
Journal of Artificial Intelligence Research 69 (2020) 1203-1254 Submitted 04/2020; published 12/2020

Lifted Bayesian Filtering in Multiset Rewriting Systems

Stefan Lüdtke stefan.luedtke2@uni-rostock.de

Thomas Kirste thomas.kirste@uni-rostock.de

Institute of Visual & Analytic Computing

University of Rostock, Germany

Abstract

We present a model for Bayesian filtering (BF) in discrete dynamic systems where mul-
tiple entities (inter)-act, i.e. where the system dynamics is naturally described by a Multiset
rewriting system (MRS). Typically, BF in such situations is computationally expensive due
to the high number of discrete states that need to be maintained explicitly.

We devise a lifted state representation, based on a suitable decomposition of multiset
states, such that some factors of the distribution are exchangeable and thus afford an
efficient representation. Intuitively, this representation groups together similar entities
whose properties follow an exchangeable joint distribution. Subsequently, we introduce a
BF algorithm that works directly on lifted states, without resorting to the original, much
larger ground representation.

This algorithm directly lends itself to approximate versions by limiting the number of
explicitly represented lifted states in the posterior. We show empirically that the lifted
representation can lead to a factorial reduction in the representational complexity of the
distribution, and in the approximate cases can lead to a lower variance of the estimate and
a lower estimation error compared to the original, ground representation.

1. Introduction

Modeling dynamic systems is fundamental for the understanding of complex phenomena in
a variety of AI tasks. Many dynamic systems consist of multiple, interacting entities which
can be grouped into species, like biochemical reactions (Barbuti et al., 2011), population
dynamics in ecological studies (Pescini et al., 2006), or human activity recognition (HAR,
Bulling et al., 2014), the main motivation of this paper: As a concrete example, suppose that
multiple persons are present in an office environment where they move around and perform
activities like working, chatting, or preparing coffee, and suppose that the environment is
equipped with various sensors (e.g. presence sensors). We are interested in estimating the
persons’ fine-grained activities (e.g. walking, typing) and the environmental context state
(e.g. location of persons and objects) for each point in time. Probabilistic Multiset Rewriting
Systems (MRSs) provide a convenient mechanism to represent such dynamic multi-entity
systems.

In HAR, one established method for deriving state distributions from sequences of ob-
servations is Bayesian filtering (BF, also called recursive Bayesian state estimation). In
BF, the goal is to iteratively compute the posterior p(Xt | y1:t) for time t from the previous
posterior p(Xt−1 | y1:t−1) at time t− 1 and an observation yt. In this paper, we investigate
BF for systems whose dynamics p(Xt |Xt−1) is described by a probabilistic MRS (specif-
ically, we use a general MRS formalism where multiple actions can occur simultaneously
(Barbuti et al., 2011), as introduced in Section 2). Using such symbolic probabilistic models

c©2020 AI Access Foundation. All rights reserved.

Lüdtke & Kirste

of dynamic systems provides several advantages over connectionist systems, like deep neu-
ral networks (Wang et al., 2019): Models can be constructed based on domain knowledge
instead of extensive amounts of training data, the same symbolic model can be used for
different sensor modalities, and context information can be inferred directly (Chen et al.,
2012).

Unfortunately, a system whose dynamics is represented by an MRS can easily have a
very large number of discrete states: For the person tracking domain, when there are n
agents and m rooms, there are already nm system states only for describing the location of
each person. When the multisets xt are treated as a single, discrete random variable, the
categorical distribution p(Xt | y1:t) has a large support (i.e. many assignments with non-zero
probability), and thus, BF in such systems is computationally very expensive.

However, the system states often have a symmetrical structure: For example, in the
person tracking scenario above, we might not always be able to discriminate the persons
based on the sensor data, such that all states that are identical with respect to the number of
persons per room are assigned the same probability. Thus, the joint probability of persons’
names will be exchangeable. A number of algorithms that exploit such exchangeability for
efficient inference have been devised (known as lifted probabilistic inference, e.g. Niepert &
Van den Broeck, 2014; Poole, 2003). Unfortunately, existing lifted inference methods cannot
be applied directly: Naively, the multiset state x is treated as an atomic random variable,
and the resulting univariate, categorical distribution does not exhibit any structure that
can be exploited. Furthermore, existing lifted inference algorithms have not been devised
for BF tasks where the system dynamics is described symbolically, as in MRSs.

The central technical contribution of this paper is to introduce a suitable decomposition
of multisets x into a multiset structure s and a value tuple v, such that distributions over
x can be defined via distributions over s and v (Section 4). This decomposition directly
leads to several desirable properties of the distributions. For the distibution over tuples v,
standard mechanisms for efficient representations of distributions can be used: The distri-
bution can be factorized to exploit independence, and factors can sometimes be represented
parametrically (this is an instance of Rao-Blackwellization, Doucet et al., 2000). When
a factor is exchangeable (which naturally occurs due to the fact that the value sequence
represents multisets, where entities are not ordered), it can be represented by sufficient
statistics (Niepert & Van den Broeck, 2014). In the remaining multiset structure, enti-
ties whose values follow the same distribution are grouped together, and thus the number
of multiset structures is substantially smaller than the number of original multisets. Due
to the relationship to lifted inference, we call this more efficient representation the lifted
representation.

As shown below, the prediction and update steps of BF can be performed directly on the
lifted representation, without resorting to the original, much larger ground representation
(shown in Section 5). When the system dynamics breaks the exchangeability, the state
representation is automatically adapted by splitting operations.

We empirically show on three different application domains that in the best case (when
the distribution is fully exchangeable), our approach leads to a factorial reduction in repre-
sentational complexity, in comparison to complete enumeration (Section 6). Additionally,
we present an approximation strategy for this approach, which allows efficient inference even
in cases where exact exchangeability is not present, or vanishes over time. We empirically

1204

Lifted Bayesian Filtering in Multiset Rewriting Systems

show that in the approximate case, the lifted representation leads to a lower variance of the
estimate, and a lower estimation error.

To summarize our contributions, we show (i) how to provide BF for systems with MRS
dynamics, (ii) devise a lifted representation of distributions over multisets, and (iii) show
how to perform prediction and update directly on that lifted representation.

2. Introduction to Multiset Rewriting Systems

In the following, we provide an introduction to Multiset Rewriting Systems (MRSs). MRSs
are mainly investigated in two research areas: As a formalism for modeling and simulation
of, for example, cell-biological systems (Danos et al., 2007; Faeder et al., 2009; John et al.,
2011), and as a theoretical model of computation (in a research area called membrane com-
puting, Paun, 2012). We start by providing the basic concepts of MRS in Section 2.1, then
continue by presenting several extensions of MRS that have been proposed in either of the
two research communities, which are necessary for using MRS in a BF context: Structured
entities (which allow more flexibility and expressiveness) are introduced in Section 2.2, max-
imally parallel MRS (where multiple actions can be performed in parallel) are introduced
in Section 2.3, and in Section 2.4, probabilistic maximally parallel MRS (PMPMRS) are
presented, which explicitly model distributions over possible actions.

2.1 Multiset Rewriting Systems

In MRSs, states of a dynamic system are multisets, describing which “things” (entities1)
and how many of them exist at a specific point in time.

Definition 1 (Multiset). Let E be a set of entities. A multiset x ∈ X (over E) is a map
(partial function) x : E 7→ N from entities to natural numbers (called multiplicities in this
context). ◦

For entities e1, . . . , ek ∈ E and multiplicities n1, . . . , nk ∈ N, we write Jn1e1, . . . , nkek K
to denote a multiset, where the multiplicity of ei is ni and the multiplicities of all entities
not listed is zero. We write x#e to denote the multiplicity of e in x. Let x, x′ be two
multisets. We assume that multiset union x] x′, multiset difference x∪- x′, and multiset
subset relation x v x′ are defined as usual (Blizard et al., 1988). A multiset represents a
state of the dynamic system we are considering. We call such a multiset x a ground state.

The system dynamics is described by rewriting rules, or actions2. For now, it is sufficient
to consider actions as triples (l, r, κ) ∈ X × X × R≥0, where l and r are multisets called
reactands and products, respectively, and κ is the kinetic constant, or weight (that is later
used for defining probabilities of actions). An action a = (l, r, κ) is compatible to a state
x when the reactands are contained in x, i.e. l v x, and is applied to x by removing the
reactands, and adding the products: x′ = (x∪- l)] r. We denote actions a = (l, r, κ) as

1. Note that we use the term entity to refer both to a specific type of object (this is typically called a
species in the MRS community), as well as specific instances of that object (e.g. the elements occurring
in a multiset), as such a distinction is not relevant for our purposes.

2. In the planning community, a rewriting rule would be called action schema.

1205

Lüdtke & Kirste

l
κ→ r. An MRS is a triple (E , A, x0), where E is the set of entities, A is the set of actions,

and x0 is the initial state.

Example 1. Consider the MRS (E , A, x0) with E = {A,B}, A = {J 1X K κ1→ J K, J 1X, 1Y K κ2→
J 2X K, J 2Y K κ3→ J 3Y K} and x0 = J 1X, 1Y K, which models a simple predator-prey system
where X are predators and Y are prey, κ1 is the rate of death of predators, κ2 is the con-
sumption rate, and κ3 is the reproduction rate of prey. The initial state x0 has the successor
states J 2X K (by applying the first action) and J 1Y K (by applying the second action). The
third action is not compatible to x0 (there are not enough Y entities in x0). ◦

Using this formalism, it is straightforward to sample a trajectory (i.e. a sequence of
states) as follows: Given a state, test which actions are compatible, select one of the ac-
tions with probability that is proportional to its weight, compute the successor state, and
repeat. By repeatedly sampling trajectories, insights about properties of the system can be
obtained (e.g. by using the stochastic simulation algrithm, Gillespie, 1977). Note that we
are only discussing discrete-time MRSs here, as only this type of MRS is relevant later on
for BF (where we assume that observations are obtained at discrete – typically fixed – time
intervals).

2.2 MRS with Structured Entities

The simple formalism described above is already powerful and can model a number of in-
teresting systems. However, there are many domains where entities are actually a collection
of of multiple properties. For example, suppose we want to model a multi-agent activity
recognition scenario, consisting of agents that can move around multiple rooms, and agents
can pick up and manipulate objects. In this case, each combination of properties of an agent
(name, location, handled objects, current goal, ...) has to be modeled as a separate entity.
This does not only result in a large set E of entities, but also in a large set A of actions, as
separate actions are necessary for each of the entities. Properties with continuous domains
lead to an infinite number of actions, making representation and simulation of the MRS
complicated.

A more elegant way to model such situations is to explicitly encode the structure of
the entities, and adapt the definitions of actions so that they can work directly with such
structured entities. Entities with attributes and corresponding schematic actions can be
found in many rule-based languages in systems biology, e.g. in the systems by Danos et al.
(2007), Faeder et al. (2009), John et al. (2011).

Here, we describe a generalization of those approaches: Instead of fixing the number of
properties per entity type in advance (as usual for those approaches), we allow changes in
the number of properties. Furthermore, entities do not need to be identified via a name,
which makes the approach flexible and expressive. Specifically, we assume that entities are
property-value maps, and use a constraint-based mechanism for describing possible reac-
tands of actions.

Definition 2 (Entity). Let P and V be two sets. We call elements from P property names
and elements from V values. An entity e ∈ E is a partial function e : P 7→ V, i.e. a map of
property names P to values V. ◦

1206

Lifted Bayesian Filtering in Multiset Rewriting Systems

The following example illustrates how structured entities are used to define the state in
complex domains3.

Example 2. We are modeling a person tracking and activity recognition task (Schröder
et al., 2017): Multiple persons move in an office environment. Each agent is characterized
by a name and their current location (other aspects, like objects in the environment that
can be picked up by the agents, and so on are not modeled in this simple example). Suppose
there are two locations “Door” and “Table”, and three agents “Alice” (A), “Bob” (B) and
“Charlie” (C). Let P = {Loc,Name} and V = {Door, Table, A,B,C}. A state of the
system where two agents are at the door, and one is at the table, is described by the
following multiset:

x = J 1〈Name: A,Loc: Table〉, 1〈Name: B,Loc: Door〉, 1〈Name: C,Loc: Door〉 K ◦

Note that neither P nor V needs to be finite. For example, the location could be
described by elements from R2. When either P or V is infinite, the set E of entity types
is also infinite. To efficiently handle such structured entities, we define actions in terms of
preconditions (that describe which constraints a structured entity must satisfy such that
the action can be applied) and effects (that describe how the state changes, with respect to
the entities that are used for satisfying the preconditions).

Definition 3 (Action). Let c ∈ C be a sequence of boolean functions of entities, i.e. c :
〈E → {true, false}〉, called preconditions, and let f ∈ F be a function that manipulates a
state, given a sequence of entities, i.e. F := 〈E〉×X → X . (called effect). The weight κ of an
action is a positive real number. An action a ∈ A is a triple a = (c, f, κ) ∈ C×F ×R>0. ◦

Before we can given an example of an action, we need to introduce some convenient
notation for some simple effects: Replacing a property value with a new value, adding (or
overwriting) a property-value pair to an entity, and adding an entity to the state.

• Consider an effect f that appends the property-value pair (k, v) to an entity e, or, if
a property k is already present in e, overwrites the value of k to v, i.e.

f(〈. . . , e, . . . 〉, x) = (x∪- J 1e K)] J 1e′ K, where

e′ = e⊕ 〈k: v〉

We will denote such an effect as “e(k)← v”.
• Consider an effect f that adds an entity e∗ to the state, i.e. f(e, x) = x] J 1e∗ K. We

denote such an effect as “+e∗”.
• The composition of two effects f1 and f2 is defined as (f1◦f2)(i1⊕i2, x) = f1(i1, f2(i2, x)).

3. We use f = 〈k1: v1, . . . , kn: vn〉 to denote the partial function f where f(k1) = v1, . . . , f(kn) = vn.
Sequences (partial functions of indices to elements) are written as 〈x1, x2, . . . 〉, to denote the sequence
that has x1 at position 1, x2 at position 2 and so on. See Appendix A for a complete overview of the
notation.

1207

Lüdtke & Kirste

Example 3. In the office domain (Example 2), agents can move between locations. One
of the actions – that describes movement between the door and the table – is the action
move-d-t = (c, f, κ), that is defined as follows4:

c(e) = (e(Loc) == Door)

f(〈e〉, x) = e(Loc)← Table ◦

To apply an action a to a state x, the action is instantiated : For each precondition of
a, an entity from x is selected that satisfies that precondition. The effect then manipulates
the state based on these entities – they are used as parameters of the effect function. We
call such a pair of action and a sequence of entities an action instance.

Definition 4 (Action Instance). An action instance is a pair (a, i) ∈ A × 〈E〉 where a =
(c, f, κ) is an action and i is a sequence of entities. An action instance is compatible to a
state x if the following conditions hold:

(i) There is a corresponding entity for each constraint, i.e. |i| = |c|.
(ii) Each precondition in c is satisfied by its corresponding entity. That is, ∀j : ij |= cj .

(iii) The multiset of the entities in e is contained in x, i.e. items(i)5 v x.
An action instance alpha = ((c, f, κ), e) is applied to a state x by applying the effect function
to the state and the bound entities, i.e. x′ = f(e, x). ◦

It is important to note that preconditions and bound entities have a sequential order
(instead of being a multiset, as before), and thus the effect can depend on which entity is
bound to which position. For example, consider an action eats with effect f(〈e1, e2〉, x) =
x∪- e2. In this case, it obviously makes a difference in which order the entities are bound
to the preconditions, as this defines which of the entities gets eaten by the other one.

Example 4. Consider the state

x = J 1eA, 1eB, 1eC K,

where eA = 〈Name: A,Loc: Table〉, eB = 〈Name: B,Loc: Door〉 and eC = 〈Name: C,
Loc: Door〉. The action move-d-t from Example 3 can be applied to all entities where
Loc == Door, and thus, the state x has two compatible action instances

α1 = (move-d-t, eB),

α2 = (move-d-t, eC).

Applying these action instances leads to successor states x1 or x2, where

x1 = J 1eA, 1e
′
B, 1eC K,

x2 = J 1eA, 1eB, 1e
′
C K

with e′B = 〈Name: B,Loc: Table〉 and e′C = 〈Name: C,Loc: Table〉. ◦

4. Note that the expression e(Loc) == Door is a Boolean expression in the constraint language (in this
case, an equality constraint).

5. The function items(i) returns the multiset of elements in the sequence i, in which each element a appears
exactly as often as a apprears in i

1208

Lifted Bayesian Filtering in Multiset Rewriting Systems

The set of all action instances of an action that are compatible with a given state can be
computed by backtracking. Usually (for the scenarios we are concerned with), the number
of different entities (i.e. the number of species), and thus the number of action instances of
each action will be small, such that enumeration of all action instances is feasible.

2.3 Maximally Parallel MRS

We are interested in modeling systems where between observations, more than one action
can be applied. Formally, this is expressed by maximally parallel multiset rewriting systems
(MPMRS) (Barbuti et al., 2011). In such systems, each state transition consists of a parallel
execution of a multiset of action instances, called compound action. Such maximally parallel
rule application is also typically used in P systems (Paun, 2012) (a model of computation
based on MRS), motivated by the fact that in cell-biological systems, multiple reactands
can interact at the same time.

Definition 5 (Applicable and Maximal Compound Action (AMCA)). A compound action
k ∈ K is a multiset of action instances, i.e. k ∈ JA × 〈E〉 K. We call a compound action
applicable to a state x if each action instance is compatible with x, and the multiset of all
bindings of the action instances is contained in x, i.e.](a,i)∈k items(i) v x (each entity
in a state is bound at most once). We call a compound action k maximal with respect to
a state x if no action can be added to k such that the resulting compound action is still
applicable to x. The set of applicable and maximal compound actions (AMCAs) of a state
x is denoted as Kx. ◦

In the following, we are mostly concerned with the applicable and maximal compound
actions (AMCAs). The effect of a compound action is the composition of the individual
action instances’ effects. As the order of the individual actions of a compound action is
arbitrary, we require that the order in which the effects are applied can also be arbitrary,
i.e. the individual effects must be commutative. The simple effects introduced above are
always commutative (given that they cannot operate on the same entity, which is the case
when the compound action is applicable).

Definition 6 (Compound Action Effect, Successor State). Let k be a compound action,
and let the effects of all actions in k be commutative. The effect of a compound action is
the composition of all individual action instances’ effects, i.e.

fk = ◦
((c,f,κ),i)∈k

f

We call a state x′ = fk(x) a successor state of x. ◦

Example 5. Consider the state

x = J 2〈Name: A,Loc: Table〉, 1〈Name: B,Loc: Door〉 K

and the two actions move-d-t (am), as defined in Example 4) and stay (as), which has
a precondition that is always true, and its effect is the identity. For readability, we de-
note eA = 〈Name: A,Loc: Table〉 and eB = 〈Name: B,Loc: Door〉. There is just a single

1209

Lüdtke & Kirste

R R G R RG

G RR

GRR

Table Door

Table Door

Table Door

Table Door

k1 = [2(as,eA), 1(as,eB)]
μ=1

k2 = [1(am,eA), 1(as,eA), 1(as,eB)]
μ=2

k3 = [2(am,eA), 1(as,eB)]
μ=1

Figure 1: Compound actions and successor states for Example 5: Either both red entities
(entities with name A) stay at their location, one of them moves, or both move. The
compound action k2, where one entity moves, has multiplicity 2, as either of the two entities
could have moved.

compatible action instance for am: (am, eB). For as, there are two compatible action in-
stances: (as, eA) and (as, eB). These three action instances allow for three AMCAs: k1 =
J 2(as, eA), 1(as, eB) K, k2 = J 1(am, eA), 1(as, eA), 1(as, eB) K, and k3 = J 2(am, eA), 1(as, eB) K
– either both agents at the table move, just one of them moves or both stay where they are.
The situation is shown in Figure 1. ◦

Note that maximally parallel MRSs are a strict generalization of conventional MRSs
(where a single action is executed at each step): Single-action application can be modeled
in a maximally parallel MRS by introducing an additional mutex entity to the state that is
required by each action. Then, each AMCA has a cardinality of one.

2.4 Probabilistic Maximally Parallel MRS

In general, given a state x, more than one compound action can be applicable and max-
imal, as shown in Example 5. Thus, a mechanism is necessary to decide which of those
AMCAs will be chosen. For example, classical P systems (Paun, 2012) use a given priority
relation of actions for this task. Here, we are considering probabilistic systems, for which we
need to define some mechanism that assigns probabilities to compound actions (and thus
a probabilistic transition model) – similar to the way probabilities have been devised for
single-action MRSs in Section 2.1.

Note that up front, any function from the AMCAs to positive real numbers which inte-
grates to one is a valid definition of these probabilities. Each definition might be plausible
for different domains, depending on the underlying “physics” (i.e. action selection mech-
anism): A world where entities can independently choose which action to participate in
requires a different definition of AMCA probabilities than a world where entities cooperate
to reach a common goal.

Here, we use the probabilities that arise when entities choose which action to participate
in without coordinating. This is the intended semantics for the multi-agent scenarios we are
concerned with. To calculate this probability, we count the number of ways specific entities
from a state x can be chosen to be assigned to the action instances in the compound action.

1210

Lifted Bayesian Filtering in Multiset Rewriting Systems

This concept is closely related to the MPMRS of Barbuti et al. (2011) – except that due
to the fact that we use positional preconditions, the counting process is slightly different.
We start by defining the multiplicity of an action instance α as the number of ways the
bindings of α can be chosen from the entities of a state x.

Definition 7 (Multiplicity of an Action Instance). Let α be an action instance, let i =
〈i1, . . . , in〉 be the entities bound in α, and let x be a state. The multiplicity µ of i in x is

µ(i = 〈i1, . . . , in〉, x) =

{
x#i1 ∗ µ(〈i2, . . . , in〉, x∪- J 1i1 K) if |i| > 0

1 otherwise

Furthermore, let the multiplicity µx(α) of action instance α = (a, i) in x be µx(α) =
µ(i, x). ◦

The multiplicity of a compound action k in state x is in principle just the product of
the component action instances’ multiplicities regarding the corresponding remaining state.
However, when doing so, the multiplicity of the compound action is overestimated: For
example, consider the state x = J 2y K and the compound action k = J 2(a, y) K. Although
the multiplicity µx(a, y) is 2, the multiplicity of k should be 1, as there is only a single way
to assign the entities in x to the compound action, as the order of the action instances in
the compound action is not relevant. To obtain the correct multiplicity, we therefore need
to divide it by the number of permutations of identical action instances.

Definition 8 (Multiplicity of a Compound Action). Let k be a compound action, and let
x be a state. The uncorrected multiplicity µ′ of k in x is

µ′(k, x) =

{
1 if k = J K
µx(α) ∗ µ′(k ∪- J 1α K, x∪- items(i)), where α = (a, i) ∈ dom(k) otherwise

The multiplicity µ of k in x is obtained by dividing µ′ by the product of the number of
permutations of identical action instances in k:

µx(k) =
µ′(k, x)

z(k)
, where z(k) =

∏
α∈dom(k)

k#α! ◦

Note the close relationship to the multinomial coefficient
(

n
k#α1, k#α2,...

)
. Finally, the

probability of a compound action is its normalized multiplicity, multiplied by the product
of the individual actions’ weights.

Definition 9 (Weight, Probability of an AMCA). Let Kx be the set of AMCAs of the state
x. The weight vx(k) of an AMCA ki ∈ Kx is

vx(ki) = µx(ki)
∏

α∈dom(ki)

κki#αa . (1)

The probability of an AMCA ki ∈ K, given x, is its normalized weight:

p(k |x) =
vx(k)

Z
, where Z =

∑
ki∈K

vx(ki) (2)
◦

1211

Lüdtke & Kirste

The AMCAs shown in Example 5 have multiplicities µx(k1) = µx(k3) = 1 and µx(k2) = 2
(see Figure 1). Thus, assuming that the actions am and as have equal weight, the proba-
bilities of the AMCAs are p(k1 |x) = p(k3 |x) = 0.25 and p(k2 |x) = 0.5.

Computing the weight of an AMCA is closely related to the weighted model counting
problem (WMC) (Chavira & Darwiche, 2008): In WMC, we are given a propositional
theory ∆ and a weight for each literal (which induce a weight of each model). The goal is
to compute the summed weight of all models that satisfy ∆. Here, the conjunction of all
constraints of the actions (as well as the other requirements of AMCAs, see Definition 5)
define a propositional theory, and each AMCA is a model of that theory. In this case, the
weight of each AMCA can be computed directly via Equation 1.

To be able to sample from the distribution of AMCAs (Equation 2), we do not only need
to compute the WMC for a single AMCA k, but for all AMCAs (to obtain the normalization
factor Z) – in WMC terminology, we need to first generate all theories that have a non-
zero model count, and then perform WMC for each theory. An algorithm for generating
all AMCAs that has linear runtime in the number of AMCAs is described in Appendix B.
Using this algorithm, it is easy to draw sample trajectories: Given a state x, calculate all
compound actions and their probabilities, sample one of them, compute the successor state,
and iterate the process.

As the number of AMCAs can easily become very large (see Appendix B), enumerating
all compound actions can be computationally expensive. An approximate, MCMC-based
algorithm that samples AMCAs directly has been presented by Lüdtke et al. (2018b).

3. Bayesian Filtering in Multiset Rewriting Systems

As described above, MRSs are typically used for simulation, i.e. sampling trajectories.
Instead, in this paper, the goal is Bayesian filtering (BF) in MRS: Estimate the state of a
system that is described by a MRS, given a sequence of noisy observations.

First, we provide a brief introduction to BF in Section 3.1, then describe how the
prediction (Section 3.2) and update (Section 3.3) steps of BF can be realized for probabilistic
maximally parallel MRS (PMPMRS), and then describe why naively proceeding like this is
infeasible (Section 3.4), which leads to the need for a more efficient representation.

3.1 Bayesian Filtering

The goal of BF is to estimate the (hidden) state sequence x1:t, based on a sequence of
noisy observations y1:t. Usually, this is done in an iterative process that, given the prior
distribution p(Xt | yt), calculates the posterior distribution p(Xt+1 | yt+1). This computation
can be decomposed into the prediction step

p(Xt+1 | y1:t) =
∑
xt∈X

p(xt | y1:t) p(Xt+1 |xt) (3)

and the update step

p(Xt+1 | y1:t+1) =
p(yt+1 |Xt+1) p(Xt+1 | y1:t)

p(yt+1 | y1:t)
. (4)

1212

Lifted Bayesian Filtering in Multiset Rewriting Systems

Algorithm 1 Prediction.

• Input: Actions A, categorical distribution p(Xt|y1:t), represented as {(x(i)
t , p

(i)
t }Ni=1

• For i = 1, . . . , N

– Let AIx = enum-ai(x,A) be the action instances of x
(i)
t

– Let Kx = enum-ca(x,AIx) be the AMCAs of x
(i)
t (see Algorithm 6)

– Compute successor states and multiply prior:

Let Pi =
{(
fk(x

(i)
t), p

(i)
t ∗ p(k | x

(i)
t)
)
| k ∈ Kx

}
• Let P =

⋃N
i=1 Pi

• Let x
(1)
t+1, . . . , x

(M)
t+1 be the set of unique states in P

• Marginalize prior, by summing weights of identical states:

For i = 1, . . . ,M : p
(i)
t+1 =

∑
{(x,p)∈P |x=x

(i)
t+1}

p

• Return {(x(i)
t+1, p

(i)
t+1}Mi=1

We call p(Xt+1 |Xt) transition model, p(Yt+1 |Xt+1) observation model and p(Xt | y1:t) the
filtering distribution at time t. Common approaches to perform this recursive estimation
are Hidden Markov Models (where states are categorical, the state space is finite, and the
transition model is represented as a matrix of transition probabilities) and Particle Filters
(which represent the filtering distribution by weighted samples).

BF is a fundamental task in artificial intelligence, that arises, for example, in speech
recognition (Rabiner, 1989), handwriting recognition (Plötz & Fink, 2009), gene prediction
(Stanke & Waack, 2003), robot localization and mapping (Montemerlo et al., 2002), or
Human Activity Recognition (Wilson & Atkeson, 2005). Here, we are concerned with the
case where the states xt are multisets, and the transition model p(Xt+1 |Xt) is given by a
PMPMRS. This task arises, for example, in sensor-based Human Activity Recognition for
multiple agents, or when the state of multiple objects needs to be estimated.

3.2 Prediction

The distribution of AMCAs p(k |xt) (Equation 2) directly induces a transition model
p(xt+1 |xt): Intuitively, the probability of a posterior state xt+1 is the summed proba-
bility of all AMCAs that lead to xt+1. More formally, the distribution is computed by

1213

Lüdtke & Kirste

2/3

R G

1/3

G R

1/6

R G

1/6

R G

1/6

G

3/12

G

1/12

G R

1/12

G R

R

R

1/12

RG

p(xt-1|y1:t-1) p(xt|y1:t-1)

s(), m-r()R G

 s(), s()R G

l-m(), m-r()R G

l-m(), s()R G

l-m(), s()G R

 s(), s()G R

s(), m-r()G R

l-m(), m-r()G R

0.03

R G

0.30

R G

0.30

G

0.046

G

0.015

G R

0.15

G R

R

R

0.15

RG

p(xt|y1:t)

* 0.99

* 0.99

* 0.99

* 0.99

* 0.1

* 0.1

* 0.1

prediction update, yt = 1

Figure 2: Example of prediction and update for the office scenario (see Examples 6 and 7).

marginalizing over the AMCAs of xt as follows:

p(xt+1 |xt) =
∑
k∈Kxt

p(xt+1, k |xt)

=
∑
k∈Kxt

p(xt+1 |xt, k) p(k |xt)

=
∑
k∈Kxt

1(fk(xt) = xt+1) p(k |xt).

(5)

The filtering distribution p(Xt | y1:t) is a categorical distribution in this case, i.e. we
maintain a set of pairs (x, px), where x is a possible state, and px is its probability (we
only need to store the states which have non-zero probability). Algorithm 1 shows how a
prediction step of BF (Equation 3) is performed in this approach, given a set of actions A,

and a prior state distribution p(Xt | y1:t) as a set of pairs {(x(i)
t , p

(i)
t)}Ni=1): For each state

xt(i), we enumerate all action instances and AMCAs, compute their probabilities (Equation
2), compute successor states and their probabilities (Equation 5), and finally perform the
prediction by multiplying with the prior and marginalizing over Xt (Equation 3).

Example 6. Consider the following variation of the office scenario: There are three rooms
(L, M, R), and two agents (red and green). Agents can move between adjacent rooms or

1214

Lifted Bayesian Filtering in Multiset Rewriting Systems

stay at their current room (i.e. there are five actions: l-m, m-l, m-r, r-m, s). Suppose that
at some point during BF, the filtering distribution looks as follows:

p(x1) = 1/3, p(x2) = 2/3,

x1 = J 1〈N: Red,L: L〉, 1〈N: Green,L: M〉 K
x2 = J 1〈N: Red,L: M〉, 1〈N: Green,L: L〉 K

Each state has four AMCAs: Either no agent moves, the red agent moves, the green agent
moves, or both move. Suppose that all actions have equal weight, which leads to all AMCAs
having equal weight. After applying the AMCAs and summing the probability of identical
predicted states, there are 7 states with non-zero probability, as shown in Figure 2 (center
column). ◦

3.3 Update

As we saw above, PMPMRSs directly induce a transition model p(xt |xt−1). However,
existing MRS formalisms do not consider observations, and therefore, new concepts are
required to specify observations models for MRSs. Such observation models have to account
for two considerations:

• When the states xt are multisets, defining the distribution p(Yt |Xt) is not straightfor-
ward, as the domain of Xt will typically be very large, and thus storing one distribution
over Yt for each possible value of Xt is infeasible.

• For MRSs, it is natural to allow observations that to not depend on any specific
entity, but rather on features of the state xt, like existence of entities with certain
properties. For example, a room presence sensor might observe whether any person
is at a specific location, but not which one. Such non-identifying observations will
also turn out to be convenient later when using a more efficient representation for the
filtering distribution, because they do not break the symmetry of the entities.

In the following, we describe a constraint-based formalism that accounts for both of these
considerations. The idea is to partition the states into groups that behave identical with
respect to observations (i.e. that are weighted with the same likelihood). These partitions
are defined via features of the states.

Here, we use counting constraints on states x to express this feature selection: These
constraints are true when there are exactly n (at least n, at most n) entities in x that satisfy
an entity constraint c. Counting constraints are used here because of their flexibility, i.e.
they allow to model a wide range of possible observation situations.

Counting constraints where exactly n, at least n or at most n entities in x satisfy an
entity constraint c are denoted by #=n

c , #≥nc , and #≤nc . The observation distribution
p(y |x) then depends on which counting constraint can be satisfied in x (and of course
on the value of y). The constraints are constructed in such a way that exactly a single
constraint is satisfied in any x, given y. This way, the constraints partition the state space,
i.e. each constraint represents a different characteristic of the state with unique distribution
of observations.

1215

Lüdtke & Kirste

Definition 10 (Observation Model). Let c ∈ CN = X → {true, false} be a counting
constraint, and let y ∈ Y be an observation. We call o ∈ Y × CN → R observation model,
if for any state x and observation y, exactly a single constraint c with (y, c) ∈ dom(o) can
be satisfied in x. An observation model o specifies the distribution p(y |x) of observing y
in state x by p(y |x) = o(y, c), where c is the constraint satisfied in x. ◦

Example 7. Suppose that one of the rooms in the office is equipped with a presence sensor
that is active when at least one agent is in the room. The sensors have a false positive rate
of 0.1 and a false negative rate of 0.01. Specifically, we assume that the right location is
equipped with such a sensor. Thus, the observation distribution looks as follows:

p(y = 1 |x) =

{
0.99 if at least one agent in x is at right location

0.1 otherwise

This observation model can be formalized using the constraint-based formalism: The entity
constraint c(e) = (e(Loc) == Right) tests whether the agent e is at the right location, and
the counting constraints #=0

c and #≥1
c test whether none (or at least one) agent is at the

right location in a state x. Thus, the observation model is given by:

y c p

0 #=0
c 0.9

1 #=0
c 0.1

0 #≥1
c 0.01

1 #≥1
c 0.99

Consider the prediction distribution shown in Figure 2 (middle), and suppose that we
observe y = 1. Each state where at least one entity is at the right location is weighted with
0.99, and each state where no entity is at the right location is weigh with 0.1. Afterwards,
the distribution is re-normalized. ◦

3.4 Marginal Filtering and Problem Statement

We now have all components that we need for performing exact BF in systems with prob-
abilistic maximally parallel MRS dynamics. Unfortunately, doing this turns out to be
effectively infeasible: In MRS, the number of possible systems states (i.e. the support of the
filtering distribution) is typically very large: When n is the total number of entities in a state,

and m is the number of possible different entities, there are at most
(
m+n−1

n

)
= (m+n−1)!

n! (m−1)!
multisets. Therefore, exact BF quickly becomes infeasible due to the large number of pairs

(x
(i)
t , p

(i)
t) that need to be maintained to represent the filtering distribution p(xt | y1:t).

Thus, the naive approach of representing p(xt | y1:t) by a set of pairs (x
(i)
t , p

(i)
t) is insuffi-

cient, and we require a more efficient way to represent that distribution. However, when the
multisets xt are treated as atomic terms, the filtering distribution p(xt | y1:t) is categorical
and univariate, and thus cannot be factorized, nor can methods for efficiently representing
continuous distributions (parametric representations, variational methods) be used directly.
The classical approach in such cases is to employ a sampling-based approximation called

1216

Lifted Bayesian Filtering in Multiset Rewriting Systems

particle filter (PF) (Arnaud et al., 2001), where the distribution is approximated by a set

of weighted samples (x
(i)
t , w

(i)
t) (particles):

p(xt) ≈ p̃(xt) =
N∑
i=1

w
(i)
t δ

x
(i)
t
. (6)

However, particle filtering is unsuitable for large, categorical state spaces (Nyolt et al.,
2015) (like the multiset states that need to be handled here): As no metric is defined on
the categorical states, resampling (which needs to be done to prevent weight degeneration)
leads to many duplicate particles that represent the same system state, instead of smoothly
approximating the distribution around that state, as for continuous distributions. Thus,
the filtering distribution is effectively represented by particle numbers instead of weights,
and particles are utilized poorly.

To circumvent these problems, the marginal filter (MF) (Nyolt et al., 2015) has been
proposed, that is specifically suited for categorical state spaces: The general idea is to di-
rectly collapse identical particles, by summing their weight. Specifically, in the marginal

filter, the prediction step is performed exactly. That is, for each particle (x
(i)
t , w

(i)
t), the pos-

terior distribution p(xt+1 |x(i)) is computed by enumerating all posterior states xt+1 (which
is possible in the MRS dynamics described here, as each state can only have a finite number
of successor states). The algorithm then marginalizes the prior states xt, by summing the
probabilities of identical successor states. This can be realized efficiently by representing
the filtering distribution p(Xt | y1:t) as a map X 7→ R≥0 of states to probabilities: This way,
each state is represented at most once in the MF, and map insertion can be redefined to
directly perform the summation of probabilities.

Although this computation is exact, it is based on the approximation p̃(xt) from the
previous time step. The approximation that is performed for each time step is to limit
the number of particles that represent p(xt+1) by an operation called pruning (see Nyolt
& Kirste, 2015 for a discussion of pruning strategies). The MF provides the fundamental
algorithmic idea to allow approximate inference in very large categorical state spaces. For
example, the algorithm has been used for inference in a cooking activity recognition task
with 146 million discrete states (Nyolt et al., 2015).

Still, MF can require a large number of particles for an accurate representation of the
filtering distribution, especially when the true distribution has a large support (as typi-
cally the case for the PMPMRS we are concerned with). The main shortcoming of MF in
MRS domains is that states are handled as atomic terms without considering their internal
structure.

However, for multiset states, this is not the case. Intuitively, in MRSs, a certain sym-
metry in the states can arise due to the transition semantics, such that multiple states are
identical except for permutation of values.

Example 8. From the system shown in Figure 2, consider the states

x1 = J 1〈L: Left,N: Red〉, 1〈L: Middle,N: Green〉 K
x2 = J 1〈L: Left,N: Green〉, 1〈L: Middle,N: Red〉 K.

The states are identical, except for the permutation of agent names. ◦

1217

Lüdtke & Kirste

If we could make use of these symmetries – by summarizing such similar states – it would
be possible to reduce the space complexity. Fleshing out this idea is the main technical
contribution of this paper, and the topic of the next section.

4. Factorizing Distributions of Multisets

In this section, we present the main technical contribution of this paper: An efficient repre-
sentation of distributions p(X) of X -valued random variables (RVs), where X is the set of
possible multisets over structured entities. Initially, as discussed above, multisets are atomic
terms, thus p(X) is a univariate, categorical distribution that does not directly afford any
efficient representation. Our goal here is to unfold the structure that is present in the mul-
tisets into a form for which we can readily devise a distribution that can be represented
efficiently. It is important to note that this task of describing a distribution over a complex
data structure (like multiset states) via distributions over simpler objects (like tuples) is
not straightforward: For example, Flach and Lachiche (2000) describe a distribution over
sets and multisets, which requires to explicitly marginalize over the serializations of the set.

We propose to use a decomposition function φ (introduced in Section 4.1), that maps
states (i.e. multisets) x to pairs (s,v), where s is the multiset structure (which and how
many entities exist), and v is a sequence of values of the entities. Then, we can decompose
the distribution as p(X) = p(S, V) = p(S) p(V |S).

For distributions over s and v, we can use standard mechanisms for representing dis-
tributions more efficiently. Specifically, as we show in Section 4.2, we can assume that the
distribution p(V |S) exhibits independence and exchangeability, due to the regular struc-
ture of the multisets. The distribution p(S) is a categorical distribution with substantially
smaller support – and therefore much more compact representation – than p(X). Interest-
ingly, BF can be performed directly on this efficient representation: Multiset rewriting is
performed on the structures s, and the corresponding value distributions are only inspected
and manipulated when necessary (as outlined in Section 5).

4.1 Decomposing Multisets of Structured Entities

To keep the presentation simple, in the following, we consider entities that contain infor-
mation about the factor of the distribution that its values have been drawn from (we call
this information the distribution type). This is not strictly necessary, but will be convenient
later on by making the factorization structure explicit.

Definition 11 (Typed Entity, Typed State). A typed entity ed ∈ Ed is a partial function
ed : P 7→ (D × V), i.e. a map of property names P to pairs of distribution types D and
values V. A multiset of typed entities is called typed state. ◦

We write the distribution type as indices. For example, the typed state

x = J 1〈NN: A,LL1 : 1〉, 1〈NN: B,LL2 : 2〉 K

consists of two entities with a property N that is drawn from a distribution with type N,
one of those has a property L that is drawn from L1, and the other one has a property L
drawn from L2. The intuition here is that the values of the properties have been drawn

1218

Lifted Bayesian Filtering in Multiset Rewriting Systems

from a factorized representation consisting of three factors: One joint factor describing the
distribution of the N properties, and two independent factors describing the distribution of
the L properties.

To achieve such a factorized representation, we first introduce a mapping between mul-
tisets (i.e. abstract objects) to syntactic structures (terms), such that (i) the distribution
over terms can be represented more efficiently (e.g. it factorized due to independence as-
sumptions), and (ii) this distribution over terms directly induces a distribution p(X) over
multisets. The obvious choice is to transform the multisets into a tuple, as for distributions
over tuples, existing methods for efficiently representing distributions, like graphical mod-
els, can be used. Unfortunately, in contrast to tuples, elements in multisets do not have an
order, and thus there are multiple tuples that can represent the same multiset, so there is
no straightforward bijection between multisets and tuples.

To derive a suitable bijection, we proceed in two steps: First, we define the canonical
(ordered) serializations σ of a multiset, in which entities are arranged sequentially (and
repeated as many times as its multiplicity indicates), as well as the key-value-pairs that
each entity consists of. Then, we define a bijective decomposition function that decomposes
a serialization σ into a pair (s,v) of multiset structure s (where multiset rewriting can
be applied) and value sequence v (where distributions over v can be represented more
efficiently).

Definition 12 (Entity Serialization, Canonical State Serialization). Let <P ⊆ P ×P be a
total order of property names, <D⊆ D×D be a total order of distribution types, and <V ⊆
V × V be a total order of values. Let e be a typed entity. We call ς(e) = 〈k, e(k)〉k∈dom(e),
where the order of the pairs follows <P (major order), <D, and <V (minor order) the
canonical serialization of e.

Let x be a typed state. We call the sequence σ that contains x#e copies of the ordered
serialization of all entities e in x, and is ordered according to <P (major order), <D, and
<V (minor order) the canonical serialization of x. Formally, for a state x, the canonical
serialization σ of x has the form

〈ς(e1), . . . , ς(e1)︸ ︷︷ ︸
x#e1 times

, . . . , ς(en), . . . , ς(en)︸ ︷︷ ︸
x#en times

〉,

where {e1, . . . , en} = dom(x). ◦

Example 9. The state

x = J 1〈NN: A,LL1 : 1〉, 1〈NN: B,LL2 : 2〉 K

has the canonical serialization

σ = 〈〈〈N, 〈N, A〉〉, 〈L, 〈L1, 1〉〉〉, 〈〈N, 〈N, B〉〉, 〈L, 〈L2, 2〉〉〉〉 ◦

Next, we define the decomposition function, that extracts the structure and the value
list from the serialization. The intuition is that s is identical to x, except that the values
are removed, and v is the sequence of values.

1219

Lüdtke & Kirste

Definition 13 (Decomposition Function). Let x be a typed state, and let σ be the canonical
serialization of x.
• The structure se(e) ∈ ED of a typed entity e ∈ x is identical to e, except that the

values are removed, i.e. se(〈k1 : (d1, v1), . . . , ki : (di, vi)〉) = 〈k1 : d1, . . . , ki : di〉.
• The structure s ∈ S of σ (where x is the state corresponding to σ) is the multiset

of entity structures: s = J se(e) | e ∈ x K (multiplicities are added when entities are
mapped to the same entity structure).
• The value sequence v ∈ V of σ is obtained by selecting all values in σ from left to

right. That is, the value sequence of the serialization σ = 〈k1, 〈d1, v1〉, . . . , kn, 〈dn, vn〉〉
is v = 〈v1, . . . , vn〉.

Finally, the decomposition function is defined as φ(x) = (s,v). ◦

The association between entities in x and values in v is maintained by the order of the
elements in v. Thus, the decomposition function φ(x) is bijective, i.e. there is an inverse
function φ−1(s,v) = x (that works by “inserting” the values at the corresponding positions).

For example, the decomposition φ(x) of x shown in Example 9 is

φ(x) = (s,v), where

s = J 1〈N: N,L: L1〉, 1〈N: N,L: L2〉 K
v = 〈A, 1, B, 2〉.

4.2 Distributions of Value Sequences

We started this section with the goal of deriving an efficient representation of the distribution
p(x). Now, via the bijection φ(x) = (s,v), a given distribution p(s,v) induces a distribution
p(x). In the following, we change the perspective and discuss ways of compactly representing
p(s,v) = p(v | s) p(s) – which then directly leads to an efficient representation of p(x) via
φ.

Specifically, we discuss how p(v | s) can be maintained efficiently, for which we make two
assumptions:

(i) Independence of values belonging to different distribution types (situations where in-
dependence does not hold can be represented by mixtures, shown below), and

(ii) exchangeability of values corresponding to the same entity structure (due to the fact
that the entities in the multiset are not ordered, so all orders of values correspond to
the same state).

4.2.1 Independence

We assume that p(v | s) factorizes into independent factors according to the distribution
types (i.e. RVs with different distribution type are independent). The distribution type for
each value is given by s (by generating a sequence of types from s, in the same way as v
has been extracted from x). In the following, we write v(d) to denote the sub-sequence of
values with distribution type d. Subsequently, the distribution factorizes as follows:

p(v | s) =
∏
d

p(v(d) | s)

1220

Lifted Bayesian Filtering in Multiset Rewriting Systems

We can think about the relationship between p(x), p(s) and p(v | s) via the following sam-
pling semantics: Given the factors of a distribution p(v | s) and a (categorical) distribution
p(s), a sample of x is obtained by (i) sampling a structure s from p(S), (ii) sampling a
sub-sequence v(d) from p(V (d) | s) for each d, (iii) construct the sequence v from these sub-
sequences, and (iv) apply the inverse function φ−1(s,v). Steps (iii) and (iv) can also be
understood as “inserting” the values v(d) directly into s, at the positions indicated by the
distribution types d.

The following example illustrates how a distribution over x can be decomposed into a a
distribution over s, and a (factorized) distribution p(v | s).

Example 10. For the office domain (Example 2), suppose we need to represent the situ-
ation “two of the three agents with names A, B, and C are in room 1, and the other one
is at room 2, and we have no information about which specific agent is at which location”
(such situations naturally arise during filtering in MRS, when some of the entities’ prop-
erties cannot be observed directly). This situation is represented by the following uniform
distribution of three states:

p(x1) = p(x2) = p(x3) = 1/3, where

x1 = J 1〈NN: A,LL1 : 1〉, 1〈NN: B,LL2 : 2〉, 1〈NN: C,LL2 : 2〉 K
x2 = J 1〈NN: B,LL1 : 1〉, 1〈NN: A,LL2 : 2〉, 1〈NN: C,LL2 : 2〉 K
x3 = J 1〈NN: C,LL1 : 1〉, 1〈NN: A,LL2 : 2〉, 1〈NN: B,LL2 : 2〉 K.

The decompositions (s,v) = φ(x) of those states all have the identical structure

s = J 1〈N: N,L: L1〉, 2〈N: N,L: L2〉 K

and value sequences

v1 = 〈A, 1, B, 2, C, 2〉
v2 = 〈B, 1, A, 2, C, 2〉
v3 = 〈C, 1, A, 2, B, 2〉

By assumption, the distribution p(v | s) factorizes into one factor per type, i.e.

p(v | s) = p(v(N) | s) p(v(L1) | s) p(v(L2) | s),

where p(v(L1) | s) ∼ δ1, p(v(L2) | s) ∼ δ(2,2) and

p(v(N) | s) =

1/3 if v(N) = 〈A,B,C〉
1/3 if v(N) = 〈B,A,C〉
1/3 if v(N) = 〈C,A,B〉

◦

4.2.2 Exchangeability

Next, we discuss how the factors p(v(d) | s) can be represented more efficiently than by
complete enumeration (as done in the example above), by exploiting exchangeability.

1221

Lüdtke & Kirste

First, note that the sequences in the domain of each factor p(v(d) | s) adhere to a certain
order. More specifically, each sub-sequence of values that is associated with the same entity
structure in s follows <V , which is due to the fact that in the serialization process, the values
corresponding to identical entity structures are ordered according to <V . For example, in
the factor p(v(N) | s), only the sequences 〈A,B,C〉, 〈B,A,C〉 and 〈C,A,B〉 have non-zero
probability: These are exactly the sequences where the second and third value (which
correspond to the entity structure 〈X: N,Y: L2〉 with multiplicity 2 in s) are ordered. We
call the set of value sequences with this property the canonical sequences of type d according

to structure s, and denote them by V
(d)
s .

The main insight that allows to represent the factors p(v(d) | s) more efficiently is to
note that any distribution over arbitrary (non-canonical) sequences p̃(v(d) | s) can be used
to define a distribution p(v(d) | s) over canonical sequences: The distribution p(v(d) | s) is
obtained by marginalizing over all sequences in p̃(v(d) | s) that are projected to the same
canonical sequence (by ordering each sub-sequence that corresponds to the same entity
structure), i.e.

p(v
(d)
∗ | s) =

∑
{v(d)|πs(v(d))=v

(d)
∗ }

p̃(v(d) | s), (7)

where πs is a function that maps sequences v(d) to their corresponding canonical sequence

v
(d)
∗ ∈ Vs by ordering the sub-sequences for each entity.

When all RVs in p̃(v(d) | s) are exchangeable, these factors can be represented much
more efficiently than by complete enumeration (Diaconis & Freedman, 1980): For instance,
an exchangeable distribution of n boolean RVs can be represented by n + 1 parameters
rather than requiring 2n parameters as in the naive representation. Furthermore, Equation
7 becomes particularly simple in this case: As all permutations of a sequence v(d) have the
same probability, it is sufficient to compute the probability p̃ of a single sequence (say, the

canonical sequence v
(d)
∗), and multiply that probability by the number of sequences that

are mapped to the canonical sequence v
(d)
∗ , i.e.

p(v
(d)
∗ | s) = αd p̃(v

(d)
∗ | s), (8)

where αd = |{v(d)|πs(v(d)) = v
(d)
∗ }|.

Finally, the factor αd is the product of the number of permutations of the sub-sequences
corresponding to each entity structure with values of type d. For example, when all val-
ues in each of the sub-sequences are unique, and the sub-sequences for each entity have
length k1, k2, . . . , kn (i.e. the entity structures in s with values of type d have multiplicities
k1, k2, . . . , kn), then αd =

∏n
i=1 ki!. Thus, Equation 8 can be calculated without explicitly

enumerating all sequences v(d).

Example 11. Consider p̃(v(N) | s) ∼ U(A,B,C), where U(A,B,C) represents a uniform
distribution of the six permutations of A, B, C (which is obviously exchangeable). Via
Equation 8, this distribution represents the distribution p(v(N) | s) shown in Example 10.
For example, the probability p(B,A,C | s) is computed as

p(B,A,C | s) = αN p̃(B,A,C | s) = 1! ∗ 2! ∗ 1/6 = 1/3. ◦

1222

Lifted Bayesian Filtering in Multiset Rewriting Systems

Here, we have assumed that the complete factor p̃ is exchangeable, which is a strong
assumption that allows an efficient representation, but not all distributions p(v | s) can be
modeled this way directly. However, this assumptions holds in many practically relevant
scenarios (for example, when some of the properties cannot be observed directly, as in
Example 10). Distributions where this assumption does not hold can be decomposed into
mixtures where all factors can be assumed to be exchangeable, as described in see Section
4.3.

Note that we do not attempt to find such a decomposition into exchangeable factors for
a given distribution p(x)6. Instead, the idea is that an abstract (lifted) representation of the
probabilistic model – in the form of p(v | s) and p(s) – is given directly by the description
of the application domain (see the next section for such a representation), and the goal is
to maintain that structure during inference7.

4.3 Lifted States

In the previous section, we showed that by making independence and exchangeability as-
sumptions for p(v | s), the distribution can be represented via a set of exchangeable factors
for each s. In the following, we present an efficient representation for the distribution p(s,v)
that makes use of this insight, and will enable us to perform multiset rewriting directly on
that representation (which is shown in Section 5).

Here, it is useful to distinguish between a distribution, and the representation of that
distribution. The representation can be a table, the set of parameters of a parametric
distribution, or sufficient statistics. For example, a uniform distribution of permutations of
of the three elements A, B and C can be represented by the string “U(A,B,C)”, the normal
distribution with µ = 0 and σ2 = 1 can be represented by the string “N (0, 1)”. We call
ρ ∈ R the representation of the distribution p. Given a representation ρ, we write pρ for
the distribution that is represented by ρ.

The idea to represent p(v | s) is to maintain a representation ρ for each factor p(v(d) | s).
As we have seen above, we can instead represent the exchangeable factors p̃(v(d) | s), from
which the factors p(v | s) can be directly computed via Equation 8. Technically, this is
realized as a map from distribution types d to representations ρ of exchangeable factors.
We call this representation the context of s.

Definition 14 (Context). A context γ ∈ Γ is a map from distribution types to represen-
tations of exchangeable distributions, i.e. Γ = D 7→ R. The distribution of canonical value
sequences that is induced by a context γ and a structure s is

p(v | s, γ) =
∏

(d,ρ)∈γ

pρ(v
(d) | s). (9)

◦

Thus, the distribution p(v | s) is represented on the parametric rather than the instances
level. This technique is known as Rao-Blackwellization, as used in the Rao-Blackwellized
particle filter (Doucet et al., 2000). Intuitively, Rao-Blackwellization leads to more accurate
estimates of the filtering distribution, because each particle represents a complete region of

6. This task is pursued in bottom-up lifted inference, e.g. Lifted Belief Propagation (Kersting et al., 2009).
7. Similar to what is done in top-down lifted inference, e.g. First-Order Variable Elimination (Poole, 2003).

1223

Lüdtke & Kirste

Figure 3: Example illustrating the sampling semantics of lifted states: Here, two samples
are drawn from l = (s, γ), each by sampling a value from each factor in γ, and inserting
into the places specified by the distribution types. In this case, both samples lead to the
same ground state x

the state space, instead of only a single instance. Here, in comparison to the conventional
Rao-Blackwellized particle filter, the partitioning of variables represented on the instance
and on the parameter level is not fixed, but can change over time (due to splitting, see
Section 5.2).

We do not attempt to decompose the distribution over structures s any further, and
simply represent p(S) as a categorical distribution. Thus, overall, we need to maintain a
categorical distribution p(S) of structures, and for each structure, a context γ that represents
p(V | s). This is equivalent to directly maintaining a categorical distribution over pairs (s, γ).

Definition 15 (Lifted State). We call a pair l = (s, γ) ∈ S × Γ a lifted state. ◦

Intuitively, a lifted state represents a distribution over ground states that all have the
structure of s, and whose values follow the distribution induced by γ. That is, the distri-
bution of ground states, given a lifted state l = (s, γ) is

p(x | s, γ) = 1(sx = s) p(v | s, γ), (10)

where φ(x) = (sx,v). This distribution can also be described by the following sampling
procedure: Draw a sample of each factor in γ, and insert the values into s at the positions
indicated by the distribution types (see Figure 3 for an example).

Example 12. Consider the lifted state l = (s, γ) with

s = J 1〈N: N,L: L1〉, 2〈N: N,L: L2〉 K and

γ = 〈N: U(A,B,C),L1: δ1,L2: δ〈2,2〉〉.

This lifted state represents exactly the distribution of ground states shown in Example 10,
which can be seen via the sampling semantics (see Figure 3). The probability of each ground
state can also be computed in closed form via Equation 10. For example, the probability of
the ground state

x = J 1〈N: AN,L: 1L1〉, 1〈N: BN,L: 2L2〉, 1〈N: CN,L: 2L2〉 K

1224

Lifted Bayesian Filtering in Multiset Rewriting Systems

in l is computed as follows: Applying the decomposition function to x leads to φ(x) = (s,v)
with

s = J 1〈N: N,L: L1〉, 2〈N: N,L: L2〉 K
v(L1) = 1, v(L2) = 〈2, 2〉, v(N) = 〈A,B,C〉.

The context γ represents the distributions p̃(v(L1) | s) ∼ δ1, p̃(v(L2) | s) ∼ δ〈2,2〉 and

p̃(v(N) | s) ∼ U(A,B,C). Furthermore, α(1) = 1, α(2, 2) = 1 and α(A,B,C) = 2. Thus,
according to Equation 10, the probability of x in l is computed as

p(x | s, γ) = α(1) p̃(1)α(2, 2) p̃(2, 2)α(A,B,C) p̃(A,B,C)

= 1 ∗ 1 ∗ 1 ∗ 1 ∗ 2 ∗ 1/6 = 1/3. ◦

In the following, for readability we omit delta distributions and the corresponding types,
and instead write the corresponding value directly into the structure. This way, the lifted
state l in Example 12 above can by written as

s = J 2〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K
γ = 〈N: U(A,B,C)〉

Finally, a distribution of lifted states p(L) defines a distribution of ground states via

p(x) =
∑

l=(s,γ)

p(l) p(x | s, γ) (11)

Note that in a distribution over lifted states l = (s, γ), the structures s need not be distinct.
This way, the case where the value distribution is a mixture of multiple components can be
represented.

To summarize the results so far, we showed how to efficiently represent distributions
over structured multisets, by exploiting exchangeability. Technically, this was achieved by
decomposing multisets into a structure and a sequence of values, such that the distribution
over values factorizes into exchangeable factors. In the following, we show how to use these
constructs for efficient BF, by applying multiset rewriting directly to the structure part of
the lifted states, and manipulating the value distributions only when necessary.

5. Bayesian Filtering for Lifted States

In this section, we present Lifted Marginal Filtering (LiMa), a BF algorithm that works
directly on the lifted state representation. The system dynamics is defined in terms of a
PMPMRS, as introduced in Sections 2 and 3. The key insight of this section is that the
prediction and update steps can be performed directly on lifted states, which is equivalent
to performing the same transformation to all ground states that are represented by the
lifted state (described in Section 5.1).

Of course, this is not directly possible when different ground states that are represented
by a lifted state allow different actions to be applied, or when they need to be weighted by
different observation likelihoods. In this case, splitting (introduced in Section 5.2) needs to
be applied first, which transforms a lifted state into an equivalent set of lifted states that
each permit uniform application of actions or observations.

1225

Lüdtke & Kirste

5.1 Applying Constraints and Effects to Lifted States

A fundamental task for multiset rewriting (and for performing the update using the obser-
vation model described in Section 3.3) is to test whether a constraint c is satisfied for an
entity e, i.e. whether e |= c. The goal here is to test constraints directly for entity structures,
the elements contained in the structure s of a lifted state l = (s, γ).

To formalize this, we need the concept of a region of a lifted state l, which is the set of
all ground states that are assigned a non-zero probability by l.

Definition 16 (Region). Let l = (s, γ) be a lifted state and e be an entity structure in s.
We call the set

region(l) = {x | p(x | s, γ) > 0}

the region of l, and the set

regionl(e) = {ex | e = se(ex), ex ∈ x, x ∈ region(l)}

the region of e regarding l. ◦

We say that an entity structure e satisfies a constraint c when all groundings of e satisfy
c, i.e. when ∀ex ∈ regionl(e) : ex |= c, and does not satisfy c when none of the groundings
satisfy c, i.e. when ∀ex ∈ regionl(e) : ex 6|= c. The constraint is indeterminate for e when it
is satisfied for some groundings of e and not satisfied for other groundings of e. This latter
case is handled by splitting (Section 5.2).

The algorithm needs to be able to test this property without generating all ground
entities first. When only considering a simple constraint language (that only allows testing
whether a property of an entity is equal to a given constant value, and conjunctions of those
tests), this task is trivial, as illustrated in the following example.

Example 13. Consider the lifted state l = (s, γ) where

s = J 2〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ = 〈N: U(A,B,C)〉

and the constraints c1(e) = e(Y) == 1 and c2(e) = e(N) == A. The constraint c1 is
satisfied for 〈X: N,Y: 1〉 and not satisfied for 〈X: N,Y: 2〉. The constraint c2 is indetermi-
nate for each of the entities in l, as it is satisfied for only some of the groundings of each
entity. ◦

To allow multiset rewriting on lifted states, the algorithm also needs to be able to apply
an effect function directly to a lifted state l, such that the result is equivalent to applying
the effect to all groundings x ∈ region(l). More specifically, the resulting successor state l′

needs to describe the same ground distribution as the ground distribution resulting from
applying the effect to all groundings of l.

However, for the simple effect functions introduced in Section 2.2 (replace a value of an
entity, add a new property-value-pair to an entity, add a new entity), this is also trivial:
As all manipulated properties are constants, manipulations of a lifted state are directly
equivalent to manipulations of its groundings.

1226

Lifted Bayesian Filtering in Multiset Rewriting Systems

Example 14. Consider the effect f = e(Y)← 2, and suppose that the the effect is applied
to the entity structure e = 〈X: N,Y: 1〉 in the lifted state l = (s, γ) where

s = J 2〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ = 〈N: U(A,B,C)〉.

The successor state is l′ = (s′, γ) with

s′ = J 1〈X: N,Y: 1〉, 2〈X: N,Y: 2〉 K. ◦

Thus, constraints can be tested and effects can be applied directly on lifted states,
and subsequently, BF can be performed directly on the lifted representation, using the
PMPMRS-based transition model (Section 2.4) and the constraint-based observation model
(Section 3.3). Specifically, the Marginal Filtering algorithm (Section 3.4) can be applied.
The resulting Lifted Marginal Filtering (LiMa) algorithm is presented in more detail in
Section 5.3.

5.2 Splitting

Before we can describe the overall Lifted Marginal Filtering algorithm, we need to discuss
a problem that can occur when testing constraints on lifted states: A constraint can be
satisfied for some groundings of an entity structure, and not satisfied for other groundings (as
illustrated in Example 13). More generally, the ground states x ∈ region(l) form partitions
based on how many entities in x satisfy c. We need to represent each of those regions by a
separate lifted state, because a different set of AMCAs can be applicable for each partition
(and to compute the lifted successor states of l, it is necessary that a fixed set of AMCAs
is applicable for all groundings of l).

We want to compute lifted states that describe these partitions of l without requiring
a complete enumeration of all ground states first. This is done by manipulating l by an
operation called splitting. A split is an operation that decomposes a lifted state l = (s, γ)
into a set L = {(li, wi)}. We call a split correct, when (i) L describes the same distribution
of ground states as l, i.e. ∑

i

wi p(x | si, γi) = p(x | s, γ), (12)

and (ii) for each li ∈ L, all ground states x ∈ region(li) lie in the same partition regarding
c8, i.e. ∀li∀x ∈ region(li) : x |= #=i

c .

Example 15. Consider the lifted state l = (s, γ) with

s = J 2〈X: N,Y: 1〉, 2〈X: N,Y: 2〉 K, γ = 〈N: U(3A, 2B)〉

and the constraint c(e) = (e(X) == A) ∧ (e(Y) == 1). This constraint is indeterminate
in l, as it is satisfied zero times, once, or twice for different groundings of l. The splitting

8. Note that for counting constraints #=n
c , as used in the observation model, it would in principle be

sufficient to create two partitions: One where the counting constraint is satisfied (i.e. where exactly n
entities satisfy c), and one where the counting constraint is not satisfied (i.e. where c is satisfied for a
different number m 6= n of entities). However, the latter case can often not be described by a single
lifted state (as shown below), and instead, partitions for each n need to be created anyways.

1227

Lüdtke & Kirste

algorithm (which will be described in detail below) will create three lifted states l1 = (s1, γ1),
l2 = (s2, γ2) and l3 = (s3, γ3) that describe exactly those partitions. These split results are
identical to l, except that instead of entity structures 〈X: N,Y: 1〉, they contain groundings
of that entity structure (i.e. where e(X) = A or e(X) = B):

s1 = J 2〈X: A,Y: 1〉, 2〈X: N,Y: 1〉 K, γ1 = 〈N: U(1A, 2B)〉,
s2 = J 1〈X: A,Y: 1〉, 1〈X: B,Y: 1〉, 2〈X: N,Y: 2〉 K, γ2 = 〈N: U(2A, 1B)〉
s3 = J 2〈X: B,Y: 1〉, 2〈X: N,Y: 2〉 K, γ3 = 〈N: U(3A)〉

When the weights w1 = 0.3, w2 = 0.6 and w3 = 0.1 are assigned to the states, they describe
exactly the same distribution over ground states as l (which can be seen by computing the
probability of each ground state via Equation 12). Furthermore, the constraint c is now
satisfied for exactly two of the entities in l1, for exactly one of the entities in l2 and for none
of the entities in l3. ◦

Next, we show how such splits can be computed systematically. We start with a general,
high-level description of the splitting strategy, and afterwards show how this strategy is
instantiated for different parametric forms of the factor that is split.

5.2.1 General Splitting Strategy

In the following, we discuss a general strategy for splitting a lifted state l = (s, γ). Let c
be a constraint of the form q == v∗, where q is a property name and v∗ is a value9. Let e
with e(q) = d be the entity structure for which the constraint c needs to be tested, and let
γ(d) = ρ be the distribution representation that needs to be split. For splitting, we focus
on the factor pρ(V

(d)) that is represented by ρ. To keep the notation uncluttered, in the
following we omit the subscripts and superscripts and write p(V) for that factor.

The general strategy for splitting is to partition the possible values of the random
variable V into subsets Vi, . . . ,Vn. For each subset Vi, we create a new factor pi(V) which
has non-zero support only for the values Vi. The probability of an assignment pi(V=v) is
the re-normalized probability of the assignment in the original factor p(V=v):

pi(v) =

{ p(v)∑
v′∈Vi

p(v′) if v ∈ Vi
0 otherwise

(13)

The weights of the split results are set to wi =
∑

v∈Vi p(v). From these definitions, it
directly follows that

p(V) =
∑
i

wi pi(V). (14)

For each factor pi(V), the splitting algorithm creates a split result li, which is identical to
l except that the representation ρ of p(V) is replaced by a representation of pi(V). Due
to Equation 14 and the fact that all other factors of l and all spit results li are identical,
this splitting procedure satisfies Equation 12 above, i.e. correctness requirement (i). To
satisfy correctness requirement (ii) – the constraint c must be satisfied for a fixed number

9. Conjunctions of those constraints can be handled consecutively by multiple splits.

1228

Lifted Bayesian Filtering in Multiset Rewriting Systems

Algorithm 2 In lifted state l with weight p, split entity e on constraint q == v∗, distributed
according to multinomial distribution ρ.

1: function split-multinomial(l=(s, γ), p, q, v∗, e, ρ)
2: k ← s#e; P ′ ← ∅; d← e(q)
3: Create new distribution type dv∗

4: ρ′ ← ρ without v∗ . Multinomial with parameters p1
1−pv∗

, . . . , pm
1−pv∗

, see Equation 18

5: γ′ ← γ ⊕ 〈d: ρ′, dv∗ : δv∗〉 . Add changed representations to context
6: e′ ← e⊕ 〈q: dv∗〉 . New entity with constant value v∗ at q
7: for i = 0, . . . , k do
8: s′ ← s∪- J (k − i) e K] J i e′ K . New structure where i entities have value v∗

9: p′ ←
(
k
i

)
piv∗ (1− pv∗)k−i p . Probability of l′, see Equation 17

10: P ′ ← P ′ ∪ {((s′, γ′), p′)} . Collect all split results

11: return P ′

of entities in all groundings of li – the subsets Vi need to be chosen appropriately. When
this is the case, the general splitting strategy is correct.

In the following, we show how this general strategy is instantiated for different para-
metric forms of the factor p(V). Specifically, we discuss how the subsets Vi can be chosen
so that they satisfy correctness requirement (ii).

In the experiments (Section 6), we will mostly be concerned with the case where the
factors p(V) are uniform distributions over permutations (which arises when entities have
unique identifies, like names). Thus, we will describe splitting procedures for this case,
and the related, but more general cases of multivariate hypergeometric distributions and
multinomial distributions (i.e. urns with and without replacement).

5.2.2 Multinomial Distribution

We first consider sampling with replacement from an urn, which has m possible values
v1, . . . , vm, and probabilities p1, . . . , pm of drawing each of the values. The probability of
drawing k samples from the urn, where kj samples have value vj and

∑m
j=1 kj = k is

described by the multinomial distribution:

pρ(k1, . . . , km) =
k!∏m

n=1 kn!

m∏
n=1

pknn . (15)

We start by giving an example of the split procedure, and describe the general algorithm
afterwards.

Example 16. Consider the lifted state10

l = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: M(1/2A, 1/3B, 1/6C)〉.

We want to split l based on the constraint c(e) = (e(N) == A) for the entity structure
〈N: N,L: X〉. The split procedure generates four split results – one for each number of

10. We use M to indicate a multinomial distribution, i.e. an urn with replacement.

1229

Lüdtke & Kirste

times the value A can be sampled from the multinomial distribution. More precisely, split
result li contains i − 1 times the entity structure 〈N: A,L: X〉 (which has taken value A),
and k − i− 1 times the entity structure 〈N: N1,L: X〉 (which has not taken the value A):

l1 = (J 3〈N: N1,L: X〉, 2〈N: N2,L: Y 〉 K 〈N1: M(2/3B, 1/3C),N2: M(1/2A, 1/3B, 1/6C)〉
l2 = (J 1〈N: A,L: X〉, 2〈N: N1,L: X〉, 2〈N: N2,L: Y 〉 K, 〈N1: M(2/3B, 1/3C),N2: M(1/2A, 1/3B, 1/6C)〉
l3 = (J 2〈N: A,L: X〉, 1〈N: N1,L: X〉, 2〈N: N2,L: Y 〉 K, 〈N1: M(2/3B, 1/3C),N2: M(1/2A, 1/3B, 1/6C)〉
l4 = (J 3〈N: A,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: M(1/2A, 1/3B, 1/6C)〉

The weight of split result li is defined by the (marginal) probability of sampling the value
A i − 1 times from the multinomial distribution (see Equation 17 below). For example,
w3 =

(
3
2

)
(1

2)2 (1− 1
2)1 = 0.375. ◦

Next, we describe the splitting algorithm more formally. Here, we only consider equality
constraints, which test whether a property q of an entity structure e ∈ dom(s) has a specific
value vj . We assume that q is distributed according to a multinomial distribution.

In this case, we generate k + 1 split results, where k = s#e is the multiplicity of e in
s. The set Vi+1 that is used to define split results contains all assignments where the value
vj has been sampled i times from the urn, i.e. where Kj = i. That is, in split result li+1, i
entity structures have value vj , and k− i entity structures have values distributed according
to the “remaining” urn without vj . To see how the parameters of that urn, and the weight
of li need to be chosen so that the split is correct, we rewrite the multinomial distribution
as

p(K1, . . . ,Kj=i, . . . ,Kn) = p(Kj=i) p(K1, . . . ,Kj−1,Kj+1, . . . ,Kn |Kj=i) (16)

From this equation, it is easy to see that this splitting strategy is an instance of the general
strategy defined above: The conditional distribution p(K1, . . . ,Kj−1,Kj+1, . . . ,Kn |Kj=i)
has the property of pi shown in Equation 13, i.e. it is only non-zero for assignments in Vi+1.
The marginal distribution p(Kj=i) can be evaluated directly and is used as the weight wi
of li. It is easy to show (Siegrist, 2020) that such a marginal distribution of a multinomial
is a binomial distribution with parameters k and pj , i.e.

p(Kj=i) =

(
k

i

)
pij (1− pj)k−i. (17)

The conditional multinomial distribution p(K1, . . . ,Kj−1,Kj+1, . . . ,Km |Kj=i) can also be
represented in closed form: It is again a multinomial distribution, with parameters k − i
and p1

1−pj , . . . ,
pm

1−pj (Siegrist, 2020):

p(K1, . . . ,Kj−1,Kj+1, . . . ,Km |Kj=i) =
(k − i)!∏m
n=1 kn!

m∏
n=1

(
pn

1− pj

)kn
(18)

Intuitively, this distribution represents the ”remaining” draws from the urn, after knowing
that value vj has been drawn i times. This multinomial distribution is encoded in split
result li. As this strategy is an instance of the general splitting strategy, it is correct, i.e.
the weighted split results constructed this way describe the same distribution over ground
states as the original lifted state l. The splitting algorithm which constructs these split
results is shown in Algorithm 2.

1230

Lifted Bayesian Filtering in Multiset Rewriting Systems

Algorithm 3 In lifted state l with weight p, split entity e on constraint q == v∗, distributed
according to multivariate hypergeometric distribution ρ.

1: function split-hypergeometric(l=(s, γ), p, q, e, ρ = (vj , nj)
m
j=1)

2: k ← s#e; P ′ ← ∅; d← e(q)
3: for each composition (k1, . . . , km) ∈ C(ρ, k) do
4: s′ ← s∪- J k e K
5: ρ′ ← ρ without (k1, . . . , km)
6: γ′ ← γ ⊕ 〈d: ρ′〉 . Add changed representation to context
7: for j = 1, . . . ,m where kj > 0 do . Create state with entities for each kj > 0
8: Create new distribution type dvj
9: e′ ← e⊕ 〈q: dvj 〉 . New entity with constant value vj at q

10: s′ ← s′] J kj e′ K . New structure where kj entities have value vj
11: γ′ ← γ′ ⊕ 〈dvj : δvj 〉 . Add representation of constant

12: p′ ← pρ(k1, . . . , km) p . Probability of l′, see Equation 19
13: P ′ ← P ′ ∪ {((s′, γ′), p′)} . Collect all split results

14: return P ′

5.2.3 Hypergeometric Distribution

Next, we consider urns without replacement. The multivariate hypergeometric distribution
with representation ρ = (vj , nj)

m
j=1 describes sampling balls without replacement from an

urn which has nj balls of value vj . The probability of drawing exactly kj balls of each value
vj (with k =

∑
j kj and n =

∑
j nj) is:

pρ(k1, . . . , km) =

∏m
j=1

(nj

kj

)(
n
k

) (19)

Here, we cannot apply the same strategy as for multinomial distributions. The reason
is that drawing specific values v1, . . . , vk for e leads to changes in the remaining urn (the
values v1, . . . , vk are removed from the urn), which also affects other entities in l = (s, γ)
that have values distributed according to ρ.

Instead, we create a split result for each possible combination of values that can be
assigned to the k = s#e entities e. Note that in this case, it does not matter which
specific value v∗ we are interested in, was we are considering all value assignments anyway.
However, the value v∗ is relevant for a common special case, as outlined below. Again, we
only consider equality constraints c that test whether a property q of an entity e ∈ dom(s)
has a specific value v∗. We assume that q is distributed according to a hypergeometric
distribution, i.e. e(q) = d, and γ(d) = ρ = (vj , nj)

m
j=1.

More concretely, splitting is performed as follows: Let C(ρ, k) be the set of compositions
of k of size m (where ρ = (vj , nj)

m
j=1), i.e. a way of writing k as the sum of m integers

k1 + · · · + km, with the additional constraint that kj is at most nj . Each composition
(k1, . . . , km) ∈ C(ρ, k) corresponds to an assignment of pρ, where kj balls of value vj are
drawn. The subsets Vi which are used to define the split results (see Section 5.2.1) each
contain a single assignment, i.e. a single composition from C(ρ, k). For each subset Vi (i.e.
for each composition (k1, . . . , km) ∈ C(ρ, k)), a lifted state li is constructed, where the

1231

Lüdtke & Kirste

entity structures e are removed, and one entity structure is inserted for each kj > 0, with
multiplicity kj , that is identical to e, except that q is distributed according to δvj . The
weight wi of li is given by the probability of that assignment, i.e. wi = pρ(k1, . . . , km) (see
Equation 19). The splitting algorithm is shown in Algorithm 3.

Example 17. Consider the lifted state

l = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B, 1C)〉.

We want to split l based on the constraint c(e) = (e(N) == A) for the entity structure
〈N: N,L: X〉. Applying the procedure defined above results in six split results, one for each
possible assignment of values to the entity structure e.

l1 = (J 3〈N: A,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(2B, 1C)〉
l2 = (J 2〈N: A,L: X〉, 1〈N: B,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(1A, 1B, 1C)〉
l3 = (J 2〈N: A,L: X〉, 1〈N: C,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(1A, 2B)〉
l4 = (J 1〈N: A,L: X〉, 2〈N: B,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(2A, 1C)〉
l5 = (J 1〈N: A,L: X〉, 1〈N: B,L: X〉, 1〈N: C,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(2A, 1B)〉
l6 = (J 2〈N: B,L: X〉, 1〈N: C,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A)〉

The weight of each split component is defined by Equation 19. For example, w2 =
(32) (21)

(63)
=

0.3. Note that the entity structures 〈N: N,L: Y 〉 are not manipulated by the splitting
procedure (although the distribution of their values is of course manipulated). ◦

In general, this procedure quickly leads to a combinatorial explosion in the number of
split components, as |C(ρ, k)| can be very large. However, there are two common special
cases where the number of split components is low. A very simple special case is n = k,
i.e. all values of the distribution are assigned to the entities. In this case, only a single
composition exists, and thus there is only a single split component. Another special case is
nv∗ = 1, i.e. the value we are interested in exists exactly once in the urn, which is discussed
in the following section.

5.2.4 Hypergeometric Distribution with Unique Values

Here, we discuss splitting of hypergeometric distributions for the special case where the
value v∗ we are interested in exists exactly once in the urn, i.e. nv∗ = 1. This special case
arises for example when the values represent unique identifiers of the entities, like names.
In principle, we can proceed as outlined above, but this results in an unnecessarily large
number of split components. Ideally, would only need to generate two split components: (a)
Constraint c can be satisfied exactly once by an entity structure e; (b) Constraint c cannot
be satisfied by any entity structure e. Other cases (where c can be satisfied more than
once) do not exist, as nv∗ = 1. In general, however, case (b) cannot be captured by a single
lifted state, as the resulting distribution is not exchangeable, but we can decompose this
case further: Suppose there are other entity structures e′ with a property q that reference
ρ. When e does not have value v∗, either one of the other entity structures e must take

1232

Lifted Bayesian Filtering in Multiset Rewriting Systems

Algorithm 4 In lifted state l with weight p, split entity e on constraint q == v∗, distributed
according to multivariate hypergeometric distribution ρ where nv∗ = 1.

1: function split-hypergeometric-unique(l=(s, γ), p, q, e, ρ = (vj , nj)
m
j=1)

2: k ← s#e; P ′ ← ∅; d← e(q);n←
∑m

j=1 nj
3: Create new distribution type dv∗

4: ρ′ ← ρ without v∗

5: γ′ ← γ ⊕ 〈d: ρ′, dv∗ : δv∗〉 . Add changed representation to context
6: E ← {e ∈ dom(s) | 〈q: d〉 ∈ e} . Entities that reference ρ via d, i.e. that can take v∗

7: for each e′ ∈ E do . Create one state for each e′ that can take v∗

8: e′′ ← e′ ⊕ 〈q: dv∗〉 . New entity with constant value v∗ at q
9: s′ ← s∪- J 1e′ K⊕ J 1e′′ K . New structure where one entity has value v∗

10: p′ ← s#e′

n p . Probability of l′, see Equation 20
11: P ′ ← P ′ ∪ {((s′, γ′), p′)} . Collect all split results

12: if n >
∑

e′∈E s#e
′ then

13: p′ ← 1−
∑

e′∈E s#e
′

n
14: P ′ ← P ′ ∪ {((s, γ′), p′)} . Collect all split results

15: return P ′

value v∗, or no entity structure takes value v∗ (if there are fewer entities than the number
m of values in the urn).

Thus, the split can be performed as follows: For each entity structure ei ∈ dom(s) that
has a property q′ that is distributed according to ρ, generate a split component li, where a
single instance of ei is removed. Then, insert an entity with multiplicity of 1 that is identical
to ei, except that q is distributed according to δv∗ . Let ki = s#ei be the multiplicity of ei in
l = (s, γ), and n be the total number of elements in the urn. The weight of split component
li, i.e. the probability that v∗ is taken by any of the entities ei, is the hypergeometric
distribution of choosing v∗ once, and choosing ki − 1 other values for ei:

wi =

(
1
1

) (
n−1
ki−1

)(
n
ki

) =
ki
n

(20)

Finally, if m is larger than the total number of all entity structures ei in l, generate an
additional split component, where v∗ is removed from the urn (i.e. v∗ is not taken by
any entity). The weight of this split component is the remaining probability mass, i.e.

1−
∑

e′ s#e
′

n . The algorithm is shown in Algorithm 4.

When proceeding like this, the number of split components is identical to the number
of different entity structures ei in l that have some property distributed according to ρ. We
assume that in many cases, there are few such entity structures, as opposed to the large
number of combinations of values of length s#e that need to be considered in the general
case. Note that in the case where the values represent unique identifiers of the entities,
n1 = · · · = nm = 1, i.e. we can always use this splitting procedure instead of the general
case. The following example illustrates this splitting procedure.

1233

Lüdtke & Kirste

Algorithm 5 Lifted Marginal Filtering.

• Input: Actions A, observation model o, prior distribution p(X0) represented as P0 =

{(l(i)0 , p
(i)
0)}Ni=1, sequence of observations y1, . . . , yT

• For t = 1, . . . , T − 1

1. Prediction

– Split Pt on each action precondition (see Algorithms 2, 3 and 4)

– Calculate prediction (see Algorithm 1): Pt+1|t = predict(Pt, A)

2. Update

– Split Pt+1|t on observation model constraints

– Update weights of each (l
(i)
t+1|t, p

(i)
t+1|t) ∈ Pt+1|t: p

(i)
t+1 = p(yt | l(i)t+1|t) p

(i)
t+1|t

– Let P ∗t+1 = {(l(i)t+1|t, p
(i)
t+1)}Mi=1

3. Prune Pt+1, e.g. by keeping N states with highest probability (or more elaborate
pruning strategy, see Fearnhead and Clifford (2003))

Example 18. Consider the lifted state

l = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B, 1C)〉.

We want to split l, based on the constraint c(e) = (e(N) == C) for the entity structure
〈N: N,L: X〉. Note that nC = 1. Applying the split variant outlined above leads to three
split components (one for each entity structure that references N, and one for the case
where C is not taken by any of the entities):

l1 = (J 1〈N: C,L: X〉, 2〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B)〉
l2 = (J 3〈N: C,L: X〉, 1〈N: C,L: Y 〉, 1〈N: N,L: Y 〉 K, 〈N: U(3A, 2B)〉
l3 = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B)〉

The probability of each split component is defined by Equation 20, i.e. w1 = 3/6, w2 = 2/6
and w3 = 1/6. ◦

5.3 The Lifted Marginal Filtering Algorithm

We conclude this section with summarizing the overall Lifted Marginal Filtering (LiMa)
algorithm. LiMa (see Algorithm 5) performs marginal filtering (using the MRS-based tran-
sition model and constraint-based observation model, see Section 3) directly on the lifted
representation, performing splitting operations when necessary. Specifically, splitting can
be required for both the prediction step (to make sure that the preconditions of all actions
are determinate) and the update step (for the constraints of the observation model).

The LiMa algorithm directly lends itself to an approximate version: Just as in the
(ground) marginal filter, the number of states can be limited by a pruning operation, e.g.

1234

Lifted Bayesian Filtering in Multiset Rewriting Systems

1 s(), 1s(), 1 lm()

false

true

1

2 s(), 1 s()R

R G
B

Split on
L==M && N=Red

1/3

R

G
B

2/3

R

G
B

1/6

R

G

B

1/3

R

G
B

1/6

R

G
B

2 s(), 1 lm()R

predictionp(lt-1|y1:t-1) p(lt-1|y1:t-1) p(lt|y1:t-1) update

1/6

R

G
B

2 s(), 1 s()R

R

1/6

R

G
B

2 s(), 1 mr()R

1 s(), 1mr(), 1 lm()R

0.04

R

G

B

0.08

R

G
B

0.04

R

G
B

p(lt|y1:t-1)

0.42

R

G
B

0.42

R

G
B

* 0.99

* 0.99

* 0.1

* 0.1

* 0.1

Figure 4: The split-prediction-update cycle of LiMa for the scenario described in Example

19. Here,
R G
B denotes an urn without replacement containing the three elements R, G and

B.

by keeping only the N most likely states at each time step (see Fearnhead & Clifford, 2003,
for a discussion of more elaborate pruning strategies).

Example 19. We consider a variant of the office scenario (Example 6), where agents are
described by a location (L) and a name (N). Agents can be at either of three positions (L,
M, R) and three actions can be performed: Staying at the current position (s), moving
from the left to the middle position (lm), and moving from the middle to the right position
(mr). All three actions have identical weight. The first two actions can be performed by
any agent (that is at the corresponding position), while the latter action (mr) can only by
performed by agent Red (only this agent is authorized to access the right location).

The right room is observed by a presence sensor that indicates whether at least one
agent is at the corresponding location. The sensor has a false positive rate of 0.1 and a false
negative rate of 0.01.

Suppose that the prior state distribution p(Lt−1 | y1:t−1) consists of only a single lifted
state l = (s, γ) (i.e. p(Lt−1 = l | y1:t−1) = 1) with

s = J 2〈N: N,L: L〉, 1〈N: N,L: M〉 K, γ = 〈N: U(R,G,B)〉.

The precondition c(e) = (e(L) == M) ∧ (e(N) == R) – the agent must have location L
and name R – of the action mr is indeterminate for the entity e = 〈N: N,L: M〉. Thus, a
split of e on c is performed, resulting in two lifted states l1 = (s1, γ1) and l2 = (s2, γ2) with

s1 = J 2〈X: N,Y: 1〉, 1〈X: A,Y: 2〉 K, γ1 = 〈N: U(B,C)〉,
s2 = J 1〈X: A,Y: 1〉, 1〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ2 = 〈N: U(B,C)〉

1235

Lüdtke & Kirste

and weights w1 = 1/3, w2 = 2/3. In l1, two compound actions are applicable, and four
compound actions are applicable in l2. Applying the compound actions leads to five states
with non-zero weight. In general, it could be necessary to split on the observation model
constraints at this point. However, the preconditions of the presence sensor observations
do not require a split. Thus, we can directly weight each of the lifted states lt by the
observation likelihood p(Yt = 1 | lt). See Figure 4 for an illustration of this example. ◦

Complexity of Lifted Filtering Finally, we discuss the time and space complexity of
the LiMa algorithm. First, it is easy to see that the representation complexity of the lifted
representation (i.e. the number of states that need to be maintained explicitly) is never larger
than the representation complexity of the original, ground representation: In the worst case,
each lifted state represents exactly one ground state, so that both representations coincide.

On the other hand, the representation complexity of the lifted representation can be
substantially smaller than the original, ground state representation.

Example 20. Consider a lifted state where the context contains only delta distributions,
except for a single factor, which represents a uniform distribution over permutations of n
values. This lifted state represents n! ground states, i.e. the lifted representation is smaller
than the ground representation by a factor of n!. As a specific example, the lifted state
l = (s, γ) with

s = J 1〈X: N,Y: 1〉, 1〈X: N,Y: 2〉, 1〈X: N,Y: 3〉 K, γ1 = 〈N: U(A,B,C)〉

represents a distribution over 3! = 6 ground states. ◦

More generally, the reduction in representation complexity that is achieved by the lifted
representation is proportional to the number of ground states that is represented by each
lifted state (i.e. the cardinality of the region of the lifted state). An upper bound on this
number can be given as follows: For a factor ρ, let |ρ| denote the support of ρ, i.e. the
number of distinct value sequences can be drawn from the factor. The number of ground
states |region(l)| represented by a lifted state l can then be up to11

|region(l)| ≤
∏

(d,ρ)∈γ

|ρ|

As the support of ρ is typically exponential in the number of RVs of ρ (for example, a
multinomial distribution of n values from which we draw m times has a support of nm,
and a hypergeometric distribution over n unique values has a support of n!), the represen-
tation complexity of the lifted representation can be substantially smaller than the ground
representation.

Runtime of the LiMa algorithm is linear in the number of states, as compound actions
need to be computed individually for each state during the prediction step. Therefore, the
results for representation complexity directly transfer to results for algorithm runtime: The
time complexity of LiMa is smaller by a factor of |region(l)| compared to ground filtering.

11. This upper bound ignores the fact that multiple value sequences from ρ can be mapped to the same
canonical sequence (and thus the same ground state). The bound holds exactly when each value sequences
corresponds to exactly one canonical value sequence, as in Example 20.

1236

Lifted Bayesian Filtering in Multiset Rewriting Systems

Note that this does not mean that the complexity of lifted filtering grows only polynomi-
ally with respect to the number of entities in the state. Instead, lifted inference complexity
can still grow exponentially with the number of entities, when there is at least one property
that is represented explicitly (i.e. via delta distributions). This behavior can, for exam-
ple, be observed in the experimental evaluation of the tracking scenario (Section 6.2): In
that scenario, complexity of lifted inference is smaller by a factor of n! (where n is the
number of agents) than ground inference, because the distribution over the agents’ names
is represented efficiently, but complexity of lifted inference still grows exponentially with
the number of agents, because of the exponential number of explicitly represented joint
assignments of the location property.

Furthermore, splitting increases the representation complexity. In the worst case, re-
peated splitting (of all properties) results in the degeneration of all distribution representa-
tions to delta distributions (which have a support of 1), so that representation complexity
and runtime complexity of lifted and ground filtering coincide.

In summary, space and time complexity of lifted filtering can be substantially smaller
than complexity of ground filtering, by a factor that is proportional to the support of the
distributions in the context (which is typically exponential for distributions other than delta
distributions). However, when repeated splitting of all properties is required, the complexity
of lifted filtering can degenerate to the complexity of ground filtering. Next, we investigate
how these theoretical properties of LiMa manifest empirically.

6. Experimental Evaluation

In this section, we empirically investigate whether LiMa can indeed perform more efficient
inference due to the lifted state representation. Specifically,the goal of the experiments was
to assess the benefit of LiMa for realistic scenarios (consisting of actual activity sequences
of human protagonists, and real sensor data), instead of only running simulations. The
reasoning is that in the ideal case, LiMa can obviously achieve a factorial reduction in
complexity and thus we investigate here whether this increased efficiency also manifests in
actual, realistic applications – that might contain a substantial amount of symmetry breaks,
i.e. require splitting. We will answer the following research questions:

Q1 (Representation Size) Does the lifted state representation lead to a significantly
smaller cardinality of the filtering distribution (i.e. can it achieve a higher represen-
tation efficiency) than a ground state representation?

Q2 (Approximation Quality) Can LiMa achieve a more accurate state estimation, when
introducing approximations by limiting the maximum number of states that represent
the filtering distribution (i.e. when performing pruning)?

6.1 Evaluation Scenarios

To evaluate these research questions, we modeled three application scenarios in LiMa. Table
1 provides an overview of the scenarios. In the following, each scenario is described briefly,
and intuition on the chosen modeling approach is provided.

1237

Lüdtke & Kirste

Scenario # Actions # Entities # Runs Length Data

Office 15 1-6 360 51.5 Simulated
Tracking 40 1-7 35 473.4 Real
Kitchen 72 16 7 92.6 Real

Table 1: Evaluation scenarios.

(a) Office scenario. Grey rectangles de-
note floor pressure sensors.

(b) Kitchen scenario. Reprinted from Krüger et al.
(2014b).

(c) Tracking scenario. Dots denote locations of presence sensors. Reprinted from Lüdtke
et al. (2017).

Figure 5: Evaluation scenarios

Office This simulated scenario (originally presented by Schröder et al., 2017, dataset avail-
able at Schröder et al., 2016) consists of one to six persons that act in an office environment
consisting of six locations (see Figure 5a). The agents can move between locations, carry
objects (coffee capsules, cups, water, paper) and perform certain activities, like brewing
coffee or printing documents. In this scenario, only a single agent is acting per time step,
i.e. the scenario does not have a compound action semantics. The activities have a causal
structure, e.g. to make a coffee, the coffee machine must have been filled with a coffee cap-
sule. Each location is equipped with a presence sensor (e.g. a floor pressure sensor), that

1238

Lifted Bayesian Filtering in Multiset Rewriting Systems

indicates whether at least one person is present at that location. The sensor data is always
correct, i.e. there are no false positives or false negatives.

The scenario is modeled in LiMa such that each agent and coffee capsule is represented
by a separate entity. The entities corresponding to agents have properties describing their
name, location and whether they hold an object. As the sensor data do not allow to
distinguish which person (and coffee capsule) is at each location, the identities of the agents
and capsules are modeled by an urn without replacement.

Tracking This scenario (originally presented by Krüger et al., 2014a, dataset available at
Kasparick & Krüger, 2013) is also concerned with tracking the locations of agents (but no
other context information, like in the previous scenarios). Here, 14 locations are available
(see Figure 5c). The data for this scenario is based on real, observed motion trajectories.
Trajectories for one to seven persons have been recorded, that are moving simultaneously
in the environment. For each number of persons, five trajectories have been obtained, i.e.
there is a total of 35 data sets.

For each recorded trajectory, sensor observations of presence sensors located at each of
the five corridor locations (see Figure 5c) have been simulated. As is the office scenario, the
observations are always correct, i.e. there are no false positives or false negatives. The mean
length of the observation sequences is 474.3 time steps, i.e. more than 15 times the length of
the previous scenarios. In this scenario, the only actions that agents can perform is moving
between locations. The probability of each action (moving between two specific rooms, or
not moving) has been estimated empirically from the data. The scenario is modeled such
that each agent is represented by a separate entity with properties describing their identity
and location. Again, we chose an urn without replacement to model the distribution of the
agents’ names.

Kitchen This scenario (originally presented by Krüger et al., 2014b, dataset available at
Krüger et al., 2015) serves as a large, real-world evaluation of LiMa. The task here is to
perform activity and context recognition in a kitchen scenario (see Figure 5b), where an
agent performs the subtasks (i) preparing the kitchen, (ii) cooking, (iii) preparing the table,
(iv) eating, and (v) washing the dishes.

Experiments with 7 participants have been performed. The participants performed 16
different types of actions, e.g. take, move or fill. The participants were instrumented with
5 inertial measurement units (IMUs), recording linear acceleration and angular velocity
(3 axis each) at 120 Hz. Out of the 30 IMU signals, 180 features such as variance and
energy were computed with a window size of 128 samples and 75% overlap. Afterwards,
a principal component analysis was performed, and the 21 principal components with the
largest eigenvalues were selected.

In the resulting dataset, each action has a distinct duration distribution, which is not
necessarily a geometric distribution, thus requiring to model the duration distribution ex-
plicitly, by concepts similar to hidden semi-Markov models (Yu, 2010). This, however,
would add additional parameters, which we wanted to avoid in the context of this evalua-
tion. Therefore, we reduced the dataset so that each action lasts for exactly one timestep,
by sampling one observation for each segment where the same action is executed.

We modeled the domain as a PMPMRS as follows: Each of the 10 objects shown
in Figure 5b, as well as the agent, is modeled as an entity (with properties like location,

1239

Lüdtke & Kirste

clean/dirty, cooked, etc.). For example, a sub-multiset of a reachable state in this PMPMRS
is

x = J 1〈N: Spoon,Dirty: yes,Pos: Sink〉,
1〈N: Plate,Dirty: yes,Pos: Sink〉,
1〈N: Pot,Dirty: yes,Pos: Counter〉, . . . K

(21)

A lifted state representation is obtained by representing the identities of objects by an
urn without replacement (i.e. a uniform distribution of permutations). The action weights
were chosen according to a goal distance heuristic, where the goal is that the meal has
been finished and all objects are washed. We investigated two different observation models
p(yt | lt): (i) Crisp observations of the actual action ct, i.e. p(yt | lt) = 1(at=yt) where at is
the action executed in state lt and yt is the actually executed action; and (ii) we used the
preprocessed real sensor data as observations, and assumed p(yt | lt) to be a multivariate
normal distribution (conditional on the executed action), i.e. p(yt | lt) ∼ N (µat ,Σat), where
yt are the preprocessed sensor data, at is the action executed in lt, and the parameters µat
and Σat have been learned from the data.

Due to splitting, over time, the distribution p(Lt | y1:t) consists of lifted states where
the names of some entities follow a joint hypergeometric distribution, while names of other
entities follow a delta distribution, as in the following example:

l1 = (J 1〈N: Spoon,Pos: S〉, 2〈N: N,Pos: C〉 K, 〈N: U(Plate, Pot)〉)
l2 = (J 1〈N: N,Pos: S〉, 1〈N: Plate,Pos: C〉, 1〈N: N,Pos: C〉 K, 〈N: U(Spoon, Pot)〉)

For this scenario, we perform an approximation that projects the joint distribution of
names back to a single hypergeometric distribution (i.e. an urn without replacement contain-
ing all names). This way, all lifted states that are different just in the distribution of names
are projected onto the same lifted state. In that case, the probability of the new state is the
sum of all states projected onto that state. In the example, both states l1 and l2 are projected
to the lifted state l′ = (J 1〈N: N,Pos: S〉, 2〈N: N,Pos: C〉 K, 〈N: U(Spoon, P late, Pot)〉),
and p(l′) = p(l1) + p(l2) = 1.

Here, we manually examine the causal structure of the actions, and identify five situa-
tions where splitting (for a specific value) will not occur in the future. At those situations,
the projection operation can be performed safely, without splitting directly afterwards. For
example, once the cooking process is finished, it is not necessary to distinguish the pot from
the other objects, so the pot’s identity does not need to be represented explicitly any more.

6.2 Exact Inference

Experimental Setup For assessing Q1, we performed exact filtering (i.e. without prun-
ing) using the lifted and the ground state representation (i.e. the conventional marginal
filtering algorithm). Note that both cases represent exactly the same distribution, via
Equation 11.

We did not compare LiMa to any other BF algorithm apart from marginal filtering,
because no other filtering algorithm is directly applicable to these large state spaces and
structured, causal system dynamics: BF algorithms that enumerate the transition model as

1240

Lifted Bayesian Filtering in Multiset Rewriting Systems

●

●

●

●

●

●

●

●

●

●

Office Tracking Kitchen

1 2 3 4 5 6 1 2 3 4 5 6 7 1

1e+01

1e+03

1e+05

Agents

S

ta
te

s Type

● ground

lifted

Figure 6: Exact filtering results: Number of states required for exact filtering, using lifted
and ground state representations. The line shows the mean number of states for each
configuration. Note the logarithmic scale of the y axis. Ground filtering has been infeasible
for 5 and 6 agents (office) or for 6 and 7 agents (tracking).

1

10

100

1000

10000

S

ta
te

s Type

ground

lifted

0 25 50 75 100

Glass

Plate

Pot

Spoon

Wooden_Spoon

t 0.00

0.25

0.50

0.75

1.00
grounding

Figure 7: Top: Number of states required for filtering in the kitchen scenario over time for
subject 6, using lifted and ground states. Bottom: Fraction of states in which each object
identity is represented explicitly. Ground filtering is stopped at t = 89, because it exceeds
50,000 states.

a matrix are infeasible due to the large state space size. Approximate algorithms like particle
filtering can in principle be used, but Nyolt et al. (2015) already showed that marginal
filtering is superior to particle filtering in categorical state spaces and thus, it is sufficient
to use (ground) marginal filtering for comparison. We compared the number of explicitly
represented (ground or lifted) states that are necessary to represent the distribution as a
measure of inference efficiency (runtime of the filtering algorithm is linear in the number of
states).

We used all three scensarios for evaluation. For the kitchen scenario, we used the crisp
observation model (observing the actual actions), to keep ground filtering feasible. For the
office and tracking scenarios, we aggregated all runs that involve the same number of agents.
All experiments have been performed using an implementation of LiMa in Haskell.

Results Figure 6 shows the number of states that are necessary for exact filtering in
the three scenarios, with respect to their state space size (which depends on the number

1241

Lüdtke & Kirste

of agents). The figure shows that the necessary number of states is several times smaller
when the lifted state representation is used. This difference becomes more pronounced
with increasing number of agents: For the office scenario with 1 (2, 3, 4) agents, the
ground representation needs 8.3 (70.7, 503, 2842) times the number of states than the lifted
representation. For the tracking scenario with 2 (3, 4, 5) agents, this factor is 1.8 (4.8, 14.4,
53.3). For the kitchen scenario, the difference in the number of states is not as pronounced:
The mean number of states for lifted filtering is 1054.7, as compared to 1709.8 states for
ground filtering.

Figure 7 (top) shows the required number of states over time for the kitchen scenario.
We can observe that specifically in the situations where filtering is “difficult” (i.e. where
the number of possible states is high), the lifted state representation leads to a much lower
number of state representatives. Figure 7 (bottom) shows the fraction of states in which
each of the object identities is represented explicitly. This plot shows that at each point in
time, it is sufficient to know the identities of just some of the objects. For example, during
cooking, it is necessary to know that the object on the stove is the pot, but this can be
safely forgotten later on.

Discussion The results show that the lifted state representation can lead to more efficient
inference when the scenario permits this: The office and tracking scenarios contain many
entities (agents, coffee capsules), leading to a combinatorial explosion in the support of the
ground distribution. As their identities be discriminated by observations and do not need
to be discriminated due to the system dynamic, the lifted representation can reduce the
complexity by an exponential factor. In the real-world scenarios, this difference is not as
pronounced, as there are fewer symmetries that can be exploited, required number of states
(and thus inference runtime) can still be reduced considerably.

Still, even when using the lifted representation, the required number of states increases
exponentially with the number of agents in the office and tracking scenarios. This relation-
ship is due to the exponential number of possible joint assignments of the location properties
of the entities, as discussed in Section 5.3: Even the lifted representation needs to distin-
guish between the situations “two agents are at location A, one agent is at location B”, and
“one agent is at location A, two agents are at location B” explicitly. Therefore, even lifted
exact filtering can be infeasible for very large state spaces – thus requiring approximate
filtering, as discussed next.

6.3 Approximate Inference

Experimental Setup For assessing Q2, we performed approximate filtering for the track-
ing and kitchen scenarios (for the latter, the real sensor observations were used). That is, the
algorithm performed pruning to a fixed number of states after each update step. Specifically,
the unbiased and optimal pruning strategy (with respect to least squared error) proposed
by Fearnhead and Clifford (2003) was used here.

We then computed an estimate from the filtering distribution, that represents a measure
that is relevant for answering application specific questions: For the tracking scenario, we
computed the number of persons per room, and for the kitchen scenario, we computed
an estimate of the action class that was performed. The “quality” of the approximation

1242

Lifted Bayesian Filtering in Multiset Rewriting Systems

●

●

●
●

● ●

Tracking

10 25 50 100 200 inf

0.2

0.3

0.4

0.5

0.6

0.7

States

R
M

S
E

●
●

●

●
●

●

●

Kitchen

25 50 100 200 500 1000 2000

0.3

0.4

0.5

0.6

States

A
cc

ur
ac

y Type

● ground

lifted

Figure 8: Approximate filtering results: RMSE/Accuracy of tracking/kitchen scenario with
respect to available states. For the tracking scenario, “inf” denotes an unlimited number of
states (exact filtering), i.e. a lower bound on RMSE.

is assessed on this estimate (in terms of root mean squared error or accuracy, explained
below).

For the tracking scenario, we investigate the root mean squared error (RMSE) of the
number of agents per room. Let nL be the overall number of locations, let nr,t be the true
number of agents at location r at time t, and let n̂r,t be the point estimate of the number
of agents at room r for an approximate filtering distribution p̂(lt | y1:t). The RMSE is then

RMSE =

√∑T
t=1

∑nL
r=1(nr,t − n̂r,t)2

T ∗ nL
. (22)

The RMSE is 0 when exactly the right number of agents is estimated per room. Only the
5 runs where 5 agents are present simultaneously were used in this experiment, as they
are the largest runs that afford exact ground inference. We performed experiments with a
maximum of 10, 25, 50, 100 and 200 states (at the pruning step). Thus, 5 ∗ 10 ∗ 5 ∗ 2 = 500
experiments were performed for this scenario.

For the kitchen scenario, we assess the accuracy of estimating the performed action (out
of 16 available actions): Let at be the true action class performed at time t, and let ât be
the point estimate of the performed action class (i.e. the most likely action class) for an
approximate filtering distribution p̂(lt | y1:t). The accuracy is then

Accuracy =

∑T
t=1 1(at = ât)

T
(23)

We performed experiments with a maximum of 25, 50, 100, 200, 500, 1000 and 2000 states
i.e. 7∗10∗7∗2 = 980 experiments were performed for this scenario, and thus 1480 experiments
were performed overall for assessing Q2.

Results Figure 8 shows the RMSE or accuracy for both scenarios, and different numbers
of available states. In the tracking scenario, RSME decreases when the number of states
is increased. For 10, 25 and 50 states, RMSE of lifted filtering is significantly lower than
ground filtering (p < 0.05, n = 50 using Wilcoxon signed rank test). When sufficiently
many states are available, both algorithms reach a saturation where a further increase in

1243

Lüdtke & Kirste

the number of states has no significant effect on performance. However, lifted filtering
reaches this saturation with fewer states (no significance difference of RMSEs when using
25 and 50 states) than ground filtering (no significance difference of RMSEs when using 50
and 100 states). Furthermore, for low numbers of states, the variance of the RMSE is much
higher for ground filtering than for lifted filtering.

The kitchen scenario shows a similar behavior: Increasing the number of states increases
accuracy. For 100 and 200 states, accuracy of lifted filtering is significantly higher than
ground filtering (p < 0.05, n = 70 using Wilcoxon signed rank test). For fewer states (25
and 50), there is no significant difference, as the number of states is insufficient for both
algorithms to achieve reasonable results. For > 200 states, there is also no significance
difference, as both algorithms eventually reach a saturation state.

Discussion The results show that in some cases, LiMa exhibits a significantly smaller
estimation error with lower variance than ground marginal filtering, and is never significantly
worse (using α = 0.05). The reason for this is that intuitively, LiMa can represent the
filtering distribution more accurately with a given number of states: Given a fixed number
n of states, the support of the ground filtering distribution is exactly n. Instead, LiMa
can maintain a filtering distribution with support > n, as each lifted state can represent a
distribution over multiple ground states.

6.4 Summary

The empirical evidence shows that LiMa can indeed achieve a lower representational com-
plexity (or lower error in the approximate case) for the realistic applications investigated
here. More specifically, the following conclusions can be drawn:

• As long as any exchangeability is present in the filtering distribution, LiMa needs
fewer states to represent the exact filtering distribution. In the worst case, when
no exchangeability can be exploited, LiMa coincides exactly with ground marginal
filtering.

• When limiting the number of available states to a fixed number, estimates calculated
with LiMa can have a lower variance and lower error than ground marginal filtering.
This behavior is not present for very low numbers of states (where both methods can-
not follow the causally correct sequence) or for very high numbers (as both algorithms
are saturated).

7. Related Work

The goal of LiMa is to perform efficient BF in MRSs (or, more generally speaking, sys-
tems where the system dynamics is given by an algorithmic description). Technically, this
is achieved by performing Rao-Blackwellization on distributions of multiset states. Thus,
there are a number of relevant, related lines of research: Probabilistic Programming Lan-
guages also describe distributions algorithmically; Lifted probabilistic inference algorithms
are concerned with exploiting exchangeability for probabilistic inference (e.g. in graphi-
cal models); Relational Filtering algorithms perform BF in systems where states can be

1244

Lifted Bayesian Filtering in Multiset Rewriting Systems

described by relational logic; and Data Association methods allow efficient BF for distribu-
tions of permutations. In the following, we discuss each of the approaches in more detail.

Probabilistic Programming Languages Probabilistic Programming Languages (PPLs)
describe, similar to LiMa, a complex distribution by the algorithmic process that gener-
ates the distribution. There are two branches of PPLs: Probabilistic Logic Programs (like
ProbLog, Fierens et al., 2015 or Prism, Sato & Kameya, 2008) add probabilistic annota-
tions to facts of a logic program. Imperative and functional PPLs (e.g. Pyro, Bingham
et al., 2019 or Church, Goodman et al., 2008) are based on general-purpose programming
languages, and allow arbitrary constructs like loops and branches.

Thus, the underlying distributions can be complex, and inference is often computation-
ally expensive. Inference methods either perform exact or approximate (sampling-based)
path enumeration (Wood et al., 2014; Gehr et al., 2016), but these methods cannot exploit
the structure of the underlying distribution for more efficient inference. Alternatively, infer-
ence algorithms can compile the program into a symbolic representation like a probabilistic
graphical model (McCallum et al., 2009; Pfeffer, 2009) or a Binary Decision Diagram, and
then perform inference on this representation. This way, conditional and context-specific
independence of the distribution can be exploited. However, we are not aware of any in-
ference algorithms for PPLs that exploit exchangeability that arises due to the algorithmic
description, which was the main motivation for developing LiMa.

Lifted Probabilistic Inference The goal of Lifted Probabilistic Inference is to exploit
symmetries in graphical models for efficient inference. For symmetrical graphical models –
containing identical sub-graphs – it is sufficient to perform inference on one representative
instance of the repeated sub-graphs, as inference computations are identical on all instances.
Furthermore, the number of identical instances needs to be counted, to correctly consider
the influence they have on the overall inference result. In the last 15 years, a large number
of lifted inference approaches have been devised, e.g. lifted versions of Variable Elimination
(Poole, 2003; Milch et al., 2008; Taghipour et al., 2014), Belief Propagation (Singla &
Domingos, 2008; Kersting et al., 2009), Recursive Conditioning (Poole et al., 2011), and
Weighted Model Counting (Gogate & Domingos, 2011; Van Den Broeck et al., 2011).

Symmetries in graphical models correspond to (partial) exchangeability of the distribu-
tion they represent. Thus, alternatively, lifted inference can be characterized as performing
the following steps, as outlined by Niepert and Van den Broeck (2014): Decompose a distri-
bution into exchangeable components, construct a sufficient statistics of these components,
generate all values of the statistics and count the number of instances for each value of the
statistic. The lifted state representation in LiMa follows exactly this scheme. The multiset
structures s correspond to sufficient statistics of the ground states x. Similarly, compound
action computation is also an instance of this scheme. A compound action is basically a
sufficient statistic of its corresponding ground compound actions, and its multiplicity corre-
sponds to the number of its instances (i.e. the number of corresponding ground compound
actions).

In several special cases, the lifted state representation of LiMa can be encoded as a lifted
graphical model, e.g. as a parfactor graph with generalized counting formulae (Taghipour
et al., 2014). Basically, each multiset structure s corresponds to a row in a parfactor in gen-
eralized counting form, and uniform distribution of identities can be encoded as the logical

1245

Lüdtke & Kirste

variables of the parfactor. However, the system dynamics cannot be compactly expressed
as a lifted graphical model. Expressing the hard constraints arising in compound action
computation (each entity must perform exactly one action and can only perform actions
whose preconditions it satisfies) as a graphical model results in very large graphical models
even for simple scenarios. Instead, LiMa works directly with the parallel MRS formulation,
allowing to express the transition model compactly via a computational description.

In summary, LiMa is based heavily on concepts devised for lifted inference algorithms.
However, existing lifted inference algorithms cannot be used directly for the application
domains we are considering in this work. Specifically, (lifted) graphical model cannot express
the rules-based system dynamics directly.

Relational Filtering There are a number of approaches for inference in dynamic sys-
tems (i.e. BF) that are, similar to LiMa, concerned with maintaining compact distribution
representations.

The Relational Kalman filter (Choi et al., 2011, 2015) is based on lifted inference, more
specifically continuous First-Order Variable Elimination (continuous FOVE) (Choi et al.,
2010). The filtering distribution is modeled as a relational pairwise model (RPM), an
extension of parfactor graphs where the parfactors are products of normal distributions. A
RPM essentially represents a multivariate normal distribution with additional independence
assumptions. Prediction and update operations of BF are defined by using continuous
FOVE whenever marginalization is required. The approach is limited to Gaussian filtering
distributions and a linear transition model (just like the standard Kalman filter).

Stochastic Relational Processes (SRPs) (Thon et al., 2011) describe states by logical
interpretations, and use causal probabilistic time logic (CPT-logic) to describe state dy-
namics. A theory in CPT-logic (i.e. a representation of the transition model) consists of a
set of rules. Each rule consists of a body, describing what must hold in a state for the rule
to be applied, and head elements, each one describing a possible effect of the rule. This
formalism is closely related to the rule-based transition model used in LiMa. Like MRS
rules, CPT-logic rules describe the transition model computationally – by the function that
generates the posterior distribution. For a discussion of the relationship to CPT-logic and
PDDL, see Thon et al. (2009). Furthermore, CPT-logic allows multiple rules to be applied
in a single prediction step, similar to parallel MRSs (although the semantics is different
in detail, e.g. a single fact of an interpretation can be used to satisfy multiple CPT-logic
rule bodies). In contrast to the lifted states used in LiMa, SRPs use a ground state repre-
sentation – although a part of the transition model can be calculated in a lifted way (for
calculating the successor states, not all ground rules need to be generated). Furthermore,
CPT-logic is not concerned with updating a distribution on observed values.

The Relational Particle Filter (RPF) (Nitti et al., 2016) is another BF algorithm that
uses compact descriptions of a distribution. Specifically, it uses distributional clauses to
represent states, the transition model and the observation model. A distributional clause
represents a distribution, similar to the lifted states of LiMa, where each state also describes
a distribution of ground states. Thus, the RPF can be seen as an instance of a Rao-
Blackwellized Particle Filter – except that it does not rely on a fixed segmentation of
sampled and exactly maintained variables, as the transition model might require to sample

1246

Lifted Bayesian Filtering in Multiset Rewriting Systems

from the parametric distributions. The RPF maintains univariate parametric distributions,
and is not concerned with efficiently handling exchangeable distributions, as done in LiMa.

Data Association These approaches are concerned with efficiently representing distri-
butions of permutations, and BF with such distributions. Specifically, they handle the
following problem: Given a number of tracks t1, . . . , tn (e.g. tracks of people in a video)
that correspond to objects o1, . . . , on, they maintain the distribution of object-track associ-
ations. This is a BF problem in a state space of permutations. Two conceptually different
approaches for this goal have been devised. The Fourier-theoretic approach (Huang et al.,
2009; Kondor et al., 2007) uses a Fourier transformation over the symmetric group Sn,
the group that represents permutations of n objects. Instead of maintaining a categorical
distribution p(σ), σ ∈ S of cardinality n! directly, the distribution is approximated by its
first few Fourier matrices, just like a function f(x), x ∈ R can be approximated by its first
few Fourier coefficients. The information-theoretic approach maintains a compact represen-
tation of the distribution over permutations by an information matrix Ω. The information
matrix contains unnormalized marginal probabilities Ωij for each association of track i with
object j. For both approaches, prediction and update steps can be defined directly for the
compact representation, without requiring the original, much larger distribution.

Similar to LiMa, these approaches aim at a compact representation of the filtering dis-
tribution. More specifically, exchangeability that arises due to handling distributions of
permutations has been one of the main motivations for developing LiMa. Uniform distri-
butions of permutations (or, more generally, exchangeable distributions) are represented
very efficiently in LiMa. The more asymmetrically the distribution becomes, the higher the
more states need to be maintained by LiMa (as the representation becomes more and more
ground). Instead, Data Association methods can maintain an efficient representation even
in those cases. However, they achieve this efficiency due to the approximations that are
performed, whereas LiMa is exact. Data Association methods can only handle state spaces
of permutations, and specific system dynamics that model mixing of tracks, whereas LiMa
can model more general state spaces and transition models. Still, combining Data Asso-
ciation methods with LiMa to obtain efficiency in less symmetrical cases is an interesting
topic for future research.

8. Conclusion and Future Work

In this work, we presented an efficient Bayesian filtering algorithm for systems whose dy-
namics is represented by a probabilistic Multiset Rewriting System (MRS). Technically, we
devised a suitable decomposition of multisets into a multiset structure and a value sequence.
This allows to represent the distribution more efficiently, by making use of independence
and exchangeability in the distribution over value sequences that naturally arise in MRSs.
Multiset rewriting can be performed directly on that representation, without generating the
original multisets first. We empirically showed that this approach can lead to a factorial
reduction in representational complexity of the exact filtering distribution. In the approx-
imate case, the approach can lead to a lower variance and lower error of estimates of the
filtering distribution.

The modeling formalism we presented here is quite general: In principle, the approach
allows to perform Bayesian filtering in all dynamic systems where the system dynamics

1247

Lüdtke & Kirste

can be formalized as an MRS, or any other symbolic or rule-based approach that can
be translated into an MRS. However, not all systems that can be represented this way
also show the symmetries that allow efficient inference: Symmetries can break due to the
system dynamics (when action preconditions depend on specific ground states, instead of
being decidable for complete lifted states), or due to the observation model (when the
observation likelihood is different for all ground states). In the worst case, the algorithm
resorts to the ground marginal filtering algorithm (Nyolt et al., 2015). For lifted inference,
methods to cope with this problem have been proposed, that work by approximating the
true distribution by a symmetric distribution, such that lifted inference is possible (Singla
et al., 2014; Venugopal & Gogate, 2014). In a sense, the projection method that was used
for the kitchen scenario can be seen as a first step in that direction. A future research goal
is to devise more general methods for identifying and projecting onto sufficiently similar
symmetric distributions. Furthermore, methods for detecting situations where such over-
symmetric approximations are sensible (where the symmetric distribution does not need to
be split immediately) can be devised, e.g. by examining the causal structure of the actions.

As repeated splitting can also be induced by the observation model p(yt |xt), our future
work focuses on methods to learn observation models that preserve the symmetries in the
model, e.g. by constraining the distribution p(yt |xt) that is learned, given the symmetries in
the MRS model. Additional directions for future work are methods for learning the weights
of actions, or even the actions themselves (e.g. by employing ideas for learning Markov
Logic Networks, Van Haaren et al., 2016), and using other representation formalisms for
p(v | s, γ), e.g. Sum-Product Networks (Poon & Domingos, 2011) or Exchangeable Variable
Models (Niepert & Domingos, 2014).

Acknowledgments

We would like to thank Max Schröder, Sebastian Bader and Kristian Kersting for their
collaboration on an earlier, much shorter version of this work that appeared in IJCAI 2018
(Lüdtke et al., 2018a).

Appendix A. Notation

The concepts in this work rely heavily on maps, multisets, and lists of variable length. Thus,
we need a suitable notation for working with such objects.

Maps (partial functions) are denoted by 7→, e.g. the type of a map taking elements from
X and mapping to elements from Y is denoted as X 7→ Y . Furthermore, dom denotes the
domain of a map (the set of all elements x ∈ X such that f(x) is defined), ran denotes
the range (codomain) of the map (i.e. Y in the previous example), and img denotes its
image (i.e. all y ∈ Y for which there exists an x ∈ X with f(x) = y). A map m with
m(x1) = y1, . . . ,m(xi) = yi is denoted as m = 〈x1 : y1, . . . , xi : yi〉. Two maps can be
combined by the operator ⊕, which is defined as:

(m1 ⊕m2)(k) =

m2(k) if k ∈ dom(m2) or (k ∈ dom(m1) ∧ k ∈ dom(m2))

m1(k) if k ∈ dom(m1) ∧ k /∈ dom(m2)

undefined otherwise

1248

Lifted Bayesian Filtering in Multiset Rewriting Systems

Algorithm 6 Enumerate compound actions.

1: function enum-ca(x,AI,k)
2: if k maximal in x with respect to AI then
3: return {k} . k is AMCA

4: K ← ∅ . The set where compound actions are collected
5: for {(a, i) ∈ AI|i v x} do . Action instances applicable to x
6: x′ ← x∪- i . Remaining state
7: k′ ← k] J 1(a, i) K . Add action instance to compound action
8: AI ′ ← {(a′, i′) ∈ AI|(a′, i′) ≥ (a, i)} . Allow only ≥ instances in recursive call
9: K ′ ← enum-ca(x′,AI ′,k′) . Recursive call

10: K ← K ∪K ′
11: return K

Sequences are maps of indices to elements. We use 〈a1, . . . , an〉 as shorthand notation
for {1 : a1, . . . , n : an}. The concatenation of two sequences s1 and s2 is denoted by s1⊕ s2,
i.e. 〈a1, . . . , ai〉 ⊕ 〈ai+1, . . . , aj〉 = 〈a1, . . . , aj〉. The length of a sequence s is denoted as |s|.
The i-th element of the sequence s is denoted as si, i.e. 〈a1, . . . , ai, . . . , an〉i = ai.

Multisets are maps from elements to natural numbers (multiplicities). We write Jn1 a1,
. . . , ni ai K to denote the multiset 〈a1 : n1, . . . , ai : ni〉. The expression x#a denotes the
multiplicity of element a in x, i.e. x#a = x(a). The function items(s) returns the multiset
of elements in the sequence s, in which each element a appears exactly as often as a appears
in s, i.e. items(s) =]a∈s a.

Appendix B. An Algorithm for Enumerating Compound Actions

Computing the set of all AMCAs for a given state x and a set AI of action instances can
also be performed by backtracking search: Start with an empty multiset k. For each action
instance that still “fits in” x (such that the resulting compound action is still compatible
with x), add it to k and do a recursive call with the new k and the remaining l, until the
compound action is maximal.

Directly proceeding like this would produce many repetitions of the same AMCA, that
are just different in the order in which the action instance have been inserted. As multiset
insertion is commutative, the insertion order is not relevant for the resulting AMCA. Thus,
we can improve the efficiency of the algorithm by defining an arbitrary order on the action
instances, and allow only insertion of action instances that are not “smaller” than the action
instance inserted last. This way, each AMCA is generated exactly once, and subtrees that
would correspond to other insertion orders are not expanded. This procedure is shown in
Algorithm 6.

This algorithm has linear time complexity in the number of AMCAs. However, this
number can easily become very large, as it does not only depend on the number of distinct
entities, but also on the overall number of entities in the state: It is at most the multiset
coefficient

(
m+n−1

n

)
= (m+n−1)!

n! (m−1)! , where n is the total number of entities in the state and
m is the total number of action instances. Thus, AMCA enumeration is one of the main

1249

Lüdtke & Kirste

computational challenges of the BF algorithm. An approximate algorithm that samples
AMCAs instead of enumerating all AMCAs has been presented in (Lüdtke et al., 2018b).

References

Arnaud, D., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in
Practice. Springer-Verlag New York.

Barbuti, R., Levi, F., Milazzo, P., & Scatena, G. (2011). Maximally Parallel Probabilistic
Semantics for Multiset Rewriting. Fundamenta Informaticae, 112 (1), 1–17.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T.,
Singh, R., Szerlip, P., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal
probabilistic programming. The Journal of Machine Learning Research, 20 (1), 973–
978.

Blizard, W. D., et al. (1988). Multiset theory. Notre Dame Journal of formal logic, 30 (1),
36–66.

Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition
using body-worn inertial sensors. ACM Computing Surveys (CSUR), 46 (3), 33.

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting.
Artificial Intelligence, 172 (6-7), 772–799.

Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., & Yu, Z. (2012). Sensor-based activity recog-
nition. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 42 (6), 790–808.

Choi, J., Amir, E., & Hill, D. (2010). Lifted Inference for Relational Continuous Models. In
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI’10, pp. 126–134, Catalina Island, CA. AUAI Press.

Choi, J., Amir, E., Xu, T., & Valocchi, A. (2015). Learning Relational Kalman Filtering..
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
2539–2546.

Choi, J., Guzman-Rivera, A., & Amir, E. (2011). Lifted Relational Kalman Filtering.. In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intel-
ligence, pp. 2092–2099.

Danos, V., Feret, J., Fontana, W., Harmer, R., & Krivine, J. (2007). Rule-based modelling
of cellular signalling. In International conference on concurrency theory, pp. 17–41.
Springer.

Diaconis, P., & Freedman, D. (1980). De finetti’s generalizations of exchangeability. Studies
in inductive logic and probability, 2, 233–249.

Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, pp. 176–183. Morgan Kaufmann Publishers
Inc.

Faeder, J. R., Blinov, M. L., & Hlavacek, W. S. (2009). Rule-based modeling of biochemical
systems with bionetgen. In Systems biology, pp. 113–167. Springer.

1250

Lifted Bayesian Filtering in Multiset Rewriting Systems

Fearnhead, P., & Clifford, P. (2003). On-line inference for hidden markov models via particle
filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
65 (4), 887–899.

Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I.,
Janssens, G., & De Raedt, L. (2015). Inference and learning in probabilistic logic pro-
grams using weighted boolean formulas. Theory and Practice of Logic Programming,
15 (3), 358–401.

Flach, P. A., & Lachiche, N. (2000). Decomposing probability distributions on structured
individuals.. In ILP Work-in-progress reports.

Gehr, T., Misailovic, S., & Vechev, M. (2016). Psi: Exact symbolic inference for probabilistic
programs. In International Conference on Computer Aided Verification, pp. 62–83.
Springer.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry, 81 (25), 2340–2361.

Gogate, V., & Domingos, P. (2011). Probabilistic Theorem Proving. In Proceedings of the
27th Conference on Uncertainty in Artificial Intelligence, pp. 256–265. AUAI Press.

Goodman, N., Mansinghka, V., Roy, D. M., Bonawitz, K., & Tenenbaum, J. (2008). Church:
a language for generative models with non-parametric memoization and approximate
inference. In Uncertainty in Artificial Intelligence.

Huang, J., Guestrin, C., & Guibas, L. (2009). Fourier Theoretic Probabilistic Inference over
Permutations. Journal of Machine Learning Research, 10, 997–1070.

John, M., Lhoussaine, C., Niehren, J., & Versari, C. (2011). Biochemical reaction rules with
constraints. In European symposium on programming, pp. 338–357. Springer.

Kasparick, M., & Krüger, F. (2013). Probabilistic action selection - tracking multiple persons
in indoor environments. http://dx.doi.org/10.18453/rosdok_id00000114.

Kersting, K., Ahmadi, B., & Natarajan, S. (2009). Counting belief propagation. In Pro-
ceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 277–284.

Kondor, R., Howard, A., & Jebara, T. (2007). Multi-object tracking with representations
of the symmetric group. Journal of Machine Learning Research, 2, 211–218.

Krüger, F., Hein, A., Yordanova, K., & Kirste, T. (2015). Recognising the actions during
cooking task (Cooking task dataset)..

Krüger, F., Kasparick, M., Mundt, T., & Kirste, T. (2014a). Where are my colleagues
and why? Tracking multiple persons in indoor environments. In 10th International
Conference on Intelligent Environments (IE), 2014, Shanghai, China.

Krüger, F., Nyolt, M., Yordanova, K., Hein, A., & Kirste, T. (2014b). Computational State
Space Models for Activity and Intention Recognition. A Feasibility Study. PLOS
ONE, 9 (11), e109381.

Lüdtke, S., Schröder, M., Bader, S., Kersting, K., & Kirste, T. (2018a). Lifted Filtering via
Exchangeable Decomposition. In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence.

1251

Lüdtke & Kirste

Lüdtke, S., Schröder, M., & Kirste, T. (2018b). Approximate probabilistic parallel multiset
rewriting using MCMC. In KI 2018: Advances in Artificial Intelligence, pp. 73–85.
Springer.

Lüdtke, S., Schröder, M., Krüger, F., & Kirste, T. (2017). Where are my colleagues? Track-
ing and Counting Multiple Persons using Lifted Marginal Filtering.. In Procedings of
the 4th International Workshop on Sensor-Based Activity Recognition and Interaction.

McCallum, A., Schultz, K., & Singh, S. (2009). Factorie: Probabilistic programming via
imperatively defined factor graphs. In Advances in Neural Information Processing
Systems, pp. 1249–1257.

Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., & Kaelbling, L. (2008). Lifted prob-
abilistic inference with counting formulas. In Proceedings of the National Conference
on Artificial Intelligence, Vol. 2, pp. 1062–1068.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2002). Fastslam: A factored
solution to the simultaneous localization and mapping problem. In Proceedings of the
AAAI, pp. 593–598.

Niepert, M., & Domingos, P. (2014). Exchangeable variable models. In Proceedings of the
31st International Conference on Machine Learning (ICML-14), pp. 271–279.

Niepert, M., & Van den Broeck, G. (2014). Tractability through exchangeability: A new
perspective on efficient probabilistic inference. In Twenty-Eighth AAAI Conference
on Artificial Intelligence, pp. 2467–2475.

Nitti, D., De Laet, T., & De Raedt, L. (2016). Probabilistic logic programming for hybrid
relational domains. Machine Learning, 103 (3), 1–43.

Nyolt, M., & Kirste, T. (2015). On Resampling for Bayesian Filters in Discrete State
Spaces. In Proceedings of the 27th International Conference on Tools with Artificial
Intelligence, pp. 526–533, Vietri sul Mare, Italy. IEEE Computer Society.

Nyolt, M., Krüger, F., Yordanova, K., Hein, A., & Kirste, T. (2015). Marginal filtering in
large state spaces. International Journal of Approximate Reasoning, 61, 16–32.

Paun, G. (2012). Membrane Computing: An Introduction. Springer Science & Business
Media.

Pescini, D., Besozzi, D., Mauri, G., & Zandron, C. (2006). Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17 (01), 183–
204.

Pfeffer, A. (2009). Figaro: An object-oriented probabilistic programming language. Charles
River Analytics Technical Report, 137, 96.

Plötz, T., & Fink, G. A. (2009). Markov models for offline handwriting recognition: a survey.
International Journal on Document Analysis and Recognition (IJDAR), 12 (4), 269.

Poole, D. (2003). First-order probabilistic inference. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, pp. 985–991.

Poole, D., Bacchus, F., & Kisynski, J. (2011). Towards completely lifted search-based
probabilistic inference. arXiv preprint, arXiv:1107.4035.

1252

Lifted Bayesian Filtering in Multiset Rewriting Systems

Poon, H., & Domingos, P. (2011). Sum-product networks: A new deep architecture. In
Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Confer-
ence On, pp. 689–690. IEEE.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77 (2), 257–286.

Sato, T., & Kameya, Y. (2008). New advances in logic-based probabilistic modeling by
prism. In Probabilistic inductive logic programming, pp. 118–155. Springer.

Schröder, M., Lüdtke, S., Bader, S., Krüger, F., & Kirste, T. (2016). An Office Scenario
Dataset for Benchmarking Observation-equivalent Entities..

Schröder, M., Lüdtke, S., Bader, S., Krüger, F., & Kirste, T. (2017). Abstracting from
Observation-equivalent Entities in Human Behavior Modeling. In AAAI Workshop:
Plan, Activity, and Intent Recognition.

Siegrist, K. (2020). Random: Probability, mathematical statistics, stochastic processes..
Accessed: 2020-10-01.

Singla, P., & Domingos, P. (2008). Lifted first-order belief propagation. In Proceedings of
the National Conference on Artificial Intelligence, Vol. 2, pp. 1094–1099.

Singla, P., Nath, A., & Domingos, P. M. (2014). Approximate lifting techniques for belief
propagation. In Twenty-Eighth AAAI Conference on Artificial Intelligence.

Stanke, M., & Waack, S. (2003). Gene prediction with a hidden markov model and a new
intron submodel. Bioinformatics, 19 (suppl 2), ii215–ii225.

Taghipour, N., Davis, J., & Blockeel, H. (2014). Generalized counting for lifted variable
elimination. In 23rd International Conference on Inductive Logic Programming, Vol.
8812, pp. 107–122.

Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient
inference and applications. Machine Learning, 82 (2), 239–272.

Thon, I., Gutmann, B., Van Otterlo, M., Landwehr, N., & De Raedt, L. (2009). From non-
deterministic to probabilistic planning with the help of statistical relational learning.
In ICAPS 2009-Proceedings of the Workshop on Planning and Learning, pp. 23–30.

Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted
probabilistic inference by first-order knowledge compilation. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, pp. 2178–
2185.

Van Haaren, J., Van den Broeck, G., Meert, W., & Davis, J. (2016). Lifted generative
learning of markov logic networks. Machine Learning, 103 (1), 27–55.

Venugopal, D., & Gogate, V. (2014). Evidence-based clustering for scalable inference in
markov logic. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 258–273. Springer.

Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based
activity recognition: A survey. Pattern Recognition Letters, 119, 3 – 11. Deep Learning
for Pattern Recognition.

1253

Lüdtke & Kirste

Wilson, D. H., & Atkeson, C. (2005). Simultaneous tracking and activity recognition (star)
using many anonymous, binary sensors. In International Conference on Pervasive
Computing, pp. 62–79. Springer.

Wood, F., Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic pro-
gramming inference. In Artificial Intelligence and Statistics, pp. 1024–1032.

Yu, S.-Z. (2010). Hidden semi-markov models. Artificial intelligence, 174 (2), 215–243.

1254

