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Abstract

We propose to use algorithms for learning deterministic finite automata (DFA), such
as Angluin’s L∗ algorithm, for learning a DFA that describes the possible scenarios under
which a given program error occurs. The alphabet of this automaton is given by the user
(for instance, a subset of the function call sites or branches), and hence the automaton
describes a user-defined abstraction of those scenarios. More generally, the same technique
can be used for visualising the behavior of a program or parts thereof. It can also be used
for visually comparing different versions of a program (by presenting an automaton for the
behavior in the symmetric difference between them), and for assisting in merging several
development branches. We present experiments that demonstrate the power of an abstract
visual representation of errors and of program segments, accessible via the project’s web
page. In addition, our experiments in this paper demonstrate that such automata can
be learned efficiently over real-world programs. We also present lazy learning, which is a
method for reducing the number of membership queries while using L∗, and demonstrate
its effectiveness on standard benchmarks.

1. Introduction

Many automated verification tools produce a counterexample trace when an error is found.
These traces are often unintelligible because they are too long (an error triggered after
a single second can correspond to a path with millions of states), too low-level, or both.
Moreover, a trace focuses on just one specific scenario. Thus, error traces are frequently
not general enough to help focus the attention of the programmer on the root cause of the
problem.

A variety of methods have been proposed for the explanation of counterexamples, such
as finding similar paths that satisfy the property (Groce et al., 2006) and analysing causal-
ity (Beer et al., 2012), but these focus on a single counterexample. The analysis of multiple
counterexamples has been suggested in the hardware domain by Copty et al. (2003), who
propose to compute all counterexamples and present those states that occur in all of them to
the user. The analysis of multiple counterexamples has also been suggested in the context of
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Figure 1: An abstract description of a merge-sort program, where the letters are the function
calls.

a push-down automaton (PDA) (representing software) and a deterministic finite automaton
(DFA) (representing a negated property) by Basu et al. (2003), who describe the generation
of all loop-free counterexamples of a certain category, and the presentation of them to the
user in a tree-like structure. In the software domain, another notable example is the model
checker MS-SLAM, which reports multiple counterexamples if they are believed to relate to
different causes (Ball et al., 2003). Each example is ‘localized’ by comparing it to a trace
that does not violate the property.

We suggest a method (and a corresponding tool) that presents the user a DFA that
summarizes all the ways (up to a given bound, as will be explained) in which an assertion
can fail. Furthermore, the alphabet of this automaton is user-defined and corresponds to
events in the program execution. For example, the user can specify that a call to a function f
in a specific location is a letter and an entry to a specific branch is a different letter. With
a small number of such user-defined events, the traces of the program that lead to an
assertion failure can be visualized concisely. We argue that this combination of user-defined
abstraction with a compact representation of multiple counterexamples addresses all three
problems mentioned above. Moreover, the same idea can be applied to describing a program
or, more realistically, parts of a program by adding an ‘assert(false)’ at the end of the
sub-program to be explained. Figure 1, for instance, gives an automaton that describes the
operation of a merge-sort program in terms of its possible function calls.1 We obtained it by
inserting such a statement at the end of the main function.

Our method is based on a DFA-learning algorithm, such as L∗ (Angluin, 1987b),
RS (Rivest & Schapire, 1993), COMFORT (Chaki & Strichman, 2008), KV (Kearns &
Vazirani, 1994), DT (Howar, 2012) or TTT (Isberner et al., 2014). These algorithms learn a
minimal DFA that captures the (regular) language of a model U over a given alphabet Σ,
the behavior of which is communicated to the learning algorithm via interface functions
called the ‘teacher’ and the ‘oracle‘. In the discussion that follows we will simply call this
algorithm the learner, as our methods are orthogonal to the learning algorithm.

The learner asks the teacher membership queries over Σ, namely whether w ∈ U , where
w is a word and U is the language (the model), and conjecture queries, namely whether for a
given DFA A, L(A) = U . The number of queries that the algorithm performs is polynomial
in the size of the alphabet, in the number of states of the resulting minimal DFA, and in
the length of the longest counterexample (feedback) to a conjecture query returned by the
oracle (see Sec. 2 for a detailed description).

The use of learners in the verification community, to the best of our knowledge, has
been restricted so far to the verification process itself: to model components in an assume-
guarantee framework, e.g., by Giannakopoulou et al. (2012), or to model the input-output
relation in specific types of programs, in which that relation is sufficient for verifying certain

1. Source code for all examples we use is available online (http://www.cprover.org/learning-errors/, 2015).
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properties (Botinc̆an & Babić, 2013; Argyros et al., 2016). Another popular direction of
research that uses learners and has some similarities to our work is specification mining (Alur
et al., 2005; Shoham et al., 2008). In both verification and specification mining the focus
is on inferring the specification of an API, i.e., deducing the correct usage of it, and in
both cases the answer is given in the form of a finite automaton where the alphabet is the
API functions’ identifiers. As the setting in specification mining is different from ours, the
methodology and the results differ as well; for example, the specification-mining algorithms
typically infer an overapproximating abstraction of the code under analysis.

Trivially, the language that describes a part of a program or the behaviors that fail an
assertion, is not regular in the general case. We therefore bound the length of the traces we
consider by a constant, and thereby obtain a finite set of bounded words. The automaton
that we learn may accept unbounded words, but our guarantee to the user is limited: any
word in L(A), up to the given bound, corresponds to a real trace in the program. We will
formalize this concept in Sect. 3. The fact that A may have loops has both advantages and
disadvantages. Consider, for example, the program in Figure 2 (left). Suppose that Σ is the
set of functions that are called. With a small bound on the word length we may get the
automaton in Figure 2 (right), which among others, accepts the word g120 · f . The bound is
not long enough to exclude this word, rendering the language of the automaton a superset
of the language of error. On the other hand, if g had no effect on the reachability of f (i.e.,
in this case, g did not contain the exit(0) statement), then the automaton would capture
the language of error precisely, despite the fact that we are only examining bounded traces.

void g(int x) { if (x > 100) exit(0); }

void f() { assert(0); }

int main(int argc, char* argv[]) {
for (int i=0; i < argc; i++) g(i);
f();

}

g

f assert

Figure 2: A program and an automaton that we learn from it when using a low bound
(< 100) on the word length.

We note that the automaton we generate is conceptually different from a control-flow
graph (CFG) of a program mapped on a set of interesting events. This is because a CFG is
based on the structure of a program, whereas the automaton generated by the learner is
based on the actual executions, and in general, cannot be deduced from the CFG. It is also
very distinct from just showing the call graph of the program, even if we choose function
calls as our alphabet: first, it is based on a semantic analysis of the program and hence
excludes non existing transitions; second, a call graph has one node per function, and hence
cannot make a distinction between paths that go through it. For example, suppose that the
program can progress (only) in the following two paths:

main → f1 → g → h1

and
main → f2 → g → h2.
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Figure 3: Example call graph.

A call graph, depicted in Figure 3, illustrates this point: based on the control graph, we
cannot distinguish our program from one that also allows the path

main→ f1 → g → h2.

A DFA representation, on the other hand, does not make this abstraction.
In the next section we will briefly describe a DFA learning algorithm (specifically, we

describe the L∗ algorithm, since it is the most basic from the various known DFA-learning
algorithms that later improved it). In Sec. 3 we will define the language we learn precisely,
and describe our method for answering the queries in Sec. 4. In Sec. 5 we pause the technical
description of the method, and describe usage scenarios. We then continue in Sec. 6 by
describing a performance optimization, which constitutes the main contribution of this article
comparing to the early proceedings version (Chapman et al., 2015). Specifically, we describe
a technique we call lazy learning, which is targeted at reducing expensive membership queries.
In Sec. 8 we describe various aspects of our system and our empirical evaluation of it. More
examples can be found on the project’s website (http://www.cprover.org/learning-errors/,
2015). We conclude with some ideas for future research in Sec. 9.

2. Preliminaries

The ideas and algorithms presented in this paper are based on the combination of learning
and software (bounded) model-checking. We now outline the relevant concepts from these
two areas. In both cases we focus on the minimum that is necessary for understanding the
contribution, as we mostly use them (especially the latter) as “black-box”.

2.1 Deterministic Finite Automata

We start by revisiting the (well-known) definition of deterministic finite automata (Hopcroft
et al., 2000).

Definition 1 (Deterministic Finite Automaton). A deterministic finite automaton (DFA)
A is a 5 tuple 〈S, init,Σ, δ, F 〉, where S is a finite set of states, init ∈ S is the initial state,
Σ is the alphabet, δ : S ×Σ→ S is the transition function, and F ⊆ S is the set of accepting
states. A finite string w over Σ is said to be accepted by A if and only if starting at init
and following the path in A induced by w ends in an S state. The set of strings accepted by
A is called A’s language and is denoted by L(A).
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L(A) = U

L∗

yes / (no + feedback)

yes / no

w ∈ U ?

Teacher

Oracle

Σ(U)

L(A) = U ?

A such that

Figure 4: The input and output of L∗, and its interaction with the teacher and oracle.

The complement operation on DFA A is naturally defined as Ā = 〈S, init,Σ, δ, S\F 〉, that
is, an automaton in which the accepting and non-accepting states are switched. A complement
automaton accepts a complement language: L(Ā) = Σ∗ \ L(A).

Given two DFAs A1,A2 over the same alphabet, there are well-known polynomial
techniques (see, e.g., Sipser, 1997) for constructing the intersection automaton A∩, i.e.,
L(A∩) = L(A1) ∩ L(A2), the difference automaton A\, i.e. L(A\) = L(A1) \ L(A2) and the
union automaton A∪, i.e., L(A∪) = L(A1) ∪ L(A2). The symmetric difference between A1

and A2 is computed as the union of L(A1) \ L(A2) and L(A2) \ L(A1).
In the context of this paper, a language L over a given alphabet Σ∗ is a subset of the

set of all finite sequences (words) in Σ∗, denoted as L ⊆ 2Σ∗
. A language L(A) of a given

automaton A is the set of all finite words accepted by A (we also say that A recognizes L).
A language L is regular if it is a language of some DFA A.

A DFA A is minimal if it has the smallest number of states out of all DFAs over the
same alphabet Σ that recognize L(A) (since a deterministic finite automaton has exactly
one transition from each state on each letter of Σ, the number of transitions is linear in the
number of states).

2.2 The L∗ Algorithm

The L∗ algorithm, developed by Angluin (1987b), introduces a framework for iterative
learning of DFA. Essentially, L∗ learns an unknown regular language U by iteratively
constructing a minimal DFA A such that L(A) = U . The algorithm includes two types of
queries, as can be seen in Figure 4:

• membership queries (top arrow), namely whether for a given word w ∈ Σ∗, w ∈ U , and

• conjecture queries (third arrow from top), namely whether a given conjectured au-
tomaton A has the property L(A) = U .

The components that answer the two queries are called ‘teacher’ and ‘oracle’, respectively.
L∗ begins with the trivial conjecture query corresponding to A0 such that L(A0) = ∅.

If the answer is yes (i.e., U is the empty language), L∗ terminates with A0 as the answer.
Otherwise it expects the teacher to provide a counterexample string σ such that σ ∈ U\L(A0)
or σ ∈ L(A0) \ U . In the first case, we call σ a positive feedback, because it should be added
to L(A0). In the second case, we call σ a negative feedback since it should be removed from
L(A0). Based on the counterexample, L∗ initiates a series of membership queries, until
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it is able to build a new conjecture automaton A1, that has the property that it is 1) a
legal DFA and 2) consistent with the answers to the membership queries answered so far.
It then makes a new conjecture query with A1. This process repeats, building conjectures
A0,A1,A2, . . . until it converges on a DFA Ai for some i such that L(Ai) = U .

Additional details about the inner-workings of L∗ are immaterial for the current work.
The interested reader is referred to Angluin’s original paper (Angluin, 1987b), or one of its
improvements (Rivest & Schapire, 1993; Kearns & Vazirani, 1994; Howar, 2012; Isberner et
al., 2014).

Complexity: The number of conjecture queries is bounded by n, where n is the number
of states of the resulting (minimal) DFA. The number of membership queries is bounded by
O(km2n3), where k is the size of the alphabet, and m is the length of the longest feedback
(counterexample) returned by the oracle during learning.

2.3 Control Flow Graphs

A control flow graph (CFG) is a data structure representing an overapproximation of all
paths which may be traversed in a program execution. For every statement in a program the
control flow graph provides all potential successor statements which may be executed after
the original statement. At runtime for every given program state only a single successor
statement is actually executed, depending on loop guards and branching conditions.

2.4 Bounded Model Checking of Software

A key component in our solution is the software analyzer CBMC (Clarke et al., 2004),
which we use in the implementation of the teacher and oracle in the learner, as will later be
explained. CBMC implements the bounded model checking algorithm as described below.

Let P be a program instrumented with an assertion ϕ (an assertion is a statement in
the program parameterized by a propositional formula over the variables of P that are
currently in scope; it is only used for debugging and has no impact on the execution of
the program). The goal of model checking is to determine whether ϕ holds in P . The
general model checking problem is undecidable (this can be proved by a simple reduction
from the Halting problem), hence all model-checking tools work by solving a decidable
fragment of it. SAT-based bounded model checking (BMC) is an approach that solves the
model-checking problem up to a bound k, for a given program P with an assertion ϕ (Biere
et al., 2003). BMC works by first ‘unwinding’ the symbolic transition relation up to k steps,
hence obtaining a program without loops or recursive calls. CBMC also supports setting a
different bound for each loop and recursive call. It then generates a propositional formula
that represents symbolically all the possible traces in this program (this is possible since
all traces are of length at most k), and adds to the formula the negation of the assertion.
It passes the resulting formula to a SAT solver for determining its satisfiability. If the
BMC formula is unsatisfiable, the program satisfies ϕ within the bound k, and is hence
safe with respect to this bound (note that errors might still occur on traces longer than
k steps). Otherwise, the program contains errors, and each satisfying assignment of the
formula corresponds to a counterexample, i.e., an execution that falsifies ϕ.

BMC is the standard approach to model-checking of software and is widely used both
in academia and in the industry, the latter mostly for verifying safety-critical code. While
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CBMC (as well as other bounded model-checkers) was originally built in the verification
community for detecting errors in programs, here we use it for answering queries about
programs as part of our learning algorithm.

3. The Language We Learn

Our learning scheme is based on user-defined events, which are whatever a user chooses as
their atoms for describing the behaviors that lead to an assertion violation. At source level,
events are identified by instrumenting the code with a Learn(id) instruction at the desired
position, where id is an identifier of the event. Typical locations for such instrumentation
are at the entry to functions and branches, both of which can be done automatically by our
tool. Each location obtains its own unique id.

The set of event identifiers constitutes the alphabet Σ of the automaton A that we
construct. A sequence of events is a Σ-word that may or may not be in L(A), the language
of A. For an instrumented program P , a trace π of P induces a Σ-word by a projection
to Σ, which we denote by α(π). The language of such a program, denoted L(P ), is defined
naturally by

L(P )
.
= {α(π) | π ∈ P} . (1)

Recall that our goal is to obtain a representation over the set of events Σ of P ’s traces
that violate a given assertion. Let ϕ be that assertion, and denote by π 6|= ϕ the fact that a
given trace π violates ϕ. We now define

Fail(P )
.
= {α(π) | π ∈ P ∧ π 6|= ϕ} . (2)

In general, this set is irregular and incomputable and, even in cases in which it is computable,
it is likely to contain too much information to be useful. However, if we bound the loops
and recursion in P , this set becomes finite, and hence regular and computable. Let b be
such a bound, and let

Fail(P, b)
.
= {α(π) | π ∈ P ∧Depth(π) ≤ b ∧ π 6|= ϕ} , (3)

where Depth(π) denotes the maximal number of loop iterations or recursive calls made
along π. Restricting the set of paths this way implicitly restricts the length of the abstract
traces that we consider, i.e., |α(π)| ≤ b′, where b′ can be computed from P and b. We also
allow users to bound the word length |α(π)| directly with another value bwl. In Sec. 8 we
will describe strategies for obtaining such bounds automatically. Based on these bounds we
define

Fail(P, b, bwl)
.
= {α(π) | π ∈ P ∧Depth(π) ≤ b ∧ |α(π)| ≤ bwl ∧ π 6|= ϕ} . (4)

The DFA A, that we learn and present to the user, has the following property for all π ∈ P :

Depth(π) ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐⇒ α(π) ∈ Fail(P, b, bwl) . (5)

Note that this means that given a trace π which has more loop iterations or recursive calls
than b, or its projection to Σ is longer than bwl, we give no guarantee regarding whether it
is accepted or rejected by A.
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(a) Empty conjecture

g, f , assert

(b) Intermediate conjecture

g

f assert

(c) Accepted automaton

Figure 5: A sequence of automata that are conjectured by the learner.

void g(int x) { if (x > 100) exit(0); }

void f() { assert(0); }

int main(int argc, char* argv[]) {
for (int i=0; i < argc; i++) g(i);
f();

}

Figure 6: The program analyzed by the conjectures in Figure 5.

4. Answering the Queries

Consider the automaton in Figure 5c, which is learned by our system from the program in
Figure 6, when b = bwl = 4. This automaton is the second conjecture of the learner. Let
us briefly review the steps the learner follows that lead to this conjecture. Initially it has
a single state with no transitions, as given in Figure 5a. Then it asks the teacher three
single-letter membership queries: whether f, g and assert are in U . The answer is ‘no’ to
all three since, e.g., we cannot reach an assertion failure on a path hitting f alone (in fact
the first two are trivially false because they do not end with assert).

After answering these queries, the learner has a legal DFA that is consistent with the
answers to the membership queries, which appears in Figure 5b: an automaton with one
non-accepting state. It poses this automaton as a conjecture to the oracle, which answers
‘no’ and returns σ = f · assert as positive feedback, i.e., this word should be added to L(A).
Now the learner poses 12 further membership queries and conjectures the automaton in
Figure 5c. The oracle answers ‘yes’, which terminates the algorithm.

We continue by describing the teacher and the oracle in our case, namely how we answer
those queries. The source code of P is instrumented with two functions: Learn(id) at a
location of each Σ-event (recall that id is the identifier of the event), and Learn Assert
at the location of the assertion that is being investigated. The implementation of these
functions depends on whether we are checking a membership or a conjecture query, as we
will now show.
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1: int word[|w|] = {3, 3, 6, 2, 0}; . The checked word w
2: int idx = 0;
3: function void Learn(int x) . Event
4: if idx ≥ |w| ∨ word[idx] 6= x then
5: assume(false); . Block paths incompatible with query

6: idx = idx+ 1;

7: function void Learn Assert(bool assertCondition)
8: if ¬assertCondition then . Assertion fail
9: if idx = |w| − 1 then assert(false); . w ∈ L(A). Answer ‘true’ to query

10: assume(false); . Arrived here at the wrong time: block path.

Figure 7: Pseudocode generated for a particular membership query.

4.1 Membership Queries

A membership query is as follows: “given a word w, is there a π ∈ P such that α(π) = w
and π 6|= ϕ?” Figure 7 gives the pseudocode that we generate for a membership query — in
this case for the word (3 · 3 · 6 · 2 · 0). The letter ‘0’ always symbolizes an assertion failure
event, and indeed queries that do not end with ‘0’ are trivially rejected. This code, which is
an implementation of the instrumented functions mentioned above, is added to P , and the
combined code is then checked with the Bounded Model Checker for software CBMC (Clarke
et al., 2004). CBMC supports ‘assume(pred)’ statements, which block any path that does
not satisfy the predicate pred. In lines 4–5 we use this feature to block paths that are not
compatible with w.

Learn Assert is called when the path arrives at the checked assertion, and declares
the membership to be true (i.e., w ∈ L(A)) if the assertion fails exactly at the end of the
word. Figure 8 provides an example illustrating how a user program would be instrumented
to invoke these API functions.

Optimisations

We bypass a CBMC call and answer ‘no’ to a membership query if one of the following holds:

• the query does not end with a call to assert;

• the query contains more than one call to assert;

• w is incompatible with the control-flow graph.

The last optimisation is based on the CFG properties described in Sec. 2.3. If there is no
path π in the CFG, restricted by the configured loop unwinding, such that w = α(π), we skip
exploration using membership queries in CBMC, since the CFG models an overapproximation
of all possible paths in the program. We call those preliminary p-time checks pre-checks.
In our experiments they answer 96% of the membership queries. The remaining 4%, which
involve a call to CBMC, dominate the overall run-time. We will describe a heuristic that
can significantly reduce the number of CBMC calls in Sec. 6.
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1: function void main(int input) . Entry point
2: if input ≥ 10 then
3: F(); . Learn(3)

4: if input ≥ 20 then
5: F(); . Learn(3)
6: G(); . Learn(6)

7: H(); . Learn(2)
8: Learn Assert(input < 20); . Learn(0)

9:

10: function F
11: Learn(3);
12: // . . .

13: function G
14: Learn(6);
15: // . . .

16: function H
17: Learn(2);
18: // . . .

Figure 8: Sample instrumentation of an input program.

4.2 Conjecture Queries

A conjecture query is: “given a DFA A, is there a π ∈ P such that

• α(π) ∈ L(A) ∧ π |= ϕ, or

• α(π) 6∈ L(A) ∧ π 6|= ϕ ?”

The two cases correspond to negative and positive feedback to the learner, respectively.
Figure 9 presents the code that we add to P when checking a conjecture query. The

candidate A is given in a two-dimensional array, A (representing the edges in δ), and the
accepting states of A are given in an array accepting (both are not shown here). We denote
by path an array that captures the abstract path, as can be seen in the implementation of
learn. Learn Assert simulates the path accumulated so far (lines 7–8) on A in order to
find the current state. It then aborts if one of the two conditions above holds. In both cases
the path path serves as the feedback to the learner.

Eliminating Spurious Words

The conjecture-query mechanism described above only applies to those paths that end with
Learn Assert. Other paths should be rejected, and for this we add a ‘trap’ at the exit
points of the program. The implementation of this function appears in Figure 11. It ends
with negative feedback if the current path is a prefix of a path that a) reaches an accepting
state in A (line 6), and b) was not marked earlier as belonging to L(A) (line 7). The reason
for this filtering is that the same abstract path can belong to both a real path π ∈ P and to
a path π′ 6∈ P that we chose nondeterministically in this function (see line 9). For example,
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1: function learn(int x) . Event
2: assume(idx < bwl);
3: path[++idx] = x;

4: function Learn Assert(bool assertCondition)
5: if ¬assertCondition then learn(0); . 0 = the ‘assert’ letter

6: char state = 0; . Initial state
7: for (int i = 0; i < idx ; ++i) do
8: state = A[state][path[i]]; . Finding current state.

9: if assertCondition ∧ accepting [state] then assert(false); . neg. feedback

10: if ¬assertCondition ∧ ¬accepting [state] then assert(false); . pos. feedback

Figure 9: Code added to P for checking conjecture queries.

consider the program in Figure 10, which is the same as the one in Figure 2, with the sole
difference that it has a branch before f(), allowing it to exit in case a particular input has
been received. The final automaton is unchanged. At the exit point a line before the end
(the call to exit), our instrumentation adds a call to the trap function. Now the path g · f · 0
can occur in two different ways: both the path that calls f and the path through the trap
function that nondeterministically chooses f · 0. Since this word is in the language, we do
not want to report it as a negative feedback, and this is the reason for the second condition.

void g(int x) { if (x > 100) exit(0); }

void f() { assert(0); }

int main(int argc, char* argv[]) {
for (int i=0; i < argc; i++) g(i);
if (argv[0] == ’1’) exit(0);
f();

}

g

f assert

Figure 10: The same program as Figure 2, but with a branch before calling f().

We now show that the above implementation indeed guarantees the properties described
in Eqn. (5):

Theorem 4.1. The implementations of Figure 9 and 11 ensure that for all π ∈ P :

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐⇒ α(π) ∈ Fail(P, b, bwl) .

Proof. ⇒ We need to show that for all π ∈ P

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇒ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 6|= ϕ

The first two conjuncts are trivially true. We prove the third by contradiction. Thus
assume that π |= ϕ. We separate the discussion to two cases:

– α(π) ends with a Learn Assert statement. In the (last) conjecture query π
calls that function, which appears in Figure 9. Since π |= ϕ the guard in line 5 is
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1: function Learn trap
2: char state = 0;
3: for (; idx < bwl; ++idx) do
4: for (int i = 0; i ≤ idx; ++i) do . Compute current state in A
5: state = A[state][path[i]];

6: if accepting[state] then . state is an accepting state
7: if path ∈ L(A) is known then assume(false); . Block path

8: assert(false); . Negative feedback

9: path[idx] = non-deterministic element from Σ;

Figure 11: Learn trap is called at P ’s exit points. It gives negative feedback to conjecture
queries in which ∃w ∈ L(A) such that w does not correspond to any path in P .

false. In line 8 state, in the last iteration of the for loop, is accepting, because we
know from the premise that α(π) ∈ L(A). This fails the assertion in line 9, and
the conjecture is rejected. Contradiction.

– Otherwise, in the (last) conjecture query, π calls the trap function of Figure 11. In
line 5 state, in the end of the for loop, is accepting, again because we know from
the premise that α(π) ∈ L(A). The condition in line 7 is false, and the assert(0)
in the following line is reached. The conjecture is rejected. Contradiction.

⇐ We need to show that for all π ∈ P

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 6|= ϕ

Again, the first two conjuncts are trivially true, and we prove the third by contradiction:
assume that α(π) 6∈ L(A). Since π 6|= ϕ, π must end with a call to Learn Assert.
Hence in the (last) conjecture query π calls that function, which appears in Figure 9.
By our premise, the state is not accepting. Hence the condition in line 10 is met, and
α(π) is returned as a positive feedback to L∗, which adds it to A. Contradiction.

The trap function has an additional benefit: it brings us close to the following desired
property for every word w ∈ Σ∗:

w ∈ L(A) ∧ |w| ≤ bwl =⇒ ∃π ∈ P. α(π) = w . (6)

That is, ideally we should exclude from L(A) any word w, |w| ≤ bwl that does not correspond
to a path in P . The reason that this trap function does not guarantee (6) is that it only
catches a word w ∈ L(A) if there is a path π ∈ P to an exit point, such that α(π) is a prefix
of w. In other cases, the user can check the legality of w ∈ L(A) either manually or with a
membership query.

5. Usage Scenarios for the Learning Framework

We foresee three distinct use cases for our framework. The first is to help understand
software errors. Given such an error, we build a DFA that presents an abstraction of the
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language of error to user-defined events, as defined in Theorem 4.1. The DFA represents the
set of error traces in a concise way and is amenable to standard analyses on DFAs, such as
the computation of dominators and doomed states and transitions. These analyses may aid
in understanding the root cause of errors.

The second use case is program explanation, i.e., providing a DFA that describes abstractly
the behavior of a program fragment. The motivation for this should be clear to any
programmer, because programs are frequently difficult to understand. This is either because
of the sheer complexity of the implementation, because of a change in ownership of the code,
or because the program was, at least in part, generated automatically. By adding a failing
assertion to the exit point of the program, our framework produces a DFA that represents a
bounded regular abstraction of the program behavior with respect to important events (as
defined by the user or defined automatically).

Finally, our framework can be used for assisting in merging software development branches.
In this common scenario, several developers make changes to different branches of the same
(version controlled) source code. Often, when the developers attempt to merge their changes
back into the parent branch, automatic merging is performed by the version control system.
This can introduce unexpected behavior. For example, consider the source code in Figure 12,
representing an original program, its two branches developed independently, and the result
of the automatic merge (this example is based on MergeCase, 2012). Note that the merge
operation creates an unexpected behavior, where funcZ() calls funcC(), despite this not
being the intent of either developer.

main {
...
funcA();
funcB();
...

}

(a) Source

main {
...
funcA();
...
funcZ();

}

funcZ() {
funcB();

}

(b) Branch A

main {
funcA();
if (guard)
funcB();

else
funcC();

...
}

(c) Branch B

main {
...
funcA();
...
funcZ();

}

funcZ() {
if (guard)
funcB();

else
funcC();

...
}

(d) Merged

Figure 12: The effects of automatic merge in a version control system.

Using our framework, both versions and the merged program are represented as DFAs,
and the difference between the merged program and each branch is computed as a difference
between automata (see Sec. 2). Figure 13 and Figure 14 draw attention to the new behavior
introduced by the automatic merge.

The changes are easy to see in small examples; in arbitrarily large programs, however, the
issues introduced by an automatic merge could be hard to identify. Moreover, this behavior
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Figure 14: Behavior not in Branch B

in larger programs might be difficult to understand due to a lack of single ownership over the
code. This mechanism can also be applied to merge conflicts (i.e., when different versions
of code cannot be merged automatically), in order to visually display differences between
branches, rather than annotating the repository code directly with conflict markers.

6. Performance Optimization: Lazy Learning

In the previous sections, we saw that the learning algorithm requires to answer membership
queries which may amount in our case to a computationally expensive CBMC call. More
generally, while it is known that with an O(1)-time teacher and oracle, DFA-learners are
polynomial in the size of the resulting automaton A, in all applications we are aware of in
verification the teacher and oracle are exponential, as they involve some type of a formal
semantic reasoning about the program. Examples include assume-guarantee reasoning (Chaki
& Strichman, 2008), model learning (Fiterau-Brostean et al., 2016) and synthesis (Drachsler-
Cohen et al., 2017).

The method we suggest here, lazy learning, is relevant to any application of DFA-learners
in which answering membership queries is computationally expensive or impossible. We
emphasize that we do not intervene in the learning algorithm itself (i.e., the generation
of the queries), and this is why this method is orthogonal to the variant of the learning
algorithm that is used.

The idea is to guess or approximate the answer to membership queries whenever they
are difficult to answer; then we detect wrong guesses during conjecture queries, cache the
correct answer so as not to repeat this wrong guess, and finally restart the process with the
updated cache.

What should that guess be? In the case of error explanation, we guess ‘no’, since most
paths do not fail the assertion and hence do not belong to the language that we wish to learn.
On the other hand in case of program explanation our default guess is ‘yes’ because all paths
fail the assertion assert(false) and hence belong to the language (the only abstract paths
that do not belong to the language are those that do not have a corresponding concrete
path in the program). In the following we will only focus on the case of error explanation,
and hence by default the guess is ‘no’.

Figure 15 visualizes our lazy learning algorithm. We recommend the reader to read the
caption.

A summary of the part of the algorithm that answers the conjecture query, while fixing
previous wrong guesses to the membership queries (the middle part in Figure 15), appears
in Figure 16. The queries in this algorithm (lines 2 and 7) are not normal membership
queries, rather the program is restricted to paths that match one of the membership queries
for which the algorithm received possibly incorrect answers. We call such queries batch
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Σ(U)

yes

no

with the cache
queries

Fix wrong
guesses

Learner

A : L(A) = U

Answer = yes/(no+feedback)

teacher
Lazyw ∈ U? ∃π : α(π) = w? Filter with

pre-check?

consistent
A guess that is

Membership

guesses
Fix wrong

queries
Conjecture

L(A) = Fail(P, b)?L(A) = U?
Oracle

empty UCQueries

Additional correct entries in the cache,

UCQueries

Guessed answer

Answer = no

PProgramCBMC

Figure 15: The three main elements of lazy learning: (top) membership queries with
polynomial-time pre-checks and guessing. In our case the pre-checks can only answer ‘no’ to
a membership query. The guesses are consistent with the cache of correct answers; (middle)
a fixing stage (see Figure 16) of the wrong guesses that ends up with an enlarged cache of
correct answers; and (bottom) a conjecture query. UCQueries holds the set of UnConfirmed
queries. After a fixing step, the state after the last conjecture is reloaded from memory and
the membership queries are answered against an updated cache. Note that the learner is
adaptive, which means that the queries may be different as a result of the different answers
to the membership queries. Conjecture queries (bottom) is invoked only when we know that
the conjecture was built with fully correct answers to the membership queries.

membership checks. Technically this is done by adding automatically an assume statement
to the C file with which we check the conjecture query, with a disjunction between paths.
For example, if we had two membership queries, (1, 2) and (2, 3) where 1,2,3 are letters in Σ,
for which we guessed the answer, our tool will now add an assume statement

assume((path[0] == 1 && path[1] == 2) ||
(path[0] == 2 && path[1] == 3))

where path is an array recording the events in the code corresponding to Σ. CBMC checks
the membership property under this assumption (lines 2 and 7), and hence any feedback
that it finds, corresponds to one of those words. In our case since we always guess ‘no’, the
counterexample must be a positive feedback.

We update our cache with the correct answer in line 5, remove that word from the
assume statement in line 6 and re-run CBMC in line 7. We repeat this process as long as
CBMC finds new positive feedbacks among the unconfirmed queries. Note that the number
of CBMC calls is equal to the number of wrong guesses plus one. Hence the success of this
technique depends on the success rate of the guess.

Once all the wrong answers are fixed, we backtrack the learner to the last conjecture.
For this purpose we always save the state of the learner at the last conjecture, in a
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1: function fix( )
2: feedback = BatchMembership(UCQueries);
3: if (feedback.empty()) then return ;

4: do
5: fix the cache according to the feedback;
6: UCQueries.remove(feedback);
7: feedback = BatchMembership(UCQueries);
8: while (!feedback.empty())
9: UCQueries.clear();

10: ls.table=PrevConjectureTable; . ls is the learner object

Figure 16: Lazy learning with local restarts. In the case of our tool (called pv), where the
guessed answers are always ‘false’, entries in the cache are always fixed from ‘no’ to ‘yes’.

1: function LearnUptoBound(Program P )
2: for b ∈ [1 . . . bmax] do
3: for bwl ∈ [bwl

min . . . b
wl
max] do

4: A = learn P with b and bwl;
5: if A = Aprev and A does not have back edges then return A;

6: Aprev = A;

Figure 17: The autonomous discovery of the appropriate bounds

variable PreviousConjectureTable. Since the cache has been updated in the process, we are
guaranteed to advance to the next conjecture with all guesses either corrected or confirmed.

7. Usability Optimizations

In this section we describe further features that we implemented in pv in order to improve
its usability. We first describe how we determine the bounds automatically, and then how
we remove unnecessary edges from the resulting automaton.

7.1 Determining the Bounds

The automatic estimation of suitable values for both the loop bound b and the word length
bwl contributes significantly to the usability of our framework. Our strategy for this is
illustrated in Figure 17. We let b range between 1 and bmax, where bmax is relatively small
(4 in our default configuration). This reflects the fact that higher values of b may have a
negative impact on performance, and that in practice, low values of b are usually sufficient
for triggering the error. As an initial value for bwl (bwl

min), we take a conservative estimation
of the shortest word possible, according to the length of a shortest loop-free path to the
assertion violation on the control-flow graph of P . We increase the value of bwl up to a
maximum of bwl

max, which is user-defined. The value of bwl
max reflects a user’s estimation of

how long these words can be before the explanation becomes too long for her to understand.

Recall that the value of b implies a bound on the word length (we denoted it b′ in Sec. 3),
and hence for a given b, increasing the explicit bound on the word length bwl beyond a

896



Learning the Language of Software Errors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0
10
20
30
40
50
60
70
80
90
100
110
120

bwl

E
dg
es
/s
ta
te
s
in
A

States

Edges

Figure 18: Size of A (bubble-sort example).

certain value is meaningless. In other words, for a given b, the process of increasing bwl

converges. Until convergence, the number of states of A can both increase and decrease as a
result of increasing bwl (it can decrease because paths not belonging to the language are
caught in the conjecture query, which may lead to a smaller automaton).

Figure 18 demonstrates this fact for one of the benchmarks (bubble sort with b = 2).
We are not aware of a way to detect convergence in P-time, so in practice we terminate
when two conditions hold (see line 5): a) A has not changed from the previous iteration,
and b) A does not contain edges leaving an accepting state (‘back edges’). Recall that a
failing assertion aborts execution, and hence no path can continue beyond it. Therefore, the
existence of such edges in A indicates that increasing b, bwl or both should eventually remove
them. These conditions can also help the user to decide whether to continue increasing bwl

max.

The incremental nature of LearnUptoBound is exploited by our system for improving
performance. We maintain a cache of words that have already been proven to be in U ,
and consult it as the first step of answering membership queries. Negative results from
membership queries can only be cached and reused if this result does not depend on the
bound. For example, the optimisation mentioned in Sec. 4, by which we reject words that
are not compatible with the control-flow graph, does not depend on the bound and hence
can be cached and reused. In our experiments caching reduces the number of membership
queries sent to CBMC by an average of 32%.

7.2 Post-processing

Our system performs the following post-processing on A in order to assist the user:

• Marking dominating edges: edges that represent events that must occur in order to
reach the accepting state. In order to detect these edges, we remove each event in
turn (recall that the same event can label more than one edge), and check whether
the accepting state is still reachable from the root.

• Marking doomed states : states such that the accepting state is inevitable (Hoenicke et
al., 2010).
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• Removing the (non-accepting) sink state and its incoming edges: Such a state always
exists, because the outgoing edges of the accepting state must transition to it (because,
recall, an assertion failure corresponds to aborting the execution). Missing transitions,
then, are interpreted as rejection.

7.3 Using pv for Debugging

Our tool pv has an option of storing traces and using them for debugging later. If it is
executed with the --debug option, the executions that correspond to membership queries
are stored and can be used for guiding the debugging process. This option is useful when
a particular execution demonstrating the assertion violation is only possible for a specific
combination of parameters, such as values of input variables, which are not captured by the
learned automaton. In this case, there are many executions corresponding to a particular
sequence of important events represented as a trace in the automaton, and only some of
them may actually exhibit the assertion violation. Having a debug option allows the user to
replay the particular execution that demonstrates the error and to see the values of other
relevant parameters in this execution.

8. Experimental Evaluation

Multiple programs with errors and the corresponding DFA that explain those errors can be
viewed in our online supplement (http://www.cprover.org/learning-errors/, 2015). In that
web site the user can check the effect of changing the bounds b and bwl. We encourage the
reader to check that page in order to appreciate the value of visual explanations.

In this section we describe our experimental setup and results of implementing and
executing the optimisation techniques described in Sec. 6 on a set of benchmarks. Thus the
focus here is on performance.

8.1 Setup

We implemented lazy learning in pv, the error/program visualization tool (Chapman et al.,
2015). The implementation of the algorithm uses the automata library libalf (Bollig et al.,
2010) as the learner. This library supports L∗, its improvement RS Rivest and Schapire
(1993) and several other variants; we experimented with the first two. pv uses the bounded
software model checker CBMC 5.4 (Clarke et al., 2004) for answering queries. For each
benchmark we measured both the run-time and the number of CBMC calls. We evaluated
two configurations:

• baseline – CBMC only, as in (Chapman et al., 2015).

• lazy – the method described in Sect. 6.

8.2 Results

We applied pv for visualizing errors in a set of seven software verification benchmarks that
are relatively easy as verification targets for CBMC. They were drawn from three sources:
the Competition on Software Verification (Beyer, 2015), the Software-artifact Infrastructure
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p 97.9 %

Runtime Decrease 30.06 %

Saved CBMC Queries 75.31 %

Table 1: Saved CBMC queries and runtime decrease for lazy learning, comparing to a run
with standard learning.

Repository2, and a ‘DockingApproach’ program: a program describing the behavior of a
space shuttle as it docks with the International Space Station (an open-source version of the
NASA system Docking Approach). Each of these programs contain a single instrumented
assertion. These are the same benchmarks used in (Chapman et al., 2015), other than the
addition of the JQ benchmark, which is a lightweight command-line JSON parser. We use
JQ as a motivating industrial example which, as we explain below, benefits greatly from
our lazy algorithms. Each of these benchmarks is executed at different loop unwinding and
word length settings, resulting in 83 data points. An Excel sheet with detailed results can
be downloaded from the project’s website (http://www.cprover.org/learning-errors/, 2015).
Tab. 1 summarizes the average runtime decrease as well as the percentage of saved CBMC
queries when using lazy learning. We denote by p the ratio of correct guesses.

As we mentioned in Sec. 6, in our application domain, the strategy of guessing “no”
performs best for learning the language of error, and “yes” for program explanation, if there
is no information on the query. As we can see from Tab. 1, the probability of an answer
being correct with this strategy is more than 0.9.

In our experiments, an average of 75 % of all CBMC queries can be avoided using lazy
learning. This results in an average runtime decrease of 30 %. This suggests that, while
lazy learning invokes CBMC fewer times, the batch CBMC queries create larger formulas
on average and thus take more time to solve. Hence the runtime decrease does not exactly
match the reduction in CBMC invocations.

Tab. 2 shows the number of saved CBMC queries and the runtime improvement for each
of the examined benchmarks. Note that lazy learning leads to a runtime increase in the
benchmark sll to dll rev false, owing to the fact that the CBMC queries only amount to a few
seconds for this benchmark, and that the overhead of constructing more complicated batch
queries negates any potential benefits. While this represents an outlier in our benchmark
set, it illustrates that lazy learning is not always beneficial.

In addition to those experiments, Appendix A describes in detail an industrial use case
that we experimented with, based on the JQ JSON parser. It describes not only performance,
but also the process of using pv that helped us detect a previously unknown bug in this
widely used application.

9. Conclusions and Future Work

Our definition of Fail(P ) in (2) captures the ‘language of error’, but this language is, in
the general case, not computable. We have presented a method for automatically learning
a DFA, A, that captures a well-defined subset of this language (see Theorem 4.1), for the
purpose of assisting the user in understanding the cause of the error. More generally, the

2. http://sir.unl.edu
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p (%) Runtime Saved CBMC
Decrease (%) Queries (%)

DockingApproachExample Ext 100.0 81.54 85.45
ifstofunctions defroster 98.5 11.58 44.50
merge sort false 95.5 23.61 75.83
sll to dll rev false 99.0 −11.92 89.58
tcas auto instrumented 100.0 5.32 92.10
JQ 96.5 24.88 63.77
schedule 95.7 75.44 75.97

Table 2: Experimental results per benchmark

same technique can be used for visualising the behavior of a program or parts thereof, and
for assisting in merging code.

There are multiple venues for future research. On the application side, perhaps a similar
method can be used for visually comparing different versions of a program (by presenting an
automaton that captures the behavior in the symmetric difference between them).

On the more theoretical side, an interesting future work is to adapt the framework
to learn ω-regular languages, represented by Büchi automata (see Farzan, Chen, Clarke,
Tsay, & Wang, 2008; Angluin & Fisman, 2016 for extensions of DFA-learners to ω-regular
languages). This extension would enable the learning of behaviors that violate the liveness
properties of non-terminating programs. Another future direction is learning non-regular
languages, as it will enable the learning of richer abstract representations of the language
of error for a given program. Context-free grammars are of particular interest because of
the natural connection between context-free grammars and the syntax of programming
languages; some subclasses of context-free grammars have been shown to be learnable, such
as k-bounded context free grammars (Angluin, 1987a), providing us with the possibility of
harnessing these algorithms in our framework. The class of context-free grammars without
restrictions is not believed to be learnable (Angluin & Kharitonov, 1995).

Finally, since one of the main goals of our framework is to present the language of error
(or interesting behavior) in a compact, easy to analyze and understandable way, then clearly
small automata are preferable. Even for a given alphabet Σ, we believe it should be possible
to reduce the size of the learned DFA A, based on the observation that we do not care
whether a word w such that ∀π ∈ P. |π| ≤ b ∧ |α(π)| ≤ bwl ⇒ α(π) 6= w is accepted or
rejected by the automaton. Adding a ‘don’t care’ value to the learning scheme requires a
learning mechanism that can recognize three-valued answers (see Leucker & Neider, 2012 for
a learning algorithm with inconclusive answers).
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Appendix A. A Detailed Case Study: JQ

The JQ3 project is a lightweight command-line JSON processor. JQ is one of the most
popular C projects on GitHub with over 5000 stars, and is widely used in industrial and
productive settings. It is comprised of over 75k lines of C code and includes a multitude
of complex heap data structures. The latter makes JQ a very challenging target for static
analysis, since even simple operations such as string concatenation are implemented using
sizeable heap data structures. The goal of our case study is to illustrate that for a large
industrial program such as JQ, the improvements to the error learning algorithm can reduce
the analysis time significantly.

In order to demonstrate the increased learning speed, we picked a known and—at the
time of our first experiments—open bug from the JQ bug tracker page4. We give a brief
bug description in the following paragraph and then describe how we used the lazy error
learning framework to create a visual description of the bug which allowed us to understand
and fix it.5

The bug occurs during the module-loading phase, where JQ is linking external modules
into the current JSON context. JQ users can provide library search paths in which JQ will
look for these additional modules. Users can specify absolute as well as relative paths for
this purpose. However, depending on the input syntax, module lookup using relative paths
fails. In particular, using, e.g., ./mod instead of mod will trigger this bug. Figure 19 shows
both a successful and a failing invocation of JQ.

> jq -L mod -n ’import "module0" as check; check::check’
> true

> jq -L ./mod -n ’import "module0" as check; check::check’
> jq: error: module not found: module0
>
> jq: 1 compile error

Figure 19: Command line example triggering the JQ bug.

In order to isolate and fix this bug, we first used a traditional GDB debugging session
to identify the function build lib search chain(...), which is responsible for creating
the fully expanded list of library search paths from the user input. “Expanded” in this
context means absolute file system paths with all JQ environment variables replaced. Our
debugging session further showed that this process works for some invocations of build lib
search chain(...), even with the ./ path syntax, but fails for others. Our assumption was
that this discrepancy must be linked to the values of the three arguments passed into the
function. We created user-defined learning events monitoring the status of these arguments
and analysed the program using pv. All generated automata are published on the project’s
website (http://www.cprover.org/learning-errors/, 2015).

3. https://github.com/stedolan/jq
4. https://github.com/stedolan/jq/issues/817
5. By the time we fixed the bug a formal patch was already committed.
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The resulting automaton highlighted which events and input parameter manipulations
were necessary to reach the bug in build lib search chain(...). Using this information
we successfully implemented a patch fixing this issue. For this particular benchmark, the
lazy learning algorithm described in Sec. 6 reduced the runtime of pv from over 59 minutes
down to 28 minutes at user unwind limit 4 and maximum word length 12. On average, a
runtime decrease by 25% was achieved across all unwind limits and word lengths. More
detailed results can be found in (http://www.cprover.org/learning-errors/, 2015).
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