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Abstract

We present an implementation of a probabilistic first-order logic called TensorLog,
in which classes of logical queries are compiled into differentiable functions in a neural-
network infrastructure such as Tensorflow or Theano. This leads to a close integration
of probabilistic logical reasoning with deep-learning infrastructure: in particular, it en-
ables high-performance deep learning frameworks to be used for tuning the parameters of a
probabilistic logic. The integration with these frameworks enables use of GPU-based par-
allel processors for inference and learning, making TensorLog the first highly parallellizable
probabilistic logic. Experimental results show that TensorLog scales to problems involving
hundreds of thousands of knowledge-base triples and tens of thousands of examples.

1. Introduction

Recent progress in deep learning has profoundly affected many areas of artificial intelligence.
One exception to this trend is probabilistic first-order logical reasoning. In this paper, we
seek to closely integrate probabilistic logic programs with the powerful infrastructures that
have been developed for deep learning. The end goal is to enable deep learners to incorpo-
rate first-order probabilistic knowledge bases (KB), and conversely, to enable probabilistic
reasoning over the outputs of deep learners.

Modern deep learning frameworks (Abadi et al., 2016; Bergstra et al., 2010) combine
several useful properties. First, they allow researchers to easily formulate complex, expres-
sive models for difficult tasks such as question-answering and image classification. Second,
they support very fast execution of these models using parallelized operations on GPUs.
Finally, by limiting the user to a library of matrix and tensor operations which are differen-
tiable, they make learning very simple: one simply couples the model with an appropriate
loss function, which measures how well the model fits training data, and then uses an off-
the-shelf gradient-based optimizer to find parameter values that minimize loss. By using
differentiable operations from a known library, algorithms for automatic reverse-mode dif-
ferentiation (Pearlmutter & Siskind, 2008) can automatically compute the gradients needed
for this optimization, so that implementing a learner for a specific model is reduced to the
choice of the optimizer and any non-differentiable “hyperparameters”. Most importantly,
the use of uniform optimization schemes for learning encourages a reusability for learn-
able components—one can often build up complex models by combining well-understood
submodules.
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answer(Question,Answer) :-

classification(Question,aboutActedIn),

mentionsEntity(Question,Entity), actedIn(Answer,Entity).

answer(Question,Answer) :-

classification(Question,aboutDirected),

mentionsEntity(Question,Entity), directed(Answer,Entity).

answer(Question,Answer) :-

classification(Question,aboutProduced),

mentionsEntity(Question,Entity), produced(Answer,Entity).

. . .
mentionsEntity(Question,Entity) :-

containsNGram(Question,NGram), matches(NGram,Name),

possibleName(Entity,Name), popular(Entity).

classification(Question,Y) :-

containsNGram(Question,NGram), indicatesLabel(NGram,Y).

matches(NGram,Name) :-

containsWord(NGram,Word), containsWord(Name,Word), important(Word).

Figure 1: A simple theory for question-answering against a KB.

While such deep learning frameworks are very useful, it is arguably clearer and more
natural to write certain types of models using the language of logic—or more precisely,
probabilistic first-order logic. For example, consider the program of Figure 1, which could
be plausibly used for answering simple natural-language questions against a KB, such as
“Who was the director of Apocalyse Now?” The main predicate answer takes a question
and produces an answer (which would be an entity in the KB). The predicates actedIn,
directed, etc, are from the KB. For the purpose of performing natural-language analysis,
the KB has also been extended with facts about the text that composes the training and
test data: the KB stores information about word n-grams contained in the question, the
strings that are possible names of an entity, and the words that are contained in these
names and n-grams. The underlined predicates indicatesLabel, important, and popular

are “soft” KB predicates, and the goal of learning is to find appropriate weights for the
soft-predicate facts—e.g., to learn that indicatesLabel(director, aboutDirected) has high
weight. Ideally these weights would be learned indirectly, from observing inferences made
using the KB. In this case we would like to learn from question-answer pairs, which rely
indirectly on the KB predicates like actedIn, etc, rather than from hand-classified questions,
or judgements about specific facts in the soft predicates.

Although probabilistic logics for theories like that of Figure 1 exist, they make use
of special-purpose learners, and cannot be easily combined with or integrated with deep-
learning components. TensorLog, the system we describe here, allows learning for proba-
bilistic logics inside a deep-learning framework. This makes this possible to use logics inside
a deep-learning model, or to use deep-learning subcomponents inside a logic. The efficiency

286



TensorLog: A Probabilistic DB

of the deep-learning frameworks also allows TensorLog learn using GPUs. Modern GPUs
allow thousands of operations to be executed in parallel, which leads to gains in efficiency.
For instance, for a variant of the problem above, we can learn from 10,000 questions against
a KB of 420,000 tuples in around 200 seconds per epoch, on a typical desktop with a single
GPU.

The main technical obstacle to integration of probabilistic logics into deep learners is
that most existing first-order probabilistic logics are not easily adapted to evaluation on a
GPU. One superficial problem is that the computations made in theorem-proving are not
numeric, but there is also a more fundamental problem, which we will now discuss.

The most common approach to first-order inference is to “ground” a first-order logic by
converting it to a zeroth-order format, such as a boolean formula or a probabilistic graphical
model. For instance, in the context of a particular KB, the rule

p(X,Y )← q(Y,Z), r(Z, Y ) (1)

can be “grounded” as the following finite boolean disjunction, where C is the set of objects
in the KB: ∨

∃x,y,z∈C
(p(x, y) ∨ ¬q(y, z) ∨ ¬r(z, y))

This Boolean disjunction can be embedded in a neural network, e.g. to initialize an ar-
chitecture (Towell, Shavlik, & Noordewier, 1990) or as a regularizer (Hu, Ma, Liu, Hovy,
& Xing, 2016; Rocktäschel, Singh, & Riedel, 2015). For probabilistic first-order languages
(e.g., Markov logic networks Richardson & Domingos, 2006), grounding typically results
in a directed graphical model. This work is surveyed elsewhere (Kimmig, Mihalkova, &
Getoor, 2015).

The problem with this approach is that groundings can be very large: even the small
rule above gives a grounding of size o(|C|3), which is likely much larger than the size of the
KB, and a grounding of size o(|C|n) is produced by a rule like

p(X0, Xn)← q1(X0, X1), q2(X1, X2), . . . , qn(Xn−1, Xn) (2)

The target architecture for modern deep learners is based on GPUs, which have limited
memory: hence the grounding approach can be used only for small KBs and short rules.
For example, Serafini and d’Avila Garcez (2016) describe experimental results with five
rules and a few dozen facts, and the largest datasets considered by Sourek, Aschenbrenner,
Zelezný, and Kuzelka (2015) contain only about 3500 examples.

Although not all probabilistic logic implementations require explicit grounding, a similar
problem arises in using neural-network infrastructures to implement any probabilistic logic
which is computationally hard. For many probabilistic logics, answering queries is #P-
complete or worse. Since the networks constructed in modern deep learning systems can be
evaluated in time polynomial in their size, no polysize network can implement such a logic,
unless #P=P, or inputs are very limited in size.

This paper addresses these obstacles with several interrelated contributions. First,
in Section 2, we identify a restricted family of probabilistic deductive databases (PrD-
DBs) called polytree-limited stochastic deductive knowledge graphs (ptree-SDKGs) which
are tractable, but still reasonably expressive. This formalism is a variant of stochastic logic
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programs (SLPs). We also show that ptree-SDKGs are in some sense maximally expres-
sive, in that we cannot drop the polytree restriction, or switch to a more conventional
possible-worlds semantics, without making inference intractible.

Next, in Section 3, we present a novel algorithm for performing inference for ptree-
SDKGs. This algorithm performs inference with a dynamic-programming method, which
we formalize as belief propagation on a certain factor graph, where each random variable
in the factor graph correspond to possible bindings to a logical variable in a proof, and
the factors correspond to database predicates. In other words, the random variables are
multinomials over all constants in the database, and the factors constrain these bindings
to be consistent with database predicates that relate the corresponding logical variables.
Although this is a simple idea, to our knowledge it is novel.

We also show that this inference process can be implemented under the constraints
imposed by current neural-network infrastructures—i.e., that it can be implemented using
matrix-vector operations which can be executed on a GPU. This property also distinguishes
ptree-SDKGs from other logics, since usually logical inference for first-order expressions re-
quires dynamic allocation of memory (to describe inferred facts), which cannot be easily
performed using matrix operations. This property is practically important, since it means
that inference can be compiled to deep learning frameworks such as Tensorflow, and inte-
grated with other learning and optimization mechanisms. TensorLog can also be executed
in parallel on GPUs, leading to significant speedups in inference and learning. Hence we
also discuss in some detail our implementation of this logic, called TensorLog.

We then discuss related work, experimental results, and present conclusions.
To summarize, the main contributions of this paper are: (1) identification of a novel

subset of first-order logic (ptree-SDKGs) which is maximally expressive, while retaining
tractibility, along with the accompanying analysis; (2) an novel efficient inference algorithm
for ptree-SDKGs; (3) discussion of a Tensorflow-based highly parallel implementation of the
inference algorithm; and (4) experimental support for TensorLog’s scalability and efficiency,
and strong experimental results on one large-scale learning task.

2. Background

In this section we summarize the formal background needed for this paper with respect to
deductive databases and stochastic logic programs, and present some complexity results for
a restricted subset of stochastic logic programs.

2.1 Deductive DBs

In this subsection we review the usual definitions for logic programs and deductive databases,
and also introduce the term deductive knowledge graph (DKG) for deductive databases con-
taining only unary and binary predicates. This subsection can be omitted by readers familiar
with logic programming.

An example of a deductive database (DDB) is shown in Figure 2. A database, DB, is a
set {f1, . . . , fN} of ground facts. (For the moment, ignore the numbers associated with each
database fact in the figure.) A theory, T , is a set of function-free Horn clauses. Clauses are
written A:-B1, . . . , Bk, where A is called the head of the clause, B1, . . . , Bk is the body, and
A and the Bi’s are called literals. Literals must be of the form p(X1, . . . , Xk), where p is a
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1. uncle(X,Y):-child(X,W),brother(W,Y).

2. uncle(X,Y):-aunt(X,W),husband(W,Y).

3. status(X,tired):-child(W,X),infant(W).

child(liam,eve) 0.99
child(dave,eve) 0.99
child(liam,bob) 0.75
husband(eve,bob) 0.9
infant(liam) 0.7
infant(dave) 0.1
aunt(joe,eve) 0.9
brother(eve,chip) 0.9

Figure 2: An example theory and database. Uppercase symbols are universally quantified
variables, and so clause 3 should be read as a logical implication: for all database
constants cX and cW , if child(cX,cW ) and infant(cW ) can be proved, then
status(cX,tired) can also be proved.

(S=uncle(liam,Y), L=[uncle(liam,Y)])
↓

(S=uncle(liam,Y), L=[child(liam,W),brother(W,Y)])
↓ ↓

(S=uncle(liam,Y), L=[brother(bob,Y)]) (S=uncle(liam,Y), L=[brother(eve,Y)])
↓ ↓

dead end (S=uncle(liam,chip), L=[])

Figure 3: An example proof tree. From root to second level uses rule 1; next level uses unit
clause child(liam,bob):- on left and unit clause child(liam,eve):- on right; final
level uses brother(eve,chip):- on the right.

predicate symbol and the Xi’s either logical variables or database constants. The set of all
database constants is written C. The number of arguments k to a literal is called its arity.

In this paper we focus on the case where all literals are binary or unary, i.e., have arity of
no more than two. We will call such a database a knowledge graph (KG), and the program
a deductive knowledge graph (DKG). We will also assume that constants appear only in the
database, not in the theory (although this assumption can be relaxed).

Clauses can be understood as logical implications. Let σ be a substitution, i.e., a mapping
from logical variables to constants in C, and let σ(L) be the result of replacing all logical
variables X in the literal L with σ(X). A set of tuples S is deductively closed with respect
to the clause A← B1, . . . , Bk iff for all substitutions σ, either σ(A) ∈ S or ∃Bi : σ(Bi) 6∈ S.
For example, if S contains the facts of Figure 2, S is not deductively closed with respect to
the clause 1 unless it also contains uncle(chip,liam) and uncle(chip,dave). The least model
for a pair DB, T , written Model(DB, T ), is the smallest superset of DB that is deductively
closed with respect to every clause in T . This least model is unique, and in the usual DDB
semantics, a ground fact f is considered “true” iff f ∈ Model(DB, T ).
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There are two broad classes of algorithms for inference in a DDB. Bottom-up inference
explicitly computes the set Model(DB, T ) iteratively. Bottom-up inference repeatedly ex-
tends a set of facts S, which initially contains just the database facts, by looking for rules
which “fire” on S and using them to derive new facts. (More formally, one looks for rules
A← B1, . . . , Bk and substitutions σ such that ∀i, σ(Bi) ∈ S, and then adds the derived fact
σ(A) to S.) This process is then repeated until it converges. For DDB programs, bottom-up
inference takes time polynomial in the size of the database |DB|, but exponential in the
length of the longest clause in T (Ramakrishnan & Ullman, 1995).

One problem with bottom-up theorem-proving is that it explicitly generates
Model(DB, T ), which can be much larger than the original database. The alternative is
top-down inference. Here, the algorithm does not compute a least model explicitly: in-
stead, it takes as input a query fact f and determines whether f is derivable, i.e., if
f ∈ Model(DB, T ). More generally, one might retrieve all derivable facts that match
some pattern, e.g., find all values of Y such that uncle(joe,Y) holds. (Formally, given
Q = uncle(joe,Y), we would like to find all f ∈ Model(DB, T ) which are instances of Q,
where an f is defined to be an instance of Q iff ∃σ : f = σ(Q)..

To describe top-down theorem-proving, we note that facts in the database can also be
viewed as clauses: in particular a fact p(a, b) can be viewed as a clause p(a, b) ← which
has p(a, b) as its head and an empty body. This sort of clause is called a unit clause. We
will use T +DB to denote the theory T augmented with unit clauses for each database fact.
A top-down theorem prover can be viewed as constructing and searching a following tree,
using the theory T +DB. The process is illustrated in Figure 3, and detailed below.

1. The root vertex is a pair (S,L), where S is the query Q, and L is a list containing
only Q. In general every vertex is a pair where S is something derived from Q, and
L is a list of literals left to prove.

2. For any vertex (S,L), where L = [G1, . . . , Gn], there is a child vertex (S′, L′) for each
rule A ← B1, . . . , Bk ∈ T +DB and substitution σ for which σ(Gi) = σ(A) for some
Gi. In this child node, S′ = σ(S), and

L′ = [σ(G1), . . . , σ(Gi−1), σ(B1), . . . , σ(Bk), σ(Gi+1), . . . , σ(Gn)]

Note that L′ is smaller than L if the clause selected is a unit clause (i.e., a fact). If L′ is
empty, then the vertex is called a solution vertex. In any solution vertex (S,L), if S contains
no variables,1 then S is an instance of Q and is in Model(T ,DB).

If T is not recursive, or if recursion is limited to a fixed depth, then the proof graph is
finite. We will restrict our discussion below to theories with finite proof graphs. For this
case, the set of all answers to a query Q can be found by systematically searching the proof
tree for all solution vertices. A number of strategies exist for this, but one popular one
is that used by Prolog, which uses depth-first search, ordering edges by picking the first
rule A ← B1, . . . , Bk in a fixed order, and only matching rules against the first element of
L. This strategy can be implemented quite efficiently and is easily extended to much more
general logic programs.

1. If S does have variables in it, then any fact f which can be constructed by replacing variables in Q with
database constants is in the least model. For clarity we will ignore this complication in the discussion
below.
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2.2 Stochastic Logic Programs

There are a number of approaches to incorporating probabilistic reasoning in first-order
logics. TensorLog’s semantics are based on stochastic logic programs (SLPs) (Cussens,
2001), in which the theory T is extended by associating with each rule r a non-negative
scalar weight θr. Below we summarize the semantics associated with SLPs, for completeness,
and refer the reader to Cussens (2001) for details.

In an SLP weights θr are added to edges of the top-down proof graph the natural way:
when a rule r is used to create an edge (S,L)→ (S′, L′)′, this edge is given weight θr. We
define the weight of a path v1 → . . .→ vn in the proof graph for Q to be the product of the
weights of the edges in the path, and the weight of a node v to be the sum of the weights
of the paths from the root note v0 = (Q, [Q]) to v. If rv,v′ is the rule used for the edge from
v to v′, then the weight of wQ(vn) is

wQ(vn) ≡
∑

v0→...→vn

n−1∏
i=0

θrvi,vi+1

The weight of an answer f to query Q is defined by summing over paths to solution nodes
that yield f . Let support(f) be the set of all graph nodes (S,L) where S = f and L is an
empty list, and define

wQ(f) ≡
∑

v∈support(f)

wQ(v) (3)

Finally, if we assume that some answers to Q do exist, we can produce a conditional prob-
ability distribution over answers f to the query Q by normalizing wQ, i.e.,

Pr(f |Q) ≡ 1

Z
wQ(f) (4)

where Z =
∑
f wQ(f).

Following the terminology of (Cussens, 2001) this is a pure unnormalized SLP. SLPs were
originally defined (Muggleton et al., 1996) for a fairly expressive class of logic programs,
namely all programs which are fail free, in the sense that there are no “dead ends” in the
proof graph (i.e., from every vertex v, at least one solution node is reachable). Prior work
with SLPs also considered the special case of normalized SLPs, in which the weights of all
outgoing edges from every vertex v sum to one. For normalized fail-free SLPs, it is simple
to modify the usual top-down theorem prover to sample from Pr(f |Q).

SLPs are closely connected to several other well-known types of probabilistic reasoners.
SLPs are defined by introducing probabilistic choices into a top-down theorem-proving pro-
cess: since top-down theorem-proving for logic programs is analogous to program execution
in ordinary programs, SLPs can be thought of as logic-program analogs to probabilistic pro-
gramming languages like Church (Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum,
2012). Normalized SLPs are also conceptually quite similar to stochastic grammars, such
as PCFGS, except that stochastic choices are made during theorem-proving, rather than
rewriting a string.
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2.3 Stochastic Deductive KGS: a Tractible Restriction of SLPs

The logic used in TensorLog is based on SLPs, but includes several important restrictions,
which together make inference tractible. First, we restrict the program to be in DDB
form—i.e., it consists of a theory T which contains function-free clauses, and a database
DB (of unit clauses). Second, we restrict all predicates to be unary or binary. Third, we
restrict the clauses in the theory T to have weight 1, so that the only meaningful weights are
associated with database facts. We call this restricted SLP a stochastic deductive knowledge
graph (SDKG). Finally, we will impose an additional syntactic restriction on SDKGs, to be
discussed below, by requiring them to be “polytree-limited”.

The first three restrictions simply combine the SLP semantics with a restrictions asso-
ciated with a deductive knowledge graph. One might hope that there restrictions would
make inference tractible, but this is not the case: even for very simple SDKGs, computing
P (f |Q) is #P-hard.

Theorem 1 Computing P (f |Q) (relative to a SDKG T ,DB) for all possible answers f of
the query Q is #P-hard, even if there are only two such answers, the theory contains only
two non-recursive2 clauses, and the KG contains only 13 facts.

A proof appears in the appendix. While this result may seem surprising, we note that it
is easy to find small theories with exponentially many proofs: e.g., the clause of Equation2
can have exponentially many proofs, and straightforward adaptations of non-probabilistic
theorem proving methods are expensive on such clauses.

Fortunately, however, one further restriction makes SDKG inference tractible. For a
theory clause r = A ← B1, . . . , Bk, define the literal influence graph for r to be a graph
where each Bi is a vertex, and there is an edge from Bi to Bj iff they share a variable.
A graph is a polytree iff there is at most one path between any pair of vertices: i.e., if
each strongly connected component of the graph is a tree. Finally, we define a theory to
be polytree-limited iff the influence graph for every clause is a polytree. Figure 4 contains
some examples of polytree-limited clauses. The theorem below shows that this additional
restriction makes inference tractable.

Theorem 2 For any SDKG with a non-recursive polytree-limited theory T , P (f |Q) can be
computed in time linear in the size of T and DB.

The proof follows from the correctness of a dynamic-programming algorithm for SDKG
inference, which we will present below in Section 3. In brief, the algorithm is based on belief
propagation in a certain factor graph. We construct a graph where the random variables are
multinomials over the set of all database constants, and each random variable corresponds
to a logical variable in the proof graph. The logical literals in a proof correspond to factors,
which constrain the bindings of the variables to make the literals true. Importantly for
the goal of compilation into deep-learning frameworks, the message-passing steps used for
belief propagation can be defined as numerical operations, and given a predicate and an
input/output mode, the message-passing steps required to perform belief propagation (and
hence inference) can be “unrolled” into a function, which is differentiable.

2. A theory is recursive if some proof of a query q(x1, y1) involves a subgoal of the form q(x2, y2), where
the x’s and y’s are either constants or variables.
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2.4 Complexity of Stochastic DKGs Variants

Below we will discuss some of the potential ways in which polytree-limited SDKGs might
be plausibly extended.

As one extension, we note that constants can be allowed the theory while maintaining
tractibility. Above we assume that constants appear only in the database, not in the theory.
However, it is possible to introduce a constant into a theory by creating a special unary
predicate which holds only for that constant: e.g., to use the constant tired, one could create
a database predicate assign tired(T) which contains the one fact assign tired(tired), and
use it to introduce a variable which is bound to the constant tired when needed. For
instance, the clause 3 of Figure 2 would be rewritten as

status(X,T):-assign tired(T),child(X,W),infant(W). (5)

where DB conceptually contains one assign tired fact, assign tired(tired). In the current
TensorLog implementation, we allow constants to appear in theories, but only in literals of
this sort.

One can also allow weights on rules from the theory, rather than only on facts in the
databases. The usual “trick” to lift weights from a database into rules is to introduce a
special clause-specific fact, and add it to the clause body (Poole, 1997). For example, a
weighted version of clause 3 could be re-written as

status(X,tired):-assign c3(RuleId),weighted(RuleId),child(W,X),infant(W)

where the (parameterized) fact weighted(c3) appears in DB, and the constant c3 appears
nowhere else in DB. This same trick can be extended to allow even more expressive rule-
weighting schemes: in particular, ProPPR (Wang, Mazaitis, & Cohen, 2013) allows one to
attach a computed set of features to a rule in order to weight it: e.g., one can write

status(X,tired):-{weighted(A):child(W,X),age(W,A)}

which indicates that all the ages of the children of X should be used as features to determine
if the rule succeeds. This is equivalent to the rule status(X,tired) :-child(W,X), age(W,A),

weighted(A). TensorLog allows these sorts of computed weighted features to be attached
to a rule using the ProPPR syntax, and automatically converts to using the construction
above. In the experiments below, we use this construction for experimental comparisons to
ProPPR.

We finally discuss one arguably desirable extension which cannot be implemented with-
out losing tractibility: an extension to possible-worlds semantics. In the SLP semantics,
the parameters Θ only have meaning in the context of the set of proofs derivable using the
theory T . This can be thought of as a “possible proofs” semantics. It has been argued that
it is more natural to adopt a “possible worlds” semantics, in which Θ is used to define a
distribution, Pr(I|DB,Θ), over “hard” databases, and the probability of a derived fact f is
defined as follows, where |[·]| is a zero-one indicator function:

Pr
TupInd

(f |T ,DB,Θ) ≡
∑
I

|[f ∈ Model(I, T )]| · Pr(I|DB,Θ) (6)
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Potential hard databases are often called interpretations in this setting. The simplest such
“possible worlds” model is the tuple independence model for PrDDB’s (Suciu, Olteanu, Ré,
& Koch, 2011): in this model, to generate an interpretation I, each fact f ∈ DB is sampled
by independent coin tosses, i.e., PrTupInd(I|DB,Θ) ≡

∏
t∈I θt ·

∏
t∈DB−I(1− θt).

ProbLog (Fierens, Van den Broeck, Renkens, Shterionov, Gutmann, Thon, Janssens, &
De Raedt, 2015) is one well-known logic programming language which adopts this semantics,
and there is a large literature on approaches to more tractibly estimating Eq 6, which
naively requires marginalizing over all 2|DB| interpretations (Suciu et al., 2011; De Raedt &
Kersting, 2008). A natural question to ask is whether polytree-limited SDKGs, which are
tractible under the possible-proofs semantics of SLPs, are also tractible under a possible-
worlds semantics. Unfortunately, this is not the case.

Theorem 3 Computing P (f) in the tuple-independent possible-worlds semantics for a sin-
gle ground fact f is #P-hard.

This result is well known (Suciu et al., 2011) but for completeness the appendix to this
paper contains a proof, which emphasizes the fact that reasonable syntactic restrictions
(such as polytree-limited theories) are unlikely to make inference tractible. In particular,
the theory used in the construction is extremely simple: all predicates are unary, and contain
only three literals in their body.

3. Efficient Differentiable Inference for Polytree-Limited SDKGs

In this section we present an efficient dynamic-programming method for inference in
polytree-limited SDKGs. We formalize this method as belief propagation on a certain factor
graph, where the random variables in the factor graph correspond to possible bindings to
a logical variable in a proof, and the factors correspond to database predicates. In other
words, the random variables are multinomials over all constants in the database, and the
factors will constrain these bindings to be consistent with database predicates that related
the corresponding logical variables.

Although using belief propagation in this way is a simple idea, to our knowledge it is
a novel method for first-order probabilistic inference. Certainly it is quite different from
more common formulations of first-order probabilistic inference, where random variables
typically are Bernoulli random variables, which correspond to potential ground database
facts (i.e., elements of the Herbrand base of the program).

Although the inference scheme we describe is equivalent to belief propagation, because
our ultimate goal is integration with neural network infrastructures, we will implement an
“unrolled” version of this belief propagation in terms of a series of numeric functions, each
of which finds answers to a particular family of queries. The details of this are discussed
below.

3.1 Numeric Encoding of PrDDB’s and Queries

It will be convenient to encode the database numerically. We will assume all constants
have been mapped to integers. For a constant c ∈ C, we define uc to be a one-hot row-
vector representation for c, i.e., a row vector of dimension |C| where u[c] = 1 and u[c′] = 0
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for c′ 6= c. We can also represent a binary predicate p by a sparse matrix Mp, where
Mp[a, b] = θp(a,b) if p(a, b) ∈ DB, and a unary predicate q as an analogous row vector
vq. Notice that Mp encodes information not only about the database facts in predicate p,
but also about their parameter values; also, note that Mp is sparse, and does not contain
weights for facts p(x, y) which do not appear in the database. Collectively, the matrices
Mp1 , . . . , Mpn for the predicates p1, . . . , pn can be viewed as a three-dimensional tensor.

Our main interest here is queries that retrieve all derivable facts that match some query
Q: e.g., to find all values of Y such that uncle(joe,Y) holds. We define an argument-retrieval
query Q as query of the form p(c, Y ) or p(Y, c). We say that p(c, Y ) has an input-output
mode of in,out and p(Y, c) has an input-output mode of out,in. For the sake of brevity,
below we will assume below the mode in,out when possible, and abbreviate the two modes
as io and oi.

The response to a query p(c, Y ) is a distribution over possible substitutions for Y ,
encoded as a vector vY such that for all constants d ∈ C, vY [d] = Pr(p(c, d)|Q =
p(x, Y ), T ,DB,Θ). Note that in the SLP model vY is a conditional probability vector,
conditioned of Q = p(c, Y ), which we will sometimes emphasize with denoting it as vY |c.
Formally if Up(c,Y ) encodes the set of facts f that “match” (are instances of) p(c, Y ), then

vY |c[d] = Pr(f = p(c, d)|f ∈ Up(c,Y ), T ,DB,Θ) ≡ 1

Z
wQ(f = p(c, d))

Although here we only consider single-literal queries, we note that more complex queries
can be answered by extending the theory: e.g., to find

{Y: uncle(joe,X),husband(X,Y)}

we could add the clause q1(Y):-uncle(joe,X),husband(X,Y) to the theory and find the
answer to q1(Y).

Since the goal of our reasoning system is to correctly answer queries using functions, we
also introduce a notation for functions that answer particular types of queries: in particular,
for a predicate symbol p, fpio denotes a query response function for all queries with predicate
p and mode io. We define a query response function for a query of the form p(c, Y ) to be a
function which, when given a one-hot encoding of c, fpio returns the appropriate conditional
probability vector:

fpio(uc) ≡ vY |c (7)

We analogously define fpoi. Finally, we define gpio to be the unnormalized version of this
function, i.e., the weight of f according to wQ(f):

gpio(uc) ≡ wQ(f)

For convenience, we will introduce another special DB predicate any, where any(a, b)

is conceptually true for any pair of constants a, b; however, as we show below, the matrix
Many need not be explicitly stored. We also constrain clause heads to contain distinct
variables which all appear also in the body.
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Figure 4: Examples of factor graphs for the example theory.

3.2 Efficient Inference for One-Clause Theories

As noted above, Θ can be used to encode confidences on either facts or rules (by using
clause-specific facts, as described in Section 2.4). As defined above, fp and gp are numeric
functions which depend on Θ. Below we will outline a scheme for implementing these
functions which makes them not only numeric, but also differentiable: that is, we will
define them so that they vary smoothly as the weights in Θ change. Differentiability of
these functions will make it possible to use gradient-based methods to optimize Θ, and
hence allow weights to be learned.

We will start by considering a highly restricted class of theories T , namely programs
containing only one non-recursive polytree-limited clause r that obeys the restrictions above.
We build a factor graph Gr for r as follows: for each logical variable W in the body, there
is a random variable W ; and for every literal q(Wi,Wj) in the body of the clause, there
is a factor with potentials Mq linking variables Wi and Wj . Finally, if the factor graph is
disconnected, we add any factors between the components until it is connected.3

Figure 4 gives examples. The variables appearing in the clause’s head are starred. The
correctness of this procedure follows immediately from the convergence of belief propagation
on factor graphs for polytrees (Kschischang, Frey, & Loeliger, 2001).

BP over Gr can now be used to compute the conditional vectors fpio(uc) and fpoi(uc).
For example to compute fpio(uc) for clause 1, we would set the message for the evidence
variable X to uc, run BP, and read out as the value of f the marginal distribution for Y .

3.3 Differentiable Inference for One-Clause Theories

To make the final step toward integration of this algorithm with neural-network infrastruc-
tures, we must finally compute an explicit, differentiable, query response function, which
computes fpio(uc). To do this we “unroll” the message-passing steps into a series of op-
erations. Figure 5 shows the algorithm used in the current implementation of TensorLog,
which follows previous work in translating belief propagation to differentiable form (Gorm-

3. Any pair of variables in different chains can be connected together, since the any predicate does not
constrain their joint binding. This predicate simply lets us construct a message that multiplies the weight
of all solutions for the chain containing the input with the total weight of all solutions for a second chain.
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define compileMessage(L→ X):
assume wolg that L = q(X) or L = p(Xi, Xo)
generate a new variable name vL,X
if L = q(X) then

emitOperation( vL,X = vq)
else if X is the output variable Xo of L then

vi = compileMessage(Xi → L)
emitOperation( vL,X = vi ·Mp )

else if X is the input variable Xi of L then
vo = compileMessage(Xi → L)

emitOperation( vL,X = vo ·MT
p )

return vL,X

define compileMessage(X → L):
if X is the input variable X then

return uc, the input
else

generate a new variable name vX
assume L1, L2, . . . , Lk are the

neighbors of X excluding L
for i = 1, . . . , k do

vi = compileMessage(Li → X)
emitOperation(vX = v1 ◦ · · · ◦ vk)
return vX

Figure 5: Algorithm for unrolling belief propagation on a polytree into a sequence of
message-computation operations. Notes: (1) if L = p(Xo, Xi) then replace Mp

with MT
p (the transpose). (2) Here v1 ◦ v2 denotes the Hadamard (component-

wise) product, and if k = 0 an all-ones vector is returned.

ley, Dredze, & Eisner, 2015). If a clause is not a polytree, then this is detected (by analyzing
the literal influence graph for loops) and reported to the user.

In the code, we found it convenient to extend the notion of input-output modes for a
query, as follows: a variable X appearing in a literal L = p(X,Y ) in a clause body is a
nominal input if it appears in the input position of the head, or any literal to the left of L
in the body, and is an nomimal output otherwise. In Prolog a convention is that nominal
inputs appear as the first argument of a predicate, and in TensorLog, if the user respects
this convention, then “forward” message-passing steps use Mp rather than MT

p (reducing
the cost of transposing large DB-derived matrices, since our message-passing schedule tries
to maximize forward messages.) The code contains two mutually recursive routines, and is
invoked by requesting a message from the output variable to a fictional output literal. The
result will be to emit a series of operations, and return the name of a register that contains
the unnormalized conditional probability vector for the output variable. For instance, for
the sample clauses, the functions returned are shown in Table 1.

Here we use grio(uc) for the unnormalized version of the query response function build
from Gr. One could normalize4 as

fpio(uc) ≡ grio(uc)/||grio(uc)||1

4. Neither of these normalization schemes is well-defined when grio(uc) = 0, which is the result for a query
that is not proveable at all. To avoid this, before normalization a small weight is given to a special “not
proveable” constant. In learning, the “not proveable” constant is considered an incorrect answer to every
query.
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Rule r1: uncle(X,Y):- r2: uncle(X,Y):- r3: status(X,T):-
parent(X,W), aunt(X,W), assign tired(T),
brother(W,Y) husband(W,Y) parent(X,W),

infant(W),any(T,W)

Function gr1io(uc) gr2io(uc) gr3io(uc)

v1,W = ucMparent v1,W = ucMaunt v2,W = ucMparent

Operation vW = v1,W vW = v1,W v3,W = vinfant
sequence v2,Y = vWMbrother v2,Y = vWMhusband W = v2,W ◦ v3,W

defining vY = v2,Y vY = v2,Y v1,T = vassign tired

function v4,T = vWMany

T = v1,T ◦ v4,T

Returns vY vY vT

Table 1: Chains of messages constructed for the three sample clauses shown in Figure 4,
written as functions in pseudo code.

where r is the one-clause theory defining p. To make optimization easier in learning, how-
ever, TensorLog uses a “softmax” normalization:

fpio(uc) ≡ softmax(grio(uc)) (8)

where softmax(v) is a vector s so that s[i] = exp(v[i])/(
∑
i′ exp(v[i′]).

3.4 Differentiable Inference for Multi-Clause Programs

We now extend this idea to theories with many clauses. We first note that if there are several
clauses with the same predicate symbol in the head, we simply sum the unnormalized query
response functions: e.g., for the predicate uncle, defined by rules r1 and r2, we would define

guncleio = gr1io + gr2io

This is equivalent to building a new factor graph G, which would be approximately ∪iGri,
together global input and output variables, plus a factor that constrains the input variables
of the Gri’s to be equal, plus a factor that constrains the output variable of G to be the
sum of the outputs of the Gri’s.

A more complex situation is when the clauses for one predicate, p, use a second theory
predicate q, in their body: for example, this would be the case if aunt was also defined in
the theory, rather than the database. For a theory with no recursion, we can replace the
message-passing operations vY = vXMq with the function call vY = gqio(vX), and likewise

the operation vY = vXMT
q with the function call vY = gqoi(vX). It can be shown that this

is equivalent to taking the factor graph for q and “splicing” it into the graph for p.

It is also possible to allow function calls to recurse to a fixed maximum depth: we must
simply add an extra argument that tracks depth to the recursively-invoked gq functions, and
make sure that gp returns an all-zeros vector (indicating no more proofs can be found) when
the depth bound is exceeded. Currently this is implemented by marking learned functions
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g with the predicate q, a mode, and a depth argument d, and ensuring that function calls
inside gpio,d to q always call the next-deeper version of the function for q, e.g., gqio,d+1. The
depth bound is associated with the compilation routine, and a non-default value can be
provided by the user.

Computationally, the algorithm we describe is quite efficient. Assuming the matrices
Mp exist, the additional memory needed for the factor-graph Gr is linear in the size of the
clause r, and hence the compilation to response functions is linear in the theory size and
the number of steps of BP. For ptree-SDKGs, when Gr is a tree, the number of message-
passing steps is also linear. Message size is (by design) limited to |C|, and is often smaller
in practice, due to sparsity or type restrictions (discussed below).

3.5 Implementation: TensorLog

Compilation. The current implementation of TensorLog operates by first “unrolling” the
belief-propagation inference to an intermediate form consisting of sequences of abstract
operators, as suggested by the examples of Table 1. The “unrolling” code performs a
number of optimizations to the sequence in-line: one important one is to use the fact that
vX ◦(vY Many) = vX ||vY ||1 to avoid explicitly building Many. (If a clause is not a polytree,
this is detected when it is “unrolled”, as at least one random variable will have two paths
connecting it to the input, and an error is generated.) These abstract operator sequences
are then “cross-compiled” into expressions on one of two possible “back end” deep learning
frameworks, Tensorflow (Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis,
Dean, Devin, et al., 2016) and Theano (Bergstra, Breuleux, Bastien, Lamblin, Pascanu,
Desjardins, Turian, Warde-Farley, & Bengio, 2010). The operator sequences can also be
evaluated and differentiated on a backend implemented in the SciPy sparse-matrix package
(Jones, Oliphant, & Peterson, 2014), which includes only the few operations actually needed
for inference, and a simple gradient-descent optimizer. Henceforth this implementation will
be called the SciPy backend.

The SciPy’s main advantage is that it makes more use of sparse-matrix representations.
In all the implementations, the matrices that correspond to DB relations are sparse. The
messages corresponding to a one-hot variable binding, or the possible bindings to a variable,
are sparse vectors in the SciPy version, but dense vectors in the Tensorflow and Theano
versions, to allow use of GPU implementations of multiplication of dense vectors and sparse
matrices. All implementations also support grouping examples into minibatches, in which
case the message vectors become matrices with a number of rows equal to minibatch size—
this is discussed further in Section 5.1.

TensorLog compiles query response functions on demand, i.e., only as needed to answer
queries or train. In TensorLog the parameters Θ are partitioned by the predicate they are
associated with, making it possible to learn parameters for any selected subset of database
predicates, while keeping the remainder fixed. At compilation time, TensorLog also converts
the unit facts that comprise the database into a set of sparse matrices of dimension |C|×|C|.
Since these are sparse, the total size of the matrices is |DB|.

Execution. Given a query Q = q(c,Y), TensorLog first compiles the query into a series of
abstract message-passing operators, as described above. These message-passing operators
are then compiled into a computation graph (Bergstra et al., 2010; Abadi et al., 2016) for

299



Cohen, Yang & Mazaitis

the backend system, say Tensorflow. This graph has one “placeholder” node which can hold
the input c, and also a designated node for the output, Y , called the inference node. Both
input and output will be encoded as |C| dimensional vectors: the input is a one-hot vector
uc, and the output is a vector v̂Y |c where the value of the d-th component indicates the
score of q(c,d). The computation graph can be executed by Tensorflow, by supplying a
value for the input “placeholder” value and then requesting the value of the inference node.
It is also possible to use a matrix as the input, where each row in the matrix is a separate
input, and obtain a matrix of corresponding outputs, which allows several queries to be
executed in parallel when execution is performed on a GPU.

Learning. For learning, the computation graph is extended by adding a second “place-
holder” node corresponding to a desired target output vY |c, and extending the graph to
compute a (differentiable) loss function, which depends on the inference node and the target
output. Defining the loss is usually only a few lines in Tensorflow, but TensorLog will auto-
matically construct a default loss function, for unregularized cross-entropy loss after softmax
normalization. More precisely, for an input uc and target vector of desired probabilities y,
let fpio be defined in Eq 8. The default loss5 is thus

loss(uc,y) ≡ −y log(fpio(uc))− (1− y) log(1− fpio(uc))

evaluated over the components of fpio(uc) that have non-zero values (i.e., which correspond
to answers derivable from some proof). Since all the operations in the loss and inference
steps are differentiable, the computation graph can also be differentiated automatically by
Tensorflow: in particular, given a pair of inputs (uc,vY |c) to the loss function, Tensorflow
can compute the gradient of the loss with respect to any other graph node. Importantly, the
gradient can be computed with respect to any of the nodes that correspond to the sparse
matrixes derived from the database, allowing one to optimize the database to reduce loss.

Tensorflow and other deep-learning frameworks are highly efficient for matrix computa-
tions and gradient-descent based learning, with support for using sophisticated optimizers
and efficient streaming training procedures. However, sparse matrix operations are not as
well supported on Tensorflow: for instance, one cannot matrix-multiply two sparse matri-
ces, and one cannot find the gradient of a sparse matrix directly. Another limitation is that
constrained optimization is difficult: in the case of TensorLog, one would like to constrain
the confidence for database facts to be non-negative.

To address these limitations, we convert the training data to dense vectors just before
and after inference, and also define each sparse database matrix Mp to be a subgraph of the
computation graph, where Mp is defined as a the output of the Tensorflow SparseTensor

function, which inputs three dense arrays, holding the non-zero matrix values vp, and the
row and column indices of non-zero positions, respectively. Each array of non-zero matrix
values vp is in turn defined as a “softplus” function6 applied to another vector v′p. In
learning, the v′p vectors are updated during gradient descent. After learning, if necessary,
the updated sparse matrices Mp can be recomputed and stored.

It should be emphasized that the use of sparse matrices to store the Mp matrices is
absolutely essential for effiency. If dense matrices were used, then the size of the matrices

5. To avoid clutter, we present the loss for one example, but in learning, the loss optimized by the system
is aggregated over all examples in the training dataset.

6. The softplus function is f(x) = ln(1 + exp(x)), applied componentwise to a vector.
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tlog = tensorlog.simple.Compiler(db=“data.db”, prog=“rules.tlog”)
train data = tlog.load dataset(“train.exam”)
test data = tlog.load dataset(“test.exam”)
# data is stored dictionary mapping a function specification, like pio,
# to a pair X, Y. The rows of X are possible inputs fpio, and the rows of

# Y are desired outputs.
function spec = train data.keys()[0]
# assume only one function spec
X,Y = train data[function spec]

# construct a tensorflow version of the loss function, and function used for inference
unregularized loss = tlog.loss(function spec)
f = tlog.inference(function spec)
# add regularization terms to the loss
regularized loss = unregularized loss
for weight in tlog.trainable db variables(function spec):

regularized loss = regularized loss + tf.reduce sum(tf.abs(weights))*0.01 # L1 penalty

# set up optimizer and inputs to the optimizer
optimizer = tf.train.AdagradOptimizer(rate)
train step = optimizer.minimize(regularized loss)
# inputs are a dictionary, with keys that name the appropriate variables used in the loss function
train step input = {}
train step input[tlog.input placeholder name(function spec)] = X
train step input[tlog.target output placeholder name(function spec)] = Y

# run the optimizer for 10 epochs
session = tf.Session()
session.run(tf.global variables initializer())
for i in range(10):

session.run(train step, feed dict=train step input)

# now run the learned function on some new data
result = session.run(f, feed dict={tlog.input placeholder name(function spec): X2})

Figure 6: Sample code for using TensorLog within Tensorflow. This code minimizes an al-
ternative version of the loss function which includes an L1 penalty on the weights.

would be O(|C|2) which is impractical for reasonable-size KBs—however, sparse matrices
will store all the needed parameters in size linear in the number of facts in DB.

Typed predicates. One practically important extension to the language for the Tensorflow
and Theano targets was to include machinery for declaring types for the arguments of
database predicates, and inferring these types for logic programs: for instance, for the
sample program of Figure 1, one might include declarations like actedIn(actor,film) or
indicatesLabel(ngram,questionLabel). Typing reduces the size of the message vectors by a
large constant factor, which increases the potential minibatch size and speeds up run-time
by a similar factor.
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Constraining the optimizer. TensorLog’s learning changes the numeric score θf of ev-
ery soft KG fact f using gradient descent. Under the proof-counting semantics used in
TensorLog, a fact with a score of θf > 1 could be semantically meaningful: for instance
for f = costar(ginger rogers,fred astaire) one might plausibly set θf to the number of
movies those actors appeared in together. However it is not semantically meaningful to
allow θf to be negative. To prevent this, before learning, for each KG parameter θf , we
replace each occurrence of θf with h(θ̃f ) for the function h = ln(1 + ex) (the “softplus”
function), where θ̃f ≡ h−1(θf ). Unconstrained optimization is then performed to optimize
the value of θ̃f to some θ̃∗f . After learning, we update θf to be h(θ̃∗f ), which is always
non-negative.

Extension to multi-objective learning. For learning, TensorLog’s training data con-
sists of a set of queries p(c1, Y ), . . . , p(cm, Y ), and a corresponding set of desired outputs
vY |c1 , . . . ,vY |cm . It is possible to train with examples of multiple predicates: for instance,
with the example program of Figure 1, one could include training examples for both answer

and matches.
Alternative semantics for query responses. One natural extension would address a limi-

tation of the SLP semantics, namely, that the weighting of answers relative to a query some-
times leads to a loss of information. For example, suppose the answers to father(joe,Y) are
two facts father(joe,harry) and father(joe,fred), each with weight 0.5. This answer does
not distinguish between a world in which joe’s paternity is uncertain, and a world in which
joe has two fathers. One possible solution is to learn parameters that set an appropriate
soft threshold on each element of wQ, e.g., to redefine fp as

fp(u)) = sigmoid(gp(u) + bp)

where sigmoid(x) = 1/(1+e−x) and bp is a bias term. This extension illustrates an advantage
of being able to embed TensorLog inferences in a deep network, and will be discussed further
in Section 5.2.

Extension to call out to the host infrastructure. A second extension is to allow TensorLog
functions to “call out” to the backend language. Suppose, for example, we wish to replace
the classification predicate in the example program of Figure 1 with a Tensorflow model,
e.g., a multilayer perceptron, and that buildMLP(q) is function that constructs an expression
which evaluates the MLP on input q. We can instruct the compiler to include this model
in place of the usual function gclassificationio as follows:

plugins = tensorlog.program.Plugins()
plugins.define(”classification/io”, buildMLP)
tlog = simple.Compiler(db=”data.db”, prog=”rules.tlog”, plugins=plugins)

This extension means that one can write logical rules over arbitrary neurally-defined low-
level predicates, rather than merely over KB facts. We note that the compilation approach
also makes it easy to export a TensorLog predicate (e.g., the answer predicate defined by
the logic) to a deep learner, as a function which maps a question to possible answers and
their confidences. This might be useful in building a still more complex non-logical model
(e.g., a dialog agent which makes use of question-answering as a subroutine.)
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An example. Figure 6 illustrates how to one might configure TensorLog, showing how to
specify the function to optimize and data to train against. Because modern deep-learning
frameworks are quite powerful, it is relatively easy to modify this sort of script to use the
cross-compiled functions produced by TensorLog in a different way. As an example, in the
figure, we show how to add L1-regularization to TensorLog’s loss function and then train
using the Tensorflow backend.

4. Related Work

Below we will survey several different lines of related prior work.

4.1 Learning Relations Defined by Combinations of Paths

There is a long tradition in AI of relational learning techniques in which a relation between x
and y is defined in terms of the paths in a KB that link x and y (e.g., Richards & Mooney,
1992), where a path is defined as a sequence of relation names to follow: for instance
one might define uncle(x,y) as π1 ∨π2 where π1 = parent,brother and π2 = aunt,husband.
Paths have the advantage that one can often tractably enumerate all the short paths between
x and y.

For example, the path ranking algorithm (PRA) learned relation definitions using lo-
gistic regression to combine path features (Lao, Mitchell, & Cohen, 2011). PRA was later
extended to handle large sets of edge labels by clustering edge types (Gardner, Talukdar,
Kisiel, & Mitchell, 2013) and by introducing “soft matching” for edge labels (Gardner,
Talukdar, Krishnamurthy, & Mitchell, 2014). In all of these systems the classifier that is
learned is specific to the particular relation being defined: e.g., there is would be separate
classifiers for uncle queries with mode io and uncle queries with mode oi, and these would
be separate from the classifiers for aunt queries.

Some recent extensions to PRA use neural network path-based classifiers. For instance
(Neelakantan, Roth, & McCallum, 2015) learns to score pairs (τ, π), where π is a path and τ
the name of a relation to learn. Let Sxy be the set of paths connecting x and y and f(τ, π) the
learned scoring function. Their method estimates P ((x, y) ∈ τ) with maxπ∈Sxy f(τ, π). This
formulation allows f to exploit modern representation-learning methods—in particular, π is
encoded with a recurrent neural network—and also allows parameter-sharing across different
relations τ . Later work (Das, Neelakantan, Belanger, & McCallum, 2017b) improves on this
approach by adding entity types to the path, where entity types are learned along with path
weights. In a similar vein (Chen, Xiong, Yan, & Wang, 2018) uses a variational model to
find a distribution over paths associated with a relation τ .

Superficially, TensorLog and these approaches seem related, as there is often a close
connection between the chains of messages generated by unrolling belief propagation (e.g.,
the message chains for rules r1 and r2 in Table 1) and the machinery needed to follow paths
in a KB. However, although many of our example programs are paths, not every TensorLog
program defining a predicate p(X,Y ) can be defined only in terms of paths that lead from
X to Y , as polytrees generalize paths—e.g., consider rule 3 in Figure 2, or the rules for
classification in Figure 1.

The research focus of these systems is also quite different from the focus of this paper.
TensorLog is a language for allowing human users to specify a probabilistic logic program
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conveniently, in as expressive a way as possible: in contrast, the systems above are learning
systems designed to learn to classify pairs of entities. TensorLog can be used to adjust
weights in a KB: in contrast, the systems above cannot. TensorLog cannot be used for
relational learning unless a logical theory defining the relation to be learned already exists:
in contrast, for many of the systems above, it is hard to see how a classifier/theory can be
produced except from training data.

A final distinction is that TensorLog can learn KB weights based on following long paths
(e.g., see Table 5 for results on 22-step paths): in contrast, the systems above all require
enumerating all valid paths between a pair (x, y) before classifying it, so they are limited
to short paths. We note, however, that concurrently with this work, some approaches have
been developed which generate paths dynamically as part of the learning process, either by
reinforcement learning (Das, Dhuliawala, Zaheer, Vilnis, Durugkar, Krishnamurthy, Smola,
& McCallum, 2017a; Xiong, Hoang, & Wang, 2017) or by an LSTM controller and a memory
mechanism (Yang, Yang, & Cohen, 2017). These systems are perhaps more comparable
to TensorLog in this particular, although as yet these systems have been experimentally
demonstrated only on relatively short paths.

4.2 Hybrid Logical/Neural Systems

There is a long tradition of embedding logical expressions in neural networks for the purpose
of learning, but generally this is done indirectly, by conversion of the logic to a boolean
formula, rather than developing a differentiable theorem-proving mechanism, as considered
here. Embedding logic into a network may lead to a useful architecture (Towell et al., 1990)
or regularizer (Rocktäschel et al., 2015; Hu et al., 2016). Such embedding schemes require
explicitly constructing explicit network nodes for all possible inferences and hence would
be much more expensive than the inference scheme described here. Other well-known work
in this area includes connectionist model generation (Bader, Hitzler, & Hölldobler, 2008),
lifted relational neural networks (Sourek et al., 2015) and logic tensor networks (Serafini
& d’Avila Garcez, 2016). These models all ground first-order theories to a neural network
and like the explicitly grounded probabilistic first-order languages discussed below, these
systems cannot efficiently handle rules containing many logical variables, such as the one
in Equation 2.

Recently, researchers (Rocktäschel & Riedel, 2017) have proposed a “differentiable the-
orem prover”, in which a proof for an example is unrolled into a network. Their system
includes representation-learning as a component, as well as a template-instantiation ap-
proach like that of (Wang, Mazaitis, & Cohen, 2014), allowing structure learning. However,
unlike the case for TensorLog, the proof procedure can produce very large proof trees, lead-
ing to proofs (and neural networks) that are of size exponential in the KB. The system
also does not employ the sparse-matrix structures used by TensorLog, which act as indexes
allowing one to efficiently perform chains of reasoning, and hence it cannot scale to KBs as
large as those TensorLog can process. The largest published experiments with the system
of (Rocktäschel & Riedel, 2017) use KBs of size less than 11,000, while below, we report
results on KBs with tens of millions of facts and millions of entities.

In (Evans & Grefenstette, 2018) a “differentiable inductive logic” framework is proposed.
Like TensorLog their approach is end-to-end differentiable, and involves assigning weights
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to rules based on their performance on test data. In their case rules are generated by
a set of templates. The differentiable inductive logic method produces good results on a
number of traditional inductive logic programming (ILP) tasks, where one must infer a
latent program structure, but is much more memory-intensive than TensorLog, including
multiple parameters for each potential ground database fact (Evans & Grefenstette, 2018,
Appendix E).

Another recent paper (Andreas, Rohrbach, Darrell, & Klein, 2016) describes a system
in which non-logical but compositionally defined expressions are converted to neural com-
ponents for question-answering tasks. These systems avoid computational issues associated
with grounding by making the computational components much more like functions, with
a small number of inputs to each and no search associated with inference.

4.3 Explicitly Grounded Probabilistic First-Order Languages

Many first-order probabilistic models are implemented by “grounding”, i.e., conversion to a
more traditional representation. In the context of a deductive DB, a rule can be considered
as a finite disjunction over ground instances: for instance, the rule

p(X,Y) :- q(Y,Z),r(Z,Y)

is equivalent to

∃x ∈ C, y ∈ C, x ∈ C : p(x, y) ∨ ¬q(y, z) ∨ ¬r(Z, Y )

For example, Markov logic networks (MLNs) are a widely-used probabilistic first-order
model (Richardson & Domingos, 2006) in which a Bernoulli random variable is associated
with each potential ground database fact (e.g., in the binary-predicate case, there would be
a random variable for each possible p(a, b) where a and b are any facts in the database and p
is any binary predicate) and each ground instance of a clause is a factor. The Markov field
built by an MLN is hence of size O(|C|2) for binary predicates, which is much larger than
the factor graphs used by TensorLog, which are of size linear in the size of the theory. In
our experiments we compare to ProPPR, which has been elsewhere compared extensively
to MLNs.

Inference on the Markov field can also be expensive, which motivated the development of
probabilistic similarity logic (PSL), (Brocheler, Mihalkova, & Getoor, 2010) a MLN variant
which uses a more tractible hinge loss. However, any grounded model for a first-order theory
can still be very large, limiting the scalability of such techniques.

4.4 Stochastic Logic Programs and ProPPR

As noted above, TensorLog is very closely related to stochastic logic programs (SLPs)
(Cussens, 2001). In an SLP, a probabilistic process is associated with a top-down theorem-
prover: i.e., each clause r used in a derivation has an associated probability θr. Let N(r, E)
be the number of times r was used in deriving the explanation E: then in SLPs, PrSLP(f) =
1
Z

∑
E∈Ex(f)

∏
r θ

N(r,E)
r . The same probability distribution can be generated by TensorLog if

(1) for each rule r, the body of r is prefixed with the literals assign(RuleId,r),weighted(RuleId),
where r is a unique identifier for the rule and (2) Θ is constructed so that θf = 1 for ordinary
database facts f , and θweighted(r) = θ′r, where Θ′ is the parameters for a SLP.

305



Cohen, Yang & Mazaitis

SLPs can be normalized or unnormalized. In normalized SLPs, Θ is defined so that for
each set of clauses Sp of clauses with the same predicate symbol p in the head,

∑
r∈Sp

θr = 1.
TensorLog can represent both normalized and unnormalized SLPs (although clearly learning
must be appropriately constrained to learn parameters for normalized SLPs.) Normalized
SLPs generalize probabilistic context-free grammars, and unnormalized SLPs can express
Bayesian networks or Markov random fields (Cussens, 2001).

ProPPR (Wang et al., 2013) is a variant of SLPs in which (1) the stochastic proof-
generation process is augmented with a reset, and (2) the transitional probabilities are
based on a normalized soft-thresholded linear weighting of features. The first extension
to SLPs can be easily modeled in TensorLog, but the second cannot: the equivalent of
ProPPR’s clause-specific features can be incorporated, but they are globally normalized,
not locally normalized as in ProPPR.

ProPPR also includes an approximate grounding procedure which generates networks
of bounded size. Asymptotic analysis suggests that ProPPR should be faster for very large
databases and small numbers of training examples (assuming moderate values of ε and α are
feasible to use), but that TensorLog should be faster with large numbers of training examples
and moderate-sized databases. This is discussed further in the experimental section.

5. Experiments

To evaluate our proposal we conducted experiments to measure the scalability of the pro-
posed algorithm, and to demonstrate how it can be integrated with Tensorflow. We also
evaluated learners based on TensorLog on two types of benchmark tasks: relational learning
tasks, and query-answering against a KB.

5.1 Efficiency and Scalability

One of the claimed contributions of this paper is identifying a subset of first-order logic which
is expressive, but tractible. In particular, inference and learning in TensorLog should scale
well when the number of facts and entities in the KB increases. To substantiate this claim,
in this section we will conduct systematic experiments using similar inference and learning
tasks on KBs of varying size. Another claimed advantage of TensorLog is that the inference
algorithm we developed can be compiled to sequences of differentiable matrix operations,
which are efficiently supported by deep learning frameworks. To substantiate this claim we
will compare inference and learning times on the SciPy backend (which does not exploit an
existing platfortm) with inference and learning times on the Tensorflow backend.

Inference time. We evaluated TensorLog’s scalability on both inference and learning
tasks. We considered two artificial problems which can be scaled to arbitrary size, both
suggested by problems described in (Fierens et al., 2015). One is a version of the “friends
and smokers” problem, a simplified model of social influence. Following (Fierens et al., 2015)
graphs were artificially generated using a preferential attachment model. (The details of
our data generation procedure and the theories used are described in Appendix C.) The
inference times are averaged over four different predicates, with 100 sample query entities
for each predicate, and we repeated the experiment for artificial graphs of various sizes,
ranging from 400 nodes to 2 million. The second task from (Fierens et al., 2015) is intended
to test performance on deeply recursive tasks. The goal here is to compute fixed-depth
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Friends and Smokers Grid Transitive Closure

Name # Entities # Facts Name # Entities # Facts

FS100 400 5,060 GR10 100 784
FS1k 4,000 48,260 GR25 625 5,329
FS10k 40,000 480,260 GR50 2,500 21,904
FS100k 400,000 4800,260 GR100 10,000 88,804
FS500K 2,000,000 24,000,260 GR200 40,000 357,604

Table 2: Graphs used in scalability experiments.

Graph ProPPR SciPy Tensorflow CPU Tensorflow GPU
none b=25 b=250 b=25 b=250 b=25 b=250

FS100 1392.8 73.08 1247.64 − 202.29 − 452.53 −
FS1k 1310.6 71.40 1183.65 3635.62 143.34 926.22 198.99 1552.55
FS10k 1190.8 68.39 551.53 907.64 44.34 237.26 67.95 314.10
FS100k 236.1 33.19 93.33 99.44 5.32 24.81 11.06 37.72
FS500k 178.4 12.16 16.72 17.10 − − − −
GR10 43.1 75.1 567.6 − 250.3 − 204.8 −
GR25 83.8 68.8 325.8 1264.2 174.9 1159.4 187.9 1826.5
GR50 108.1 47.2 99.4 466.0 67.9 466.8 85.5 872.8
GR100 117.3 11.3 12.3 108.6 10.1 88.2 19.3 191.2
GR200 116.6 0.9 1.0 8.5 0.89 7.65 1.6 16.4

Table 3: Queries per second on inference tasks, as KB and minibatch sizes vary. Times for
the fastest exact inference scheme are put in bold, and if ProPPR’s approximate
scheme is yet faster, it is italicized. Missing results indicate problems that exceed
Tensorflow’s system limits, or else where the minibatch size is larger than the
number of possible instances.

Graph SciPy Tensorflow CPU Tensorflow GPU GPU Speedup
Time Acc Time Acc Time Acc vs SciPy vs CPU

GR10 11.6 0.90 1.23 0.85 0.97 0.80 12.0 1.3
GR25 2544.7 0.98 24.88 1.00 4.77 1.00 533.3 5.2
GR50 >10000 − 296.0 0.95 30.7 0.97 − 9.6
GR100 >10000 − 3203.6 0.98 392.9 1.00 − 8.2
GR200 >10000 − − − − − − −

Table 4: Accuracy on test data and learning time in seconds for 50 epochs of learning on
grid navigation tasks of fixed difficulty, with a minibatch size of 100 and maximum
depth of 10.
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transitive closure on a grid: in (Fierens et al., 2015) a 16-by-16 grid was used, with a
maximum path length of 10. We used the same maximum path length, but again varied the
grid size, ranging from a 10-by-10 grid to a 200-by-200 grid, and averaged time over batches
of b random queries, for b = 25 and b = 250. These KBs are summarized in Table 2.

We evaluated performance using the SciPy backend, which is based on SciPy (Jones
et al., 2014) sparse matrices, and the Tensorflow backend. Because Tensorflow has limited
support for sparse matrices, with the Tensorflow backend we use dense vectors to encode
distributions over entities, and sparse matrices only to encode KB relations. Since the SciPy
backend also uses sparse matrices for entity distributions, it is potentially more efficient for
shallow proofs over large KBs, where only a small fraction of all entities need to have non-
zero weights in a distribution. The SciPy backend also circumvents some system limits in
Tensorflow (in particular, Tensorflow sparse matrices are limited in size.) For Tensorflow we
evaluated performance with CPU only and also with GPUs (see Appendex C for details).
Inference time was measured by queries per second.

We also varied the minibatch size, which usually greatly affects performance on matrix-
oriented learners. When a minibatch size of b is used, then b queries with the same predicate
can be processed as a group, by grouping the associated b entities into a single matrix, and
all the message-passing associated with these entities is performed by a single sequence of
matrix operations. This approach is not asymptotically faster but is often much faster in
practice, especially when processing groups of simple queries. It also makes it possible to
better exploit the parallelism of a GPU. Both the SciPy backend and the Tensorflow backend
support minibatches. We explored minibatches of size b = 25 for the social influence task
and minibatches of sizes b = 25 and b = 250 for the transitive closure task.7

The experimental results, summarized in Table 3, illustrate some of the computational
advantages of using neural-network infrastructure for probabilistic first-order inference, and
the Tensorflow backend in particular. For moderate-size KBs with a few tens of thousands
or hundreds of thousands of facts (e.g., FS1k and FS10k) even small minibatches provide
substantial speedup on shallow proofs—nearly 50-fold for FS1k—and this speedup is ap-
parent even on conventional machines. However, on larger graphs there is little advantage
to minibatch computation.

For the deep proofs associated with the grid tasks we see a similar effects. Minibatches
give a substantial speedup on smaller KBs, and less of a speedup on larger ones: however,
even for GR200, one can obtain nearly a factor of nine speedup with large minibatches,
even on conventiobnal CPUs. As expected, exploiting sparsity in entity distributions is less
useful, so there is little advantage in the SciPy backend over Tensorflow. On these tasks
there is also a clear advantage to exploiting GPUs, with inference nearly twice as fast as on
CPUs for the largest graphs, leading to a total speedup of more than a factor of 17. As we
will see below, however, the advantages of GPU processing are much more pronounced on
learning tasks, when inferences are repeated many times.

Discussion of inference time results. As noted above, ProPPR is a closely related prob-
abilistic logic which includes an approximate theorem prover. ProPPR’s theorem prover is

7. For the smallest KBs, there were not enough examples to populate a batch of 250.
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Grid Size Max Depth # Graph Nodes Acc Time (30 epochs)
SciPy TF SciPy TF SciPy TF

16 10 68 2696 99.9 97.2 37.6 sec 1.1 sec
18 12 80 3164 93.9 96.9 126.1 sec 1.8 sec
20 14 92 3632 25.2 99.1 144.9 sec 2.8 sec
22 16 104 4100 8.6 98.4 83.8 sec 4.2 sec
24 18 116 4568 2.4 0.0 611.7 sec 6.3 sec

Table 5: Learning for the grid navigation task with SciPy and Tensorflow (TF) backends,
averaged over 10 trials for each datapoint, with minimal hyperparameter tuning.

also based on a very efficient abstract machine (Ait-Kaci, 1991). As predicted by analysis,
ProPPR is faster for very large KBs.8

Both ProPPR and TensorLog are extremely fast relative to probabilistic logics using a
possible-worlds semantics. For instance, (Fierens et al., 2015) reports inference times for
ProbLog2, a mature system that uses the tuple-independence model on a smaller 20-node
version of the social influence task, and transitive closure on a 16-by-16 grid. ProbLog2 re-
quires 40-50 seconds for the social influence task and 100-120 seconds for transitive-closure
tasks. Of course, TensorLog implements a much more restricted logic. However, for those
tasks that can be solved with both systems, TensorLog is many orders of magnitude faster,
and the tasks that can be modeled with TensorLog do include a number of practical prob-
lems, as shown in Sections 5.3 and 5.4 below.

Learning time. To evaluate learning performance as KB sizes increase, we derived a
learning task from the transitive closure task, which we will call below the grid navigation
task. On this task, there is one predicate, path(X,Y), which is true if X and Y are connected
by a path shorter than the maximum depth of recursion. Since the maximum depth is 10, for
any query cell a there will be about 200 Y ’s for which path(a,Y) is proveable. We produced
a dataset where for each a, there is one designated “landmark” node ya that is preferred
path(a, ya). (See Appendix C for details.) The learning task is to adjust the weights of
the edge facts—the edges of graph defined by the grid—so that the score of path(a, ya) is
higher than every other proveable fact path(a, y′). Thus, for an n-by-n grid, there are n2

possible queries which are possible, with one correct answer for each query. We picked 1/3
of these queries as test data, and the remainder as train, and optimized training loss for
50 epochs using AdagradOptimizer with a default learning rate of 1.0 and a minibatch size
of 100. Accuracies are comparable for all configurations of the system, and except for the
small 10-by-10 grid, they are in the high 90’s.

Tensorflow and other neural-network infrastructures are optimized for learning, in which
the same sorts of inference tasks are repeated many times. This is reflected in speed of
learning, especially when GPUs are used: on the 25-by-25 grid, learning is more than 500
times faster with GPUs than using the SciPy backend.

8. The experiments with ProPPR use the default parameters of ε = 0.0001 and α = 0.1 for the approximate
theorem-proving.
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The effect of inference complexity on learning. Although the grid navigation task seems
simple, it is quite difficult for probabilistic logics, because recursive theories lead to large,
deep proofs. While TensorLog’s inference schemes scale well as KB size increases, unrolling
deeply recursive proofs leads to very large graphs, especially after they are compiled to the
relatively fine-grained operations used in Tensorflow. The computation graphs are also very
deep, which potentially leads to problems in optimization; this is a potential advantage for
systems that compile to existing deep learning frameworks, since they are likely to contain
more sophisticated optimization tools, and also better support for manually or automatically
tuning hyperparameters associated with the optimizer (Snoek, Larochelle, & Adams, 2012;
Golovin, Solnik, Moitra, Kochanski, Karro, & Sculley, 2017).

To explore these issues, we formulated a different series of grid navigation tasks, which
vary in difficulty as well as size. In all tasks, the goal is to navigate from anywhere on the
grid to a specified designated landmark node, but the landmark node for a is the extreme
corner closest to a—i.e., on an n-by-n grid, one of the corners (1,1), (1,n), (n,1) or (n,n).
Hence as grid size increases, the path from a to ay gets longer, and a larger maximum
depth of recursive is needed. Table 5 shows how the size of the compiled sequence of
message-passing operations grows as grid size and maximum depth increase.

As a measure of how difficult optimization becomes as the learning task is varied, we
tuned the SciPy optimizer (a simple fixed-rate gradient descent method) so that it converged
reliably on the smallest of the sample tasks. For the SciPy variant, we kept those parameters
fixed as the task complexity changed. For the Tensorflow variant, we used for all tasks the
AdagradOptimizer with a default learning rate of 1.0, which our personal experience has
shown to be fairly effective on a wide range of problems. We used 30 epochs of optimization
for both optimizers (the value chosen by tuning for the SciPy backend’s optimizer).

The accuracy and learning-time results are shown in Table 5. Although they do not
completely eliminate the need for hyperparameter tuning, the more sophisticated optimizers
available in Tensorflow do appear to be more robust: AdaGrad performs well up to a depth
of around 22, while the fixed-rate optimizer performs well only for depths 10 and 12. Once
again, learning is many times faster for the Tensorflow backend, which uses a GPU.9

5.2 Integration with Tensorflow

The integration with Tensorflow means that TensorLog also can be relatively easily extended
in many ways. In particular, it is possible to use TensorLog’s weighted proof counts as inputs
to a Tensorflow model. This is not merely a way to use logic as a feature for a neural system
(although making this convenient is also useful), because one can also modify parameters
of the logic using the same gradient descent methods normally used to learn the neural
model, thus training the parameters of the probabilistic logic jointly with the neural model
it is embedded in. A second type of integration is to introduce a neural model as an input
to the logic. In particular, one can replace the facts that define a TensorLog relation with
a numeric function to compute weights; this allows one to integrate a neural model as an
input to TensorLog.

9. Learning times for the SciPy backend are quite variable for the larger sizes, because numerical instabilities
often cause the optimizer to fail. In computing times we discard runs where there is overflow but not
when there is underflow, which is harder to detect. The high variance accounts for the anomolously low
average time for grid size 22.
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Description Baseline grid navigation
Inference softmax(g)
Loss crossEntropy(softmax(g),y)
Target y y[f ] = 1 for single correct f and y[f ] = 0 otherwise
Edge relation Sparse matrix Medge of weights for facts edge(a,b)

Parameters learned Medge

Accuracy 85.8%
Description Simple non-conditional query response functions
Inference sigma(b1g + b2)
Loss crossEntropy(sigma(b1g + b2),y)
Target y y[f ] = 1 for all correct f and y[f ] = 0 otherwise
Edge relation Sparse matrix Medge of weights for facts edge(a,b)

Parameters learned Medge, b1, b2
Accuracy 98.9%
Description Approximating tuple-independence
Inference sigma(b1g + b2)
Loss crossEntropy(sigma(b1g + b2),y)
Target y y[f ] = Pr(f) under tuple-independence
Parameters learned Medge, b1, b2
Initial error |p̂− p| 0.576
Trained error |p̂− p| 0.051
Description Learning representations for grid cells
Inference softmax(g)
Loss crossEntropy(softmax(g),y)
Target y y[f ] = 1 for the single correct f and y[f ] = 0 otherwise

Edge relation softplus(
∑d

k=1 px1
[k]− px1

[k]) ∗Medge[x1, x2]
Parameters learned px for each grid cell x
Accuracy 97.8%

Table 6: Summary of experiments in integration of TensorLog and Tensorflow models. The
vector g is a response vector containing unnormalized weighted proof-count values
wQ(f) for every proveable answer fact f . The vector y is the desired response
vector.
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We used grid navigation as a testbed to explore several such extensions to TensorLogs.
The experiments of this section were conducted on 10 by 10 grids, and are summarized in
Table 6.

Integration of TensorLog with logistic regression to learn non-conditional probabilistic
responses. As described above, TensorLog by default will answer a query of the form
Q = p(c, Y ) with a appropriate conditional probability vector vY |c (given in Eq. 7). This is
not always appriopriate—for instance, if Q is the query uncle(bob,Y) and bob has two true
uncles, harry and tom, then a vector vY |c can at best split its weight between the two of
them, which does not allow the user to distinguish between multiple entities related to bob

by the uncle predicate, and uncertainty as to which of the two is bob’s uncle. In this sort
of case we could like to assign high probability to both tom and harry.

Achieving this behavior is straightforward. Recall that above we denoted the combined
weight of all proofs of Q which support fact f as wQ(f). In TensorLog, the response vector
vQ to the query Q is a normalized version of the weighted count of proofs for Q. However,
in the implementation, a function that computes unnormalized weighted proof counts is
also available, and these can be also converted to probabilities by rescaling and shifting the
counts with learned parameters b1 and b2 and passing the result through a logistic function,
rather than normalizing. Thus the revised response vector is

Pr(f |Q) ≡ sigma(b1wQ(f) + b2)

where sigma(x) ≡ 1
1+e−x . One then minimizes an appropriate loss function, for example,

cross-entropy of this output with respect to the desired labels. Implementing this new
response semantics and weighting function requires modifying only five lines of code (see
Appendix C).

In this experiment, then, we are using the unnormalized proof counts as inputs to a
logistic regression classifier (which includes two additional scalar parameters A and B,
which must now be learned). Hence this is an example of using TensorLog’s proof-count
machinery as an input to a more complex learning model.

To test this functionality, we generated data for a variant of the grid navigation problem,
where the optimal response to a query path(a,Y) would give high probability to four squares
in the corner closest to a, rather than one: e.g., if the closest corner was cell (1,1) then
cell’s (1,1), (1,2), (2,1), and (2,2) would all be assigned probability close to 1, and all
other cells assigned probability close to zero.

It is somewhat harder to optimize this alternative loss function. We used an ADAM
optimizer (Kingma & Ba, 2014) with a learning rate of 0.1 and halted optimization when
accuracy on the training set reached 100%: this took over 500 epochs on average (over 10
trials). However, learning still takes less than 10 seconds per trial, and performance after
convergence is good: the average test-set accuracy for TensorLog was 98.88%. This result
is summarized in the second section of Table 6. The first section describes the default use
of TensorLog.

Learning non-conditional probabilistic responses that approximate tuple-independence.
As another experiment in learning non-conditional loss functions, we also generated a
dataset where P (path(x,y)) approximates the probability given by the tuple independence
model of Section 2.4 with a maximum path length of 10. We accomplished this by sam-
pling 1,000,000 interpretations (i.e., partial grids, where the each edge is present with fixed
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Figure 7: Learning to approximate the tuple-independence model. Top left, TensorLog’s
initial model for P (path(x,y)). Middle left, the model with trained edge weights.
Bottom left, the target distribution, based on a sample of 1 million interpreta-
tions. Top right: the difference between TensorLog’s distributions and the target
distribution before training. Middle right, the difference after training. Bottom
right, the distribution of errors before and after training.
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probability p = 0.25) and recording, for each pair of cells x, y, the fraction of times that
x and y are connected by a path of length 10 or less in the sample. We used the same
optimization strategy to optimize for 1000 epochs, which takes about 12 seconds. Figure 7
shows that in TensorLog’s semantics, the initial scores of P (path(x,y) are quite different
from those of the tuple-independence model, but that training allows it to approximate the
tuple-independence model quite well.

Again, we report errors on a held-out test set of 1/3 of the possible query cells x, and
train edge weights on the remaining 2/3. To evaluate we used TensorLog with the learned
edge weights to compute P (path(x,y)) for each of the test query cell x and each grid cell y.
These are visualized in the image plots of Figure 7: each image plot has one row for each
of the 30 test query cells x, and one column for each of the 100 grid cells y, with the color
encoding the value of P (path(x,y)). The mean absolute value of the difference is reduced
from 0.576 to 0.051 by training, as summarized in Table 6. After training the inference
times are similar to those shown in Table 3).

Applying TensorLog to predicates based on learned embeddings. To demonstrate how
TensorLog can be integrated with other Tensorflow models, we constructed a final variant
of the grid navigation task, where our the goal is to force the system to learn a latent
representation for each cell. We built a training dataset where the desired output to every
query Q = path(x,Y) is a particular cell y = ytarget, and we also limit the depth to five. The
path-finding problem now becomes analogous to a reinforcement learning task, where the
goal is to navigate efficiently (since depth is limited) from any query cell a to the landmark
ay. The grid was also modified so that connections “wrap around” from one edge of the
grid to another,10 so that corner and edge cells have the same pattern of connectivity as
the interior cells, leaving no clues as to how to navigate but cell position.

We then replaced the edge(x1, x2) facts with a computed predicate based on two learned
vector representations for x1 and x2. Let px ∈ Rd be the vector position for x. We would
like the edge weights derived from this representation to support navigation in particular
directions on the grid, e.g., toward the upper left. Notice that this cannot be done with a
symmetrical weighting scheme, e.g., defining the weight of the edge from x1 to x2 as pTx1px1 .
We thus defined the computed edge weights w′(x1, x2) as

w′(x1, x2) = softplus(
d∑

k=1

px1 [k]− px1 [k])

which is a simple non-negative asymmetric function. To force the weights for non-adjacent
cells to be zero, we also multiply by the original sparse matrix, yielding the final formula

w(x1, x2) ≡ softplus(
d∑

k=1

px1 [k]− px1 [k]) ∗Medge[x1, x2]

This is integrated with TensorLog using the plugin construct discussed in Section 3.5.
Details are given in Appendix C.

In our experiments, we used the same optimizer as in the experiments above, run for 100
epochs. We chose (1,1) as the target vertex ay, and the embedding vectors px for each cell x

10. So, for instance, on a 10-by-10 grid, cell (4,10) would be connected to cell (4,1) as well as cell (4,9).
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Task ProPPR TensorLog

CORA (13k facts, 10 rules) AUC-ROC 83.2 AUC-ROC 97.6

UMLS (5k facts, 226 rules) Accuracy 49.8 Accuracy 52.5

Wordnet (276k facts)
Hypernym (46 rules) Accuracy 93.4 Accuracy 93.3
Hyponym (46 rules) Accuracy 92.1 Accuracy 92.8

Table 7: Comparison to ProPPR on small benchmark relational learning tasks.

were 2-dimensional, with each dimension initialized randomly between 1 and 10. Learning
is quite accurate: averaged over 10 trials, the accuracy of this model was 97.8%, versus only
85.8% for the conventional parameterization with one independent weight per edge.11

Our expectation was that training would make the embeddings approximate the i, j po-
sition of a cell (since using that embedding would lead to upweighting edges leading toward
the target cell.) In fact TensorLog learned a quite different embedding: both embeddings
dimensions were highly correlated with each other, and each was highly correlated with
distance to ay.

5.3 Small Relational Learning Tasks

As another test, we evaluated TensorLog experimentally on several standard relational
benchmark learning tasks. Here we compared TensorLog to ProPPR. We chose two tradi-
tional relational learning tasks on which ProPPR outperformed plausible competitors, such
as MLNs. One was the CORA citation-matching task (from (Wang et al., 2013)), which has
hand-constructed rules.12. A second was learning the most common relation, “affects”, from
UMLS, using a rule set learned by the algorithm of (Wang et al., 2014). Also, motivated by
comparisons between ProPPR and embedding-based approaches to knowledge-base com-
pletion (Wang & Cohen, 2016), we compared to ProPPR on two relation-prediction tasks
involving WordNet, using rules from the non-recursive theories used in (Wang & Cohen,
2016). In all of these tasks, parameters were (of course) learned on a training set separate
from the test data.

The contributions of this paper include both the description of a new logic, Tensor-
Log, and presentation of an approach to integrating TensorLog with Tensorflow. The latter
contribution makes it much easier to tune parameters of a learner—e.g., selecting alter-
native optimizers, etc—so to isolate the value of the particular probabilistic logic used in
TensorLog, we used only the SciPy backend with the default loss function and the fixed-
rate stochastic gradient descent learner. We compared with the default parameters for
ProPPR’s learner and optimized for 30 epochs (which approximately matched the runtime
for ProPPR’s learning method.) Thus the only parameter remaining to set was learning
rate, which was set to 0.1.

11. This may simply be due to the more efficient parameterization scheme: there are 200 parameters asso-
ciated with the 2-dimensional embedding of each cell, but nearly 800 parameters distinct edges in the
grid.

12. We replicated the experiments with the most recent version of ProPPR, obtaining a result slightly higher
than the 2013 version’s published AUC of 80.0
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Original KB Extended KB Num Examples
Num Tuples Num Relations Num Tuples Num Relations Train Devel Test

421,243 10 1,362,670 12 96,182 20,000 10,000

Table 8: Statistics concerning the WikiMovies dataset.

Method Accuracy Time per epoch

Subgraph/question embedding 93.5%
Key-value memory network 93.9%

TensorLog (1,000 training examples) 89.4% 6.1 sec
TensorLog (10,000 training examples) 94.8% 1.7 min
TensorLog (96,182 training examples) 95.0% 49.5 min

Table 9: Experiments with the WikiMovies dataset. The first two results are taken from
(Miller et al., 2016).

Table 7 shows that the accuracy of the two systems after learning is quite comparable,
even under these restrictions.

5.4 Answering Natural-Language Questions Against a KB

As a final, larger scale, experiment, we used the WikiMovies question-answering task pro-
posed by (Miller et al., 2016). This task is similar to the one shown in Figure 1. The
KB consists of over 420k tuples containing information about 10 relations and 16k movies.
Some sample questions with their answers are below, with double quotes identifying KB
entities.

• Question: Who acted in the movie Wise Guys?
Answers: “Harvey Keitel”, “Danny DeVito”, “Joe Piscopo”, . . .

• Question: what is a film written by Luke Ricci?
Answer: “How to be a Serial Killer”

We encoded the questions into the KB by extending it with two additional relations:
mentionsEntity(Q,E), which is true if question Q mentions entity E, and hasFeature(Q,W),
which is true if question Q contains feature W. The entities mentioned in a question were ex-
tracted by looking for every longest match to a name in the KB. The features of a question
are simply the words in the question (minus a short stoplist).

The theory is a variant of the one given as an example in Figure 1. The main difference
is that because the simple longest-exact-match heuristic described above identifies entities
accurately for this dataset, we made mentionsEntity a hard KB predicate. We also extended
the theory to handle questions with answers that are either movie-related entities (like the
actors in the first example question) or movies (as in the second example). Finally, we
simplified the question-classification step slightly. The final theory contains two rules and
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two “soft” unary relations QuestionTypeR,1, indicatesQuestionTypeR,2 for each relation R
in the original movie KB. For example, for the relation directedBy the theory has the two
rules

answer(Question,Movie) :-

mentionsEntity(Question,Entity), directedBy(Movie,Entity),

hasFeature(Question,Word), indicatesQuestionTypedirectedBy,1(Word)

answer(Question,Entity) :-

mentionsEntity(Question,Movie), directedBy(Movie,Entity),

hasFeature(Question,Word), indicatesQuestionTypedirectedBy,2(Word)

The last line of each rule hence acts as a linear classifier for that rule.

For efficiency we used three distinct types of entities (question ids, entities from the
original KB, and word features) and the Tensorflow backend, with minibatches of size
100 and an Adagrad optimizer with a learning rate of 0.1, running for 20 epochs, and no
regularization. We compare accuracy results with two prior neural-network based methods
which have been applied to this task. As shown in Table 9, TensorLog performs better than
the prior state-of-the-art13 on this task and is quite efficient.

6. Concluding Remarks

In this paper, we described a scheme to integrate probabilistic logical reasoning with the
powerful infrastructure that has been developed for deep learning. The end goal is to en-
able deep learners to incorporate first-order probabilistic KBs, and conversely, to enable
probabilistic reasoning over the outputs of deep learners. TensorLog, the system we de-
scribe here, makes this possible to do at reasonable scale using conventional neural-network
infrastructure.

This paper contains several interrelated technical contributions. First, we identified
a family of probabilistic deductive databases (PrDDBs) called polytree-limited stochastic
deductive knowledge graphs (ptree-SDKGs) which are tractable, but still reasonably expres-
sive. This language is a variant of SLPs, and it is maximally expressive, in that one cannot
drop the polytree restriction, or switch to a possible-worlds semantics, without making in-
ference intractible. We also argue that logics which are not tractable (i.e., are #P or worse
in complexity) are unlikely to be practically incorporated into neural networks: we leave
as an interesting problem for future research the question of tractable other extensions to
TensorLog, e.g. to non-binary predicates.

Second, we presented an algorithm for performing inference for ptree-SDKGs, based on
belief propagation. Computationally, the algorithm is quite efficient. Assuming the matrices
Mp exist, the additional memory needed for the factor-graph Gr is linear in the size of the
clause r, and hence the compilation is linear in the theory size and recursion depth. To our
knowledge, use of BP for first-order inference in this manner is novel.

13. Subsequent to the original submission of the paper, a result of 96.7% accuracy was obtained (Das et al.,
2017a).
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Finally, we present an implementation of this logic, called TensorLog. The implementa-
tion makes it possible to both call TensorLog inference within neural models, or conversely,
to call neural models within TensorLog.

The current implementation of TensorLog includes a number of restrictions. Two back-
ends are implemented, one for Tensorflow and one for Theano, but the Tensorflow backend
has been more extensively tested and evaluated. We are also exploring compilation to Py-
Torch14, which supports dynamic networks. We also plan to implement support for more
stable optimization (e.g., gradient clipping), and better support for debugging.

As noted above, TensorLog also makes it possible to replace components of the logic
program (e.g., the classification or matches predicate) with submodels learned in the
deep-learning infrastructure. Alternatively, one can export a answer predicate defined by
the logic to a deep learner, as a function which maps a question to possible answers and
their confidences; this might be useful in building a still more complex model non-logical
model (e.g., a dialog agent which makes use of question-answering as a subroutine.) In this
paper we explored small illustrative experiments to test these capabilities, but in future
work we hope to explore them futher.

We also note that although the experiments in this paper assume that theories are given,
the problem of learning programs in TensorLog is also of great interest. Some early results
from the authors on this problem are discussed elsewhere (Yang et al., 2017).
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Appendix A. Proofs

Theorem 1 Computing P (f |Q) (relative to a SDKG T ,DB) for all possible answers f of
the query Q is #P-hard, even if there are only two such answers, the theory contains only
two non-recursive15 clauses, and the KG contains only 13 facts.

We will reduce counting proofs for 2PSAT to computing probabilities for SDKGs.
2PSAT is a #P-hard task where the goal is to count the number of satisfying assignments
to a CNF formula with only two literals per clause, all of which are positive (Suciu et al.,
2011). Hence a 2PSAT formula is of the form

(xa1 ∨ xb1) ∧ . . . ∧ (xan ∨ `bn)

where the variables are all binary variables xi from X = {x1, . . . , xn}, and each ai and bi is
a index between 1 and n. The subformula (xai ∨ xbi) is called the i-th clause below.

14. pytorch.org
15. A theory is recursive if some proof of a query q(x1, y1) involves a subgoal of the form q(x2, y2), where

the x’s and y’s are either constants or variables.
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The database contains the two facts assign yes(yes) and assign no(no) with weight
1, and two facts binary(0) and binary(1) with weights 0.5. It also contains a definition
of the predicate either of, containing the following three weight 1 facts: either of(0,1),
either of(1,0), and either of(1,1). There are a total of 7 facts in the database.

sat(Y) :-
assign yes(Y), binary(X1), ..., binary(Xn),

either of(Xa1,Xb1),
. . . ,
either of(Xan

,Xbn),
sat(Y) :-

assign no(Y).

In the first line of the first rule, an assignment to the xi’s is selected, with uniform
probability. It is easy to see that the literal either of(Xai,Xbi) will succeed iff the i-th
clause is made true by this assignment. Hence the first rule of the theory will succeed
exactly k times, where k is the number of satisfying assignments for the formula. The
second clause succeeds once, so

p = Pr(sat(yes)|sat(Y)) =
k

k + 1

If p could be computed efficiently, one could solve the equation above for k and use the
result to determine the number of satisfying assignments to the 2PSAT formula.

Theorem 3 Computing P (f) in the tuple-independent possible-worlds semantics for a sin-
gle ground fact f is #P-hard.

We again reduce counting assignments for 2NSAT to computation of p = Pr(sat(yes)).
In this case the DB contains n facts of the form x1(1), x2(1), . . . , xn(1), all with weights
0.5, and the additional fact assign yes(yes).

We can now encode the 2PSAT formula with the following theory. For each clause i let
j1 and j2 be the indices of the two literals in that clause. We construct two theory rules
for each clause i:

sati(Y) :- xj1(Y).

sati(Y) :- xj2(Y).

Finally we add a binary tree of O(log(n)) rules, each of which test success of two other
subpredicates, and the last of which tests succeeds only of all the clausei predicates succeed.
For instance, for n = 8, we would define sat(Y) as

sat1:2(Y) :- clause1(Y),clause2(Y).

sat2:3(Y) :- clause2(Y),clause3(Y).

sat1:4(Y) :- sat1:2(Y),sat2:3(Y).

sat5:6(Y) :- clause5(Y),clause6(Y).

sat7:8(Y) :- clause7(Y),clause8(Y).
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sat5:8(Y) :- sat5:6(Y),sat7:8(Y).

sat(Y) :- sat1:4(Y),sat5:8(Y),assign yes(Y).

Note that for each variable xj , an I drawn from the database distribution may contain
either xj(1) or not, so there are 2n possible interpretations. Each of these corresponds
to a boolean assignment, where xj = 1 in the assignment exactly when xj(1) is in the
corresponding interpretation. Clearly the clausei predicate succeeds exactly when the i-th
clause is satisfied, and hence p = Pr(sat(yes)|DB, |T ) is thus exactly k

2n , where k is the
number of satisfying assignments.

This theory is quite simple: it contains no binary predicates, and (if one tests success
of all clause predicates in a tree) the rules are all very short. It is thus difficult to identify
syntactic restrictions which might make proof-counting tractible for the possible-worlds
scenario.

Appendix B. Discussion: SDKGs and Extensional DDBs

For SDKGs, a final connection with other logics can be made by considering a logic program
that has been grounded by conversion to a boolean formulae. One simple approach to
implementing a “soft” extension of a boolean logic is to evaluate the truth or falsity of
a formula bottom-up, deriving a numeric confidence c for each subexpression from the
confidences associated with its subparts. For instance, one might use the rules

c(x ∧ y) ≡ min(c(x), c(y))

c(x ∨ y) ≡ max(c(x), c(y))

c(¬x) ≡ 1− c(x)

This approach to implementing a soft logic is is sometimes called an extensional approach
(Suciu et al., 2011), and it is common in practical systems: PSL (Brocheler et al., 2010)
uses an extensional approach, as do several recent neural approaches (Serafini & d’Avila
Garcez, 2016; Hu et al., 2016).

Now consider modifying a top-down prover to produce a particular boolean formula,
in which each path v0 → . . . → vn is associated with a conjunction f1 ∧ . . . ∧ fm of all
unit-clause facts used along this path, and each answer f is associated with the disjunction
of these conjunctions. Then let us compute the unnormalized weight wQ(f) using the rules

c(x ∧ y) ≡ c(x) · c(y)

c(x ∨ y) ≡ c(x) + c(y)

(which are sufficient since no negation occurs in the formula). This (followed by normaliza-
tion) can be shown to be equivalent to the SLP semantics.

Appendix C. Experimental Details

Graph generation. To generate the graphs used for the “friends and smokers” experiments
in Section 5.1, we generated four subgraphs, each with n nodes, using the Barabasi-Albert
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Friends and Smokers
stressed(P,yes) :- person(P).

influences(P1,P2) :- friends(P1,P2).

cancer spont(P,yes) :- person(P).

cancer smoke(P,yes) :- person(P).

smokes(X,Status) :- stress(X,Status).

smokes(X,yes) :- smokes(Y), influences(Y,X).

cancer(P,Status) :- cancer spont(P,Status).

cancer(P,Status) :- smokes(P,Status), cancer smoke(P,Status ).

Transitive Closure
path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

Figure 8: Theories used in the experiments.

model (Barabási & Albert, 1999). For each pair of distinct subgraphs, we then chose 25
random node pairs and connected them with edges, creating a fully-connected graph with
strong subcommunities. Each subgraph had different joint distribution of smoking and
cancer.

Theories. The theories used for the “friends and smokers” and transitive closure tasks
are shown in Figure 8.

Hardware. For Tensorflow we evaluated performance in the CPU-only configuration on
a machine with 4 16-core 2.3GHz AMD Opteron 6376 processors and 512Gb of RAM. The
GPU configuration was evaluated on a machine with 2 8-core 2.4GHz Intel Xeon E5-2630
processors and a GeForce GTX TITAN X graphics card with 12 GB memory.

Grid navigation tasks used for scalability. For any cell a, let i, j be the row and column
position of a in the grid. We define ay to be cell i′, j′ where i′ = 10 ∗ bi/10c + 5 and
j′ = 10 ∗ bj/10c + 5: for example for a = (i, j) = (12, 29), ay = (15, 25). This means that
ay is always within distance 10 of a, and the learning task is identically repeated for each
10-by-10 subgrid of the graph, making it neither easier nor harder to learn as the graph size
changes.

Facts are present that assert an edge between a and every a′ such that |i′ − i| ≤ 1 and
|j′ − j| ≤ 1. The initial confidence for each such fact was set to 0.2 in the learning tasks.

Non-conditional loss functions. In learning with the Tensorflow backend, one must write
Python code to define the loss function and optimize it, as shown in Figure 6. To modify
the loss function we replaced the lines

predictions = tlog.inference(’path/io’)
loss = tlog.loss(’uncle/io’)

with

logits = B1 * tlog.proofcount(’path/io’) + B2
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predictions = tf.sigmoid(logits)
loss = tf.reduce mean(

tf.nn.sigmoid cross entropy with logits(
logits=logits, labels=tlog.target output placeholder(’path/io’)))

The use of “sigmoid cross entropy” loss over the inputs of logistic function (sigmoid) above
is a common pattern in Tensorflow for learning multiclass classifiers.

Accuracy for non-conditional responses was also measured differently. In the conditional
case, we evaluate accuracy as follows: a prediction of y for path(a,y) is treated like a single
example of a multiclass classification task, where the classes are the potential grid cells
y: in particular, the example associated with a is considered correct if the correct ya is
scored highest. The accuracy of a random classifier is thus very low—for an n-by-n grid,
it would be 1

n2 . For the non-conditional case, we threshold the scores for path(a,y) for all
y’s, and consider the ones with scores higher than 0.5 as positive predictions and the others
as negative predictions. We then consider each possible x, y pair as an example, which is
correct if y is a desired answer for x. The accuracy of a random classifier is quite high for
this case—for the 10-by-10 grid, it is 96%.

Learning embeddings with plugins. In the experiments using plugins to define computed
edge functions, we used two different vectors E1 and E2 to encode the two dimensions of the
embedding of each cell. pathMatrix denotes the Medge matrix, and n denotes the number
of database constants. The computed edge relation was defined as follows.

def embedded edge fun(v):
A1 = tf.reshape(tf.tile(E1,[1,n]), [n,n])
A2 = tf.reshape(tf.tile(E2,[1,n]), [n,n])
Distance0 = tf.nn.softplus((tf.transpose(A1)-A1) + (tf.transpose(A2)-A2))
return tf.matmul(v,tf.multiply(Distance0, pathMatrix))

tlog.prog.plugins.define(’embedded edge/io’,embedded edge fun)
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