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Abstract

Real-time ridesharing systems such as UberPool, Lyft Line and GrabShare have be-
come hugely popular as they reduce the costs for customers, improve per trip revenue for
drivers and reduce traffic on the roads by grouping customers with similar itineraries. The
key challenge in these systems is to group the “right” requests to travel together in the
“right” available vehicles in real-time, so that the objective (e.g., requests served, revenue
or delay) is optimized. This challenge has been addressed in existing work by: (i) generat-
ing as many relevant feasible combinations of requests (with respect to the available delay
for customers) as possible in real-time; and then (ii) optimizing assignment of the feasible
request combinations to vehicles. Since the number of request combinations increases expo-
nentially with the increase in vehicle capacity and number of requests, unfortunately, such
approaches have to employ ad hoc heuristics to identify a subset of request combinations
for assignment.

Our key contribution is in developing approaches that employ zone (abstraction of indi-
vidual locations) paths instead of request combinations. Zone paths allow for generation of
significantly more “relevant” combinations (in comparison to ad hoc heuristics) in real-time
than competing approaches due to two reasons: (i) Each zone path can typically represent
multiple request combinations; (ii) Zone paths are generated using a combination of of-
fline and online methods. Specifically, we contribute both myopic (ridesharing assignment
focussed on current requests only) and non-myopic (ridesharing assignment considers im-
pact on expected future requests) approaches that employ zone paths. In our experimental
results, we demonstrate that our myopic approach outperforms the current best myopic
approach for ridesharing on both real-world and synthetic datasets (with respect to both
objective and runtime). We also show that our non-myopic approach obtains 14.7% im-
provement over existing myopic approach. Our non-myopic approach gets improvements
of up to 12.48% over a recent non-myopic approach, NeurADP. Even when NeurADP is
allowed to optimize learning over test settings, results largely remain comparable except in
a couple of cases, where NeurADP performs better.

1. Introduction

Real-time taxi sharing platforms, such as UberPool, Lyft Line and GrabShare, etc. and on-
demand shuttle services such as Shotl, Beeline and GrabShuttle, etc. have become hugely
popular in recent years due to reduced costs for the customers and improved per trip
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revenue for drivers. In addition, they also help in reducing the traffic congestion as they
allow customers with similar itineraries to share a vehicle. Other shared mobility services,
such as car sharing, courier services, scooter sharing, bikesharing, etc. also have a similar
underlying problem and the approaches (with minor extensions) presented in this paper can
be used for those problems as well.

The ridesharing problem (Alonso-Mora et al., 2017a; Ma et al., 2013) is related to the
vehicle routing (Ritzinger et al., 2016) and multi-vehicle pick-up and delivery problems (Par-
ragh et al., 2008; Yang et al., 2004), where customer demand should be picked up from their
origin locations and dropped at their destination locations while satisfying vehicle capacity
and delay constraints. Earlier work on these problems has focussed on traditional integer
programming approaches, which are limited to small scale problems of 8 vehicles and 96
requests (Ropke et al., 2007; Ropke & Cordeau, 2009). More importantly, these ridesharing
problems are typically offline and do not require real-time assignment.
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Figure 1: Related Work

In recent times, due to taxi sharing platforms, the focus has shifted to real-time taxi
ridesharing problems. Many heuristic approaches have been proposed to solve these prob-
lems. As shown in the Figure 1, existing work can be categorized along three dimensions:

1. Capacity of vehicles

2. Sequential or batch consideration of requests

3. Nature of “vehicle to request combination” assignment (myopic or non-myopic).
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Most existing works have considered myopic assignments (third dimension), i.e., they do
not consider the future value of assignments while assigning the vehicles to current set
of requests. The myopic approaches for ridesharing can further be categorized along the
second dimension as:

Finding a sequential solution: Assigns one request at a time to the best available vehicle.
Solution approaches are appropriate for high capacity vehicles (shuttles, buses etc. ) (Tong
et al., 2018; Huang et al., 2014; Ma et al., 2013) or

Finding a batch solution: Assigns all active requests together in a batch to the available
vehicles. Most of the proposed approaches are only applicable for low capacity vehicles
(e.g., taxis) (Dutta, 2018; Zheng et al., 2018).

The sequential solution is faster to compute but the quality of solution obtained is typically
poor. On the other hand, the batch solution takes significantly more time to compute, but
the solution quality is significantly better than the incremental solution.

As opposed to unit capacity taxi matching (first dimension), where a myopic batch
solution can be computed by performing a bipartite matching between vehicles and re-
quests, finding a myopic batch solution in multi-capacity ridesharing is challenging. This is
because the underlying matching graph in multi-capacity ridesharing changes from bipar-
tite (vehicles and requests) to tripartite (vehicles, requests, request combinations). Similar
to Alonso-Mora et al. (2017a, 2017b) and Shah et al. (2020), in this paper, we focus on
this most challenging category of obtaining a batch solution for high capacity vehicles in
real-time.

The myopic approach by Alonso-Mora et al. (2017a) is a generalization of the greedy
approach typically employed by taxi companies (Widdows et al., 2017; Tang et al., 2017;
Browns, 2016) and is divided into two parts:

• The first part constructs an RTV (Request Trip Vehicle) graph. The nodes in the
graph are requests, vehicles and trips. A trip in an RTV graph corresponds to a com-
bination of requests that is feasible (with respect to the available delay for customers).
There is an edge between request and trip if the request is a part of the trip. There is
an edge between trip and vehicle if the vehicle can serve all the requests in that trip.

• From all allowable allocations of vehicles to trips, the second part computes an opti-
mal allocation of vehicles to trips that minimizes delay or maximizes the number of
requests served.

This approach is limited in scalability as the set of possible trips increases exponentially
with the increase in the number of requests and capacity of vehicles. To ensure scalability
and address the key challenge of identifying as many relevant trips as possible in real-time,
this approach employs ad hoc heuristics (e.g., limiting time available and edges in RTV
graph).

The non-myopic approach by Alonso-Mora et al. (2017b) is a minor extension of their
myopic approach and does not provide any improvement in the number of requests served
(more details in Section 6). The non-myopic approach by Shah et al. (2020) uses a similar
approach as Alonso-Mora et al. (2017a) to generate the feasible trips and then uses a
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Figure 2: (a) Representation of RTV graph generated using the model by Alonso-Mora et
al. (2017a) for capacity 2. (b) Representation of RPV graph generated by ZAC approach.

neural network based value function approximation to estimate the future value 1 of current
assignment of vehicle to trips. While the approach provides better results than myopic
approaches, it has two main issues: (1) This approach still has to employ ad hoc heuristics
to identify the relevant request combinations considered for learning; and (2) Due to the need
of training a separate network model for each dataset and each change of input parameter,
it is not easily adaptable to different settings.

To that end, we make three major contributions in this paper. First, we propose a
framework called ZAC (Zone pAth Construction), that is myopic and employs two crucial
ideas to identify significantly more relevant trips in real-time:

• Focus on zone paths instead of trips: A zone path is a path that connects zones
(a zone is an abstraction for multiple individual locations) and therefore it can group
multiple trips that have “nearby” or “on the way” pick-ups and drop-offs. This focus on
zone paths helps automatically capture multiple relevant trips with one zone path.

• Offline-online computation of zone paths: Since, we focus on zone paths, we can
generate partial zone paths offline. This helps capture more relevant trips online in real-
time, where the partial paths are completed.

Instead of an RTV (Request Trip Vehicle) graph in Alonso-Mora et al.’s (2017a) ap-
proach, we construct an RPV (Request Path Vehicle) graph, where we associate requests
and vehicles to zone paths. This is shown in Figure 2. Once the RPV is constructed, we
then employ a scalable integer linear program to find the optimal assignment (e.g., maxi-
mize revenue, maximize the number of requests served or minimize the delay) of vehicles
and requests to paths.

Second, we provide a non-myopic extension of ZAC, called ZACBenders, which approx-
imates the expected future value of assignments by considering multiple samples of future
demand. By grouping the requests in demand samples based on zones and approximating

1. As an example, for the objective of number of requests served, future value of current assignment will
refer to the number of requests vehicle can serve at future timesteps as a result of being assigned to a
trip at current timestep.
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Figure 3: RMP Description: Graph (G) in this example is the road network of Manhattan
(New York) with nodes as the road intersections. V provides the current status of vehicles,
i.e., their location and currently assigned passengers. In the example, the blue vehicle is car-
rying a customer which needs to be dropped at the location represented using d0. Customer
requests are accumulated over ∆ duration. The example shows 5 customer requests. The
origin location of customer i is represented by oi and destination is represented by di. We
use a transparent person image to highlight the destination location. The algorithm should
output the assignment of vehicles to customer requests while satisfying the constraints and
optimizing the objective.

how future requests are served (details in the Section 4), the integer optimization in ZAC
is modified to optimize the sum of values of the current assignment and expected future
value over multiple demand samples. However, this results in an increase in the complexity
of optimization formulation. Therefore, we propose using Benders decomposition (Benders,
1962) to break the large optimization formulation into multiple smaller problems that are
solved in parallel.

Finally, we provide an exhaustive evaluation of our contributions in comparison to
two leading approaches for real-time ridesharing, Trip based Formulation (TBF) (Alonso-
Mora et al., 2017a) and NeurADP (Shah et al., 2020), on both real-world and synthetic
datasets. We get up to 14.7% improvement over TBF and up to 12.48% over NeurADP.
Even when NeurADP is allowed to optimize learning over test settings, results largely remain
comparable except in a couple of cases, where NeurADP performs better. We also perform
experiments on a synthetic dataset introduced by Bertsimas et al. (2018). We simulate the
first and last mile transportation requests in this dataset and show that in these settings
we can obtain a staggering 20% gain over TBF.
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2. Rideshare Matching Problem (RMP)

Real-time ridesharing is a service provided by platforms such as Uber, Lyft etc. for arranging
shared rides for multiple customers at a very short notice. Customers request a shared ride
from a source to destination. The platform then groups all those requests that can share a
ride – based on whether the delay2 of reaching the destination is less than a given threshold
for all requests sharing the ride. These services are popular because customers are ready
to accept a delay in exchange for a reduced fare. However, after an acceptable threshold,
delay can not be compensated with monetary benefits. Therefore, while grouping customer
requests, platforms need to ensure that matching algorithms find groupings which do not
increase the delay of individual customers beyond an acceptable threshold 3.

Figure 3 describes the RMP problem. Formally, we define RMP using the following
tuple:

< G,∆,D,V, C, τ, λ, κ, ρ, ξD >

• G = (L, E) is a graph with the vertices as the set of locations. For example, as considered
in previous works (Alonso-Mora et al., 2017a) the graph G is the road network with the
set L including all street intersections in the road network of a city and E denoting the
set of road segments. Figure 3 shows the visual representation of a part of the graph
G for the Manhattan city. We assume that vehicles only pick-up and drop people off at
intersections 4. Travel Time (T ) and shortest paths (Sp) between all location pairs in set
L is pre-computed and stored.

• ∆ denotes the decision epoch duration in seconds, i.e., the algorithm is executed every ∆
seconds. In Figure 3, we show that the customer demand is collected over ∆ seconds.

• D denotes the set of current customer requests. Each element j ∈ D is represented using
the tuple: 〈oj , dj , aj〉, where oj , dj ∈ L denote the origin and destination location and
aj denotes the arrival time of the request j. If the current decision epoch is e, then
(e− 1) ·∆ < aj ≤ e ·∆,∀j. Figure 3 shows the visual representation of customer demand
by taking 5 customer requests as an example.

• V denotes the set of vehicles. Each element i ∈ V is represented using the tuple:
〈µi, ωi, qi〉. µi ∈ L denotes the initial location of vehicle i, ωi denotes the time at which
vehicle first becomes available at µi and qi denotes the set of customer requests assigned to
vehicle i. Each element j of qi is represented using the tuple: 〈oj , dj , aj〉, where oj , dj , aj
are as described in the demand tuple above. Figure 3 shows the visual representation of
set V by using three vehicles at their initial location. The blue vehicle has a previously
assigned customer request.

• C represents the objective (e.g. revenue, number of requests served, etc. ), with Ctij
denoting the value obtained on assigning request j to vehicle i at decision epoch t.

• τ denotes maximum allowed wait time for a request (in seconds). The wait time is defined
as the difference between the arrival time of a requests and the time at which vehicle picks
the customer from its origin.

2. Time taken to reach the destination using the shared ride minus the time taken using an individual ride
3. Threshold values can be potentially learnt by surveying different customers.
4. If the intersections are far apart and customers can be picked up/dropped off at points other than

intersections, the set L will correspond to the set of locations where customers can be picked up/dropped
off.
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• λ denotes maximum allowed travel delay for requests (in seconds). The travel delay is the
total delay experienced by the customer to reach its destination location. If tdj denotes
the time at which a request j is dropped at its destination then the travel delay is given
by tdj − (aj + T (oj , dj)).

• κ denotes the maximum capacity of each vehicle.

The goal in RMP is to assign the incoming customer requests to the vehicles such that
the objective is maximized while satisfying the capacity constraints, maximum wait time
and delay constraints. Figure 3 shows the assignment of customer requests to different
vehicles.

The last two elements in the tuple (ρ, ξD) are used to represent the expected future
information. The myopic approaches ignore these elements, but non-myopic approaches
can use these to improve the quality of matching.

• ρ denotes the lookahead duration, i.e., the duration over which the expected future value
will be computed.

• ξD denotes the set of samples of future customer demand with ξD,k denoting the set
of future requests in sample k. Each element j′ ∈ ξD,k is represented using the tuple:〈
okj′ , d

k
j′ , a

k
j′

〉
, where okj′ , d

k
j′ ∈ L denote the origin and destination location and akj′ denotes

the arrival time of the request j′ in sample k. If the current decision epoch is e, then
e ·∆ < aj′ ≤ e ·∆ + ρ, ∀j′.
We first present our myopic approach ZAC in Section 3 and then in Section 4 we provide

our non-myopic approach ZACBenders, which can assign incoming customer requests to the
vehicles while considering future information.

3. ZAC: A Zone pAth Construction Approach for Solving RMP

Given the importance of zone path to ZAC, we first define and explain the concepts of zone
and zone path. We then describe the intuitive advantages of using zone paths and then we
explain the ZAC algorithm.

Definition 1 Zone: refers to an abstracted location obtained by clustering locations in set
L.

In this work, we investigated Grid Based Clustering (GBC), Hierarchical Agglomerative
Clustering with Complete Linkage (HAC MAX) and Hierarchical Agglomerative Clustering
with Mean Linkage (HAC AVG) to cluster locations into zones. We use these methods as
they do not require prior knowledge about the number of clusters and have been used in
earlier works on similar problems (Ma et al., 2013; Hasan et al., 2018). Please refer to
Appendix A for more details on zone creation.

Definition 2 Zone path: refers to an ordered sequence of nodes, where each node corre-
sponds to either a location from set L or a zone.

There are two key advantages to a zone path:

• Zone path represents multiple trips that have “nearby” or “on the way” pick-ups and
drop-offs; and
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• Zone path can be generated at different levels of granularity (e.g., individual locations,
communities) depending on the time available.

Due to these two advantages, zone paths assist in identifying more relevant trips (com-
binations of requests) within a given amount of runtime. We further enhance the ability
to identify more relevant trips within limited runtime, by generating zone paths partially
offline and completing them in real-time depending on the set of active requests.

We generate the zone path of time span τ offline and complete the rest of the zone path
online. This is because requests can be picked up only in initial τ seconds 5. Therefore,
partial zone paths generated offline automatically provide a pick-up order for the active
requests. As a result, online, we only need to compute drop-off order while ensuring that
the delay constraints are not violated. This contrasts with Alonso-Mora et al.’s (2017a)
approach, where both pick-up and drop-off order along with the delay feasibility have to be
computed online.

Intuitively, the inherent nature of zone paths to capture multiple relevant trips coupled with
the extra time made available online due to offline computation of partial zone paths enables
ZAC to consider significantly more relevant trips in real-time.

Due to abstraction of locations into zones, the travel time is approximately represented
when considering zone paths. This can result in longer wait times or longer estimate of
wait times than a path over locations in set L. Customers prefer to have a shorter wait
time pre-process (Dube-Rioux et al., 1989; Maister et al., 1984; An et al., 2019), i.e., before
pick-up in this case. Therefore, it is essential to reduce this approximation in travel time
computation during pick-up. We reduce this approximation by generating offline partial
paths at the level of locations. This is another benefit of having an offline partial path.

ZAC is an offline-online approach for solving the RMP every few seconds on active
requests and available vehicles by using offline generated partial paths. The key components
of the ZAC algorithm are as follows:

• Offline: generation of all partial location paths of time span, τ from every location.

• Online: generation of RPV graph by loading and processing offline partial paths, com-
pleting the partial paths and identifying edges in RPV graph.

• Online: finding optimal assignment of requests to paths to vehicles by using an efficient
integer (0/1) linear optimization

Example 1 Figure 4 provides an example of a zone path generated using ZAC. There is a
partial zone path (generated offline) over individual locations (i.e., A → . . . → F ) and the
completion of that zone path (online) using larger zones (black and red).

Example 2 Figure 5 shows all the steps of offline-online path generation process used as
part of ZAC. We will refer to these steps in Section 3.1 and 3.2.

3.1 Offline: Partial Paths Generation

The main challenge with generating a partial path online at the level of individual locations
– even for a time span of only maximum wait time, τ – is the time taken to generate all the

5. τ is typically 300 and we experiment with values between 120-420 seconds.
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Figure 4: Example Zone Based Path. Path A → B → C → D → E → F →Black Zone
→ Red Zone. The part A → B → C → D → E → F is generated offline. The decision to
move from F to Black Zone then to Red Zone is taken online based on available requests.
Black Zone - Consists of Black Circled nodes.
Red Zone - Consists of Red Rectangle nodes.

Grouped 
based on 

Zones

(a) (b) (c)

(d)(e)(f)

Start Start

Drop off 
Locations

Start

StartStartStart

Figure 5: Example showing different steps of ZAC. (a) One of the offline partial paths.
“Start” represents the start location of a vehicle. (b) Green markers represent the pick-up
location of the incoming customer requests grouped along the path. (c) The blue markers
represent the destination locations of the requests which are grouped along the path based
on their pick-up location. (d) The destination locations are grouped together based on
different zones (e) The path is completed by starting exhaustive search at the last green
marker. The exhaustive search generates three different paths shown in orange, green and
red colour. (f) The path represented by blue big arrows shows one of the complete zone
paths starting at the initial location of the vehicle.
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paths. Therefore, we compute these partial paths (of span τ seconds) offline by generating
all simple paths of duration τ in the network G. The number of all possible paths grows
exponentially with the increase in the value of τ and increase in the number of locations. In
case all possible paths can not be generated due to memory constraints, we can employ a
data-driven approach (based on historical data) to generate paths that have high likelihood
of grouping a large number of requests. More details about the data-driven approach is
present in Appendix B.

Figure 5(a) shows one of the offline generated partial paths as an example starting at
the location denoted by “Start” and visiting all the locations represented by red markers.

The start point of each offline partial path is one of the locations from the set L and the
end point can be any of the locations which is reachable within τ duration from the start
location. These offline partial paths (Poff ) are stored by indexing on the start location
and start time (Poff [l, t]) 6. The start time associated with the path indicates the time at
which the first node (location) in the path is visited. For a clear explanation, two paths
starting at the same location but having different start times are considered different. This
is because vehicles can become available at the same location but at different time. These
offline partial paths are further indexed by the location and time of each node present in
the path for quick online processing.

Algorithm 1 ZAC-Online()

1: t = starttime (in seconds)
2: Poff =

⋃
l∈L,
t′<τ

Poff [l, t′] = LoadOfflinePartialPaths()

3: T =LoadTravelTimes(), Sp =LoadShortestPaths()
4: while t < endtime do
5: t1 = t− starttime
6: if (t1)%∆ == 0 then
7: D,V ←GetCurrentDemand-VehicleStatus(t)
8: P, Pv, Pr, b,N = GenerateRPVGraph(t,Poff ,D,V, T ,Sp)
9: SolveOptimization(P, Pv, Pr, b,N)

10: UpdateVehicleStatus()
11: t = t+ 1

3.2 Online

We now describe the crucial online component of ZAC that generates the RPV graph and
finds the optimal match on the generated RPV graph. The pseudocode for the online
component ZAC-Online is provided in Algorithm 1. After loading the offline computed
partial paths, travel times and shortest paths, at every decision epoch, ZAC-Online considers
the currently available batch of requests and current vehicle status to find the optimal
assignment in two steps: (1) Generation of the Request, Path and Vehicle (RPV) graph
and (2) Finding optimal match in RPV graph using a linear integer optimization model.
We now describe the two steps of ZAC in detail.

6. We discretize the time at the level of 10 seconds.
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3.2.1 Generation of the RPV Graph

As shown in Algorithm 2, there are three key steps to RPV graph generation: (1) Online
processing of Offline Partial Paths; (2) Online Partial Zone Path Completion; (3) Identifying
edges in the RPV graph.

Algorithm 2 GenerateRPVGraph(t, Poff , D, V, T , Sp)
1: P ′off ,R′ = ProcessOfflinePartialPaths(t, Poff , D, V,T , Sp)
2: P,R′′ = OnlineCompletion(t,P ′off ,R′, T ,Sp)
3: P, Pv, Pr, b,N = IdentifyEdgesRPVGraph(t, P, D, V, R′′)
4: return P, Pv, Pr, b,N

Algorithm 3 ProcessOfflinePartialPaths(t,Poff ,D,V, T ,Sp)
1: P ′off = [],Ltv =

⋃
i∈V

(µi, ωi)

2: Create H threads. Each thread h processes Phoff =
⋃

k′∈Lthv
Poff [k′], ,s.t., Ltav ∩ Ltbv =

φ,∀a 6= b and ∪hLthv = Ltv
3: for each thread h do
4: V ′ ⊂ V, s.t.,∀i′ ∈ V ′, (µi′ , ωi′) ∈ Lthv
5: for j ∈ D do
6: Ph,joff = GetPathsFromIndex(Phoff , oj , aj − t, aj − t+ τ)

7: for each path k ∈ Ph,joff do
8: lbj = aj − t+ T (oj , dj), ubj = lbj + λ
9: if R[k] contains dj then

10: R[k][dj ][1] = max(R[k][dj ][1], ubj)
11: else
12: R[k].add(dj , (lbj , ubj))
13: Rp[k].add(oj)
14: if lbj < τ and k visits dj then
15: Rp[k].add(dj)
16: else if ubj < τ and k does not visit dj then
17: R[k].remove(dj , (lbj , ubj))
18: for i ∈ V ′ do
19: R[k],Rp[k] = GetPathsForVehicle(i, qi,R[k],Rp[k],Poff )
20: for each path k do
21: if |Rp[k]| > 0 then
22: Remove nodes not in Rp[k], update Rk using T , Sp
23: P ′h

off .add(k)
24: for each thread h do
25: P ′off .addAll(P

′h
off )

26: return P ′off ,R
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Online Processing of Offline Partial Paths: The offline generated partial paths are
processed online based on the pick-up locations of the currently available requests and
current status of all vehicles (location of vehicles, currently assigned requests to vehicles).

Figure 5(b) and Figure 5(c) shows the online processing of the offline partial path based
on the currently available requests. In Figure 5(b), the green markers represent the pick-up
location of the requests which can be grouped using the offline partial path and in the
Figure 5(c), we use the blue markers to represent the destination locations of the requests
which had pick-up at one of the locations represented using green marker. We also store
a lower and upper bound on the time by which each of the blue marker should be visited
for the delay constraints to be satisfied. Therefore, by online processing of offline partial
paths, for each path, we get the set of requests which can be grouped based on their pick-up
location and we also get the order in which the locations should be visited. The detailed
algorithm is shown in Algorithm 3.

The algorithm takes as an input the set of all offline generated partial paths (Poff ),
incoming customer requests (D), and current status of all vehicles (V). The output of
the algorithm is the set of offline partial paths (P ′off ⊂ Poff ) which can serve at least one
request from the set D. For each of these paths, the algorithm also provides the information
about the requests grouped along the path (R′). The information includes the destination
location and the lower and upper bound on the time by which the location needs to be
visited. The individual steps of the algorithm are described below.

Steps 1-2 of the algorithm ensures that we consider only those paths that start at a
location and time where at least one vehicle is present, and these paths are processed in
parallel using multiple threads. The GetPathsFromIndex function returns the set of offline
partial paths that visit the given location within a given time interval and uses the pre-
computed offline indexes for quick online retrieval. Step 12 stores the set of destination
locations of the currently available requests grouped along the path (based on the pick-up).
In addition to the destination location, we also store the lower and upper bound on the
time by which the location should be visited. Similarly, in step 19, we store the destination
locations of the requests previously assigned to vehicles. In step 19, we consider only those
paths that can potentially satisfy all the previously assigned requests for a vehicle. This
is because a vehicle will be assigned to a path if and only if it can serve all the previously
assigned requests. In addition, a vehicle should deviate from its current path only if it can
be assigned to a new request, therefore, we consider only those paths which can pick at
least one of the newly available requests.

Steps 14 and 19 ensure that if the drop-off location of request can be visited in the
partial path, then it is considered in the processing.

In the end, in steps 20-22, as an optimization, we only keep those locations in the partial
paths that correspond to a pick-up or drop-off location and update the travel time and path
between the locations using T and Sp.

The offline generated partial paths significantly improve the scalability of completing the
path online using exhaustive search. This provides more time online for considering more
zone paths and hence more relevant trips.

Online Partial Zone Path Completion: The subset of offline partial paths obtained
from the algorithm used in the previous step (Algorithm 3) are completed online in this
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step using exhaustive search starting at the last location in the partial path. For the
example in Figure 5, we complete the offline partial path by starting the exhaustive search
at the last green marker. The search space is the set of destination locations represented
by blue markers. To reduce the computational complexity, we group nearby destination
locations using zones. Figure 5(d) shows that the destination locations of the requests
which are nearby are grouped using zones. Figure 5(e) shows that we get multiple zone
paths by completing a single offline partial path using exhaustive search. We use orange,
green and red colour arrows to highlight three different paths. Finally, we highlight one of
the completed zone paths (out of the three possible paths) starting at the location “Start”
in Figure 5(f) using big blue arrows.

The complete process is formally shown in the Algorithm 4. The output of Algorithm 3
serves as an input to the Algorithm 4, i.e., the algorithm takes as an input, the set of offline
partial paths (P ′off ) and the information about requests associated with each of the offline
partial path (R′). The output of the algorithm is the set of completed zone paths (P).
For each of these zone paths in set P, the algorithm also outputs the set of requests which
can potentially be served using the zone path (R). The detailed steps of the algorithm are
explained below.

As the offline partial paths are independent of each other, to speed up the path gen-
eration process, we perform the online path completion of the offline partial paths P ′off in
parallel by creating multiple threads as shown in the pseudocode provided in Algorithm 4.
To complete each offline partial path, we need to consider the destination locations of all
the requests associated with the path. As we also have a lower and upper bound on the
time by which the destination locations of the requests should be visited, we can prune the
search space by exploring only those branches in the search tree where these time limits are
satisfied.

The computational complexity of online partial path completion is dependent on the
number of destination locations (size of R′[k] in Algorithm 4) and can be significant, there-
fore, we use zones (and not individual locations) in this step. As mentioned before, by using
zones, travel time is approximately represented, which can result in additional delay for re-
quests. The additional delay introduced is dependent on the size of the zones chosen. The
size of the zone is defined as the time taken to travel within a zone. Zone size 0 indicates
that locations in set L are used.

Therefore, to consider a trade-off between computational complexity and the quality
of a solution, we propose picking the zone sizes dynamically for each offline partial path.
In order to fix the amount of dynamism in zone size, we use a parameter M that defines
the number of different zone sizes that can be used in completion of offline partial paths.
M = 1, implies static zone sizes, i.e., using zones of a fixed size for online completion of all
offline partial paths. The zones of M different sizes are generated offline and in the step
6, depending on the number of destination locations and M available zone sizes, we decide
the appropriate zone size for the partial path k 7. Please note that the exhaustive search
in step 8, will return multiple completed zone paths corresponding to a single partial path
k as shown in the example (Figure 5) before.

7. In the experiments, we use M = 4 with zone sizes 0,60,120,300 and use the zone size that reduces the
number of locations to 12 (this provides the best trade-off between runtime and solution quality and is
determined based on experiments.)
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Algorithm 4 OnlineCompletion(t,P ′off ,R′, T ,Sp)

1: P = [],R = []
2: Create H threads.

Each thread h processes P ′h
off ⊂ P ′off ,s.t., P ′h

off ∩P
′h′
off = φ, ∀h 6= h′ and ∪hP

′h
off = P ′off

3: for each thread h do
4: Phon = [],Rhon = []
5: for each path k do
6: z = getAppropriateZoneSize(R′[k],M)
7: R′ = convert(R′[k], z)
8: Phon,Rhon = ExhaustiveSearch(end node(k),R′,Phon,Rhon)
9: for each thread h do

10: P.addAll(Phon)
11: R.addAll(Rhon)
12: return P,R

For the objective of maximizing the number of requests served, the paths that start at
the same location at the same time and serve a subset of requests served by another path are
redundant. This is because we check for capacity constraints in the optimization formulation
presented in the next section. So, a single path serving r requests can be used to represent
all request combinations,

∑r
i=1

(
r
i

)
. Therefore, the search tree in step 8 of Algorithm 4 can

be pruned appropriately to search only for non-redundant paths. This reduces the size of
set P, which, in turn reduces the complexity of the optimization formulation presented in
the Section 3.2.2.

1

Vehicles RequestsPaths

𝑍𝑍1𝐿𝐿1 𝐿𝐿2 𝐿𝐿3 𝐿𝐿5𝐿𝐿4 𝑍𝑍2 (𝐿𝐿3,𝑍𝑍2)

3 2 2 3 3 4 4

𝜇𝜇𝑖𝑖 = 𝐿𝐿1,𝜔𝜔𝑖𝑖 = 0
𝜅𝜅 = 4

q𝑖𝑖 = { ∗, 𝐿𝐿4 ,
𝐿𝐿2,𝑍𝑍1 }

Figure 6: Representation of assignment of vehicle and request to a zone path

Identifying Edges in the RPV Graph: Once the zone paths (P) are created using the
offline-online method described above, we construct the RPV (Request Path Vehicle) graph
by finding the set of requests and vehicles that can be assigned to each of the generated
zone paths. We use the information available from the previous 2 steps about the requests
and vehicles that can be assigned to these zone paths and process the paths in parallel
using multiple threads to speed up the computation. This step is essential as in Algorithm
3, when the same destination location has a different value for the upper limit on time in
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step 10, we take the maximum value. Therefore, in the path generated using Algorithm 4,
the delay constraint may be violated for some requests in such cases.

In this step, we ensure that a request is assigned to a zone path, if and only if, the path
visits the pick-up and drop-off location of a request within the delay constraints. The binary
constants b (defined in Table 1 and used in optimization formulation presented next) are
also populated in this step. A vehicle i represented by the tuple (µi, ωi, qi) can be assigned
to a zone path if the initial location of the vehicle, µi, is same as the starting location of
the path, the start time of the path is same as the availability time of vehicle ωi and the
currently assigned set of requests, qi, can be served using the path. The vehicle capacity
κ along with qi is used to compute the number of free seats (N) in the vehicle at each
zone/location.

Example 3 Figure 6 shows a graphical view of the same for a single vehicle, request and
path. The path is represented using a sequence of locations/zones in the order in which they
will be visited. In Figure 6, we use blue arrows to denote the incoming flow by vehicle i
assignment and green numbers indicate the number of free seats at the location/zone for
vehicle i. The number of free seats is computed by taking κ and qi of the vehicle into
consideration. In figure, in the representation of qi, we use * to indicate that customer
is already present in the vehicle and provide its drop-off location. The red arrows indicate
outgoing flow by request assignment.

At each location, the optimization formulation presented next will ensure that the out-
going flow (the number of requests assigned) is less than or equal to the incoming flow (total
number of free seats in the vehicles assigned to the path), i.e., at each location/zone, the
capacity constraints are satisfied.

3.2.2 Finding Optimal Match in RPV Graph

We now describe the integer linear programming optimization formulation to optimize the
assignment of requests and vehicles to zone paths. P denotes the set of zone paths gen-
erated in the previous step. Pnm is used to denote the nth location/zone in zone path m.
Let Prj ⊂ P denotes the set of paths that can serve request j while satisfying delay con-
straints. Similarly Pvi denotes the set of paths that can be assigned to vehicle i based
on its current location µi, availability time ωi and already assigned/picked-up requests qi.
Binary constants bnjm are set to 1 if the pick-up location of request j is visited but drop-off

location/zone is not visited along path m by the nth location/zone. These are computed as
part of generation of RPV graph as shown in the previous section. Table 1 describes the
notation used in the optimization formulation.

The objective of the optimization formulation described in Table 2 is to maximize the
number of served requests. Constraints (2) and (3) ensure that each vehicle and each
request is assigned to at most one path. Constraint (4) ensures that for every path at
every location/zone, the capacity constraints are satisfied. The capacity constraints can be
violated only while picking up a new request, therefore, the constraint (4) is redundant for
the locations/zones visited after τ duration.

The formulation is run at every decision epoch, i.e., after every ∆ seconds. The solu-
tion of the optimization formulation provides assignment of vehicles and requests to paths.
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Variable Description

xjm Binary variable denoting if the request j ∈ D is assigned to path m.

yim Binary variable denoting if the vehicle i is assigned to the path m.

Pvi Pvi ⊂ P denotes the set of paths that can be assigned to vehicle i based on
its current status µi, ωi and qi.

Prj Prj ⊂ P denotes the set of paths that can be assigned to request j ∈ D.

bnjm Binary constant: 1 if ∃n′ : n > n′ Pn
′

m = oj && @n′′ : n′′ < n, n′′ > n′ Pn
′′

m == dj
N(i,m, n) Number of free seats in the vehicle i for path m at nth location/zone.

Table 1: Notations

Using these assignments, we can perform the assignment of requests to vehicles. The paths
assigned to vehicles are also updated to keep only those locations that correspond to pick-up
or drop-off location of assigned requests and update the travel time and path between the
locations using T and Sp.

Once a vehicle is assigned to a set of requests at any decision epoch, the assignment
is not changed but the path of vehicle can change at next decision epoch to accommodate
additional requests. The current set of requests assigned to a vehicle, qi, limits the number
of paths to which it can be assigned in subsequent decision epochs. The number of free
seats in vehicle i for path m at location/zone n, N(i,m, n) is computed based on κ and qi
(as shown in Figure 6) and is 0 if m /∈ Pvi.

Similar to Alonso-Mora et al. (2017a), we perform a rebalancing of unassigned vehicles
to high demand areas at the end of optimization formulation.

4. ZACBenders: A Non-myopic Approach for Solving RMP

In this section, we first present the challenges in solving RMP with future information
(represented using samples, ξD in the RMP model) and then present our non-myopic ap-
proach ZACBenders. The potential samples, ξD can be obtained by considering the demand
observed in the past data. After considering future information, the goal is to find the as-
signment of vehicles to requests that maximizes the sum of objective value at the current
decision epoch and the expected objective value for the future decision epochs.

4.1 Challenges in Solving RMP with Future Information

As shown in the Figure 7, to solve RMP with future information (ξD) we need to assign
vehicles and request to the zone paths at each decision epoch and for each sample (ξD,k).
The state (i.e., location and requests being served) of vehicle at each decision epoch should
be updated based on the assignments (obtained by solving the RPV graph) at the previous
decision epochs. The paths at future decision epochs for each sample need to be generated
by considering the requests present in the sample and the optimization problem should be
updated to consider the assignments at future decision epochs for all the samples.

There are two major bottlenecks in the above process.
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SolveOptimization(P, Pv, Pr, b,N):

max
∑
j∈D

∑
m∈Prj

xjm (1)

s.t.
∑

m∈Prj

xjm ≤ 1 ::: ∀j ∈ D (2)∑
m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (3)∑
j∈D

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m∀n (4)

xjm, yim ∈ {0, 1}∀i, j,m (5)

Table 2: Optimization Formulation for ZAC

Decision epoch 1

Decision epoch 2 Decision epoch e

Vehicles(𝑉𝑉) Paths (𝑃𝑃) Requests (𝐷𝐷)

𝑉𝑉21(𝑅𝑅𝑅𝑅𝑉𝑉1) 𝑃𝑃21 𝜉𝜉2
𝐷𝐷,1

𝑉𝑉2𝑘𝑘(𝑅𝑅𝑅𝑅𝑉𝑉1) 𝑃𝑃2𝑘𝑘 𝜉𝜉2
𝐷𝐷,𝑘𝑘

Sample 1

Sample k

𝑉𝑉𝑒𝑒1(𝑅𝑅𝑅𝑅𝑉𝑉𝑒𝑒−11 ) 𝑃𝑃𝑒𝑒1 𝜉𝜉𝑒𝑒
𝐷𝐷,1

𝑉𝑉𝑒𝑒𝑘𝑘(𝑅𝑅𝑅𝑅𝑉𝑉𝑒𝑒−1𝑘𝑘 ) 𝑃𝑃𝑒𝑒𝑘𝑘 𝜉𝜉𝑒𝑒
𝐷𝐷,𝑘𝑘

Figure 7: Assignment of vehicles and requests to zone paths over multiple samples of future
demand. We use RPV k

e to denote the RPV graph for decision epoch e in sample k. For
the special case of first decision epoch, we denote the graph by RPV1. Pke denote the set of
paths generated for decision epoch e in sample k. ξD,ke denote the set of requests available
at decision epoch e in sample k. Vke (RPV k

e−1) denote the state of vehicles at decision epoch
e in sample k as a result of assignments obtained by solving the RPV graph at previous
decision epoch in the same sample. Therefore, at each decision epoch for each sample, it is
a matching in a tripartite graph (with vehicles, paths and requests as three parties).

1. As described in the Section 3, the path generation process for a single decision epoch
is challenging, so generating paths in real-time after considering requests in each
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sample for all future decision epochs for all possible updates to the vehicles states is
computationally intractable.

2. The optimization formulation of assigning vehicles and requests to zone paths is an
integer optimization problem. Including requests for all the samples at future decision
epochs in this integer optimization formulation increases the number of variables and
constraints, which makes it difficult to solve online in real-time.

4.2 ZACBenders Approach

The overall flow of ZACBenders is similar to ZAC with the only difference in the step of
finding the optimal assignment of vehicles and requests to zone paths. Table 3 highlights
the difference between ZAC and ZACBenders approach. ZACBenders considers future
information in the step of finding the optimal assignment of vehicles and requests to zone
paths. As mentioned in Section 4.1, incorporating future information makes the problem
challenging, therefore, we first provide a two-stage stochastic approximation, ZACFuture
to handle these challenges. To efficiently solve the ZACFuture optimization formulation in
real-time, we employ Benders Decomposition.

ZAC ZACBenders

Offline

1. Generation of all partial location paths 1. Same
of time span, τ from every location.

Online

1. Generation of RPV graph 1. Same
2. Finding optimal assignment of requests 2. Process the requests in |ξD| samples
and vehicles to zone paths by using the to generate the second stage of the
(0/1) integer optimization in Table 2. proposed two-stage approximation.

3. Follow the steps in Figure 9 to find
the optimal assignment of requests and
vehicles to zone paths while considering
future information.

Table 3: Differences between ZAC and ZACBenders

4.2.1 Two-Stage Stochastic Approximation

As mentioned in Section 4.1, it is difficult to solve RMP with future information by gener-
ating paths considering requests in all samples, therefore, we propose a two-stage stochastic
approximation 8. The first stage assigns vehicles and requests available at the current de-
cision epoch to the zone paths. In the second stage, for each sample, instead of solving a
matching problem in a tripartite graph (with vehicles, paths and requests as three parties)

8. We have experimented with many other approximations such as considering simple extensions of the
existing zone paths to include request in samples and then assigning requests in samples to these extended
paths but we describe in detail the approximation that worked best in practice. We acknowledge that it
is possible to improve the performance even more by designing better approximations.
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at each future decision epoch, we solve a weighted bipartite matching between vehicles and
requests available for assignment at all future decision epochs. The matching problem in
tripartite graph is NP-hard, but the weighted bipartite matching is polynomial-time solv-
able, therefore, this approximation makes the second stage problem simpler. Specifically,
we employ a decomposition of the resultant optimization problem (more details in Section
4.2.3) to get real-time performance.

We now describe the approximations which allow us to simplify the second stage prob-
lem for each sample by modelling it as a weighted bipartite matching problem.

• Approximation 1: Instead of using exact locations from set L, we use abstracted locations,
i.e., zones. The origin/destination of each request in the sample and the location of each
vehicle is mapped to the zones.

• Approximation 2: A vehicle will serve requests in samples (ξD) only after it finishes serving
all the currently assigned requests. That is to say, we ignore that any future request can
be inserted in the vehicle’s path and as a result a vehicle is considered available again for
assignment only after it reaches the end of zone path generated in the first step.

• Approximation 3: Requests in samples (ξD) can be assigned to the same vehicle if and
only if they have identical origin zone, identical destination zone and the decision epoch
at which they become available for the assignment is also the same.

These approximations help in reducing the complexity of the problem, but they still
allow us to get a good estimate of the future because of the following reasons:

• The second approximation ensures that the vehicles that are considered for assignment
at second stage are empty, i.e., they do not have any request assigned to them. So when
the assignment optimization problem is solved (with limited lookahead duration of ρ),
instead of assigning the vehicle to a longer duration path (which keeps it occupied for
more than ρ duration), it will assign the vehicle to those shorter duration zone paths
(in the first stage) that redirect it to zones where future requests are present. At any
decision epoch, it is easier to assign multiple requests to an empty vehicle as compared to
a vehicle that has a passenger on board. Therefore, despite ignoring that future requests
can be picked up before dropping all currently assigned requests, this provides a good
approximation.

• The third approximation (along with first approximation) ensures that the requests are
grouped when they have nearby pick-up and drop-off locations. Though we will miss
grouping the requests that have on the way pick-ups/drop-offs, by making this approxi-
mation and using an appropriate zone size, we will still be able to implicitly consider a
subset of possible paths.

Formally, we map the origin and destination location of requests in the future decision
epochs to zones of size 9 Zs and the elements in ξD,k are grouped together based on the
origin/destination zone and decision epoch. After grouping, each element j′ of ξD,k is

represented using tuple
〈
oz,kj′ , d

z,k
j′ , e

k
j′ , η

k
j′

〉
where oz,kj′ denotes the origin zone of the element

j′ in sample k, dz,kj′ denotes the destination zone of the element j′ in sample k, ekj′ denotes
the decision epoch at which element j′ of sample k will be considered for assignment and

9. As mentioned before, the size of the zone is defined as the time taken to travel within a zone.
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ηkj′ denotes the number of requests with origin oz,kj′ , destination dz,kj′ at decision epoch ekj′
in sample k. We use A to denote the set containing all possible pairs of zones of size Zs
and decision epochs e′ such that if e is the current decision epoch then e < e′ ≤ b ρ∆c. Each
vehicle is mapped to an element in set A and is assigned requests in samples by using above
approximations.

Sample 1𝑧𝑧1, 𝑧𝑧2, 𝑒𝑒1, 9

(Zone,Decision epoch) Elements from 𝜉𝜉𝐷𝐷,1

Decision epoch 1
Stage 1 Stage 2

𝑧𝑧1, 𝑒𝑒1

𝑧𝑧2, 𝑒𝑒2

2

Sample k

Vehicles(𝑉𝑉) Paths (𝑃𝑃) Requests (𝐷𝐷)

𝐴𝐴
1

3

Weight = 4

Weight = 4

Weight = 1

Sub-elements

𝑧𝑧1, 𝑧𝑧2, 𝑒𝑒1, 6

(Zone,Decision epoch) Elements from 𝜉𝜉𝐷𝐷,𝑘𝑘

𝑧𝑧1, 𝑒𝑒1

𝑧𝑧2, 𝑒𝑒2

2

𝐴𝐴
1Weight = 4

Weight = 2

Sub-elements

Future Decision epochs

2

1

2

1

Figure 8: Two-Stage stochastic approximation for assignment of vehicles and requests to
zone paths over multiple samples of future demand (For κ = 4). The zone and decision
epoch mentioned in the oval are the zone and decision epoch at which the paths at the first
stage in set P ends. Therefore, vehicles have dropped all the assigned requests from set
D (in first stage), once they reach the zone and decision epoch present in the oval. The
number inside a diamond represents the number of empty vehicles present in the zone and
decision epoch mentioned in the oval box. At the second stage, for each sample, a bipartite
matching is performed between empty vehicles and available requests for all future decision
epochs as compared to the matching in a tripartite graph (with vehicles paths and requests
as three parties) for each sample in each decision epoch as shown in Figure 7.

The assignment of vehicles to paths at first stage determines the zone and the decision
epoch at which the vehicles will become available again for assignment (Approximation 2),
and as all the vehicles have identical maximum capacity 10, in the second stage, we can
group the vehicles based on the zone and the decision epoch at which they become available
again for assignment. A vehicle can be assigned to a request if and only if it can reach the
origin location of request within the maximum allowed wait time, i.e. τ . Let Ek denotes the
set of all such assignment edges between vehicles and requests for sample k. To ensure that
a vehicle can be assigned at most κ requests and these requests can be grouped together as

10. In the experiments, we show that even if all vehicles do not have identical maximum capacity, the
approximation still works well. In that case, in the second stage, we take the maximum capacity of each
vehicle as an average of all vehicle’s maximum capacity.
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per Approximation 3, if ηkj′ > κ, we divide the element into d
ηk
j′
κ e subelements of element j′

and allow each subelement to be assigned at most once, but if a vehicle of type i′ is assigned
to rth subelement of element j′ in sample k, the weight received is given by

wki′j′r =


0 if(i′, j′, r) /∈ Ek

κ if(i′, j′, r) ∈ Ek and r < b
ηk
j′
κ c

ηkj′ % κ otherwise

Therefore, this creates a bipartite graph with one side containing vehicles grouped based
on their type (i.e., zone and decision epoch at which they become available based on the path
assigned in the first stage) and the other side containing the request groups (all subelements
of the element j′ ∈ ξD,k,∀j′).

Figure 8 shows the graphical representation of the two-stage stochastic approximation,
where first stage performs the matching in a tripartite graph (with vehicles, requests and
zone paths as three parties), and in the second stage within each sample, there is a bipartite
matching. We now describe the optimization formulation that can be used to solve this two-
stage stochastic approximation.

ZACFuture(P, Pv, Pr, b,N, ξD):

max
∑
j∈D

∑
m∈Prj

xjm +
1

|ξD|

|ξD|∑
k=0

∑
j′∈ξD,k

d
ηk
j′
κ e∑
r=0

∑
i′∈A

wki′j′r · uki′j′r (6)

s.t.
∑

m∈Prj

xjm ≤ 1 ::: ∀j ∈ D (7)

∑
i′∈A

uki′j′r ≤ 1 ::: ∀j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e,∀0 ≤ k < |ξD| (8)∑

m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (9)∑
j∈D

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m∀n (10)

∑
j′∈ξD,k

d
ηk
j′
κ e∑
r=0

uki′j′r ≤
∑
i∈V

∑
m;f(m)=i′

yim ::: ∀i′ ∈ A (11)

yim ∈ {0, 1} ::: ∀i ∈ V,m ∈ P (12)

xjm ∈ {0, 1} ::: ∀j ∈ D,m ∈ P (13)

uki′j′r ∈ {0, 1} ::: ∀i′ ∈ A, j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e, 0 ≤ k < |ξD| (14)

Table 4: Optimization Formulation for Two-Stage stochastic approximation of RMP with
future samples
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4.2.2 ZACFuture: Optimization Formulation to Solve the Two-Stage
Stochastic Approximation

In this section, we describe the optimization formulation ZACFuture to solve the two-
stage stochastic approximation presented in the previous section. Table 4 presents the
optimization formulation ZACFuture, which maximizes the number of requests served for
the current decision epoch and the expected number of requests served over future demand
samples.

We use uki′j′r to denote the assignment of vehicle of type i′ (i.e., the vehicles present in
the zone zi′ at decision epoch ei′ , where (zi′ , ei′) is the tuple representation of element i′ ∈ A)
to the rth subelement of j′ element of ξD,k. We also use f(m) to denote the tuple (zm, em)
where zm and em denote the zone and decision epoch at which the vehicle will become
available if it is assigned to path m. Constraints (8) ensure that the each subelement of
j′th element of ξD,k is assigned at most once and Constraints (11) ensure that the number
of type i′ vehicles assigned is less than the number of vehicles available of type i′.

4.2.3 Benders Decomposition to Efficiently Solve ZACFuture Optimization
Formulation

The complexity of the optimization formulation ZACFuture increases with the increase in
the number of samples. To reduce this complexity, we exploit the following observation:

Observation 1 In ZACFuture, once the assignment of vehicles to paths at the current deci-
sion epoch (yim) is given, the optimization models for computing the assignment of vehicles
to requests at future decision epochs, (ukij′r) for each of the samples k, are independent of
each other.

The observation 1 allows us to use Benders Decomposition (Benders, 1962) to decom-
pose the large optimization formulation into multiple smaller problems that can be solved
in parallel. Benders Decomposition is a master slave decomposition technique where the
master problem finds the solutions for the integer variables; and the slave problem(s) is
(are) used to find the solutions to all other variables (which can take any value in the in-
terval and need not be integers) while keeping the values of the integer variables fixed to
the value obtained by the master problem. The values obtained by slave problems help in
generating benders cuts, which are added to the master problem and the master problem is
solved again with these cuts to obtain an improved solution. This process is repeated until
no more cuts can be added to the master problem. It is widely used to solve such two-stage
stochastic problems (Murphy, 2013; Lowalekar et al., 2018).

Based on Observation 1, yim are the difficult variables as they impact the values assigned
to all the other variables. xjm are also difficult variables as they can take only integer
values. As described in the previous section, the second stage problem for each sample
is a weighted bipartite matching problem. The constraint matrix for weighted bipartite
matching is totally unimodular, therefore, integrality constraints on the uki′j′r variables can
be relaxed (Hoffman & Kruskal, 2010) after fixing the values of yim variables. Therefore,
the master problem obtains the assignments for the “difficult” integer variables (xjm and
yim) and the slave problem(s) obtain the assignments to the ukij′r variables.
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Master(P, Pv, Pr, b,N):

max
∑
j∈D

∑
m∈Prj

xjm +
1

|ξD|

|ξD|∑
k=0

Q({yim}i∈V , (j ∈ P, k) (15)

s.t.
∑

m∈Prj

xjm ≤ 1 ::: ∀j ∈ D (16)∑
m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (17)∑
j∈D

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m, ∀n (18)

Table 5: Optimization Formulation for Master problem - ZACBenders

For the master (Table 5), in the optimization provided in ZACFuture, we replace
the part of the objective dealing with future variables, {uki′j′r} by the recourse function
Q({yim}i∈V,(m∈P , k), which becomes the objective function in the slave problems. The re-
course function Q() needs to be computed for each value of yim. In the slaves (Table 6), we
consider the fixed values of yim and to avoid confusion, we refer to them using the capital
letter notation, Yim.

SlavePrimal(P, Pv, Pr, b,N, Y, k):

max
1

|ξD|
∑

j′∈ξD,k

d
ηk
j′
κ e∑
r=0

∑
i′

wki′j′r · uki′j′r (19)

s.t.
∑

j′∈ξD,k

d
ηk
j′
κ e∑
r=0

uki′j′r ≤
∑
i

∑
m

Yim ::: ∀i′ (20)

∑
i′

uki′j′r ≤ 1 ::: ∀j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e (21)

Table 6: Optimization Formulation for Slave problem (Primal)- ZACBenders

The dual (Bertsimas & Tsitsiklis, 1997) of the primal slave problems are provided in
Table 7, where α variables are the dual variables corresponding to the constraints (20) and
β variables are the dual variables corresponding to the constraints (21).

The weak duality theorem (Bertsimas & Tsitsiklis, 1997) states that the solution to a
maximization primal problem is always less than or equal to the solution of the correspond-
ing dual problem. Therefore, using the concept of weak duality, we can say that, by taking
the dual of the slave problems, we can find an upper bound on the value of the recourse
function (Q())(objective of primal slave problem), in terms of the master problem variables
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SlaveDual(P, Pv, Pr, b,N, Y, k):

max
∑
i′

∑
i

∑
m∈Pvi

αki′ · Yim +
∑

j′∈ξD,k

∑
r

βkj′r (22)

s.t. αki′ + βkj′r ≥ wki′j′r ::: ∀i′, j′, r (23)

αki′ ≥ 0 ::: ∀i′, k (24)

βkj′r ≥ 0 ::: ∀j′, r, k (25)

Table 7: Optimization Formulation for Slave problem (Dual) - ZACBenders

yim. These can then be added as optimality cuts to the master problem (Murphy, 2013) for
generating better first stage assignments11.

Let θk be the approximation of Q() function then the master problem with optimality
cuts is provided in the Table 8. It should be noted that we are using yim variables in the
“master with optimality cuts” and not the fixed values, Yim.

MasterWithOptimalityCuts(P, Pv, Pr, b,N):

max
∑
j∈D

∑
m∈Prj

xjm +
1

|ξD|
∑
k

θk (26)

s.t. θk ≤
∑
i′

∑
i

∑
m∈Pvi

αki′ · yim +
∑

j′∈ξD,k

∑
r

βkj′r (27)∑
m∈Prj

xjm ≤ 1 ::: ∀j ∈ D (28)∑
m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (29)∑
j∈D

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m,∀n (30)

Table 8: Optimization Formulation for Master problem (with optimality cuts) - ZACBenders

In each iteration we solve the master problem and the computed yim variable values are
passed to the dual slave problems. After solving the dual slave problems, optimality cuts
are generated. If the current values of θk(∀k) satisfy the optimality cut conditions, then
we have obtained an optimal solution, else cuts are added to the master problem and the
master problem is solved again. Figure 9 shows the flow diagram for the same.

The slave problems are independent of each other (Table 7) and are only connected by
the choice of the master variables (“difficult” integer variables). Therefore, once the master
variables are fixed, the slave problems can be solved in a parallel fashion.

Discussion: The RMP problem defined in Section 2 and proposed ZAC based formulations
assumes that requests will not be made in advance. While it is the most common setting in
the ridesharing application, it will be useful for customers to have an option to request for

11. As the slave problems are always feasible for any value of the master variables, we only need to add
optimality cuts to the master problem.
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No

Solve Master with optimality  cuts. Let 
𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 =  value of 𝜃𝜃𝑘𝑘 on solving the 
master problem.

Solve SlaveDual for each sample for fixed 
value of master variables(𝑦𝑦𝑖𝑖𝑖𝑖) . Let 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 = 
objective value of dual for sample 𝑘𝑘 .

Add Optimality Cuts.

StartBenders Decomposition:

Figure 9: ZACBenders Approach: Finding Optimal Assignment of requests to paths to
vehicles

rides in advance. By using ZACBenders, we can allow customers to make advance requests
with some limitations. The changes which will be needed in the algorithm are as follows:

1. When requests are made in advance (e.g. two hours in advance), it will be considered
as part of each of the sample in ZACBenders.

2. If these advance requests are assigned, in all the future timesteps (until the difference
between request pick-up time and current time is less than τ), for these requests,
constraints (16) or (21) will be kept as equality constraints instead of inequality
constraints , i.e., once accepted, these requests should have a guarantee that a vehicle
will arrive on time.

5. Experiments

The goal of the experiments is to evaluate the performance of ZAC and ZACBenders in
comparison to TBF 12. We also compare the performance of our algorithms against Neu-
rADP (Shah et al., 2020), which learns the expected future value of each assignment of
vehicle to trips by using a neural network based value function in the approximate dynamic
programming framework. As NeurADP requires training a different model for each change
in an input parameter, using limited academic resources, it was not possible to run the
exhaustive set of experiments with NeurADP. Therefore, we first show the detailed exper-

12. The complexity of TBF increases with the increase in vehicle capacity. It is not possible to run it up
to optimality. Therefore, we run it with the heuristics mentioned in the paper (0.2 second for each
vehicle and keeping 30 vehicles for each request (but keeping all request edges)). We use the objective
of maximizing the number of requests served for all algorithms. The objective can be changed to the
objective of minimizing the delay or maximizing the revenue for both TBF and ZAC.
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imental results comparing the performance of TBF, ZAC and ZACBenders and then in
Section 5.3.1 we compare against NeurADP. For ZACBenders we kept a maximum time
limit of ∆ seconds for each assignment, but the Benders Decomposition can converge before
the maximum time limit is reached.

We evaluate the algorithms on following metrics: (1) Service Rate, i.e., percentage
of total available requests served. (2) Runtime to compute a single step assignment. We
experimented by taking demand distribution from two real-world and one synthetic dataset.
The details about datasets are provided in Section 5.1.

Table 9 provides the outline for this section. We will show two main results that demon-
strate the significant utility of our approaches:

• Our myopic approach ZAC outperforms the current best myopic approach TBF. While
the improvement varies, ZAC serves up to 4% more requests on real-world datasets and
up to 20% more requests on synthetic dataset.

• Our non-myopic approach ZACBenders further improves the performance of ZAC. It
provides 14.7% improvement over TBF. NeurADP when hyper-optimized to the test set-
tings can perform better than ZACBenders on certain cases. However, ZACBenders gets
improvements of up to 12.48% when NeurADP is not hyper-optimized for test settings.

Section Description Key Content

5.1 Datasets Details on the datasets and different data
fields used from the datasets.

5.2 Experimental Settings Details on the different inputs, parameters
and evaluation settings used.

5.3 Results on Real-World Datasets Describes our key results on real-world
datasets and shows the comparison of
TBF, ZAC and ZACBenders for different
parameters at on the three metrics of service
rate and runtime.

5.3.1 Comparison with NeurADP Describes our key result by comparing TBF,
ZAC and ZACBenders with NeurADP.

5.4 Results on Synthetic Dataset Describes the performance of algorithms on
specially created first and last mile scenarios
where it is advantageous to explore more

request combinations at a decision epoch.

Table 9: Experiment Section Outline

5.1 Datasets

The first real-world dataset is the publicly available New York Yellow Taxi Dataset (NYYel-
lowTaxi, 2016), henceforth referred to as the NYDataset. The name of the other real-world
dataset can not be revealed due to confidentiality agreements. It is referred to as Dataset1.
We use the street intersections as the set of locations L. To find out the street intersections
in real-world dataset, we take the street network of the city from Openstreetmap using
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osmnx with drive network type (Boeing, 2017). From these we remove the network nodes
that do not have any outgoing edges, i.e., we take the largest strongly connected compo-
nent of the network. For NYDataset, as considered in earlier works by Alonso-Mora et
al. (2017a), we only consider the street network of Manhattan as 75% of the requests have
pick-up and drop-off locations in Manhattan. Moreover, less than 15% of the total requests
have a pick-up and drop-off location in different boroughs of New York indicating that these
boroughs can be solved independently.

Both real-world datasets contain data of past customer requests for taxis at different
time of the day and for different days of the week. From these datasets, we take the
following fields: (1) Pick-up and drop-off locations (latitude and longitude coordinates):
These locations are mapped to the nearest street intersection. (2) Pick-up time: This time
is converted to appropriate decision epoch based on the value of ∆. The travel time on
each road segment of the street network is taken as the daily mean travel time estimate
computed using the method proposed by Santi et al. (2014).

(a)

Figure 10: Street network for synthetic dataset. Train stations are marked with red.

To simulate the scenario for on-demand shuttle services (Shotl, 2018; Beeline, 2016;
Grab, 2018) having a small set of pick-up/drop-off points in a city, we also perform exper-
iments on a synthetic dataset introduced by Bertsimas et al. (2018). The network (Figure
10) has one downtown area represented by the big square in center and 8 suburbs. We
create a train station at one node of each suburb (marked by red circle) to simulate special
cases of first and last mile transportation. At each decision epoch, requests are randomly
generated by taking pick-up and drop-off location uniformly. In addition, every 180 seconds
(frequency of arrival of train at the train stations), we generate first and last mile requests
in each suburb (representing arrivals by train).

The number of nodes/locations, edges in the street network of the city and the number
of requests present in each dataset are shown in the Table 10.
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Dataset Locations Edges Avg No. of Requests Avg No. of Requests
(|L|) (|E|) per day (on test days) per hour (Peak)

(on test days)

NYDataset 4373 9540 313683 20910

Dataset1 21212 41424 403770 23664

Synthetic 192 640 173557 8578

Table 10: Details for different datasets

5.2 Experimental Settings

There are three different categories of experimental settings that have an impact on the
performance of algorithms:

1. Inputs provided to all algorithms: These include

• Number of Vehicles (|V|): The number of vehicles used is dependent on the fleet
size of the company. At the start of the experiment, empty vehicles are distributed
uniformly at random at different locations. Based on the assignment obtained by
algorithms at any decision epoch, the status of vehicles at the next decision epoch
is updated. In the results section, we vary the number of vehicles to show the
performance of algorithms for different number of vehicles.

• Maximum Capacity (κ): The maximum number of passengers that can be
present in a vehicle at any time.

• τ and λ: τ represents the maximum time within which the vehicle should reach
the origin location of request and λ denotes the maximum allowed travel delay for
any request (in seconds).

• Decision epoch duration (∆): This parameter determines how often the al-
gorithm should be executed, and assignment decisions are made. For example, if
∆ = 60 seconds, then requests are batched for the duration of 60 seconds and the
decision of serving or rejecting these requests is taken every 60 seconds by the algo-
rithm. We vary this parameter to show the performance of algorithms for different
values.

Input Parameter Values considered in Experiments

∆ (in seconds) 10,30,60

τ (in seconds) 120,180,300,420

λ (in seconds) 240,600,840,900

|V| 1000,2000,3000,5000,8000,10000

κ 1,2,3,4,8,10

Table 11: Inputs to all algorithms

Table 11 shows the values of different input parameters considered in the experiments.
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2. Parameters of the algorithm: The parameters required by our algorithms are:

• Clustering Method: To construct zones from the set of locations L, we compare
the performance by using different clustering methods and different static zone sizes.
Zone size is taken as the intra zone travel time (in seconds).

• Number of Different Zone Sizes (for drop-off locations) (M): In the online
completion phase of the offline path, instead of using a fixed zone size, ZAC dy-
namically decides the zone size to be used from a predefined fixed set of zone sizes.
We vary the number of different zone sizes from which the ZAC algorithm picks the
best zone size for a path.

• Zone Size for Samples (Zs): For samples we use a static zone size of 600 seconds.
While it is possible to improve the performance of ZACBenders by using different
zone size for different capacities and different value of τ and δ, we observe in the
experiments that, by using a fixed zone size, it is possible to get improvement across
different parameters and different datasets.

• Number of Samples (|ξD|): While computing an assignment at decision epoch
e, our non-myopic approach ZACBenders require samples of customer requests at
decision epochs e+ 1, e+ 2, .., e+Q, where Q = b ρ∆c, from past data (at the same
decision epoch on the past days). We identify the right value for the number of
samples through experiments as described in results section. Each sample corre-
spond to past one day. For example, if 10 samples are used, it means that requests
from past 10 days are used to compute the expected future value in ZACBenders.

• Lookahead Duration (ρ): This determines how far ahead ZACBenders look into
the future. If lookahead duration is 600 seconds and current time is 09:00AM,
ZACBenders considers samples of customer requests up to 09:10AM.

Table 12 shows the different values for the parameters used in the experiments. To
obtain the right set of parameter values, we compare the performance of approaches
by running them on 5 different weekdays from 21-03-2016 to 25-03-2016 and taking
the average value over these five days.

Algorithm Parameter Values considered in Experiments

M 2,4,6

Clustering Method GBC, HAC MAX,HAC AVG

Zone size for Samples (Zs) (in seconds) 600

Number of Samples (|ξD|) 1,3,5,8,10

Lookahead Duration (in seconds) (ρ) 600, 900 ,1200 ,1500

Table 12: Algorithm Parameter Settings
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3. Evaluation settings:

• Evaluation duration: We evaluate the performance of each algorithm over 1 hour
by varying different input and algorithmic parameters. For a subset of parameter
combinations, we also compared the performance over 24 hours 13.

• Number of days and time of evaluation: We performed experiments with
requests at various times of the day, 8:00 AM, 3:00 PM, 6:00 PM, 12:00AM and
on different days. We evaluated the approaches by running them on 15 different
weekdays between 04-04-2016 and 22-04-2016 and taking the average values over
15 days. These 15 days are different from the 5 days used to obtain the right set of
algorithm parameters.

We conducted experiments with all the combinations of settings and inputs mentioned
in this section. To avoid repeating similar results over and over again, we provide the
representative results. All experiments are run on a 24 core - 2.4GHz Intel Xeon E5-2650
processor and 256GB RAM. The algorithms are implemented in Java and optimization
models are solved using CPLEX 12.6. For ZAC and ZACBenders, we also use offline
generated paths. Table 13 provides the number of paths and memory requirement of the
offline paths for different values of τ for NYDataset. We generated all possible paths when
τ ≤ 180 seconds. For higher values of τ , we used the data-driven approach provided in
Appendix B.

τ Number of Paths Memory used

120 208604 76 MB

180 2008895 1.68 GB

300 3196478 3.98 GB

420 4256412 7.86 GB

Table 13: Offline Paths

5.3 Results on Real-World Datasets

In this section, we compare the number of requests served by TBF, ZAC and ZACBenders.
We also compare the average time taken to compute an assignment by all the approaches.

While we acknowledge that by hyper-optimizing the parameters of our algorithms for
each setting, it is possible to improve the results even further, our focus is on showing
that even without hyper-optimizing the parameters, our algorithms perform extremely well
in comparison to existing methods. Therefore, we choose a single best configuration for
parameters of algorithms (justification provided in the Section 5.5). For ZAC and ZA-
CBenders, we cluster locations into zones using HAC MAX and use M=4 (with zone sizes
0,60,120,300). ZACBenders uses 5 samples with a lookahead duration of 15 minutes and
the value of Zs (zone size used in second stage) is taken as 600 seconds.

13. As running all the algorithms for 24 hours over different set of parameters takes a long time and the
difference in the performance of algorithms over 1 hour was following a similar trend as over 24 hours,
we ran it for 24 hours only for a subset of parameters.
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We first compare the service rate and runtime of TBF, ZAC and ZACBenders by varying
different parameters on two real-world datasets.
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Figure 11: Comparison of ZACBenders, ZAC and TBF on NYDataset for τ=180 seconds,
λ=600 seconds and ∆ = 60 seconds

Effect of change in vehicle capacity (κ) and number of vehicles (|V|): Figure 11
and Figure 12 show the service rate and runtime comparison of TBF, ZAC and ZACBenders
for NYDataset and Dataset1 respectively at 8am (Peak time) .
For the change in the number of vehicles, we make the following observations:

• On Dataset1, the difference in the service rate obtained by ZAC and TBF increases as the
number of vehicles increases from 3000 to 5000. One of the reasons is that TBF limits the
number of vehicles considered for each request to 30, so the number of requests missed
due to this limit will be more for a higher number of vehicles. But on further increasing
the number of vehicles to 10000, the gap between ZAC and TBF reduces. This is because,
when more vehicles are available, it reduces the need of generating all combinations. On
NYDataset, the difference between service rate obtained by ZAC and TBF is maximum
for 1000 vehicles.

• The difference in service rate of ZACBenders and ZAC decreases as the number of vehicles
are increased. This is because when more vehicles are available, they will be free even
after executing current assignments at the current decision epoch, so future demands can
be met irrespective of the current assignment. On Dataset1 for capacity 4, ZACBenders
obtains 4.2% improvement over ZAC for 1000 vehicles, 3.27% improvement for 3000
vehicles and 2.24% improvement for 5000 vehicles. For 10000 vehicles, the service rate
obtained by ZAC and ZACBenders is almost the same. On NYDataset for capacity 4, the
maximum improvement obtained by ZACBenders over ZAC is 8.89% which is for 1000
vehicles.
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Figure 12: Comparison of ZACBenders, ZAC and TBF on Dataset1 for τ = 180 seconds,
λ = 600 seconds and ∆= 60 seconds

Here are the key observations when vehicle capacity is changed for a fixed number of vehi-
cles:

• Service rate obtained by ZAC is more than TBF for both datasets. For capacity 4 with
1000 vehicles for NYDataset, the service rate obtained by ZAC is 1.36% more than the
service rate obtained by TBF and for capacity 10 we obtain a gain of 2.03%. On the other
hand, for Dataset1 for capacity 4 with 5000 vehicles, the service rate obtained by ZAC is
up to 4% more than the service rate obtained by TBF. On Dataset1, we do not observe
much increase in service rate beyond capacity 4 due to the large size of the network and,
longer travel times which allow fewer requests to be paired.

• ZACBenders improves the performance of ZAC by using future information. For capac-
ity 4 with 1000 vehicles on NYDataset, it obtains 8.89% improvement over ZAC, which
increases to 9.5% for capacity 10. On Dataset1 for 1000 vehicles with capacity 4, ZA-
CBenders obtains 4.2% improvement over ZAC, which increases to 4.6% for capacity
10.

• While both ZAC and TBF can compute a solution in less than 20 seconds, the time taken
by ZAC is much less than TBF. The time taken by ZACBenders is much more than the
myopic algorithms TBF and ZAC, but the service rate improvement compensates for the
additional runtime.

We also experimented with all the vehicles having different maximum capacity. In this
case, to compute the weight of edges in bipartite graph in ZACBenders, κ is taken as average
of all vehicle’s maximum capacity. Figure 11c shows the results where vehicle capacities
are generated by taking different distributions. We experimented with the following three
distributions:
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1. Uniform 4: The maximum capacity of each vehicle is sampled uniformly between 1 to
4.

2. Uniform 10: The maximum capacity of each vehicle is sampled uniformly between 1
to 10.

3. 80 20: 80% of the vehicles have maximum capacity as 4 and 20% of the vehicles have
maximum capacity as 6. This is based on the observation that ridesharing companies
like Uber, Lyft etc. have a majority of vehicles with maximum capacity 4 and some
vehicles with maximum capacity 6.

In this case also, we observe that ZACBenders obtains improvement over myopic approaches.
For Uniform 4, the improvement over ZAC is 7.26%, for Uniform 10 the improvement is
11.94% and for 80 20, the improvement obtained is 11.61%. The two-stage stochastic ap-
proximation in this case works better than all vehicles having identical maximum capacity
as when vehicles have identical maximum capacity, the κ value used in the second stage
will be higher and it will allow more requests to group at future decision epoch causing the
future value to be overestimated in some cases.
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Figure 13: Comparison of ZACBenders, ZAC and TBF for NYDataset for 1000 vehicles
and varying values of ∆, τ = 300, λ = 600 seconds
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Figure 14: Comparison of ZACBenders, ZAC and TBF for NYDataset for 1000 vehicles
and different time of the day. τ = 300, λ = 600 seconds

Effect of change in value of ∆: We compare the service rate and runtime of algorithms
for different values of ∆ (Figure 13). Here are the key observations:
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• Service rate increases as the value of ∆ increases. This is because more requests are
available at each decision epoch which allows grouping more requests together.

• The difference between the service rate of ZACBenders and ZAC increases as the ∆ in-
creases. One of the reasons is that the value of ∆ limits the time available for computation
of assignments. When ∆ value is low, less number of benders decomposition iterations
can be executed within time limit, which affects the performance of ZACBenders.

• The time taken by TBF is much more than ZAC for larger ∆ values due to the presence
of a higher number of requests at each decision epoch.

Effect of time of the day: We compare the effect of time of day on the performance of
algorithms (Figure 14). Here are the key observations:

• The service rate of ZAC is more than TBF in each time interval and ZACBenders further
improves this service rate.

• The difference between service rate of ZAC and TBF is more during non-peak hours
(3pm and 12am). This is likely as there are less requests available at each decision epoch,
so as opposed to peak time where there is more possibility of grouping requests across
decision epochs, at non-peak times it is advantageous to explore more combinations at a
single decision epoch. The other reason is that ZAC is able to rebalance vehicles better
by assigning them to zone paths.

Effect of change in values of τ and λ: We show the service rate and runtime results for
different values of τ and λ in Figure 15. Irrespective of the delay constraints, the service rate
obtained by ZAC is either more or same as TBF and the runtime of ZAC remains less than
TBF in all cases. The improvement in the service rate obtained by ZACBenders over ZAC is
also consistent across different values of τ and λ. The time taken by ZACBenders increases
as the value of τ and λ increases due to increase in the complexity of the optimization
formulation.

On real datasets, ZAC obtains up to 4% gain in service rate over TBF across different
parameter values. ZACBenders obtains nearly 10% improvement in service rate over ZAC on
NYDataset and 5% improvement on Dataset1 14. Typically, even a 0.5% gain is considered
significant on real taxi datasets (as shown by a real car aggregation company (Xu et al.,
2018)), so the gain obtained by our algorithms is a significant gain.
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Figure 15: NYDataset - 1000 vehicles, ∆=60 seconds.

14. This gain further increases when evaluated over longer duration (24 hours) as opposed to 1 hour as seen
in the results in the Section 5.3.1.
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5.3.1 Comparison with NeurADP

In this section, we compare TBF, ZAC, ZACBenders and NeurADP (Shah et al., 2020) on
NYDataset. Both ZACBenders and NeurADP can compute an assignment within maximum
∆ seconds. We compare the performance of all algorithms over 24 hours as both ZACBen-
ders and NeurADP consider future information and potentially ignore requests at initial
decision epochs to serve more requests in the future and, as a result, achieve higher service
rates when evaluated over longer durations. As indicated earlier, NeurADP was specifically
trained on these parameter setting for NYDataset. Following are the key observations:
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Figure 16: Comparison of service rate on NYDataset. (a) (b) Number of vehicles =1000
(b)(c) τ = 300,λ = 600

• For 1000 vehicles of capacity 4 with τ = 300 and λ = 600 seconds, ZACBenders obtains
14.7% improvement over TBF over 24 hours.

• ZACBenders and NeurADP outperform myopic approaches TBF and ZAC as shown in
Figure 16. ZACBenders and NeurADP have comparable performances, except in a couple
of cases (with a maximum improvement of 6% for NeurADP).

Generalizability : Learning a new model for every possible parameter configuration and
every dataset is not scalable nor sustainable for real datasets. For instance, the model train-
ing is a time-consuming process and it takes around one week to learn for NeurADP. Unlike
NeurADP, ZACBenders does not require training for every parameter setting. Therefore,
we now evaluate generalizability of NeurADP in comparison to ZACBenders on test settings
across three dimensions:

1. Change in Decision Epoch Duration (∆): If there is a requirement to reduce the
decision epoch duration to enhance the user experience, it will not be possible to adopt
this change using NeurADP without training a new model and optimizing the hyper
parameters efficiently for this case. On the other hand, ZACBenders can be used
readily for different values of ∆. As shown in Figure 17a, if we take the model trained
for ∆ = 60 seconds and use it for ∆ = 30 seconds, the performance of NeurADP is
significantly affected. In this case, ZACBenders obtains 5.5% improvement in service
rate over NeurADP.

2. Change in Number of Vehicles: If the ridesharing company decides to increase
the fleet size (number of vehicles) and uses the NeurADP model trained for smaller
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fleet size, NeurADP is significantly outperformed by ZACBenders. When we take the
model trained for 1000 vehicles and use it in a scenario with 2000 vehicles, ZACBenders
obtains 12.48% improvement in service rate over NeurADP.

3. Change in Demand Distribution: There is going to be an event organized in
the city which will cause demand patterns to deviate from the historical patterns.
The change in the demand distribution can be predicted and we can get different
samples from this predicted demand distribution. To use the NeurADP approach in
this scenario, we need to use these samples in the NeurADP simulator and train the
neural network model using these samples. So, it will not be possible to use NeurADP
immediately. On the other hand, we can provide these samples to ZACBenders and
start executing it. In Figure 17c, we show that instead of taking customer requests
from the dataset, we evaluate the approaches by taking customer requests from a
uniform distribution 15, ZACBenders can obtain 9.73% improvement over NeurADP.
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Figure 17: Comparison of service rate on NYDataset. For these results NeurADP uses the
model trained for 1000 vehicles ∆ = 60 seconds, τ = 300 seconds, λ = 600 seconds and the
appropriate capacity (4 or 10) (a)(c) Number of vehicles =1000, (a)(b)(c) τ = 300,λ = 600,
(a) (c) Capacity = 10, (b) Capacity = 4

5.4 Results on Synthetic Dataset

The real-world taxi datasets can not capture the scenarios for on-demand shuttle ser-
vices (Shotl, 2018; Beeline, 2016; Grab, 2018) having a small set of pick-up/drop-off points
in a city. These involve scenarios where many requests can be combined at each decision
epoch. We represent these scenarios by simulating the case of first and last mile transporta-
tion in the synthetic network (details provided in experimental setup), where there are
multiple requests at each decision epoch with either identical pick-up location and nearby
drop-off locations or identical drop-off locations and nearby pick-up locations resulting in
higher possibility of having a large number of request combinations at a decision epoch.

The gain obtained by ZAC over TBF is even more significant in these scenarios as TBF
will not be exploring all relevant combinations while ZAC can explore more combinations
by using zone paths. ZACBenders provide a slight improvement over ZAC by using future

15. It can be shown using any distribution, we took uniform distribution as an example.

154



Zone pAth Construction (ZAC) based Approaches for Effective Real-Time Ridesharing

information but in these scenarios, as the travel times are small and the pick-up and drop-off
locations of requests are near each other, the major improvement is obtained by exploring
more combinations at a single decision epoch.

We compare the service rate obtained by TBF, ZAC and ZACBenders with different
numbers of vehicles and different capacities and make the following observations:

• We observe that with 500 vehicles and capacity 10, ZAC can obtain 20.8% improvement
in service rate over TBF. The gain reduces to 16% on increasing vehicles to 1000. This
is because when more vehicles are available to serve same number of customer requests,
it reduces the need of generating all combinations.

• The service rate obtained by ZACBenders and ZAC is almost the same on this dataset
as it is more important to explore more combinations in these scenarios. For 100 vehicles
with capacity 10, ZACBenders obtains 2.2% improvement over ZAC and for 500 vehicles
with capacity 4 ZACBenders obtains 2% improvement over ZAC.

These results demonstrate that ZAC is able to consider significantly more trips than
TBF.

The scope of improvement by incorporating future value is less in this synthetic dataset
due to the structure of the network, the nature of requests (mostly first and last mile requests
) and lower time windows. As the majority of requests are first and last mile requests with
smaller travel times and have a maximum wait time of 2 minutes (and maximum delay of
4 minutes), it makes more sense to group more requests in the same vehicle at the current
decision epoch. Considering future information does not help much in this case as most of
the requests are first and last mile, so majority of times vehicle remains in the same area
(i.e., near train stations). As a result, these vehicles are available to serve new incoming
first and last mile requests in-spite of ignoring the future information.

When the future information is ignored, occasionally, vehicles are assigned to requests
going towards the downtown area, which have higher travel time. This causes vehicles to
move away from train stations and makes them unavailable for serving future first and last
mile requests. By considering the future information, we can ignore the requests going
into the downtown and keep the vehicle near train stations to serve more first and last
mile requests in the same time it will serve one request to the downtown area. As these
occurrences are rare (due to the majority of requests being first and last mile), we obtain a
small improvement by considering future information in this case.

5.5 Justification for Values of Algorithmic Parameter Settings

In this section, we show the reason for using the fixed algorithmic parameter values (used
in previous sections) for ZAC and ZACBenders.

5.5.1 Identification of Right Clustering Method

We first conduct experiments by using different clustering methods, with M = 1, by varying
the zone sizes. Zone size is taken as the intra zone travel time (in seconds). Figure 19
shows the comparison of GBC, HAC MAX and HAC AVG on NYDataset. We compare the
service rate, runtime and abstraction error with different clustering methods and different
zone sizes for ZAC. We measure abstraction error by computing the percentage of requests
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Figure 18: Synthetic Dataset with τ = 120,λ = 240 and ∆ = 60 seconds
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Figure 19: Comparison of service rate, runtime and abstraction error with different cluster-
ing methods and zone sizes for M = 1, number of vehicles = 1000, capacity = 10, τ =300,
λ = 600 seconds

having delay above λ and maximum delay obtained by any request that is above λ. We
can observe that with HAC MAX more requests can be served while keeping the error
due to abstraction minimal. We also observe that as the zone size decreases, the number
of requests served increases, error due to abstraction decreases with a slight increase in
runtime. Based on these results, we use HAC MAX as the clustering method for our next
set of experiments.

5.5.2 Identification of Right Value of M

Our next set of experiments compare the service rate, runtime and abstraction error ob-
tained using different values of M . Based on the observations made earlier, for M = 1, we
use HAC MAX with zone size 120. For M > 1, the clustering method used is HAC MAX
and we run the experiments with different values of M . We use the zone sizes as 0, 60, 120,
300, 480, 600. The zone size of 0 means that the actual locations in the street network are
used. Zone size of 60 means that the intra zone travel time is 60 seconds and so on. For
M = 2, zone sizes used are 0 and 60, for M = 4 zone sizes used are 0, 60, 120 and 300 and
for M = 6, zone sizes used are 0, 60, 120, 300, 480, 600.

We show the comparison of service rate and runtime with M = 1 (with zone size 120)
and different values of M in Figure 20. HAC MAX 120 is used to denote that M = 1 with
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Figure 20: Comparison of service rate, runtime and abstraction error with different values
of M and zone sizes for NYDataset, number of vehicles = 1000, capacity 10, τ = 300, λ =
600 seconds
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Figure 21: Comparison of service rate for different number of samples and lookahead dura-
tion number of vehicles = 1000, capacity = 4, τ =300, λ = 600 seconds

zone size 120 is used. HAC MAX D < m > denotes that value of M used is m. From the
Figure 20 we can observe that we can serve more requests when M > 1, as compared to
using fix large size zones. The abstraction error also reduces significantly by using M > 1.
As the value of M is reduced, quality of the solution improves with the increase in runtime.
With M = 2 (for zone sizes 0 and 60) , the abstraction error is almost 0 but runtime also
increases. With M = 4, the abstraction error is less than 1%.

From these experiments on the NYDataset, we obtain that by clustering locations into
zones using HAC MAX and using M=4 (with zone sizes 0,60,120,300), we get the right
trade-off between computational complexity and solution quality. Therefore, we use this
configuration for ZAC and ZACBenders. We now identify the right number of samples and
lookahead duration for the ZACBenders algorithm.

5.5.3 Number of Samples

We compare the service rate by varying number of samples from 1 to 10 as shown in Figure
21a. We can observe from the figure, the service rate obtained by using a single sample is
74.6% and increases to 75.9% on using 5 samples. The service rate obtained by using 10
samples is 75.96% which is only 0.06% more than the service rate obtained by 5 samples.
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As the improvement beyond 5 samples is not much and comes at the cost of extra average
runtime, we use 5 samples for the ZACBenders algorithm.

5.5.4 LookAhead Duration

We compare the service rate by varying the lookahead duration from 10 minutes to 25 min-
utes for a single sample as shown in Figure 21b. We can observe from the figure that the
service rate obtained by using lookahead duration of 10 minutes is 72.16% and increases to
74.6% on using lookahead of 15 minutes. The service rate obtained by using higher looka-
head is less as with higher lookahead more requests are present at future decision epochs
which increases the complexity of the problem and so the number of benders decomposition
iterations that can be completed within the maximum time limit reduces, affecting the per-
formance of ZACBenders. Moreover, due to the approximations used in the ZACBenders
algorithm, it is not necessary that the performance will improve on using higher lookahead
duration. Based on these experimental results, we choose a lookahead of 15 minutes for the
ZACBenders algorithm.

6. Related Work

Given the practical and environmental benefits of ridesharing systems, there has always been
a lot of interest in developing algorithms for performing matching in these systems. The
ridesharing problem is related to the Online Multi-Vehicle Pick-up and Delivery problems
which typically represent problems where there are multi-capacity vehicles that transport
multiple resources/loads from their origins to destinations. When vehicles are used to move
people instead of resources, the problem is referred to as dial-a-ride problem (Feuerstein
& Stougie, 2001; Lipmann et al., 2002; Bonifaci et al., 2006) and when all the origins or
all the destinations are located at a depot, the problem is referred to as vehicle routing
problem (Ritzinger et al., 2016). The general representation of the dial-a-ride problems is
ideally suited to represent problems faced by companies such as Super Shuttle (transports
people from an airport to different locations in the city), Uber Pooling (transports customers
from near by start locations to near by destination locations). But these problems are hard
to solve and the traditional approaches for these problems can solve only very small instances
of 96 requests and 8 vehicles (Ropke et al., 2007).

The integer programming formulation, without any spatial or temporal aggregation (Ropke
et al., 2007), is difficult to solve and is not scalable to large scale problems and online
decision-making even for unit-capacity. Therefore, in recent times, many heuristic ap-
proaches have been proposed to solve the real-time taxi ridesharing problem. As shown in
Figure 1, the existing work on ridesharing systems can be categorized along three dimen-
sions of capacity, sequential or batch consideration of requests and the nature of assignment
(whether it is myopic or takes future demand into account for making current assignments).

In case of unit-capacity ridesharing systems, vehicles need to be assigned to at most
one request at a time. Greedy and randomized ranking (Karp et al., 1990) algorithms have
also been used in the literature to compute myopic matching when requests are consid-
ered sequentially. The myopic matching for the batch case is also trivial in this case and
can be achieved by performing a bipartite matching between vehicles and requests (Agatz
et al., 2011). To improve the performance of these myopic algorithms in the batch case,
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there has been research on providing approximate dynamic programming (Simao et al.,
2009), reinforcement learning (Xu et al., 2018; Lin et al., 2018) and multi-stage stochastic
optimization approaches (Lowalekar et al., 2018) which consider multiple samples of future
demand to estimate the expected future value of current assignments. While we also con-
sider the batch case and use stochastic optimization approaches, our work is different from
this thread as we focus on high capacity ridesharing, where computing a myopic assignment
in itself is a challenging problem. To further include the future demand samples and solve
the optimization in real-time, we need to propose multiple approximations.

For multi-capacity ridesharing, due to the complexity of finding a myopic batch assign-
ment, most of the existing works consider sequential (i.e., one by one) assignment. Widdows
et al. (2017) and Tang et al. (2017) propose an approach which allows 2 passengers to travel
in the vehicle at the same time. It takes one request at a time and generates all feasible
driver paths by inserting the pick-up and drop-off of the request in the existing driver paths.
Pelzer et al. (2015) also allow 2 passengers to share the ride. They divide the road network
into multiple partitions and limit the search space within the partition to find the match
for the incoming request. Ma et al. (2013) propose a myopic sequential matching algorithm
for high capacity ridesharing. They propose a taxi searching algorithm which uses a spatio-
temporal index to quickly retrieve candidate taxis. It then uses a scheduling algorithm to
find the appropriate taxi for the request. The scheduling algorithm compares the additional
incurred distance on inserting the current request in the schedule of each candidate taxi.
The taxi which minimizes the additional incurred distance for the request is identified as
the appropriate taxi for the request. Other works (Huang et al., 2014; Tong et al., 2018;
Chen et al., 2018; Cheng et al., 2017) also provide approaches where insertion operation is
widely utilized, i.e., for each request, they find the best place to insert in a taxi’s path.

While the sequential solution is faster to compute, the quality of solution obtained is
typically poor, therefore, there have been works on finding a myopic batch solution. Most
of the works in this case have focussed on low capacity vehicles. Zheng et al. (2018) consider
batch assignment but they only consider grouping at most two requests in a vehicle. They
propose a different approximation and apply matching and optimization based approaches
to assign vehicles to the combination of two requests. Dutta (Dutta, 2018) use a locally
sensitive hashing technique to efficiently group two requests together but they do not con-
sider assignment of vehicles to requests. Browns (2016) propose exhaustively generating
the combinations of at most three requests from all the available requests. For capacity two
vehicles, Yu et al. (2019) propose an approximate dynamic programming approach which
is non-myopic. They use a linear value function approximation to approximate the future
value of assignment and use spatial and temporal aggregation to group different parts of
road network into a small number of regions. Their approach is not scalable to a large
number of locations and higher capacity vehicles.

A leading approach for high capacity ridesharing was provided by Alonso-Mora et
al. (2017a). This is a myopic batch assignment approach which as discussed in Section
1 employs different heuristics for online execution. The existing non-myopic batch assign-
ment approaches for high-capacity ridesharing (Alonso-Mora et al., 2017b; Shah et al.,
2020) use the myopic approach by Alonso-Mora et al. (2017a) as a base approach. These
approaches have drawbacks where either they can not be executed in real-time or can not
be easily adapted to different settings and parameters.
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The non-myopic approach by Alonso-Mora et al. (2017b) is a minor extension of their
myopic approach where they randomly sample 200 or 400 requests for next 30 minutes and
then use those requests along with currently available requests to generate the assignments.
Typically, there are 300 requests per minute so randomly sampling 200 or 400 requests for
the next 30 minutes does not help in improving the quality of solution. This is reflected in
their results as well, where the service rate remains approximately same as the service rate
of the myopic approach. They observe a minor decrease in the average delay experienced
by the passengers. The sampled requests also increase the computational complexity of the
approach and the runtime of the approach after adding sampled requests is more than the
time available for assignment(duration over which requests are batched). As a result, it is
not possible to use the approach for real-time assignments. The non-myopic approach by
Shah et al. (2020) uses a similar approach as Alonso-Mora et al. (2017a) to generate the
feasible trips and then use a neural network based value function approximation to estimate
the future value of the current assignment of vehicle to trips. While the approach greatly
outperforms the myopic approaches, due to the need of training a separate network model
for each dataset and each change of input parameter, it is not easily adaptable to different
settings as shown in our experimental results.

The zone path construction based approaches proposed in this work, overcome these
limitations of existing work by providing an offline-online method to generate request com-
binations efficiently by employing zone-paths. The future value of assignment to these zone
paths is computed by considering multiple samples of future demand.

7. Conclusion

In this paper, we presented zone path construction based approaches that can efficiently
perform ridesharing for higher capacity vehicles. The experimental comparison on real-
world and synthetic datasets show that our approach can outperform the current best
myopic approach (used even by taxi and car aggregation companies like Grab and Lyft) in
terms of both runtime and solution quality. Our non-myopic approach further improves the
performance by using multiple future demand samples and outperforms the state-of-the-art
approaches.
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Appendix A. Zone Creation

We cluster the set of locations L into zones. In this work, we mainly explored the following
methods to cluster locations into zones:

1. Grid Based Clustering (GBC): As shown in Figure 22a, the city can be divided into
different parts using square grid cells. Each square grid represents a zone. The size of
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square grid can be used to determine the time taken to move from one zone to another
zone or within a zone 16. It provides a simple method to divide city of any size into
multiple zones. A very similar grid based clustering is used by Ma et al. (2013).

2. Hierarchical Agglomerative Clustering (HAC): We also employed Hierarchical Agglom-
erative clustering (Rocach & Maimon, 2005) to cluster locations into zones (Figure
22b). The algorithm starts by including each location in a different cluster/zone and
the distance between two locations is measured in terms of the time taken to travel
between them. At each iteration of the algorithm, the two closest clusters are merged
to form a single cluster. The process continues until the minimum inter-cluster travel
time between any two clusters is more than a given threshold. We define the inter
cluster travel time using the following two linkage criterion:
(1) Complete Linkage (HAC MAX): The time taken to travel between two clusters is
the maximum time required to travel between two locations of different clusters, i.e.,

T (X,Y ) = max
x∈X,y∈Y

t(x, y)

where X and Y denote the two clusters and x and y denote the locations. t(x, y)
denotes the time taken to travel from location x to y and T (X,Y ) denotes the time
taken to travel from cluster X to cluster Y . Complete linkage tends to find compact
clusters of approximately equal diameters.
(2) Mean Linkage (HAC AVG): The time taken to travel between two clusters is the
average of the time required to travel between any two locations of different clusters,
i.e.,

T (X,Y ) =
1

|X||Y |
∑
x∈X,

∑
y∈Y

t(x, y)

As mentioned before, we use these methods as they do not require prior knowledge
about the number of clusters and have been used in earlier works on similar problems (Ma
et al., 2013; Hasan et al., 2018). We perform experiments comparing these different zone
creation methods and use the method which provides right trade-off between computational
complexity and solution quality. (Please refer to Section 5.5 for detailed results).

Appendix B. Offline Partial Path Generation: Data-Driven Approach

While for smaller networks and for smaller values of τ (≤ 180 seconds) for larger networks,
we can generate and store all possible paths, but due to the exponential increase in the
number of paths with increasing value of τ for large networks, it is necessary to limit the
number of paths. One possible way to reduce the number of paths is by using zones instead
of locations in the offline path generation. However, this can lead to additional delay during
pick-up, which is not preferred. Therefore, we use the following data-driven approach to
reduce the number of paths for larger τ values.

The key idea in the data-driven approach is to only keep the paths that have a high
likelihood of serving large number of requests with the assumption that future requests will
follow the historical demand pattern.

16. Presence of one way streets can make the computation of actual time taken a bit challenging.
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(a) (b)

Figure 22: Abstraction of Locations into Zones (a) Grid based clustering (b) Clusters formed
by Hierarchical Clustering

When the value of τ is large, we break τ into multiple smaller time intervals τ1, τ2, ...τn,
such that τ =

∑
i τi. The value τi, ∀i is taken such that we can generate and store all

possible paths of τi duration.

We process all possible paths for τ1, τ2,..,τn duration against the requests available in
historical data. We ignore the paths for which the average number of requests served per
minute is less than a threshold γi (learned experimentally) and then combine only those
paths for which number of requests served is greater than γi. This process ensures that we
keep the paths which are more likely to serve high number of requests.

By following the above process, there is a chance that no path gets recorded between
two locations that can be reached in τ seconds. For such location pairs, we keep the shortest
path to travel between them.

As an example, in our experiments, for τ = 300 seconds, we consider τ = τ1 + τ2, where
τ1 = 120 seconds and τ2 = 180 seconds and we take γ1 and γ2 as 1. The paths of τ1 and τ2

duration are processed against 20 days of historical data.

Appendix C. Pseudocode for GetPathsForVehicle Function Used in
ProcessOfflinePartialPaths

In this section, we describe the pseudocode for GetPathsForVehicle function used in the
Algorithm 3 in main paper. In step 12, we store the destination location of the requests
previously assigned to vehicles. A vehicle should deviate from its current path only if it can
be assigned to a new request, therefore, in step 10, we consider only those paths which can
pick at least one of the newly available requests. Steps 20-22 ensure that we consider only
those paths which can potentially satisfy all the previously assigned requests for a vehicle.
This is because a vehicle will be assigned to a path if and only if it can serve all previously
assigned requests.
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Algorithm 5 GetPathsForVehicle(i, qi,R[k],Rp[k],Poff )

1: plist = {}, plist[i] = 0,∀i
2: Ri=[],Rip=[]
3: for r ∈ qi do
4: if r is already picked then
5: Ph,roff = GetPathsFromIndex(Phoff , νi, ωi, ωi)
6: else
7: Ph,roff = GetPathsFromIndex(Phoff , or, ar − t, ar − t+ τ)

8: for each path k ∈ Ph,roff do
9: plist[k]+ = 1

10: if |R[k]| > 0 then
11: lbj = aj − t+ T (oj , dj), ubj = lbj + λ
12: Ri[k].add(dj , lbj , ubj)
13: Rip[k].add(oj)
14: if lbj < τ then
15: if k visits dj then
16: Rp[k].add(dj)
17: else if ubj < τ then
18: R[k].remove(dj , (lbj , ubj))
19: for each path k ∈ plist do
20: if |plist[k]| == |qi| then
21: R[k].addAll(Ri[k])
22: Rp[k].addAll(Rip[k])
23: return R[k],Rp[k]

Appendix D. Rebalancing of Unassigned Vehicles

Similar to Alonso-Mora et al. (2017a), we perform a rebalancing of unassigned vehicles to
high demand areas by using the same method as them. We make similar assumptions

1. Unserved customers may request again.

2. At future timesteps, more customer requests may originate from the areas where we
could not serve requests at current timestep.

Therefore, to rebalance the unassigned vehicles, after each batch assignment, the unas-
signed vehicles are assigned to unserved requests to minimize the sum of travel times, with
the constraint that either all unserved requests or all of the unassigned vehicles are assigned.
The linear program is provided in table 14. Let Vu denotes the set of unassigned vehicles
and Du denote the set of unserved customer requests. mij is a binary variable indicating
that vehicle i is moving towards customer request j.

Appendix E. Complexity Analysis for Offline-Online Generation of Zone
Paths

We analyse the computational complexity of the Offline-Online Generation of Zone Paths.
We look at the complexity of each step.
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RebalanceVehicles():

min
∑
j∈Du

∑
i∈Vu

T (νi, oj) ∗mij (31)

subject to
∑
i∈Vu

mij ≤ 1 ::: ∀j ∈ Du (32)∑
j∈Du

mij ≤ 1 ::: ∀i ∈ Vu (33)∑
j∈Du

∑
i∈Vu

mij = min(|Vu|, |Du|)

(34)

0 ≤ mij ≤ 1 ::: ∀i, j (35)

Table 14: Optimization Formulation for Rebalancing unassigned vehicles

1. Offline Partial Path Generation: This step requires generating all paths in the
network of G duration τ . The network G has L nodes and E edges. As the graph is
not fully connected, we assume a branching factor of b (average number of neighbors
of any vertex l ∈ L). Let the maximum length of a duration τ path is k. Therefore,
the complexity of this step is the complexity of generating all paths of length k in a
network with L nodes, E edges and branching factor b. The total possible number of
paths is |L|∗bk. The total nodes explored in path generation are |L|∗(1+b1+b2+...+bk)

= |L| ∗ bk+1−1
b−1 .

2. Online Processing of Offline Partial Paths: The offline partial paths are pro-
cessed using the current demand D. Suppose α denotes the fraction of paths in which
the pick-up location of any demand element is present. Then, the total complexity of
online processing of offline partial paths is O(|D| ∗ α ∗ |L| ∗ bk).

3. Online Completion of offline partial paths: Let the total number of unique
partial paths after online processing step is ω ∗ |L| ∗ bk. Now suppose each path is
associated with maximum β drop-off locations after considering the appropriate zone
size out of the M available zone sizes. As we need to perform exhaustive search on
these β locations, the complexity of this step is O((β!) ∗ ω ∗ |L| ∗ bk).

As the network G is generally very sparse and each of the individual steps can be
parallelized, the actual computation time is much less allowing to execute this in real-time.
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