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Abstract

This paper introduces and studies a graph-based variant of the path planning problem
arising in hostile environments. We consider a setting where an agent (e.g. a robot)
must reach a given destination while avoiding being intercepted by probabilistic entities
which exist in the graph with a given probability and move according to a probabilistic
motion pattern known a priori. Given a goal vertex and a deadline to reach it, the agent
must compute the path to the goal that maximizes its chances of survival. We study the
computational complexity of the problem, and present two algorithms for computing high
quality solutions in the general case: an exact algorithm based on Mixed-Integer Nonlinear
Programming, working well in instances of moderate size, and a pseudo-polynomial time
heuristic algorithm allowing to solve large scale problems in reasonable time. We also
consider the two limit cases where the agent can survive with probability 0 or 1, and
provide specialized algorithms to detect these kinds of situations more efficiently.

1. Introduction

Motivated by the recent interest of the AI community in the navigation of hostile envi-
ronments (Agmon, 2017), in this paper we study the problem of planning high-level paths
in a graph-represented environment containing probabilistic static and/or dynamic threats.
Specifically, we consider an agent (e.g. a robot) moving in a graph that must reach a
given destination while avoiding being intercepted by some entities —generically called
“obstacles”— existing with a given probability, moving according to a probabilistic motion
pattern, and capable of “intercepting” the agent along its path (e.g., within a given range).
Given a goal vertex to reach within a given deadline, the objective of the agent is simple:
computing the path to the goal that maximizes its chances of survival.

Possible applications of this work include, for instance, those related to intrusion set-
tings. Here, obstacles may represent enemy guards deployed to protect the entrances build-
ings (Portugal & Rocha, 2011), while the agent can be thought as a strong adversary
endowed with a full knowledge (although probabilistic) of the patrolling entities (Agmon,
Kaminka, & Kraus, 2011). Another example is given by those robotic scenarios where the
robot’s sensors have been compromised by an attacker, who is trying to make the robot
crash by injecting false dynamic obstacles into the robot’s perception pipeline: although the
robot might be able to recognize these kinds of attacks by leveraging probabilistic techniques
–as shown very recently by Liu et al. (2018)– and abort the mission, there are situations
where reaching the goal within a given deadline could be of vital importance.
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Figure 1: An example problem instance. The environment is a 22x22 grid graph containing
some “classical” obstacles (the black squares). The agent must move from the
bottom-left corner (orange star) to the upper-right (purple star). Static proba-
bilistic obstacles (green triangles) and dynamic probabilistic obstacles (red circles)
can intercept the agent along its path. The agent must reach the goal within a
given deadline by traveling along the path that maximizes its chances of survival.

The paper is structured as follows. We start by introducing a graph-based formalization
of the problem (see Figure 1 for an example instance) in Section 2, and present some com-
putational complexity results, including some non-trivial NP-hardness proofs sheding some
light on the intractability of seemingly simple instances (rectangular grid graphs, obstacles
moving at at most 1 cell/step, very small interception range, etc.). We then propose two
algorithms for computing high quality solutions in the general case: an exact algorithm
based on Mixed-Integer Nonlinear Programming, presented in Section 3, working well in
instances of moderate size, and a pseudo-polynomial time heuristic algorithm allowing to
solve large scale problems in reasonable time, described in Section 4. We also consider the
two limit cases where the agent can survive with probability 0 or 1 in Section 5, and pro-
vide specialized algorithms to detect these kinds of situations more efficiently. Finally, in
Section 6, we show the results of an extensive validation campaign in a simulated intrusion
scenario: for the general problem, we show the limits of the MINLP approach in dealing
with large scale problem instances, and evaluate the optimality losses introduced by the
heuristic —also comparing it against two baselines (a Monte Carlo Tree Search algorithm
and a sampling-based approach); for the two limit cases, instead, we show the computa-
tional advantages offered by more specialized algorithms over slight variations of the general
MINLP approach. We conclude the paper by showing how this new problem can be framed
in the wide literature landscape of adversarial navigation problems, in Section 7, and by
providing some interesting future research directions in Section 8.
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2. Problem Setting

This section provides a formal definition of the problem considered in this work. Section 2.1
introduces the environment and the agent’s motion model. Sections 2.2 and 2.3 introduce,
respectively, the models of static and dynamic obstacles. Section 2.4 formalizes the problems
we aim to solve, and studies their computational complexity. Finally, Section 2.5 contains
some additional comments about the proposed model.

2.1 Environment and Agent’s Motion Model

Let G = (V,E) be a connected, undirected, simple graph with unitary edge lengths rep-
resenting the environment, and let V = {1, . . . , n}. Let also d(u, v) be the shortest path
distance between two vertices u, v ∈ V . An agent must plan a path on G in the form of an
ordered sequence of vertices π = (vs, v1, v2, . . . , vg) from a start vertex vs to a goal vertex
vg. The agent moves deterministically on G. In particular, we assume that time evolves in
discrete steps t ∈ N0. At each step, the agent can either stay still at the current vertex, or
move along a graph edge: formally, ∀vi, vi+1 ∈ π, either vi = vi+1 or {vi, vi+1} ∈ E. We use
π[i] to denote the position of the agent at the i-th time step when executing π. Also, with
a slight abuse of notation, we use |π| to denote the number of time steps required to reach
the goal in π. Finally, we use P to denote the set of all the possible paths according to the
above definition.

We assume that the environment may contain probabilistic obstacles able to intercept
the agent along its path. These obstacles are either static or dynamic. Although the
former is a particular case of the latter, we will make use of this distinction in the following
sections. We further assume that the existence and the interception events related to a given
obstacle in G are independent of those of all the others. In this work, we make the standard
assumption that all the probabilities contained in the problem instance are rational numbers
(see, e.g., Madani, Hanks, and Condon, 2003). In the following, the terms “probability of
survival” and “survivability” will be used interchangeably.

2.2 Static Probabilistic Obstacles

The set of static probabilistic obstacles is denoted by S. Each s ∈ S is completely described
by a probability of existence ps and by a set of vertices V (s) ⊆ V \ {vs, vg} inducing a
connected subgraph on G. We assume ps < 1 since, otherwise, the problem instance can be
easily reformulated by directly embedding this information into the graph G. The semantic
associated with a static probabilistic obstacle s is as follows: if the agent executes a path
π traversing any of the vertices in V (s), it is intercepted by s with probability ps and it
survives s with probability 1− ps. We use the function σ : P ×S → {0, 1} to associate each
〈π, s〉 pair with the presence (σ(π, s) = 1) or absence (σ(π, s) = 0) of at least one passage
of π through a vertex belonging to V (s).

2.3 Dynamic Probabilistic Obstacles

The set of dynamic probabilistic obstacles is denoted by D. Each d ∈ D is associated with
a probability of existence pd and, if it exists, moves in the graph according to a probabilistic
motion model described by a Markov chain. In particular, the Markov chain’s |V | states
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Figure 2: A simple graph with a probabilistic dynamic obstacle d̄ having pd̄ = 0.5 and
located in vertex 5 at step 0.

denote the presence of d in one of the vertices at a given time step, while its transitions
represent the probability that d moves between two given vertices in two subsequent time
steps. The motion model of d can hence be encoded in a stochastic matrix Md whose generic
entry Md

uv represents the probability that d will move from u to v between t and t+ 1. (If
we had assumed to have a motion model depending on time, we could have defined multiple
stochastic matrices Md(t) with the same interpretation.)

The probability distribution describing the initial location of dynamic obstacle d ∈ D
in G at step 0 is given by the belief vector

bd(0) =
[
bd1(0) . . . bdn(0)

]
. (1)

We use the notation b̂d(t) to denote the application of (Md)t to the initial belief vector
bd(0), and use b̂dv(t) to denote its element corresponding to vertex v; formally, b̂d(t) =
bd(0)(Md)t. Intuitively, b̂d(t) encodes where d might be located at step t, assuming no
interactions with the agent.

We also introduce the notation ηd = (v0, v1, v2, . . . , vt̄) to denote a possible sequence of
vertices occupied by dynamic obstacle d ∈ D between t = 0 and t = t̄ that is coherent with
the initial belief vector bd(0) and the corresponding motion model Md. We call ηd a path
of dynamic obstacle d, and t̄ its length. For each vertex vt belonging to a given ηd, note
that it must hold that b̂dvt(t) > 0. Finally, we use Hd to denote all the possible sequences
of vertices associated with dynamic obstacle d respecting the above definition, regardless of
their length.

Example 1. A simple graph is shown in Figure 2. It contains a single probabilistic dynamic
obstacle d̄ with pd̄ = 0.5 whose starting position is precisely known at t = 0 (assuming its

existence), i.e. bd̄5(0) = 1.0. The motion of d̄ is described by the following stochastic matrix:
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M d̄ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0.5 0.5 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

This implies that the obstacle will move to either vertex 2 or 3 between step 0 and 1,
and then it will stay there forever. Formally,

bd̄(0) =
[
0 0 0 0 1 0 0

]
b̂d̄(t) =

[
0 0.5 0.5 0 0 0 0 0

]
∀t ≥ 1.

Dynamic obstacle d̄ can hence follow only two types of paths: η1
d̄

= (5, 2, 2, . . .) or η2
d̄

=
(5, 3, 3, . . .).

Let us now consider the interactions between dynamic obstacles and the agent. Each
d ∈ D has the ability to intercept the agent which is moving in the graph G. This ability
is specified by an interception function Nd : V → 2V which associates each vertex v ∈ V in
which the agent can be located with those vertices from which d can intercept it when the
former is located in v.

Example 2 (Continued from Example 1). Following the previous example, let us as-
sume that d̄ can only intercept the agent when located in the same vertex, with two excep-
tions: when d̄ is located in vertex 2 or 3, it can intercept the agent even when the latter is
located in vertex 1. This can be expressed formally as

N d̄(1) = {1, 2, 3}

N d̄(v) = {v} ∀v ∈ {2, 3, 4, 5, 6, 7}.

As the agent moves towards the goal by following a given path π, we can express the
probability that each d ∈ D has intercepted it by time step t —assuming its existence in
the environment— as follows. For each step t, we introduce the vector

bd;π(t) = [bd;π
1 (t), . . . , bd;π

n (t)]

to keep track of the probability that, at time t, d is in vertex v and has not yet inter-
cepted the agent when the latter has followed π up to t. Element-wise, this probability
is denoted by bd;π

v (t). We introduce a separate variable bd;π
0 (t), which we call interception

state, to represent the probability that the agent, while executing path π, has already been
intercepted by d by time t. Clearly, it must hold that bd;π

0 (t) = 1−
∑

v∈V b
d;π
v (t). Together,

bd;π
0 (t) and bd;π(t) represent the belief about the result of the interactions between the agent
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executing path π and d up to time step t in all the possible realizations of the world. For
time step 0, bd;π

0 (0) = 0 and bd;π(0) encodes the initial probability distribution of d on V ,
so bd;π(0) = bd(0).

For each t and π, bd;π
0 (t) and bd;π(t) are updated as follows. First, the motion model is

applied to bd;π(t):

b̂d;π(t+ 1) = bd;π(t)Md. (2)

We call b̂d;π(t+1) the uncorrected belief vector at t+1, which assumes no interception events

happening at t+ 1. Denoting now by b̂d;π
v (t+ 1) a generic element of the uncorrected belief

vector b̂d;π(t+ 1), each element bd;π
v (t+ 1) of the final vector bd;π(t+ 1) is then computed

as:

bd;π
v (t+ 1) =

{
0 if v ∈ Nd(π[t+ 1]),

b̂d;π
v (t+ 1) otherwise.

(3)

The interception state can finally be updated simply as bd;π
0 (t+ 1) = 1−

∑
v∈V b

d;π
v (t+ 1).

Intuitively, the effect of the application of Eqs. (2)-(3) on b̂d;π(t + 1) is to “move” some
probabilities related to obstacle d being in such vertices to the agent’s interception state.
Hence, the semantic associated with a dynamic probabilistic obstacle d is as follows: if the
agent executes path π, it is intercepted by d with probability pd · bd;π

0 (|π|) and it survives d

with probability 1− pd · bd;π
0 (|π|).

Example 3 (Continued from Example 2). Let us now introduce start and goal vertices
for our agent: vs = 1, vg = 7. Suppose that the agent follows path π = (1, 2, 5, 6, 7). At step
1, d̄ will be in vertex 2 with probability 0.5, hence we have

b̂d̄;π(1) =
[
0 0.5 0.5 0 0 0 0

]
bd̄;π(1) =

[
0 0 0.5 0 0 0 0

]
.

This implies that bd̄;π
0 (1) = 0.5. Also, note that the belief vector will not change in subsequent

steps. Recalling that pd̄ = 0.5, once the agent reaches vg it will have been intercepted with
probability 0.25.

2.4 Optimization Problem, Decision Problems, and Complexity Results

The main optimization problem considered in this work can be concisely stated as follows.

Problem 1 (Path Planning in Hostile Environments — PPHE). Given 〈G,S,D, vs, vg, T 〉,
where T ∈ N is a deadline, compute the path π∗ (and the corresponding probability of
survival) defined as
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π∗ = arg max
π∈P

∏
s∈S

(1− ps)σ(π,s)
∏
d∈D

(1− pd · bd;π
0 (|π|)) (4)

s.t.

Belief Update Equations (1)− (3) ∀d ∈ D, t ∈ {1, . . . , |π|} (5)

|π| ≤ T (6)

Note, in Eq. (4), the effect of the independency assumption that allows the survivability
of the agent to be expressed as the product of the survivabilities relative to each obstacle.
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ҧ𝑑 at t=0

Figure 3: PPHE instance obtained from Example 3 by adding a single probabilistic static
obstacle s̄ with ps̄ = 0.2, which covers two vertices.

Example 4 (Continued from Example 3). Let us add a single static probabilistic ob-
stacle to the graph of the previous example, and set a deadline T = 5 steps. The complete
PPHE instance is shown in Figure 3. Static obstacle s̄ has V (s̄) = {2, 4} and ps̄ = 0.2.
Now, note that all the paths of the form (1, 1, . . . , 7) have survivability not greater than
0.5: if the agent does not move from vs at the beginning, it will surely be intercepted by d̄
regardless of its non-deterministic motion if d̄ is actually present in the graph (recall that
pd̄ = 0.5). It is easy to see that an optimal solution is π∗ = (1, 3, 5, 6, 7), having probability
of survival equal to 0.75: being on vertex 3 at step 1 allows the agent to completely avoid s̄.

In order to characterize the complexity profile of the PPHE problem, we introduce its
decision version.

Problem 2 (Path Planning in Hostile Environments (Decision Version) — PPHE-D).
Given 〈G,S,D, vs, vg, T, p〉, where p ∈ [0, 1], does there exist a path π∗ reaching vg in at
most T steps having a probability of survival not less than p?

The following theorem summarizes a tight NP-hardness result for PPHE-D, which im-
plies the (likely) intractability of PPHE even on seemingly simple special cases.

Theorem 1. PPHE-D is NP-hard, even when the following conditions hold simultaneously:

(1) rectangularity: G is a rectangular grid graph;
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(2) no overlap between static obstacles: for any a 6= b ∈ S, V (a) ∩ V (b) = ∅;

(3) coherence between dynamic obstacles’ and agent’s motion model: all dy-
namic obstacles can only move to a neighbor vertex between two subsequent steps;

(4) limited dynamic obstacles’ motion: for any d ∈ D, the corresponding motion
model Md describes a Markov chain such that, for any possible starting vertex v such
that bdv(0) > 0, an absorbing state is reached within |V | steps with probability 1;

(5) no overlap between static and dynamic obstacles: for any s ∈ S and d ∈ D,
there does not exist a vertex v ∈ V (s) and a time step 0 ≤ t ≤ T s.t. b̂dv(t) > 0;

(6) dynamic obstacles’ maximum interception range limited to 1: for any d ∈
D, v ∈ V , u ∈ Nd(v) implies d(u, v) ≤ 1;

(7) dynamic obstacles’ constant interception range: for any d ∈ D and u, v ∈ V ,
u ∈ Nd(v) with d(u, v) = c implies k ∈ Nd(z) for each k, z ∈ V s.t. d(k, z) = c;

(8) no uncertainty in dynamic obstacles’ initial conditions: for any d ∈ D, pd = 1
and bdv(0) = 1 for a single v ∈ V ;

(9) deadline bounded by number of vertices: T ≤ |V |;

(10) no overlap between dynamic obstacles: for any d 6= e ∈ D, there does not exist
a vertex v ∈ V and a time step 0 ≤ t ≤ T s.t. b̂dv(t) > 0 and b̂ev(t) > 0.

The proof is quite long and hence reported in Appendix A. Note that Theorem 1 implies
also the intractability of more general classes of problems (e.g. those defined on planar
graphs).

In general, it can also be convenient to know beforehand whether a problem instance
only admits solutions with zero chances of survival. Similarly, it would be nice to have at
hand a fast procedure able to retrieve a solution with survivability 1, whenever present.
The two decision problems stated below capture these insights.

Problem 3 (PPHE with Non-Zero Survivability — PPHE-D0). Given 〈G,S,D, vs, vg, T 〉,
does there exist a path π∗ reaching vg in at most T steps having a probability of survival
greater than 0?

Problem 4 (PPHE with Survivability 1 — PPHE-D1). Given 〈G,S,D, vs, vg, T 〉, does
there exist a path π∗ reaching vg in at most T steps having a probability of survival equal to
1?

Specialized algorithms for these last two problems are given in Section 5. For PPHE-D0,
we have a result similar to Theorem 1:

Theorem 2. PPHE-D0 is NP-hard, even when Conditions (1)-(9) of Theorem 1 hold si-
multaneously.

The proof is again reported in Appendix A. For what concerns PPHE-D1, we have the
following result:
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Theorem 3. PPHE-D1 can be decided in pseudo-polynomial time O
(
|V ||S|+ |V |2T |D|

)
.

Proof. See Algorithm 3 (Section 5.1).

Now, note that we cannot easily conclude that PPHE-D, PPHE-D0, and PPHE-D1
belong to the NP complexity class. This is because a feasible solution π of a PPHE instance
represented as a time-stamped sequence of vertices π = (vs, v1, v2, . . . , vg) on G does not
have polynomial size w.r.t. the input, but only pseudo-polynomial. However, there are
two special classes of problem instances that may be of practical interest for which the NP
membership of PPHE-D and PPHE-D0, as well as the membership of PPHE-D1 in P, are
easy to prove.

Theorem 4. PPHE-D and PPHE-D0 are in NP, while PPHE-D1 is in P, when Conditions
(4) or (9) of Theorem 1 hold.

Proof. Condition (9) is immediate. For what concerns (4), note that this condition implies
that by time step |V | a generic obstacle d will have reached a vertex v with Md

vv = 1. This
implies that any solution π where the agent visits more than once a given vertex after step
|V | can be turned into another solution π′ , equivalent in terms of survivability, where a
single visit to that vertex is made. This implies that an instance with T > 2|V | is equivalent
to one having T = 2|V |.

Theorem 4 is useful in those situations where the autonomy of the agent and/or the
dynamic obstacles only matches the size of the environment. As a corollary of the above
theorem, we have that PPHE-D and PPHE-D0 are NP-complete when restricted to the
special instances specified by Theorem 1 and 2.

Finally, we look at the membership in PSPACE of PPHE-D, PPHE-D0, and PPHE-D1.
For what concerns PPHE-D, as in the NP case, it is not easy to come up with an algorithm
–possibly non-deterministic in virtue of Savitch’s theorem (1970)– running in polynomial
space. This is due to the fact that encoding a generic element of a vector bd;π(t) might
require not less than t bits. However, this is not the case for PPHE-D0 and PPHE-D1. The
intuitive reason is that, for these two problems, we do not need to keep track of the exact
probability of survival along a given agent’s path.

We start with two observations regarding PPHE-D0, which will also be useful in Sec-
tion 5.2 to devise an efficient solution method.

Observation 1. A PPHE instance where pd < 1 for each d ∈ D always admits a solution
with survivability greater than 0.

Observation 1 holds regardless of the presence of some probabilistic static obstacles.
We can therefore focus our attention on dynamic obstacles having pd = 1. The following
observation provides a key insight.

Observation 2. A PPHE instance admits a solution with survivability > 0 iff, for each
d ∈ D having pd = 1, there exists a path ηd ∈ Hd with length T and an agent’s path π ∈ P
such that, for each t ∈ {1, . . . , |π|} and d ∈ D, η[t] 6∈ Nd(π[t]).

The above condition on the Nd functions is simply expressing the fact that, for that
particular fixed set of joint dynamic obstacles’ paths, the agent is able to reach the goal
without being intercepted. We can now state the theorem.
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Theorem 5. PPHE-D0 is in PSPACE.

Proof. The theorem follows from the existence of a non-deterministic Turing Machine
(NDTM) deciding PPHE-D0 in polynomial space. If pd < 1 for each d ∈ D, the NDTM
accepts (Observation 1). Otherwise, the algorithm starts a non-deterministic search of an
agent’s path π and a set of dynamic obstacle paths ηd ∈ Hd for each d ∈ D having pd = 1
respecting the property described in Observation 2. This search can be carried out step-by-
step by storing only a polynomial amount of bits: for each pair of subsequent time steps,
the next vertex that can be occupied by the agent only depends on its current position
on G; the same holds for each dynamic obstacle d, which can move from vertex v in any
vertex u ∈ V such that Md

vu > 0. The current step t of that particular evolution of the
world can also be stored in O(log(T )) bits. The Turing Machine enters the accepting state
iff it is able to find one of such paths. PSPACE membership follows from the fact that
PSPACE=NPSPACE (Savitch, 1970).

The same result can be proved for PPHE-D1 by leveraging the following observation:

Observation 3. An agent’s path π = (vs, v1, v2, . . . , vg) has survivability 1 iff, for each vi:

• vi 6∈ V (s) for all s ∈ S, and

• there do not exist d ∈ D and u ∈ V such that b̂du(i) > 0 and u ∈ Nd(vi).

Theorem 6. PPHE-D1 is in PSPACE.

Proof. The proof is similar to that of Theorem 5. This time, however, the NDTM does not
have to search for a particular set of dynamic obstacles’ path. Instead, it is sufficient to
run a non-deterministic search of an agent’s path π respecting the properties outlined in
Observation 3. Note that we do not need to compute the exact belief to check the second
condition: at each step, it is sufficient to set a boolean flag to “true” on all the vertices
having non-zero probability of being occupied by a dynamic obstacle, given the flags set to
“true” at the previous step.

2.5 Remarks

Some observations about Problem 1 are in order before proceeding further with its analysis.

2.5.1 Duality with some robotic search problems

First, we point out that the belief update equations (2)-(3) are often used in (robotic)
moving target search problems; see, for example, Hollinger et al., (2009); Hollinger et al.,
(2015); Banfi et al., (2018a). In those settings, the objective is to maximize the chances that
the targets will be found by the robots. In this problem, on the contrary, we want to keep the
interception states as low as possible while trying to reach a given destination. Anticipating
some results presented in Section 3, one of our contributions is to show that the belief update
equations (2)-(3) admit a formalization based on Mixed-Integer Linear Programming. This
allows to derive new MILP-based planners for the above search problems, as well as for some
of their variants considering connectivity constraints (Hollinger & Singh, 2012) by leveraging
some recent works in multirobot connected path planning; see Banfi et al., (2018a); Banfi
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et al., (2018b). The investigation of the performance of our MILP-based (re)formulation of
Eqs. (2)-(3) in the context of a search problem is left for future works.

2.5.2 A note on the independency assumption

Second, the independency assumption might be violated in some settings. For instance,
in an intrusion scenario, the agent might have received conflicting information from two
different sources regarding the presence/absence of some enemies in a given region of the
environment. Another example may be found in robotic path planning in presence of
potentially compromised sensors, where the robot is relying on two sensors momentarily
providing diametrically opposed readings (e.g., the camera is seeing another vehicle coming
towards the robot, but the lidar does not agree). More generally, suppose that some possible
scenarios θ ∈ Θ are defined to describe the actual state of the world, along with a probability
distribution associated with them. Each scenario describes the existence of some obstacles
(both static and dynamic): either all the obstacles exist, or not. Informally, the optimization
problem can be written in this case as

π∗ = arg max
π∈P

∑
θ∈Θ

p(agent survives executing π in θ|θ) · p(θ).

Assuming dynamic obstacles’ interception events still being independent in each sce-
nario, the first term of the above summation must take value 0 in case any vertex of any
static obstacle is traversed in path π at any step; otherwise, such term be computed in a
way similar to the second product in Eq. (4). The methods proposed in Sections 3 and 4
could be exteded to handle these cases but, since this problem would be more complex, we
leave its complete analysis for future works.

2.5.3 The best possible problem formulation?

Finally, we remark that the problem we consider admits an alternative formulation in terms
of a Finite-Horizon Partially Observable Markov Decision Process (POMDP). However, note
that our formulation is implicitly assuming that the agent will not gain new knowledge about
the true positions of the obstacles in the environment unless it is intercepted along its path.
This allows to greatly simplify the problem by directly focusing on the maximization of
Eq. (4), avoiding the need of optimizing a reward defined over an exponential number of
states as would be required in the POMDP case. The well-known “high” intractability of
POMDPs –due to the PSPACE-completeness of the policy existence problem even when the
horizon is polynomially bounded (Littman, 1996)– would make such optimization infeasible
even for instances of moderate size. Nevertheless, if the agent were allowed to update
its belief in accordance with some additional observation events (possibly including false
positives and/or negatives), a formulation based on Finite-Horizon POMDPs would be more
appropriate.

3. A Mixed-Integer Nonlinear Program

This section presents a MINLP for optimally solving the PPHE problem. The MINLP
we propose is based on the idea that the agent’s path can be planned on a time-stamped
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Figure 4: The time-stamped graph GTS corresponding to Example 4.

version of the graph G, coupled with the fact that interception events involving both static
and dynamic obstacles can be represented by simple linear constraints. The model’s only
nonlinearity appears in the objective function, but this is an immediate consequence of the
problem definition, as can be seen in Eq. (4).

We start with some notation and concepts that will also be useful in the subsequent
sections. In the following, to make the notation more compact, we will use T to denote set
{1, . . . , T}. Let V TS be the set of vertex-time step pairs 〈v, t〉 such that:

(a) the agent can reach v by time t and

(b) it can also reach the goal within the deadline when in v at time t.

Formally,

V TS = {〈v, t〉 ∈ V × {0} ∪ T |d(vs, v) ≤ t ∧ t+ d(v, vg) ≤ T}.

With a slight abuse of notation, it is also convenient to define V TS(t) = {v ∈ V |〈v, t〉 ∈
V TS} and V TS(v) = {t ∈ T |〈v, t〉 ∈ V TS}. Intuitively, V TS(t) is the set of vertices in which
the agent can reside at time t, while V TS(v) is the set of time steps compatible with the
agent residing in vertex v (in both cases, respecting the above conditions (a) and (b)).

Now, note that any feasible solution of a PPHE instance defines a path on a time-
stamped version of the graph G with vertex set V̂ TS = V TS ∪ {v′g}, where v′g denotes
a dummy goal vertex (in general, the agent might reach the goal at any step between
d(vs, vg) and T ), and (directed) arc set
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ATS = {(〈u, t〉, 〈v, t+ 1〉)|〈u 6= vg, t〉 ∈ V TS ∧ 〈v, t+ 1〉 ∈ V TS ∧ [(u, v) ∈ E ∨ u = v]}
⋃

{(〈vg, t〉, v′g)|〈vg, t〉 ∈ V TS}.

Intuitively, ATS simply encodes the agent’s legal movements between two subsequent steps
in terms of transitions between two time-stamped vertices, or between a time-stamped
vertex and the dummy goal vertex v′g. Note that v′g only has incoming arcs originating from
time-stamped vertices describing the agent being at the goal location vg, regardless of the
particular step in which vg is reached.

We use GTS = (V̂ TS, ATS) to denote this time-stamped graph, and introduce the no-
tation N−(i) to denote the set of vertices of GTS having an arc pointing toward i ∈ GTS;
similarly, we use N+(i) do denote the set of vertices of GTS for which there exists an arc
from i ∈ GTS to them.

Figure 4 shows the particular GTS associated with Example 4. Note the absence of the
time-stamped versions of vertex 4, due to the fact that the agent cannot make a detour to
that vertex when it must reach the goal within 5 steps.

The MINLP is now introduced gradually. Legal paths are modeled in Section 3.1; static
obstacles in Section 3.2; dynamic obstacles in Section 3.3; finally, the complete model is
shown in Section 3.4.

3.1 Legal Paths

To model legal paths, we start by introducing binary variables xtv for each 〈v, t〉 ∈ V TS to
express the fact that the agent is located in vertex v at time t in the optimal solution. We
also define binary variables ytuv to express the fact that the agent will move from vertex u
to v between t and t + 1 (with (〈u, t〉, 〈v, t + 1〉) ∈ ATS), and additional ytvgv′g variables for

each t ∈ V TS(vg). The legality of the paths is enforced through the following constraints:

∑
〈j,1〉∈N+(〈vs,0〉)

y0
vsj = x0

vs = 1 (7)

∑
t∈V TS(vg)

ytvgv′g = 1 (8)

∑
〈i,t−1〉∈N−(〈v,t〉)

yt−1
iv =

∑
〈j,t+1〉∈N+(〈v,t〉)

ytvj = xtv ∀〈v, t〉 ∈ V TS s. t. v 6= vg, t > 0 (9)

∑
〈i,t−1〉∈N−(〈vg ,t〉)

yt−1
ivg

= ytvgv′g = xtvg ∀t ∈ V TS(vg) (10)

xtv ∈ {0, 1} ∀〈v, t〉 ∈ V TS (11)

ytuv ∈ {0, 1} ∀(〈u, t〉, 〈v, t+ 1〉) ∈ ATS (12)

ytvgv′g ∈ {0, 1} ∀t ∈ V TS(vg) (13)

Constraint (7) set the agent’s start vertex, and immediately enforces a decision for what
concerns its location at step 1 –note that at most one y0

vsj
can be set to one. Similarly,
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Constraint (8) sets the agent’s arrival at the dummy goal vertex; again, at most one ytvgv′g
can be set to one: this means that the agent can be located in vg at exactly one time step.
Constraints (9)-(10) enforce path consistency as the agent travels through the time-stamped
graph Gt. The idea is the following: if

∑
〈i,t−1〉∈N−(〈v,t〉) y

t−1
iv = 0, the agent will not be

present in v at time t (xtv = 0), and hence will not be able to “depart” from v at the
subsequent step (

∑
〈j,t+1〉∈N+(〈v,t〉) y

t
vj = 0); conversely, if the agent travels from a vertex i

to v between t − 1 and t (
∑
〈i,t−1〉∈N−(〈v,t〉) y

t−1
iv = 1), the agent is in v at time t (xtv = 1)

and must hence “depart” from v at the subsequent step (
∑
〈j,t+1〉∈N+(〈v,t〉) y

t
vj = 1). All

together, these constraints ensure the possibility of exploring the space of all the possible
(〈vs, 0〉, v′g)-paths in the corresponding graph GTS. Note that, if the agent reaches the goal

before the deadline T , say at step t̂, no xtv variable with t̂ < t ≤ T can be active.

We remark that path constraints could alternatively be enforced without resorting to
binary edge variables, as done by Morin et al. (2009) for a robotic search problem. However,
for the instances used in our experiments (Section 6), the above formulation has proved to
be superior.

3.2 Static Obstacles

Interception events related to static probabilistic obstacles are easy to model. We introduce
binary variables zs for each s ∈ S to express the fact that the agent can traverse any of the
vertices of static obstacle s at any time step. This is enforced by means of these constraints:

∑
v∈V (s)

∑
t∈V TS(v)

xtv ≤ Tzs ∀s ∈ S (14)

zs ≤
∑

v∈V (s)

∑
t∈V TS(v)

xtv ∀s ∈ S (15)

zs ∈ {0, 1} ∀s ∈ S (16)

Constraints (14) activate variable zs in case at least one xtv variable on the left-hand
side is 1 (note that we multiply zs by T as, in general, multiple passages through a static
probabilistic ostacle can be made). Constraints (15) express the dual condition: if zs is
active, then at least one passage through s must be made.

3.3 Dynamic Obstacles

Interception events related to dynamic probabilistic obstacles are more complicated. We
introduce continuous variables βdi;t for each d ∈ D, t ∈ {0} ∪ T , i ∈ {0} ∪ V to represent
the evolution of the belief according to Eqs. (2)-(3). We also define two additional sets of
variables: αdv;t for each d ∈ D, t ∈ T , v ∈ V (continuous), used to represent uncorrected

belief vector elements, and γdv,t for each d ∈ D, t ∈ T , v ∈ V (binary), used to represent
the interception events. These two last sets of variables are actually redundant, but their
usage provides a better understanding of the intuition underlying this formulation. The
constraints are the following:
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βdi;0 = bdi (0) ∀d ∈ D, i ∈ {0} ∪ V (17)

αdv;t =
∑
u∈V

Md
uvβ

d
u;t−1 ∀d ∈ D, v ∈ V, t ∈ T (18)

γdv;t = 1−
∑

u∈V TS(t) s.t. v∈Nd(u)

xtu ∀d ∈ D, v ∈ V, t ∈ T (19)

βdv;t ≤ αdv;t ∀d ∈ D, v ∈ V, t ∈ T (20)

βdv;t ≤ γdv;t ∀d ∈ D, v ∈ V, t ∈ T (21)

βdv;t ≥ αdv;t − 1 + γdv;t ∀d ∈ D, v ∈ V, t ∈ T (22)

βd0;t = 1−
∑
v∈V

βdv;t ∀d ∈ D, t ∈ T (23)

αdv;t ∈ [0, 1], γdv;t ∈ {0, 1} ∀d ∈ D, v ∈ V, t ∈ T (24)

βdi;t ∈ [0, 1] ∀d ∈ D, i ∈ {0} ∪ V,
t ∈ {0} ∪ T (25)

Constraints (17) simply define the initial belief vector according to the provided input.
Constraints (18) make the belief evolve according to the corresponding Markov motion
model, “temporarily” storing the result in the αdv;t variables, which can be thought as the

MINLP equivalent of the uncorrected belief vector elements b̂d;π
v (t). Constraints (19) set a

variable γdv;t to 0 whenever the agent traverses, at step t, a vertex where it can be intercepted
when d is placed in v; in the opposite case, the variable takes value 1. Now, note that a
variable βdv;t, v ∈ V must take value 0 whenever γdv;t is also equal 0, in which case the

corresponding “temporary” probability αdv;t will be moved to the interception state βd0;t

(recall the effect of the interception functions Nd); otherwise, βdv;t must be equal to αdv;t.

In practice, βdv;t, v ∈ V evolves as βdv;t = γdv;t · αdv;t, mimicking the application of the update
rule specified by Eq. (3). Constraints (20)-(22) express this product in a linear form by
leveraging a Mixed Integer Linear Programming modeling trick. Finally, Constraints (23)
update the interception state by exploiting the fact that the βdi;t variables represent, at each
step, the values of a probability distribution.

We conclude this subsection with two observations. The first is that, according to Sec-
tion 3.1, it is possible that the agent reaches the goal before T , say at t̂, hence “disappearing”
from the world since all the xtv variables with t > t̂ take value 0. Constraints (18)-(23) will
still compute the belief evolution between t̂ and T , but the interception state βd0;t remains

the same for all t̂ ≤ t ≤ T . The second observation is related to the fact that, in practice,
one can facilitate the solver to compute an optimal solution by simply avoiding defining
some useless variables. These are the ones corresponding to the (d, i, t) triples for which it
is known a priori that bdi;t = 0 due to the structure of the underlying motion model Md.

3.4 The Complete MINLP Model

Having introduced all the constraints, we can finally state the complete MINLP model as
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maximize
∑
s∈S

zs log(1− ps) +
∑
d∈D

log(1− pd · βd0;T ) (26)

s.t.

Constraints (7)− (25)

Note, in Eq. (26), the application of the logarithm which allows the problem to be
expressed as a convex MINLP.1 However, the optimal solutions of instances only admitting
paths with survivability 0 can no longer be found by the solver, which could however still
detect model infeasibility (a more efficient approach will be presented in Section 5). In
this case, one of such optimal solutions can be retrieved by simply computing the shortest
(vs, vg)-path in G. We remark that the size of this MINLP is pseudo-polynomial in that of
the input. This is due to the fact that we are operating on a time-stamped version of the
graph G.

4. Heuristic

This section presents a rather effective heuristic for solving the PPHE problem. The idea
of the proposed algorithm is to iteratively refine an initial path by driving it towards space-
temporal regions of the time-stamped planning graph Gt (introduced at the beginning of the
previous section) displaying low probability of being intercepted by an obstacle, taking into
account the dynamic obstacles’ belief evolution up to the time step in which the refinement
is taking place.

4.1 A First Attempt

To elucidate this concept, let us begin by considering a simpler heuristic. The idea here
is to compute a shortest (〈vs, 0〉, v′g)-path on GTS, where arcs are associated with weights
corresponding to the negative log probability of not being intercepted by one or more (static
or dynamic) obstacles when located in the corresponding time-stamped target vertices, but
assuming no other prior interaction with those obstacles. The pseudocode of this heuristic
is reported in Algorithm 1.

After having built the time-stamped graph GTS, Lines 3-5 compute the evolution of
the dynamic obstacles’ beliefs assuming no interaction with the agent. Lines 9-13 associate
each arc with a logarithmic weight representing the “history-independent” probability of
not being intercepted by an obstacle in the corresponding target vertex (the weight is set
to +∞ in case the argument of the logarithm is 0). Finally, the shortest (〈vs, 0〉, v′g)-path
is computed and returned as a legal solution of PPHE in Lines 14-16.

The intuition underlying this heuristic is that of simplifying the problem by considering
its history-independent version. Indeed, the algorithm does not embed the notion of inter-
ception state relative to a dynamic obstacle, nor it takes into account the actual probability
of being intercepted by a static obstacle (i.e. the fact that the conditional probability of

1. Rigorously speaking, a MINLP is always non-convex due to the integrality requirements imposed on
some of the variables. However, this expression has become customary in denoting those MINLPs whose
relaxation is a convex program.
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Algorithm 1: A history-independent heuristic for solving PPHE.

Input: A PPHE instance
Output: A path π s.t. |π| ≤ T

1 function historyIndependent(G,S,D, vs, vg, T )
2 compute the time-stamped graph GTS

3 foreach d ∈ D do
4 foreach t ∈ {1, . . . , T} do

5 compute b̂d(t);

6 let w : At → R+
0

7 foreach (〈vg, t〉, v′g) ∈ At do

8 w(a)← 0

9 foreach 〈v, t〉 ∈ V t do
10 foreach d ∈ D do

11 p̂d ←
∑

u∈Nd(v) b̂
d
u(t)

12 foreach 〈u, t− 1〉 ∈ N−(〈v, t〉) do
13 w((〈u, t− 1〉, 〈v, t〉))← − log

(∏
s∈S:
v∈V (s)

(1− ps)
∏
d∈D(1− pd · p̂d)

)
14 π ← shortest (〈vs, 0〉, v′g)-path in GTS with weights w

15 remove v′g from π

16 return π

being intercepted a second time after having crossed one of its vertices is always 1). In other
words, the agent is planning like it could always be captured again by an obstacle placed
in a vertex which should be clear, given the history of the path up to that point. It can be
easily seen that, prior to the application of the logarithm, the arc weights represent lower
bounds on the actual probability of survival between steps t and t+ 1. The application of
the logarithm then allows to compute the path on GTS that maximizes the product of these
lower bounds. Although it is easy to provide examples of suboptimality, this algorithm is in
general able to ensure that the agent will at least avoid space-temporal regions associated
with a high probability of interception.

The algorithm has a pseudo-polynomial run time, due to the exponential dependency
on the size of the input parameter T . The most time-consuming parts of the algorithm are
Lines 9-13, taking O

(
|V |2T |D|

)
when the static obstacles’ probability values needed in the

product of Line 13 are pre-computed outside the main for loop. The overall worst-case run
time can therefore be expressed as O

(
|V ||S| + |V |2T |D|

)
. Clearly, this quantity becomes

polynomial if we only consider classes of problem instances where the deadline T is somehow
bounded by a polynomial in the size of the remaining part of the input.

4.2 Taking into Account the Belief Evolution

Algorithm 1 is easy to understand and simple to implement, but is not able to leverage
well the problem structure. We fix this drawback by presenting a new algorithm which
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Algorithm 2: A heuristic for solving PPHE able to take into account the agent’s
belief about possible interception events.

Input: A PPHE instance, a simulation horizon ∆ ≤ T
Output: A path π s.t. |π| ≤ T

1 function main(G,S,D, vs, vg, T,∆)
2 t← 0
3 vcurr ← vs
4 π ← (vs)
5 πprev ← null
6 bestObj ← null
7 while t < T do
8 πtemp ← historyIndependent(G,S,D, vcurr, vg, T − t)
9 πtempFull ← π ⊕ πtemp[1 :]

10 if bestObj = null or bestObj < obj(πtempFull) then
11 bestObj ← obj(πtempFull)
12 π̂ ← πtemp

13 else
14 π̂ ← πprev

15 if t+ ∆ > T then
16 ∆← T − t
17 π ← π ⊕ π̂[1 : min(∆, |π̂| − 1)]
18 if |π̂| ≤ ∆ then
19 return π

20 vcurr ← π̂[∆ + 1]
21 πprev ← π̂[∆ + 1 :]
22 update S and D, simulating the next ∆ steps
23 t← t+ ∆

24 return π

uses Algorithm 1 as a subroutine in the following way. First, we plan an initial path using
Algorithm 1. Then, we simulate the first ∆ steps along the computed path, moving the
agent and updating the corresponding obstacles’ beliefs. Finally, we consider this state as
the input of a new, smaller problem instance, and repeat from the first step by keeping either
this newly computed portion of path, or that belonging to the best path found so far. This
planning scheme allows to plan far ahead in time –biasing the search towards space-temporal
regions of the graph with low interception probability– while keeping into account the actual
(conditional) probability of interception. The pseudocode of this enhanced version of the
heuristic is reported in Algorithm 2. We use the following notation: π ⊕ π′ denotes the
concatenation of two (portions of) paths; π[i : j] denotes the portion of path π from step i
to step j (included); π[i :] denotes the portion of π from step i until the end.

Lines 2-6 initialize some variables: t, the step corresponding to the current replanning
time; vcurr, the agent’s location at step t; π, the partial path built so far; πprev, the best
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path from vcurr to vg computed in the previous iteration of the algorithm; bestObj, the
objective function corresponding to the best path found so far. The algorithm then enters
a while loop in Line 7, remaining therein until the t variable, incremented at each iteration
by ∆ (Line 23), is less than the deadline T . Line 8 computes a heuristic path from vcurr

to the goal using Algorithm 1, storing the result in the variable πtemp. Line 9 builds a
“full” temporary path by concatenating the partial path built so far (π) with πtemp, after
having removed its first vertex (vcurr, which already appears at the end of π). Lines 10-14
determine which path to the goal is better between πtemp and πprev (πtemp is always used
at the first iteration), storing the result in the variable π̂. Lines 19-20 are needed to take
into account the fact that T might not be, in general, a multiple of ∆. Line 17 appends to
the path built so far the vertices corresponding to the first ∆ steps after t (or just the |π̂|
next steps in case |π̂| < ∆). Line 19 interrupts the while loop in case π̂ leads to the goal
in the next ∆ steps. Finally, Lines 20-22 simulate the execution of the subsequent ∆ steps
assuming that the agent will move as prescribed by the newly computed portion of path,
updating vcurr, πprev, and the beliefs associated with S and D. In particular, to ensure that
the agent will consider the static obstacles in a way consistent with π during the next call
to Algorithm 1, it is sufficient to set ps = 0.0 for each s ∈ S associated with the existence
of at least a vertex v ∈ V (s) in π. For what concerns the dynamic obstacles, instead, it is
sufficient to repeatedly apply the belief update equations (2)-(3) for ∆ steps with the newly
computed portion of π to obtain the new vectors bd;π(t+ ∆), which will be treated as the
new initial vectors bd(0) in the subsequent call to Algorithm 1.

The introduction of the simulation horizon ∆ in Algorithm 2 allows to trade-off a lower
computational time (∆→ T ) against more precise arc weights in Gt during subsequent calls
to Algorithm 1 (∆ → 1). However, in general, there is no guarantee that setting a lower
value of ∆ will always provide a better solution. This is due to the fact that two different
choices of ∆ could lead the algorithm to explore completely different regions of the search
space.

To conclude, we remark that Algorithms 1 and 2 can be integrated more efficiently than
as shown in the above pseudocodes (for example, there is no need to rebuild GTS from
scratch each time Algorithm 1 is invoked). Regardless of such optimizations, the worst-case
runtime of Algorithm 2 is O

(
dT/∆e(|V ||S|+ |V |2T |D|)

)
, since it performs at most dT/∆e

calls to Algorithm 1.

5. Limit Cases

This section presents specialized algorithms to solve PPHE-D0 and PPHE-D1.

5.1 Detecting Instances with Survivability 1

We start from the simplest problem, PPHE-D1. This asks, given a problem instance,
whether it admits a solution with survivability 1 or not. To answer this question, it is
sufficient to run Algorithm 1 on the given problem instance and check the survivability of
the corresponding output path. This is because the following proposition holds:

Proposition 1. A problem instance admits at least a solution with survivability 1 iff Algo-
rithm 1 outputs a path π representing one of such solutions.

315



Banfi, Shree & Campbell

Proof. The result immediately follows from the the fact that an arc (〈u, t〉, 〈v, t+ 1〉) of the
time-stamped graph GTS has weight 0 iff the robot can never by intercepted by an obstacle
(static or dynamic) when located in v at time t + 1. This implies that the shortest path
computed on GTS has total weight 0 iff the two conditions outlined in Observations 3 are
respected.

Note that this useful feature of Algorithm 1 is preserved by Algorithm 2. However, if
the only objective is to detect instances with survivability 1, we can do better by avoiding
to compute the graph weights as required by Algorithm 1. In particular, leveraging the idea

used in the proof of Proposition 1, we can build a graph G
TS

= (V
TS
, A

TS
) with V

TS ⊆ V̂ TS

and A
TS ⊆ ATS, such that the simple existence of a directed (〈vs, 0〉, v′g)-path in G

TS
implies

the fact that such path has survivability one. To achieve the desired property, it is sufficient
to avoid creating all the vertices (along with the associated arcs) whose traversal leads to a
violation of any of the two conditions outlined in Observation 3. Algorithm 3 summarizes
the procedure just described.

Algorithm 3: A pseudo-polynomial time algorithm deciding PPHE-D1.

Input: A PPHE-D1 instance
Output: True if the PPHE-D1 instance has answer “yes”, False otherwise

1 function survivabilityOneTest(G,S,D, vs, vg, T )

2 compute the time-stamped graph G
TS

3 if there exists a directed (〈vs, 0〉, v′g)-path in G
TS

then

4 return True

5 else
6 return False

The time needed by Algorithm 3 to build the graph G
TS

is still O
(
|V ||S|+ |V |2T |D|

)
.

Our simulations, however, have shown that this algorithm can offer a significant speed-up
with respect to Algorithm 1.

An alternative approach to detect these kinds of instances –although without any worst-
case pseudo-polynomial run time– is to check the feasibility of a Mixed-Integer Linear
Program (MILP) containing the same Constraints (7)-(25) of the MINLP presented in
Section 3 and the additional constraints

βd0;T = 0 ∀d ∈ D (27)

zs = 0 ∀s ∈ S. (28)

We refer to this MILP as MILP-D1. The two approaches are compared in Section 6.

5.2 Detecting Instances with Non-Zero Survivability

In order to detect problem instances guaranteeing a probability of survival greater than 0
without the need of solving the complex MINLP of Section 3, a first idea could be to check
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the feasibility of a suitable MILP, as done above for the PPHE-D1 case. Recall that we
do not need to consider static obstacles here, in virtue of Observation 1. This allows us to
restrict our attention to those instances having at least one dynamic obstacle that surely
exists. We can therefore try to devise a MILP assuming that an instance will only contain
dynamic obstacles respecting such property. However, it is not immediate to come up with
such a MILP. For example, consider checking the feasibility of the program obtained by
considering again Constraints (7)-(25) plus

βd0;T ≤ 1− ε ∀d ∈ D, (29)

where ε is a small constant. We refer to this MILP as MILP-D0-APPROX. The name
comes from the fact that this program is not actually able to decide PPHE-D0 –although in
practice a very small survivability could be enough to justify a withdrawal from a mission–
due to the need of introducing a small ε to approximate the proper inequality constraints,
which would have the form βd0;T < 1 and hence could not be used in a MILP. Moreover,
it seems a useless effort to use Constraints (17)-(25) to compute precisely the interception
states relative to dynamic obstacles: after all, we do not care about the values of the βd0;T

variables, as long as they are less than 1.

To overcome these issues we now present a much simpler MILP to decide PPHE-D0,
where the existence of a feasible solution on a given instance will be associated with the
presence of at least one path guaranteeing some chances of survival. For the reminder of
this section, we will assume that pd = 1 for each d ∈ D in virtue of Observation 1. Recall
from Section 2 that we can use ηd = (v0, v1, v2, . . . , vT ) ∈ Hd to denote a possible path of
dynamic obstacle d with length T . The model is based on the idea of searching an agent’s
path and a set of joint dynamic obstacles’ paths with length T respecting the conditions
outlined in Observation 2.

To this aim, we start by introducing auxiliary time-stamped graphs GTS
d = (V TS

d , ATS
d )

to represent all the possible paths that might be chosen by dynamic obstacle d ∈ D. To
characterize the vertex set V TS

d , we start by introducing start and dummy goal vertices φd

and χd. We then define

V TS
d = {φd, χd} ∪ {〈i, t〉 ∈ V × {0} ∪ T |b̂di (t) > 0}.

The arc set ATS
d is defined as

ATS
d = {(〈i, t〉, 〈j, t+ 1〉)|〈i, t〉, 〈j, t+ 1〉 ∈ V TS

d ∧Md
ij > 0}∪

{(φd, 〈i, 0〉)|i ∈ V ∧ b̂di (0) > 0}∪
{(〈i, T 〉, χd)|i ∈ V ∧ b̂di (T ) > 0}.

As we did for the agent’s planning graph GTS, we use N−d (i) to denote the set of vertices
of GTS

d having an arc pointing toward i ∈ GTS
d , and N+

d (i) do denote the set of vertices of
GTS
d for which there exists an arc from i ∈ GTS

d to them.
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7,3 7,4 7,5

χ𝑑

Figure 5: The graph GTS
d̄

of Example 5.

Example 5 (Continued from Example 4). To understand the idea underlying the graphs
introduced above, consider again Example 4, but with a slightly different motion model matrix
for obstacle d:

Md =



1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0.5 0.5 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


. (30)

Moreover, let us now assume that pd̄ = 1.0. The new instance does not admit any path
with survivability greater than 0: at step 2, the obstacle will either be in vertex 6 or 7, and
both need to be traversed to reach the goal. The graph GTS

d̄
associated with this example is

shown in Figure 5.

The MILP model we propose uses the same variables and constraints introduced in Sec-
tion 3.1 to model the agent’s path. We further define continuous variables δd;t

uv to represent
the existence of a path segment for dynamic obstacle d where it moves from vertex u to v
between steps t and t+1 (with (〈u, t〉, 〈v, t+1〉) ∈ ATS

d ). Similarly, we also define continuous
variables δφdv for each 〈v, 0〉 ∈ V TS

d and δvχd for each 〈v, T 〉 ∈ V TS
d . The following feasibility

program, which we dub MILP-D0-EXACT, can be used to decide PPHE-D0.
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Constraints (7)-(13)∑
〈v,0〉∈N+

d (φd)

δφdv =
∑

〈v,T 〉∈N−d (χd)

δvχd = 1 ∀d ∈ D (31)

δφdv =
∑

〈u,1〉∈N+
d (〈v,0〉)

δ0;d
vu ∀d ∈ D, 〈v, 0〉 ∈ V TS

d (32)

δvχd =
∑

〈u,T−1〉∈N−d (〈v,T 〉)

δT−1;d
uv ∀d ∈ D, 〈v, T 〉 ∈ V TS

d (33)

∑
〈i,t−1〉∈N−d (〈v,t〉)

δd;t−1
iv =

∑
〈j,t+1〉∈N+

d (〈v,t〉)

δd;t
vj ∀d ∈ D, 〈v, t〉 ∈ V TS

d s.t. 0 < t < T (34)

∑
〈j,t+1〉∈N+

d (〈v,t〉)

δd;t
vj ≤ 1−

∑
u∈V TS s.t. v∈Nd(u)

xtu ∀d ∈ D, 〈v, t〉 ∈ V TS
d s.t. 0 < t < T (35)

δvχd ≤ 1− xTvg ∀d ∈ D, 〈v, T 〉 ∈ V TS
d s.t. v ∈ Nd(vg) (36)

δd;t
uv ≥ 0 ∀d ∈ D, (〈u, t〉, 〈v, t+ 1〉) ∈ ATS

d (37)

δφdv ≥ 0 ∀d ∈ D, 〈v, 0〉 ∈ V TS
d (38)

δvχd ≥ 0 ∀d ∈ D, 〈v, T 〉 ∈ V TS
d (39)

We now show that MILP-D0-EXACT admits a feasible solution if and only if there
exist an agent’s path π ∈ P and a set of dynamic obstacles’ paths ηd ∈ Hd for each d ∈ D
having length T and respecting the condition expressed in Observation 2. To see why this
holds, let us examine our feasibility program, momentarily leaving aside Constraints (35)-
(36). Constraints (7)-(13) define legal agent’s paths in GTS, as in the original MINLP.
Constraints (31)-(34) and (37)-(39) do the same for what concerns the obstacles’ paths in
the corresponding GTS

d , but with one fundamental difference. Specifically, Constraints (31)
set the obstacles’ dummy start and goal vertices, while Constraints (32)-(34) enforce the
legality of the paths. However, note that the corresponding variables are no longer required
to take binary values. Leveraging the well-known connection between graph-based path
planning and network flow problems,2 these constraints can be thought as encoding the
search for one or more directed paths in GTS

d allowing to send one unit of “commodity”
between the obstacles’ dummy start vertices φd, the flow sources, and the dummy goal
vertices χd, the flow sinks. The commodity (i.e. the obstacle) can be thought as flowing
through the arcs of GTS

d , each having unlimited “capacity”. This can be seen by noting that
here is no upper bound associated with the δ variables: these represent, in a given solution,
the amount of commodity sent through the corresponding arc. The commodity can arrive
at destination iff there exists at least a directed path in GTS

d between φd and χd. Note that
this commodity is allowed to split, just like dynamic obstacles are allowed to make different
choices when moving according to the corresponding motion model Md. By construction,
such a path would always exist if Constraints (35) and (36) were not present (in fact, it
can be easily proven that there always exists a solution where all the δ variables take only

2. See, for example, the first chapter of the book by Ahuja et al., (1993).
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values 0 or 1, representing one of the many obstacle’s paths). However, the introduction of
such constraints blocks all the paths associated with the interception events corresponding
to a fixed agent’s path: leveraging again the connection with network flow problems, the
capacity of an arc a ∈ ATS

d is set to 0 whenever, for a given agent’s integer solution, an
agent located in u ∈ V at time t can be intercepted by d when the latter is located in a
vertex v ∈ V at time t (the source vertex 〈v, t〉 ∈ V TS

d of a) such that v ∈ Nd(u). This
implies that the model defined by Constraints (7)-(13) and (31)-(39) is unfeasible if and
only if there exists an obstacle for which all the possible agent’s paths are associated with
interception events.

To get another insight on the idea underlying MILP-D0-EXACT, consider again Exam-
ple 5. In a MILP solution where the agent remains at vertex 1 at step 1 (with x1

1 = 1),

the capacity of the arcs (〈2, 1〉, 〈6, 2〉) and (〈3, 1〉, 〈7, 2〉) is set to 0 (δd;1
26 ≤ 0, δd;1

37 ≤ 0). A
solution the agent moves to vertex 2, instead, sets only the capacity of (〈2, 1〉, 〈6, 2〉) to 0;
however, this solution must then necessarily reach vertex 7 at some step t̂, hence setting
to zero the capacity of the arc having source 〈7, t̂〉. A similar argument holds if the agent
moves to vertex 3 between step 0 and 1.

To conclude, we remark that the size of MILP-D0-EXACT is pseudo-polynomial in that
of the input, as for the original MINLP.

6. Evaluation

We run an extensive set of simulations to assess the performance of the proposed algorithms.
All MI(N)LPs are solved with the SCIP solver (vers. 6.0.0) (Gleixner et al., 2018) with a
30 minutes timeout on a machine equipped with two Intel Xeon processors and 64 GB
RAM. The heuristic is implemented in Python, using NumPy and the Python interface of
the freely available igraph C library (Csardi & Nepusz, 2006). Preliminary experiments
show that, when the default SCIP presolver setting is active, there are a few cases where a
suboptimal solution is claimed optimal. This strange behavior, probably due to numerical
issues, seems to disappear when setting the presolver to “fast”.3 Hence, we use this setting
for our validation campaign. The remaining SCIP parameters are kept at their default
values.

6.1 Evaluation of PPHE Algorithms

The heuristic developed for PPHE, Algorithm 2, is evaluated against the optimal solutions
provided by the MINLP and against two baseline algorithms briefly described below: a
Monte Carlo Tree Search approach (MCTS Baseline) and a sampling-based heuristic (SB
Baseline). The two baselines are also implemented in Python, with the help of the NumPy
and igraph libraries.

3. For all the instances SCIP claimed to be solved to optimality, the heuristics were not able to provide
better solutions.
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6.1.1 MCTS Baseline

MCTS is a method widely used in the AI community for finding heuristically good plans by
randomly sampling the search space and building a search tree according to the obtained
results. MCTS is mainly used for attacking complex two-player games, but can be adapted
to solve general optimization problems as well. A thorough description of MCTS is out of
the scope of this paper; the reader is referred to the survey by Browne et al. (2012) for all
the details. In the following, we present a brief overview of the general MCTS approach,
and discuss how its key building blocks have been implemented in the MCTS Baseline.

The general MCTS approach prescribes to iteratively build a search tree where nodes
represent as usual domain states, and (directed) arcs to children nodes represent choices
of actions leading to a subsequent state. Following the survey by Browne et al., a single
iteration of the algorithm involves the following four steps:

1) Selection: starting from the root node, the search tree built so far is navigated by
applying a child selection policy to reach the most urgent leaf node to expand.

2) Expansion: the node identified at step (1) is expanded by choosing an applicable
action.

3) Simulation: a “simulation” is run from the newly created node by applying a default
policy until a terminal (goal) state is reached.

4) Backpropagation: the simulation result is backpropagated from the expanded node
up to the root to update their statistics.

In the MCTS Baseline, the generic MCTS approach is implemented as follows. States
are completely specified by partial agent’s paths, from which it is possible to recover the
value of all the dynamic obstacles’ belief vector and of the σ(·, ·) function values of all
the static obstacles. These allow to compute the agent’s survivability up to the last step
specified in the partial path. Actions correspond, intuitively, to the possibility of moving
the agent to a neighbor vertex in the subsequent step. The child selection policy we employ
is quite standard: the tree is always descended through the child node j that maximizes

pj + Cp

√
2 log n

nj
,

where pj denotes the value of the best “simulation” path that has been obtained from state j,
and n, nj denote the number of visists to current (parent) node and child node, respectively.
Note that the above formula is the one used in a particular MCTS implementation called
UCT and encodes the usual exploration-exploitation trade-off.

As default policy for the simulation step, we consider a very common heuristic-biased
stochastic sampling strategy (Bresina, 1996) that chooses the next action a with a (normal-
ized) weight w(a) = r(a)−τ , where r(a) is the rank order of action a (obtained by looking
at the corresponding survivability at the next step) and τ is a parameter. Preliminary
experiments show that the combination Cp = 0.5, τ = 4 is the one that works best.
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Finally, in the backpropagation step, the survivability at vg, p, is computed, and all the
pj values from the expanded node up to the root are replaced with p whenever pj < p.
Note that this is different from what usually done in a standard two-player games MCTS
algorithm, where the node values are always updated by averaging the results of the different
simulations passing through that node. Indeed, in our case, it would make little sense to
lower down a node value if we already know the best possible outcome that we can “exploit”
from there.

Note that the MTCS baseline allows to compute the optimal solution given a sufficient
number of iteration; in practice, however, it runs until a given computational budged is met.
In our experiments, we run it for a number of iterations linear in the deadline, precisely 25T .
This value is chosen in order to provide roughly the same computation time of Algorithm
2 to output the final solution (several minutes) when tested for the largest deadline in
our simulations.4 For lower deadline values, however, Algorithm 2 is much faster, making
MTCS a very though baseline overall given the extra computational budget allowed in the
vast majority of the cases.

6.1.2 SB Baseline

Sampling-based heuristic startegies have been successfully applied in motion planning do-
main and are known to provide computational advantages. Similar to Algorithm 1 and 2,
the heuristic starts by computing the time-stamped graph GTS . This is followed by sam-
pling the existence of each static and dynamic obstacle (according to their corresponding
probability of existence), and a further sampling of the trajectories of the existing dynamic
obstacles (according to their motion model). The arc weights w in the time-stamped graph
GTS are set as follows: apply a fixed cumulative penalty whenever the agent’s path inter-
sects with a sampled obstacle, and set the weight to 0 otherwise. Finally, the best path on
GTS is computed for the agent by solving the resulting shortest path problem. Such path
minimizes the the total number of interacteractions with the obstacles. As in Algorithm 2,
in order to reduce the bias in the samples, we allow the agent to take ∆ steps along the
planned path and then replan a new partial path based on new samples. This process is
repeated iteratively, until the goal is reached.

6.1.3 Grid Instances

We start by running simulations on randomly generated grid instances similar to that shown
in Figure 1, which simulate an intrusion scenario. The agent must move from the bottom-
left to the upper-right corner. Each dynamic obstacle is associated with a different 4x4
black square and moves around it at 1 cell/step in clockwise or counterclockwise direction.
In order to make the instances more challenging, we block the two paths on the first column
and on the last row. The following parameters are also kept fixed in all the simulations,
unless explicitly stated otherwise:

• the 4x4 black squares are separated by a corridor whose width is a single grid cell;

4. See fourth set of simulations below, T = 66; avg. run time MCTS: 23 minutes, avg. run time Algorithm
2: 26 minutes.
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• for any s ∈ S, |V (s)| = 1 and ps is randomly chosen in {0.05, 0.1};

• all dynamic obstacles have the same probability of existence pd, and can intercept the
agent within (Manhattan) distance r;

• 5% of the empty grid cells are populated with a static probabilistic obstacle, and 30%
of the 4x4 black squares are associated with dynamic ones. The latter have initial belief
centered in a single cell, and move around the corresponding black square according
to the following motion pattern (representing a probabilistic delay): move in the next
cell with probability 1− θ, and stay at the current cell with probability θ;

• for each combination of parameters, tests are performed on 20 random instances.

Moreover, except when stated otherwise, all the MINLPs are solved by feeding the model
with a good heuristic solution obtained by running Algorithm 1. Also, note that one can
completely avoid to solve the model if the presence of an instance with optimal solution
value 0 is detected (this can be done by running the feasibility program (7)-(13), (31)-(39));
however, this never happened for the instances we generated.

For data visualization, we will use box plots having whiskers with maximum length 1.5
times the interquartile range.

In the first set of simulations, we examine the scalability of the MINLP and, at the
same time, evaluate the optimality losses introduced by the basic version of our heuristic
(Algorithm 1). For this set of simulations, grids are generated with size 16x16, 22x22, and
28x28. For each d ∈ D we set pd = 1. For these simulations, we fix θ = 0.05 and r = 1.

Figure 6 shows the difference in the MINLP computation times that results from feeding
the solver with a good initial feasible solution. We can clearly see the advantage provided
by such initialization procedure, especially when dealing with the 28x28 grids. The MINLP
gaps5 of those instances not solved to optimality within 30 minutes for the 28x28 grids are
not shown in the figure. However, just to give an idea, we observed that they can remain
quite large even when the solver is provided with an initial solution (between 13% and
150%, with a peak of 700% for one instance with T = 66).

Figure 7 shows the optimality gaps introduced by Algorithm 1 on the instances that
are solved to proven optimality by the solver. Heuristic gaps are computed as (z∗ − z)/z∗,
where z∗ and z denote the optimal and the heuristic solution, respectively. The box plots
show that the Algorithm 1 behaves generally very well in the 16x16 and 22x22 settings as,
in most cases, the heuristic gap is 0 (or very close to 0). Note that there are sporadic cases
where the heuristic is not able to find any path with survivability greater than 0, in spite
of its existence (see the outliers with value 1.0). The heuristic performance decreases in the
28x28 instances, but with a fairly satisfactory median value never going above 25%. We
also notice an interesting fact: for a fixed grid size, the heuristic performance increases with
the deadline T . This is due to the fact that, when the deadline increases, the survivability
of a given instance is likely to increase as well (of course, it cannot decrease). As the
survivability approaches 1, the history-independent weights used in Algorithm 1 provide
a better approximation of the “right way” of updating the beliefs. We do not show the
heuristic computation times, but we point out that all the 16x16, 22x22, and 28x28 instances

5. (|primal bound− dual bound|)/min(|primal bound|, |dual bound|).
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Grid size: 16x16 Grid size: 22x22 Grid size: 28x28

Figure 6: Grids, first set of simulations – MINLP solution times for different grid sizes and
deadlines T , when a heuristic solution is not (red, left) and is (green, right) used
to initialize the computation.

Grid size: 16x16 Grid size: 22x22 Grid size: 28x28

Figure 7: Grids, first set of simulations – Heuristic gaps of Algorithm 1 for different grid
sizes and deadlines T .

are solved in about, respectively, 3, 10, and 30 seconds (corresponding to the instances with
the largest T ). Clearly, these times would greatly improve by resorting to an implementation
fully written in C.

In the second set of simulations, we examine the effect of the simulation horizon ∆
in Algorithm 2. We focus on the previous 28x28 grid instances with low T , as they proved
to be the most difficult to handle for Algorithm 1. Specifically, we run experiments with
∆ ∈ {1, . . . , 10} for T = 54, 56, 58. With T = 56 no choice of ∆ in Algorithm 2 was able
to improve the solution given by Algorithm 1, hence the corresponding heuristic gaps are
not shown. Looking at those obtained for T = 54, 58, we notice that a low ∆ is able to
provide better results, especially in the T = 54 case where a value of ∆ ∈ {1, 3} allows to
decrease the median gap from ≈ 0.2 to ≈ 0.05. It can also be seen that there are situations
where a higher value of ∆ provides better results (see, for example ∆ = 2, 3 for T = 54), as
anticipated in Section 4. Focusing now on the runtimes, we note that they scale coherently
with our analysis.

In the third set of simulations, we study how the MINLP solution times and the
performance of Algorithm 2 vary as we change the simulation parameters pd, r, and θ, also
comparing Algorithm 2 against the two baselines. For this set of simulations, we keep fixed

324



Planning High-Level Paths in Hostile, Dynamic and Uncertain Environments

Deadline T = 54 Deadline T = 58

Deadline T = 54 Deadline T = 58

Figure 8: Grids, second set of simulations – Top: heuristic gaps of Algorithm 2 for different
values of the simulation horizon ∆; bottom: runtime of Algorithm 2 for different
values of ∆.
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Varying pd (r = 1, θ = 0.05) Varying r (pd = 1, θ = 0.05) Varying θ (pd = 1, r = 1)

Figure 9: Grids, third set of simulations – MINLP solution times for different values of pd,
r and θ. Grid size: 22x22, deadline T = 46.

Varying pd (r = 1, θ = 0.05) Varying r (pd = 1, θ = 0.05) Varying θ (pd = 1, r = 1)

Figure 10: Grids, third set of simulations – Heuristic gaps of Algorithm 2 (blue, left), MCTS
(purple, center) and SB (pink, right) baselines for different values of pd, r and
θ. Grid size: 22x22, deadline T = 46.

∆ = 1 for both Algorithm 2 and the SB baseline (corresponding to the best value obtained
for Algorithm 2 in the previous set of experiments). We also keep fixed the grid size to
22x22 and the deadline T to 46. The results are shown in Figures 9-10, along with the choice
of the remaining fixed parameters. Focusing first on the MINLP solution times (Figure 9),
we can notice that the impact of a varying pd is small compared to that of an increase in
the motion delay and, above all, a larger interception range. The larger runtimes obtained
with r ∈ {3, 4} are easily explained by the presence of a high density of dynamic obstacles
in all the randomly generated instances. Examining now the heuristic gaps (Figure 10),
we note that Algorithm 2 is quite robust to changes in the simulation parameters. The
large heuristic gaps obtained in the instances with r ∈ {3, 4} confirm the insight that such
instances are indeed the most challenging. Comparing Algorithm 2 against the MCTS and
SB baseline, the superiority of the former is clear. The SB baseline, in spite of taking only
∆ = 1 steps along each computed path, is not able to handle effectively the probabilistic
nature of the problem and, for this reason, is the algorithm performing worst. The MCTS
baseline performs better than the SB baseline, but is clearly still inferior to Algorithm 2.
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MCTS Baseline SB Baseline

Figure 11: Grids, fourth set of simulations – Heuristic gaps for large deadline values com-
puted w.r.t. the best heuristic solution. Grid size: 22x22, pd = 0.8, r = 2.

In the fourth set of simulations, the last set for the grid environments, we examine
the performace of Algorithm 2 in instances with large deadlines for which the MINLP
approach is no longer a viable option. Algorithm 2 is hence compared only against the
two baselines, with ∆ = 1. For this set of simulations, we use 22x22 grids where 40% of
the black squares are associated with a dynamic obstacles moving around it, pd = 0.8, and
interception range r = 2. The deadline T varies in {50, 54, 58, 62, 66}. Note that, compared
to the previous 22x22 grid problems, these deadline values result in many more “waiting”
options for the agent (e.g. with T = 66 there are up to 24 steps in which the agent can
decide between moving and staying still). Not having certified optimal MINLP solution at
our disposal, we compute the heuristic gap w.r.t. the best solution obtained by the three
algorithms. The results show that Algorithm 2 is not able to obtain the best solution in
only one instance with T = 62 (heuristic gap of 0.015), and that both baselines obtain quite
large gaps; see Figure 11.

6.1.4 Real Environments

We also test our algorithms on two real indoor environments/graphs, dubbed Office
and Museum, first introduced by Hollinger et al. (2009) in the evaluation of strategies for
a related multirobot search problem (which can be thought as the “dual” of the problem
considered in this work; see Remark 2.5.1). The two environments are shown in Figure 12,
along with the corresponding discretization. In particular, contrarily to the grid environ-
ments, a coarser discretization is used in which each room is associated with a graph vertex
(edges connect adjacent rooms). This discretization method provides a good trade-off be-
tween model accuracy and the ability to solve problems of realistic size. As before, we
consider 20 randomly generated instances for each environment. The parameters are the
following:

• vs, vg Office: 14, 31; vs, vg Museum: 4, 65;
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Figure 12: Two real environments used by Hollinger et al. to simulate multirobot search
scenarios (2009). Each room is annotated with the index of the corresponding
graph vertex. Left: Office environment (60 vertices). Right: Museum environ-
ment (70 vertices).

Office Museum

Figure 13: Real environments – MINLP solution times for different grid sizes.

• static obstacles: 6 for Office, 7 for Museum; ps randomly chosen in {0.05, 0.1}; each
obstacle occupies one room;

• dynamic obstacles: 2 for Office, 3 for Museum; pd = 0.8; motion model: stay in current
room with probability 0.5, and move to a neighbor room with uniform probability;
interception model: the agent can be intercepted when located in the same room or
in a neighboring room (in other words, the obstacle can inspect its current room and
all neighboring ones in 1 step), with the exception of “big rooms” (Office: 43, 44, 22,
49, 52; Museum: 1, 10, 49). Also, big rooms do not allow intercepting the agent in a
neighbor room.

Figure 13 shows the MINLP solution times for deadlines T varying in {11, 14, 17, 20, 24}.
All the 20 instances are solved until T = 20. With T = 24, the MINLP approach is still
able to provide an optimal solution in the majority of the cases, with MINLP gaps varying
between 10% and 60% for those instances not solved to optimality within 30 minutes. With
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Office Museum

Figure 14: Real environments – Algorithm 2 (blue, left), MCTS (purple, center) and SB
(pink, right) baselines for a varying deadline.

larger deadlines (28 and onward), we noticed that the MINLP approach starts to become
no longer a viable option. Figure 14 shows the heuristic gaps of Algorithm 2, MCTS
baseline, and SB baseline (∆ = 1) for a varying deadline, computed on those instances
solved to optimality by the MINLP approach. The superiority of Algorithm 2 against the
two baselines is again clear.

We also consider larger deadline values, for which the MINLP is typically not able to
provide an optimal solution: 28, 32, and 36. Comparing Algorithm 2 against the two
baselines, we obtain the following results:

• Office environment: Algorithm 2 does not provide the best solution in a single instace
with T = 36 (heuristic gap ≈ 0.005);

• Museum environment: Algorithm 2 does not provide the best solution in three in-
stances: one with T = 28 (heuristic gap ≈ 0.005), one with T = 32 (heuristic gap ≈
0.008), and one with T = 36 (heuristic gap ≈ 0.008).

6.2 Evaluation of PPHE-D1 and PPHE-D0 Algorithms

To conclude the evaluation, we compare the algorithms proposed in Section 5 to decide
PPHE-D1 and PPHE-D0. For this set of experiments, we use the 28x28 grid instances used
in the corresponding first set of simulations, and examine how the runtime of the algorithms
varies as we increase the deadline T . Figure 15 shows the results relative to PPHE-D1. We
can notice that the advantage introduced by Algorithm 3 is small but consistent across all
the values of T . This fact, together with its pseudo-polynomial runtime guarantee, suggests
that it should be the preferred choice for solving PPHE-D1 instances. Figure 16 shows the
results relative to PPHE-D0. In this case, the computational advantage offered by a more
specialized algorithm over the (inexact) variant of the general MINLP approach is huge.
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MILP-D1 Algorithm 3

Figure 15: Deciding PPHE-D1. Runtimes of MILP-D1 and Algorithm 3 in the 28x28 in-
stances of the first set of grid simulations.

MILP-D0-APPROX MILP-D0-EXACT

Figure 16: Deciding PPHE-D0. Runtimes of MILP-D0-APPROX and MILP-D0-EXACT
in the 28x28 instances of the first set of grid simulations.
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7. Related Work

Given the significant body of literature related to navigation in hostile and/or uncertain
environments, in this section we only provide an overview of the works that share some of
our modeling assumptions. The reader is referred to the recent survey by Agmon (2017)
and to the references of the papers mentioned in this section for a more comprehensive
overview.

The class of works mostly related to the problem we consider is perhaps the one in-
vestigating patrolling problems. As the name suggests, these problems are concerned with
the employment of some patrolling entities (humans or robots) to monitor a given environ-
ment with the aim of detecting the presence of intruders. Initially, the intruder was not
directly modeled: the patrollers’ objective was simply to maximize the frequency of two
subsequent visits to the same location (Chevaleyre, 2004). However, these kinds of (deter-
ministic) patrolling schemes can give rise to fully predictable strategies that may easily be
avoided by a rational intruder. Therefore, more recent works explicitly model the intruder’s
behavior in a strategic adversarial framework. Basilico et al. (2012) present a graph-based
game-theoretical patrolling framework where an intruder is able to observe the patroller
as it moves on the graph, and to instantaneously place an “attack” on one of the graph
vertices. This intrusion scenario is modeled as a leader-follower game, for which the optimal
strategy for both the patroller and the intruder can be derived. This model has recently
been extended by Basilico et al. (2017), where it is assumed that an alarm system is in
place which is able to detect the presence of an attack, but with some uncertainty on the
position where the attack is taking place. These two models are elegant, but work under
the assumption that the intruder is extremely powerful (infinite sensing range, possibility
of instantaneously placing attacks). Basilico et al. (2009) propose some ways of relaxing
these assumptions, but these refined models might still fail to capture many real situations
(for example, they assume that the intruder can move infinitely fast along a given graph
path). Delle Fave et al. (2014) also present a model based on a leader-follower game, which
considers the possibility that unexpected events might delay the patrollers (whose actions
are modeled by means of Markov chains, as we do in this work). However, the intruder’s
model is still simple, in that attacks are still modeled as single actions.

The two classes of patrolling models that are most similar to the one considered in this
work have been studied by Agmon et al. (2011) and Vaněk et al. (2010, 2011). Agmon
et al. (2011) assume that the intruder is a strong adversary endowed with a full knowledge
of the patrolling entities (their number and randomized patrolling strategy), but restrict
the patrollers to move along perimeters or fences. Therefore, the intruder can succeed by
simply penetrating a single “defense line”. For this reason, the focus of the study of Agmon
et al. (2011) is on the patrollers’ strategy. In contrast, our work lies on a complemen-
tary direction: we make similar assumptions about the intruder’s knowledge (a bit more
general, as we assume that a patroller may exist with a given probability), but assume
that the patrollers’ strategy is given and focus on deriving a path for the intruder guar-
anteeing maximum chances of survival. Vaněk et al. (2010, 2011) consider a graph-based
game-theoretical formalization of a problem similar to the one we investigate: an intruder
must reach a goal vertex in a graph patrolled by some adversarial entities. However, they
limit the “interception events” to those happening when the intruder meets a patroller on
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the same graph vertex. In contrast, our model admits situations where the intruder can
be intercepted within a given “sensing range”. We deem that our study, focused on the
intruder’s point of view, could provide a solid first step in the direction of extending the
game-theoretical framework introduced by Vaněk et al. (2010, 2011) —and the correspond-
ing solution methods, based on a double-oracle algorithm— to handle different kinds of
patrolling settings, under less restrictive assumptions concerning the interception events.
Specifically, we deem that our model can be particularly useful in dealing with those sit-
uations where the patrolling task is not persistent, but triggered by some events (e.g. a
mulfunction of the camera monitoring system).

The problem formalized in this work bears also strong resemblances to discrete pursuit-
evasion problems, such as those studied by Parsons (1978), Kolling and Carpin (2007), and
more recently by Ramaithitima et al. (2016). Chung et al. (2011) provide a good survey
of pursuit-evasion problems, classified from a mobile robotics perspective. Classically, work
in pursuit-evasion problems focuses on devising worst-case guarantees about the capture of
the evaders, which do not necessarily have a fixed goal to reach. Our approach is instead
suitable for situations where the evader must reach a predefined goal, and is endowed with
an evader-agnostic probabilistic model of the pursuers.

Another class of works related to the model we study considers hostile environments in
the context of coverage problems, where some agents are employed to visit all the locations
of a given enemy area at least once. Yehoshua et al. (2016a, 2016b) assume the presence of
probabilistic “threats” that may stop the agent with a given probability while performing
the coverage task on a graph-represented environment. These works consider a problem
that is more complex than path planning, as we do, but assuming that all the probabilistic
threats are static. In contrast, our model makes more general assumptions about the threats,
which can move on the graph according to motion patterns describable in terms of Markov
chains.

A similar notion of static threats is employed by Likhachev and Stentz (2007) in a path
planning problem similar to ours. Contrarily to this work, they assume that the agent is
always able to sense the actual presence of an adversary in a particular location, and to
take appropriate countermeasures. Another notable class of problems similar to our work
for what concerns the notion of static threats is that of the Canadian Traveller Problem
(CTP) and its variants (Bar-Noy & Schieber, 1991). Here, an agent must reach a goal
vertex in a graph where edges are associated with a probability of existence, whose actual
presence is only revealed once the agent is about to make the traversal. This problem is
similar to ours when all the probabilistic obstacles are assumed to be static. However, the
CTP is an online problem where the objective is to compute an optimal policy, while in our
case we are dealing with an offline problem where obstacles are in general dynamic.

Adversarial versions of the graph-based path planning problem are introduced by Keidar
and Agmon (2017), where the objective of the agent is to reach one of several “safehouse”
locations while minimizing the probability of meeting an adversarial agent. This setting
can be thought as a particular case of the one considered in this work (a single dynamic
obstacle which is surely present in the environment), and facilitates the usage of game
theory to derive the optimal strategies of both the intruder and its adversary.

The problem we consider is also similar to the “classical” path planning problem in
presence of dynamic obstacles with an uncertain, yet somehow predictable, motion pattern.
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We refer the reader to the works by Kruse et al. (1996), Cannon et al. (2012), Aoude et
al. (2013), Hardy and Campbell (2013), Saval-Calvo et al. (2017), and Steyer et al. (2018) for
an overview of different classes of approaches and to the two recent surveys by Katrakazas
et al. (2015) and Paden et al. (2016) focused on autonomous cars. To the best of our
knowledge, however, no model presented in the literature allows to account for the actual
existence of a dynamic obstacle in a principled probabilistic way.

For what concerns the computational complexity of this latter class of problems, to
the best of our knowledge only Sutner and Maass (1988) studied a graph-based discrete
setting. In particular, they showed the PSPACE-hardness of the motion planning problem
in presence of time-dependent obstacles in the particular case where the obstacles’ motion
patterns are described by a deterministic periodic function. The period of this function,
however, can be arbitrarily large. This fact, together with some additional different model-
ing assumptions (e.g. weighted graph edges), makes devising an extension of that hardness
proof to our framework extremely difficult, if not impossible.

8. Conclusions

In this paper we have introduced and studied a graph-based version of a challenging path
planning problem arising in hostile environments that are both dynamic and uncertain,
which we dubbed PPHE (Path Planning in Hostile Environments) problem. We have pre-
sented some complexity results, a Mixed-Integer Nonlinear Program to compute optimal
solution, and a fast –although suboptimal in general– pseudo-polynomial time heuristic al-
gorithm. We have also considered the two limit cases related to the detection of instances
with survivability 1 and greater than 0, providing more efficient specialized algorithms.
The results of our simulation campaign show that, in spite of the general intractability of
this problem, it is possible to solve instances of moderate size to optimality, and obtain
good heuristic results in presence of reasonable assumptions about the characteristics of the
obstacles.

We envision several directions for future research. First, it would be interesting to
derive additional complexity results. Our intuition suggests that the decision version of
PPHE might be extremely hard to solve. The reason is that any algorithm leveraging a
time-stamped version of the graph for planning is doomed to display a runtime that is
at least exponential in the input size. For example, even our heuristics, not offering any
optimality guarantee, run in exponential time (due to the O(T ) depedency). For this reason,
we conjecture that this problem is (at least) PSPACE-hard and leave proving this result
as an open problem. Moreover, it would also be interesting to derive additional hardness
results for the two limit cases we have examined.

Second, it would be nice to come up with ad hoc heuristics for special classes of problem
instances. For example, it would be interesting to study how the problem structure varies
when focusing on a particular class of graph topologies, like those where G is a circle or
line graph as studied in Agmon et al. (2011), or those where G is a tree. Other ad hoc
algorithms could be developed by imposing restrictions on the obstacles, like assuming that
their maximum speed is restricted to that of the planning agent, or that their interception
range is somehow limited. Recall, however, that our hardness result would likely preclude
the existence of polynomial time algorithms even in some of the simplest of such scenarios.
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Figure 17: A high-level scheme of the reduction.

Finally, we deem that our results could be useful for the study of more realistic game-
theoretical formalization of some patrolling scenarios. In this work, we have assumed the
obstacles’ motion patterns to be given a priori, and proposed methods to derive the best re-
sponse of the agent to those patterns, which can be thought as non-deterministic patrolling
strategies. However, the MINLP model we presented could also be adapted for usage in
the “opposite direction”, namely, determining the best non-deterministic patrollers’ strat-
egy given a fixed agent path. This model could be leveraged to develop a double-oracle
algorithm, in the spirit of the works by Vaněk et al. (2010, 2011).
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Appendix A. Proofs of the NP-hardness Results

Proof of Theorem 1

In order to prove Theorem 1, we start by providing a sketch of the reduction. This is from
the NP-complete problem 3-Satisfiability (3-SAT) (Garey & Johnson, 1979).
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3-SAT

INSTANCE: a set U of Boolean variables, and a set C of disjunctive clauses defined on
them with exactly three literals each.

QUESTION: does there exist a truth assignment for U that satisfies all the clauses in C?

From a generic instance of 3-SAT we construct, in polynomial time, a particular instance
of PPHE-D respecting Conditions (1)-(10) such that the former is satisfiable iff the latter
has “yes” answer. The high-level scheme of the reduction is depicted in Figure 17. Here,
thick black lines represent probabilistic obstacles with a high probability of existence that
the robot is not allowed to traverse. Starting from the start vertex, the robot is initially
forced to move up in order to exit the variable gadgets block. While moving up, it meets |U |
variable (dynamic) obstacles (the pentagon and the hexagon) –representing a fundamental
element of our variable gadgets– which are moving in the opposite direction to reach the
clause gadgets block. In order to reach it, they have only two paths at their disposal, making
them exiting the variable gadgets block either on the left or on the right; see the red (thick
dashes) and purple (light dashes) paths in Figure 17. These paths will be executed with
probability 0.5 each. The construction makes sure that, as the robot moves up, it cannot
avoid being intercepted by each variable obstacle after this probabilistic decision has been
made (see where the black and colored lines cross). In the example, the robot is implicitly
setting those two variable values to “false”.

While the robot is traveling through the external part of the grid region containing vari-
able and clause gadgets —whose border is delimited by static obstacles— to reach the entry
at the bottom, the variable obstacles probabilistically spread in that same block accord-
ing to their appearance in the 3-SAT clauses. In particular, they create |C| “probabilistic
barriers”, one for each clause, that must be traversed in sequence by the robot in order to
reach the goal. These represent our clause gadgets. Figure 17 shows one of such barriers
corresponding to a clause containing xj negated. The idea of the reduction is that the
3-SAT instance admits a satisfiable assignment if and only if the robot is able to reach the
goal without needing to pass –in the clause gadgets block– through some cells displaying
some probability of being intercepted a second time by any variable obstacle. These cells
correspond to those reachable by the variable obstacle when traveling along the opposite
path w.r.t. the one where the robot has already been intercepted with probability 0.5, i.e.
in the variable gadgets block.

In the following, it is immediate to verify that, in our construction, Conditions (1)-(10)
hold. For the sake of brevity, we will not explicitly discuss them.

Variable Gadgets Block

Figure 18 shows the initial portion of the variable gadgets block. Here, grey and green (with
a light gradient) squares denote probabilistic static obstacles with ps = 1 − 0.5|U |+1 (the
reason for this value will become clear later). Triangles, penthagon and hexagon denote
instead dynamic obstacles with pd = 1. The triangles can only intercept the robot from
their current vertex (distance 0), while the penthagon and the hexagon can intercept the
robot within Manhattan distance 1. Let us examine how the robot, starting from the yellow
circle, can exit this block without passing through the static obstacles.
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Figure 18: The initial portion of the variable gadgets block. The gadgets corresponding to
the first two variables are shown.

The robot must move up for the first three steps. Then, it has to decide whether to pass
the green obstacle on the left or on the right: this is associated with setting the value of
variable x1 to true or false, respectively. If the robot does not make a decision in the next
step, it will remain blocked due to the two triangular dynamic obstacles which move in the
corresponding pointing direction at 1 cell/step until the corresponding dashed position is
reached. Therefore, at step 5, the robot can start traversing one of the two passages next
to the green obstacle. Meanwhile, also the red (hexagonal) dynamic obstacle, associated
with variable x1, has started to move deterministically, reaching the cell denoted by two red
arrows. According to the corresponding motion model matrix, at step 6 the red variable
obstacle will be in one of the two adjacent cells with probability 0.5. In the subsequent steps,
it will deterministically move (after that probabilistic decision) as shown, again at 1 cell/step
towards the clause gadgets block. At step 6, the robot is still forced to move up due to the
fact that the next two paths next to the second green obstacle will be closed by step 13.
Again, this is enforced by means of triangular obstacles (only the last occupied positions are
shown). This implies that, by step 6, the robot will have been intercepted with probability
0.5. Also, note that the robot cannot follow the variable obstacle in reaching the clause
gadgets block because those paths will again be blocked thanks to additional triangular
dynamic obstacles, again moving at 1 step/cell until the dashed position is reached. What
we have just described is a variable gadget. The same pattern is then repeated for the
remaining |U |−1 variables by properly displacing the dynamic obstacles’ starting positions,
and by adding additional triangular obstacles to forbid the passages right above the variable
obstacles’ starting positions. This construction allows the robot to exit the variable gadgets
block from above not before time step 8|U |+ 4.
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Figure 19: A portion of the clause gadgets block associated with a possible 3-SAT instance.
Clause gadgets associated with clauses c1 and c|C| are fully shown.

Clause Gadgets Block

This block contains the (probabilistic) goal locations of variable obstacles, which are or-
ganized into a set of |C| “probabilistic barriers” that the robot needs to traverse, starting
from the bottom, to reach the goal (the star). Figure 19 shows a portion of the construc-
tion associated with a possible instance having c1 = x̄1 ∨ x2 ∨ x4 and c|C| = x1 ∨ x̄2 ∨ x̄3,
and where x2 only appears three times (two times as a positive literal and one time as a
negative literal). Now, let |U(li)| be the number of appearances of literal li in the clauses.
We show how to construct the motion model matrix of variable obstacle x2. Looking at
the rightmost path (negated variable), note that it describes a deterministic travel having
as destination the cell denoted by x̄2. This means that, if the robot were not present, that
cell would eventually be occupied by the corresponding variable obstacle with probability
0.5/|U(x̄2)| = 0.5. The leftmost path, instead, describes a travel eventually leading the
obstacle to be in the corresponding two cells with probability 0.5/|U(x2)| = 0.25 each. This
is achieved by deviating the obstacle’s downward travel at the same height of the c1 barrier
with probability 0.5 (by adding a horizontal travel segment), and go straight with the same
probability; the remaining part of the travel is then deterministic. As a general rule, the
j-th clause containing literal li encountered while moving downwards corresponds to a turn
with 1/(|U(li)| − j + 1) probability. Note, in Figure 18, that these barriers have a height
of 3 cells (resulting from the obstacles’ interception ranges) and are separated by an empty
row. These allow to make all the variable obstacles headed to the same probabilistic bar-
rier turning at a slightly different height (±1 w.r.t. their possible goal cell), hence easily
avoiding the possibility that two variable obstacles may be located in the same cell at the
same step (the precise turning scheme is not shown in Figure 19 to keep the figure simple).
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Figure 20: Another view of the reduction.

The last ingredient we need is a way to block this passage on the two sides of the
probabilistic barriers by using two additional sets of 4|C|−1 dynamic obstacles each, whose
destinations are the dashed blue cells. Their initial positions are set below the clause gadgets
block, as qualitatively shown in Figure 20. We just need to make sure that the first obstacle
of each set enters the clause gadgets block as soon as the last variable obstacle has reached
its destination in any possible realization of the world. For example, it is safe to set the
starting position of the rightmost (leftmost) obstacles in the left (right) set by considering
a displacement of 4(8|U | + 4) + 4|C| + 9 cells w.r.t. the one placed in the middle of the
clause gadgets block entrance.

Finally, note that the robot must reach the entrance of the this block only when all the
dynamic obstacles (variables and the two additional sets just defined) have reached their
destinations. To ensure this condition, it is sufficient to appropriately set the horizontal
distance between the entrance of the clause gadgets block and the left/right borders of the
construction (made of static obstacles; see again Figure 20). Given the structure of the two
blocks discussed above, this can safely be set to, for example, 4(8|U |+ 4) + 8|C|+ 9.

Putting blocks together

The reduction is almost complete: we just need to specify the deadline T and the surviv-
ability threshold of the decision problem p̄. We set the latter to 0.5|U |. The deadline T ,
instead, can be set to any value (bounded by |V |) allowing the robot to reach the goal after
having exited the variable gadgets block, traveled along the outside border of the construc-
tion (either on the left or on the right), and executed an arbitrary snake-like path in terms
of traversed “probabilistic barrier cells” from the entrance of the clause gadgets block to
the goal (this implies that also a deadline-free version of the problem would be at least
NP-hard).

338



Planning High-Level Paths in Hostile, Dynamic and Uncertain Environments

Now, given the above construction, it is immediate to verify that a 3-SAT instance
admitting a “yes” answer is associated with a path in the constructed grid world with
survivability exactly equal to 0.5|U |. On the contrary, suppose that there exists a path with
survivability greater or equal than 0.5|U | in our particular grid instance. Then, it must be
the case that such path never traverses neither a static probabilistic obstacle (this would
immediately make the survivability drop to 0.5|U |+1), nor a dynamic probabilistic obstacle
d following a deterministic path (the triangles of the variable gadgets block and the two
additional sets heading to the clause gadgets block from below). Moreover, a path where
the robot sets a variable, say xi, to a given value (as discussed in Section 8) is incompatible
with a passage –in the clause gadgets block– through a cell lying in the interception range of
a possible final position of the corresponding variable obstacle associated with the opposite
value. Indeed, this would immediately imply a survivability w.r.t. that variable obstacle
< 0.5 (and, hence, a total survivability < 0.5|U |). This means that we are able to reconstruct
a coherent truth assignment for the variables of the original 3-SAT instance able to satisfy
all of its clauses.

Proof of Theorem 2

The proof of Theorem 2 is built on a reduction very similar to that used for Theorem 1.
However, instead of reducing from plain 3-SAT, we reduce from the following variant which
restricts each variable to appear the exact same number of times as a positive and negative
literal across the whole set of clauses.

POSITIVE-EQUAL-NEGATIVE 3-SAT
INSTANCE: a set U of Boolean variables, and a set C of disjunctive clauses defined on
them with exactly three literals each. Each variable appears in C the same number of times
as a positive and as a negative literal.
QUESTION: does there exist a truth assignment for U that satisfies all the clauses in C?

Lemma 1. POSITIVE-EQUAL-NEGATIVE 3-SAT is NP-complete.

Proof. The problem is clearly in NP. To prove its NP-hardness, we reduce from 3-SAT. From
a general instance of 3-SAT, we construct a particular instance of POSITIVE-EQUAL-
NEGATIVE 3-SAT as follows. First, we copy the original 3-SAT instance. Then, for
each variable xi, let di ≤ C be the difference in the number of positive and negative
literals associated with xi appearing in C. If di 6= 0, we create di new clauses of the form
li ∨ aji ∨ ā

j
i for each j ∈ {1, . . . , di}, where aji is an auxiliary variable and li is positive if, in

the original 3-SAT instance, there are more negative than positive literals associated with
xi, and vice versa. Since these new clauses always evaluate to true, this particular instance
of POSITIVE-EQUAL-NEGATIVE 3-SAT has answer “yes” iff the original 3-SAT instance
has answer “yes”.

Note that the above reduction is implicitly assuming that we are considering “legal”
all the instances containing clauses where the same variable appears both negated and
un-negated.

Now, to prove Theorem 2, we reduce from POSITIVE-EQUAL-NEGATIVE 3-SAT. We
use the same construction of the previous proof, but with a small modification concerning
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the variable obstacles. Suppose that variable xi appears in C mi times negated and mi times
un-negated in the POSITIVE-EQUAL-NEGATIVE 3-SAT instance. Instead of spawning a
single variable obstacle in each variable gadget, we spawn mi variable obstacles at the same
grid cell, each one associated with a different pair of clauses in C whenever possible (namely,
unless xi only appears in a single clause, in which case both obstacles can be associated
with it). The motion model of these obstacles is then set exactly as before, implying that
each variable obstacle will move to the associated clause gadgets with probability 0.5 each.
The theorem then follows from the exact same argument used above.

To conclude, we also point out that our reductions can also be easily modified to prove
the NP-hardness of problem instances defined on 2D grid graphs with holes not containing
any static probabilistic obstacle, but only dynamic obstacles whose only uncertainty lies in
the motion pattern.
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