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Abstract

As an important text coherence modeling task, sentence ordering aims to coherently
organize a given set of unordered sentences. To achieve this goal, the most important step
is to effectively capture and exploit global dependencies among these sentences. In this
paper, we propose a novel and flexible external knowledge enhanced graph-based neural
network for sentence ordering. Specifically, we first represent the input sentences as a graph,
where various kinds of relations (i.e., entity-entity, sentence-sentence and entity-sentence)
are exploited to make the graph representation more expressive and less noisy. Then, we
introduce graph recurrent network to learn semantic representations of the sentences. To
demonstrate the effectiveness of our model, we conduct experiments on several benchmark
datasets. The experimental results and in-depth analysis show our model significantly
outperforms the existing state-of-the-art models.

c©2021 AI Access Foundation. All rights reserved.
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1. Introduction

Modeling discourse coherence is crucial due to its significance to both natural language
generation and understanding, which involves modeling logical consistency and topic tran-
sitions. Among various tasks of modeling text coherence, sentence ordering (Barzilay &
Lapata, 2008) aims to restore the original coherent paragraph from a set of unordered sen-
tences, which is a common approach to building and evaluating text coherence models.
For many natural language processing (NLP) tasks where the relationships between sen-
tences play an essential role, such as text generation (Konstas & Lapata, 2012; Holtzman
et al., 2018), retrieval-based question answering (Yu et al., 2018), conversational analysis
(Zeng et al., 2018), essay scoring (Burstein et al., 2010), and multi-document summarization
(Barzilay et al., 2002; Galanis et al., 2012; Nallapati et al., 2012), sentence order is of great
significance because the final performance will be negatively affected by erroneous sentence
orders. Concretely, in multi-document summarization, since the relative ordering of sen-
tences from different documents can be unclear, finding acceptable orderings can enhance
user comprehension (Barzilay et al., 2002). In brief, sentence ordering is a fundamental
NLP task and can be easily extended and applied into various downstream tasks. A suc-
cessful sentence ordering model is not only able to understand the discourse structure, but
also help to generate well-organized long text to achieve both local and global consistency.
Therefore, sentence ordering has attracted increasing attention in recent years.

To achieve this goal, in the early studies, researchers mainly resorted into rule-based or
statistical approaches. However, these approaches often involve careful designs of various
sophisticated linguistic features, which often require high labor costs. Recently, with the
rapid development and wide applications of deep learning, dominant sentence ordering
models have evolved into neural network based ones. In this aspect, the typical models
mainly consist of window network (Li & Hovy, 2014; Li & Jurafsky, 2017), hierarchical
RNN-based model (Logeswaran et al., 2018), and deep attentive sentence ordering network
(ATTOrderNet) (Cui et al., 2018). In particular, taking advantages of fully-connected
graph representation based multi-head self-attention in learning sentence representations,
ATTOrderNet achieves the state-of-the-art performance in the field of sentence ordering.

However, ATTOrderNet still has two serious defects. On the one hand, although its
fully-connected graph representations allow the whole model to encode relationship between
sentences, lots of noises caused by connecting incoherent sentences are also introduced,
resulting in a negative effect on the encoder. On the other hand, although the self-attention
mechanism have shown effective in modeling text coherence, it only exploits sentence-level
information using the same set of parameters while ignoring extra information such as
entities. Therefore, exploring a more effective encoder for neural sentence ordering is still
challenging.

In this paper, we propose a novel external knowledge enhanced graph-based neural net-
work for sentence ordering, which represents the input sentences as a graph and then adopts
recent graph recurrent network (GRN) (Zhang et al., 2018b) to learn sentence representa-
tions. Specifically, we explore two graphs to represent input sentences and their entities:
one is sentence-entity graph proposed by Guinaudeau and Strube (2013), the other is the
extension of the sentence-entity graph, where external lexical knowledge is exploited to
enrich the graph structure. In our graphs, each node denotes either a sentence or an en-
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S1: Maria looked at the menu and ordering some food.

S3: Maria added the item to the menu.

S2: She decided that she wanted an order of a salad.

S4: She paid for the item and placed the order for pickup.

Figure 1: An example of sentence ordering, where the correct order is: S1, S2, S3, S4. S3
is coherent with S4, as they share the same entity “item”. S1 and S2 are coherent, since
the entity “menu” is closely related to the entity “order”.

tity, and each edge either links two semantically related sentence nodes or entity nodes,
or connects one entity node with its corresponding sentence node. In this way, our graph
representations can effectively encode the following information: the semantic relevance be-
tween coherent sentences, the co-occurrence between sentences and entities, and the lexical
relation between entities.

To better illustrate the intuition behind our graph representations, we take the sentences
shown in Figure 1 as example. Here we can obtain the following observations: First, if two
sentences contain the same entity, they are likely to be semantically close to each other: the
entity “item” occurs in both the sentences S3 and S4, which are obviously more coherent
than S1 and S4. Second, the entity “menu” is closely related to the entity “order”, which
provides an important clue that S3 may appear behind S2. Overall, compared with the
fully-connected graph representation of ATTOrderNet (Cui et al., 2018), our graph has two
obvious advantages: First, it is able to greatly reduce the noisy edges between irrelevant
sentence nodes. Second, the rich and useful sentence-sentence, entity-entity, and entity-
sentence information can be fully leveraged to refine paragraph encoding.

On the basis of sentence-entity graph representations, we then introduce GRN (Zhang
et al., 2018b) to conduct paragraph encoding by recurrently performing semantic transitions
among connected nodes. During this process, we use a paragraph-level node to assemble
semantic information of all nodes. By doing so, the resulting representation of this node
will be beneficial to the long-distance information propagation among nodes. Besides, con-
sidering the fact that sentence nodes and entity nodes play different roles, we use different
parameters to distinguish and quantify their effects. After learning the paragraph represen-
tation, we also use a pointer network decoder to generate the ordered sentence sequence.

Overall, in this work, our main contributions can be summarized as follows:

• We represent the input unordered sentences as a sentence-entity graph, which extends
the graph presentation proposed by Guinaudeau and Strube (2013) by exploiting
lexical relations between entities.

• We introduce GRN-based encoder based on the above-mentioned graph representa-
tions to learn sentence and paragraph embeddings. To the best of knowledge, our
work is the first attempt to explore such a graph-based encoder for sentence ordering.

547



Yin, Lai, Song, Zhou, Han, Yao & Su

• Experimental results and in-depth analysis demonstrate the effectiveness of our pro-
posed encoder, particularly, verifying the effectiveness of entities in graph representa-
tions for sentence ordering.

This work has been presented in our previous conference paper (Yin et al., 2019). In
this paper, we significantly extend our method from previous work in the following aspects:

• We introduce external lexical knowledge to enhance the graph-based model. Specifi-
cally, nodes of semantically related entities are connected, which making the extended
graph more expressive. Moreover, the entity relatedness induced from lexical knowl-
edge as priori weight coefficients leads to better paragraph encoding for sentence
ordering.

• We carry out more experiments and analysis to further investigate the effectiveness
of our model in multi-document extractive summarization.

The remainder of this paper is organized as follows. Section 2 summarizes the related
work and highlights the differences of our model from previous studies; Section 3 gives a
brief description to our baseline model, ATTOrderNet ; Section 4 elaborates on details of
our proposed model; Experimental results are reported and analyzed in Section 5; Finally,
we conclude with some remarks on prospective future directions in Section 6.

2. Related Work

In this work, we propose a graph-based neural network for sentence ordering. Our related
work mainly includes two aspects:

Sentence Ordering Previous work on sentence ordering mainly focused on the uti-
lization of linguistic features via statistical models (Lapata, 2003; Barzilay & Lee, 2004;
Barzilay & Lapata, 2005, 2008; Elsner & Charniak, 2011; Guinaudeau & Strube, 2013).
Especially, the entity based models (Barzilay & Lapata, 2005, 2008; Guinaudeau & Strube,
2013) have shown the effectiveness of exploiting entities for this task. Recently, with the
rapid development of deep learning, the studies have evolved into neural network based
models. Li and Jurafsky (2017) describe both discriminative and generative neural models
that are able to measure coherence in existing sentences, marking an initial step in generat-
ing coherent texts given discourse contexts. Logeswaran et al. (2018) propose a hierarchical
RNN-based model based on set-to-sequence framework. Cui et al. (2018) introduce the
self-attention mechanism to modeling input sentences. For neural coherence models used
to assess text coherence, Nguyen and Joty (2017) propose a neural version of the entity
grid model. Mohiuddin et al. (2018) further use neural entity grid to model the coherence
of conversations. More recently, Moon et al. (2019) incorporate local and global coherence
model into a unified framework.

The above neural sentence ordering models do not fully exploit inter-sentence coher-
ence relations and entity information which have proven highly useful in formal theories
of discourse. In addition, they only implicitly learn some lexical knowledge form corpora
and do not utilize the external knowledge base (e.g. WordNet) to provide more explicit
lexical knowledge. In this work, we effectively combine the advantages of modeling entity
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information and structure encoding of graph neural networks, achieving state-of-the-art
performance.

Graph Neural Networks in NLP Recently, graph neural networks have proven to
be effective in many NLP tasks, such as modeling semantic graphs (Beck et al., 2018;
Song et al., 2018a, 2019), dependency trees (Marcheggiani & Titov, 2017a; Bastings et al.,
2017; Vashishth et al., 2018; Zhang et al., 2018c; Song et al., 2018b), knowledge graphs
(Wang et al., 2018), and even multi-modal input (Yin et al., 2020b). Specially, our work is
inspired by previous studies that incorporate prior knowledge into graph neural networks.
For example, Marcheggiani and Titov (2017b) introduce syntactic knowledge by parsing
sentences into dependency graphs and then model it by GCN. Li et al. (2019) extract key
words of sentences as topic knowledge, and organize the article into a topic interaction graph.
Vashishth et al. (2019) propose SynGCN which incorporates various semantic relations (e.g.
hyponymy, hypernymy and synonymy) when constructing the graph. Sahu et al. (2019)
introduce coreference relations as extra knowledge and connects co-referred entities in a
document-level graph.

In addition, our work is in line with GRN (Zhang et al., 2018b), which achieves excellent
performances on many text classification and sequence labeling tasks. In our work, we
extend GRN from encoding sentences to encoding paragraphs. Moreover, we further exploit
external knowledge to enrich graph representations, leading to better sentence ordering.

3. Baseline: ATTOrderNet

In this section, we give a brief introduction to ATTOrderNet, proposed by Cui et al. (2018).
Due to its satisfying performance, ATTOrderNet has been widely used and thus selected
as the baseline of our work. Taking a set of M input sentences s = {so1 , . . . , soM } as input,
ATTOrderNet aims to recover the correct order o∗ = [o∗1, . . . , o

∗
M ]. Figure 2 shows the

architecture of ATTOrderNext. Overall, it consists of three components: (1) a Bi-LSTM
sentence encoder, (2) a paragraph encoder based on multi-head self-attention (Vaswani
et al., 2017), and (3) a pointer network based decoder (Vinyals et al., 2015).

3.1 Bi-LSTM Based Sentence Encoder

The Bi-LSTM sentence encoder reads the word embedding sequence (x1, . . . ,xn) of the
input sentence soi in two directions, producing its bidirectional hidden state sequences.

Specifically, at the j-th timestep, the current states (
−→
h j and

←−
h j) are produced from the

previous hidden states (
−→
h j−1 and

←−
h j+1) and the current word embedding xj in the following

way:

−→
h j = LSTM(

−→
h j−1,xj), (1)

←−
h j = LSTM(

←−
h j+1,xj). (2)

Finally, we concatenate the last states of the Bi-LSTM in both directions to denote the

sentence representation of sentence soi i.e. κ0
oi = [

−→
h n;
←−
h 1].
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Figure 2: The architecture of ATTOrderNet (Cui et al., 2018).

3.2 Multi-head Self-Attention Based Paragraph Encoder

On the top of the above-mentioned Bi-LSTM sentence representations, the paragraph en-
coder is equipped with several self-attention layers followed by an average pooling layer to
refine these sentence representations.

Specifically, the paragraph representation is first initialized by concatenating all sentence
representations, i.e, K0 = [κ0

o1 ; . . . ;κ0
oM

]. Then, this initial graph representation is updated
by L self-attention layers, where the update at the l-th layer is conducted as follows:

K l = SelfAttentionl(K
l−1), (3)

where SelfAttentionl consists of a multi-head self-attention and a feed-forward network.
Finally, an average pooling operation is performed on the outputKL of the last self-attention
layer to produce the final paragraph representation g:

g =
1

M

M∑
i=1

κL
i , (4)

where κL
i denotes the final vector representation of sentence soi .

3.3 Pointer Network Based Decoder

With the learned final paragraph representation g, a pointer network based decoder is
introduced to generate the ordered sentence sequence. Formally, the conditional probability
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of the input paragraph s with a predicted order o′ is defined as follows:

P (o′|s) =
M∏
i=1

P (o′i|o′<i, s), (5)

P (o′i|o′<i, s) = Softmax(vᵀ tanh(Whd
i +UK0)), (6)

where hd
i is the decoder state, and v, W and U are learned model matrices.

During the model training, the input sequence of the decoder is the vector representation[
κ0
o∗1
, . . . ,κ0

o∗M

]
with the correct sentence order o∗. At each timestep of the model testing,

the input of the decoder corresponds to the sentence representation in the predicted order,
and the decoder state is updated recurrently in the follow way:

hd
i = LSTM(hd

i−1,κ
0
o′i−1

), (7)

where k0
o′i−1

denotes the vector representation of the previously ordered sentence. Particu-

larly, hd
0 is initialized as the final paragraph representation g, and the first-step input and

initial cell memory are zero vectors.

4. Our Model

In this section, we introduce our graph-based neural sentence ordering model in detail.
Overall, our proposed model mainly includes a sentence encoder, a GRN based paragraph
encoder and a pointer network based decoder. In order to ensure fair comparison, we directly
adapt the sentence encoder and decoder from ATTOrderNet (Cui et al., 2018). Therefore,
we omit the descriptions of the encoder and decoder, and mainly focus on the descrip-
tion of our paragraph encoder, involving graph representations and GRN-based paragraph
encoding.

4.1 Graph Representations

Initially, we need to represent an input paragraph as a graph. Different from the fully-
connected graph representations explored by Cui et al. (2018), we leverage entity informa-
tion to construct suitable graph representations for the subsequent graph-based paragraph
encoding. In our graphs, the entities not only provide important clues for modeling text
coherence, but also can be used to alleviate the noise caused by connecting incoherent
sentences. Moreover, we introduce the word-level relatedness information from external
knowledge base to enrich our graph.

To construct our graphs, we first regard all nouns in each input paragraph as entities,
and remove the entities that only appear once in the paragraph so as to alleviate the
negative effect of redundant entities in long paragraphs. Based on the identified entities,
we then explore two types of graph representations for neural sentence ordering, which will
be described in detail.

SE-Graph Following Guinaudeau and Strube (2013), we first use sentence-entity graphs
to represent input paragraphs. As shown in Figure 3 (b), the SE-Graph can be formalized
as Gse = (Vs,Ve,Ese), where Vs, Ve and Ese indicate the sentence-level nodes (such as
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(a)

(b)

O

S1 S3 S2 S4

S1 S3 S2 S4

menu order

X O

item

O
O O

(c)

O

S1 S3 S2 S4

menu order

X O

item

O
O O

0.4

0.5

0.3

Figure 3: Comparison among (a) a fully-connected graph used by Cui et al. (2018), (b) our
sentence-entity graph, and (c) our sentence-entity graph with external lexical knowledge for
the example in Figure 1. An edge label in (b) and (c) corresponds to the syntactic role of an
entity in a sentence. Compared to the graph used in (Yin et al., 2019), nodes of semantically
related entities are connected (the edges in orange), which making the extended graph more
expressive. Moreover, the entity relatedness induced from lexical knowledge as priori weight
coefficients leads to better paragraph encoding.

vsi), entity-level nodes (such as vej ), and edges, respectively. There are two types of edges
in Ese. The first type of edge is sentence-entity edge connecting a sentence and an entity
in it. It has a label indicating the syntactic role of the entity in the sentence (Guinaudeau
& Strube, 2013), which can be either a subject(S ), an object(O) or other(X ). Particularly,
since an entity has different roles in the same sentence, we choose the highest-rank role as
its final label according to the rule S�O�X. The second type of edge is sentence-sentence
edge linking two sentences that have common entities. Consequently, sentence nodes can
be linked to sentence or entity nodes, and entity nodes are only connected to sentence ones.

SEK-Graph This kind of graph is an extension of the first one, which exploits the word
relatedness induced from external knowledge base to enrich the graph representation. Like-
wise, it can also be formalized as Gsek = (Vs,Ve,Esek), where the node sets are same as
those in Gse, and the edge set Esek has an additional type of entity-entity edges connecting
related entity nodes. In particular, each edge has a weight coefficient that indicates the
semantic relevance between two entities. Intuitively, in a paragraph, an entity is often re-
lated to its synonyms or hypernyms, which can provide important clues to text coherence.
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timestep

0
...

t-1

t

Figure 4: GRN encoding our proposed SEK-Graph. Please note that GRN encoding for
SE-Graph is similar to that for SEK-Graph, with the difference that each entity node will
not receive information from other entity nodes. The original graph structure is only drawn
on timestep t for being concise.

Therefore, we utilize the commonly-used toolkit1 to calculate the word-level relatedness be-
tween two entities based on WordNet, and connect two entity nodes of which the word-level
relatedness is larger than a threshold.

To better understand our proposed graph representations and previous one (Cui et al.,
2018), we compare them in Figure 3. In the fully-connected graph, the edges are dense,
which may introduce noise especially when the input paragraph contains abundant sen-
tences. For example, S1 and S4 do not share any common entities and thus we believe that
they do not form a coherent sentence sequence. However, there still exists one edge connect-
ing them in this fully-connected graph. In contrast, both SE-Graph and SEK-Graph do not
contain this edge, avoiding the resulting noise. Another problem with the fully-connected
graph is that every node is directly linked to others, thus no information can be obtained
based on this kind of graph structure. In contrast, the structure of our sentence-entity
graphs can provide more discriminating information. Particularly, SEK-Graph encodes the
richer information between entities induced from external knowledge base.

1. http://code.google.com/archive/p/xssm/downloads
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4.2 Encoding with GRN

Based on the above graph representations, we construct the paragraph encoder using GRN,
which has shown effective in many tasks such as text representation (Zhang et al., 2018b)
and text generation (Song et al., 2019; Beck et al., 2018). Essentially, it is a kind of
graph neural network based on a message passing framework, and node states are updated
iteratively using recurrent gating mechanisms such as LSTM (Hochreiter & Schmidhuber,
1997) and GRU (Cho et al., 2014). At the t-th step of message passing, the update process
of each node involves two sub-steps: the message is first collected from its adjacent nodes,
and then is used to update the node state using recurrent gating mechanisms. In our work,
we choose GRU to model state transitions since it has fewer number of parameters and
better efficiency.

Figure 4 shows the message passing procedures of our paragraph encoders based on our
proposed different graph representations. Although the proposed graph representations are
different, their resulting encoders are similar, where the only difference lies in the update of
entity nodes. In addition to all node states in the graph, we introduce a paragraph-level state
g, which can provide global information for the updates of both sentence and entity nodes.
Since sentence nodes and entity nodes have different roles and contain different amount
of semantic information, we apply separate encoding parameters and gating operations to
model their state transition processes.

At the t-th step, we update the sentence state κ
(t−1)
i of the node vsi using the weighted

sum with messages from its neighboring sentence states and entity states. Concretely, we
first collect two kinds of information from its neighboring sentence nodes and entity nodes
as follows:

m
(t)
i =

∑
vs′

i
∈N(vsi )

w
(t)
i,i′κ

(t−1)
i′ , (8)

m̃
(t)
i =

∑
vej∈Ñ(vsi )

w̃
(t)
i,jε

(t−1)
j (9)

where N(vsi) and Ñ(vsi) are the neighboring sentence and entity nodes sets of vsi , respec-

tively. The weights w
(t)
i,j and w̃

(t)
i,j are computed according to their edge label li,j (if any)

and two associated node states, both of which are fed into a single-layer neural network

with a sigmoid activation function. Then, we update the sentence state κ
(t−1)
i using m

(t)
i ,

m̃
(t)
i and g(t−1) in the following way:

ξ
(t)
i = [si;m

(t)
i ; m̃

(t)
i ; g(t−1)] (10)

r
(t)
i = σ

(
W rξ

(t)
i +U rκ

(t−1)
i

)
(11)

z
(t)
i = σ

(
W zξ

(t)
i +U zκ

(t−1)
i

)
(12)

u
(t)
i = tanh

(
W uξ

(t)
i +Uu

(
r

(t)
i � κ

(t−1)
i

))
(13)

κ
(t)
i =

(
1− z(t)

i

)
� u(t)

i + z
(t)
i � κ

(t−1)
i (14)
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Please note that the update processes of entity nodes are different in SE-Graph and

SEK-Graph encoding. Specifically, for an entity node vej in SE-Graph, its state ε
(t−1)
j is

updated based on its word embedding ej , the states of its connected sentence nodes (such

as κ
(t−1)
i ) and g(t−1). Similarly, we first gather the information from its neighboring nodes:

m̂
(t)
j =

∑
vsi∈N(vej )

ŵ
(t)
j,iκ

(t−1)
i , (15)

ξ̂
(t)
j = [ej ; m̂

(t)
j ; g(t−1)], (16)

where N(vej ) denotes the sentence-level neighbors of an entity node vej .

In SEK-Graph, since an entity node may link to other entity nodes, we collect additional
message from its connected entity nodes for state transition. Particularly, inspired by previ-
ous studies incorporating prior knowledge, we leverage the word-level semantic relatedness
between entities to guide the updates of entity nodes:

m̃
(t)
j =

∑
ve′

j
∈Ñ(vej )

w̄
(t)
j,j′ε

(t−1)
j′ , (17)

w̄
(t)
j,j′ = σ

(
W 1ε

(t−1)
j +W 2ε

(t−1)
j′ + λ�Rele(vej , vej′ )

)
, (18)

ξ̂
(t)
j = [ej ; m̂

(t)
j ; m̃

(t)
j ; g(t−1)], (19)

where Ñ(vej ) denotes the set of adjacent entity nodes of vej , and W 1, W 2 and λ are
trainable parameters. Here, Rele(vej , vej′ ) is the semantic relatedness between two entities
derived from WordNet, which is used as a priori weight coefficient.

After obtaining all messages, the new entity state ε
(t)
j is generated using GRU:

r̂
(t)
j = σ

(
Ŵ

r
ξ̂

(t)
j + Û

r
ε

(t−1)
j

)
(20)

ẑ
(t)
j = σ

(
Ŵ

z
ξ̂

(t)
j + Û

z
ε

(t−1)
j

)
(21)

û
(t)
j = tanh

(
Ŵ

u
ξ̂

(t)
j + Û

u
(
r̂

(t)
j � ε

(t−1)
j

))
(22)

ε
(t)
j =

(
1− ẑ(t)

j

)
� û(t)

j + ẑ
(t)
j � ε

(t−1)
j (23)
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Afterwards, we update the state of paragraph-level node g(t−1) with messages from all
sentence nodes and entity nodes:

κ̂(t−1) =
1

|Vs|

|Vs|∑
m=1

κ(t−1)
m (24)

ε̂(t−1) =
1

|Ve|

|Ve|∑
m=1

ε(t−1)
m (25)

r(t)
g = σ(W srκ̂(t−1) +W erε̂(t−1) +U grg(t−1)) (26)

z(t)
g = σ(W szκ̂(t−1) +W ez ε̂(t−1) +U gzg(t−1)) (27)

u(t)
g = tanh(W suκ̂(t−1) +W euε̂(t−1) +U gu(r(t)

g � g(t−1))) (28)

g(t) = (1− z(t)
g )� u(t)

g + z(t)
g � g(t−1), (29)

where W ∗ (∗ ∈ {r, z, u, sr, er, sz, ez, su, eu}), U∗ (∗ ∈ {r, z, u, gr, gz, gu}), Ŵ ∗
and Û

∗

(∗ ∈ {r, z, u}) denote trainable parameters, and |Vs| and |Ve| are the number of sentences and
entities respectively. In this way, each node state not only absorbs contextual information
through the iterative encoding process but captures co-occurrence relationships between
sentences and entities.

The above update process will iterate T times. Finally, we obtain the final paragraph
state g(T ), which is used to initialize the initial decoder state hd

0 (see Section 3) to predict
an ordered sentence sequence.

5. Experiments

To investigate the effectiveness of our model, we compare it with several state-of-the-arts
using four commonly-used sentence ordering datesets. Besides, we further demonstrate the
validity of our model in the task of multi-document summarization.

5.1 Setup

Datasets. We conduct experiments on the following benchmark datasets:

• NIPS Abstract. This dataset contains roughly 3K abstracts of NIPS papers from
2005 to 2015.

• ANN Abstract. It includes about 12K abstracts extracted from the papers in ACL
Anthology Network (AAN) (Radev et al., 2016).

• arXiv Abstract. This dataset comes from arXiv and it consists of about 1.1M
abstracts.

• SIND. It has 50K stories for the visual storytelling task2, which belongs to a different
domain. Here we use each story as a paragraph.

2. http://visionandlanguage.net/VIST/
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We first use NLTK 3 to tokenize the sentences, and then adopt Stanford Parser4 to extract
nouns with syntactic roles for the edge labels (S, O or X ). For each paragraph in the first
three datasets in which there are lots of nouns, we only treat the nouns appearing more
than once as entities. In this way, each paragraph from NIPS Abstract, ANN Abstract,
arXiv Abstract and SIND has 5.8, 4.5, 7.4 and 9.1 entities on average, respectively.

Settings. To ensure fair comparisons, we use the same setting as (Cui et al., 2018).
Specifically, we first apply Glove to pre-train 100-dimensional word embeddings, which will
be fine-tuned during the model training. Besides, to construct our GRN encoder, we set the
state sizes for sentence and entity nodes to 512 and 150, respectively, and the size of edge
embedding to 50. As for the model training, we adopt Adadelta (Zeiler, 2012) with ε = 10−6,
ρ = 0.95 and initial learning rate 1.0 as the optimizer. Particularly, we employ L2 weight
decay with the coefficient 10−5 and dropout with the probability 0.5 for regularization term.
Batch size is set to 16 for training and beam search with size 64 is implemented for decoding.
The optimal thresholds chosen on validation sets for NIPS Abstract, ANN Abstract, arXiv
Abstract and SIND are 0.6, 0.6, 0.6 and 0.7 respectively.

Contrast Models. We still directly refer to two variants of our models that encode
our two proposed graph representations as SE-Graph and SEK-Graph respectively, and
then compare them with the following contrast models: (1) LSTM+PtrNet (Gong et al.,
2016), (2) Varient-LSTM+PtrNet (Logeswaran et al., 2018), and (3) ATTOrderNet
(Cui et al., 2018). Note that major differences among these models lie in their ways of
encoding paragraphs.

In addition to the above-mentioned contrast models, we also report the performance
of two variants of our model, so as to investigate effects of various factors on our model:
(1) F-Graph . Similar to ATTOrderNet, it uses a fully-connected graph to represent the
input unordered paragraph, but adopts GRN rather than self-attention layers to encode
the graphs. (2) S-Graph . It is a simplified version of our model by removing all entity
nodes and their related edges from the original sentence-entity graphs. (3) FE-Graph . It
encodes the fully-connected graph of sentences as well as all entities in the input paragraph.

Evaluation Metrics. As implemented in previous work, we employ the following three
metrics to directly measure the quality of reordered sentence sequences:

• Kendall tau (τ ): Formally, it is calculated as τ = 1- 2×(number of inversions)/
(
M
2

)
,

where M denotes the sequence length and number of inversions is the number of pairs
in the predicted sequence with incorrect relative order. Note that it ranges from -1
(the worst) to 1 (the best).

• Accuracy (Acc): It measures the percentage of sentences with correctly predicted
absolute positions. Different from τ , it penalizes results that correctly preserve most
relative orders but with a slight shift.

• Perfect Match Ratio (PMR): It considers each paragraph as a single unit and
calculates the ratio of exactly matching orders, so no partial credit is given for any
incorrect permutations.

3. https://www.nltk.org/
4. https://nlp.stanford.edu/software/lex-parser.shtml
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Figure 5: Results on the arXiv Abstract validation set regarding the recurrent step T .

5.2 Effect of Recurrent Step T

Obviously, the recurrent step T is a crucial hyperparameter in our models. Here we carry
out experiments on the largest validation set (arXiv Abstract) to study its effect.

From the experimental results shown in Figure 5, we can find large improvements in
all models when increasing T from 0 to 3, demonstrating the effectiveness of our proposed
models. However, the increase of T from 3 to 5 does not bring further improvements while
leading to more running time. Hence, we directly use T=3 for all experiments thereafter.

5.3 Main Results

The overall experimental results are shown in Table 1. Our SEK-Graph significantly outper-
forms other contrast models and its variants on the datasets of different domains. Through
in-depth analyses, we can reach the following conclusions:

First, even with fewer number of parameters and relatively fewer recurrent steps, the
F-Graph model based on the same fully-connected graph representations is still able to
slightly surpass ATTOrderNet on all datasets. Therefore, we believe that it is reasonable
to apply GRN for encoding paragraphs.

Second, S-Graph exhibits better performance than F-Graph. This confirms the hypoth-
esis that leveraging entity information can reduce the noise caused by connecting incoherent
sentences.

Third, SE-Graph outperforms S-Graph on all datasets. This result is consistent with
our assumption that exploiting entities as extra information and modeling the co-occurrence
between sentences and entities can further contribute to our neural graph model. Besides,
SE-Graph is superior to FE-Graph and the performance is more stable, which shows that
reducing the noise from fully-connected sentence nodes and rudantant entity nodes is better
for model learning.

Fourth, SEK-Graph obtains better performance than SE-Graph, verifying the benefit
of modeling related entities for paragraph encoding.
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Model
NIPS Abstract ANN Abstract

Acc τ #pm Acc τ #pm

LSTM+PtrNet † 50.87 67.00 2.1M 58.20 69.00 3.0M
Varient-LSTM+PtrNet † 51.55 72.00 26.5M 58.06 73.00 28.9M
ATTOrderNet † 56.09 72.27 8.7M 63.24 73.40 17.9M

F-Graph 56.24 72.41 4.1M 63.45 74.24 9.9M
S-Graph 56.67 73.00 4.1M 64.09 76.08 9.9M
FE-Graph 55.13 74.80 5.0M 62.75 77.18 11.5M
SE-Graph 57.27* 75.10* 5.0M 64.64* 78.26* 11.5M
SEK-Graph 58.25* 76.49* 5.2M 65.06* 78.60* 12.0M

Model
arXiv Abstract SIND

PMR τ #pm PMR τ #pm

LSTM+PtrNet † 40.44 72.00 12.7M 12.34 48.00 3.6M
Varient-LSTM+PtrNet † – – – – – –
ATTOrderNet † 42.19 73.00 23.5M 14.01 49.00 14.4M

F-Graph 42.50 73.92 19.6M 14.48 50.14 10.6M
S-Graph 43.37 74.43 19.6M 15.15 50.22 10.6M
FE-Graph 43.07 74.60 21.3M 14.84 51.53 12.7M
SE-Graph 44.33* 75.49* 21.3M 16.22* 52.13* 12.2M
SEK-Graph 44.72* 75.74* 21.8M 17.17* 53.16* 12.7M

Table 1: Main results on the sentence ordering task (The top half show results on NIPS
Abstract and ANN Abstract, while the bottom half lists results on arXiv Abstract and
SIND). #pm is the number of parameters, † indicates previously reported scores and *
means significant at p<0.01 over F-Graph on each test set. Here we conduct 1,000 bootstrap
tests (Koehn, 2004) to measure the significance in the metric score differences.

Model
arXiv Abstract SIND
head tail head tail

LSTM+PtrNet † 90.47 66.49 74.66 53.30
ATTOrderNet † 91.00 68.08 76.00 54.42

F-Graph 91.43 68.56 76.53 56.02
S-Graph 91.99 69.74 77.07 56.28
SE-Graph 92.28 70.45 78.12 56.68
SEK-Graph 92.23 70.46 79.01 57.27

Table 2: The ratio of correctly predicting first and last sentences on arXiv Abstract and
SIND. † indicates previously reported scores.

Accuracies on Predicting the First and Last Sentences. Due to the crucial absolute
positions of both the first and last sentences in a paragraph, we follow Cui et al. (2018) to
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conduct experiments on predicting them. Experimental results on arXiv Abstract and SIND
are listed in Table 2. We can observe that SE-Graph and SEK-Graph significantly surpass
ATTOrderNet. Again, all these results echo previous experimental results and witness the
advantages of our models.

5.4 Ablation Study

Model S-Graph SE-Graph SEK-Graph
Acc PMR Acc PMR Acc PMR

Original 58.06 43.37 58.91 44.33 59.15 44.72
Shuffle edges 57.06 42.41 57.46 42.84 57.99 43.53
Remove edge labels — — 58.51 43.96 58.52 43.99
Remove 10% entities 57.79 43.26 58.67 44.17 58.60 43.93
Remove 50% entities 57.57 42.83 57.84 43.18 58.16 43.68
Remove priori — — — — 58.91 44.46
Share parameters — — 55.30 40.31 58.31 43.65

Table 3: Ablation study of our graph structure on arXiv Abstract, where Share Parameters
means employing the same parameters to update entity and sentence nodes.

Finally, we conducted ablation studies on arXiv Abstract, which is the largest one among
our datasets, to inspect the impacts of various elements (entities and edges) on our model.
Here we choose S-Graph, SE-Graph and SEK-Graph as experimental models, because both
of them leverage entity information to construct graph representations. Table 3 reports the
experimental results, where we can further obtain the following observations:

First, the utilizations of entities are indeed able to reduce noise in graph representations.
Specifically, when shuffling edges to introduce noise into the graph representations, we
find that the performances of these three models degrade significantly. Nevertheless, the
resulting PMR of S-Graph (42.41 as shown in Line 4 of Table 3) is still comparable with
the PMR of F-Graph (42.50 as shown in Line 14 of Table 1). This result indicates that
fully-connected graphs are also noisy, especially because F-Graph has the same number of
parameters as S-Graph.

Second, we also find that compared with removing or shuffling edges, removing edge
labels leads to less performance drops. The underlying reason is the labels indeed provide
useful information for our graph encoder. Besides, our graph encoders is also able to
automatically learn some labels.

Third, since our entities are derived from the parsing results, removing entities is es-
sentially a way to introduce syntactic parsing noise. When we only remove 10% entities,
S-Graph, SE-Graph and SEK-Graph have slight performance decreases. Further, randomly
removing 50% entities leads to significant performance drops. Note that in this case, the
performance of SE-Graph is slightly worse than original model of S-Graph, demonstrating
that the improvement of SE-Graph over S-Graph is not only derived from simply intro-
ducing more parameters. Overall, these results not only demonstrate the robustness of our
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Input Sentences

(1) My best friend and i went out to meet with some other friends.
(2) A man was shocked to see us after so many years.
(3) The man introduced us to his new wife.
(4) We went back to another place so continue catching up.
(5) We took a group of pictures to remember this event for all times.

Ground Truth (1) (2) (3) (4) (5)
F-Graph (1) (3) (2) (4) (5)
S-Graph (1) (2) (4) (3) (5)

SE-Graph (1) (2) (3) (4) (5)
SEK-Graph (1) (2) (3) (4) (5)

Input Sentences

(1) Everyone picked the player they thought would do the best.
(2) Mascots meet before the game.
(3) The pitcher was voted the number one.
(4) Then he stopped and changed his mind.
(5) He got ready to throw the ball.

Ground Truth (2) (1) (3) (5) (4)
F-Graph (1) (5) (3) (4) (2)
S-Graph (1) (5) (3) (4) (2)

SE-Graph (1) (5) (3) (4) (2)
SEK-Graph (2) (1) (3) (5) (4)

Input Sentences

(1) The local parish holds a craft show each year.
(2) Lots of folks come out and set up tables to sell their crafts.
(3) Some of these crafts are very unique and take a lot of talent to make.
(4) Folks of all ages come out to peruse the crafts for sale.
(5) Some of the crafters even dress up in unique costumes as part of
their selling act.

Ground Truth (1) (2) (3) (4) (5)
F-Graph (1) (2) (4) (3) (5)
S-Graph (1) (2) (3) (5) (4)

SE-Graph (1) (4) (2) (5) (3)
SEK-Graph (4) (1) (3) (5) (2)

Table 4: Sentence ordering results produced by different models. Italic text denotes entities.

models against potential parsing accuracy drops on certain domains, such as medical and
chemistry, but also indicate the importance of introducing entities.

Fourth, removeing the priori in SEK-Graph leads to a performance drop, showing
that the word-level relatedness from external knowledge base can help the model to better
capture the semantic relatedness between entities.

Finally, we observe that sharing parameters makes the final performance drop signif-
icantly. This result is reasonable since entity nodes play significantly different roles from
sentence nodes. Therefore, modeling them separately is a better choice for our encoders.

5.5 Case Study

Table 4 shows two examples to illustrate the superiority of our models as well as an example
for error analysis. In the first example, both SE-Graph and SEK-Graph are able to produce
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the correct sequence of ordered sentences, since they fully exploit the co-occurrence between
sentences and entities. In the second example, only SEK-Graph can make a totally correct
prediction. This is because the entities game and player, pitcher and ball help SEK-Graph
make a totally correct prediction. In the third example, the SE-Graph and SEK-Graph
containing entity nodes perform worse than F-Graph and S-Graph, and the SEK-Graph
makes an even worse prediction. The SE-Graph may excessively rely on the entity folks,
while the SEK-Graph suffers from errors from the parser. Concretely, the parser tags lot
and lots as nouns and then the Wordnet toolkit relates them to selling, misleading the
model severely.

5.6 Summary Coherence Evaluation

As mentioned in previous work (Barzilay & Lapata, 2005, 2008), sentence ordering models
can be used to refine arranging more coherent text for several downstream tasks, such as
extractive multi-document summarization (Bollegala et al., 2006; Nayeem & Chali, 2017).
Here we follow Nayeem and Chali (2017) to evaluate our sentence ordering models on the
multi-document summarization task DUC 2004 (Task-2). However, since the DUC dataset is
too small to effectively train neural sentence ordering models, we first pretrain our models on
a large-scale summarization dataset (Fabbri et al., 2019), where the numbers of summaries
in the training and validation sets are 44,972, 5,622, respectively, and the average number
of sentences in each summary is 9.97. Then, we apply LexRank (Erkan & Radev, 2004)
on DUC 2004 (Task-2) to extract summaries and utilize pretrained models to reorder the
extracted summaries. It should be noted that ROUGE scores (Lin & Hovy, 2003) only focus
on the content similarity between extracted summaries and references but are insensitive
to coherence (Lapata & Barzilay, 2005; Nayeem & Chali, 2017). Therefore, we adopt the
coherence probability proposed by Nayeem and Chali (2017) to evaluate the coherence of the
summaries reordered by different models. Formally, the coherence probability of a summary
x is defined as follows:

Coherence(x) =

∑n−1
i=1 Sim(xi, xi+1)

n− 1
, (30)

Sim(xi, xi+1) = λ ∗NESim(xi, xi+1) + (1− λ) ∗ CosSim(xi, xi+1), (31)

NESim(xi, xi+1) =
|NE(xi)

⋂
NE(xi+1)|

min(|NE(xi)|, |NE(xi+1)|)
, (32)

where n is the number of sentences in x, NE(x∗) denotes all named entities in the sentence
x∗, and CosSim(xi, xi+1) calculates the cosine similarity between sentence embeddings of
xi and xi+1. Here, we directly define the sentence embedding of a sentence as the weighted
sum of its word embeddings. Besides, we choose λ = 0.8, giving more preference to the
named entities.

The results are displayed in Table 5. We can observe that compared with other models,
the reordered summaries by SEK-Graph achieve the higher coherence scores, verifying the
effectiveness of our proposed model in the downstream task.
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Model Coherence

LexRank 45.68
F-Graph 47.56
S-Graph 49.13
SE-Graph 51.17
SEK-Graph 51.46

Table 5: Coherence probabilities of reordered summaries.

6. Conclusion

In this paper, we have presented a novel external knowledge enhanced graph-based neu-
ral network for sentence ordering. Concretely, we first propose two kinds of graph rep-
resentations to model both the semantic relevance between coherent sentences and the
co-occurrence between sentences and entities. Then, based on these graph representations,
we introduce GRN to encode input sentences by performing semantic transitions among
connected nodes. Compared with previous models, ours not only is able to reduce the noise
brought by relationship modeling between incoherent sentences, but also can fully leverage
entity information for paragraph encoding. Experimental results and in-depth analysis on
several benchmark datasets prove the superiority of our model over the state-of-the-art and
other baselines.

In the future, we plan to design a fault-tolerant architecture to mitigating error propaga-
tion from external tools. Besides, incorporating more powerful decoding algorithms (Zhang
et al., 2018a; Yin et al., 2020a) is a promising direction.
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