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Abstract

Learning about many things can provide numerous benefits to a reinforcement learning
system. For example, learning many auxiliary value functions, in addition to optimizing
the environmental reward, appears to improve both exploration and representation learn-
ing. The question we tackle in this paper is how to sculpt the stream of experience—how
to adapt the learning system’s behavior—to optimize the learning of a collection of value
functions. A simple answer is to compute an intrinsic reward based on the statistics of each
auxiliary learner, and use reinforcement learning to maximize that intrinsic reward. Unfor-
tunately, implementing this simple idea has proven difficult, and thus has been the focus of
decades of study. It remains unclear which of the many possible measures of learning would
work well in a parallel learning setting where environmental reward is extremely sparse or
absent. In this paper, we investigate and compare different intrinsic reward mechanisms
in a new bandit-like parallel-learning testbed. We discuss the interaction between reward
and prediction learners and highlight the importance of introspective prediction learners:
those that increase their rate of learning when progress is possible, and decrease when it is
not. We provide a comprehensive empirical comparison of 14 different rewards, including
well-known ideas from reinforcement learning and active learning. Our results highlight a
simple but seemingly powerful principle: intrinsic rewards based on the amount of learning
can generate useful behavior, if each individual learner is introspective.

1. Balancing the Needs of Many Learners

Learning about many things can provide numerous benefits to a reinforcement learning
system. Adding many auxiliary losses to a deep learning system can act as a regularizer
on the representation, ultimately resulting in better final performance in reward maximiza-
tion problems, as demonstrated with Unreal (Jaderberg et al., 2016). A collection of value
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functions encoding goal-directed behaviors can be combined to generate new policies that
generalize to goals unseen during training (Schaul et al., 2015). Learning in hierarchical
robot-control problems can be improved with persistent exploration, given call-return ex-
ecution of a collection of subgoal policies or skills (Riedmiller et al., 2018), even if those
policies are imperfectly learned. In all these examples, a collection of general value functions
(see Sutton et al., 2011) is updated from a single stream of experience. The question we
tackle in this paper is how to sculpt that stream of experience—how to adapt the learning
system’s behavior—to optimize the learning of a collection of value functions.

One answer is to simply maximize the environmental (extrinsic) reward. This was the
approach explored in Unreal and it resulted in significant performance improvements in
challenging visual navigation problems. However, it is not hard to imagine situations where
this approach would be limited. In general, the reward may be delayed and sparse: what
should the agent do in the absence of external (environmental) motivations? Learning
reusable knowledge such as skills (Sutton et al., 1999) or a model of the world might result
in more long-term reward. Such auxiliary learning objectives could emerge automatically
during learning (Silver et al., 2017). Most agent architectures, however, include explicit skill
and model learning components. It seems natural that progress towards these auxiliary
learning objectives could positively influence the agent’s behavior, resulting in improved
learning overall.

Learning many value functions off-policy from a shared stream of experience—with func-
tion approximation and an unknown environment—provides a natural setting to investigate
no-reward intrinsically motivated learning. The basic idea is simple. The aim is to accu-
rately estimate many value functions, each with an independent learner—where there is no
external reward signal. Directly optimizing the data collection for all learners jointly is dif-
ficult because we cannot directly measure this total learning objective and because actions
have an indirect impact on learning efficiency. There is a large related literature in active
learning (Cohn et al., 1996; Balcan et al., 2009; Settles, 2009; Golovin and Krause, 2011;
Konyushkova et al., 2017) and active perception (Bajcsy et al., 2018), from which to draw
inspiration for a solution but which do not directly apply to this problem. In active learning
the agent must sub-select from a larger set of items to choose which points to label. Active
perception is a subfield of vision and robotics. Much of the work in active perception has
focused on specific settings—namely visual attention (Bylinskii et al., 2015), localization in
robotics (Patten et al., 2018) and sensor selection (Satsangi et al., 2018, 2020)—or assumes
knowledge of the dynamics of the world (see Bajcsy et al., 2018).

An alternative strategy is to formulate our task as a reinforcement learning problem.
We can use an intrinsic reward, internal to the learning system, that approximates the total
learning across all learners. The behavior can be adapted to choose actions in each state
that maximize the intrinsic reward, towards the goal of maximizing the total learning of the
system. The choice of intrinsic rewards can have a significant impact on the sample efficiency
of such intrinsically motivated learning systems. This paper provides the first formulation
of parallel value function learning as a reinforcement learning task. Fortunately, there are
many ideas from related areas that can inform our choice of intrinsic rewards.

Rewards computed from internal statistics about the learning process have been explored
in many contexts over the years. Intrinsic rewards have been shown to induce behavior that
resembles the development stages exhibited by young humans and animals (Barto, 2013;
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Chentanez et al., 2005; Oudeyer et al., 2007; Lopes et al., 2012; Haber et al., 2018). Internal
measures of learning have been used to improve skill or option learning (Chentanez et al.,
2005; Schembri et al., 2007; Barto and Simsek, 2005; Santucci et al., 2013; Vigorito, 2016),
and model learning (Schmidhuber, 1991b, 2008). Most recent work has investigated using
intrinsic reward as a bonus to encourage additional exploration in single task learning (Itti
and Baldi, 2006; Stadie et al., 2015; Bellemare et al., 2016; Pathak et al., 2017; Hester
and Stone, 2017; Tang et al., 2017; Andrychowicz et al., 2017; Achiam and Sastry, 2017;
Martin et al., 2017; Colas et al., 2018; Schossau et al., 2016; Pathak et al., 2019). Few have
investigated the impact of making these internal measures the main objective of learning
(Berseth et al., 2019), however previous studies have noted that intrinsic reward is useful
even in single-task problems with a well-defined external goal (Bellemare et al., 2016).

It remains unclear, however, which of these measures of learning would work best in our
no-reward setting. Most prior work has focused on providing demonstrations of the utility of
particular intrinsic reward mechanisms. One study focused on a suite of large-scale control
domains with a single scalar external reward (Burda et al., 2018), comparing different
learning systems that use an intrinsic reward based on model-error as an exploration bonus.
A large study has been conducted on learning progress measures for curriculum learning for
neural networks (Graves et al., 2017), where the goal is to learn from which task to sample
a dataset to update the parameters. Variants of their measures are related to the intrinsic
rewards explored in this paper, but their setting differs substantially in that learning is
offline from batch supervised learning datasets and the underlying problems are stationary.
To the best of our knowledge, there has never been a broad empirical comparison of intrinsic
rewards for the online multi-prediction setting with non-stationary targets.

A computational study of intrinsic rewards is certainly needed, but tackling this problem
with function approximation and off-policy updating is not the place to start. Estimating
multiple value functions in parallel requires off-policy algorithms because each value func-
tion is conditioned on a policy that is different than the exploratory behavior used to
select actions. In problems of moderate complexity, these off-policy updates can introduce
significant technical challenges. Popular off-policy algorithms like Q-learning and V-trace
can diverge with function approximation (Sutton and Barto, 2018). Sound off-policy algo-
rithms exist, but require tuning additional parameters and are relatively understudied in
practice. Even in tabular problems, good performance requires tuning the parameters of
each component of the learning system—a complication that escalates with the number of
value functions. Finally, the agent must solve the primary exploration problem in order to
make use of intrinsic rewards. Finding states with high intrinsic reward may not be easy,
even if we assume the intrinsic reward is reliable and informative. To avoid these many
confounding factors, the right place to start is in a simpler setting.

In this paper, we investigate and compare different intrinsic reward mechanisms in a
new bandit-like parallel learning testbed. The testbed consists of a single state and multiple
actions. Each action is associated with an independent scalar target to be estimated by
an independent prediction learner. An ideal behavior policy will focus on actions that
generate the most learning across the prediction learners. However, the overall task is
partially observable, and learning is never done. The targets change without an explicit
notification to the agent, and the task continually changes due to changes in action selection
and learning of the individual prediction learners. Different configurations of the target
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distributions can simulate unlearnable targets, non-stationary targets, and easy-to-predict
targets. Our new testbed provides a simple instantiation of a problem where introspective
learners should help achieve low overall error. An introspective prediction learner is one
that can autonomously increase its rate of learning when progress is possible, and decrease
learning when progress is not—or cannot—be made.

This paper summarizes a comprehensive empirical comparison of different intrinsic re-
ward mechanisms, including several ideas from reinforcement learning and active learn-
ing. Our computational study of learning progress highlighted a simple principle: intrinsic
rewards based on the amount of learning (e.g., Bayesian Surprise and simple change in
weights) can generate useful behavior if each individual learner is introspective. Across
a variety of problem settings we find that the combination of introspective learners and
simple intrinsic rewards was most reliable, performant, and easy to tune. We conclude
with a discussion about how these ideas could be extended beyond our one-state prediction
problem to drive behavior in large-scale problems where off-policy learning and function
approximation are required.

2. Problem Formulation

In this section we formalize a testbed for comparing intrinsic reward using a stateless pre-
diction task and independent learners. This formalism is meant to simplify the study of
balancing the needs of many learners to facilitate comprehensive comparisons.

We formalize our multiple-prediction learning setting as a collection of independent,
online supervised learning tasks. On each discrete time step t = 1, 2, 3, ..., the behavior
agent selects an action At ∈ {1, . . . , N} corresponding to task i ∈ {1, . . . , N}1, causing a
target signal to be sampled from an (unknown) target distribution, ct,i ∼ θ(t, i), where Ct,i

denotes the random variable with distribution θ(t, i). This distribution θ(t, i) is indexed by
time to reflect that it can change on each time step; this enables a wide range of different
target distribution to be considered, to model this non-stationary, multi-prediction learning
setting. We provide the definition we use in this work later in this section, in Equation (3).

Associated with each prediction task is a simple prediction learner that maintains a
real-valued vector of weights wt,i, to produce an estimate, ĉt,i ∈ R, of the expected value
of the target, ĉt,i ≈ E[Ct,i]. On a step where task i is selected, wt,i could be updated using
any standard learning algorithm. In this work, we use a 1-dimensional weight vector, and
so the update is a simple delta-rule (least-mean-squares (LMS) learners):

wt+1,i ← wt,i + αt,iδt,i (1)

where αt,i is a scalar step-size parameter and δt,i
def
= ct,i − wt,i is the prediction error of

prediction learner i on step t. On a step where task i is not selected, wt,i is not updated,
implicitly setting wt+1,i to wt,i.

1. To clearly separate the action selected by the agent and the prediction task, we use At to denote the
action selected at time t and i to denote prediction task. At is uppercase to indicate it is a random
variable, with lowercase a corresponding to an actual action selected. In our setting, taking action a
corresponds to observing data for task i, and so there is an equivalence between the actions and tasks.
More generally, such as in the full reinforcement learning setting, this is not the case; for extensions on
this work, it is useful to clearly delineate between actions and prediction tasks.
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The primary goal is to minimize the Mean Squared Error up to time t for all of the N
learners:

MSE(t)
def
=

1

t

t!

k=1

1

N

N!

i=1

(ĉk,i − E[Ck,i])
2. (2)

The behavior agent does not get to observe this error, both because it only observes one of
the targets ck,i on each step, rather than all N , and because that target is a noisy sample
of the true expected value E[Ck,i]. The agent can nonetheless attempt to minimize this
unobserved error.

In order to minimize Equation (2), we must devise a way to choose which prediction
task to sample. This can be naturally formulated as a sequential decision-making problem,
where on each time step t, the behavior agent chooses an task i (corresponding to action
At), resulting in a new sample of ct,i, and an update to wt,i. In order to learn a preference
over actions we associate an intrinsic reward Rt ∈ R with each action selection, and thus
with each prediction task. We investigate different intrinsic rewards. Given a definition of
the intrinsic reward, we can use a bandit algorithm suitable for non-stationary problems;
we discuss two options below in Section 2.1.

The targets for each prediction learner are intended to replicate the dynamics of targets
that a parallel auxiliary task learning system might experience, such as sensor values of a
robot. To simulate a range of interesting dynamics, we construct each θ(t, i) as a Gaussian
distribution with drifting mean:

θ(t, i)
def
= N (µt,i,σ

2
t,i) (3)

for µt+1,i ← Π[−50,50]

"
µt,i +N (0, ξ2t,i)

#

where µt,i ∈ R, σ2
t,i ∈ R+ controls the sampling noise, ξ2t,i ∈ R+ controls the rate of drift

and Π[−50,50] projects the drifting µt,i back to the range [−50, 50] to keep it bounded.
The variance and drift are indexed by t because we explore settings where they change
periodically. These changes are not communicated to the behavior agent, and the individual
LMS learners are prevented from storing explicit histories of the targets. The purpose of
this choice was to simulate partial observability common in many large-scale systems (e.g.,
Sutton et al., 2011; Modayil et al., 2014; Jaderberg et al., 2016; Silver et al., 2017). Given
our setup, both prediction learners and the behavior learner would do well to treat their
respective learning tasks as non-stationary and track rather than converge (Sutton et al.,
2007), as long as ξ2t,i is greater than zero. Each sample ck,i ∼ θ(t, i), and µt,i is bounded
between [−50, 50], and µt,i is updated on each step t regardless of which action is selected.
Our formalism is summarized in Figure 1.

2.1 Non-stationary Bandit Algorithms for Prediction Learning

We do not focus on the bandit formalism itself nor bandit algorithms in this work. Rather,
our goal is to investigate intrinsic rewards and their utility for learning multiple predictions,
in the simplest setting in which we can obtain meaningful insights: a bandit-like setting. Our
choice of bandit algorithm, therefore, is simply to facilitate this investigation, rather than
investigate the properties of the bandit algorithms themselves. We use two different bandit
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Figure 1: Our parallel multi-prediction learning formulation.

algorithms—a Gradient Bandit and an extension of Dynamic Thompson Sampling (DTS)—
so as to ensure our conclusions are not due primarily to the choice of bandit algorithm. We
describe these two algorithms below, as well as the reasons for choosing them.

We cannot simply pick any bandit algorithm, as our prediction learning setting differs
from the usual multi-armed bandit setting in at least two ways. First, the distributions of
the targets are non-stationary. Non-stationary learning problems have been studied under
dynamic bandits, also called restless bandits. The general problem setting is known to be
hard, but under some restrictions, some progress can be made. Some algorithms assume
piecewise stationarity, such as Discounted UCB or Sliding-Window UCB (Garivier and
Moulines, 2011), or those with a variation budget, which is used to decide how to restart
stationary bandit algorithms (Besbes et al., 2014). More suitable for our setting is work
assuming restrictions on drift, such as Brownian motion, including State-Oblivious UCB
(Slivkins and Upfal, 2008) and Dynamic Thompson Sampling (DTS) (Gupta et al., 2011),
or State-Oblivious UCB (Slivkins and Upfal, 2008) and the Gradient Bandit (Sutton and
Barto, 2018).

Second, our objective is to minimize error across all learners, but we only see an intrinsic
reward corresponding to the target we selected for that step. The need to minimize error
across all learners—our second issue—is related to partial monitoring (see Lattimore and
Szepesvári, 2019 for an overview). In partial monitoring, the learning system only receives
limited feedback about the true loss incurred. For our prediction setting, the true loss is
the MSE over all the predictions. The feedback is only about the prediction for the action
selected, and, depending on the intrinsic reward, it is a noisy and indirect measure of the
MSE for that prediction. Partial monitoring encompasses a wide range of problems, but it
is difficult to develop algorithms and regret bounds for the fully general setting. To the best
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of our knowledge, current algorithms rely on finite outcomes and involve estimating distri-
butions over outcomes. Given the difficulty of even that restricted setting, the additional
complication of non-stationarity does not as yet seem to have been tackled.

Fortunately, for our prediction setting, the structure of our problem (described in Section
2) admits a simple approach that performs well in practice: to err on the side of taking
an action periodically. Selecting any action is not detrimental, as it provides information
about one of the targets. Particularly in a non-stationary setting, each action should be
taken periodically, to check if expected reward estimates remain accurate. One reasonable
strategy is to obtain a distribution over the actions—not find the single best action—and
sample proportionally to that distribution, as is done by the Gradient Bandit. For DTS,
we prevent the variance for the Bayesian estimate for each action from dropping below a
minimum level, both to account for non-stationarity and to increase the probability that an
action will be selected. We find these simple choices to be sufficient for reasonable behavior
in our multi-prediction problem setting.

We now describe these two bandit algorithms. The Gradient Bandit, specified in Sutton
and Barto (2018, Section 2.8), attempts to maximize the expected average reward by mod-
ifying a vector of action preferences h ∈ RN—indexed by action—based on the difference
between the reward and average reward baseline:

ht+1(a) ←
$

ht(a) + α(Rt+1 − r̄)(1− πt(a)) if At = a;
ht(a)− α(Rt+1 − r̄)πt(a) otherwise.

where r̄ ∈ R is the average of all the rewards up to time t, maintained using an unbiased
exponential average (introduced by Sutton and Barto (2018) [Eq. 2.9]), and r̄ and h0(a)
are both initialized to zero. Actions are selected probabilistically according to a softmax
distribution which converts the preferences to probabilities:

Pr{At = a} = πt(a)
def
=

eht(a)

%N
b=1 e

ht(b)

The Gradient Bandit will sample all the actions infinitely often, though if an action pref-
erence is very low then that action will be rarely taken. Notice that the Gradient Bandit
algorithm is similar to policy gradient methods in reinforcement learning.

The second non-stationary bandit algorithm we use is Dynamic Thompson Sampling
(DTS) (Gupta et al., 2011). The algorithm maintains a posterior distribution over the
expectation and variance of the reward for each action, using a Bayesian update. The
posterior variance is increased after each update, to account for non-stationarity in the
rewards. This ensures that, before the posterior is treated like a prior for the next update,
it reflects the uncertainty in that prior information, due to the fact that the environment
is non-stationary. Otherwise, the posterior would concentrate over time. The distribution
over expected rewards is then used in the standard way in Thompson sampling: an estimate
is sampled for each action, and the action with maximal sampled value is executed.

The algorithm we use is an extension of DTS, which was only specified for Bernoulli
rewards. We extended the approach to Gaussian rewards. The behavior agent assumes
the rewards for each action (indexed by a) come from a Gaussian distribution, N (µa,σ

2
a)

with unknown mean µa and unknown variance σ2
a. The behavior agent maintains Bayesian
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estimates, meaning it maintains a normal-inverse-gamma (NIG) distribution over (µa,σ
2
a),

which is the conjugate prior for a Gaussian with unknown mean and unknown variance. For
each action, we maintain three parameters for a NIG: (ma, va, na), where ma is an estimate
of the mean, na maintains a count and va is an estimate of na times the variance.2 To
sample a mean µa for each action, to use for action selection, you first sample σ2

a from an
inverse-gamma with parameters (na/2, va) and then sample µa from N (ma,σ

2
a/na). After

picking action At = ã with the largest µa, the behavior agent receives a reward r for taking
that action and updates the estimate for ã. These parameters are updated with the standard
Bayesian update:

vã ← vã +
nã

nã + 1

(r −mã)
2

2

mã ← nãma + r

nã + 1

nã ← nã + 1

in the order specified above. If the problem was stationary, then this is the complete update.
But, the problem is non-stationary, due to the fact that the rewards can change over

time. Notice that the posterior variance for µa, which is va
n2
a/2−na

for this NIG, would

gradually shrink to zero as the count na increases. To account for non-stationarity, the
simple idea behind DTS is to increase this posterior variance after the update in such a way
as to minimally impact the mean. For an NIG, this means that we would modify the count
and variance parameter for the selected action using

vã ← max((1− α)vã, 10
−2)

nã ← (1− α)nã

for decay α ∈ (0, 1), that behaves like a step-size parameter. The count is decayed by 1−α,
providing an exponential decay on older samples and providing an upper bound on na of%∞

i=0(1−α)i = 1/α. The vã is similarly decayed. The max with 10−2 is to ensure va never
goes to zero, and so that the variance remains at a minimal level. The new variance of µa,
according to the NIG after decaying volda and nold

a , is a strict increase

va
n2
a/2− na

=
(1− α)volda

(1− α)((1− α)(nold
a )2/2− nold

a )
=

volda

(1− α)(nold
a )2/2− nold

a

>
volda

(nold
a )2/2− nold

a

where we assume nold
a > 2. The mean value ma, though, remains unchanged when we

increase the posterior variance. During the standard update to ma above, however, notice
that is resembles an exponential moving average because older values are multiplied by na,
using nama. The algorithm requires an initial mean estimatema = m0—a good choice being
a large positive value for m0 to encourage exploration—with the initial estimate va = m2

0.

2. A NIG typically has four parameters. For us, the parameter typically called α, which is used to normalize
va, exactly equals na/2, so we do not maintain it explicitly. It is only used to sample the action, using
inverse-gamma parameters (α, va) = (na/2, va).
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3. Simulating Parallel Prediction Problems

We consider several prediction problems corresponding to different settings of ξ2t,i and σ2
t,i

to define task distribution θ(t, i) in Equation (3). We introduce three problems, with target
data simulated from those problems show in Figure 2.

The Drifter-Distractor problem has four targets, one for each action: (1) two (stationary)
high-variance targets as distractors (2) a slowly drifting target and (3) a constant target,
with ξ2t,i and σ2

t,i for each of these types in Table 2. A distractor target is simply a noisy,
stationary target: the variance is high enough such that an agent might oversample the
target even after the mean estimate is accurate. This is inspired by the noisy TV problem
(Schmidhuber, 2008).

The Switched Drifter-Distractor problem is similar to Drifter-Distractor except, after
50,000 time-steps the associations between the actions and the target distributions are
permuted as detailed in Table 2. To do well in this problem, the learning system must be
able to respond to changes. In addition, in phase two of this problem, two targets exhibit
the same drift characteristics; the behavior agent should prefer both actions equally.

The Jumpy Eight-Action problem is designed to require sampling different prediction
tasks with different frequencies. In this problem, there are two drifters and three distractors,
with different drifting rates and different amounts of sampling variance, as summarized in
Table 3. The best approach is to select several actions probabilistically depending on their
drift and sampling variance. We add an additional target type, that drifts more dramatically
over time, with periodic shifts in the mean:

µt+1,6 ← Π[−50,50] (µ̃t+1,6) (4)

where µ̃t+1,6 ← µt,6 + ζtBernoulli(0.005)N (10, 1.0)

and where indicator ζ0 = 1 and ζt ∈ {−1, 1} switches sign if |µ̃t+1,6| > 50. The sample
from a Bernoulli ensures the jumps are rare, but the large mean of the Gaussian makes
it likely for this jump to be large when it occurs, as shown in Figure 2. This problem
simulates a prediction problem where the target changes by a large magnitude in a semi-
regular pattern, but then remains constant. This could occur due to changes in the world
outside the prediction learner’s control and representational abilities.

target type µ0 σ2 ξ2

constant uniform(-50,50) 0 0
distractor 0 1 0
drifter 0 0 0.1

Table 1: These parameters define each target distribution used in the Drifter-Distractor
and the Switched Drifter-Distractor problems. The parameter µ0 specifies the initial mean
of each target, σ2 is the sampling variance, and ξ2 is the drift variance.
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Drifter-Distractor Problem Switched Drifter-Distractor Problem Jumpy Eight Action Problem

Figure 2: Each subplot shows the target data generated by one run of the problem, with
Drifter-Distractor (left), Switched Drifter-Distractor (middle), and Jumpy Eight-Action
Problem (right).

target phase 1 → phase 2

target 1 distractor → drifter
target 2 drifter → distractor
target 3 constant → drifter
target 4 distractor → constant

Table 2: The target distributions in the Switched Drifter-Distractor change part way
through the task. Phase one lasts for 50,000 time steps, then targets are permuted and
remain fixed for the remainder of the experiment (another 100,000 steps). The initial pa-
rameters for each target type—constant, distractor and drifter—are the same as in the
Drifter-Distractor Problem described in Table 1

Task 1 2 3 4 5 7 & 8

σ2 0.1 0.5 1.0 0.01 0.01 0.0
ξ2 0.0 0.0 0.0 0.01 0.05 0.0

Table 3: Parameters defining θ(t, i) for each prediction task in the Jumpy Eight-Action
problem, where σ2 is the sampling variance and ξ2 is the drift variance for Equation (3).
The first three prediction tasks have distractor targets; four and five have drifter targets;
and seven and eight have constant targets. The distractors range from low variance to high
variance, and the drifters with low drift to higher drift. Prediction Task 6 is special,
defined in Equation (4).
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4. Introspective Prediction Learners

The behavior of a learning system that maximizes intrinsic rewards relies on the underlying
prediction learning algorithms as well as the definition of the intrinsic reward. In this section
we introduce a distinction between two categories of learners, for which behavior can be
substantially different: introspective and non-introspective learners. We consider a learner
to be introspective if the algorithm can modulate its own learning without help from an
external process. More concretely, an introspective learner stops updating if it cannot make
progress. For example, in the case of prediction learning, an introspective learner would
regulate its updates to mitigate noise in its prediction targets. A non-introspective
learner, on the other hand, will continually update regardless of learning progress.

In this paper we consider two basic settings representing non-introspective and intro-
spective learners, used as prediction learners in our multi-prediction problem. We use basic
LMS learners with a constant step-size parameter as our non-introspective learner. With
a constant step-size parameter, the LMS algorithm will always try to adapt its estimates
toward the sample targets on each time step. It does not matter if the target exhibits high
variance—say centered mean zero—or if the target is actually constant; the LMS algorithm
will continue to adapt its estimates attempting to track each target in the online setting.
Consider how a constant global step-size parameter would work on our Drifter-Distractor
Problem discussed above. If the step-size parameter value is too large for the distractor
target, then the prediction learner will continually make large updates due to the sampling
variance, never converging to low error. If the step-size parameter is too small for the
tracking target, then the prediction learner’s estimate will often lag, causing high-error. A
constant global step-size parameter cannot balance the need to track the drifter targets,
and the need to learn slowly on the distractor targets.

To create a simple introspective learner for our setting, we simply combine our LMS
predictors with a step-size adaption method called Autostep. Autostep is a simple meta-
learning algorithm that adapts the step-size parameter of each LMS learner over-time (Mah-
mood et al., 2012). The basic idea behind Autostep is to increase the step-size parameter
when learning is progressing, and lower the step-size parameter value when learning is
not progressing. It does so by keeping a trace, h ∈ R, of the previous prediction errors.
Roughly speaking, if the error changes sign often then the predictions are not improving
and the step-size parameter value should be lowered. If the error is mostly of the same sign,
then the step-size parameter value should not be reduced. Autostep has one key hyper-
parameter, the meta learning-rate: this controls how quickly the algorithm changes the
step-size parameter (α). The full pseudocode, specialized to our stateless tracking tasks,
is given below.3 Note that Autostep changes the step-size parameter with a multiplica-
tive exponential, which allows geometric or rapid changes to the LMS learners step-size
parameter.

To give some intuition about how Autostep changes the step-size parameter, consider
what happens when we apply it to the Drifter-Distractor Problem in Figure 3. Here we
simply plot α over time for four LMS learners—one for each target—with each step-size

3. Our implementation of Autostep clips the step-size in step 3, given by Degris and White (2020), and so
differs slightly from the form given by Mahmood et al. (2012).
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Algorithm 1 : The Autostep algorithm specialized to stateless prediction
κ is the meta learning-rate parameter
n and h are scalar memory variables initialized to 1 and 0
δ is the prediction error and α (initialized to 1.0) the step-size parameter of predictor i

1: procedure Autostep(δ)
2: n ← max(|δh|, n+ 1

10000α(|δh|− n))

3: α ← min(α exp(κ δh
n ), 0.5)

4: h ← h(1− α) + αδ

parameter adapted by Autostep. We used the Gradient Bandit and Weight Change reward 4

to generate the behavior. The initial α of each LMS learner were set to one. The lines for
the constant target (blue) and drifter target (green) are overlapping, and the lines for the
distractor targets (red and black) are overlapping. Autostep progressively decreases α for
the distractor targets, as the updates oscillate around zero. The update magnitude (or error)
for the constant target goes to zero, and so Autostep stops changing α. This makes sense:
why change the α if the prediction is perfect. Autostep keeps the α high for the learner
estimating the drifter target, because continual progress is possible. On each time step
the LMS learner moves its estimate towards the recent sample and most of these updates
are in the same direction, at least over a recent window of time. In terms of prediction
performance, Autostep significantly improves tracking, enabling different update rates for
different prediction learners and reducing α on unlearnable targets or noisy targets once
learning is complete—as you will see in our main experiments below.

! (constant target)

! (distractor target)

! (distractor target)

! (drifter target)

St
ep
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Figure 3: Sample run showing how Autostep changes the step-size parameters (α) over
time with Weight Change reward. The lines for the constant target (blue) and drifter
target (green) are overlapping, and the lines for the distractor targets (red and black) are
overlapping.

We experimented with other step-size adaption methods, including AdaDelta and RM-
SProp, but the results were qualitatively similar. In this study we chose Autostep because
(a) it was specifically designed for non-stationary, incremental, online tracking tasks like

4. The details of the intrinisic reward function used to generate the data do not matter for the purpose of
the this experiment. Nevertheless, the Weight Change reward will be defined in the next section.
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ours, (b) it uses a simple and easy to interpret update rule, and (c) there is a long literature
demonstrating the practical utility of this method dating back to its origins in the IDBD
method (Sutton, 1992).

The choice of using meta-learning to obtain introspective learners not only works well
in our multi-prediction tasks, but also should scale to larger tasks with function approxi-
mation in future work. Step-size adaption methods like Adam and RMSProp can speed up
training in neural networks and make learning more robust to non-stationarity. In online
reinforcement learning, extensions of Autostep have shown to improve prediction and con-
trol performance with function approximation (Kearney et al., 2018; Günther et al., 2020).
We discuss these extensions, and how our results go beyond stateless tracking at the end of
the paper. It is worth emphasizing that introspective learners are not optimal learners and
that they are in fact the most common type of agent used in deep reinforcement learning.
The main criterion is that an introspective agent should regulate its own updates based on
an internal measure of learning progress.

5. Intrinsic Rewards for Multi-prediction Learning

Many learning systems draw inspiration from the exploratory behavior of humans and an-
imals, uncertainty reduction in active learning, and information theory—and the resulting
techniques could all be packed into the suitcase of curiosity and intrinsic motivation. In
an attempt to distill the key ideas and perform a meaningful yet inclusive empirical study,
we consider only methods applicable to our problem formulation of multi-prediction learn-
ing. Although few approaches have been suggested for off-policy multi-task reinforcement
learning—approaches by Chentanez et al. (2005); White et al. (2014) as notable exceptions—
many existing approaches can be used to generate intrinsic rewards for multiple, independent
prediction learners (see the excellent summary by Barto, 2013). We first summarize meth-
ods we evaluate in our empirical study. The specific form of each intrinsic reward discussed
below is given in Table 4, with italicized names below corresponding to the entries in the
table. We conclude by mentioning several rewards we did not evaluate, and why.

Several intrinsic rewards are based on violated expectations, or surprise. This notion
can be formalized using the prediction error itself to compute the instantaneous Absolute
Error or Squared Error. We can obtain a less noisy measure of violated expectations with
a windowed average of the error, which we call Expected Error. Regardless of the specific
form, if the error increases, then the intrinsic reward increases encouraging further sampling
for that target. Such errors can be normalized, such as was done for Unexpected Demon
Error (White et al., 2014), to mitigate the impact of noise in and magnitude of the targets.

Another category of methods focus on learning progress, and assume that the learn-
ing system is capable of continually improving its policy or predictions. This is trivially
true for approaches designed for tabular stationary problems (Chentanez et al., 2005; Still
and Precup, 2012; Little and Sommer, 2013; Meuleau and Bourgine, 1999; Barto and Sim-
sek, 2005; Szita and Lorincz, 2008; Lopes et al., 2012; Schossau et al., 2016). The most
well-known approaches for integrating intrinsic motivation make use of rewards based on
improvements in (model) error: including Error Reduction (Schmidhuber, 1991b, 2008), and
model Error Derivative approach (Oudeyer et al., 2007). Improvement in the value function
can also be used to construct rewards, and can be computed from the Positive Error Part
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(Schembri et al., 2007), or by tracking improvement in the value function over all states
(Barto and Simsek, 2005). As our experiments reveal, however, intrinsic rewards requiring
improvement can lead to less desireable behavior in non-stationary tracking problems.

An alternative to learning progress is to reward amount of learning. This does not
penalize errors becoming worse, and instead only measures that estimates are changing: the
prediction learner is still adjusting its estimates and so is still learning. Bayesian Surprise
(Itti and Baldi, 2006) formalizes the idea of amount of learning. For a Bayesian learner,
which maintains a distribution over the weights, Bayesian Surprise corresponds to the KL-
divergence between this distribution over parameters before and after the update. This
KL-divergence measures how much the distribution over parameters has changed. Bayesian
Surprise can be seen as a stochastic sample of Mutual Information, which is the expected
KL-divergence between prior and posterior across possible observed targets. We discuss this
more in Section 6. Other measures based on Information Gain have been explored (Still and
Precup, 2012; Little and Sommer, 2013; Achiam and Sastry, 2017; de Abril and Kanai, 2018;
Berseth et al., 2019). In the tabular case different variations of information-gain reward
perform similarly to Bayesian Surprise empirically (Little and Sommer, 2013).

Though derived assuming stationarity and Bayesian learners, we provide an approach to
approximate Bayesian Surprise for our non-stationary setting with non-Bayesian learners.
The prediction learner’s main objective is to estimate an unknown mean. A Bayesian learner
maintains a distribution over this unknown mean, based on the chosen distribution for the
targets. A simple choice is to use a Gaussian distribution for the targets, with an unknown
mean but a known variance, giving a Gaussian conjugate prior. The variance is not actually

known; we maintain an estimate v
(y)
t of the variance of the target Var[Ct,i].

5 The posterior
uses the learner’s mean estimate and the posterior variance for a Bayesian update, which

is proportional to v
(y)
t /t. Effectively, the approximate Bayesian surprise is maintaining a

posterior, but uses the learners mean estimate instead of its own. To additionally account
for non-stationarity, we use the same idea behind DTS: increasing the posterior variance
after each update (see Table 4 for the formula).6 We make no claims that this is the ideal
strategy to approximate to Bayesian Surprise for non-Bayesian learners in non-stationary
problems; it is rather a reasonable simple strategy in an effort to include it as best as
possible in our experiments.

We can additionally consider non-Bayesian strategies for measuring amount of learning,
including those based on change in error (Error Derivative), Variance of Prediction, Uncer-
tainty Change—how much the variance in the prediction changes—and the Weight Change,
which we discuss in more depth in the next section. Note that several learning progress
measures can be modified to reflect amount of learning by taking the absolute value, and
so removing the focus on increase rather than change (this must be done with care as we
likely do not want to reward model predictions becoming worse, for example).

5. Typically, a Bayesian learner would simply maintain a distribution over both the mean and variance, if
they are both unknown. Our goal here, though, is to approximate Bayesian surprise for a non-Bayesian
learner. Since the learner only estimates the mean, we assume that the corresponding Bayesian learning
can only maintain a distribution over the mean.

6. The count n is decayed by 1−β, and the variance is prevented from decreasing below 10−3. To keep the
update simpler, we assume the initial variance for the prior is very large—which is in fact reasonable as
it implies no prior knowledge about the unknown mean. Therefore the initial variance can be omitted
in the posterior variance, as it has a negligible affect.
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Reward Name Rt,i

Error Derivative
(Oudeyer et al., 2007)

&&&&&&
1

η + 1

η!

j=0

δ2t−j−τ,i −
1

η + 1

η!

j=0

δ2t−j,i

&&&&&&

τ ≤ η < t, where η specifies the length of the window and τ the amount of overlap

Expected Error
&&&δt,i

β
&&&

δt,i
β
= (1− β)δt−1,i

β
+ βδt,i is the exponentially weighted average, with 0 < β < 1

Step-size Change |αt−1,i − αt,i|

Error Reduction
(Schmidhuber, 1991a)

|δt−1,i|− |δt,i|

Squared Error
(Gordon and Ahissar, 2011)

δ2t,i

Bayesian Surprise
(Itti and Baldi, 2006)

1

2
log2

'
vt,i
vt−1,i

(
+

vt−1,i + (ĉt−1,i − ĉt,i)
2

2vt,i
− 1

2

vt,i = max(v
(y)
t /nt, 10

−3) where nt = (1−β)nt−1+1. Note vt,i is the posterior variance es-

timate and v
(y)
t an estimate of the target variance Var[Ct,i] obtained using an exponential

average variant of Welford’s algorithm: v
(y)
t = (1− β)v

(y)
t−1 + β(ct,i − ĉt−1,i)(ct,i − ĉt,i).

Unexpected Demon Error
(White et al., 2014; White, 2015)

&&&&&
δt,i

β

)
Var[δi] + ε

&&&&&

ε is a small constant, set to 10−6 in our experiments. Var[δi] is a standard sample variance.

Uncertainty Change |Var[ĉt−1,i]−Var[ĉt,i]|

Variance of Prediction Var[ĉt,i]

where variances Var[ĉt,i] are estimated using an exponential average variant of Welford’s
algorithm: vt = (1 − β)vt−1 + β(ĉt,i − c̄t−1,i)(ĉt,i − c̄t,i) for 0 < β < 1, with c̄t,i =
(1− β)c̄t−1,i + βĉt,i the exponential average of the predictions.

Weight Change ‖wt,i − wt−1,i‖1 = αt‖ĉt,i − ĉt−1,i‖1

Absolute Error*
(Schmidhuber, 1991b)

|δt,i|

Positive Error Part*
(Mirolli and Baldassarre, 2013)

max(δt,i, 0)

Variance of Error* Var[δt,i]

Uncertainty Reduction* Var[ĉt−1,i]−Var[ĉt,i]

Figure 4: Intrinsic rewards investigated in this work. Separate statistics are maintained for
each task i, and only updated when task i is selected by the behavior agent. Starred rewards
performed poorly and where excluded from the results. Sample averages are computed using
an unbiased exponentially-weighted average introduced by Sutton and Barto (2018)[Eq 2.9].
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There are several strategies which we omit, because they would (1) result in uniform
exploration in our pure exploration problem, (2) require particular predictions about state
to drive exploration, (3) are designed for the offline batch setting, or (4) are based on
statistics of the targets rather than the statistics generated by the prediction learners.
Count-based approaches (Brafman and Tennenholtz, 2002; Bellemare et al., 2016; Sutton
and Barto, 2018) are completely unsupervised, rewarding visits to under-sampled states or
actions—resulting in uniform exploration in our problem. Though count-based approaches
are sometimes used in learning systems, they reflect novelty rather than learning progress
or surprise (Barto et al., 2013).

The second set of strategies we omit are methods that use a model to encourage ex-
ploration (Schmidhuber, 2008; Chentanez et al., 2005; Stadie et al., 2015; Pathak et al.,
2017, 2019) such as by using Bayesian Surprise for next-state prediction (Houthooft et al.,
2016). Subgoal discovery systems (Kulkarni et al., 2016; Andrychowicz et al., 2017; Péré
et al., 2018) define rewards to reach particular states. Empowerment and state control
systems are explicitly designed to respect and use the fact that some tasks or regions of the
state-space cannot be well learned. Often such systems use only unsupervised signals relat-
ing to statistics of the exploration policy, ignoring the statistics generated by the learning
process itself (Karl et al., 2017). Like count-based approaches, unsupervised measures like
this would induce uniform exploration in our stateless task.

Curriculum learning—learning what task to sample next—is closely related to our multi-
prediction problem. Graves et al. (2017) introduce several measures for batch curriculum
learning that are related to the ideas underlying the intrinsic rewards discussed above.
Most related, Prediction Gain corresponds to Error Reduction, albeit assuming a batch
of data rather than an online instance. An approximation, called Gradient Prediction
Gain, corresponds to the norm of the gradient; for our setting, this is the same as the
Absolute Error. Several of Graves’ measures require the ability to sample new batches of
data, such as Supervised Prediction Gain and Target Prediction Gain. Finally, Graves et
al. investigated several Complexity Gain measures for the neural networks, measuring KL
divergence between the posterior and a learned prior. The prior is updated towards the
previous posterior, and so the resulting KL is related to Bayesian surprise. The KL itself,
though, is not used: rather, the gain in complexity is measured by looking at the difference
in two KLs, before and after an update. These approaches require Bayesian learners with a
separate prior distribution to be learned just to measure the complexity. The most simple
and computationally feasible of these is L2 Gain, which is simply the difference in ℓ2 norm
of the weights before and after and update: ‖wt,i‖22 − ‖wt−1,i‖22. This rewards the learning
system for making the weights smaller, and performed worse than random for curriculum
learning (Graves et al., 2017).

Finally, we do not test intrinsic rewards based only on targets, such as variance of the
target. To see why, consider a behavior that estimates the variance for a constant target, and
quickly determines it only needs to select that action a few times. The prediction learner,
however, could have a poor estimate of this target, and may need many more samples to
converge to the true value. Separately estimating possible amount of learning from actual
amount of learning has clear limitations. Note that in the stationary bandit setting, with
a simple sample average learner, the variance of the prediction target provides a measure
of uncertainty for the learned prediction (Audibert et al., 2007; Garivier and Moulines,
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2011; Antos et al., 2008), and has been successfully applied in education applications (Liu
et al., 2014; Clement et al., 2015). When generalizing to other learners and problem settings,
however, variance of the target will no longer obviously reflect uncertainty in the predictions.
We therefore instead directly test intrinsic rewards that measure uncertainty in predictions,
including Uncertainty Change and Variance of Prediction.

6. Optimal Behavior for Multi-prediction Learning, and Approximations

One natural question given this variety of intrinsic rewards, is if there is an optimal ap-
proach. In some settings, there is in fact a clear answer. In a stationary, stateless problem
where the goal is to estimate means of multiple targets, it has been shown that the behavior
agent should take actions proportional to the variance of each target to obtain minimal re-
gret (Antos et al., 2008). For a stationary setting, with state, an optimal approach would be
to take actions to maximize Information Gain—the reduction in entropy after an update—
across learners (Orseau et al., 2013). We therefore use Information Gain as the criterion to
measure optimal action selection. In this section, we describe how to maximize Information
Gain in an ideal case, and how to approximate it otherwise. The goal of this section is
to provide intuition and motivation, as we do not yet have theoretical claims about the
approximation strategies.

We first show that Information Gain is maximized when maximizing expected Bayesian
surprise, assuming Bayesian learners. A Bayesian learner updates weights w for a parame-
terized distribution pw on the parameters θ needed to make the prediction ĉ. The parameters
can be seen as a random variable, Θ, with distribution pw. The goal is to narrow this dis-
tribution around the true parameters θ∗ that generate c—that is, c is sampled from p(c|θ∗).
After seeing each new sample, the posterior distribution over parameters is computed using
the previous distribution pwt(θ) and the new sample, ct, using the update

pwt+1(θ)
def
= pwt(θ|ct) =

p(ct|θ)pwt(θ)

pwt(ct)
.

The term in the denominator is dependent on wt because pwt(ct) =
*
p(ct|θ)pwt(θ)dθ. A

Bayesian learner is one that uses exact updates to obtain the posterior. We assume the prior
is appropriately specified so that pwt(c) ∕= 0, and so p(θ|c1, . . . , cn) has non-zero support as
n → ∞ almost surely for any stochastic sequence c1, . . . , cn.

Bayesian surprise is defined as the KL divergence between the distribution over param-
eters before and after an update (Itti and Baldi, 2006)

KL(pwt+1 ||pwt) =

+
pwt+1(θ) log

pwt+1(θ)

pwt(θ)
dθ. (5)

The Bayesian surprise is high when taking an action that produces a stochastic outcome
ct that results in a large change in the prior and posterior distributions over parameters.
The expectation of the KL-divergence over stochastic outcomes, with a Bayesian learner,
corresponds to the Information Gain. This result is well-known, but we explicitly show
it in the following theorem for completeness. Notice that Information Gain defined in
Equation (6) is relative to the model class of our learner, rather than some objective notion
of information content.
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Theorem 1 Assume targets C ∈ C are distributed according to true parameters θ∗, with
density pθ∗ : C → ∞ and event space . For a Bayesian learner, that maintains distribution
pwt over parameters Θ, the mutual information (also called the Information Gain) I(C,Θ)
equals the expected KL-divergence between the posterior and prior

I(C,Θ) = E[KL(pwt+1 ||pwt)] (6)

where the expectation is over stochastic outcomes C that produce wt+1 from wt.

Proof

I(C,Θ) =

+ +
pθ∗,wt(c, θ) log

pθ∗,wt(c, θ)

pθ∗(c)pwt(θ)
dcdθ ⊲ pθ∗,wt(c, θ) = pθ∗(c)pwt(θ|c)

=

+ +
pθ∗(c)pwt(θ|c) log

pwt(θ|c)
pwt(θ)

dcdθ ⊲ pθ∗(c) cancels in the fraction

=

+
pθ∗(c)

,+
pwt(θ|c) log

pwt(θ|c)
pwt(θ)

dθ

-
dc ⊲ pθ∗(c) does not involve θ

=

+
pθ∗(c)

,+
pwt+1(θ) log

pwt+1(θ)

pwt(θ)
dθ

-
dc ⊲ pwt+1(θ) = pwt(θ|c)

=

+
pθ∗(c)KL(pwt+1 ||pwt)dc ⊲ Equation (5)

= E[KL(pwt+1 ||pwt)]

The weights wt+1 are dependent on the observed c. By definition, this integral gives an
expected KL, across possible observed c.

To make this more concrete, consider Bayesian surprise for a Bayesian learner with
a simple Gaussian distribution over parameters. For our simplified problem setting, the
weights for the Bayesian learner are wt = (µt,σ

2
t ) for the Gaussian distribution over the

parameters θ, which in this case is the current estimate of the mean of the target, ĉt. The
Bayesian surprise is

KL(pwt+1 ||pwt) = log
σ2
t+1

σ2
t

+
σ2
t + (µt − µt+1)

2

2σ2
t+1

− 1

2
.

We can make this even simpler if we consider the variance σ2 to be fixed, rather than
learned. The Bayesian surprise then simplifies to

KL(pwt+1 ||pwt) = log
σ2

σ2
+

σ2 + (wt − wt+1)
2

2σ2
− 1

2

= 0 +
σ2

2σ2
+

(wt − wt+1)
2

2σ2
− 1

2

=
(wt − wt+1)

2

2σ2
. (7)

This value is maximized when the squared change in weights (wt − wt+1)
2 is maximal.

Therefore, though Bayesian surprise in general may be expensive to compute, for some
settings it is as straightforward as measuring the change in weights.
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Additionally, we can also consider approximations to Bayesian surprise for non-Bayesian
learners. A non-Bayesian learner typically estimates the parameters θt directly, such as by
maximizing likelihood or taking the maximum a posteriori (MAP) estimate

θt+1
def
= argmax

θ
p(θ|c1, . . . , ct).

Now instead of maintaining the full posterior p(θ|c1, . . . , ct) as pwt+1 , the prediction learner
need only learn θt+1 directly. Because θt+1 is the mode of the posterior, for many distribu-
tions θt+1 will actually equal a component of wt+1. For the Gaussian example above with
a learned variance, θt+1 equals the first component of wt+1, the mean µt+1. For a fixed
variance, θt+1 exactly equals wt+1. Therefore, the non-Bayesian learner would have the
exact same Information Gain, measured by the Bayesian surprise in (7). Note that MAP
makes the same probabilistic assumptions for the posterior as the Bayesian learner, but is
considered non-Bayesian here because it does not maintain the parameters of this posterior.

This direct connection, for Bayesian and non-Bayesian learners, only exists for a limited
set of distributions. One such class is the natural exponential family distribution over
the parameters. Examples include the Gaussian with fixed variance and mean wt and the
Gamma distribution with a fixed shape parameter and scale parameter wt. Each natural
exponential family has the property that the KL-divergence between two distributions with
parameters wt and wt+1 corresponds to a (Bregman) divergence directly on the parameters
(Banerjee et al., 2005). For a Gaussian, this divergence is the squared error normalized
by the variance, as above in Equation (7). Another distribution that has this connection
is a Laplace distribution with mean wt and fixed variance 2b2. Then the KL-divergence is
KL(pwt+1 ||pwt) = |wt − wt+1|/b.

This connection is limited to certain posterior distributions, but is true for general
problem settings, even the general reinforcement learning setting. The distributions before
and after an update, pwt and pwt+1 respectively, are over the parameters of the prediction
learner. These parameters are more complex in settings with state—such as parameters
to a neural network—but we can nonetheless consider exponential family distributions on
those parameters.

This discussion motivates a simple proposal to approximate Bayesian surprise and
Bayesian learners for a general setting with non-Bayesian learners: using weight change
with introspective learners. An introspective learner is not a precise definition, but rather
a scale. A perfectly introspective learner would be a Bayesian learner, or in some cases the
corresponding MAP learner. A perfectly non-introspective learner could be a random up-
date. The more closely the learner approximates the weights to the perfectly introspective
learner, the better its solution and the better the Bayesian surprise reflects the Information
Gain. Further, because the underlying distribution may not be known, we use the change
in weights as an approximation.

For concreteness, consider the following learning system. Each prediction learner is aug-
mented with a procedure to automatically adapt the step-size parameter αk,i, based on the
errors produced over time (δi,0:k). In this paper we use the Autostep algorithm (Mahmood
et al., 2012) described in Section 4. Recall, that the Autostep algorithm automatically
reduces αk,i towards zero if the target is unlearnable, increase αk,i when successive errors
have the same sign, and does not change αk,i if the error is zero. We call a learner with
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a fixed step-size parameter, on the other hand, non-introspective, because the learner will
forever chase the noise. The weight change for such a learner would not be reflective of
Information Gain, reflecting instead only the inadequacy of the learner. A learner equipped
with Autostep, on the other hand, like a Bayesian or MAP learner, will stop learning once
new samples provide no new information.

This proposal reflects a simply reductionist philosophy: there should be an explicit
separation in the role of the behavior agent and the role of the prediction learners. The
behavior agent should balance data generation amongst parallel prediction learners. The
prediction learner’s primary responsibility is to estimate their target accurately. If the
behavior agent trusts that the prediction learners are using the data appropriately, then
the learning system can make use of intrinsic rewards based solely on the prediction learner’s
parameters, such as the change in the weights. The alternative is to assume that the intrinsic
rewards must be computed to overcome poor learning. This approach would require the
learning system to recognize when a prediction learner is non-introspective, and decrease the
reward associated with that learner. If the learning system can measure this, though, then
presumably so too can the prediction learner—they are after all part of the same system.
The learner should then be able to use the same measure to adjust its own learning.

In this work, we define the change in weights using the ℓ1 norm,

Weight Change(wt, wt+1)
.
= ‖wt − wt+1‖1. (8)

In our setting, the Weight Change is simply Absolute Error scaled by the step-size pa-
rameter, emphasizing the role that learner capability plays in ensuring an effective reward.

‖wt − wt+1‖1 = αt,i‖ĉt,i − ĉt−1,i‖1 = αt,i|δt,i| (9)

Remark: The above discussion applies to the non-stationary setting, by treating the
non-stationarity as partial observability. We can assume that the world is stationary, driven
by some hidden state, but that it appears non-stationary to the learning system because it
only observes partial information. If a Bayesian prediction learner had the correct model
class, it could still maximize Information Gain. For example, the prediction learner could
know there is a hidden parameter ξ defining the rate of drift for the mean of the distribution
over C. It could then maintain a posterior over both ξ and the mean and covariance of
C, based on observed data. As above, it would be unlikely for the prediction learner to
have this true model class. It remains an important open theoretical question how such
approximations influence the behavior agent’s ability to maximize Information Gain.

7. Experimental Setup

We conducted five experiments, across the three problems described in Section 3. The
goal of these experiments is to (a) assess the utility of different intrinsic rewards in our
testbed with many different target distributions, and (b) to understand how the ability of
the underlying prediction learners—introspective or not—impact the results.

Each component of the learning system is modulated by several hyper-parameters that
interact in different ways. The behavior agent (gradient bandit) makes use of a step-size
parameter α and the step-size parameter of the average reward estimate αr. For non-
introspective learners, each prediction learner makes use of a (shared) step-size parameter
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Hyper-parameters

Behavior agent Step-size parameter α ∈{2−8, 2−7, ... ,
2−2}

(Gradient Bandit) Average Reward rate

αr ∈{10−5, 10−4, ... , 10−1}
Behavior agent Step-size parameter α ∈{2−8, 2−7, ... ,

2−2}
(Dynamic Thompson Sampling) Initial mean estimate ma = 100

Non-introspective prediction learner Step-size parameter

(LMS with a constant step-size parameter) αp ∈{2−7, 2−6, ... , 2−2} , with αi = αp

Introspective prediction learner Meta learning-rate

(LMS with Autostep) κ ∈{0.01, 0.05, 0.1}
Initial step-size α0,i = 1.0

Smoothing parameter

(Variance of Prediction, Uncertainty Change,
Bayesian Surprise, UDE, Expected Error)

β ∈{10−7, 10−6, ... , 10−1}

Error Derivative Window η ∈{1, 5, 10, 25, 100, 1000}
(all combinations s.t. η > τ) τ ∈{1, 5, 10, 25, 100}

Table 5: The hyper-parameter configurations investigated across all three experiments.
There was a total of 50,000 combinations of intrinsic reward function and hyper-parameter
setting, with each of these evaluated using 200 independent runs.

αp, with αi = αp for all i. For introspective learners, the step-size adaption method Autostep
uses a meta learning-rate parameter κ. Finally, many of the intrinsic rewards have their
own tunable parameters. For example, UDE uses an exponential average of recent errors
which requires a smoothing parameter β. Oudeyer’s Error Derivative reward makes use of
two windows of recent errors determined by scalar parameters η and τ . In most cases the
key parameters of the prediction learner, behavior agent, and intrinsic reward correspond to
different timescales—slower or faster—and so required noticeably different values. Because
these choices have such a big impact on behavior, as we show, we needed extensive sweeps
and analysis to gain insight into the methods. This warranted investigating each result
deeply, to communicate a nuanced picture.

We extensively sweep all the key performance parameters of every learner and reward
function, to ensure an accurate characterization of performance. Table 5 lists all the param-
eter settings we tested. In some cases we report results for several parameters to gain more
specific insights into the behavior induced by an intrinsic reward. When providing overall
results, we report the best performance of the learning system for each intrinsic reward,
using the best performing parameters across all parameters tested. The best performing
parameters were those that achieved the lowest total RMSE (defined in Equation 2) over
the duration of the experiment, averaged over 200 independent runs. All told we tested
over 50,000 parameter configurations, 200 times each across our three experiments.
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When reporting results under the best parameters, we jointly tune hyper-parameters
for the intrinsic reward and the prediction learners. These hyper-parameters are all part of
the agent; the best hyper-parameters reflect the best the agent could do for that intrinsic
reward and prediction learner. Even under ideal circumstances, many intrinsic rewards can
fail to induce the desired behavior, highlighting issues with the intrinsic rewards or with
the use of non-introspective learners.

Nonetheless, reporting the best parameters does not provide the full picture, and though
we attempt to highlight certain key results for other hyper-parameters, we cannot and do
not attempt to show the full picture. Ideally, we could slice down further, to provide this
nuance. At the extreme, this could consist of showing all possible intrinsic rewards—Error
Derivative with the smallest step-size parameter, Error Derivative with a the largest step-
size parameter, and so on—for each of the many combinations of prediction learner and
behavior agent (with different hyper-parameter settings). This is infeasible7, and part of
the role of the empirical analysis is to summarize key outcomes. We have provided what
we believe are the key slices: different intrinsic rewards (under their ideal circumstances)
with two types of prediction learners (non-introspective and introspective). When intrinsic
rewards fail under idealized scenarios, this reflects how they might perform across hyper-
parameter settings. When intrinsic rewards result in near-ideal behavior, we then dig deeper
to understand if this was an accident of idealized hyper-parameter tuning, or more generally
a characteristic of the intrinsic reward.

We follow the same basic template in the presentation of the results. First we report the
behavior of the best configuration for each reward function using non-introspective learners
(i.e., without Autostep). For a given reward, the behavior is depicted by the probability
of selecting each action over time according to the behavior agent’s policy. This gives us
insight into how each reward drives action selection over time. We then investigate the
RMSE over time, plotting both the error of each predictor and the average. Finally, in
each experiment we investigate the performance sensitivity of several intrinsic rewards with
respect to the tunable parameters. This provides more detailed understanding of how the
parameters interact and helps explain when some intrinsic rewards produce unexpected
behaviors.

As a final note, the behavior plots (showing the action selection probability) do not
include error bars. The error bars over 200 runs are negligibly small, except in some cases
where action probabilities across runs varied significantly for poorly performing intrinsic
rewards (e.g., the selection of the distractor targets with Squared Error reward in Figure
9). The variance across runs, however, can both make the plots difficult to read and hides
how the action probabilities can vary over time within one run. For these plots, therefore,
we instead show a sampling of individual runs. All learning curves (plotting RMSE) include
standard error bars. The error bars in all learning curves for Experiments One and Two
are not visible because they are smaller than the width of the mean line. In Experiment
Three the error bars are visible and the results are significant.

7. To enable the reader to do this on their own, we have provided a python notebook to explore the full
set of data, at http://jair.adaptingbehavior.com .
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8. Experiment One: Drifter-Distractor

We start with our simplest task: the Drifter-Distractor problem. This problem has 1
constant target, 2 distractor targets and 1 drifter target (see Figure 2 in Section 3). This
four-action problem highlights some key features we want out of our learned behaviors.
The behavior should not be continually distracted by noisy or unlearnable things (the two
distractor targets). It should be able to quickly learn about simple targets (the constant
target), and ultimately focus action selection on targets that result in continual learning
progress (the drifter target). We test if such a behavior is learned, with non-introspective
and introspective learners, under different intrinsic rewards.

Let us first be more precise about how the behavior should look in this problem. Consider
the ideal setting, where we have a Bayesian prediction learner. The behavior should try out
all the actions in the beginning. The prediction learner associated with the constant target
should quickly narrow the posterior—quickly reduce its error—and the behavior should
stop selecting the corresponding action. The prediction learners associated with the high-
variance distractor targets will take longer to learn due to the target variance, but eventually
the posterior for these narrows as well and the learner converges to the correct prediction of
zero. Once that happens the behavior should stop choosing the actions corresponding to the
distractor targets. Finally, the prediction learner corresponding to the drifter target cannot
ever reduce its error to zero: unending learning progress is possible. A Bayesian learner for
the drifter target is effectively performing filtering, and needs to see samples constantly to
track the changing mean. Therefore the behavior should eventually settle on selecting the
action corresponding to the drifter target the majority of the time. This behavior is the
ideal behavior, in that it most efficiently gathers the data needed for each prediction tasks.

There are a few common degenerate behaviors that are possible in this problem. The first
is over-selecting the actions corresponding to the distractor targets. Every time the behavior
takes one of these actions, the corresponding non-introspective prediction learner updates
toward a random target and so its predictions can oscillate around the optimum. Over short
windows of time, the variance of the drifter target is smaller than the distractor targets;
within that window, the errors generated by the distractor targets will appear larger. This
results in the behavior frequently selecting the distractor targets, occasionally selecting the
drifter target and cycling between the three. Any methods that rely on prediction learners
to not chase noise should exhibit this degenerate behavior, such as Weight Change. With
non-introspective learners, this can only be prevented if the intrinsic reward can somehow
distinguish between distractor targets and drifter targets.

The other common degenerate behavior is selecting all actions nearly equally. This
strategy does not result in the lowest possible RMSE, but it does result in lower RMSE
than other behaviors such as mostly selecting the actions corresponding to the distractor
targets. The uniform strategy emerges because there is no setting of the parameters of the
intrinsic reward to force the behavior to follow the ideal strategy described above.

8.1 Results with Non-introspective Learners

Figure 5 summarizes the behavior of the Gradient Bandit with several intrinsic reward func-
tions, with non-introspective learners. The bold dash lines reflect the probabilities averaged
over 200 runs, while the light stroke solid lines depict probabilities of individual runs. Sev-
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Figure 5: Behavior in the Drifter-Distractor problem, with Non-Introspective
Learners. Each subplot corresponds to the behavior of the Gradient Bandit with a dif-
ferent intrinsic reward. Each line depicts the action selection probabilities learned by the
behavior agent, over 50000 steps. The bold dashed lines show the mean probability of each
action, averaged over 200 repetitions of the experiment. The light stroke solid lines show
the probabilities computed by the Gradient Bandit for each action on individual runs—we
only show a small random subset of 15 runs for readability. The green line corresponds to
the drifter target, the blue line corresponds to the constant target, and the red and black
lines correspond to the distractor targets. Intrinsic rewards based on variance estimates
and averaging errors over time induce near-ideal action selection.

eral rewards induced the ideal behavior described above to varying degrees. Rewards based
on simple moving averages of each learner’s prediction error, including Expected Error and
UDE, quickly latch on to the action corresponding to the drifter target. The parameter
sweep chose a short averaging window, because the δ are more consistently the same sign
for the drifter target, making the Expected Error higher for the drifter target. Using the
variance of each predictors estimate, as in Variance of Prediction and Uncertainty Reduc-
tion, the behavior also converges to mostly selecting the action corresponding to the drifter
target, after exploring the actions corresponding to the constant and distractor targets
initially a bit longer. A parameter corresponding to a long window is used, because the
predictions for the drifter target change much more over time than those for the distractor
targets. Perhaps unsurprisingly the Squared Error and Error Reduction produce inappro-
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priate behavior. Bayesian Surprise and Weight Change cause the Gradient Bandit to be
distracted by the distractor targets resulting in sub-optimal behavior. The Error Derivative
reward induces behavior that looks near-ideal in expectation, albeit there is more variance
across runs than exhibited by other intrinsic reward functions.
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Figure 6: The impact of varying the window length parameters η and τ ofError Derivative
reward, in the Drifter-Distractor problem, with Non-introspective Learners. Each
subplot depicts the behavior of the Gradient Bandit algorithm with Error Derivative reward
for many combinations of η, τ as indicated by the labels. As in Figure 5, each subplot shows
both the average action selection probability for each action over time, and a small subset
of individual runs. A large diversity of behaviors can be induced by changes to the window
length parameters. Only one setting induced correct behavior: η = 1000, τ = 100. This
explains why the initial action selection was uniform in Figure 5: the reward is zero until
the windows fill, which takes 1000 steps for η = 1000.

Performance in the Drifter-Distractor problem with non-introspective learners is largely
dependent on setting the hyper-parameters of the each reward correctly. To illustrate this
sensitivity, consider the Error Derivative reward, which is parameterized by two scalars η
and τ . The η parameter controls the size of the window used to average recent errors, and
τ controls how much each of the two windows overlap. Figure 6 shows the behavior of the
Gradient Bandit, in terms of action selection probability over time, for every combination
of η and τ . For each pair of (η, τ) we selected all the other hyper-parameters in the
learning system to minimize the total RMSE; each subplot of the figure represents the best
performance possible for a given (η, τ) pair according to RMSE. Across these combinations,
we see the full gamut of behaviors. Only one setting out of twelve exhibited the described
good behavior; most were uniform or focused on the distractor targets.

The hyper-parameters of the other components of the learning system also interact with
the reward function. Figure 7 shows the best behavior—in terms of RMSE—of the Gradient
Bandit for different values of the LMS predictor step-size parameter αp. As the predictors
learn faster, the Error Derivative reward induces nearly uniform action selection. If we slow
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Figure 7: The impact of varying the LMS step-size parameter αp with the Error Deriva-
tive reward, in the Drifter-Distractor problem, with Non-introspective Learners.
Each subplot depicts the behavior of the Gradient Bandit algorithm with Error Derivative
reward for for different values of αp as indicated by the labels. Large αp—faster target
tracking—induces a uniform behavior, and smaller αp produce action selection more similar
to the ideal behavior but RMSE is higher because predictions are learned slowly. The third
subplot, corresponding to αp = 0.03125, achieved the lowest total RMSE, because it allowed
for somewhat faster learning for the predictions, but was still slow enough for the behavior
to estimate learning.

the prediction learners updates with a smaller step-size parameter value, then the behavior
strongly favors the action for the drifter target. This makes sense because with a small
αp, the intrinsic reward for the distractor targets becomes smaller and much bigger for the
drifter target because the step-size parameter value is not large enough to track quickly.
Though the action selection by the behavior is correct, this is not what we want from the
learning system: we want the prediction learners to learn quickly, rather than artificially
slowly so that the behavior can more easily track what they know. In fact, with small
step-size parameter values, the RMSE is much worse than we can get with the introspective
learners, where it is much easier to estimate learning progress and prediction learners can
learn more aggressively.

Finally, let us investigate the error over time for each intrinsic reward. Figure 8 shows
the exponential average of the RMSE over time for each reward function. We choose an
exponential average to smooth the results (with a decay constant of 0.999). We plot both
the error of each target, and the error average across targets. All rewards except UDE result
in perfect prediction of the constant target; even UDE has near-zero error, indicating only
minor under-selection of the action for the constant target. Rewards that induce nearly
uniform action selection generate larger prediction error in aggregate (Error Reduction and
Surprise). Reward functions that do not induce a strong preference for the drifter target
exhibit high or growing error (Weight Change). Rewards that induce strong preference for
the distractor targets do achieve better error on those predictions at the cost of accuracy in
predicting the drifter targets (Squared Error). Achieving the lowest overall error requires
first selecting the actions for the constant and distractor targets at first, and then focusing
on the drifter target (i.e., UDE, Uncertainty Change, and Variance of Prediction).
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Figure 8: RMSE over time corresponding to each intrinsic reward function in the Drifter-
Distractor problem with Non-introspective Learners. Each subplot corresponds to a
different reward as labelled. The line colors correspond exactly as in the previous plots:
green drifting, black and red high-variance, and blue constant. Each line is the expo-
nentially weighted moving average of the LMS predictor’s RMSE. The RMSE is computed
with an exponential average, with a decay 0.999. The final results are averaged over 200
independent runs (standard error bars are plotted but not visible). The heavy stroke black
dashed line reports average of the other four. Although many rewards induce similar action
selection strategies, they can produce different RMSE curves.

8.2 Results with Introspective Learners

In this section we analyze the impact of different intrinsic rewards with introspective learn-
ers. We use LMS learners with Autostep, a step-size adaption method, to obtain introspec-
tive prediction learners. First let us recall how the step-size parameter for each LMS learner
might change over time (see Figure 3 in Section 4 for reference), based on the errors gener-
ated by each of our three target types. The distractor targets are noisy—even if the mean
is stable—so the LMS learner will experience positive and negative errors. The Autostep
algorithm will reduce the step-size parameter corresponding to these targets, allowing each
LMS learner to mitigate the variance and converge to the correct prediction of zero. The
constant target on the other hand is easy to predict. Autostep will keep the step-size param-
eter large because the errors will be of the same sign. However, the error on the constant
error can easily be reduced to zero with repeated sampling. Once the prediction error is
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zero Autostep will modify the step-size parameter no further. The drifter target has noise,
like the distractor targets, but the mean is not centered at zero, and it exhibits temporal
structure. Consequently, the Autostep algorithm will keep the step-size parameter value
high for the duration of the experiment. It is not hard to see that introspective learners
should efficiently reduce error across all the targets, at least compared with a global, con-
stant step-size parameter value. More subtly, an intrinsic reward that takes into account
the dynamic values of the step-size parameter could exploit this additional information to
adapt behavior to reduce error even faster.
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Figure 9: Behavior in the Drifter-Distractor problem with Introspective Learners.
Each subplot corresponds to the behavior of the Gradient Bandit with a different intrinsic
reward. Each LMS learner uses the Autostep algorithm to adapt the step-size parameter
over time. The line coloring, labelling, and semantics mirror Figure 5. With Autostep,
Weight Change induces near-ideal action selection. Error Derivative and Expected Error
rewards, on the other hand, induce inappropriate action selection.

The setup of our second experiment was identical to the first except that each LMS
learner maintained its own step-size parameter αt,i updated via Autostep. We also include
an intrinsic reward based on the change in the step-size parameter to assess the utility of
rewarding action choices that caused changes in the step-size parameter values. This reward
only makes sense if the step-size parameter can change over time, and thus was not included
in the previous experiment.

The results of our second experiment are summarized in Figure 9. As before we plot the
action selection probabilities to summarize the behavior. Weight change reward now induces
near-ideal action selection. The step-size parameters for the distractor targets decay to a
relatively small values causing the weight change to reduce—those actions become less and
less rewarding. Autostep keeps the step-size parameter value relatively high for the drifter
target, on the other hand, and the change in weights remains relatively high. Finally, even
though the step-size parameter does not decay to zero for the constant target, the prediction
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error for the constant target does go to zero. Consequently, the magnitude of the update
also goes to zero, meaning the weight change goes to zero and preference for the constant
target diminishes over time. Bayesian Surprise induces similar behavior as Weight Change
as suggested by our analysis in Section 6. The variance-based rewards and UDE induce the
same overall action preferences as without Autostep.

Across the board there is an improvement in RMSE reduction as shown in Figure 10.
The RMSE is about half of that for the non-introspective learners. The differences in RMSE
between the intrinsic rewards appear more minor, but the differences are meaningful. The
total RMSE is well correlated with our definition of ideal behavior in this domain—reward
functions that result in lower error exhibit the expected action preferences over time. To
see larger differences, though, we need more actions. This first experiment was primarily
designed to investigate qualitative behavior; the final experiment uses more actions and
provides a better insight into quantitative differences.
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Figure 10: RMSE over time corresponding to each intrinsic reward function in theDrifter-
Distractor problem with Introspective Learners. Results averaged over 200 runs, and
standard error bars included. In this experiment, reward functions that induce similar action
preferences produce similar RMSE reduction over profiles. Using Weight Change reward
produces the lowest RMSE (0.108), however both UDE (0.109) and Uncertainty Change
(0.110) result in similar performance. Squared Error results in the worst performance overall
(0.292), and rewards that induce uniform action selection like Error Derivative result in
larger error (0.124) compared with Weight Change.

For non-introspective learners, we observed that careful tuning of hyper-parameters al-
lowed for the correct behavior for certain intrinsic rewards, by slowing prediction learning.
This was the case for the Error Derivative, where in Figure 7 we observed that if the predic-
tors learned too quickly, the drifter target did not produce the highest Error Derivative. For
introspective learners, prediction learning cannot be slowed: they increase learning when
learning is possible. We might expect Error Derivative to therefore perform poorly, and
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be unable to find an appropriate hyper-parameter setting. We find this is the case: Error
Derivative with Autostep does not induce the action selection preferences we expect—it
causes nearly uniform action behavior—and no setting of the window parameters resulted
in appropriate action preferences (Figure 11).

Overall, the preference for the drifter target is less pronounced with introspective learn-
ers, as seen in Figure 9. Instead, the behavior selects the actions for the distractor targets
for longer. This is because step-size adaption is a meta (or second order) learning process,
and so a non-trivial amount of data is required to recognize that learning is oscillating.
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Figure 11: The impact of varying the window length parameters η and τ of Error Deriva-
tive reward in the Drifter-Distractor problem with Introspective Learners.

One might therefore wonder if rewards like the Weight Change reward simply hide the
hyper-parameter tuning issue inside the step-size adaption algorithm. This seems not to
be the case: the parameters of Autostep are straightforward to tune, and the behavior
is largely insensitive to these choices as shown in Figure 12. Small meta learning-rate
parameter values slow learning but do not prevent preference for the drifter target. The
results of our first experiment highlight the utility of both simple intrinsic rewards—one’s
without hyper-parameters—and introspective learners in multi-prediction learning systems.

One final point of note is the surprising difference between UDE and Expected Error. In
the previous experiment, with non-introspective learners, they performed similarly. In this
experiment, with introspective learners, Expected Error results in uniform action selection
whereas UDE provides the correct behavior. This is surprising, as UDE corresponds to
Expected Error divided by the long-run sample standard deviation of the target. If we look
more closely at the behavior induced by Expected Error with different smoothing parameters
β, in Figure 13, it becomes more clear why this is the case. A small β in this problem
results in early errors dominating the moving average; consequently, the constant target
is preferred, as it generates high error at first. A larger β is needed to avoid this issue,
but this unfortunately causes poor estimates of the true expected error for the distractor
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Figure 12: Action selection probabilities for the Gradient Bandit with Weight-Change
reward under different meta learning-rate parameter values κ, in the Drifter-Distractor
problem with Introspective Learners.

targets (which should be zero). In fact, it makes the errors for those target appear higher.
Consequently, for the four smaller β, the constant target is preferred and for the two large,
the distractor targets are preferred; there is no β amongst our set that lets the behavior
focus on the drifter target.

UDE, on the other hand, has a way to overcome this: the long-run variance estimate
makes the drifter target appear better. The variance of the drifter target appears small in
the beginning of learning, and it takes many steps to start to recognize that it is actually
high variance. In contrast, the variance estimate for the distractor targets are learned
quickly, and the variance for the constant target looks higher initially due to consistent
decrease in the error. This behavior is perhaps a bit accidental, and again highlights the
complex interactions between all these hyper-parameters. This only further motivates the
utility of intrinsic rewards with no hyper-parameters, that rely on introspective prediction
learners.
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Figure 13: The impact of varying the smoothing parameter β of Expected Error reward
in the Drifter-Distractor problem with Introspective Learners.

8.3 Results with Another Bandit Algorithm

A natural question is if the above results are specific to the Gradient Bandit behavior
learner. To verify that our conclusions were not somehow overfit to the Gradient Bandit
algorithm, we also repeated Experiment One with a Dynamic Thompson Sampling (DTS)
algorithm, described in Section 2.1. This bandit algorithm is representative of a different
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class of algorithms used in online learning: DTS estimates action-values instead of action-
preferences and uses optimism (Thompson sampling) to increase exploration.
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Figure 14: Behavior in the Drifter-Distractor problem, with Non-Introspective
Learners where the behavior is learned using Dynamic Thompson Sampling.
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Figure 15: Behavior in the Drifter-Distractor problem, with Introspective Learners
where the behavior is learned using Dynamic Thompson Sampling.
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The qualitative conclusions are similar, shown in Figures 14 and 15. The primary
difference is that the DTS algorithm is less likely to settle on uniform random behavior;
rather it is more likely to exhibit a preference. This could be because the algorithm is
inherently designed to identify the best action, under drift, whereas the Gradient Bandit
samples according to preferences. The Gradient Bandit algorithm is less greedy: if two
actions have similar action preferences, even if one is clearly higher than the other, then
the Gradient Bandit will spend time selecting both actions. Deterministic methods select
the action with the highest value. Despite this difference, we observed the same basic
behaviors and the same qualitative differences amongst different intrinsic rewards. The only
noteworthy difference is the behavior with Error Derivative and non-introspective learners:
with DTS this reward no longer induces the expected action selection. As we saw, Error
Derivative only worked for a narrow range of its hyper-parameters in Experiment One, and
so it is not surprising that it was not a stable result.

9. Experiment Two: Switched Drifter-Distractor Problem

Our second experiment is similar to the first except we introduce an unexpected change
in the target distributions to tax the reward function’s ability to help keep track of the
relevant actions. Our first experiment reveals that several intrinsic rewards could help the
Gradient Bandit algorithm ignore unhelpful actions and focus on the one corresponding
to a drifting prediction target. The intrinsic rewards that were most helpful are based on
moving estimates of the error or the variance of the prediction itself.

To further evaluate these rewards we introduce a simple unpredictable change in the
targets. For the first 50,000 steps the task is the same as Experiment One, then the targets
suddenly switch according to Table 2. The ideal behavior before the switch should be the
same as Experiment One: choose the actions corresponding the constant and distractor
targets until their error is reduced, then focus on the drifter. After the switch, two of the
targets drift. So the ideal behavior should focus on those two actions equally after some
initial transient period due to the change.

This task is partially observable by design. The idea is to simulate a situation where the
learning system encounters an unexpected change. The question is how does the sudden
change interact with each reward function’s internal estimates? Can we find a setting of
the smoothing parameter and window lengths the help the intrinsic reward identify the
appropriate actions?

9.1 Results with Non-introspective Learners

Figure 16 summarizes the behavior of the Gradient Bandit with several intrinsic reward
functions. In the first phase of the experiment, the behavior is fairly similar to Experiment
One. Weight Change, Squared Error, Expected Error, Bayesian Surprise and the variance-
based rewards perform almost the same, though there is reduced selection of the action for
the drifter target. Notably both Error Derivative and UDE exhibit substantially different
behavior. Error Derivative induces uniform action preferences for the entire duration of the
experiment. UDE has trouble inducing a strong preference between the drift and constant
targets in phase one. In the second phase UDE incorrectly focuses action selection on only
one of the two drifter targets.
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Figure 16: Behavior in the Switched Drifter-Distractor problem with Non-
introspective Learners. Each subplot corresponds to the behavior of the Gradient Bandit
with a different intrinsic reward. The black vertical line in each subplot marks the time of
the switch.
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Figure 17: The impact of varying the smoothing parameter β with the UDE reward in
the Switched Drifter-Distractor problem with Non-introspective Learners. Large
β—more emphasis on recent errors—induces the correct behavior in phase one, but not in
phase two.

Let us take a closer look first at UDE to get a better sense of why its behavior is so
different in Experiment Two. Figure 17 illustrates how the behavior changes as of function
of the smoothing parameter of UDE. As in Experiment One, a large value of β induces
strong preference for the drifter target in phase one. In phase two, however, mainly one
of the drifter targets is selected, resulting in higher RMSE. The best RMSE is achieved
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Figure 18: The impact of varying the step-size parameter αp of LMS with the UDE re-
ward in the Switched Drifter-Distractor problem with Non-introspective Learners.
Interestingly very small αp—slow prediction learning—induces the action preferences closer
to what we expect. Unfortunately when αp = 0.0078125 the RMSE is 1.376, compared to
a RMSE of 0.313 when αp = 0.25.
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Figure 19: The impact of varying the window length parameters η and τ of Error Deriva-
tive reward in the Switched Drifter-Distractor problem with Non-introspective
Learners.

with smaller β that (a) over-selects the action for the constant target in phase one, (b)
over-selects the distractor target in phase two, and (c) under-selects both actions for the
drifter targets in phase two. Figure 18 illustrates how the behavior changes as of function
of the step-size parameter αp. We see the same phenomenon here with UDE that we saw
with Error Derivative in Experiment One. If αp is small, then the prediction of the drifter
target is less accurate and thus the behavior induced by UDE favors the drifter target, but
results in much higher overall error.

The Error Derivative has similar problems. The behavior of the Gradient Bandit with
Error Derivative does not exhibit the expected shape under any configuration of the window
length parameters we tested (see Figure 19). If we inspect the behavior changes as a function
of the step-size parameter αp (Figure 20), then again we observe that slower learning is
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Figure 20: The impact of the step-size αp with the Error Derivative reward in the
Switched Drifter-Distractor problem with Non-introspective Learners. When
αp = 0.0078125 the behavior looks somewhat similar to the ideal behavior but the RMSE
is 0.650. With αp = 0.25 the RMSE is 0.300, the behavior induced is uniform.
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Figure 21: Behavior in the Switched Drifter-Distractor problem with Introspective
Learners, with the Gradient Bandit.

required for the Error Derivative reward to be highest for the drifter target, at the cost of
high RMSE.

9.2 Results with Introspective Learners

The results of our second experiment, this time with Autostep, are summarized in Figure
21. As before we plot the action selection probabilities to summarize the behavior. As
before, Weight Change and Surprise rewards now induce near-ideal action selection. As in
Experiment One, Expected Error and Error Derivative do not induce the expected behavior
because Autostep increases the effective learning rate of the LMS predictors. UDE induces
similar behavior on this problem with or without Autostep.
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10. Experiment Three: Jumpy Eight-Action Problem

Our final experiment, in the Jumpy Eight-Action problem, quantitatively compares the
best performing intrinsic rewards in a setting where the behavior agent should prefer sev-
eral different actions. To achieve good performance, the agent must continually sample
three actions, with different probabilities, and eventually ignore three noisy targets and
two constant targets. The jumpy target follows a pattern increasing towards 50 and then
decreasing toward -50 repeatedly. The idea was to design a problem where the intrinsic
rewards based on variance would induce the wrong preferences over arms. The jumpy tar-
get exhibits high variance, as do the other two drifter targets. Intrinsic rewards based
exclusively on the variance of the predictions might over-reward the jumpy-target action.

This final experiment provides the quantitative comparison for performance, so we in-
clude a baseline uniform random behavior. There are eight targets and three of them
continually drift. The drift is fast enough that wasting action selection will result in high
error. By the design of the experiment, therefore, uniform behavior should not be optimal,
and we should expect some of the intrinsic rewards to significantly outperform uniform
random behavior. We exclude rewards that did not succeed in inducing useful behavior in
Experiments One and Two, and so have little hope to provide improvements here. This
includes Error Reduction and Squared Error rewards.

Jumpy target

fast drifter target

slow drifter target

constant target

distractor target

distractor targetdistractor target

constant target

Error Derivative Expected Error Step-size Change Bayesian Surprise

UDE Uncertainty Change Variance of Prediction Weight Change
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Figure 22: Behavior in the Jumpy Eight-Action problem with Introspective Learn-
ers. Plotted is the probability of selecting each action versus time (averaged over 400 runs),
with Autostep prediction learners.

Figure 22 shows the behavior of the Gradient Bandit with eight different intrinsic re-
wards. We report the results using the hyper-parameter settings that resulted in the lowest
total RMSE. We expect the behavior should initially select all the actions, eventually learn-
ing to ignore the constant and distractor targets once they have been learned. Let us inspect
the behavior with Weight Change. Initially, the actions corresponding to the high-error con-
stant targets are preferred. Next the action corresponding to the distractor target (with
variance 1.0) is strongly preferred for a while, as is the other other distractor target (with
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time steps
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Uniform

Figure 23: RMSE for the Jumpy Eight-Action problem with Introspective Learn-
ers. Standard error of 400 runs is shown as shading around each line. We include the
performance of the uniform behavior to provide a baseline of comparison. The behavior
agent based on Weight Change learned the fastest and achieved the lowest RMSE at the
end of learning. Most of the differences in the final RMSE are significantly different, in
that the 95% confidence intervals do not overlap (2 times the standard error), except for
the difference between Uniform and Step-size Change and between Uncertainty Reduction
and Error Derivative.

variance 0.5). The remaining noisy target (with variance 0.1), is easy to quickly learn and
is not preferred after the beginning. Eventually the steady-state behavior selects the action
for the jumpy target most often, followed by the actions for the two drifter targets. As
you can see in Figure 23, the behavior induced by Weight Change significantly outperforms
uniform action selection, and all other intrinsic rewards we tested.

Several rewards cause the behavior to over select the action for the jumpy target, at
the cost of under selecting the actions for the two drifter targets. Bayesian Surprise and
Variance of Prediction eventually select the jump action nearly 100% of the time. In Figure
23 we can see that both these rewards results in high RMSE compared to uniform action
selection. This makes sense for intrinsic rewards based on variance because the variance of
the jumpy target is significantly higher than the others. Bayesian Surprise likely did not
work because our distributional assumptions are wrong—recall we assumed all targets were
Gaussian with a moving estimate of the variance of the target, to provide an approximate
Bayesian surprise for non-Bayesian learners. This is simply a problem with using Bayesian
surprise outside its intended use-case—it should be used with Bayesian learners. But, as
motivated above, we wanted to verify if a more explicit form of Bayesian surprise, rather than
the much simpler Weight Change, could provide benefit, even for non-Bayesian learners.

Many of the other rewards also over selected the action for the jumpy target, though
less excessively. Expected Error takes a long time to induce a preference for the jumpy
target, initially favoring the high-variance ones. UDE induces a preference for the correct
actions, but over-rewards the action for the jumpy target—especially toward the end of
the experiment. This resulted in increasing RMSE over time, as we see in the upward
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trend of the error of UDE in Figure 23. Uncertainty Change eventually induces near-ideal
action selection, though it starts by over selecting the action for the jumpy target. Error
Derivative, after 500,000 steps, also appears to be trending towards over selection of the
action for the jumpy target, while Step-size Change seems to be getting it all wrong. Weight
Change induces a preference for all three non-stationary targets after initially selecting all
the actions. We cannot say if this is the optimal behavior, but it does cause the prediction
learners to learn faster and achieve lower error compared with all other intrinsic rewards
we tested.

11. Adapting the Behavior of a Horde of Demons

The ideas and algorithms promoted in this paper may be more impactful when combined
with policy-contingent, temporally-extended prediction learning. Imagine learning hundreds
or thousands of off-policy predictions from a single stream of experience, as in the Unreal
(Jaderberg et al., 2016) and Horde (Sutton et al., 2011) architectures. In these settings,
the behavior must balance overall speed of learning with prediction accuracy. That is,
balancing action choices that generate off-policy updates across many predictions, with the
need to occasionally choose actions in almost total agreement with one particular policy. In
general we cannot assume that each prediction target is independent as we have done in this
paper; selecting a particular sequence of actions might generate useful off-policy updates
to several predictions in parallel (White et al., 2012). There have been several promising
investigations of how intrinsic rewards might benefit single (albeit complex) task learning
(see Pathak et al., 2017; Hester and Stone, 2017; Tang et al., 2017; Colas et al., 2018; Pathak
et al., 2019). However, to the best of our knowledge, no existing work has studied adapting
the behavior based on intrinsic rewards of a model-based or otherwise parallel off-policy
learning system.

Simple intrinsic reward schemes and the concept of an introspective learning system
should scale nicely to these more ambitious problem settings. We could swap our stateless
LMS learners for Q-learning with experience replay, or gradient temporal difference learning
(Maei et al., 2010). The Weight Change reward could be computed for each predictor with
computation linear in the number of weights. It would be natural to learn the behavior
policy with an average-reward actor-critic architecture, instead of the gradient bandit al-
gorithm used here. Finally, the notion of an introspective learner still simply requires that
each prediction learner can adapt its rate of learning. This can be achieved with quasi
second order methods like Adam (Kingma and Ba, 2015), or extensions of the Autostep
algorithm to the case of temporal difference learning and function approximation (Kearney
et al., 2018, 2019; Günther et al., 2020; Jacobsen et al., 2019). It is not possible to know if
the ideas advocated in this paper will work well in a large-scale off-policy prediction learning
architecture like Horde, however they will certainly scale up.

In this paper we focused on (non-Bayesian) mean prediction learners. This is a natural
first step, as most prediction algorithms in reinforcement learning form point estimates (e.g.,
value functions). It is possible, however, to go beyond mean predictions, both for our testbed
and for the Horde setting. For example, it is straightforward to use distributional prediction
learners—those that estimate the distribution over the targets. For mean prediction learners
we used the normed difference between weights before and after an update; for distributional
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learners, we could use a KL divergence between the distribution over targets before and after
an update. Note that this differs from Bayesian surprise, which is the KL divergence between
the distributions over the weights before and after an update. We expect similar conclusions
with distributional prediction learners, as conceptually the definition of Weight Change
simply uses a modified difference measure—a norm versus a divergence. The extension
to Bayesian prediction learners—for either the mean or distribution over targets—is more
complex, though improvements in Bayesian neural networks make it a more feasible line of
investigation.

Maximizing intrinsic reward as presented in this paper is not a form of exploration, its the
objective of the learning system—the agent must explore in order to maximize the intrinsic
reward. The intrinsic rewards do not provide a bonus to help improve exploration. In
our stateless prediction task, sufficient exploration was provided by the stochastic behavior
policy. This will not always be the case, and additional exploration will likely be needed.
Efficient exploration is an open problem in reinforcement learning. Combining the ideas
advocated in this paper with exploration bonuses or planning could work well, but this
topic is left to future work.

12. Conclusion

The goal of this work was to systematically investigate intrinsic rewards for a multi-
prediction setting. This paper has three main contributions. The first is a new benchmark
suite for comparing intrinsic rewards. Our bandit-like task requires the learning system to
demonstrate several important capabilities: avoiding dawdling on noisy outcomes, track-
ing non-stationary outcomes, and seeking actions for which consistent learning progress is
possible. Second, we provide a survey of intrinsically motivated learning systems, and em-
pirically investigated 10 different analogs of well-known intrinsic reward schemes. Finally,
we found that simple intrinsic rewards based on amount of learning, can induce effective
behavior—avoiding classic degenerative behavior—if the base prediction learners are intro-
spective. Introspective prediction learners can decide for themselves when learning is done.
Previous work focused on designing more complex intrinsic rewards to mitigate bad behav-
ior. Our results suggest the opposite: we should focus on designing better learners and use
simple (ideally parameter-free) intrinsic rewards. We found that intrinsic rewards based
on amount of learning—like Weight Change—can perform well in problems specifically de-
signed to distract the learning system. This work provides several new insights into the
strengths and weakness of different intrinsic reward mechanisms, and may provide guidance
for constructing larger more complex intrinsically motivated reinforcement learning systems
where an extensive and systematic study like ours is not feasible.
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Audibert, J.-Y., Munos, R., and Szepesvári, C. (2007). Variance estimates and exploration
function in multi-armed bandit. In CERTIS Research Report 07–31.

Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. (2018). Revisiting active perception. Au-
tonomous Robots.

Balcan, M.-F., Beygelzimer, A., and Langford, J. (2009). Agnostic active learning. Journal
of Computer and System Sciences.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with Bregman
divergences. Journal of Machine Learning Research.

Barto, A. G. (2013). Intrinsic motivation and reinforcement learning. In Intrinsically
Motivated Learning in Natural and Artificial Systems.

Barto, A. G., Mirolli, M., and Baldassarre, G. (2013). Novelty or surprise? Frontiers in
Psychology, 4:907.

Barto, A. G. and Simsek, O. (2005). Intrinsic motivation for reinforcement learning systems.
In Yale Workshop on Adaptive and Learning Systems.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016).
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Infor-
mation Processing Systems.

Berseth, G., Geng, D., Devin, C., Finn, C., Jayaraman, D., and Levine, S. (2019). SMiRL:
Surprise minimizing RL in dynamic environments. arXiv:1912.05510.

Besbes, O., Gur, Y., and Zeevi, A. (2014). Stochastic multi-armed-bandit problem with
non-stationary rewards. In Advances in Neural Information Processing Systems, pages
199–207.

1327



Linke, Ady, White, Degris & White

Brafman, R. I. and Tennenholtz, M. (2002). R-max – A general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. (2018).
Large-scale study of curiosity-driven learning. In International Conference on Learning
Representations.

Bylinskii, Z., DeGennaro, E., Rajalinghamd, R., Ruda, H., Zhang, J., and Tsotsos, J.
(2015). Towards the quantitative evaluation of visual attention models. Vision Research.

Chentanez, N., Barto, A. G., and Singh, S. P. (2005). Intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing Systems.

Clement, B., Roy, D., Oudeyer, P.-Y., and Lopes, M. (2015). Multi-armed bandits for
intelligent tutoring systems. Journal of Educational Data Mining.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with statistical
models. Journal of Artificial Intelligence Research.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2018). GEP-PG: Decoupling exploration and
exploitation in deep reinforcement learning algorithms. In International Conference on
Machine Learning.

de Abril, I. M. and Kanai, R. (2018). Curiosity-driven reinforcement learning with homeo-
static regulation. In International Joint Conference on Neural Networks.

Degris, T. and White, A. (2020). Automatic step-size adaptation for reinforcement.
Manuscript in Preparation.

Garivier, A. and Moulines, E. (2011). On upper-confidence bound policies for switching
bandit problems. In International Conference on Algorithmic Learning Theory.

Golovin, D. and Krause, A. (2011). Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence Research.

Gordon, G. and Ahissar, E. (2011). Reinforcement active learning hierarchical loops. In
International Joint Conference on Neural Networks.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017). Auto-
mated curriculum learning for neural networks. In International Conference on Machine
Learning.

Günther, J., Ady, N. M., Kearney, A., Dawson, M. R., and Pilarski, P. M. (2020). Examin-
ing the use of Temporal-Difference Incremental Delta-Bar-Delta for real-world predictive
knowledge architectures. Frontiers in Robotics and AI.

Gupta, N., Granmo, O.-C., and Agrawala, A. (2011). Thompson sampling for dynamic
multi-armed bandits. In International Conference on Machine Learning and Applications
and Workshops.

1328



Adapting Behavior via Intrinsic Reward: a Survey and Empirical Study

Haber, N., Mrowca, D., Fei-Fei, L., and Yamins, D. L. (2018). Learning to play with
intrinsically-motivated self-aware agents. In Advances in Neural Information Processing
Systems.

Hester, T. and Stone, P. (2017). Intrinsically motivated model learning for developing
curious robots. Artificial Intelligence.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016).
Variational information maximizing exploration. In Advances in Neural Information Pro-
cessing Systems.

Itti, L. and Baldi, P. F. (2006). Bayesian surprise attracts human attention. In Advances
in Neural Information Processing Systems.

Jacobsen, A., Schlegel, M., Linke, C., Degris, T., White, A., and White, M. (2019). Meta-
descent for online, continual prediction. In AAAI Conference on Artificial Intelligence.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and
Kavukcuoglu, K. (2016). Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations.

Karl, M., Soelch, M., Becker-Ehmck, P., Benbouzid, D., van der Smagt, P., and
Bayer, J. (2017). Unsupervised real-time control through variational empowerment.
arXiv:1710.05101.

Kearney, A., Veeriah, V., Travnik, J., Pilarski, P. M., and Sutton, R. S. (2019). Learn-
ing feature relevance through step size adaptation in temporal-difference learning.
arXiv:1903.03252.

Kearney, A., Veeriah, V., Travnik, J. B., Sutton, R. S., and Pilarski, P. M.
(2018). TIDBD: Adapting temporal-difference step-sizes through stochastic meta-descent.
arXiv:1804.03334.

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In
International Conference on Machine Learning.

Konyushkova, K., Sznitman, R., and Fua, P. (2017). Learning active learning from data.
In Advances in Neural Information Processing Systems.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In
Advances in Neural Information Processing Systems.
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