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Abstract

Many applications of Bayesian data analysis involve sensitive information such as per-
sonal documents or medical records, motivating methods which ensure that privacy is pro-
tected. We introduce a general privacy-preserving framework for Variational Bayes (VB),
a widely used optimization-based Bayesian inference method. Our framework respects
differential privacy, the gold-standard privacy criterion, and encompasses a large class of
probabilistic models, called the Conjugate Exponential (CE) family. We observe that we
can straightforwardly privatise VB’s approximate posterior distributions for models in the
CE family, by perturbing the expected sufficient statistics of the complete-data likelihood.
For a broadly-used class of non-CE models, those with binomial likelihoods, we show how to
bring such models into the CE family, such that inferences in the modified model resemble
the private variational Bayes algorithm as closely as possible, using the Pólya-Gamma data
augmentation scheme. The iterative nature of variational Bayes presents a further challenge
since iterations increase the amount of noise needed. We overcome this by combining: (1)
an improved composition method for differential privacy, called the moments accountant,
which provides a tight bound on the privacy cost of multiple VB iterations and thus sig-
nificantly decreases the amount of additive noise; and (2) the privacy amplification effect
of subsampling mini-batches from large-scale data in stochastic learning. We empirically
demonstrate the effectiveness of our method in CE and non-CE models including latent
Dirichlet allocation, Bayesian logistic regression, and sigmoid belief networks, evaluated on
real-world datasets.

1. Introduction

Bayesian inference, which reasons over the uncertainty in model parameters and latent vari-
ables given data and prior knowledge, has found widespread use in data science application
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domains in which privacy is essential, including text analysis (Blei, Ng & Jordan, 2003),
medical informatics (Husmeier, Dybowski & Roberts, 2006), and MOOCS (Piech et al.,
2013). In these applications, the goals of the analysis must be carefully balanced against
the privacy concerns of the individuals whose data are being studied (Daries et al., 2014).
The recently proposed Differential Privacy (DP) formalism provides a means for analyzing
and controlling this trade-off, by quantifying the privacy “cost” of data-driven algorithms
(Dwork, McSherry, Nissim & Smith, 2006). In this work, we address the challenge of per-
forming Bayesian inference in private settings, by developing an extension of the widely used
Variational Bayes (VB) algorithm that preserves differential privacy. We provide extensive
experiments across a variety of probabilistic models which demonstrate that our algorithm
is a practical, broadly applicable, and statistically efficient method for privacy-preserving
Bayesian inference.

The algorithm that we build upon, variational Bayes, provides an optimisation-based
alternative to Markov Chain Monte Carlo (MCMC) simulation methods for Bayesian infer-
ence, and as such, frequently has faster convergence properties than corresponding MCMC
methods. While the variational Bayes algorithm proves its usefulness by successfully solv-
ing many statistical problems, the standard form of the algorithm unfortunately cannot
guarantee privacy for each individual in the dataset.

Differential Privacy (DP) (Dwork, McSherry, et al., 2006) is a formalism which can be
used to establish such guarantees. An algorithm is said to preserve differential privacy if its
output is sufficiently noisy or random to obscure the participation of any single individual
in the data. By showing that an algorithm satisfies the differential privacy criterion, we
are guaranteed that an adversary cannot draw new conclusions about an individual from
the output of the algorithm, by virtue of his/her participation in the dataset. However, the
injection of noise into an algorithm, in order to satisfy the DP definition, generally results
in a loss of statistical efficiency, as measured by accuracy per sample in the dataset. To
design practical differentially private machine learning algorithms, the central challenge is
to design a noise injection mechanism such that there is a good trade-off between privacy
and statistical efficiency.

Iterative algorithms, such as variational Bayes, pose a further challenge when developing
a differentially private algorithm: each iteration corresponds to a query to the database
which must be privatised, and the number of iterations required to guarantee accurate
posterior estimates causes high cumulative privacy loss. To compensate for the loss, one
needs to add a significantly higher level of noise to the quantity of interest. We overcome
these challenges in the context of variational Bayes by using the following key ideas:

• Perturbation of the expected sufficient statistics: Building on the work of Park,
Foulds, Chaudhuri & Welling (2017), when models are in the Conjugate Exponential
(CE) family, we privatise variational posterior distributions simply by perturbing the
expected sufficient statistics of the complete-data likelihood. This allows us to make
effective use of the per iteration privacy budget in each step of the algorithm.

• Refined composition analysis: In order to use the privacy budget more effectively
across many iterations, we calculate the cumulative privacy cost by using an improved
composition analysis, the Moments Accountant (MA) method of Abadi et al. (2016).
This method maintains a bound on the log of the moment generating function of the

110



Variational Bayes In Private Settings (VIPS)

privacy loss incurred by applying multiple mechanisms to the dataset, i.e. one mech-
anism for each iteration of a machine learning algorithm. This allows for allocating a
higher budget per-iteration than standard methods.

• Privacy amplification effect from subsampling of large-scale data: Processing
the entire dataset in each iteration is extremely expensive in the big data setting, and
is not possible in the case of streaming data, for which the size of the dataset is
assumed to be infinite. Stochastic learning algorithms provide a scalable alternative
by performing parameter updates based on subsampled mini-batches of data, and this
has proved to be highly advantageous for large-scale applications of variational Bayes
(Hoffman, Blei, Wang & Paisley, 2013). This subsampling procedure, in fact, has
a further benefit of amplifying privacy. Our results confirm that subsampling works
synergistically in concert with moments accountant composition to make effective use
of an overall privacy budget (Wang, Balle & Kasiviswanathan, 2019). While there
are several prior works on differentially private algorithms in stochastic learning (e.g.,
Bassily, Smith & Thakurta, 2014; Song, Chaudhuri & Sarwate, 2013; Wang, Fienberg &
Smola, 2015; Wang et al., 2019; Wang, Lei & Fienberg, 2016; Wu, Kumar, Chaudhuri,
Jha & Naughton, 2016), the use of privacy amplification due to subsampling, together
with MA composition, has not been used in the context of variational Bayes before
(Abadi et al., 2016 used this approach for privacy-preserving deep learning).

• Data augmentation for the non-CE family models: For widely used non-CE
models with binomial likelihoods such as logistic regression, we exploit the Pólya-
Gamma data augmentation scheme (Polson, Scott & Windle, 2013) to bring such
models into the CE family, such that inferences in the modified model resemble our
private variational Bayes algorithm as closely as possible. Unlike recent work which in-
volves perturbing and clipping gradients for privacy (Jälkö, Dikmen & Honkela, 2017),
our method uses an improved composition method, and also maintains the closed-form
updates for the variational posteriors and the posterior over hyper-parameters, and
results in an algorithm which is more faithful to the standard CE variational Bayes
method. Several papers have used the Pólya-Gamma data augmentation method in
order to perform Bayesian inference, either exactly via Gibbs sampling (Polson et al.,
2013), or approximately via variational Bayes (Gan, Henao, Carlson & Carin, 2015).
However, this augmentation technique has not previously been used in the context of
differential privacy.

Taken together, these ideas result in an algorithm for privacy-preserving variational
Bayesian inference that is both practical and broadly applicable. Our private VB algorithm
makes effective use of the privacy budget, both per iteration and across multiple iterations,
and with further improvements in the stochastic variational inference setting. Our algorithm
is also general, and applies to the broad class of CE family models, as well as non-CE models
with binomial likelihoods. We present extensive empirical results demonstrating that our
algorithm can preserve differential privacy while maintaining a high degree of statistical
efficiency, leading to practical private Bayesian inference on a range of probabilistic models.
Our code is available at https://github.com/mijungi/vips_code.

We organise the remainder of this paper as follows. First, we review relevant background
information on differential privacy, privacy-preserving Bayesian inference, and variational
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Bayes in Sec. 2. We then introduce our novel general framework of private variational Bayes
in Sec. 3 and illustrate how to apply that general framework to the latent Dirichlet allocation
model in Sec. 4. In Sec. 5, we introduce the Pólya-Gamma data augmentation scheme for
non-CE family models, and we then illustrate how to apply our private variational Bayes
algorithm to Bayesian logistic regression (Sec. 6) and sigmoid belief networks (Sec. 7). Lastly,
we summarise our paper and provide future directions in Sec. 8.

2. Background

We begin with some background information on differential privacy, general techniques for
designing differentially private algorithms and the composition techniques that we use. We
then provide related work on privacy-preserving Bayesian inference, as well as the general
formulation of the variational inference algorithm. Readers who are already knowledgeable
in these areas may safely skip over the following, but may wish to refer back as needed for
the relevant notation.

2.1 Differential Privacy

Differential Privacy (DP) is a formal definition of the privacy properties of data analysis
algorithms (Dwork, McSherry, et al., 2006; Dwork, et al., 2014).

Definition 1 (Differential Privacy) A randomized algorithm M(D) is said to be (ε, δ)-
differentially private if

P (M(D) ∈ S) ≤ exp(ε)P (M(D′) ∈ S) + δ (1)

for all measurable subsets S of the range of M and for all datasets D, D′ differing by a
single entry.

In this paper, we assume that the entry difference incurs by replacing an entry with a different
value (the “replace-one” version of Def. 1).1 Note that an entry usually corresponds to a
single individual’s private value. We denote this as d(D,D′) ≤ 1, where d(D,D′) is the
number of entries which differ between D and D′. If δ = 0, the algorithm is said to be
ε-differentially private, and if δ > 0, it is said to be approximately differentially private.

Intuitively, the definition states that the probability of any event does not change very
much when a single individual’s data is modified, thereby limiting the amount of information
that the algorithm reveals about any one individual. We observe that M is a randomized
algorithm, and randomization is typically achieved by either adding external noise, or by
subsampling.

1. We use this version of differential privacy in order to make use of Wang et al. (2019)’s analysis of the
“privacy amplification” effect of subsampling for the moments accountant. Privacy amplification is also
possible with the “include/exclude’ definition of DP, in which differing by a single entry refers to the
inclusion or exclusion of that entry in the dataset; cf. Abadi et al. (2016) for an analysis of the specific
case of MA using the Gaussian mechanism.
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2.2 Designing Differentially Private Algorithms

There are several standard approaches for designing differentially-private algorithms – see
Dwork & Roth (2014) and Sarwate & Chaudhuri (2013) for surveys. The classical approach
is output perturbation, where the idea is to add noise to the output of a function computed
on sensitive data. The most common form of output perturbation is the global sensitivity
method by Dwork, McSherry, et al. (2006), where the idea is to calibrate the noise added to
the global sensitivity of the function.

2.2.1 The Global Sensitivity Mechanism

The global sensitivity of a one-dimensional2 function F of a dataset D is defined as the
maximum amount (over all datasets D) by which F changes when the private value of a
single individual in D changes. Specifically,

∆F = max
D,D′

d(D,D′)≤1

|F (D)− F (D′)|,

where D is allowed to vary over the entire data domain, and |F (·)| can correspond to either
the L1 norm or the L2 norm of the function, depending on the noise mechanism used.

In this paper, we consider a specific form of the global sensitivity method, called the
Gaussian mechanism (Dwork, Kenthapadi, McSherry, Mironov & Naor, 2006), where Gaus-
sian noise calibrated to the global sensitivity in the L2 norm is added. Specifically, for a
function F with global sensitivity ∆F , we output:

F (D) + Z, where Z ∼ N(0, σ2) , σ2 ≥ 2 log(1.25/δ)(∆F )2/ε2 ,

and where ∆F is computed using the L2 norm, and is referred to as the L2 sensitivity of the
function F . The privacy properties of this method are illustrated by Dwork & Roth (2014);
Bun & Steinke (2016).

2.2.2 Other Mechanisms

A variation of the global sensitivity method is the smoothed sensitivity method (Nissim,
Raskhodnikova & Smith, 2007), where the standard deviation of the added noise depends
on the dataset itself, and is less when the dataset is well-behaved. Computing the smoothed
sensitivity in a tractable manner is a major challenge, and efficient computational procedures
are known only for a small number of relatively simple tasks.

A second, different approach is the exponential mechanism (McSherry & Talwar, 2007), a
generic procedure for privately solving an optimisation problem where the objective depends
on sensitive data. The exponential mechanism outputs a sample drawn from a density con-
centrated around the optimal value; this method too is computationally inefficient for large
domains. A third approach is objective perturbation (Chaudhuri, Monteleoni & Sarwate,
2011), where an optimisation problem is perturbed by adding a (randomly drawn) term and
its solution is output; while this method applies easily to convex optimisation problems such
as those that arise in logistic regression and SVM, it is unclear how to apply it to more
complex optimisation problems that arise in Bayesian inference.

2. An extension to a multi-dimensional function is straightforward.

113



Park, Foulds, Chaudhuri & Welling

A final approach for designing differentially private algorithms is sample-and-aggregate
(Nissim et al., 2007), where the goal is to boost the amount of privacy offered by running
private algorithms on subsamples, and then aggregating the result. The key privacy mecha-
nism we use in this paper is a number of iterations of the Subsampled Gaussian Mechanism
– which is a combination of output perturbation along with sample-and-aggregate.

2.3 Composition

An important property of differential privacy which makes it conducive to real applications
is composition, which means that the privacy guarantees decay gracefully as the same private
dataset is used in multiple releases. This property allows us to easily design private versions
of iterative algorithms by making each iteration private, and then accounting for the privacy
loss incurred by a fixed number of iterations.

The first composition result was established by Dwork, Kenthapadi, et al. (2006); Dwork,
McSherry, et al. (2006), who showed that differential privacy composes linearly; if we
use differentially private algorithms A1, . . . , Ak with privacy parameters (ε1, δ1), . . . , (εk, δk)
then the resulting process is (

∑
k εk,

∑
k δk)-differentially private. This result was improved

by Dwork, Rothblum & Vadhan (2010) to provide a better rate for (ε, δ)-differential privacy.
Kairouz, Oh & Viswanath (2017) improved this even further, and provided a characterization
of optimal composition for any differentially private algorithm.

2.3.1 The Moments Accountant Method

In this paper, we use the Moments Accountant (MA) composition method due to Abadi
et al. (2016) for accounting for privacy loss incurred by successive iterations of an iterative
mechanism, as further refined by Wang et al. (2019). We choose this method as it provides
a more refined privacy analysis than Dwork et al. (2010), and applies more generally than
zCDP composition (Bun & Steinke, 2016). Moreover, unlike the results of Kairouz et al.
(2017), this method is tailored to specific differentially private algorithms – which results in
tighter privacy accounting.

The moments accountant method is based on the concept of a privacy loss random vari-
able, which allows us to consider the entire spectrum of likelihood ratios P (M(D)=o)

P (M(D′)=o) induced
by a privacy mechanismM. Specifically, the privacy loss random variable corresponding to
a mechanism M, datasets D and D′, and an auxiliary parameter3 w is a random variable
defined as follows:

LM(D,D′, w) := log
P (M(D, w) = o)

P (M(D′, w) = o)
, with likelihood P (M(D, w) = o),

where o lies in the range of M. Observe that if M is (ε, 0)-differentially private, then the
absolute value of LM(D,D′, w) is at most ε with probability 1.

The moments accountant method exploits properties of this privacy loss random variable
to account for the privacy loss incurred by applying mechanisms M1, . . . ,Mt successively
to a dataset D; this is done by bounding properties of the log of the moment generating

3. The the auxiliary parameter could be, for instance, in the adaptive data analysis, the output of all the
previous mechanismsM1,··· ,k−1, as the input to the kth mechanismMk.
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function of the privacy loss random variable. Specifically, the log moment function αMt of
a mechanismMt is defined as:

αMt(λ) = sup
D,D′,w

logE[exp(λLMt(D,D′, w))], (2)

where D and D′ are datasets that differ in the private value of a single person.4 Abadi
et al. (2016) showed that ifM is the combination of mechanisms (M1, . . . ,Mk) where each
mechanism adds independent noise, then, its log moment generating function αM has the
property that:

αM(λ) ≤
k∑
t=1

αMt(λ) . (3)

Additionally, given a log moment function αM, the corresponding mechanism M satisfies
a range of privacy parameters (ε, δ) connected by the following equations. For any chosen
target ε > 0,M is (ε, δ)-DP for

δ = min
λ

exp(αM(λ)− λε) , (4)

and as a consequence of the above, for any chosen target δ M is (ε, δ)-DP for

ε = min
λ

log(1/δ) + αMt(λ)

λ
. (5)

These properties immediately suggest a procedure for tracking privacy loss incurred
by a combination of mechanisms M1, . . . ,Mk on a dataset. For each mechanism Mt,
first compute the log moment function αMt ; for certain mechanisms such as the Gaussian
mechanism this can be done by simple algebra. Next, compute a bound on αM for the
combination M = (M1, . . . ,Mk) from (3), and finally, recover the privacy parameters of
M by either finding the best δ for a target ε using (4), or the best ε for a target δ using (5).

2.3.2 Moments Accountant for the Subsampled Gaussian Mechanism

The key privacy tool that we used in this paper is the composition of multiple iterations of the
Subsampled Gaussian Mechanism. The privacy loss of this procedure was originally analyzed
by Abadi et al. (2016), but in this paper we instead make use of a more recently proposed
version of the Moments Accountant that allows for more precise privacy calculations, the
Analytical Moments Accountant (Wang et al., 2019).

The Subsampled Gaussian Mechanism, under the analysis of Wang et al. (2019), works
as follows. Given a dataset D with N datapoints and a sampling proportion υ, in each
iteration, we draw a fresh independent random sample of υN points from the entire dataset
D. These υN points are drawn without replacement and are hence distinct.5 We then

4. In this paper, we will interchangeably denote expectations as E[·] or 〈·〉.
5. Note however that successive iterations may involve overlapping samples – as these are drawn inde-

pendently from the entire dataset. Also note that the original Moments Accountant analysis of Abadi
et al. (2016) used a different subsampling procedure: Poisson subsampling, in which each data point is
included in the subsample according to an independent Bernoulli trial with a fixed probability. Poisson
subsampling leads to subsamples of different sizes, which is not concordant with the usual practice of
minibatch stochastic gradient descent; the subsampling with replacement procedure of Wang et al. (2019)
does not have this issue.
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compute a function F (to be specified later) on these υN points, and privatize F using the
Gaussian mechanism.

How do we compute the log-moment of this mechanism? Theorem 9 of Wang et al.
(2019) provides an analytical expression for computing the log-moment of the Subsampled
Gaussian Mechanism as a function of the sampling proportion, and the log-moments of the
Gaussian Mechanism. Their overall approach is to upper bound the privacy parameters of
subsampled mechanisms which satisfy Rényi Differential Privacy (RDP), a generalization
of Differential Privacy which has a direct correspondence to the log moment generating
function αM. The calculation of the log moment generating function of the Subsampled
Gaussian Mechanism is a special case of their analysis. We refer the reader to Wang et al.
(2019) for details.6

Since all log-moments of the Gaussian Mechanism can be calculated directly by simple
algebra (Abadi et al., 2016; Wang et al., 2019), this gives an analytical way to calculate
the log-moment of a single iteration of the Subsampled Gaussian Mechanism. Successive
iterations are then composed by adding up the log-moments as described in Section 2.3.1.

2.4 Privacy-Preserving Bayesian Inference

Privacy-preserving Bayesian inference is a new research area which is currently receiving a lot
of attention. Dimitrakakis, Nelson, Mitrokotsa & Rubinstein (2014) showed that Bayesian
posterior sampling is automatically differentially private, under a mild sensitivity condition
on the log likelihood. This result was independently discovered by Wang et al. (2015), who
also showed that the Stochastic Gradient Langevin Dynamics (SGLD) Bayesian inference
algorithm (Welling & Teh, 2011) automatically satisfies approximate differential privacy,
due to the use of Gaussian noise in the updates.

As an alternative to obtaining privacy “for free” from posterior sampling, Foulds, Geum-
lek, Welling & Chaudhuri (2016) studied a Laplace mechanism approach for exponential
family models, and proved that it is asymptotically efficient, unlike the former approach.
Independently of this work, Zhang, Rubinstein & Dimitrakakis (2016) proposed an equiva-
lent Laplace mechanism method for private Bayesian inference in the special case of beta-
Bernoulli systems, including graphical models constructed based on these systems. Foulds
et al. (2016) further analyzed privacy-preserving MCMC algorithms, via both exponential
and Laplace mechanism approaches.

In terms of approximate Bayesian inference, Jälkö et al. (2017) recently considered
privacy-preserving variational Bayes via perturbing and clipping the gradients of the vari-
ational lower bound. However, this work focuses its experiments on logistic regression, a
model that does not have latent variables. Given that most latent variable models consist of
at least as many latent variables as the number of datapoints, the long vector of gradients
(the concatenation of the gradients with respect to the latent variables; and with respect to
the model parameters) in such cases is expected to typically require excessive amounts of
additive noise. Furthermore, our approach, using the data augmentation scheme (see Sec.
5) and moment perturbation, yields closed-form posterior updates (posterior distributions
both for latent variables and model parameters) that are closer to the spirit of the original

6. For code implementing the Analytical Moments Accountant analysis, see https://github.com/
yuxiangw/autodp/tree/master/autodp.
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variational Bayes method, for both CE and non-CE models, as well as an improved compo-
sition analysis using moments accountant. On the other hand, the method of Jälkö et al.
(2017) applies to a more general class of non-conjugate non-CE models, such as those that
may be encountered in a black-box VI setting.

In recent work, Barthe et al. (2016) designed a probabilistic programming language for
designing privacy-preserving Bayesian machine learning algorithms, with privacy achieved
via input or output perturbation, using standard mechanisms.

Lastly, although it is not a fully Bayesian method, it is worth noting the differentially
private expectation maximisation algorithm developed in our previous work (Park et al.,
2017), which also involves perturbing the expected sufficient statistics for the complete-data
likelihood. The major difference between our current and previous work is that EM is not
(fully) Bayesian, i.e., EM outputs the point estimates of the model parameters; while VB
outputs the posterior distributions (or those quantities that are necessary to do Bayesian pre-
dictions, e.g., expected natural parameters and expected sufficient statistics). Furthermore,
Park et al. (2017) dealt with only CE family models for obtaining the closed-form MAP
estimates of the parameters; while our approach here encompasses both CE and non-CE
family models, using the Polya-Gamma data augmentation technique which is particularly
well-suited for fully Bayesian inference (Polson et al., 2013). Finally, we demonstrated our
differentially private EM method on small- to medium-sized datasets (Park et al., 2017),
which do not require stochastic learning; while our method here addresses the scenario of
stochastic learning which is essential in the era of big data (Hoffman et al., 2013).

2.5 Variational Bayes

Variational Bayes is an inference algorithm which has origins in the closely related Expec-
tation Maximisation (EM) algorithm (Dempster, Laird & Rubin, 1977), although there are
important differences between these methods. As mentioned above, VB aims to approximate
fully Bayesian inference, while EM does not. It will nevertheless be convenient to frame our
discussion on VB in the context of EM, following Beal (2003). The EM algorithm seeks
to learn the parameters of models with latent variables. Since directly optimising the log
likelihood of observations under such models is intractable, EM introduces a lower bound
on the log likelihood by rewriting it in terms of auxiliary probability distributions over the
latent variables, and using a Jensen’s inequality argument. EM proceeds by iteratively alter-
nating between improving the bound via updating the auxiliary distributions (the E-step),
and optimising the lower bound with respect to the parameters (the M-step).

Alternatively, EM can instead be understood as an instance of the variational method.
The general idea of the variational method is to cast a quantity of interest as an optimisation
problem. Variational inference is the class of techniques which solve inference problems in
probabilistic models using variational methods (Jordan, Ghahramani, Jaakkola & Saul, 1999;
Wainwright & Jordan, 2008).7 In the variational inference interpretation of EM, both the E-
and M-steps are viewed as maximising the same joint objective function: a reinterpretation
of the bound as a variational lower bound which is related to a quantity known as the

7. Note that the “variational” terminology comes from the calculus of variations, which is concerned with
finding optima of functionals. This pertains to probabilistic inference, since distributions are functions,
and we aim to optimise over the space of possible distributions. However, it is typically not necessary
to use the calculus of variations when deriving variational inference algorithms in practice.
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variational free energy in statistical physics, and to the KL-divergence (Neal & Hinton,
1998).8

This interpretation opens the door to extensions in which simplifying assumptions are
made on the optimization problem, thereby trading improved computational tractability
against tightness of the bound. Such simplifications, for instance assuming that the aux-
iliary distributions are fully factorized, make feasible a fully Bayesian extension of EM,
called Variational Bayesian EM (VBEM) (Beal, 2003). While VBEM has a somewhat sim-
ilar algorithmic structure to EM, it aims to compute a fundamentally different object: an
approximation to the entire posterior distribution, instead of a point estimate of the pa-
rameters. We collectively refer to VBEM and an intermediary method between it and EM,
called Variational EM (VEM), as variational Bayes.9

Our discussion is focused on the Variational Bayesian EM (VBEM) algorithm variant.
The goal of the algorithm is to compute an approximation q to the posterior distribution
over latent variables and model parameters for models where exact posterior inference is
intractable. This should be contrasted to VEM and EM, which aim to compute a point
estimate of the parameters. VEM and EM can both be understood as special cases, in which
the set of q distributions is constrained such that the approximate posterior is a Dirac delta
function (Beal, 2003). We therefore include them within the definition of VB. See Blei,
Kucukelbir & McAuliffe (2017) for a recent review on variational Bayes, Beal (2003) for
more detailed derivations, and see Appendix Sec. 6 for more information on the relationship
between EM and VBEM. We summarize the most important notational symbols for the VB
algorithm, and its stochastic variant, in Table 1.

2.5.1 High-Level Derivation of VB

Consider a generative model that produces a dataset D = {Dn}Nn=1 consisting of N (condi-
tionally) independent identically distributed (i.i.d.) items (Dn denotes the nth input/output
pair {xn, yn} for supervised learning and the nth vector output yn for unsupervised learn-
ing), generated using a set of latent variables l = {ln}Nn=1. The generative model provides
p(Dn|ln,m), where m are the model parameters. We also consider the prior distribution
over the model parameters p(m) and the distribution over the latent variables p(l |m), which
are assumed to be conditionally independent given m .

Variational Bayes recasts the task of approximating the posterior p(l ,m |D) as an opti-
misation problem: making an approximating distribution q(l ,m), which is called the vari-
ational distribution, as similar as possible to the posterior, by minimising some distance (or
divergence) between them. The algorithm optimises over q(l ,m) based on the input dataset
D, and outputs the (hopefully) optimal variational distribution q(l ,m), typically via a set
of parameters which encode q(l ,m).

8. See Appendix Sec. 6 for a detailed derivation.
9. Variational EM uses simplifying assumptions on the auxiliary distribution over latent variables, as in

VBEM, but still aims to find a point estimate of the parameters, as in EM. See Sec. 2.5 for more details
on variational Bayes, and Appendix Sec. 6 for more details on EM.
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Symbol Definition

D Dataset containing N data points, {xn, yn} or {yn}
n Indexes the nth data point when used as a subscript
p Probability distribution of the assumed generative model
l Latent variables per data point in the model p
m Model parameters for p
q Variational distribution
L(q) Evidence lower bound (ELBO) objective function for learning q
q∗(ln) Optimal coordinate-ascent update for q(ln)
q∗(m) Optimal coordinate-ascent update for q(m)
H Entropy (or differential entropy)
n(m) Natural parameters
s(Dn, ln) Sufficient statistics
n̄ Expected natural parameters (under the variational distribution q)
s̄(D) Expected sufficient statistics (under the variational distribution q)

s̄ Stochastic estimate of s̄(D)
S Mini-batch size
J Number of minibatches to process
ρt Step size at iteration t of stochastic VB
υ Subsampling rate

Table 1: Summary of the main notation for VB (top) and stochastic VB (bottom).

The terminology VB is often assumed to refer to the standard case, in which the diver-
gence to minimise is the KL-divergence from p(l ,m |D) to q(l ,m),

DKL(q(l ,m)‖p(l ,m |D)) = Eq
[

log
q(l ,m)

p(l ,m |D)

]
= Eq[log q(l ,m)]− Eq[log p(l ,m |D)]

= Eq[log q(l ,m)]− Eq[log p(l ,m ,D)] + log p(D) . (6)

The arg min of Eq. 6 with respect to q(l ,m) does not depend on the constant log p(D).
Minimising it is therefore equivalent to maximizing

L(q) , Eq[log p(l ,m ,D)]− Eq[log q(l ,m)] = Eq[log p(l ,m ,D)] +H(q) , (7)

where H(q) is the entropy (or differential entropy) of q(l ,m). The entropy of q(l ,m)
rewards simplicity, while Eq[log p(l ,m ,D)], the expected value of the complete data log-
likelihood under the variational distribution, rewards accurately fitting to the data. We can
alternatively derive L(q) as a lower bound on the log of the marginal probability of the data
p(D) (the evidence),

log p(D) = log
(∫

dl dm p(l ,m ,D)
)

= log
(∫

dl dm p(l ,m ,D)
q(l ,m)

q(l ,m)

)
= log

(
Eq
[p(l ,m ,D)

q(l ,m)

])
≥ Eq

[
log p(l ,m ,D)− log q(l ,m)

]
= L(q) , (8)
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where we have made use of Jensen’s inequality. Due to Eq. 8, L(q) is sometimes referred to
as a variational lower bound, and in particular, the Evidence Lower Bound (ELBO), since
it is a lower bound on the log of the model evidence p(D).

The VBEM algorithm maximises L(q) via coordinate ascent over parameters encoding
q(l ,m), called the variational parameters. The E-step optimises the variational parameters
pertaining to the latent variables l , and the M-step optimises the variational parameters
pertaining to the model parameters m . These updates are iterated until convergence. Under
certain assumptions, these updates have a convenient form, as we will describe below.

2.5.2 Mean-Field VB

Since the KL-divergence is 0 if and only if the two distributions are the same, maximising
L(q) will result in q(l ,m) = p(l ,m |D) when the optimisation problem is unconstrained.
In practice, however, we restrict q(l ,m) to a tractable subset of possible distributions. A
common choice for the tractable subset is the set of fully factorised distributions:

q(l ,m) = q(l)q(m) = q(m)
N∏
n=1

q(ln) . (9)

Under this assumption, known as the mean-field assumption by analogy to a related tech-
nique for modeling behaviors of particles in statistical physics, the method is referred to as
mean-field variational Bayes. The ELBO then has the form

L(q(l)q(m)) =

∫
dm dl q(l)q(m) log

p(l ,D,m)

q(m)
∏N
n=1 q(ln)

. (10)

It is possible to derive the general structure of coordinate ascent updates to optimize the
ELBO without making any further distributional assumptions or assuming a specific pa-
rameterisation for q(l) or q(m). After some algebra (Beal, 2003), we can isolate the terms
in the ELBO relating to latent variable ln and rewrite it as

L(q(l)q(m)) = −DKL(qn(ln)‖cn(ln)) + const, (11)

cn(ln) , exp(Eq¬n [log p(l ,m ,D)])/Zn ,

Zn =

∫
dln exp(Eq¬n [log p(l ,m ,D)]) ,

where q¬n is the variational distribution q(l)q(m) excluding variable ln, and cn(ln) is a
distribution over ln with normalizing constant Zn. KL-divergences are minimised by setting
the two distributions to be equal, so the optimal q(ln) for the coordinate ascent update,
denoted q∗(ln), is equal to cn(ln), i.e.

q∗(ln) ∝ exp(Eq¬n [log p(l ,m ,D)]) . (12)

By an identical argument, we also obtain the optimal coordinate-ascent update for q(m) as

q∗(m) ∝ exp(Eq(l)[log p(l ,m ,D)]) . (13)
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2.5.3 VB for CE Models

Mean-field VB simplifies further when the model falls into the Conjugate-Exponential (CE)
class of models, which satisfy two conditions (Beal, 2003):

(1) The complete-data likelihood is in the exponential family:

p(Dn, ln|m) = g(m)f(Dn, ln) exp(n(m)>s(Dn, ln)), (14)
(2) The prior over m is conjugate to the complete-data likelihood:

p(m |τ,ν) = h(τ,ν)g(m)τ exp(ν>n(m)), (15)

where the natural parameters (to be inferred) and sufficient statistics (a function of the data
and the latent variables to be inferred) of the complete-data likelihood are denoted by n(m)
and s(Dn, ln), respectively, and g, f, h are some known functions. The hyperparameters
(that need to be tuned) are denoted by τ (a scalar) and ν (a vector).

A large class of models fall in the CE family. Examples include linear dynamical systems
and switching models; Gaussian mixtures; factor analysis and probabilistic PCA; Hidden
Markov Models (HMM) and factorial HMMs; and discrete-variable belief networks. Some
models that are widely used but not in the CE family are: Markov Random Fields (MRFs)
and Boltzmann machines; logistic regression; sigmoid belief networks; and Independent
Component Analysis (ICA). We illustrate how best to bring such models into the CE family
in a later section.

The VB algorithm for a CE family model can be derived by plugging the CE modeling
assumptions (1) and (2) into the generic mean-field updates in Eq. 12 and Eq. 13:

q∗(ln) ∝ f(Dn, ln) exp(Eq(m)[n(m)]>s(Dn, ln)) , (16)

q∗(m) ∝ g(m)τ exp(ν>n(m))
N∏
n=1

(
g(m) exp(n(m)>Eq(ln)[s(Dn, ln)])

)
∝ g(m)τ+N exp

((
ν +

N∑
n=1

Eq(ln)[s(Dn, ln)]
)>n(m)

)
. (17)

The optimal coordinate-ascent updated variational distributions are thus in the expo-
nential family. We can see that q∗(m) is in the same exponential family as p(m |τ,ν), and
is hence normalized by the multiplicative constant h(τ +N,ν +

∑N
n=1 Eq(ln)[s(Dn, ln)]). If

we further assume that p(ln|m) is an exponential family distribution, then q∗(ln) is in, the
same exponential family as p(ln|m), e.g. if p(ln|m) is a Gaussian then so is q∗(ln) (Blei
et al., 2017; Hoffman et al., 2013). The optimal natural parameters for q∗(ln), called “ local
parameters” by Blei et al. (2017); Hoffman et al. (2013), are Eq(m)[n(m)], and the optimal
natural parameters for q∗(m) (called “global parameters”) are ν +

∑N
n=1 Eq(ln)[s(Dn, ln)].

Crucially, these updates can be calculated based on the expected sufficient statis-
tics and the expected natural parameters under the variational distribution, and
these are hence the quantities that the algorithm outputs and maintains in each iteration.
We will make use of this fact in our privacy-preserving VB algorithm, which we introduce in
the next section. Let n̄ be an estimate of the expected natural parameters under the vari-
ational distribution, and let s̄(D) be an estimate of the expected sufficient statistics under
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the variational distribution, which can be randomly initialized. The VB algorithm for CE
models is the following two-step procedure.

(1) First, given expected natural parameters n̄, the E-step computes:

q(l) =

N∏
n=1

q(ln) ∝
N∏
n=1

f(Dn, ln) exp(n̄>s(Dn, ln)) =

N∏
n=1

p(ln|Dn, n̄). (18)

Using q(l), it outputs expected sufficient statistics, the expectation of s(Dn, ln)

with probability density q(ln) : s̄(D) = 1
N

N∑
n=1

Eq(ln)[s(Dn, ln)].

(2) Second, given expected sufficient statistics s̄(D), the M-step computes:

q(m) = h(τ̃ , ν̃)g(m)τ̃ exp(ν̃>n(m)), where τ̃ = τ +N, ν̃ = ν +N s̄(D). (19)
Using q(m), it outputs expected natural parameters n̄ = Eq(m)[n(m)].

2.5.4 Stochastic VB for CE Models

The VB update introduced in Eq. 18 is inefficient for large data sets because we need
to optimise the variational posterior over the latent variables corresponding to each data
point before re-estimating the variational posterior over the parameters. For more efficient
learning, we adopt stochastic variational inference, which uses stochastic optimisation to
fit the variational distribution over the parameters. We repeatedly subsample the data to
form noisy estimates of the natural gradient of the variational lower bound, and we mix
these estimates10 with a decreasing step-size ρt, as in Hoffman et al. (2013)11. In particular,
ρt = (τ0 + t)−κ, where t denotes the optimization step; κ ∈ (0.5, 1] controls how quickly the
old information is forgotten; and τ0 down-weights early iterations. The stochastic variational
Bayes algorithm is summarised in Algorithm 1.

Algorithm 1 (Stochastic) Variational Bayes for CE family distributions

Input: Data D. Define ρt = (τ0 + t)−κ and mini-batch size S.
Output: Expected natural parameters n̄ and expected sufficient statistics s̄.
for t = 1, . . . , J do
Draw a minibatch of S datapoints, without replacement.
(1) E-step: Given the expected natural parameters n̄, compute q(ln) for n = 1, . . . , S.
Output the expected sufficient statistics s̄ = 1

S

∑S
n=1〈s(Dn, ln)〉q(ln).

(2) M-step: Given s̄, compute q(m) by ν̃(t) = ν+N s̄. Set ν̃(t) ←[ (1−ρt)ν̃(t−1)+ρtν̃
(t).

Output the expected natural parameters n̄ = 〈n(m)〉q(m).
end for

10. This mixing step is in the M-step in Algorithm 1, where we first compute ν̃(t) then mix it with the
previous step’s estimate ν̃(t−1) via ν̃(t) ←[ (1− ρt)ν̃(t−1) + ρtν̃

(t).
11. When optimising over a probability distribution, the Euclidean distance between two parameter vectors

is often a poor measure of the dissimilarity of the distributions. The natural gradient of a function
accounts for the information geometry of its parameter space, using a Riemannian metric to adjust the
direction of the traditional gradient, which results in a faster convergence than the traditional gradient
(Hoffman et al., 2013).
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3. Variational Bayes In Private Settings (VIPS) for the CE Family

To create an extension of variational Bayes which preserves differential privacy, we need to
inject noise into the algorithm. The design choices for the noise injection procedure must
be carefully made, as they can strongly affect the statistical efficiency of the algorithm, in
terms of its accuracy versus the number of samples in the dataset. We start by introducing
our problem setup.

3.1 Problem Setup

A naive way to privatise the VB algorithm is by perturbing both q(l) and q(m). Un-
fortunately, this is impractical, due to the excessive amounts of additive noise (recall: we
typically have as many latent variables as the number of datapoints). We propose to perturb
the expected sufficient statistics only. What follows next explains why this makes sense.

While the VB algorithm is being run, the places where the algorithm needs to look at
the data are (1) when computing the variational posterior over the latent variables q(l); and
(2) when computing the expected sufficient statistics s̄(D) using this computed q(l). These
are all happening during the E-step. In our proposed approach, we compute q(l) behind the
privacy wall (see below), and compute the expected sufficient statistics using q(l), as shown
in Fig. 1. Before outputting the expected sufficient statistics, we perturb each coordinate of
the expected sufficient statistics to compensate the maximum difference in 〈sl(Dn, ln)〉q(ln)

caused by both Dn and q(ln). The perturbed expected sufficient statistics then dictate the
expected natural parameters in the M-step. Hence we do not need an additional step to add
noise to q(m).

The reason we neither perturb nor output q(l) for training data is that we do not need
q(l) itself most of the time. For instance, when computing the predictive probability for test
datapoints Dtst, we need to perform the E-step to obtain the variational posterior for the
test data q(l tst), which is a function of the test data and the expected natural parameters
n̄, given as

p(Dtst|D) =

∫
dmdl tst p(Dtst|l tst,m) q(l tst;Dtst, n̄) q(m ; ν̃), (20)

where the dependence on the training data D is implicit in the approximate posteriors
q(m) through ν̃; and the expected natural parameters n̄. Hence, outputting the perturbed
sufficient statistics and the expected natural parameters suffice for protecting the privacy of
individuals in the training data. Furthermore, the M-step can be performed based on the
(privatised) output of the E-step, without querying the data again, so we do not need to add
any further noise to the M-step to ensure privacy, due to the fact that differential privacy is
immune to data-independent post-processing. To sum up, we provide our problem setup as
below.

1. Privacy wall: We assume that the sensitive training dataset is only accessible through
a sanitising interface which we call a privacy wall. The training data stay behind the
privacy wall, and adversaries have access to the outputs of our algorithm only, i.e., no
direct access to the training data, although they may have further prior knowledge on
some of the individuals that are included in the training data.
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Figure 1: Schematic of VIPS. Given the initial expected natural parameters n̄(0), we compute
the variational posterior over the latent variables q(l). Since q(l) is a function of not only the
expected natural parameters but also the data D, we compute q(l) behind the privacy wall.
Using q(l), we then compute the expected sufficient statistics. Note that we neither perturb
nor output q(l) itself. Instead, when we noise up the expected sufficient statistics before
outputting, we add noise to each coordinate of the expected sufficient statistics in order to
compensate the maximum difference in 〈sl(Dn, ln)〉q(ln) caused by both Dn and q(ln). In the
M-step, we compute the variational posterior over the parameters q(m) using the perturbed
expected sufficient statistics ˜̄s(1). Using q(m), we compute the expected natural parameters
˜̄n(1), which is already perturbed since it is a function of ˜̄s(1). We continue performing these
two steps until convergence.

2. Training phase: Our differentially private VB algorithm releases the perturbed ex-
pected natural parameters and perturbed expected sufficient statistics in every itera-
tion. Every release of a perturbed parameter based on the training data triggers an
update in the log moment functions (see Sec 3.2 on how these are updated). At the
end of the training phase, the final privacy parameters are calculated based on (4).

3. Test phase: Test data are public (or belong to users), i.e., outside the privacy wall.
Bayesian prediction on the test data is possible using the released expected natural
parameters and expected sufficient statistics (given as Eq. 20). Note that we do not
consider protecting the privacy of the individuals in the test data.

3.2 How to Compute the Log Moment Functions?

Recall that to use the moments accountant method, we need to compute the log moment
functions αMt for each individual iteration t. An iteration t of VIPS randomly subsamples
a υ fraction of the dataset, without replacement, and uses it to compute the sufficient
statistics which is then perturbed via the Gaussian mechanism with some variance. How
the log moment function is computed depends on the sensitivity of the sufficient statistics
as well as the underlying mechanism; we next discuss each of these aspects.
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3.2.1 Sensitivity Analysis

Suppose there are two neighbouring datasets D and D′, where D′ has one entry difference
compared to D (i.e., by replacing one entry with a different value).

We denote the vector of expected sufficient statistics by s̄(D) = 1
N

∑N
n=1 s̄(Dn) =

[M1, · · · ,ML], where each expected sufficient statistic Ml is given by

Ml = 1
N

N∑
n=1

〈sl(Dn, ln)〉q(ln) . (21)

When computing the sensitivity of the expected sufficient statistics, we assume, without
loss of generality, the last entry is the one which differs between D and D′. Under this
assumption and the i.i.d. assumption on the likelihood, given the current expected natural
parameters n̄, all q(ln) and sl(Dn, ln) for n ∈ {1, . . . , N − 1} evaluated on the dataset D
are the same as q(l ′n) and sl(D′n, l ′n) evaluated on the dataset D′. Hence, the sensitivity is
given by

∆Ml = max
D,D′

d(D,D′)≤1

|Ml(D)−Ml(D′)| ≤ max
DN ,q(lN )

2
N |Eq(lN )sl(DN , lN )|. (22)

See Appendix Sec. 1 for the proof.
As in many existing works (e.g., Chaudhuri et al., 2011; Kifer et al., 2012, among many

others), we also assume that the dataset is pre-processed such that the L2 norm of any
Dn is less than 1. Furthermore, we choose q(ln) such that its support is bounded. Under
these conditions, each coordinate of the expected sufficient statistics 〈sl(Dn, ln)〉q(ln) has
limited sensitivity. We will add noise to each coordinate of the expected sufficient statistics
to compensate this bounded maximum change in the variational E-step.

3.2.2 Log Moment Function of the Subsampled Gaussian Mechanism

Observe that iteration t of our algorithm subsamples a υ fraction of the dataset, computes the
sufficient statistics based on this subsample, and perturbs it using the Gaussian mechanism
with variance ∆2σ2Id, where ∆ is the L2-sensitivity. Here, the subsampling is done by
uniformly sampling S datapoints from the total N training samples without replacement,
which makes the sampling rate υ = S/N .

From Proposition 1.6 of Bun & Steinke (2016) along with simple algebra, the log moment
function of the Gaussian Mechanism M is αM(λ) = λ(λ+1)∆2

2σ2 . In this case, with a pre-
defined σ and a fixed ∆, we compute the log moments over some values of λ and obtain the
corresponding privacy loss by converting the log moments to (ε, δ) that satisfies (4).

To compute the log moment function for the Subsampled Gaussian Mechanism, we use
the Analytical Moments Accountant Method that was proposed by the recent work of Wang
et al. (2019).12 A more detailed description of this method is provided in Section 2.3.2.

Note that our algorithms are run for a pre-specified number of iterations, and with a
pre-specified σ, and a fixed subsampling rate υ. Hence, we compute the privacy loss at
the end of training once post hoc using the analytical moments accountant method. This

12. Code is available at https://github.com/yuxiangw/autodp/tree/master/autodp.
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is different from the case where a data-dependent adaptive analysis such as that of Rogers,
Roth, Ullman & Vadhan (2016) is required.

Also, note that when using the subsampled data per iteration, the sensitivity analysis
has to be modified as now the query is evaluated on a smaller dataset. Hence, the 1/N factor
has to be changed to 1/S in Eq. 22, as the two subsampled datasets can have maximally a
single datapoint difference out of S number of data samples:

∆Ml ≤ max
DS ,q(lS)

2
S |Eq(lS)sl(DS , lS)| . (23)

Algorithm 2 summarizes our VIPS algorithm that performs differentially private stochas-
tic variational Bayes for CE family models.

Algorithm 2 Private VIPS for CE family distributions

Input: Data D. Define ρt = (τ0 + t)−κ, noise variance σ2, mini-batch size S, and maximum
iterations J .

Output: Perturb expected natural parameters ˜̄n and expected sufficient statistics ˜̄s.
Compute the L2-sensitivity ∆ of the expected sufficient statistics.
for t = 1, . . . , J do
Draw a minibatch of S datapoints, without replacement.
(1) E-step: Given the expected natural parameters n̄, compute q(ln) for n = 1, . . . , S.
Perturb each coordinate of s̄ = 1

S

∑S
n=1〈s(Dn, ln)〉q(ln) by adding N (0, σ2∆2I) noise,

and output ˜̄s.
(2) M-step: Given ˜̄s, compute q(m) by ν̃(t) = ν+N ˜̄s. Set ν̃(t) ←[ (1−ρt)ν̃(t−1)+ρtν̃

(t).
Output the expected natural parameters ˜̄n = 〈n(m)〉q(m).

end for
Compute the privacy loss (εtot, δtot) using the analytical moments account method (Wang
et al., 2019).

4. VIPS for Latent Dirichlet Allocation

Here, we illustrate how to use the general framework of VIPS for CE family in the example of
the Latent Dirichlet Allocation (LDA) topic model (Blei et al., 2003). The LDA model takes
as input a corpus of text documents, and aims to identify the semantic themes (“topics”)
which are present in the corpus. A topic is a discrete distribution over all of the words in
the vocabulary, where the high probability words are assumed to be semantically coherent
representatives of a particular theme. For example, a topic on baseball might give high
probability to the words pitcher, bat, and base. By finding the topics in the text corpus,
LDA automatically provides a “birds-eye view” semantic summary of the dataset which can
be interpreted by human analysts. The model can also be used for dimensionality reduction
on the documents themselves, by representing each document according to extent to which
the inferred topics are present.
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Symbol Definition

Indices and counts

D Number of documents
N Number of word tokens in a document
K Number of topics
V Vocabulary size
d Indexes the dth document (indices for LDA may be sub- or super-scripts)
n Indexes the nth word in a document
k Indexes the kth topic
v Indexes the vth vocabulary word
1L A vector of ones of length L, for any integer L

Input data and hyperparameters

D Dataset containing D documents {Dd}
wdn Indicator vector of length V for the nth word in document d
nd Vector of word counts for document d
η Dirichlet prior hyperparameter for topics (scalar)
α Dirichlet prior hyperparameter for documents’ topic distributions (scalar)

Quantities to be inferred

β Topics
θ Distribution over topics for documents
zdn Indicator vector of length K, topic assignment of the nth word in document d
φ Variational parameters for topic assignments
γ Variational parameters for distributions over topics
λ Variational parameters for topics
s̄ Expected sufficient statistics, a matrix of size K × V
˜̄s Privatized expected sufficient statistics

Table 2: Summary of the main notation for LDA.

4.1 Model Specifics for LDA

In the LDA topic model, we observe a corpus of D documents Dd, where each observed word
is represented by an indicator vector wdn (nth word in the dth document) of length V , and
where V is the number of terms in a fixed vocabulary set (see Table 2 for a summary of the
main notation used in this section). Given the corpus, the model infers K latent topics βk,
which are discrete distributions over the vocabulary, and discrete distributions over topics
θd for each document Dd. Each word wdn is given a topic assignment latent variable zdn,
represented by an indicator vector of length K. Let 1L be a vector of ones of length L, for
any integer L. The LDA model posits that the generative process for the corpus as follows:

• Draw topics βk ∼ Dirichlet (η1V ), for k = {1, . . . ,K}, where η is a scalar hyperpa-
rameter.

• For each document Dd, d ∈ {1, . . . , D}
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– Draw topic proportions θd ∼ Dirichlet (α1K), where α is a scalar hyperparameter.

– For each word n ∈ {1, . . . , N}
∗ Draw topic assignments zdn ∼ Discrete(θd)
∗ Draw word wdn ∼ Discrete(βzdn) .

The LDA model falls in the CE family, viewing zd,1:N and θd as two types of latent
variables: ld = {zd,1:N ,θd}, and β as model parameters m = β.13 The conditions for CE
are satisfied: (1) the complete-data likelihood per document is in exponential family:

p(wd,1:N , zd,1:N ,θd|β) ∝ f(Dd, zd,1:N ,θd) exp(
∑
n

∑
k

[logβk]
>[zkdnwdn]), (24)

where f(Dd, zd,1:N ,θd) ∝ exp([α1K ]>[log θd] +
∑

n

∑
k z

k
dn log θkd); and (2) we have a conju-

gate prior over βk:

p(βk|η1V ) ∝ exp([η1V ]>[logβk]), (25)

for k = {1, . . . ,K}. For simplicity, we assume hyperparameters α and η are set manually.
Under the LDA model, we assume the variational posteriors are given by

• Discrete : q(zkdn|φkdn) ∝ exp(zkdn logφkdn), with variational parameters for capturing
the posterior topic assignment,

φkdn ∝ exp(〈logβk〉q(βk)
>wdn + 〈log θkd〉q(θd)). (26)

• Dirichlet : q(θd|γd) ∝ exp(γd
> log θd),where γd = α1K +

∑N
n=1〈zdn〉q(zdn),

where these two distributions are computed in the E-step behind the privacy wall. By com-
paring the exponential family form of the LDA model (Equation 24) with the general form of
the exponential family (Equation 14) and taking the expectation over the variational distri-
bution, we observe that the expected sufficient statistics are s̄k = 1

D

∑
d

∑
n〈zkdn〉q(zdn)wdn =

1
D

∑
d

∑
nφ

k
dnwdn where we compute the expectation over zkdn using the posterior topic as-

signment probability we computed in Eq. 26. Then, in the M-step, we compute the posterior

• Dirichlet : q(βk|λk) ∝ exp(λk
> logβk), where λk = η1V +

∑
d

∑
n〈zkdn〉q(zdn)wdn.

4.2 VIPS for LDA

We follow the general framework of VIPS for differentially private LDA, with the addition of
several LDA-specific heuristics which are important for good performance, described below.
First, while each document originally has a different document length Nd, in order to bound
the sensitivity, and to ensure that the signal-to-noise ratio remains reasonable for very short
documents, we preprocess all documents to have the same fixed length N . We accomplish
this by sampling N words with replacement from each document’s bag of words. In our
experiments, we use N = 500. Note that since privacy is preserved at the level of documents

13. For more detailed derivations of the exponential family form and variational posteriors for LDA, we refer
the reader to Hoffman et al. (2013).
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rather than at the level of words, this step does not directly impact the degree of privacy
achieved, but it can reduce the relative amount of noise compared to the amount of data.

To perturb the expected sufficient statistics, which is a matrix of size K × V , we add
Gaussian noise to each component of this matrix:

˜̄svk = s̄vk + Y v
k , where Y

v
k ∼ N (0, σ2(∆s̄)2), (27)

where s̄vk = 1
S

∑
d

∑
nφ

k
dnw

v
dn, and ∆s̄ is the sensitivity. We then map the perturbed

components to 0 if they become negative. For LDA, with a mini-batch of S documents
(which changes D to S when computing the sensitivity) the worst-case sensitivity is given
by

∆s̄ = max
D,D′

d(D,D′)≤1

√∑
k

∑
v

(s̄vk(D)− s̄vk(D′))2 ≤ max
φk

Sn,w
v
Sn

1

S

∑
n

(
∑
k

φkSn)(
∑
v

wv
Sn) ≤ N

S
,

(28)

see Appendix Sec. 2 for proof. As we shall see, it is worthwhile to consider this sensitivity
calculation more closely. We can write the mini-batch’s expected sufficient statistics matrix
s̄ in the form s̄ =

∑
d s̄

d, a sum of contributions from each document d in the mini-batch.
Here, document d’s contribution s̄d is aK×V matrix which has entries s̄v,dk = 1

S

∑
nφ

k
dnw

v
dn.

The sensitivity ∆s̄ is equal to the worst case norm of document S’s contribution, |s̄S |, which
can be seen from the proof of Eq. 28 in Appendix Sec. 2, specifically the penultimate line of
Equation 74. The worst case occurs when all N words in document S have the same word
type v, and are hard-assigned to some topic k in the variational distribution, i.e. s̄v,Sk = N

S ,
and all other entries are 0. We can see that this is a rather extreme scenario, which typically
will not occur often in practice. In our practical implementation, we improve the sensitivity
by exploiting the fact that for most typical documents, the contribution’s norm |s̄d| will be
smaller than the worst case norm N

S .
Specifically, inspired by Abadi et al. (2016), we apply a norm clipping strategy, in which

the per-document contributions s̄d are clipped (or projected) such that |s̄d| ≤ aNS , for a
user-specified a ∈ (0, 1]. Note that when a = 1, no clipping is applied. For each document
in the minibatch, if this criterion is not satisfied, we project the expected sufficient statistics
s̄d down to the required norm via

s̄d :=
aN

S

s̄d

|s̄d|
. (29)

For example, consider a scenario where N = V = K = 2, S = 1, a = 0.1, and s̄d =

[
1 0
1 0

]
.

The worst-case norm is N
S = 2, the clipping threshold is calculated as aNS = 0.2, and the

norm of s̄d is |s̄d| =
√

2 ≈ 1.41 > 0.2. The document’s expected sufficient statistics hence
are clipped to

s̄d :=
aN

S

s̄d

|s̄d|
=

0.2√
(2)

[
1 0
1 0

]
. (30)

These clipped sufficient statistics have a norm of |s̄d| = 0.2, as required. In this case,
the pre-clipping document norm |s̄d| was well above the clipping threshold, and hence was
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Figure 2: Epsilon versus perplexity, varying σ and S, Wikipedia data, one epoch. Perplexity
is approximated using the upper bound of Hoffman et al. (2010) which is exact for the non-
private empirical distribution baseline, hence this has a slightly unfair advantage.

substantially rescaled by the clipping procedure. However, this circumstance becomes sub-
stantially less common with a higher-dimensional s̄d, as encountered in practice. Intuitively,
for a fixed N and S, the L1 norm of s̄d is always N/S, but its L2 norm can become arbitrarily
small as the dimensionality of s̄d increases. E.g., if all entries of s̄d are equal, the L2 norm
approaches 0 in the limit as the number of entries increases. Thus, in higher dimensions, the
clipping procedure can potentially affect relatively few documents, and to a lesser degree,
even when a relatively aggressive value of the clipping constant a is selected. We thereby
substantially reduce the amount of noise to obtain privacy, at the cost of only a small bias in
the algorithm’s behavior. Indeed, this is what we observe in practice, as we shall see below.

After this the procedure, the sensitivity of the clipped expected sufficient statistics matrix
becomes a∆s̄ (i.e., aNS ), and we add noise on this scale to the clipped expected sufficient
statistics. We set a = 0.1 in our experiments, which empirically resulted in clipping being
applied to around 3/4 of the documents, while improving the sensitivity by an order of
magnitude. The resulting algorithm is summarised in Algorithm 3.
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Algorithm 3 VIPS for LDA
Input: Data D. Define D (documents), V (vocabulary), K (number of topics).

Define ρt = (τ0 + t)−κ, mini-batch size S, hyperparameters α, η, σ2, and a
Output: Privatised expected natural parameters 〈logβk〉q(βk) and sufficient statistics ˜̄s.
for t = 1, . . . , J do
Draw a minibatch of S documents, without replacement.
(1) E-step: Given expected natural parameters 〈logβk〉q(βk)

for d = 1, . . . , S do
while (not converged) do
\\Internal E-step iterations are performed behind the privacy wall:
Compute q(zkdn) parameterised by φkdn ∝ exp(〈logβk〉q(βk)

>wdn + 〈log θkd〉q(θd)).
Compute q(θd) parameterised by γd = α1K +

∑N
n=1〈zdn〉q(zdn).

end while
Compute per-document expected sufficient statistics s̄v,dk = 1

S

∑
nφ

k
dnw

v
dn.

if |s̄d| > aN/S then
s̄d := aN

S
s̄d

|s̄d| .
end if

end for
Compute the expected sufficient statistics s̄ =

∑
d s̄

d.
Output the perturbed expected sufficient statistics ˜̄svk = s̄ + Y v

k , where Y
v
k is Gaussian

noise given in Eq. 27, but using clipped sensitivity aNS .
Clip negative entries of ˜̄s to 0.
(2) M-step: Given perturbed expected sufficient statistics ˜̄sk,
Compute q(βk) parameterised by λ(t)

k = η1V +D˜̄sk.
Set λ(t) ←[ (1− ρt)λ(t−1) + ρtλ

(t).
Output expected natural parameters 〈logβk〉q(βk).

end for
Compute the privacy loss (εtot, δtot) using the analytical moments account method (Wang
et al., 2019).

4.3 Experiments using Wikipedia Data

We downloaded a random D = 400, 000 documents from Wikipedia to test our VIPS algo-
rithm. We used 50 topics and a vocabulary set of approximately 8000 terms. The algorithm
was run for one epoch in each experiment.

We compared our moments accountant approach with a baseline method using the strong
composition (Theorem 3.20 of Dwork & Roth, 2014), resulting from the max divergence of
the privacy loss random variable being bounded by a total budget including an adjustable
slack variable δ′′, which yields (Jε′(eε

′ − 1) +
√

2J log(1/δ′′)ε′, δ′′ + Jδ′)-DP, where J is
the number of iterations, and (ε′, δ′) is the privacy loss we allow to incur in every learning
step. We also compared to a baseline where the clipping step was not performed. As our
evaluation metric, we compute an upper bound on the perplexity on held-out documents.
Perplexity is an information-theoretic measure of the predictive performance of probabilistic
models which is commonly used in the context of language modeling (Jelinek, Mercer, Bahl
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Figure 3: Perplexity per iteration. Wikipedia data, S = 20, 000, ε = 2.38, one epoch.

& Baker, 1977). The perplexity of a probabilistic model pmodel(x) on a test set of N data
points xi (e.g. words in a corpus) is defined as

b−
1
N

∑N
i=1 logb pmodel(xi) , (31)

where b is generally either 2 or e, corresponding to a measurement based on either bits or
nats, respectively.14 In our case, pmodel is the posterior predictive distribution under our
variational approximation to the posterior, which is intractable to compute. Following Hoff-
man et al. (2010), we approximate perplexity based on the learned variational distribution,
measured in nats, by plugging the ELBO into Equation 31, which results in an upper bound:

perplexity(Dtest,λ)

≤ exp

−(∑
d

〈log p(ntest,θd, zd|λ)〉q(θd,zd) − 〈log q(θ, z)〉q(θ,z)

)
/
∑
d,n

ntestd,n

 , (32)

where ntestd is a vector of word counts for the dth document, ntest = {ntestd }Id=1, for I test
documents. In the above, we use the λ that was calculated during training. We compute
the posteriors over z and θ by performing the first step in our algorithm using the test data

14. We can interpret − 1
N

∑N
i=1 logb pmodel(xi) as the cross-entropy between the model and the empirical

distribution. This is the expected number of bits (nats) needed to encode a data point from the empirical
data distribution (i.e., a word in our case), under an optimal code based on the model. Perplexity is
b to the power of the cross entropy, which converts the number of bits (nats) in the encoding to the
number of possible values in an encoding of that length (supposing the cross entropy were integer valued).
Thus, perplexity measures the effective vocabulary size when using the model to encode the data, which
is understood as a reflection of how confused (i.e. “perplexed”) the model is.
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and the perturbed sufficient statistics we obtain during training. We adapted the Python
implementation by the authors of Hoffman et al. (2010) for our experiments.

Figure 2 shows the trade-off between ε and per-word perplexity on the Wikipedia dataset
for the different methods under a variety of conditions, in which we varied the noise level
σ ∈ {1.0, 1.1, 1.24, 1.5, 2} and the minibatch size S ∈ {5, 000, 10, 000, 20, 000}. The strong
composition baseline was performed using the same minibatch sizes, and with σ set corre-
sponding to the moments accountant’s ε. We found that the moments accountant composi-
tion substantially outperformed strong composition in each of these settings. The moments
accountant was able to consistently beat a simple non-private baseline, predicting based
on empirical word frequencies, while strong composition only outperformed this baseline for
certain parameter settings. Our proposed method, which implements the clipping procedure
described in the previous section, also outperformed a baseline in which the clipping step
was not applied. The no-clipping baseline, which used the moments accountant, consistently
performed slightly worse than strong composition (for which clipping was applied).

Here, we used relatively large minibatches, which were necessary to control the signal-
to-noise ratio in order to obtain reasonable results for private LDA. Larger minibatches
thus had lower perplexity. However, due to its impact on the subsampling rate, increas-
ing S comes at the cost of a higher ε for a fixed number of documents processed (in our
case, one epoch). To show the convergence behavior of the algorithms, we also report the
perplexity per iteration in Figure 3. We found that the gaps between methods remain rela-
tively constant at each stage of the learning process, with the exception that the no-clipping
moments accountant baseline gradually approached the performance of strong composition
(with clipping). Similar results were observed for other values of σ and S.

In Table 3, for each method, we show the top 10 words in terms of assigned probabilities
for 3 topics. Non-private LDA results in the most coherent words among all the methods.
For the private LDA models with a total privacy budget ε = 2.38 (S = 20, 000, σ = 1.24),
as we move from moments accountant to strong composition, the amount of noise added
gets larger, and the topics become less coherent. We also observe that the probability mass
assigned to the most probable words decreases with the noise, and thus strong composition
gave less probability to the top words compared to the other methods. For comparison, we
also show the results for the moments accountant without clipping. In this case, the topics
were observably less coherent than for the same method where clipping was applied, and
were somewhat comparable in qualitative performance to strong composition (with clipping).
This was consistent with the corresponding perplexity results of these two methods, which
were fairly similar at the final iteration (Figure 3).

5. VIPS for Non-CE Family

Under non-CE family models, the complete-data likelihood typically has the following form:

p(Dn, ln|m) ∝ exp(−h(m , s(Dn, ln))) , (33)

which includes some function h(m , s(Dn, ln)) that cannot be split into two functions, where
one is a function of only m and the other is a function of only s(Dn, ln). Hence, we cannot
apply the general VIPS framework we described in the previous section to this case.
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Table 3: Posterior topics from private (ε = 2.38) and non-private LDA

Non-private Moments Strong Moments Accountant
Accountant Composition (no clipping)

topic 33: topic 33: topic 33:
german 0.0244 function 0.0019 resolution 0.0003 resolution 0.0003
system 0.0160 domain 0.0017 northward 0.0003 northward 0.0003
group 0.0109 german 0.0011 deeply 0.0003 messages 0.0003
based 0.0089 windows 0.0011 messages 0.0003 deeply 0.0003
science 0.0077 software 0.0010 dark 0.0003 river 0.0003
systems 0.0076 band 0.0007 research 0.0003 research 0.0003
computer 0.0072 mir 0.0006 river 0.0003 superstition 0.0003
software 0.0071 product 0.0006 superstition 0.0003 don 0.0003
space 0.0061 resolution 0.0006 don 0.0003 dark 0.0003
power 0.0060 identity 0.0005 found 0.0003 tete 0.0003

topic 35: topic 35: topic 35:
station 0.0846 station 0.0318 station 0.0116 station 0.0083
line 0.0508 line 0.0195 line 0.0062 line 0.0046
railway 0.0393 railway 0.0149 railway 0.0054 french 0.0042
opened 0.0230 opened 0.0074 opened 0.0021 railway 0.0037
services 0.0187 services 0.0064 services 0.0015 opened 0.0014
located 0.0163 closed 0.0056 stations 0.0014 services 0.0011
closed 0.0159 code 0.0054 closed 0.0014 republic 0.0009
owned 0.0158 country 0.0052 section 0.0013 closed 0.0009
stations 0.0122 located 0.0051 platform 0.0012 stations 0.0007
platform 0.0109 stations 0.0051 republic 0.0010 country 0.0007

topic 37: topic 37: topic 37:
born 0.1976 born 0.0139 born 0.0007 american 0.0021
american 0.0650 people 0.0096 american 0.0006 born 0.0018
people 0.0572 notable 0.0092 street 0.0005 people 0.0013
summer 0.0484 american 0.0075 charles 0.0004 notable 0.0010
notable 0.0447 name 0.0031 said 0.0004 charles 0.0005
canadian 0.0200 mountain 0.0026 events 0.0004 italian 0.0005
event 0.0170 japanese 0.0025 people 0.0003 summer 0.0005
writer 0.0141 fort 0.0025 station 0.0003 events 0.0005
dutch 0.0131 character 0.0019 written 0.0003 actor 0.0004
actor 0.0121 actor 0.0014 point 0.0003 written 0.0004
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However, when the models we consider have binomial likelihoods, for instance, under
negative binomial regression, nonlinear mixed-effects models, spatial models for count data,
and logistic regression, we can bring the non-CE models to the CE family by adopting the
Pólya-Gamma data augmentation strategy introduced by Polson et al. (2013).

Pólya-Gamma Data Augmentation Pólya-Gamma data augmentation introduces an
auxiliary variable that is Pólya-Gamma distributed per datapoint, such that the log-odds
can be written as a mixture of Gaussians with respect to a Pólya-Gamma distribution, as
stated in Theorem 1 of Polson et al. (2013):

exp(ψn)yn

(1 + exp(ψn))b
= 2−b exp((yn − b

2)ψn)

∫ ∞
0

exp(− ξnψ2
n

2 ) p(ξn) dξn (34)

where ψn is a linear function in model parameters m , yn is the nth observation, and ξn is a
Pólya-Gamma random variable, ξn ∼ PG(b, 0) where b > 0. For example, ψn = m>xn for
models without latent variables and xn is the nth input vector, or ψn = m>ln for models
with latent variables. Note that b is set depending on which binomial model (depending
on whether the likelihood is defined by logistic regression, binomial regression, negative
binomial, etc.) one uses.

Following the above Theorem 1 (of Polson et al., 2013), for logistic regression, where we
set ψn = ln

>m and b = 1, we can express the likelihood as:

p(Dn|ln,m) = 2−1 exp((yn − 1
2)ln

>m)

∫ ∞
0

exp(−1
2ξnln

>mm>ln)p(ξn)dξn. (35)

By introducing a variational posterior over the auxiliary variables, we introduce a new
objective function (See Appendix Sec. 3 for derivation)

Ln(q(m), q(ln), q(ξn))

=

∫
q(m)q(ln)q(ξn) log

p(Dn|ln, ξn,m)p(ln)p(ξn)p(m)

q(m)q(ln)q(ξn)
, (36)

= − log 2 + (yn − 1
2)〈ln〉q(ln)

>〈m〉q(m) − 1
2〈ξn〉q(ξn)〈ln>mm>ln〉q(ln)q(m),

−DKL(q(ξn)||p(ξn))−DKL(q(m)||p(m))−DKL(q(ln)||p(ln)).

The first derivative of the lower bound with respect to q(ξn) gives us a closed form update
rule

∂

∂q(ξn)
Ln(q(m), q(ln), q(ξn)) = 0, 7→ q(ξn) ∝ PG(1,

√
〈ln>mm>ln〉q(ln)q(m)). (37)

The rest of the updates for q(ln)q(m) follow the standard updates under the conjugate
exponential family distributions, since the lower bound to the conditional likelihood term
includes only linear and quadratic terms both in ln and m . By introducing the auxiliary
variables, the complete-data likelihood conditioned on ξn (with some prior on ln) now has
the form of

p(Dn, ln|m , ξn) ∝ p(Dn|ln,m , ξn) p(ln),

∝ exp(n(m)>s(Dn, ln, ξn)) p(ln), (38)
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which consists of natural parameters and sufficient statistics given by

n(m) =

[
m

vec(−1
2mm>)

]
, s(Dn, ln, ξn) =

[
(yn − 1

2)ln

vec(ξnlnln>)

]
. (39)

The above is obtained by fixing ξn in Eq. 35, noting that ln>mm>ln =
∑

ij lni(mm>)ijlnj =∑
ij(mm>)ij(lnln

>)ij , collecting terms and plugging into Eq. 14. Note that now not only
the latent and observed variables but also the new variables ξn form the complete-data
sufficient statistics. The resulting variational Bayes algorithm for models with binomial
likelihoods is given by

(a) Given the expected natural parameters n̄, the E-step yields:

q(l , ξ) =
N∏
n=1

q(ln)q(ξn) ∝ p(ξ) exp

[∫
dm q(m) log p(D, l |m , ξ)

]
,

∝ p(ξ)p(l)
N∏
n=1

exp(n̄>s(Dn, ln, ξn)),

where q(ξn) = PG(1,
√
〈ln>mm>ln〉q(ln,m)), and p(ξn) = PG(1, 0) (40)

q(ln) ∝ p(ln) exp(n̄>〈s(Dn, ln, ξn)〉q(ξn)). (41)

Using q(l)q(ξ), it outputs s̄(D) = 1
N

∑N
n=1〈s(Dn, ln, ξn)〉q(ln)q(ξn).

(b) Given the expected sufficient statistics s̄, the M-step yields:

q(m) ∝ p(m) exp

[∫
dl dξ q(l)q(ξ) log p(D, l |m , ξ)

]
,

∝ exp(n(m)>ν̃), where ν̃ = ν +N s̄(D). (42)
Using q(m), it outputs the expected natural parameters n̄ := 〈n(m)〉q(m).

Similar to the VIPS algorithm for the CE family, perturbing the expected sufficient statistics
s̄(D) in the E-step suffices for privatising all the outputs of the algorithm. Algorithm 4
summarizes private stochastic variational Bayes algorithm for non-CE family with binomial
likelihoods.

As a side note, variational inference algorithms typically use the variational lower bound
as a stopping criterion. However, in the case of using Pólya-Gamma latent variables, one
needs to draw samples from the Pólya-Gamma posterior to numerically calculate the lower
bound given in Eq. 36. This might be a problem if one does not have access to the Pólya-
Gamma posterior, since our algorithm only outputs the perturbed expected sufficient statis-
tics in the E-step (not the Pólya-Gamma posterior itself). However, one could use other
stopping criteria, which do not require sampling from the Pólya-Gamma posterior, e.g.,
calculating the prediction accuracy in the classification case.

6. VIPS for Bayesian Logistic Regression

We present an example of a non-CE family model, Bayesian logistic regression (BLR), and
illustrate how to employ the VIPS framework given in Algorithm 4 in such a case.
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Algorithm 4 (εtot, δtot)-DP VIPS for non-CE family with binomial likelihoods

Input: Data D. Define ρt = (τ0 + t)−κ, mini-batch size S, maximum iterations J , and σ.
Output: Privacy-preserving expected natural parameters ˜̄n and expected sufficient stats ˜̄s.
Compute the L2-sensitivity ∆ of the expected sufficient statistics.
for t = 1, . . . , J do
Draw a minibatch of S datapoints, without replacement.
(1) E-step: Given expected natural parameters n̄, compute q(ln)q(ξn) for
n = 1, . . . , S. Perturb each coordinate of s̄ = 1

S

∑S
n=1〈s(Dn, ln)〉q(ln)q(ξn) by adding

noise drawn from N (0, σ2∆2). Output ˜̄s.
(2) M-step: Given ˜̄s, compute q(m) by ν̃(t) = ν+N ˜̄s. Set ν̃(t) ←[ (1−ρt)ν̃(t−1)+ρtν̃

(t).
Output the expected natural parameters ˜̄n = 〈n(m)〉q(m).

end for
Compute the privacy loss (εtot, δtot) using the analytical moments account method (Wang
et al., 2019).

6.1 Model Specifics for Bayesian Logistic Regression

Under the logistic regression model with the Gaussian prior on the weights m ∈ Rd,

p(yn = 1|xn,m) = σ(m>xn), p(m |α) = N (m |0, α−1I), p(α) = Gam(a0, b0), (43)

where σ(m>xn) = 1/(1 + exp(−m>xn)), the nth input is xn ∈ Rd, and the nth output is
yn ∈ {0, 1}. In logistic regression, there are no latent variables. Hence, the complete-data
likelihood coincides with the data likelihood,

p(yn|xn,m) =
exp(ψn)yn

1 + exp(ψn)
, (44)

where ψn = xn
>m . Since the likelihood is not in the CE family, we use the Pólya-Gamma

data augmentation trick to re-write it as

p(yn|xn, ξn,m) ∝ exp((yn − 1
2)xn

>m) exp(−1
2ξnxn

>mm>xn) . (45)

As xn>mm>xn =
∑

ij xni(mm>)ijxnj =
∑

ij(mm>)ij(xnxn
>)ij , by collecting terms and

plugging into Eq. 14 we observe that the data likelihood conditioned on ξn is

p(yn|xn,m , ξn) ∝ exp(n(m)>s(Dn, ξn)), (46)

where the natural parameters and sufficient statistics are given by

n(m) =

[
m

vec(−1
2mm>)

]
, s(Dn, ξn) =

[
(yn − 1

2)xn

vec(ξnxnxn>)

]
. (47)

Variational Bayes for Bayesian Logistic Regression Using the likelihood given in
Eq. 38, we compute the posterior distribution over m , α, ξ by maximising the following
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Algorithm 5 VIPS for Bayesian logistic regression

Input: Data D. Define ρt = (τ0 + t)−κ, mini-batch size S, and maximum iterations J
Output: Privatised expected natural parameters ˜̄n and expected sufficient statistics ˜̄s
Using the sensitivity of the expected sufficient statistics given in Eq. 57 and Eq. 59,
for t = 1, . . . , J do
Draw a minibatch of S datapoints, without replacement.
(1) E-step: Given expected natural parameters n̄, compute q(ξn) for n = 1, . . . , S.
Perturb s̄ = 1

S

∑S
n=1〈s(Dn, ξn)〉q(ξn) by Eq. 56 and Eq. 58, and output ˜̄s.

(2) M-step: Given ˜̄s, compute q(m) by ν̃(t) = ν+N ˜̄s. Set ν̃(t) ←[ (1−ρt)ν̃(t−1)+ρtν̃
(t).

Using ν̃(t), update q(α) by Eq. 53, and output ˜̄n = 〈n(m)〉q(m).
end for
Compute the privacy loss (εtot, δtot) using the analytical moments account method (Wang
et al., 2019).

variational lower bound due to Eq. 36:

L(q(m), q(ξ), q(α)) =

N∑
n=1

[
− log 2 + (yn − 1

2)xn
>〈m〉q(m) − 1

2〈ξn〉q(ξn)xn
>〈mm>〉q(m)xn

]
,

−
N∑
n=1

DKL(q(ξn)||p(ξn))−DKL(q(m)||p(m))−DKL(q(α)||p(α)).

In the E-step, we update

q(ξ) ∝ p(ξ)
N∏
n=1

exp(n̄(m)>s(Dn, ξn)), (48)

=
N∏
n=1

q(ξn), where q(ξn) = PG(1,
√
xn>〈mm>〉q(m)xn). (49)

Using q(ξ), we compute the expected sufficient statistics

s̄ = 1
N

N∑
n=1

s̄(Dn), where s̄(Dn) =

[
s̄1(Dn)

s̄2(Dn)

]
=

[
1
N (yn − 1

2)xn
1
N vec(〈ξn〉q(ξn)xnxn

>)

]
. (50)

In the M-step, we compute q(m) and q(α) by

q(m) ∝ p(D|m , 〈ξ〉q(ξ)) p(m |〈α〉q(α)) ∝ exp(n(m)>ν̃) = N (m |µm ,Σm), (51)

q(α) ∝ p(m |α)p(α|a0, b0) = Gamma(aN , bN ), (52)

where ν̃ = ν +N s̄, ν = [0d, 〈α〉q(α)Id], and

aN = a0 + d
2 , bN = b0 + 1

2(µm
>µm + tr(Σm)). (53)
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Figure 4: Posterior mean of each PG variable 〈ξi〉 as a function of
√
xi>〈mm>〉xi. The

maximum value of 〈ξi〉 is 0.25 when
√
xn>〈mm>〉xn = 0,

Mapping from ν̃ to (µm ,Σm) is deterministic, as below, where s̄1 =
∑N

n=1 s̄1(Dn) and
s̄2 =

∑N
n=1 s̄2(Dn),

ν̃ =

[
N s̄1 + 0d

N s̄2 + 〈α〉q(α)Id

]
=

[
Σ−1
m µm

Σ−1
m

]
. (54)

Using q(m), we compute expected natural parameters

〈n(m)〉q(m) =

[
〈m〉q(m)

vec(−1
2〈mm>〉q(m))

]
=

[
µm

vec(−1
2(Σm + µmµm

>))

]
. (55)

6.2 VIPS for BLR

Following the general framework of VIPS, we perturb the expected sufficient statistics. For
perturbing s̄1, we add Gaussian noise to each coordinate,

˜̄s1 = s̄1 + Y1,...,d, where Yi ∼i.i.d. N
(
0, σ2∆s̄2

1

)
(56)

where the sensitivity ∆s̄1 is given by

∆s̄1 = max
D,D′

d(D,D′)≤1

|s̄1(D)− s̄1(D′)|2 ≤ max
xn,yn

2
N |(yn −

1
2)| |xn|2 ≤ 2

N , (57)

due to Eq. 22 and the assumption that the dataset is preprocessed such that any input has
a maximum L2-norm of 1.

For perturbing s̄2, we follow theAnalyze Gauss (AG) algorithm (Dwork, Talwar, Thakurta
& Zhang, 2014). We first draw Gaussian random variables z ∼ N

(
0, σ2(∆s̄2)2I

)
. Using z,

we construct a upper triangular matrix (including diagonal), then copy the upper part to
the lower part so that the resulting matrix Z becomes symmetric. Then, we add this noisy
matrix to the covariance matrix

˜̄s2 = s̄2 + Z. (58)
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The perturbed covariance might not be positive definite. In such case, we project the nega-
tive eigenvalues to some value near zero to maintain positive definiteness of the covariance
matrix. The sensitivity of s̄2 in Frobenius norm is given by

∆s̄2 = max
xn,q(ξn)

2
N |〈ξn〉q(ξn)vec(xnxn>)|2 ≤ 1

2N , (59)

due to Eq. 22 and the fact that the mean of a PG variable 〈ξn〉 is given by∫ ∞
0

ξn PG(ξn| 1,
√

xn>〈mm>〉xn)dξn =
1

2
√
xn>〈mm>〉xn

tanh

(√
xn>〈mm>〉xn

2

)
.

As shown in Fig. 4, the maximum value is 0.25. Our VIPS algorithm for Bayesian logistic
regression is given in Algorithm 5.

6.3 Experiments with Stroke Data

We used the Stroke dataset, which was first introduced by Letham, Rudin, McCormick
& Madigan (2014) for predicting the occurrence of a stroke within a year after an atrial
fibrillation diagnosis.15 There are N = 12, 586 patients in this dataset, and among these
patients, 1,786 (14%) had a stroke within a year of the atrial fibrillation diagnosis.

Following Letham et al. (2014), we also considered all drugs and all medical conditions
of these patients as candidate predictors. A binary predictor variable is used for indicating
the presence or absence of each drug or condition in the longitudinal record prior to the
atrial fibrillation diagnosis. In addition, a pair of binary variables is used for indicating age
and gender. These totalled d = 4, 146 unique features for medications and conditions. We
randomly shuffled the data to make 5 pairs of training and test sets. For each set, we used
10, 069 patients’ records as training data and the rest as test data.

Using this dataset, we ran our VIPS algorithm in batch mode, i.e., using the entire
training data in each iteration, as opposed to using a small subset of data. We also ran the
private and non-private Empirical Risk Minimisation (ERM) algorithms (Chaudhuri et al.,
2011), in which we performed 5-fold cross-validation to set the regularisation constant given
each training/test pair. As a performance measure, we calculated the Area Under the Curve
(AUC) on each test data, given the posteriors over the latent and parameters in case of BLR
and the parameter estimate in case of ERM. In Fig. 5, we show the mean and 1-standard
deviation of the AUCs obtained by each method.

6.4 Experiments with Adult Data

We used the Adult data (from the UCI data repository), which consists of 48,842 data
samples with 14 attributes and binary labels. We used 80% or original data for training
and the rest for computing the AUC on test data. Under the logistic regression model,
we compared the algorithm, DPVI16 (Jälkö et al., 2017) to our VIPS method. In each

15. The authors extracted every patient in the MarketScan Medicaid Multi-State Database (MDCD) with
a diagnosis of atrial fibrillation, one year of observation time prior to the diagnosis, and one year of
observation time following the diagnosis.

16. Code is available at https://github.com/DPBayes/DPVI-code/tree/master/uai17-code
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Figure 5: Stroke data. Comparison between our method and private/non-private ERM,
for different εtot ∈ {0.5, 1, 2, 4}. For the non-private methods, non-private BLR (black
square marker) and ERM (black circle marker) achieved a similar AUC, which is higher than
AUC obtained by any other private methods. Our method (red) under BLR with moments
accountant with δ = 0.0001 achieved the highest AUCs regardless of εtot among all the other
private methods. The private version of ERM (objective perturbation, green) performed
worse than BRL with strong composition as well as BRL with moments accountant. While
directly comparing these to the private ERM is not totally fair since the private ERM
(pERM) is ε-DP while others are (ε, δ)-DP, we show the difference between them in order
to contrast the relative gain of our method compared to the existing method.

training step, we randomly selected data samples from the training with a sampling rate
0.004. We ran each of these algorithms for 100 training steps with 20 different random
initializations with varying levels of noise. In Fig. 6, our VIPS algorithm outperforms DPVI
regardless of the noise level we tested. The results seem to indicate that directly adding
noise to the gradient with respect to the variational parameters in DPVI seems less effective
than adding noise to the expected sufficient statistics computed using the Polya-Gamma
random variables, in order to obtain the privacy-preserving natural parameters (variational
parameters).

7. VIPS for Sigmoid Belief Networks

As the last example, we consider the Sigmoid Belief Network (SBN) model, which was first
introduced by Neal (1992), for modeling N binary observations in terms of binary hidden
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Figure 6: Adult data. Comparison between VIPS (left four blue boxes) and DPVI (right
four yellow boxes) (Jälkö et al., 2017), with different levels of noise. The resulting ε values
for a fixed value δ = 10−3 are εtot = {0.8, 0.05, 0.025} for σ = {1, 6, 12}, respectively. For
σ = 0, the algorithm is equivalent to the non-private training under the logistic regression
model. The numbers in bold fonts above each box are the average across 20 different runs
with different initializations under the same noise setting. Our method seems to be more
robust against the added noise for privacy in the high noise regime (i.e., when σ = 12).

Types individual notations

Natural parameters collectively as b, c, W
Latent variables collectively as z
Pólya-Gamma auxiliary variables ξ

(0)
n defined per datapoint, and ξ(1)

TPBN shrinkage priors for each element in W ζj,k, ξj,k, φk, ω

Table 4: Summary of notation and their types for VIPS for sigmoid belief networks. Note
that all of these quantities and corresponding distributions are learned during the training
with the VIPS algorithm given in Algorithm 6.

variables and some parameters shown as Fig. 7. The notation specific to this section is
summarised in Table 4. The complete-data likelihood for the nth observation and latent
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latent
variables

model
parameters

observed
variables

Figure 7: Schematic of the sigmoid belief net-
work. A vector of binary observation y =
[y1, · · · , yJ ] is a function of a vector of binary
latent variables z = [z1, · · · , zK ] and model pa-
rameters such that p(yj = 1|z,θ) = σ(wj

>z +
cj). The latent variables are also binary such
that p(zk = 1|θ) = σ(bk), where θ = {w, c,b}.

variables is given by

p(Dn, ln|m) = p(Dn|ln,m)p(ln|m),

=

J∏
j=1

σ(wj
>zn + cj)

K∏
k=1

σ(bk), (60)

=

J∏
j=1

[exp(wj
>zn + cj)]

yn,j

1 + exp(wj
>zn + cj)

K∏
k=1

[exp(bk)]
zn,k

1 + exp(bk)
, (61)

where we view the latent variables ln = zn and model parametersm = θ, and each datapoint
Dn = yn. Thanks to the Pólya-Gamma data augmentation strategy, we can rewrite the
complete-data likelihood from

p(zn,yn|θ) =

J∏
j=1

[exp(ψn,j)]
yn,j

1 + exp(ψn,j)

K∏
k=1

[exp(bk)]
zn,k

1 + exp(bk)
, (62)

where we denote ψn,j = wj
>zn + cj , to

p(yn, zn|ξ(0)
n , ξ(1),θ) ∝

J∏
j=1

exp((yn,j − 1
2)ψn,j) exp(− ξ

(0)
n,jψ

2
n,j

2 )
K∏
k=1

exp((zn,k − 1
2)bk) exp(− ξ

(1)
k b2k

2 )

where each element of vectors ξ(0)
i ∈ RJ and ξ(1) ∈ RK is from PG(1, 0).

Using the notations ψn ∈ RJ where ψn = Wzn + c, W = [w1, · · · ,wJ ]> ∈ RJ×K , and
1J is a vector of J ones, we obtain

p(yn, zn|ξ(0)
n , ξ(1),θ)

∝ exp
[
(yn − 1

21J)>ψn − 1
2ψn

>diag(ξ(0)
n )ψn + (zn − 1

21K)>b− 1
2b
>diag(ξ(1))b

]
. (63)

The complete-data likelihood given the PG variables provides the exponential family form

p(yn, zn|ξ(0)
n , ξ(1),θ) (64)

∝ exp[(yn − 1
21J)>(Wzn + c)− 1

2(Wzn + c)>diag(ξ(0)
n )(Wzn + c)

+ (zn − 1
21K)>b− 1

2b
>diag(ξ(1))b], (65)

∝ exp[n(θ)>s(yn, zn, ξ
(0)
n , ξ(1))], (66)
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Algorithm 6 VIPS for sigmoid belief networks

Input: Data D. Define ρt = (τ0 + t)−κ, mini-batch size S, maximum iterations T , and σ
Output: Privatised expected natural parameters ˜̄n and expected sufficient statistics ˜̄s
for t = 1, . . . , T do
Draw a minibatch of S datapoints, without replacement.
(1) E-step: Given expected natural parameters n̄, compute q(ξ(0)

n ) for n = 1, . . . , S.
Given n̄, compute q(ξ(1)) for n = 1, . . . , S.
Given n̄, q(ξ(0)

n ) and q(ξ(1)), compute q(zn) for n = 1, . . . , S.
Perturb s̄ = 1

S

∑S
n=1〈s(Dn, ξ

(0)
n , ξ(1))〉

q(ξ
(0)
n )q(ξ(1))q(z)

by Appendix Sec. 4, and output ˜̄s.

(2) M-step: Given ˜̄s, compute q(m) by ν̃(t) = ν + N ˜̄s. Set ν̃(t) ←[ (1 − ρt)ν̃(t−1) +
ρtν̃

(t). Using ν̃(t), update variational posteriors for hyper-priors by Appendix Sec. 5,
and output ˜̄n = 〈m〉q(m).

end for
Compute the privacy loss (εtot, δtot) using the analytical moments account method (Wang
et al., 2019).

where the natural parameters and sufficient statistics, found by collecting terms in the form
of Eq. 14, are given by

n(θ) =



b

−1
2vec(bb

>)

c

−1
2vec(cc

>)

−1
2vec(diag(c)W)

vec(W)

−1
2vec(vec(W

>)vec(W>)>)


, s(yn, zn, ξ

(0)
n , ξ(1)) =



zn − 1
21K

vec(diag(ξ(1)))

yn − 1
21J

vec(diag(ξ
(0)
n ))

vec(ξ(0)
n zn

>)

vec(zn(yn − 1
21J)>)

vec(diag(ξ
(0)
n )⊗ (znzn

>))


.

Now the PG variables form a set of sufficient statistics, which is separated from the
model parameters. Similar to logistic regression, in the E-step, we compute the posterior
over ξ and z, and output perturbed expected sufficient statistics. The closed-form update
of the posteriors over the PG variables is simply

q(ξ(0)
n ) =

J∏
j=1

q(ξ
(0)
n,j) =

J∏
j=1

PG(1,
√
〈(wj

>zn + cj)2〉q(θ)q(zn)), (67)

q(ξ(1)) =
K∏
k=1

q(ξ
(1)
k ) =

K∏
k=1

PG(1,
√
〈b2k〉q(θ)). (68)
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The posterior over the latent variables is given by

q(z) =
N∏
n=1

K∏
k=1

q(zn,k) = Bern(σ(dn,k)), (69)

dn,k = 〈bk〉q(θ) + 〈wk
>yn〉q(θ) − 1

2

J∑
j=1

(〈wj,k〉q(θ)

+ 〈ξ(0)
n,j〉q(ξ)[2〈ψ

\k
n,jwj,k〉q(θ)q(z) + 〈w2

j,k〉q(θ)]), (70)

ψ
\k
n,j = wj

>zn − wj,kzn,k + cj . (71)

Now, using q(z) and q(ξ), we compute the expected sufficient statistics,

s̄(D) =



s̄1 = 1
N

∑N
n=1 s1(yn)

s̄2 = 1
N

∑N
n=1 s2(yn)

s̄3 = 1
N

∑N
n=1 s3(yn)

s̄4 = 1
N

∑N
n=1 s4(yn)

s̄5 = 1
N

∑N
n=1 s5(yn)

s̄6 = 1
N

∑N
n=1 s6(yn)

s̄7 = 1
N

∑N
n=1 s7(yn)


, where



s1(yn)

s2(yn)

s3(yn)

s4(yn)

s5(yn)

s6(yn)

s7(yn)


=



〈zn〉 − 1
21K

vec(diag(〈ξ(1)〉))
yn − 1

21J

vec(diag(〈ξ(0)
n 〉))

vec(〈ξ(0)
n 〉〈zn〉>)

vec(〈zn〉(yn − 1
21J)>)

vec(diag(〈ξ(0)
n 〉)⊗ (〈znzn>〉))


.

Using the variational posterior distributions in the E-step, we perturb and output these
sufficient statistics. See Appendix Sec. 4 for the sensitivities of each of these sufficient
statistics. Note that when using the subsampled data per iteration, the sensitivity analysis
has to be modified as now the query is evaluated on a smaller dataset. Hence, the 1/N
factor has to be changed to 1/S.

While any conjugate priors are acceptable for an analytic computation of the posterior
update, following Gan et al. (2015), we put a Three Parameter Beta Normal (TPBN) prior
for W where below we denote (j, k)th element of W by Wj,k,

Wj,k ∼ N (0, ζj,k), ζj,k ∼ Gam(1
2 , ξj,k), ξj,k ∼ Gam(1

2 , φk), φk ∼ Gam(0.5, ω), ω ∼ Gam(0.5, 1)

to induce sparsity, and isotropic normal priors for b and c: b ∼ N (0, νbIK), c ∼ N (0, νcIJ),
assuming these hyperparameters are set such that the prior is broad. The M-step updates for
the variational posteriors for the parameters as well as for the hyper-parameters are given in
Appendix Sec. 5. It is worth noting that these posterior updates for the hyper-parameters are
one step away from the data, meaning that the posterior updates for the hyper-parameters
are functions of variational posteriors that are already perturbed due to the perturbations
in the expected natural parameters and expected sufficient statistics. Hence, we do not need
any additional perturbation in the posteriors for the hyper-parameters.

Applying Moments Accountant’s Composability to VIPS for SBNs Note that
we cannot directly apply the moments accountant’s composability theorem, because we
compute multiple sufficient statistics given a mini-batch and the Gaussian noise added to
the resulting sufficient statistics is not independent, while the composability theorem only
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holds for independent noise addition given each mini-batch of data. To resolve this, we
modify the sufficient statistic vector into a new vector with a modified sensitivity, such that
we can apply the Gaussian mechanism only once given a freshly drawn mini-batch of data.
This allows us to use the composability theorem, meaning that the log-moments of the
privacy loss random variable are additive since the Gaussian noise added to the modified
vector of sufficient statistics given each subsample of data is now independent.

Specifically, let us denote the sensitivities of each vector quantity by C1, · · · , C7. Further,
denote the moments accountant noise parameter by σ, and the subsampled data by Dυ with
sampling rate υ. We first scale down each sufficient statistic vector by its own sensitivity,
i.e., s′i = s̄i/Ci, so that the concatenated vector (denoted by s′)’s sensitivity becomes simply√

7. The main difference we make here is that instead of adding separate Gaussian draws
per sufficient statistic vector based on their individual sensitivities, we add a single draw
of Gaussian noise to the 7-dimensional concatenated sufficient statistic vector based on the
sensitivity of the rescaled concatenated vector. The standard normal noise to the vectors is
applied with scaled standard deviation,

√
7σ. We then scale up each chunk of the perturbed

quantity by its own sensitivity to return it to its original scale, given as

s̃1(Dυ)

s̃2(Dυ)

s̃3(Dυ)

s̃4(Dυ)

s̃5(Dυ)

s̃6(Dυ)

s̃7(Dυ)


=



C1s̃
′
1

C2s̃
′
2

C3s̃
′
3

C4s̃
′
4

C5s̃
′
5

C6s̃
′
6

C7s̃
′
7


where s̃′ij = s′ij +

√
7σN (0, I), (72)

where the ith chunk of the vector s is s′i = s̄i/Ci, and where s′ij indexes the jth entry of s′i,
resulting in privatized sufficient statistics.

7.1 Experiments with MNIST Data

We tested our VIPS algorithm for the SBN model on the binarized17 MNIST digit dataset
which contains 60,000 training images of ten handwritten digits (0 to 9), where each image
consists of 28 × 28 pixels. For our experiment, we considered a one-hidden layer SBN
with 50 or 100 hidden units, i.e. K = {50, 100}.18 We varied the mini-batch size S =
{400, 800, 1600, 3200}. For a fixed σ = 1, we obtained two different values of privacy loss
due to different mini-batch sizes. We ran our algorithm until it processed the entire training
data (60, 000 data points). We tested the non-private version of VIPS as well as the private
versions with strong and moments accountant compositions, where each algorithm was tested
in 10 independent runs with different seed numbers.

As a performance measure, we calculated the pixel-wise prediction accuracy by first
converting the pixels of reconstructed images into probabilities (between 0 and 1); then

17. The reason why they binarised the dataset is that the model, SBN, outputs binarised variables. So to
match the data to model, they convert the pixel values to binary values.

18. We chose these numbers since when K is larger than 100, the variational lower bound on the test data,
shown in Figure 2 of Gan et al. (2015), does not increase significantly.
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Figure 8: Prediction accuracy (binarised version of MNIST dataset). The non-private version
(NP in black) achieves highest prediction accuracy under the SBN model, as expected. The
private versions (moments accountant : MA (in red), and strong composition : SC (in
blue)) with σ = 1 resulted in a total privacy loss of εtot = 1.34 when the mini-batch size was
S = 400, and εtot = 1.74 for S = 800, εtot = 2.44 for S = 1600, and εtot = 3.34 for S = 3200.
In all of these cases, we set δtotal = 10−4. We ran these algorithms until they processed the
total training data, resulting in different numbers of iterations for each minibatch size. The
private version using strong composition (blue) performed worse than when using moments
accountant (red) regardless of the size of mini-batches, since the level of additive noise per
iteration in strong composition is higher than that of the moments accountant.

converting the probabilities into binary variables; and averaging the squared distances19

between the predicted binary variables and the test images. In each seed number, we selected
100 randomly selected test images from 10, 000 test datapoints. Fig. 8 shows the performance
of each method in terms of prediction accuracy.

8. Discussion

We have developed a practical privacy-preserving VB algorithm which outputs accurate and
privatized expected sufficient statistics and expected natural parameters. Our approach
uses the moments accountant analysis combined with the privacy amplification effect due
to subsampling of data, which significantly decrease the amount of additive noise for the
same expected privacy guarantee compared to the standard analysis. Our methods show
how to perform variational Bayesian inference in private settings, not only for the conjugate
exponential family models but also for non-conjugate models with binomial likelihoods using

19. As the values in each pixel are binarised, the average squared distance between predictive image and
test image is just average of a sum of 1’s and 0’s. This pixel-wise performance measure tells us that how
many pixels are predicted correctly on average across the test points we tested.
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the Polyá Gamma data augmentation. We illustrated the effectiveness of our algorithm on
several real-world datasets.

The private VB algorithms for the Latent Dirichlet Allocation (LDA), Bayesian Logistic
Regression (BLR), and Sigmoid Belief Network (SBN) models we discussed are just a few
examples of a much broader class of models to which our private VB framework applies. Our
positive empirical results with VB indicate that these ideas are also likely to be beneficial
for privatizing many other iterative machine learning algorithms. In future work, we plan
to apply this general framework to other inference methods for larger and more complicated
models such as deep neural networks. More broadly, our vision is that practical privacy
preserving machine learning algorithms will have a transformative impact on the practice of
data science in many real-world applications.
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Appendix

1. Proof of L2-Sensitivity of Expected Sufficient Statistics

∆Ml = max
D,D′

d(D,D′)≤1

|Ml(D)−Ml(D′)|,

= max
D,D′

d(D,D′)≤1

| 1
N

N∑
n=1

Eq(ln)sl(Dn, ln)− 1
N

N∑
n=1

Eq(l ′n)sl(D′n, l ′n)|,

≤ max
DN ,q(lN ),D′N ,q′(lN )

| 1
NEq(lN )sl(DN , lN )− 1

NEq′(lN )s
′
l(DN , lN )|,

≤ max
DN ,q(lN )

2
N |Eq(lN )sl(DN , lN )|, (73)

where the last line is due to the triangle inequality.
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2. Proof of L2-Sensitivity for LDA

∆s̄ = max
D,D′

d(D,D′)≤1

√∑
k

∑
v

(s̄vk(D)− s̄vk(D′))2,

= max
D,D′

d(D,D′)≤1

√√√√∑
k

∑
v

(
1

S

∑
n

S∑
d=1

φkdnw
v
dn −

1

S

∑
n

S∑
d=1

φ′kdnw
′v
dn

)2

,

= max
φk

Sn,w
v
Sn,φ

′k
Snw

′v
Sn

√√√√∑
k

∑
v

(
1

S

∑
n

φkSnw
v
Sn −

1

S

∑
n

φ′kSnw
′v
Sn

)2

,

≤ max
φk

Sn,w
v
Sn

√√√√∑
k

∑
v

(
1

S

∑
n

φkSnw
v
Sn

)2

, since 0 ≤ φkdn ≤ 1, wv
dn ∈ {0, 1},

and so the worst case per k,v entry is where one of the terms is 0,

≤ max
φk

Sn,w
v
Sn

1

S

∑
n

(
∑
k

φkSn)(
∑
v

wv
Sn) ≤ N

S
, (74)

since
∑

k φ
k
Sn = 1, and

∑
vw

v
Sn = 1.

3. Variational Lower Bound with Auxiliary Variables

The variational lower bound (per-datapoint for simplicity) given by

Ln(q(m), q(ln)) =

∫
q(m)q(ln) log

p(Dn|ln,m)p(m)p(ln)

q(m)q(ln)
dlndm , (75)

=

∫
q(m)q(ln) log p(Dn|ln,m)dlndm

−DKL(q(m)||p(m))−DKL(q(ln)||p(ln)),

where the first term can be re-written using Eq. 35,∫
q(m)q(ln) log p(Dn|ln,m)dlndm = −b log 2 + (yn − b

2)〈ln〉q(ln)
>〈m〉q(m)

+

∫
q(m)q(ln) log

∫ ∞
0

exp(−1
2ξnln

>mm>ln)p(ξn)dξn.

We rewrite the third term using q(ξn), the variational posterior distribution for ξn,∫
q(m)q(ln) log

∫ ∞
0

exp(−1
2ξnln

>mm>ln)p(ξn)dξn

=

∫
q(m)q(ln) log

∫ ∞
0

q(ξn) exp(−1
2ξnln

>mm>ln)
p(ξn)

q(ξn)
dξn,

≥
∫

q(m)q(ln)

∫ ∞
0

q(ξn)

[
(−1

2ξnln
>mm>ln) + log

p(ξn)

q(ξn)

]
dξn,

= −1
2〈ξn〉q(ξn)〈ln>mm>ln〉q(ln)q(m) −DKL(q(ξn)||p(ξn)), (76)
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which gives us a lower bound on the log likelihood,

Ln(q(m), q(ln)) ≥Ln(q(m), q(ln), q(ξn)) (77)

:=− b log 2 + (yn − b
2)〈ln〉q(ln)

>〈m〉q(m)

− 1
2〈ξn〉q(ξn)〈ln>mm>ln〉q(ln)q(m)

−DKL(q(ξn)||p(ξn))−DKL(q(m)||p(m))−DKL(q(ln)||p(ln)),

which implies that∫
q(m)q(ln)q(ξn) log p(Dn|ln, ξn,m)

= −b log 2 + (yn − b
2)〈ln〉q(ln)

>〈m〉q(m) − 1
2〈ξn〉q(ξn)〈ln>mm>ln〉q(ln)q(m). (78)

4. Perturbing Expected Sufficient Statistics in SBNs

Using the variational posterior distributions in the E-step, we perturb and output each
sufficient statistic as follows. Note that the 1/N factor has to be changed to 1/S when using
the subsampled data per iteration.

• For perturbing s̄1, we perturb A = 1
N

∑N
n=1〈zn〉 where the sensitivity is given by

∆A = max
|D−D′|=1

|A(D)−A(D′)|2,

≤ max
yn,q(zn)

1

N

√√√√ K∑
k=1

(σ(dn,k))2 ≤
√
K

N
, (79)

due to Eq. 22 and the fact that zn is a vector of Bernoulli random variables (length
K) and the mean of each element is σ(dn,k) as given in Eq. 69.

• For perturbing ˜̄s2, we perturb B = 〈ξ(1)〉, i.e. the part before we apply the diag and
vec operations. The sensitivity of B is given by ∆B ≤

√
K
4 as shown in Fig. 4.

• For perturbing s̄3, we perturb C = 1
N

∑N
n=1 yn, where the sensitivity is given by

∆C = max
D,D′

d(D,D′)≤1

|C(D)− C(D′)|2 = max
yn

1
N |yn|2 ≤

√
J
N , (80)

since yn is a binary vector of length J . Note that when performing the batch optimi-
sation, we perturb s̄3 only once, since this quantity remains the same across iterations.
However, when performing the stochastic optimisation, we perturb s̄3 in every itera-
tion, since the new mini-batch of data is selected in every iteration.

• For perturbing ˜̄s4, we perturb D = 1
N

∑N
n=1〈ξ

(0)
n 〉, which is once again the part before

taking diag and vec operations. Due to Eq. 22, the sensitivity is given by

∆D = max
D,D′

d(D,D′)≤1

|D(D)−D(D′)|2 ≤
√
J

4N
. (81)
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• For ˜̄s5, we perturb E = 1
N

∑N
n=1〈ξ

(0)
n 〉〈zn〉> . From Eq. 22, the sensitivity is given by

∆E = max
D,D′

d(D,D′)≤1

|E(D)− E(D′)|2,

≤ max
yn,q(zn),q(ξn)

1

N

√√√√ K∑
k=1

J∑
j=1

(〈ξ(0)
n,j〉〈zn,k〉)2 ≤

√
JK

4N
. (82)

• For ˜̄s6, we can use the noisy ˜̄s1 for the second term, but perturb only the first term
F = 1

N

∑N
n=1 yn〈zn〉>. Due to Eq. 22, the sensitivity is given by

∆F = max
D,D′

d(D,D′)≤1

|F (D)− F (D′)|2,

≤ max
yn,q(zn)

1

N

√√√√ K∑
k=1

J∑
j=1

(yn,j〈zn,k〉)2 ≤
√
JK

N
. (83)

• For s̄7, we define a matrix G, which is a collection of J matrices where each matrix is
Gj = 1

N

∑N
n=1〈ξ

(0)
n,j〉〈znzn>〉, where Gj ∈ RK×K .

Using Eq. 22, the sensitivity of Gj is given by

∆Gj = max
D,D′

d(D,D′)≤1

|Gj(D)−Gj(D′)|2,

≤ max
yn

1
N

√√√√ K∑
k=1

K∑
k′=1

(〈ξ(0)
n,j〉〈zn,kzn,k〉)2 ≤ K

4N , (84)

which gives us the sensitivity of ∆G ≤
√
JK

4N .

5. M-step Updates for SBNs

The M-step updates are given below (taken from Gan et al., 2015):

• q(W ) =
∏J
j=1 q(wj), and q(wj) = N (µj ,Σj), where

Σj =

[
N∑
n=1

〈ξ(0)
n,j〉q(ξ)〈znzn>〉+ diag(〈ζ−1

j 〉q(ζ))

]−1

µj = Σj

[
N∑
n=1

(yn,j − 1
2 − 〈cj〉q(θ)〈ξ

(0)
n,j〉q(ξ))〈zn〉q(z)

]
.

where we replace 1
N

∑N
n=1〈ξ

(0)
n,j〉q(ξ)〈znzn>〉, 1

N

∑N
n=1 yn,j〈zn〉q(z), 1

N

∑N
n=1〈zn〉q(z), and

1
N

∑N
n=1〈ξ

(0)
n,j〉q(ξ)〈zn〉q(z), with perturbed expected sufficient statistics.
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• q(b) = N (µb,Σb), where

Σb =

[
1

νb
I +Ndiag(〈ξ(1)〉)

]−1

, (85)

µb = Σb

[
N∑
n=1

(〈zn〉 −
1

2
1K)

]
, (86)

where we replace 〈ξ(1)〉 and 1
N

∑N
n=1〈zn〉q(z) with perturbed expected sufficient statis-

tics.

• q(c) = N (µc,Σc), where

Σc =

[
1

νc
I + diag(

N∑
n=1

〈ξ(0)
n 〉)

]−1

, (87)

µc = Σc

[
N∑
n=1

(yn
> − 1

2
1J
> − 1

2
diag(〈ξ(0)

n 〉〈zn〉>〈W 〉>))

]
, (88)

where we replace 1
N

∑N
n=1〈ξ

(0)
n 〉, 1

N

∑N
n=1 yn, and

1
N

∑N
n=1〈ξ

(0)
n 〉〈zn〉> with perturbed

expected sufficient statistics.

• TPBN shrinkage priors:

q(ζj,k) = GIG(0, 2〈ξj,k〉q(ξ), 〈w2
j,k〉q(θ)),

q(ξj,k) = Gam(1, 〈ζj,k〉q(ζ)),

q(φk) = Gam(J2 + 1
2 , 〈ω〉q(ω) +

J∑
j=1

〈ξj,k〉q(ξ)),

q(ω) = Gam(K2 + 1
2 , 1 +

K∑
k=1

〈φk〉q(φ)).

When updating these TPBN shrinkage priors, we first calculate q(ζj,k) using a data-
independent initial value for 2〈ξj,k〉q(ξ) and perturb 〈w2

j,k〉q(θ) (since q(c) is perturbed).
Using this perturbed q(ζj,k), we calculate q(ξj,k). Then, using q(ξj,k), we calculate
q(φk) with some data-independent initial value for 〈ω〉q(ω). Then, finally, we update
q(ω) using q(φk). In this way, these TPBN shrinkage priors are perturbed.

6. The EM Algorithm and its Relationship to VBEM

In contrast to VBEM, which computes an approximate posterior distribution, EM finds a
point estimate of model parameters m . A derivation of EM from a variational perspective,
due to Neal & Hinton (1998), shows that VBEM generalizes EM (Beal, 2003). To derive EM
from this perspective, we begin by identifying a lower bound L(q,m) on the log-likelihood
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using another Jensen’s inequality argument, which will serve as a proxy objective function.
For any parameters m and auxiliary distribution over the latent variables q(l),

log p(D;m) = log
(∫

dl p(l ,D;m)
q(l)

q(l)

)
= log

(
Eq
[p(l ,D;m)

q(l)

])
≥ Eq

[
log p(l ,D;m)− log q(l)

]
= Eq

[
log p(l ,D;m)

]
+H(q) , L(q,m). (89)

Note that L(q,m) has a very similar definition to the ELBO from VB (Eq. 7). Indeed, we
observe that for an instance of VBEMwhere q(m) is restricted to being a Dirac delta function
at m , q(m) = δ(m−m∗), and with no prior on m , we have L(q(l),m) = L(q(l ,m)) (Beal,
2003). The EM algorithm can be derived as a coordinate ascent algorithm which maximises
L(q,m) by alternatingly optimizing q (the E-step) and m (the M-step) (Neal & Hinton,
1998). At iteration i, with current parameters m (i−1), the updates are:

q(i) = arg max
q
L(q,m (i−1)) = p(l |D;m (i−1)) (E-step)

m (i) = arg max
m
L(q(i),m) (M-step). (90)

In the above, arg maxq L(q,m (i−1)) = p(l |D;m (i−1)) since this maximisation is equivalent
to minimising DKL(q(l)‖p(l |D;m (i−1))). To see this, we rewrite L(q,m) as

L(q,m) = Eq
[

log p(l ,D;m)
]
− Eq[log q(l)]

= log p(D;m) + Eq
[

log p(l |D,m)
]
− Eq[log q(l)]

= log p(D;m)−DKL(q(l)‖p(l |m ,D)) . (91)

From a VBEM perspective, the M-step equivalently finds the Dirac delta q(m) which max-
imises L(q(l ,m)). Although we have derived EM as optimizing the variational lower bound
L(q,m) in each E- and M-step, it can also be shown that it monotonically increases the
log-likelihood log p(D;m) in each iteration. The E-step selects q(i) = p(l |D;m (i−1)) which
sets the KL-divergence in Eq. 91 to 0 at m (i), at which point the bound is tight. This means
that log p(D;m (i−1)) is achievable in the bound, so maxm L(q(i),m) ≥ log p(D;m (i−1)). As
L(q,m) lower bounds the log likelihood at m , this in turn guarantees that the log-likelihood
is non-decreasing over the previous iteration. We can thus also interpret the E-step as com-
puting a lower bound on the log-likelihood, and the M-step as maximizing this lower bound,
i.e. an instance of the Minorise Maximise (MM) algorithm. EM is sometimes written in
terms of the expected complete data log-likelihood Q(m ;m (i−1)),

Q(m ;m (i−1)) = Ep(l |D;m(i−1))[log p(l ,D;m)] (E-step)

m (i) = arg max
m

Q(m ;m (i−1)) (M-step). (92)

This is equivalent to Eq. 90: Q(m ;m (i−1)) +H(p(l |D;m (i−1))) = L(p(l |D;m (i−1)),m).
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