ∈ {0, 1}n be the variable assignment such that for any i ∈ S,

eS [i] = 1 and for any j 6∈ S, eS [j] = 0. We have that:

f(eS01) = |S| − 1 f(eS11) = |S|+ 2

f(eS00) = |S| f(eS10) = |S|+ 1

By Equation 5, these imply that n + 2 sign-depends on n + 1.

Case 2 (⇐): If 〈{s1, . . . , sn}, t〉 6∈ SubsetSum, then for any S ⊆ [n] we either have∑
i∈S si ≤ t− 1 or

∑
i∈S si ≥ t + 1. Thus, given an arbitrary assignment eS ∈ {0, 1}:

If
∑
i∈S

si ≤ t− 1 then: Or, if
∑
i∈S

si ≥ t + 1 then:

f(eS01)− f(eS00) ≤ −4 f(eS01)− f(eS00) ≥ 2

f(eS11)− f(eS10) ≤ −2 f(eS11)− f(eS10) ≥ 4

In either subcase, sgn(f(eS01)−f(eS00)) = sgn(f(eS11)−f(eS10)), so by Equation 5,
n + 2 does not sign-depend on n + 1.

5. Span

In this section we show that a simple function of the numerical values of the constraints
in a VCSP instance provides an upper bound on the length of the longest directed path in
the associated fitness graph, and hence a bound on the number of steps taken by any local
search algorithm.

1087

Kaznatcheev, Cohen, & Jeavons

Definition 5.1 Given a VCSP instance C over domain D[n], define

span(C) =
∑
CS∈C

(
max
z∈DS

CS(z)− min
z∈DS

CS(z)

)
.

Proposition 5.2 Given any VCSP instance C, the length of the longest directed path in
the associated fitness graph GC is less than or equal to span(C).

Proof: The maximum value of the fitness function f implemented by C cannot exceed the
sum of the largest fitness values assigned by each constraint. Similarly, the minimum value
of f cannot be less than the sum of the smallest fitness values assigned by each constraint.
The difference between these bounds is precisely span(C). Since we have defined a VCSP
instance, and hence the associated fitness function f , to be integer-valued, each directed
edge in the fitness graph increases fitness by at least one, so there can be at most span(C)
many such steps in any path.

Although the span of a VCSP instance always provides an upper bound on the length of
the longest ascent in the associated fitness landscape, in general this bound is not tight, as
the following simple example shows:

Example 5.3 Consider the unary VCSP instance C = {Ci =

(
0
2i

)
| i = 1 . . . n}.

The longest directed path in the associated fitness graph GC is of length n, but span(C) =
2n+1 − 1.

To avoid such a large discrepancy between the longest path in the fitness graph and the
span, and hence obtain a tighter bound, we can look for sign-equivalent VCSP instances
that have a minimal span.

Example 5.4 In the case of Example 5.3, a sign-equivalent minimal-span VCSP instance

is given by C′ = {Ci =

(
0
1

)
| i = 1 . . . n}, which has span(C′) = n – giving us a tight bound

on the length of the longest improving path.

Finding a sign-equivalent instance with the smallest possible span may not always be
straightforward. However, for simple binary Boolean VCSP instances the span is just the
sum of the absolute values of the constraint weights. Hence, for any binary Boolean VCSP
instance we can compute the minimal span of a sign-equivalent simple binary Boolean
instance by solving an integer linear program over the constraint weights.

Before describing this linear program, we show that restricting the search for sign-
equivalent instances to simple trim instances only changes the minimal span that can be
obtained by a small constant factor.

Theorem 5.5 For any binary Boolean VCSP instance C′, there exists a sign-equivalent
simple trim binary Boolean VCSP instance C such that span(C) ≤ 4 span(C′).

We establish Theorem 5.5 by showing that if we start with an arbitrary binary Boolean
VCSP instance C′ and transform it to a simple, trim, sign-equivalent VCSP C, as described
in the previous sections, then that will increase the span by at most a factor of 4. This
proceeds by two steps:

1088

Representing Fitness Landscapes by Valued Constraints

Proposition 5.6 Any binary Boolean VCSP instance C′ can be transformed into a simple
VCSP instance C that is magnitude-equivalent to C′ with span(C) ≤ 4 span(C′).

Proof: Let us decompose the span of C into the contribution due to unary constraints
(span1) and binary constraints (span2):

span(C) =

span1(C)︷ ︸︸ ︷∑
i∈[n]

|ci|+

span2(C)︷ ︸︸ ︷∑
{i,j}∈E(C)

|cij |

Using Equation 3 from the proof of Theorem 3.4, we can express |ci| in terms of C′ as:

|ci| = | C ′i(1)− C ′i(0) +
∑

j | {i,j}∈E(C′)

C ′ij(1, 0)− C ′ij(0, 0]) |

≤ | C ′i(1)− C ′i(0) | +
∑

j | {i,j}∈E(C′)

| C ′ij(1, 0)− C ′ij(0, 0) |

≤ span({C ′i}) + span({C ′ij | j ∈ NC′(i)}) (10)

Notice that the first span in Equation 10 is of the unary constraint in C′ that has i as
its scope, and the second span is of all binary constraints in C′ that have i in scope (or,
equivalently: span of all edges incident on i in the constraint graph of C′). This means that
if we sum |ci| over all i ∈ [n] then we cover the whole graph:

span1(C) =
n∑

i=1

|ci| ≤
n∑

i=1

span({C ′i}) +
n∑

i=1

span({C ′ij | j ∈ NC′(i)})

= span1(C′) + 2 span2(C′) (11)

≤ 2 span(C′) (12)

where Equation 11 has a double cover in its second summand because each edge in the
constraint graph of C′ has two end points (equivalently: all scopes are binary).

Similarly, using Equation 4 from the proof of Theorem 3.4, we can also express |cij | in
terms of C′ as:

|cij | = |C ′ij(0, 0)− C ′ij(0, 1)− C ′ij(1, 0) + C ′ij(1, 1) |
≤ | C ′ij(1, 1)− C ′{i,j}(1, 0) |+ | C ′ij(0, 0)− C ′ij(0, 1) |

≤ 2 span({C ′ij})

As before, if we sum |cij | over all {i, j} ∈ E(C) then we cover the whole graph:

span2(C) =
∑

{i,j}∈E(C)

|cij | ≤ 2
∑

{i,j}∈E(C′)

span({C ′ij}) ≤ 2 span2(C′) (13)

where for the last inequality we moved from summing over {i, j} ∈ E(C) to {i, j} ∈ E(C′)
because E(C) ⊆ E(C′) by Theorem 3.5. Combining Equations 12 and 13, we get the final
result that span(C) = span1(C) + span2(C) ≤ 4 span(C′).

Note that Proposition 5.6 is the best possible, as the following example shows:

1089

Kaznatcheev, Cohen, & Jeavons

Figure 3: VCSP instances with differing span that implement the same fitness function

Example 5.7 The two VCSP instances shown in Figure 3 are magnitude-equivalent. The
instance in Figure 3a has a span of 1 and the simple instance in Figure 3b has a span of
1 + 2 + 1 = 4. Thus, sometimes the simplifying procedure from Section 3 can increase span
by a factor of 4.

In contrast, the trimming procedure from Section 4 can only decrease span:

Proposition 5.8 For any simple binary Boolean VCSP instance C′, there exists a sign-
equivalent simple trim binary Boolean VCSP instance C such that span(C) ≤ span(C′)

Proof: The trimming procedure from Section 4 removes constraints but doesn’t change any
remaining ones.

Combining Propositions 5.6 and 5.8, establishes Theorem 5.5.

Theorem 5.5 implies that, in the binary Boolean case, restricting our search for a
minimal-span sign-equivalent instance to simple trim instances will only increase the span
obtained by a factor of at most four. Hence, given any binary Boolean VCSP instance C, we
will formulate the problem of finding a minimal-span sign-equivalent instance as an optimi-
sation problem over the weights of a simple binary Boolean instance on the same constraint
graph. This will considerably simplify the search procedure, compared with searching for
an arbitrary minimal-span sign-equivalent instance.

Given a simple trim binary Boolean VCSP instance, C, it follows from Proposition 4.9
that any sign-equivalent simple instance must preserve the signs of each of the constraint
weights. Moreover, the values of these weights must satisfy a collection of linear inequalities,
to ensure that the edges of the fitness graph are preserved, as indicated in Equation 6.
Each of these inequalities constrains the weights of constraints with scopes including a
particular variable. We therefore have the optimisation problem given in Definition 5.10,
which involves linear inequality and equality constraints of the following forms:

Definition 5.9 Given two sets of variables L and R, let ≤+k [L,R] be a constraint of arity
|L|+ |R| that is satisfied when k +

∑
x∈L x ≤

∑
y∈R y. Call L the left side of the constraint

and R the right side. Similarly, define =+k [L,R] as above but with ≤ replaced by =.

Using these two constraint types, we can now define the span-minimisation problem for
binary Boolean VCSP instances as follows:

1090

Representing Fitness Landscapes by Valued Constraints

Definition 5.10 Given a simple binary Boolean VCSP instance C on n variables (with a
constraint graph that has neighbourhood function N : [n] → 2[n]), the corresponding span-
minimisation problem for C has a set of variables V , each with domain N, where:

V = {pi | Ci ∈ C} ∪ {p{i,j} | Cij ∈ C}.

Divide the set V into two sets V+, V− with pi ∈ V+ or p{i,j} ∈ V+ if ci > 0 or cij > 0 and
otherwise pi ∈ V− or p{i,j} ∈ V− if ci < 0 or cij < 0.

For each variable i ∈ [n] of C, introduce 2|N(i)| linear constraints, one for each Y ⊆
{p{i,j} | j ∈ N(i)}, depending on the sign of s = ci +

∑
j∈Y cij:

• If s < 0 then add the constraint ≤+1 [(Y ∪ {pi}) ∩ V+, (Y ∪ {pi}) ∩ V−], else

• If s = 0 then add the constraint =+0 [(Y ∪ {pi}) ∩ V+, (Y ∪ {pi}) ∩ V−], else

• If s > 0 then add the constraint ≤+1 [(Y ∪ {pi}) ∩ V−, (Y ∪ {pi}) ∩ V+].

A feasible solution to this span-minimisation problem is an assignment of values to the
variables in V that satisfies all the constraints. A feasible solution is optimal if it minimises
the sum of the assigned values.

Note that there is at least one feasible solution to the span-minimisation problem for C
given by pi = |ci| and p{i,j} = |cij | (i.e., the absolute values of the weights of the original
simple VCSP constraints).

Example 5.11 (Unary instances have linear minimal span) For any unary Boolean
VCSP instance with n variables, the span-minimisation problem only has inequalities of the
form 1 ≤ pi. Hence an optimal solution sets each pi to 1, so the corresponding minimal-span
sign-equivalent instance has each ci equal to 1 or −1, and so has span n. This is precisely
the length of the longest improving path, as illustrated in Example 5.4.

Example 5.12 (Degree 2 binary instances have quadratic minimal span) Consider
the binary Boolean VCSP instance on 8 variables shown in Figure 4a, where the constraint
graph is a cycle. The span of this instance is quite large, but if we convert to a simple in-
stance, and then solve the span-minimisation problem, we obtain a sign-equivalent instance
with a much smaller span, as shown in Figure 4b.

In general, by analysing the structure of the inequalities in Definition 5.10, it can be
shown that for any binary Boolean VCSP instance whose constraint graph has maximum
degree 2 (e.g., a cycle) the weights of a minimal-span sign-equivalent simple instance can
grow only linearly with the number of variables, and hence the span and longest improving
path in the associated fitness graph can grow only quadratically at most. For a full analysis,
see Section 5.1.1 of Kaznatcheev (2020a).

Unfortunately, span arguments like the one above cannot be used to obtain tight bounds
for all binary Boolean VCSP instances, as we show with the following example of a VCSP
with only short improving paths but exponential minimal span.

1091

Kaznatcheev, Cohen, & Jeavons

(a) Original with span of 756 (b) Minimised span of 34

Figure 4: Two sign-equivalent binary Boolean VCSP instances of different span

Figure 5: A family of tree-structured simple binary Boolean VCSP instances

Example 5.13 (Large span in tree-structured constraint graph) Consider the fam-
ily of binary Boolean VCSP instances on 3K +2 variables illustrated in Figure 5, where the
constraint graph of each instance is a tree. Solving the span-minimisation problem shows
that the weight values cannot be reduced any further without changing the fitness graph,
hence all such instances are span-minimal.

The span of each such instance is 3(2K+2 − 5K − 9), and hence grows exponentially
with the number of variables. However, the longest improving path in the associated fitness
graph grows only quadratically with the number of variables (Theorem 6.1).

In the next section, we will show that for any binary Boolean VCSP instance whose
constraint graph is a tree (like Example 5.13), the longest improving path in the associated
fitness graph is bounded by a quadratic function of the number of variables. This analysis
will require us to develop more sophisticated techniques than simply computing the span.

6. Tree-Structured Boolean VCSP Instances

In this section, we will prove the following:

Theorem 6.1 For any binary Boolean VCSP instance C on n variables, if the constraint-
graph of C is a tree, then any directed path in the associated fitness graph GC has length at
most

(
n
2

)
+ n.

1092

Representing Fitness Landscapes by Valued Constraints

Note that this result bounds the length of any directed path in GC , not just the path taken
by a particular local-search algorithm. Thus, on such landscapes even choosing the worst
possible sequence of improving moves results in a local optimum being found in polynomial
time.

We will show in Section 7 that being Boolean and tree-structured are both essential con-
ditions to obtain a polynomial bound on the length of all improving paths in the associated
fitness graph.

To see that the bound in Theorem 6.1 is the best possible for binary Boolean tree-
structured VCSP instances, consider the path-structured VCSP instance on n variables
described in Example 6.2.

Example 6.2 (Path of length
(
n
2

)
+ n) Consider the binary Boolean VCSP instance on

n variables illustrated in Figure 6, where the constraint graph is a path, and the constraint

on each edge {i, i + 1} is

(
i 0
0 i

)
.

Figure 6: A binary Boolean VCSP instance with an improving path of length
(
n
2

)
+ n in

the associated fitness graph

To obtain an improving path of length
(
n
2

)
+n in the corresponding fitness graph, consider

an initial variable assignment of x = (10)
n
2 if n is even and x = (10)

n−1
2 1 if n is odd, and

always select the leftmost variable that is able to flip. This will increase the fitness by 1 at
each step, starting from 0 to n(n+1)

2 .

For example, when n = 4, this gives the following sequence of eleven assignments, each
of which increases the value of the fitness function by one:

1010→0010→0110→1110→1100→1000→0000→0001→0011→0111→1111 (14)

For the proof of Theorem 6.1, we introduce some further definitions.

Definition 6.3 Given any directed path p = x1 . . . xt . . . xT in a fitness graph G, where each
xt is a Boolean assignment, define the flip function m at time t as follows: m(t) = (i 7→ b)
where xt+1 ⊕ xt = ei and b = xt+1

i (i.e., the i-th variable is flipped at time t to value b).

For illustration, consider the sequence of moves listed in Equation 14 of Example 6.2. It
corresponds to the following flip function:

t 1 2 3 4 5 6 7 8 9 10

m(t) 1 7→ 0 2 7→ 1 1 7→ 1 3 7→ 0 2 7→ 0 1 7→ 0 4 7→ 1 3 7→ 1 2 7→ 1 1 7→ 1

1093

Kaznatcheev, Cohen, & Jeavons

To obtain the bound on the length of all paths in a fitness graph given by Theorem 6.1,
we will identify conditions on any possible flip function, and hence bound the maximum
possible value for T .

Definition 6.4 Given any fitness function f on Boolean assignments, define the gain
function for value b in position i of an assignment x as follows:

gain(x, i, b) = f(x[i 7→ b])− f(x[i 7→ b]).

Definition 6.5 We say that a flip m(t′) = (j 7→ c) supports a flip m(t) = (i 7→ b) if

gain(xt
′
[j 7→ c], i, b) > 0 ≥ gain(xt

′
[j 7→ c], i, b) (15)

and t′ < t. If xtj = c, then the support is said to be strong.

It is useful to note that the inequality in Equation 15 implies that position i sign-depends
on position j and also means that Cij(b, c)−Cij(b, c) > Cij(b, c)−Cij(b, c). This inequality
on Cij is symmetric in the sense that:

Cij(b, c)− Cij(b, c) > Cij(b, c)− Cij(b, c)

⇔ Cij(b, c)− Cij(b, c) > Cij(b, c)− Cij(b, c)

⇔ Cji(c, b)− Cji(c, b) > Cji(c, b)− Cji(c, b)

(16)

Definition 6.6 We say that a flip m(t′) = (j 7→ c) encourages a flip m(t) = (i 7→ b), and
write (t′, j 7→ c) ⇐ (t, i 7→ b), if m(t′) is the most recent flip that strongly supports m(t).
If there are no flips that encourage m(t), then we say that m(t) is courageous, and write
⊥ ⇐ (t, i 7→ b).

For illustration, consider the sequence of moves listed in Equation 14 of Example 6.2. It
corresponds to the following encouragement relation:

⊥ ⇐ (1, 1 7→ 0),

⊥ ⇐ (2, 2 7→ 1)⇐ (3, 1 7→ 1),

⊥ ⇐ (4, 3 7→ 0)⇐ (5, 2 7→ 0)⇐ (6, 1 7→ 0),

⊥ ⇐ (7, 4 7→ 1)⇐ (8, 3 7→ 1)⇐ (9, 2 7→ 1)⇐ (10, 1 7→ 1)

Note that for any path p = x1 . . . xt . . . xT in a fitness graph, the value of the associated
fitness function f must strictly increase at each step, so if m(t) = (i 7→ b) then f(xt[i 7→
b]) > f(xt[i 7→ b]).

Proposition 6.7 If (t1, j 7→ c)⇐ (t2, i 7→ b) (or if ⊥ ⇐ (t2, i 7→ b), set t1 = 0) then for all
t with t1 < t ≤ t2 we have gain(xt, i, b) > 0.

Proof: Since m(t2) = (i 7→ b), we have that gain(xt2 , i, b) > 0.

Now assume, for contradiction, that for some t0 with t1 < t0 < t2 we have gain(xt0 , i, b) ≤ 0.

1094

Representing Fitness Landscapes by Valued Constraints

In order to change the assignment xt0 so that gain(xt2 , i, b) > 0, there must be at least
one flip m(t′) for some value of t′ with t0 < t′ < t2 which increases the value of the gain
function at xt2 above zero, and hence strongly supports m(t2).

Hence m(t1) is not the most recent flip that satisfies the conditions in Definition 6.6,
which contradicts the assertion that (t1, j 7→ c)⇐ (t2, i 7→ b).

By Definition 6.6, each flip can only be encouraged by at most one other flip, that occurs
earlier in time, so each node in the graph of the encouragement relation has out-degree at
most one, and is acyclic. Directed acyclic graphs where each vertex has at most one parent
are forests, so the encouragement graph is a forest. This forest has a component for each
courageous flip, and we will now show that there are at most n of these:

Proposition 6.8 At each variable position i, only the first flip can be courageous.

Proof: Consider a courageous flip ⊥ ⇐ (t, i 7→ b), by Proposition 6.7, we know that for all
t′ < t, gain(xt, i, b) > 0. Thus, there is no time t′ ≤ t such that i could have flipped to b:
hence i was always at b for t′ ≤ t. So the courageous flip had to be the first flip at that
position.

We will now prove that an encouragement tree cannot double-back on itself in position
(Proposition 6.9), and that every branch is a branch in position (Proposition 6.10). When
the constraint graph is itself a tree, this will imply that each tree in the encouragement
forest is a sub-tree of the constraint graph.

Proposition 6.9 If (t1, i 7→ a)⇐ (t2, j 7→ b)⇐ (t3, k 7→ c), then i 6= k

Proof: Since (t1, i 7→ a) encourages (t2, j 7→ b), we have xt2i = a. If, for the sake of
contradiction, we assume that i = k then a = c (because if we had c = a then the two en-
couragements would force a contradiction via clashing Equations 16) and by Proposition 6.7:
gain(xt, i, a) > 0 for all t2 < t ≤ t3. But this means that i cannot be flipped to a in this
interval, and thus m(t3) = (i 7→ a) is not a legal flip. This is a contradiction and so i 6= k.

Proposition 6.10 For all i, j and t1 < t2 ≤ t3, if (t1, i 7→ a)⇐ (t2, j 7→ b) and
(t1, i 7→ a)⇐ (t3, j 7→ c), then t2 = t3.

Proof: From Proposition 6.7, we can see that for all t′ ∈ [t1 + 1, t3], gain(xt
′
, j, c) > 0, so

b = c and j couldn’t have flipped from c to c between t2 and t3. Thus, for (t2, j 7→ c) to be
a legal flip, we must have t2 = t3.

Now, if we trace back along the arrows of the encouragement relation, then each flip in the
path p is the start of a path of encouraged-by links that ends at one of the n courageous
flips.

One final case to exclude is that there might be two encouragement paths that go in the
opposite direction over the same positions. This cannot happen:

Proposition 6.11 Having both of the following encouragement paths is impossible:

⊥ ⇐ (t1, i1 7→ b1)⇐ (t2, i2 7→ b2) ⇐ · · · ⇐ (tm, im 7→ bm)

⊥ ⇐ (sm, im 7→ cm)⇐ (sm−1, im−1 7→ cm−1) ⇐ · · · ⇐ (s1, i1 7→ c1)

1095

Kaznatcheev, Cohen, & Jeavons

Proof: Without loss of generality (by relabeling), we can assume that t1 < s1. We can
extend this with the following claim:

Claim: If tk < sk then tk+1 < sk+1

Since (tk, ik 7→ bk)⇐ (tk+1, ik+1 7→ bk+1), we have, for all t ∈ [tk + 1, tk+1], xt[ik] = bk.
Thus we can’t have ik flipping in that interval, so sk > tk+1.

But now look at (sk+1, ik+1 7→ ck+1) ⇐ (sk, ik 7→ ck). This shows that we also have,
for all t′ ∈ [sk+1 + 1, sk], xt

′
[ik+1] = ck+1. So for both flips at ik+1 to happen, we need

sk+1 > tk+1.

Applying the claim repeatedly gets us tm < sm. But this means that im flipped before
m(sm), so by Proposition 6.8, (sm, im 7→ cm) could not have been courageous.

This means that it is sufficient to simply count the number of undirected paths in the
encouragement trees. We now pull all the results together to complete the proof.

Proof: [of Theorem 6.1] Consider any directed path P in the fitness graph, and its cor-
responding flip function m. By the completeness of Definition 6.6, we know that every flip
must have been either courageous or encouraged.

Any encouraged flip is the end-point of a unique (non-zero length) path in the graph of
the encouragement relation, starting from some courageous flip, and hence of some path in
the constraint graph (where Proposition 6.9 established that they’re encouragement paths,
not walks; and Proposition 6.10 established that the encouragement paths are uniquely
determined by the sequence of variable positions that they pass through.) From Proposi-
tion 6.11, we know that there cannot be two encouragement paths that traverse the same
positions but in opposite directions. Thus, there can only be as many non-zero-length en-
couragement paths as undirected paths in our constraint graph. Since our constraint graph
is a tree, an undirected non-zero length path is uniquely determined by its pair of endpoints.
Thus, there are at most

(
n
2

)
of these paths.

From Proposition 6.8, there are at most n courageous flips (encouragement paths of
length 0). Thus, our path P must have length at most n +

(
n
2

)
.

7. Long Paths in Landscapes with Simple Constraint Graphs

In this section we show that the conditions in Theorem 6.1 are essential. We exhibit binary
VCSP instances with very simple constraint graphs where the associated fitness graphs have
exponentially-long directed paths, and hence the performance of local search algorithms on
the associated fitness landscapes might be extremely poor.

Example 7.1 (Domain size 3) Consider the family of binary VCSP instances on n + 1
variables with domain {0, 1,B} illustrated in Figure 7, where the constraint graph of each
instance is a path, and all constraints are defined by matrices of the form:

3i

1 2 3
2 3 1
3 1 2

1096

Representing Fitness Landscapes by Valued Constraints

Figure 7: A family of binary VCSP instances over domain size 3

Even though the constraint graph of each instance is just a path of length n, we now
show that the corresponding fitness graph, contains a directed path whose length grows
exponentially in n.

Notice that given two natural numbers M,M ′ < 2n, written in binary as xM , xM
′ ∈

{0, 1}n (with the most significant bit on the left and the least significant bit on the right),
we have that if M ′ > M then f(xM

′
) > f(xM). Thus, counting up in binary from 0n+1 to

01n is monotonically increasing in fitness. However, xM+1 is often more than a single flip
away from xM (consider the transition from xM = 01n for an extreme example). We handle
these multi-flip cases with our third domain value, B, as follows: (1) given xM = y01k for
some y ∈ {0, 1}n−k, we proceed to replace the 1s in the right-most block of 1s by B, starting
from xMk and moving to the right; (2) from y0Bk we can take a 1-flip to y1Bk (regardless
of whether y ends with 0 or 1); (3) from x′ = y1Bk, we replace the Bs by 0s, starting from
the rightmost B (i.e., x′1) and moving to the left. Each of these individual 1-flips increases
the overall fitness, since the fitness gain due to the constraint to the left is greater than the
fitness loss due to the constraint on the right (where there is one).

This lets our sequence of moves count in binary from 0n+1 to 01n, while using extra
steps with Bs to make sure all transitions are improving 1-flips; thus, this directed path in
the fitness graph has a length greater than 2n.

Note that although the fitness graphs corresponding to Example 7.1 have long improving
paths, standard local search algorithms would be unlikely to follow these paths. However,
with careful padding, Example 7.1 has been converted to a family of Boolean VCSP in-
stances of treewidth 7 where even a popular local search algorithm like steepest ascent
will follow an exponentially long improving path (Cohen, Cooper, Kaznatcheev, & Wallace,
2020).

Our final example is a family of binary Boolean VCSP instances where the constraint
graph of each instance has tree-width two and maximum degree three, but the associated
fitness graph contains an exponentially long directed path. This example is a simplified and
corrected version of a similar example for the Max-Cut problem, described by Monien and
Tscheuschner (2010). Note, however, that by allowing general valued constraints, instead
of just Max-Cut constraints, we are able to reduce the required maximum degree from
four to three.

Example 7.2 (Tree-width 2) Consider a family of binary Boolean VCSP instances with
n = 4K+1 variables. For each instance the constraint graph contains a sequence of disjoint
cycles of length four, linked together by a single additional edge joining each consecutive
pair of cycles. The i-th cycle (for 0 ≤ i ≤ K − 1) has the constraints illustrated in Figure 8
(where the wi values are defined recursively with w0 = 0).

1097

Kaznatcheev, Cohen, & Jeavons

Figure 8: A single cycle from the family of binary Boolean VCSP instances defined in
Example 7.2

Figure 9: The family of binary Boolean VCSP instances defined in Example 7.2

The final cycle is replaced by a single variable n with unary constraint

(
1
−wK

)
. Hence

the constraint graph of any instance has maximum degree three and treewidth two as
illustrated in Figure 9

To begin the long path all variables are assigned 0, except xn = 1. The path will proceed
by always flipping variables in the smallest 4-cycle block possible.

Within each 4-cycle block, we number the variables anti-clockwise, from the top left, and
write the assignment to these 4 variables ordered by decreasing index as x4i+4x4i+3x4i+2x4i+1.
We will make the following transitions within each cycle: if x4(i+1)+1 = 1 then we’ll tran-
sition 0000 → 1000 → 1001 → 1101; if x4(i+1)+1 = 0 then we’ll transition 1101 → 0101 →
0100 → 0110 → 0010 → 0011 → 0001 → 0000. Every time that x4i+1 is flipped from 0 to
1 or vice versa, we’ll recurse to the (i − 1)th cycle. Because x4i+1 ends up flipping from
1 to 0 twice as often as x4(i+1)+1, this means that we double the number of flips in each
cycle. Variable n will flip once, from 1 to 0, due to the unary constraint, which will cause
x4(K−1)+1 to flip twice from 1 to 0, which will cause x4(K−2)+1 to flip four times from 1 to

0, and so on, until eventually this will cause x1 to flip 2K times from 1 to 0. Hence we have
an improving path in the fitness graph of length greater than 2K .

1098

Representing Fitness Landscapes by Valued Constraints

8. Applications to Models of Biological Evolution

Focusing on the maximum length of improving paths in a fitness graph, rather than the
run-time of a particular local search algorithm, lets us use our results in settings where the
details of the local search algorithm are unknown or highly contingent.

The most notable example of this is in modelling biological evolution. In such models,
the value of the fitness function is interpreted as a measure of biological fitness (for ex-
ample, expected number of offspring) and each variable assignment represents the values
of the alleles at a sequence of genetic loci. The constraint graph can then be interpreted
as a gene-interaction network. This gene-interaction network representation of biological
fitness landscapes is similar to, but more general than, classic biological models such as the
NK-model of fitness landscapes (Kauffman & Levin, 1987; Kauffman & Weinberger, 1989;
Kaznatcheev, 2019; Strimbu, 2019).

The notion of sign-interaction that is central to Section 4 is based on the biological idea
of sign-epistasis that is central to the analysis of evolutionary dynamics on fitness land-
scapes (Poelwijk, Kiviet, Weinreich, & Tans, 2007; Poelwijk, Sorin, Kiviet, & Tans, 2011;
Crona et al., 2013; Kaznatcheev, 2019). Our uniqueness results for minimal representations
of fitness landscapes and fitness graphs can be seen as a way to unambiguously answer
which loci have sign-epistasis and to represent the structure of that sign-epistasis.

The process of biological evolution is often viewed as some form of randomised uphill
climb in a given fitness landscape. However, the exact probability of any particular adaptive
mutation arising and fixing in a given population is often unknown (or even potentially un-
knowable in historic cases). Hence it is very helpful to be able to reason over wide classes of
local search algorithms, as we do here. By showing that for some kinds of fitness landscapes
all improving paths are short, we have shown that any such randomised algorithm will per-
form well on such landscapes, regardless of the exact probabilities of particular moves. For
example, we have shown that when the structure of the sign-epistasis is a tree, then evolu-
tion will always reach a local fitness peak in a small number of moves, whatever sequence
of improving moves is chosen.

This work has focused on bounding the worst-case complexity of local search algorithms.
Future work could identify further examples of fitness landscapes where local peaks can be
found efficiently by considering less restrictive measures such as randomised complexity.
For randomised complexity, it would be possible to relax the condition that moves must be
strictly improving (f(xt) < f(xt+1)) and consider the expected length of walks that include
neutral (f(xt) = f(xt+1)) or even deleterious steps (f(xt) < f(xt+1)). For worst-case
complexity, considering neighbourhoods larger than 1-flip can only increase the length of
the longest improving path. However, for randomised complexity it would also be possible
to consider the effects of larger neighbourhoods (corresponding to larger mutations), or
model the effects of recombination and sex.

In a different direction, it is known that there are classes of landscapes where locally op-
timal assignments cannot be found efficiently by any local search algorithm (Kaznatcheev,
2019). In such cases the structure of the fitness graph can be viewed as an ultimate con-
straint, that prevents evolution from stabilizing at a local fitness peak (Kaznatcheev, 2019);
such cases will give rise to open-ended evolution. Identifying families of constraint graphs

1099

Kaznatcheev, Cohen, & Jeavons

that lead to intractable local search problems therefore corresponds to finding forms of
gene-interaction network that enable open-ended evolution.

Of course, by treating fitness as a scalar, fitness landscapes are themselves an idealization
of the rich multi-faceted concept of biological fitness. One direction for future work would
be to find representations similar to VCSPs but for the richer model of game landscapes
that account for frequency-dependent fitness (Kaznatcheev, 2020b).

9. Conclusion

In this paper, we have considered the broad class of fitness landscapes that can be modelled
by the combined effect of simple interactions of a few variables, where each of these inter-
actions is described by an arbitrary valued constraint. Modelling fitness landscapes in this
way allows us to classify them in new ways: for example by identifying a minimal constraint
graph, and then characterising properties of this constraint graph.

This work raises a number of immediate further questions:

1. How can we characterise the fitness landscapes that can be represented by VCSP in-
stances of each fixed arity? Since the results on magnitude-equivalence (Theorems 3.4
and 3.5) are based on representations of pseudo-boolean functions, they are easy to
generalise to higher arity. But generalising the results on sign-equivalence (Theo-
rems 4.4 and 4.7) to higher arity will require new techniques.

2. We have shown that when a family of fitness landscapes can be represented by binary
Boolean VCSP instances where the constraint graph has maximum degree 2, then the
minimal span of a sign-equivalent instance grows only polynomially (Example 5.12),
and hence finding a local optimum in the corresponding fitness landscapes by any
local search algorithm takes only polynomial time (Proposition 5.2).

Can this result be generalised to wider classes of landscapes? This may be difficult: we
have shown that even for landscapes representable by binary Boolean VCSP instances
with tree-structured constraint graphs, the minimal span may grow exponentially with
the number of variables (Example 5.13).

3. We have shown that when a family of fitness landscapes can be represented by binary
Boolean VCSP instances where the constraint graph is tree-structured, then finding a
local optimum in the corresponding fitness landscapes by any local search algorithm
takes only polynomial time (Theorem 6.1).

Can this result be generalised to wider classes of landscapes? This may be difficult: we
have shown examples over a slightly larger domain, or allowing slightly more general
constraint graphs, where some local search algorithms can take exponential time to
find a local optimum (Examples 7.1 and 7.2).

An alternative approach is to move away from considering just topological features of
constraint graphs and look at features of the valued constraints themselves. Restrict-
ing the kinds of constraints (for example, considering only constraints that are convex,
or sub-modular) could allow us to identify additional classes of VCSP instances that
are tractable for local search.

1100

Representing Fitness Landscapes by Valued Constraints

We believe that the tools for classifying fitness landscapes that we have begun to develop
here will allow considerable further progress, and may eventually help to shed more light
on the question of why local search algorithms can be extremely effective in practice, for
many kinds of optimisation problems.

Acknowledgments

David A. Cohen was supported by Leverhulme Trust Grant RPG-2018-161. Artem Kaz-
natcheev was supported by the Theory Division at the Department of Translational Hema-
tology and Oncology Research, Cleveland Clinic. An earlier version of some parts of this
paper was presented at the 25th International Conference on Principles and Practice of
Constraint Programming (Kaznatcheev, Cohen, & Jeavons, 2019).

References

Aaronson, S. (2006). Lower bounds for local search by quantum arguments. SIAM Journal
on Computing , 35 (4), 804–824.

Carbonnel, C., Romero, M., & Zivny, S. (2018). The complexity of general-valued CSPs seen
from the other side. In 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018 (pp. 236–246).

Chapdelaine, P., & Creignou, N. (2005). The complexity of Boolean constraint satisfaction
local search problems. Annals of Mathematics and Artificial Intelligence, 43 (1-4),
51–63.

Cohen, D. A., Cooper, M. C., Creed, P., Jeavons, P. G., & Zivny, S. (2013). An algebraic
theory of complexity for discrete optimization. SIAM Journal on Computing , 42 (5),
1915–1939.

Cohen, D. A., Cooper, M. C., Kaznatcheev, A., & Wallace, M. (2020). Steepest ascent
can be exponential in bounded treewidth problems. Operations Research Letters, 48 ,
217-224.

Cooper, M. C., De Givry, S., & Schiex, T. (2007). Optimal soft arc consistency. In Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence IJCAI’07
(pp. 68–73).

Crama, Y., & Hammer, P. (2011). Boolean functions: Theory, algorithms, and applications.
Cambridge University Press.

Crona, K., Greene, D., & Barlow, M. (2013). The peaks and geometry of fitness landscapes.
Journal of Theoretical Biology , 317 , 1-10.

de Visser, J., Park, S., & Krug, J. (2009). Exploring the effect of sex on empirical fitness
landscapes. The American Naturalist , 174 Supplement 1 , S15-30.

Färnqvist, T. (2012). Constraint optimization problems and bounded tree-width revisited.
In Integration of AI and OR techniques in contraint programming for combinatorial
optimzation problems CPAIOR (Vol. LNCS 7298, pp. 163–179). Springer.

Garey, M., & Johnson, D. (1979). Computers and intractability: A guide to the theory of
NP-completeness. San Francisco, CA.: Freeman.

Johnson, D., Papadimitriou, C., & Yannakakis, M. (1988). How easy is local search?
Journal of Computer and System Sciences, 37 , 79-100.

1101

Kaznatcheev, Cohen, & Jeavons

Kauffman, S., & Levin, S. (1987). Towards a general theory of adaptive walks on rugged
landscapes. Journal of Theoretical Biology , 128 , 11-45.

Kauffman, S., & Weinberger, E. (1989). The NK model of rugged fitness landscapes and
its application to maturation of the immune response. Journal of Theoretical Biology ,
141 , 211-245.

Kaznatcheev, A. (2019). Computational complexity as an ultimate constraint on evolution.
Genetics, 212 (1), 245–265.

Kaznatcheev, A. (2020a). Algorithmic Biology of Evolution and Ecology. University of
Oxford.

Kaznatcheev, A. (2020b). Evolution is exponentially more powerful with frequency-
dependent selection. bioRxiv . doi: 10.1101/2020.05.03.075069

Kaznatcheev, A., Cohen, D. A., & Jeavons, P. G. (2019). Representing fitness landscapes
by valued constraints to understand the complexity of local search. In T. Schiex &
S. de Givry (Eds.), International Conference on Principles and Practice of Constraint
Programming, CP 2019 (Vol. LNCS 11802, pp. 300–316). Springer.

Kolmogorov, V., & Zivny, S. (2013). The complexity of conservative valued CSPs. Journal
of the ACM , 60 (2), 10:1–10:38.

Llewellyn, D. C., Tovey, C. A., & Trick, M. A. (1989). Local optimization on graphs.
Discrete Applied Mathematics, 23 (2), 157–178.

Malan, K. M., & Engelbrecht, A. P. (2013). A survey of techniques for characterising fitness
landscapes and some possible ways forward. Information Sciences, 241 , 148 - 163.

Monien, B., & Tscheuschner, T. (2010). On the power of nodes of degree four in the local
max-cut problem. In T. Calamoneri & J. Diaz (Eds.), Algorithms and Complexity
(pp. 264–275). Springer Berlin Heidelberg.

Ochoa, G., & Veerapen, N. (2018). Mapping the global structure of TSP fitness landscapes.
Journal of Heuristics, 24 (3), 265–294.

Poelwijk, F., Kiviet, D., Weinreich, D., & Tans, S. (2007). Empirical fitness landscapes
reveal accessible evolutionary paths. Nature, 445 , 383-386.

Poelwijk, F., Sorin, T.-N., Kiviet, D., & Tans, S. (2011). Reciprocal sign epistasis is a nec-
essary condition for multi-peaked fitness landscapes. Journal of Theoretical Biology ,
272 , 141 – 144.

Schaffer, A., & Yannakakis, M. (1991). Simple local search problems that are hard to solve.
SIAM Journal on Computing , 20 (1), 56–87.

Strimbu, A. (2019). Simulating evolution on fitness landscapes represented by valued
constraint satisfaction problems. arXiv:1912.02134 .

Tayarani-Najaran, M., & Prügel-Bennett, A. (2014). On the landscape of combinatorial
optimization problems. IEEE Trans. Evolutionary Computation, 18 (3), 420–434.

Thapper, J., & Zivny, S. (2015). Necessary conditions for tractability of valued CSPs.
SIAM Journal on Discrete Mathematics, 29 (4), 2361–2384.

Thapper, J., & Zivny, S. (2016). The complexity of finite-valued CSPs. Journal of the
ACM , 63 (4), 37:1–37:33.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in
evolution. In Proc. of the 6th International Congress on Genetics (pp. 355–366).

1102

