
Journal of Artificial Intelligence Research 66 (2019) 503-554 Submitted 07/2018; published 10/2019

Synthesizing Argumentation Frameworks from Examples

Andreas Niskanen ANDREAS.NISKANEN@HELSINKI.FI

Helsinki Institute for Information Technology HIIT,
Department of Computer Science,
University of Helsinki, Finland

Johannes P. Wallner WALLNER@DBAI.TUWIEN.AC.AT

Institute of Logic and Computation,
TU Wien, Austria

Matti Järvisalo MATTI.JARVISALO@HELSINKI.FI

Helsinki Institute for Information Technology HIIT,
Department of Computer Science,
University of Helsinki, Finland

Abstract
Argumentation is today a topical area of artificial intelligence (AI) research. Abstract argu-

mentation, with argumentation frameworks (AFs) as the underlying knowledge representation for-
malism, is a central viewpoint to argumentation in AI. Indeed, from the perspective of AI and
computer science, understanding computational and representational aspects of AFs is key in the
study of argumentation.

Realizability of AFs has been recently proposed as a central notion for analyzing the expressive
power of AFs under different semantics. In this work, we propose and study the AF synthesis prob-
lem as a natural extension of realizability, addressing some of the shortcomings arising from the
relatively stringent definition of realizability. In particular, realizability gives means of establishing
exact conditions on when a given collection of subsets of arguments has an AF with exactly the
given collection as its set of extensions under a specific argumentation semantics. However, in var-
ious settings within the study of dynamics of argumentation—including revision and aggregation
of AFs—non-realizability can naturally occur. To accommodate such settings, our notion of AF
synthesis seeks to construct, or synthesize, AFs that are semantically closest to the knowledge at
hand even when no AFs exactly representing the knowledge exist. Going beyond defining the AF
synthesis problem, we study both theoretical and practical aspects of the problem. In particular, we
(i) prove NP-completeness of AF synthesis under several semantics, (ii) study basic properties of
the problem in relation to realizability, (iii) develop algorithmic solutions to NP-hard AF synthesis
using the constraint optimization paradigms of maximum satisfiability and answer set program-
ming, (iv) empirically evaluate our algorithms on different forms of AF synthesis instances, as well
as (v) discuss variants and generalizations of AF synthesis.

1. Introduction

The study of representational and computational aspects of argumentation is a core topic in modern
artificial intelligence (AI) research (Bench-Capon & Dunne, 2007; Baroni, Gabbay, Giacomin, &
van der Torre, 2018b). A current strong focus of argumentation research is the extension-based
setting of abstract argumentation frameworks (AFs) (Dung, 1995) and their generalizations. AFs

©2019 AI Access Foundation. All rights reserved.

NISKANEN, WALLNER, & JÄRVISALO

model conflicts among abstract arguments via directed graphs. Arguments are represented via dis-
tinct nodes as abstract entities, hiding their internal logical structure. Information on directly con-
flicting pairs of arguments is modeled through attacks, represented as directed edges. Semantics of
AFs define extensions as non-conflicting sets of arguments with sought after properties.

The complexity of reasoning over AFs depends strongly on the prescribed semantics, in addition
to the computational task at hand (Dunne & Wooldridge, 2009; Dvořák & Dunne, 2018). From the
computational perspective, most work on argumentation focuses on reasoning about extensions of a
given AF (Egly, Gaggl, & Woltran, 2010; Bistarelli & Santini, 2011; Cerutti, Dunne, Giacomin, &
Vallati, 2014a; Cerutti, Giacomin, & Vallati, 2014b; Dvořák, Järvisalo, Wallner, & Woltran, 2014;
Nofal, Atkinson, & Dunne, 2014; Cerutti, Gaggl, Thimm, & Wallner, 2018), addressing, e.g., the
problems of extension enumeration or credulous and sceptical acceptance. Recently, the study of
dynamic aspects of argumentation has also gained more ground from the computational perspec-
tive (Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2010; Liao, Jin, & Koons, 2011; Dunne, Marquis,
& Wooldridge, 2012; Coste-Marquis, Konieczny, Mailly, & Marquis, 2014a, 2015; Niskanen, Wall-
ner, & Järvisalo, 2016a; Wallner, Niskanen, & Järvisalo, 2017; Airiau, Bonzon, Endriss, Maudet, &
Rossit, 2017; Dimopoulos, Mailly, & Moraitis, 2018).

In this work we take a computational perspective to the knowledge representation problem of
compactly representing extensions as an AF, as an inverse problem to that of computing the exten-
sions of a given AF. Tightly connected to this problem setting is realizability of AFs, as proposed
by Dunne, Dvořák, Linsbichler, and Woltran (2015) and further studied extensively by various au-
thors (Baumann, Dvořák, Linsbichler, Strass, & Woltran, 2014; Dyrkolbotn, 2014; Dunne et al.,
2015; Linsbichler, Spanring, & Woltran, 2015; Pührer, 2015; Linsbichler, Pührer, & Strass, 2016a;
Linsbichler, Pührer, & Strass, 2016b). In particular, realizability focuses on establishing exact con-
ditions for when a specific AF semantics allows for exactly representing a given set of extensions as
an AF, i.e., given a collection of subsets of the arguments at hand, does there exists an AF the set of
extensions of which is exactly the given collection. One central motivation for the study of realiz-
ability comes from the analysis of the relationships of central AF semantics (Dunne et al., 2015) in
terms of the range of sets of extensions different semantics allow for representing as AFs. Further-
more, realizability has strong connections to the study of argumentation dynamics (Coste-Marquis
et al., 2014a; Delobelle, Haret, Konieczny, Mailly, Rossit, & Woltran, 2016; Diller, Haret, Linsbich-
ler, Rümmele, & Woltran, 2018). In particular, realizability is an idealistic property in the revision
of AFs (Coste-Marquis et al., 2014a; Baumann & Brewka, 2015; Diller et al., 2018) which refers
to a setting where the task is to revise a current AF with new information. However, application of
many of the existing revision operators results in a collection E of (desired) extensions, which is
not guaranteed to be realizable (under many central AF semantics). In this case realizability does
not provide a solution to the revision step.

More broadly, while the study of realizability has provided various fundamental insights into
AFs, the concept of realizability is quite strict in that a set E of extensions is considered realizable
(under a specific AF semantics σ) if and only if there is an AF the σ-extensions of which are exactly
those in E. Implicitly, this definition hence requires that all other sets of arguments must not be
extensions of the AF of interest. This strictness requires that we have complete knowledge of the
extensions of interest, and further, in order to actually construct a corresponding AF of interest,
relies on the assumption that the set of extensions is not conflicting in terms of allowing them
to be exactly represented by an AF. From more practical perspectives, the requirement of complete
knowledge of the extensions (or, equivalently, of the non-extensions) requires taking into account an

504

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

exponential number of extensions or non-extensions, which is problematic. Secondly, the definition
does not allow for “mistakes” or noise in the process of obtaining the extensions, and also rules out
the possibility of dealing with multiple sources of potentially conflicting sets of extensions.

In this work, with a central goal of generalizing the concept of realizability to accommodate set-
tings where non-realizability naturally occurs, we propose and study what we call the AF synthesis
problem1. Specifically, AF synthesis relaxes the notion of realizability to incomplete information,
assuming only partial knowledge of extensions and non-extensions as positive and negative exam-
ples. In this generalized setting, we define AF synthesis as the constrained optimization task of
finding an AF that optimally represents the given examples in terms of minimizing the costs (de-
fined via the weights of the given examples) incurred from the AF by including a negative example
or not including a positive example in the corresponding set of extensions. Thereby our notion of AF
synthesis gives a way of going beyond the limitation of exact realizability, allowing for obtaining
a “semantically closest” AF also in cases where non-realizability occurs, such as revision of AFs.
While non-realizability has been earlier addressed by allowing revision to produce a collection of
AFs (by considering the union of the extensions of the produced AFs) (Coste-Marquis et al., 2014a),
AF synthesis gives means of directly producing a single AF representing the given collection of ex-
tensions as well as possible. In a similar vein, AF synthesis also provides a solution to obtaining a
single AF for semantical aggregation of extensions arising from multiple sources (Delobelle et al.,
2016). Furthermore, as in the case of revision, requiring that the result is one AF faces serious
challenges also for current aggregation operators. Finally, we note that AF synthesis and the algo-
rithms developed for the problem in this article can accommodate additional structural constraints
on the synthesized AF, allowing thereby to take into account potential partial structural information
available at synthesis time.

Beyond precisely defining the AF synthesis problem, with more motivations for the problem
discussed in Section 3, our main technical contributions are the following.

• We formally analyze the relationship of AF synthesis and realizability in terms of necessary
and sufficient conditions for an AF synthesis instance to be realizable under the important
semantic concepts of conflict-free and admissible sets, and under the well-established stable
and preferred AF semantics (Section 4).

• We provide complexity results for AF synthesis under conflict-free and admissible sets, as
well as under grounded, complete, stable, and preferred semantics. In the general case, it
turns out that AF synthesis is most often NP-hard under the considered semantics, and we
establish completeness for several of the semantics. We also show that under restrictions on
the form of examples (positive or negative) in the input, complexity of AF synthesis drops
to polynomial-time under many—but not all—of the semantics; we give polynomial-time
algorithms as witnesses for inclusion in P. (Section 5)

• We develop a first constraint-based approach to optimal AF synthesis, by providing declar-
ative encodings for AF synthesis for the NP problem variants in two Boolean optimization
paradigms: maximum satisfiability (MaxSAT) and answer set programming (ASP), as well
as second-level approaches using both of the paradigms for AF synthesis under the preferred
semantics which we conjecture to be ΣP

2 -complete. The choice of these paradigms is strongly

1. Alternatively, one could refer to the problem focused on in this paper as an AF learning problem.

505

NISKANEN, WALLNER, & JÄRVISALO

motivated by the success of SAT and ASP approaches to other central AF reasoning prob-
lems (Egly et al., 2010; Cerutti et al., 2014a, 2014b; Dvořák et al., 2014; Gaggl, Manthey,
Ronca, Wallner, & Woltran, 2015). (Section 6)

• We present results from an extensive empirical evaluation of our MaxSAT and ASP ap-
proaches to NP-hard AF synthesis, using as benchmarks both instances generated from the
benchmark AFs of the ICCMA argumentation solver competition (Thimm, Villata, Cerutti,
Oren, Strass, & Vallati, 2016) as well as randomly generated AF synthesis instances (Sec-
tion 7).

• Extending on the main focus of this work, we also explain how the proposed algorithms
can accommodate for further structural constraints on the desired outcomes of AF synthe-
sis, and discuss additional variants and generalizations of AF synthesis from representational
and computational complexity perspectives, including how to adapt the problem to allowing
for mixtures of different AF semantics, as well as symbolic representations of examples via
Boolean formulas (Section 8).

In addition to Section 3, further related work is discussed in Section 9. For readability of the
main text, some of the more involved formal proofs are provided in full in Appendix A.

A preliminary version of this work was presented at ECAI 2016, 22nd European Conference
on Artificial Intelligence (Niskanen, Wallner, & Järvisalo, 2016b). Beyond the results of the pre-
liminary version, in this article we further provide new complexity results for the complete and
preferred semantics, additional declarative encodings based on ASP, and a novel MaxSAT-based
algorithm for synthesis under preferred semantics. In addition, we considerably extend discussion
on related work, as well as the empirical evaluation by including results on the additional semantics
and providing a comparison between different MaxSAT algorithms and ASP.

2. Argumentation Frameworks

We start by briefly recalling argumentation frameworks (Dung, 1995) (see also definitions in Baroni,
Caminada, & Giacomin, 2011, 2018a) as the central formalism in abstract argumentation, and the
argumentation semantics considered in this work. We focus on finite argumentation frameworks.

Definition 1. A (finite) argumentation framework (AF) is a pair F = (A,R), where A is a finite
non-empty set of arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R indicates
that a attacks b. An argument a ∈ A is defended (in F) by a set S ⊆ A if, for each b ∈ A such that
(b, a) ∈ R, there is a c ∈ S such that (c, b) ∈ R.

Example 1. Let F = (A,R) be an AF with the set of arguments A = {a, b, c, d, e} and the attack
relation R = {(a, b),(b, a),(b, c),(c, d),(d, e),(e, e)}. The AF F is represented as a directed graph
in Figure 1.

a b c d e

Figure 1: Argumentation framework from Example 1.

506

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Semantics for AFs are defined through functions σ which assign to each AF F = (A,R) a
set σ(F) ⊆ 2A of extensions. We consider for σ the functions cf , stb, adm , com , prf , and grd ,
which stand for conflict-free, stable, admissible, complete, preferred, and grounded, respectively.2

To formally define the semantics, we recall two standard auxiliary concepts.

Definition 2. Given an AF F = (A,R), the characteristic functionFF : 2A → 2A of F isFF (S) =
{x ∈ A | x is defended by S}. Moreover, for a set S ⊆ A, the range of S is S+

R = S ∪ {x ∈ A |
(y, x) ∈ R, y ∈ S}.

The semantics considered in this work can now be defined as follows.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F) if there are no a, b ∈ S
such that (a, b) ∈ R. We denote the collection of conflict-free sets of F by cf (F). For a conflict-free
set S ∈ cf (F), it holds that

• S ∈ stb(F) iff S+
R = A;

• S ∈ adm(F) iff S ⊆ FF (S);

• S ∈ com(F) iff S = FF (S);

• S ∈ grd(F) iff S ∈ com(F) and there is no S′ ∈ com(F) with S′ ⊂ S; and

• S ∈ prf (F) iff S ∈ adm(F) and there is no S′ ∈ adm(F) with S ⊂ S′.

If S ∈ σ(F), then S is called a σ-extension, i.e., an extension under the semantics σ.

For any AF F , the subset relations cf (F) ⊇ adm(F) ⊇ com(F) ⊇ prf (F) ⊇ stb(F) hold,
which follows from the previous definition. The set-inclusions can be also seen in the following
example.

Example 2. Consider the AF F in Example 1 on page 506. For the semantics σ considered, the
σ-extensions of F are enumerated in the following table.

σ σ(F)

cf {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
stb {{b, d}}

adm {∅, {a}, {b}, {a, c}, {b, d}}
com {∅, {a, c}, {b, d}}
grd {∅}
prf {{a, c}, {b, d}}

3. The Argumentation Framework Synthesis Problem

In this section we formally introduce the AF synthesis problem and discuss its motivations and
connections to other notions in formal argumentation.

2. For uniformity, we will throughout the article also refer to conflict-free and admissible sets as an AF semantics.

507

NISKANEN, WALLNER, & JÄRVISALO

For a given set of (possibly weighted) examples representing semantical information, we focus
on the task of synthesizing an AF that has minimum cost over the examples not satisfied. Towards a
formal definition, we assume a given non-empty set of arguments A from which we are to construct
an AF. An example is a pair of a set of arguments and a positive integer representing the example’s
weight.

Definition 4. Let A be a set of arguments. An example e = (S,w) is a pair with S ⊆ A and a
positive integer w > 0.

We denote the set S of arguments of an example e = (S,w) by Se and the weight w by we.
For a set E of examples, we define SE = {Se | e ∈ E} as a shorthand for the set of all sets of
arguments occurring in E.

An instance of the AF synthesis problem is defined by a set of arguments, positive and negative
examples, and a semantics.

Definition 5. An instance of the AF synthesis problem is a quadruple P = (A,E+, E−, σ), with a
non-empty set A of arguments, two sets of examples, E+ and E−, that we call positive and negative
examples, respectively, and semantics σ, with (SE+ ∪ SE−) ⊆ 2A.

An AF F satisfies a positive example e if Se ∈ σ(F); similarly, F satisfies a negative example
if Se /∈ σ(F). For a given AF F , the associated cost w.r.t. P , denoted by cost(P, F), is the sum of
weights of examples not satisfied by F . Formally, cost(P, F) is∑

e∈E+

we · I(Se /∈ σ(F)) +
∑
e∈E−

we · I(Se ∈ σ(F)),

where I(·) is the indicator function that returns 1 if the property (membership in a set) is satisfied,
and otherwise 0.3 The task in AF synthesis is to find an AF of minimum cost over all AFs.

AF Synthesis
INPUT: P = (A,E+, E−, σ) such that (SE+ ∪ SE−) ⊆ 2A

TASK: Find an AF F ∗ with

F ∗ ∈ arg min
F=(A,R∗)

(cost(P, F)).

Before discussing the underlying motivations of AF synthesis, we provide a concrete syntactic
example of the problem definition.

Example 3. Consider the set of positive examples E+ = {({a, b}, 1), ({a, c}, 1), ({b, c}, 5)} and
the set of negative examples E− = {({a}, 1), ({a, b, c}, 5)}. We illustrate these examples in Fig-
ure 2. Here we see that the positive examples together claim that each pair of arguments of A is
a σ-extension. The negative examples claim that the whole set A is not a σ-extension and that the
singleton set {a} is likewise not a σ-extension. Let Pcf = (A,E+, E−, cf) withA = {a, b, c} be an
AF synthesis instance under conflict-free semantics. An optimal solution AF Fcf = (A,Rcf) with

3. While we focus here on the sum operation for the cost function, we acknowledge that other ways of combining
costs—in terms of different operators as well as taking a qualitative view—would also be interesting to consider. We
also note that the costs on examples can be used to enforce qualitative preferences over examples.

508

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

positive E+ negative E−

e1 = ({a, b}, 1) e4 = ({a}, 1)
e2 = ({a, c}, 1) e5 = ({a, b, c}, 5)
e3 = ({b, c}, 5)

a b

c

Fcf

a b

c

Fstb = Fcom = Fprf

a b

c

Fadm = Fgrd

Figure 2: AF synthesis example with optimal solution AFs.

cost(Pcf , Fcf) = 2 is given by Rcf = {(a, b)}. This AF Fcf does not satisfy the positive example
({a, b}, 1) and the negative example ({a}, 1).

Regarding admissible semantics, let Padm = (A,E+, E−, adm). In this case the AF Fadm =
(A,Radm) withRadm = {(b, a)} is an optimal solution. Except for the positive examples ({a, b}, 1)
and ({a, c}, 1), all other examples are satisfied by Fadm for Padm . Thus cost(Padm , Fadm) = 2.
In addition, let Pgrd = (A,E+, E−, grd). Note that only one positive example can be satisfied
since the grounded extension is unique. Now Fgrd = Fadm is an optimal solution to Pgrd , since
grd(Fgrd) = {{b, c}} and cost(Pgrd , Fgrd) = 2. The positive examples with the smallest weights,
i.e., ({a, b}, 1) and ({a, c}, 1), are not satisfied.

Now consider stable semantics. Let Pstb = (A,E+, E−, stb). An optimal solution AF to Pstb

is given by Fstb = (A,Rstb) with Rstb = {(a, b), (b, a)}. Here stb(Fstb) = {{a, c}, {b, c}} and
cost(Pstb , Fstb) = 1. Similarly, for complete semantics, let Pcom = (A,E+, E−, com). Now
Fcom = Fstb is an optimal solution also to Pcom , with com(Fcom) = {{a, c}, {b, c}, {c}} and
cost(Pcom , Fcom) = 1.

Finally, for preferred semantics, let Pprf = (A,E+, E−, prf). Again, Fprf = Fstb is an optimal
solution AF to Pprf , with prf (Fprf) = {{a, c}, {b, c}} and cost(Pprf , Fprf) = 1. In all these cases,
only the positive example ({a, b}, 1) is not satisfied.

We now turn to discussing motivations underlying the formal definition of AF synthesis. For-
mally, AF synthesis generalizes a key concept of the notion of realizability (Baumann et al., 2014;
Dyrkolbotn, 2014; Dunne et al., 2015; Linsbichler et al., 2015), as first proposed and studied in
the context of AFs (Dunne et al., 2015), and more recently in the context of abstract dialectical
frameworks (ADFs) (Pührer, 2015; Linsbichler et al., 2016a, 2016b; Brewka, Ellmauthaler, Strass,
Wallner, & Woltran, 2018). Realizability addresses the question of whether a given set of sets (of
arguments) S can be realized by an AF, i.e., whether there is an AF F with σ(F) = S for a semantics
σ.

Comparing the notions of realizability and AF synthesis, the strict requirement of realizability
that a given set of sets of argument must be exactly equal to the semantics of an AF is relaxed by AF
synthesis, by allowing for partial specification via positive and negative examples and sets that are
neither. Realizability, in its general form, does not presume a set of arguments A as is assumed in
AF synthesis. However, under standard semantics an instance of realizability, represented by a set of

509

NISKANEN, WALLNER, & JÄRVISALO

sets S, can be translated to an instance of AF synthesis by specifying S as positive examples, every
other set as negative, and a “sufficiently” large set A of arguments. Then, a 0-cost solution of AF
synthesis implies realizability, and vice versa. In Section 4, we formally investigate this connection.

Overall, the line of work on realizability has fundamental motivations through the study of dy-
namic aspects of argumentation. As argued e.g. by Dunne et al. (2015), realizability provides a
handle to understanding the representational limits of argumentation frameworks in terms of differ-
ent semantics.

As a concrete scenario, realizability is an idealistic property in the revision of AFs (Coste-
Marquis et al., 2014a; Coste-Marquis, Konieczny, Mailly, & Marquis, 2014b; Baumann & Brewka,
2015; Diller et al., 2018). An AF revision operator revises a current AF F with new information
(with the new information, e.g., expressed as a formula). Formally, many revision operators define
a set S of extensions, under a semantics σ, as the output of revision. In such a setting, the revision
process can be hindered by the fact that in general there may not exist an AF F ′ such that σ(F ′) =
S. The notion of realizability focuses on the question of the existence of such an F ′, but leaves
the question of what can be done in case F ′ does not exist unsettled. While this issue has been
previously suggested to be circumvented e.g. by allowing revision to establish a collection of AFs
with the joint property that the union of their extensions provides the desired outcome (Coste-
Marquis et al., 2014a), our notion of AF synthesis provides an alternative perspective for resolving
this issue, with the guarantee of resulting in a single AF. This can be argued to be preferable to
a collection of AFs, and on the other hand, the single AF obtained via AF synthesis represents
intuitively an aggregation of the (in case the revision step is not realizable, conflicting) knowledge
represented by a collection of AFs. As such, AF synthesis also provides an approach to semantical
aggregation of extensions arising from multiple sources, i.e., multiple AFs. Indeed, synthesis from
multiple sources can be seen as a method of aggregating AFs semantically. While many aggregation
operators for AFs exist (Bodanza, Tohmé, & Auday, 2017), most rely on aggregating the graph
structures of AFs (e.g., Coste-Marquis, Devred, Konieczny, Lagasquie-Schiex, & Marquis, 2007;
Tohmé, Bodanza, & Simari, 2008; Delobelle, Konieczny, & Vesic, 2015) and only few operators
aggregate AFs w.r.t. AF semantics (Delobelle et al., 2016). We illustrate semantic aggregation of
AFs via AF synthesis next.

Example 4. Consider three AFs, F1, F2, and F3, shown in Figure 3. Collecting all non-empty
admissible sets for each AF as a positive example, and each non-admissible set as a negative ex-
ample (excluding the empty set), results in 21 examples, shown as well in that figure. An optimal
solution AF F ′ to the AF synthesis instance defined in this manner is shown on the right of that
figure, together with the satisfied examples (in bold). The cost of AF F ′ is five.

AF synthesis can also be viewed as providing a solution to the initial step, or a “starting point”,
for a revision process, for obtaining an initial AF representing knowledge represented in terms of
a given set of (potentially conflicting) claimed extensions (examples). Via the relaxation of the
requirement of exact knowledge of the extensions to be realized, AF synthesis connects to settings
in which knowledge is not fully specified. To this end, AF synthesis could also be applicable in
e.g. opponent modeling (Oren & Norman, 2009; Rienstra, Thimm, & Oren, 2013; Black, Coles, &
Bernardini, 2014; Black & Hunter, 2015; Murphy, Black, & Luck, 2016) assuming that evidence
(uttered by agents) revealing partial information on the internal knowledge of an opponent would
come in terms of (potentially pairwise conflicting) individually conflict-free sets, i.e., what we call
examples in the context of AF synthesis.

510

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

positive E+
1 positive E+

2 positive E+
3

e1 = ({a}, 1) e8 = ({c}, 1) e15 = ({c}, 1)
e2 = ({a, c}, 1) e9 = ({b}, 1) e16 = ({a, c}, 1)
negative E−1 e10 = ({a, b}, 1) negative E−3
e3 = ({b}, 1) negative E−2 e17 = ({a}, 1)
e4 = ({c}, 1) e11 = ({a}, 1) e18 = ({b}, 1)
e5 = ({a, b}, 1) e12 = ({a, c}, 1) e19 = ({a, b}, 1)
e6 = ({b, c}, 1) e13 = ({b, c}, 1) e20 = ({b, c}, 1)
e7 = ({a, b, c}, 1) e14 = ({a, b, c}, 1) e21 = ({a, b, c}, 1)

a b

c

F1

a b

c

F2

a b

c

F3

a b

c

F ′

Figure 3: Example AF synthesis instance generated from (non-)admissible sets of three AFs to-
gether with an optimal solution AF F ′.

Regarding a potential question about defining AF synthesis in the setting of abstract arguments
rather than logic-based arguments whose structure could potentially be used to derive information
on the attack structure, we note that one cannot in general assume that the structure of arguments
is fully accessible (or that it even exists) (Hunter & Williams, 2012; Mailly, 2016; Dung & Thang,
2018). For example, arguments often have no internal structure in experimental medicine, were
the aim is to uncover the underlying rules through experiments (Hunter & Williams, 2012; Dung &
Thang, 2018). Furthermore, as argued by e.g. Hunter (2007), real arguments are often “approximate
arguments”, or enthymemes (Black & Hunter, 2012; Hosseini, Modgil, & Rodrigues, 2014; Mailly,
2016), i.e., arguments may only be partially specified. Hence, an attack structure between the
arguments can be prone to errors, which is reflected in the AF synthesis problem that provides a
way to complete the attack structure by optimizing the placement of attacks based on examples.
Furthermore, as detailed later on in Section 8, our algorithms also allow for enforcing structural
constraints on the desired outcomes of AF synthesis, such as hard constraints on the (certain) attacks.

Finally, we note that while weighted examples are covered by our formal definition of AF syn-
thesis, this definition naturally also allows for disregarding weights, i.e., considering unit-weighted
examples. However, by allowing for weights on examples, we wish to enable addressing settings
where the reliability or relative importance of individual examples may be desirable and handled by
assigning varying weights on examples. As one potential application scenario of weights, in a revi-
sion process it may be desirable to enforce a strong preference on accommodating a new example
as an actual extension in the result of the revision step. Such a preference can be stated by assigning
larger weights on the new (or, more generally, more recent) examples.

511

NISKANEN, WALLNER, & JÄRVISALO

4. Properties of the AF Synthesis Problem

Before proceeding with a detailed complexity analysis of AF synthesis, we discuss underlying prop-
erties of the problem. In particular, we investigate the existence of 0-cost solutions for the AF syn-
thesis problem by relating the problem with realizability results of Dunne et al. (2015). In contrast
to the AF synthesis problem, Dunne et al. (2015) consider the problem of a given unweighted set S
of sets of arguments, and ask whether there is an AF F s.t. S = σ(F). In words, in the setting of
realizability, the given set exactly specifies which sets have to be σ-extensions and which must not
be σ-extensions. Further, Dunne et al. (2015) do not consider weights attached to examples, and
the set of arguments A is not specified and may contain more arguments than occurring in S. Re-
stricting the set of arguments to only arguments occurring in S is studied in Baumann et al. (2014),
Linsbichler et al. (2015), and Baumann, Dvořák, Linsbichler, Spanring, Strass, and Woltran (2016).

We make use of and generalize the notions proposed by Dunne et al. (2015) by specifying
conditions under which 0-cost solutions exist as well as properties 0-cost solutions satisfy. We first
focus on the conflict-free semantics. We utilize the following concept adapted from Dunne et al.
(2015, Definitions 6 and 7), defining a consequence operator that states which sets must be conflict-
free if we assume a given set of sets S to be conflict-free in an AF. Let ImpliedCF (S) = {X | a, b ∈
X implies ∃S ∈ S with {a, b} ⊆ S}. Intuitively, if each set in S is conflict-free, and each pair of
arguments in a set X is contained in one set of S, then X is conflict-free as well. Note that a and b
in this definition need not be distinct ({a, b} is equal to {a} if a = b). Further, ∅ is in ImpliedCF (S)
for any S.

Lemma 1. Let F = (A,R) be an AF and S ⊆ 2A. If S ⊆ cf (F), then ImpliedCF (S) ⊆ cf (F).

Proof. Assume that S ⊆ cf (F). Let S ∈ ImpliedCF (S). By definition it follows that for each
a, b ∈ S we have ∃S′ ∈ S with {a, b} ⊆ S′. If S ⊆ cf (F) then S′ ∈ cf (F) and thus {a, b} ∈
cf (F). This implies that S ∈ cf (F) (each pair in S is conflict-free).

Example 5. Continuing from Example 3, consider SE+ = {{a, b}, {a, c}, {b, c}}. If each element
of SE+ is conflict-free in an AF F (SE+ ⊆ cf (F)), then, e.g., {a, b, c} ∈ cf (F), since there cannot
be an attack between any of these three arguments. In particular, we have ImpliedCF (SE+) =
SE+ ∪ {∅, {a}, {b}, {c}, {a, b, c}}. This directly shows for Pcf from Example 3 that there is no
solution AF to Pcf of cost 0. In fact, there is no AF satisfying both the positive example ({a, b}, 1)
and the negative example ({a}, 1) under the conflict-free semantics. Also, there is no AF satisfying
all three positive examples and negative example ({a, b, c}, 5) under the conflict-free semantics.

Equipped with the preceding lemma, we give a necessary and sufficient condition for 0-cost
solutions for AF synthesis under the conflict-free semantics.

Proposition 2. Let P = (A,E+, E−, cf) be an instance of AF synthesis. There is a solution AF F
to P with cost(P, F) = 0 if and only if ImpliedCF (SE+) ∩ SE− = ∅.

Proof. For the “only-if” direction, assume that an AF F is an optimal solution to P of cost 0,
i.e., cost(P, F) = 0. It follows that SE+ ⊆ cf (F). By Lemma 1 we have ImpliedCF (SE+) ⊆
cf (F). Thus ImpliedCF (SE+) ∩ SE− = ∅, since cf (F) ∩ SE− = ∅. For the “if” direction, as-
sume that ImpliedCF (SE+) ∩ SE− = ∅. By Lemma 17, proven in Appendix A, it follows that
ImpliedCF (SE+) is tight, downward closed, and contains ∅. Due to Dunne et al. (2015, Proposi-
tion 5) it immediately follows that there exists an AF F = (A′, R′) s.t. cf (F) = ImpliedCF (SE+).

512

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Since ImpliedCF (SE+) ∩ SE− = ∅, it follows that cost(P, F) = 0. In Dunne et al. (2015, Propo-
sition 5) the set A′ is specified as all arguments occurring in ImpliedCF (SE+). If A contains more
arguments, we construct F = (A,R) by extending R′ with self-attacks for each A \A′.

Intuitively, to synthesize an AF F that has SE+ as its conflict-free sets, ImpliedCF (SE+) need
to be conflict-free, too. Moreover, using results from Dunne et al. (2015), one can show that there is
an AF F with cf (F) = ImpliedCF (SE+). Furthermore, if no negative example e claims that a set
of ImpliedCF (SE+) should not be conflict-free, i.e., Se /∈ ImpliedCF (SE+), then F has cost 0.

Now consider admissible sets. Similarly as for conflict-free sets, we define the following con-
sequence operator. For a set of sets S, let

ImpliedADM (S) = {X | X =
⋃
S∈S′

S, S′ ⊆ S, X ∈ ImpliedCF (S)}.

Briefly put, if we assume S to be a collection of admissible sets, then each union of sets in S
that is conflict-free, i.e., in ImpliedCF (S), is also an admissible set. By this definition, ∅ ∈
ImpliedADM (S) for any S.

Lemma 3. Let F = (A,R) be an AF and S ⊆ 2A. If S ⊆ adm(F), then ImpliedADM (S) ⊆
adm(F).

Proof. Assume that S ⊆ adm(F) and let S ∈ ImpliedADM (S). Then S ∈ ImpliedCF (S) and
thus S ∈ cf (F) (Lemma 1). Finally, every union of admissible sets which is conflict-free is again
an admissible set; see, e.g., Caminada (2007, Lemma 1).

Example 6. Consider SE+ = {{a, b}, {a, c}, {b, c}} from Example 3. Then ImpliedADM (SE+) =
SE+ ∪ {{a, b, c}, ∅}. Regarding the set S′ = {{b, c}} which is the set of positive examples satisfied
by Fadm , we have ImpliedADM (S′) = S′ ∪ {∅}.

Consider P ′adm = ({a, b, c}, E+
1 , E

−
1 , adm) with E+

1 = {({a, c}, 1), ({b, c}, 1)} and E−1 =
{({a}, 1)}. We have ImpliedADM (SE+

1
) = SE+

1
∪ {∅} and ImpliedADM (SE+

1
) ∩ SE−1 = ∅.

Unlike for the conflict-free semantics, this condition for the admissible semantics does not imply
the existence of a 0-cost solution AF for P ′adm . In fact, a 0-cost solution AF does not exist for
P ′adm . To see this, consider possible attacks in a candidate for a solution AF. If we assume 0-
cost, it follows that all three examples are satisfied by a hypothetical solution AF. In particular {a}
is not admissible, and {a, c} and {b, c} are admissible. Since there are no further arguments, it
holds that the only two possible attacks are (a, b) and (b, a) (since {a, c} and {b, c} are conflict-
free). Since {a} is conflict-free but not admissible, it follows that (b, a) is present in a hypothetical
0-cost solution AF (no attack onto {a} directly implies admissibility of this set). Since {a, c} is
admissible, it holds that either a or c attacks b. Because {b, c} is conflict-free, it must hold that
(a, b) is present. Since no more attacks are possible, the only candidate solution AF contains the two
attacks (a, b) and (b, a). This contradicts satisfaction of negative example {a}, which is admissible
in this hypothetical AF.

However, a 0-cost solution is possible if the set of arguments A includes more arguments.
For instance, take F ′ = ({a, b, c, d}, {(b, a), (a, b), (c, d), (d, a), (d, d)}). We have adm(F ′) =
{∅, {b}, {c}, {b, c}, {a, c}} and, for P ′′adm = ({a, b, c, d}, E+

1 , E
−
1 , adm), it holds that F ′ is an

513

NISKANEN, WALLNER, & JÄRVISALO

optimal 0-cost solution AF to P ′′adm , i.e., cost(P ′′adm , F
′) = 0. Such “auxiliary” arguments, i.e., ar-

guments not present in the examples, are not always required for 0-cost solutions under the admis-
sible semantics. For instance, given two positive examples ({a, c}, 1) and ({b, c}, 1), and negative
example ({a, b, c}, 1), one can synthesize a 0-cost AF with a mutual attack between a and b.

Similarly as for conflict-free semantics, each 0-cost solution under the admissible semantics
implies that for no negative examples e we have Se ∈ ImpliedADM (SE+). For existence of an
AF F with ImpliedADM (SE+) = adm(F), we make use of results from Dunne et al. (2015)
which requires auxiliary arguments, i.e., arguments not present in SE+ . We use the abstract func-
tion AuxArgs(adm,SE+) that returns the number of auxiliary arguments needed to construct F as
specified in Dunne et al. (2015, Definitions 13 and 14).4

Proposition 4. Let P = (A,E+, E−, adm) be an instance of the AF synthesis problem. Consider
the following conditions.

1. ImpliedADM (SE+) ∩ SE− = ∅.

2. |A \ (
⋃
S∈SE+

S)| > AuxArgs(adm, SE+).

If there is a solution AF F to P with cost(P, F) = 0, then condition 1 holds. If both conditions 1
and 2 hold, then there is a solution AF F to P with cost(P, F) = 0.

Proof. For the first claim, assume that there is an AF F with cost(P, F) = 0. Then SE+ ⊆
adm(F) and thus ImpliedADM (SE+) ⊆ adm(F) by Lemma 3. For the second claim, assume
that ImpliedADM (SE+) ∩ SE− = ∅ and condition 2 holds. By Lemma 18, which we prove
in Appendix A, ImpliedADM (SE+) is conflict-sensitive and contains ∅. By Dunne et al. (2015,
Proposition 8) there is an AF F ′ = (A′, R′) s.t. A′ ⊆ A and adm(F ′) = ImpliedADM (SE+).
Define F = (A,R) by extending R′ to have self-attacks for each argument in A\A′. It follows that
adm(F) = ImpliedADM (SE+). Assuming conditions 1-2, we have cost(P, F) = 0.

We move on to the stable semantics, under which the picture is more complex. Existence of
a 0-cost solution for an AF synthesis instance implies that the set of positive examples SE+ is
⊆-incomparable, does not include ∅, is disjoint from the negative sets SE− , and no positive set
S ∈ SE+ is a proper subset of an implied conflict-free set in ImpliedCF (SE+). These conditions
are quite intuitive, since, e.g., a violation of the last condition violates the fact that stable extensions
attack all arguments outside the set.

These conditions imply the existence of 0-cost solutions if a certain number of auxiliary argu-
ments, i.e., arguments not present in SE+ , is available in A. For achieving this result, we use again
results from Dunne et al. (2015), providing a construction in this case that utilizes such auxiliary ar-
guments to synthesize the AF. We provide here a rough bound for auxiliary arguments from Dunne
et al. (2015, Definition 12). More concretely, we use the function AuxArgs(stb, SE+) that is equal
to the maximum number of stable extensions for any AF with |SE+ | many arguments (for more
details, see Baumann & Strass, 2013, Theorem 1). A proof of Proposition 5 is provided in Ap-
pendix A.

4. While this function gives a noticeably large upper bound on the number of sufficiently many auxiliary arguments, we
observe in Section 7 empirically that the number of auxiliary arguments needed for obtaining a 0-cost solution can
depend drastically on the considered semantics.

514

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Proposition 5. Let P = (A,E+, E−, stb) be an instance of the AF synthesis problem. Consider
the following conditions.

1. ∀S ∈ SE+ we have S 6⊂ S′ for all S′ ∈ ImpliedCF (SE+).

2. ∅ /∈ SE+ .

3. SE+ ∩ SE− = ∅.

4. |A \ (
⋃
S∈SE+

S)| > AuxArgs(stb, SE+).

If there is a solution AF F to P with cost(P, F) = 0, then conditions 1-3 hold. If conditions 1-4
hold, then there is a solution AF F to P with cost(P, F) = 0.

Interestingly, the negative examples play a relatively minor role in 0-cost solutions under the
stable semantics (see condition 3 of Proposition 5). In contrast to conflict-free or admissible sets,
existence of stable extensions does not directly imply the existence of further stable extensions for
an unrestricted set of argumentsA. This observation also follows from formal results in Dunne et al.
(2015, Lemma 2, and Proposition 1 and 7).

Example 7. The AF Fstb from Example 3 has stb(Fstb) = {{a, c}, {b, c}} = S′. Conditions 1-
3 from Proposition 5 hold for S′. One can synthesize an AF, e.g., Fstb , as a 0-cost solution to
P ′stb = ({a, b, c}, {({a, c}, 1), ({b, c}, 1)}, ∅, stb).

We move on to the preferred semantics. Preferred semantics, in the context of 0-cost solutions
for AF synthesis, is similar to stable semantics, and conditions for existence of 0-cost solutions can
be defined similarly as well, again based on Dunne et al. (2015). For readability we exclude in the
following proposition the special case with an empty set of positive examples. The reason for this
is to exclude a special handling in the following proposition for the case of no positive examples
and negative examples covering all subsets of the arguments (then, trivially by definition, no 0-cost
solutions exist). We later show that an optimal solution to an AF synthesis instance under preferred
semantics with no positive examples is straightforward to obtain (see Proposition 7). A proof of the
following proposition is provided in Appendix A.

Proposition 6. Let P = (A,E+, E−, prf) be an instance of the AF synthesis problem with E+

non-empty. Consider the following conditions.

1. ∀S ∈ SE+ we have S 6⊂ S′ for all S′ ∈ ImpliedADM (SE+).

2. SE+ ∩ SE− = ∅.

3. |A \ (
⋃
S∈SE+

S)| > AuxArgs(adm,SE+).

If there is a solution AF F to P with cost(P, F) = 0, then conditions 1-2 hold. If conditions 1-3
hold, then there is a solution AF F to P with cost(P, F) = 0.

As for stable semantics, presence of preferred extensions does not directly imply the existence of
further preferred extensions (Dunne et al., 2015, Lemma 4, and Proposition 2 and 9). That is, in case
one knows that the extensions in S are preferred extensions—but not necessarily all of the preferred
extensions—of some AF, then there is always an AF F that has prf (F) = S. This suggests that,

515

NISKANEN, WALLNER, & JÄRVISALO

positive E+ negative E−

e1 = ({a, b, c}, 2) e5 = ({a′, b, c}, 2) e8 = ({a′, b′, c′}, 1)
e2 = ({a, b, c′}, 2) e6 = ({a′, b, c′}, 2)
e3 = ({a, b′, c}, 2) e7 = ({a′, b′, c}, 2)
e4 = ({a, b′, c′}, 2)

a b c

a′ b′ c′

F ′

a b c

a′ b′ c′

d

F ′′

Figure 4: Effect of restrictions on the set of arguments (example from Baumann et al., 2014, 2016)

without knowledge of the AF, there is no direct way of deciding whether a given set of preferred
extensions contains all preferred extensions of an AF.

However, with (some) knowledge of the given AF, one can infer from a given set of preferred ex-
tensions that there have to be more preferred extensions in the AF. An example is given in Baumann
et al. (2014, 2016), where so-called compact realizability is investigated. In particular, these works
study the problem of whether there exists an AF F = (A,R) for given set of sets S s.t. σ(F) = S
and A =

⋃
S∈S S (only arguments from the sets may be used). We formalize this example in the

context of AF synthesis next, to illustrate this point.

Example 8 (adapted from Baumann et al., 2014, 2016). Consider AF synthesis instance P =
(A,E+, E−, stb). Let A = {a, b, c, a′, b′, c′} and the examples as shown in Figure 4. The unique
optimal solution AF F ′ to P , which satisfies all positive examples but not the negative example e8
is shown in Figure 4. Any AF F = (A,R) that satisfies all of the positive examples E+ has to
have the same attack structure as F ′. Intuitively, if the positive examples are to be satisfied, there
can only be attacks between a and a′, b and b′, and c and c′. Then, for positive examples to be
stable, mutual attacks between a and a′, b and b′, and c and c′ have to be present. In this case, also
{a′, b′, c′} is stable. Note that SE+ satisfies conditions 1-3 of Proposition 5 but not condition 4. On
the other hand, for the AF synthesis instance to P ′ = (A′, E+, E−, stb) with A′ = A∪{d}, the AF
F ′′ shown in Figure 4 is a 0-cost solution AF to P ′. In this case, a single additional argument, not
occurring in the positive examples, is enough to enforce {a′, b′, c′} not being stable. For preferred
semantics, the same observation can be made, i.e., considering P ′′ = (A,E+, E−, prf), an AF
satisfying the positive examples cannot satisfy the negative example as well.

In the context of an AF synthesis instance P = (A,E+, E−, σ), the previous example suggests
that, under restrictions on the set A and σ ∈ {stb, prf }, existence of 0-cost solution AFs to P

516

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Table 1: Complexity of AF synthesis
no restrictions E+ = ∅ E− = ∅

Conflict-free NP-c trivial trivial
Admissible NP-c trivial trivial

Stable NP-c trivial NP-c
Grounded in P in P in P
Complete in NP in P in NP
Preferred NP-hard, in ΣP

2 in P NP-hard, in ΣP
2

require stronger conditions than SE+ ∩ SE− = ∅ (condition 3 in Proposition 5 and condition 2 in
Proposition 6). Or, put differently, there is an interconnection between implied stable or preferred
extensions and the set of arguments; no or few arguments, not occurring in positive examples, can
imply further extensions, and many arguments outside the positive examples can imply less further
extensions. Similarly, under admissible semantics, if the set of arguments is restricted, then more
admissible sets might be present than returned by ImpliedADM (this function gives a lower bound
on which sets must be admissible).

5. Complexity of AF Synthesis

We continue by analyzing the computational complexity of the AF synthesis problem.
Recall that NP is the complexity class comprising of problems that can be solved via a non-

deterministic polynomial time algorithm, and P the class of problems that can be solved with a
deterministic polynomial time algorithm. The class coNP is the complementary class of NP, that is,
coNP contains all problems that have their complementary problem in NP. A decision problem is
the complementary of another decision problem if a “yes” instance of the former is a “no” instance
of the latter, and vice versa. We will also consider the class ΣP

2 , which consists of problems that
can be solved via a non-deterministic polynomial time algorithm that can access an NP oracle that
decides a problem in NP in constant time.

As the main results of this section, we show that AF synthesis is NP-complete in the unrestricted
case under the conflict-free, admissible, and stable semantics. Furthermore, we show that while
restricting either E+ or E− to be empty yields fragments of the problem where a trivial AF solves
the problem optimally, NP-completeness persists even for E− = ∅ under the stable semantics. The
results are summarized in Table 1.

We first outline special cases of AF synthesis in which a trivial solution AF is guaranteed to
be optimal. In particular, if no positive examples are present, then the complete digraph F =
(A, 2A × 2A) satisfies all negative examples e with Se 6= ∅ under the conflict-free, admissible,
and stable semantics (F has no stable extensions, and the only conflict-free and admissible set is
∅). If the set of negative examples E− is empty, then AF synthesis under the conflict-free and
admissible semantics is trivial by constructing the AF F = (A, ∅) (every subset of A is conflict-free
and admissible).

For the complete and preferred semantics, if E+ = ∅, one can construct a solution AF with
one single complete and preferred extension, chosen either outside the negative examples, or, if
all subsets of arguments are specified as a negative example, among the negative examples with
minimum weight. Note that polynomial decidability refers to the input of an AF synthesis instance

517

NISKANEN, WALLNER, & JÄRVISALO

P = (A,E+, E−, σ), which may contain an exponential number of examples (exponential w.r.t.
the set of arguments A).

Proposition 7. An optimal solution AF F ∗ can be computed in polynomial time for an AF synthesis
instance P = (A,E+, E−, σ) if one of the following conditions holds.

1. σ ∈ {cf , adm, prf , stb, com} and E+ = ∅.

2. σ ∈ {cf , adm} and E− = ∅.

Proof. If the first condition is met, the AF F = (A,R) with R = (A × A) satisfies cf (F) =
adm(F) = {∅} and stb(F) = ∅. For complete and preferred semantics, a direct polynomial time
algorithm suffices to find an optimal solution. One can construct an AF that has a unique complete
(preferred, grounded) extension that is equal to a given set, by having self attacks for all arguments
outside that set. Thus, one has to choose a set that shall be complete (preferred, grounded) such
that overall cost is optimal. Since there are no positive examples, by assumption, one has to make
sure that either (i) no negative example is dissatisfied, or (ii) in case SE− = 2A (negative examples
cover all subsets of arguments) to choose a negative example to dissatisfy with minimum weight.
In both cases, one can find a set of arguments to make complete in polynomial time. First sort the
negative examples according to their argument sets (ordering, e.g., the sets lexicographically). Then
iterate through all subsets of A, in the same order and check whether the current set is in the set
of negative examples, and storing the minimum negative example found so far. If the current set
is not part of the negative examples, construct an AF with that set as its single complete extension
and terminate. Otherwise, after all subsets of A have been iterated, it follows that SE− = 2A. Then
terminate by constructing an AF with a single complete extension equal to a negative example with
minimum weight. This algorithm iterates (after sorting) up to |E−| + 1 sets, implying polynomial
time, overall. The cost of the constructed AF is optimal (either 0-cost or, if SE− = 2A, with cost of
a negative example with minimum weight; if several examples have the same argument set they can
be merged to a single example with sum of their weights). If the second condition is met, the AF
F ′ = (A, ∅) satisfies cf (F ′) = adm(F ′) = 2A.

The above polynomial-time algorithms are trivial (i.e., a trivial solution solves the problem)
except for the case E+ = ∅ and σ ∈ {com, prf }, which we demonstrate via a simple example.

Example 9. Consider an AF synthesis instance P = (A, ∅, E−, σ) with arguments A = {a, b, c},
the set of negative examples E− = {({a}, 1), ({a, b, c}, 5)}, and σ ∈ {com, prf }. Since SE− 6=
2A, we pick {b} 6∈ SE− and add a self-attack to all arguments not in {b}, i.e., R = {(a, a), (c, c)}.
This results in the AF F = (A,R) with the single σ-extension {b}. The cost of F is zero. The set
{b} can be found in polynomial time: iterate through the given set E− and check whether some
subset of A is not part of E−.

We now turn our attention to the NP-hard cases of the AF synthesis problem under the conflict-
free, admissible, and stable semantics. Formally, the decision problem corresponding to AF syn-
thesis consists of an AF synthesis instance P = (A,E+, E−, σ) and an integer k ≥ 0, and asks
whether there is an AF F = (A,R) with cost(P, F) ≤ k. In all of the following hardness proofs we
construct an AF synthesis instance that is polynomial in size w.r.t. the problem instance we reduce
from (for instance, the set of examples E+ and E− are polynomial in size in regards to the set of
arguments A).

518

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

positive examples
satisfied not satisfied
({xT , xF }, 3) ({x, xT }, 1)
({x, xF }, 1) ({y, yF }, 1)
({yT , yF }, 3)
({y, yT }, 1)
({x, y}, 3)
({x, yT }, 3)
({x, yF }, 3)
({xT , y}, 3)
({xT , yT }, 3)
({xT , yF }, 3)
({xF , y}, 3)
({xF , yT }, 3)
({xF , yF }, 3)

negative examples
({x, xT , xF }, 3)
({y, yT , yF }, 3)
({x, xT , y, yF }, 3)

x

xT xF

y

yT yF

Figure 5: Illustration of reduction in proof of Proposition 8 for formula (x ∨ ¬y).

Intuitively, the main source of NP-hardness of the AF synthesis problem for the considered se-
mantics lies in finding an optimal subset of examples from which to synthesize an AF. We start
with the conflict-free semantics and prove NP-hardness by a reduction from the Boolean satisfia-
bility problem. For intuition on the reduction, “choosing” a truth assignment can be simulated by
a set of positive and negative examples. Assume that x is a Boolean variable, then constructing
three arguments, x, xT , and xF , and positive examples containing the sets {x, xT }, {x, xF }, and
{xT , xF }, and a negative example {x, xT , xF } “forces” a truth assignment on x if the positive ex-
ample {xT , xF } and the negative {x, xT , xF } are attached with sufficiently high weights (“high”
to be made formal below). For the upcoming reduction, we illustrate this in Figure 5. To see why
these examples imply an assignment, first consider the negative example. This example implies that
there must be an attack between any of the three arguments. Since {xT , xF } has a high weight,
such an attack does not occur between the arguments xT and xF . Thus, there is a conflict in the
sets {x, xT } or {x, xF }. If an attack is synthesized between x and xT , then a corresponding truth
value assignment would assign x to true, and, otherwise, an attack is synthesized between x and xF ,
implying an assignment of x to false in this simulation. Ensuring that not both sets are conflicting
(assigning x to both true and false), and incorporation of satisfaction of a given Boolean formula can
be achieved via further examples and setting an appropriate k. For instance, satisfaction of clauses
of a Boolean formula is simulated by ensuring that attacks have to be present via negative examples.

Proposition 8. AF synthesis is NP-complete under the conflict-free semantics.

519

NISKANEN, WALLNER, & JÄRVISALO

Proof. For an AF synthesis instance P = (A,E+, E−, cf) membership in NP follows from a guess
of an AF F = (A,R), since cost(P, F) can be computed in polynomial time.

For hardness, we provide a reduction from the satisfiability problem of conjunctive normal
form (CNF) Boolean formulas. Let φ be a propositional formula in 3-CNF over variables X =
{x1, . . . , xn}, |X| = n and set of clauses C. We define the sets

E+ ={({xi, xTi }, 1) | xi ∈ X} ∪ (1)

{({xi, xFi }, 1) | xi ∈ X} ∪ (2)

{({xTi , xFi }, n+ 1) | xi ∈ X} ∪ (3)

{({y, z}, n+ 1) | xi, xj ∈ X, i 6= j, y ∈ {xi, xTi , xFi }, z ∈ {xj , xTj , xFj }}, (4)

E− ={({xi, xTi , xFi }, n+ 1) | xi ∈ X} ∪ (5)

{({xi, xTi | xi ∈ c} ∪ {xi, xFi | ¬xi ∈ c}, n+ 1) | c ∈ C}, (6)

and further the set of arguments as A = {xi, xTi , xFi | xi ∈ X}. Now let P = (A,E+, E−, cf)
be the constructed instance for AF synthesis with bound k = n. This AF synthesis instance can be
computed in polynomial time and is of polynomial size w.r.t. the formula φ. Intuitively, one cannot
satisfy all examples of forms (1), (2), (3), and (5) simultaneously, and due to the chosen weights and
cost limit, one has to violate either (1) or (2) for a given xi ∈ X , thus “choosing” a truth assignment
over X (true if and only if an attack between xi and xTi is synthesized). We now claim that there
exists an AF F = (A,R) with cost(P, F) ≤ n iff φ is satisfiable.

“Only-if” direction: Assume that F = (A,R) has cost(P, F) ≤ n. Then all examples with
weight n + 1 are satisfied by F . It is immediate that for each xi ∈ X we have either {xi, xTi } ∈
cf (F) or {xi, xFi } ∈ cf (F) but not both. If both are conflict-free, then, since {xTi , xFi } is conflict-
free (weight is higher than n), it holds that {xi, xTi , xFi } is conflict-free, as well. This, however,
contradicts that the cost of F is lower than n + 1. If neither {xi, xTi } nor {xi, xFi } is conflict free,
the two examples incur a cost of 2, which would be a contradiction with the cost of F being at most
n, since for each xi at least one of the examples is not satisfied, incurring a cost of at least n − 1.
This straightforwardly defines a truth assignment τ(xi) = 0 iff {xi, xTi } ∈ cf (F) and τ(xi) = 1
otherwise. Suppose τ does not satisfy φ. Then there exists a c ∈ C s.t. τ 6|= c and τ does not satisfy
any literal l in c.

τ(l) = 0,∀l ∈ c
iff ∀l ∈ c

l = xi implies τ(xi) = 0 and

l = ¬xi implies τ(xi) = 1

iff ∀l ∈ c
l = xi implies {xi, xTi } ∈ cf (F) and

l = ¬xi implies {xi, xFi } ∈ cf (F)

iff {xi, xTi | xi ∈ c} ∪ {xi, xFi | ¬xi ∈ c} ∈ cf (F) (∗)
only-if cost(P, F) ≥ n+ 1

Conclusion (∗) follows from (4): for each xi, xj ∈ X with xi 6= xj there are no attacks between
sets {xi, xTi , xFi } and {xj , xTj , xFj }.

520

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

“If” direction: Assume that φ is satisfiable. Construct an AF F = (A,R) with R = {(xi, xTi) |
τ(xi) = 1} ∪ {(xi, xFi) | τ(xi) = 0}. It is immediate that F satisfies all non-unit-weighted
examples except for (6), which follows from a similar consideration as in the only-if direction.
Finally, the cost of F is n (exactly one unit-weighted example per Boolean variable is not satisfied).
We illustrate a solution AF with cost less than n + 1 and the satisfaction of examples for a simple
satisfiable formula in Figure 5.

The reduction we use for establishing NP-hardness under the admissible semantics follows es-
sentially the same idea.

Proposition 9. AF synthesis is NP-complete under the admissible semantics.

Proof. NP-completeness for admissible semantics follows the same reasoning as the proof of Propo-
sition 8, i.e., the same reasoning for membership in NP can be applied, and the same hardness
reduction, with the following changes.

“Only-if” direction: the same unit-weighted examples are mutually exclusive for a solution AF
as in the conflict-free case. If both unit-weighted examples for a Boolean variable are satisfied, then
the corresponding negative example of form 5 is not satisfied (the set of arguments is the conflict-
free union of three admissible sets). Note that any solution AF to the AF synthesis instance with
cost at most n may contain attacks only between either xi and xTi or xi and xFi . Further, each
of these attacks is bidirectional: in case there is an attack between xi and xTi , then both {xi, xFi }
and {xTi , xFi } are admissible sets, implying that xi and xTi have a mutual attack. In this case
each conflict-free set is admissible, and thus the same reasoning as in the remainder of the only-if
direction of the proof of Proposition 8 can be applied for this proof.

For the “if” direction, a solution AF with cost below the bound can be synthesized from a
satisfying truth assignment by the same construction as in the proof of Proposition 8, except that
each attack has to be bidirectional (see also above for the only-if direction).

For the stable semantics, we establish NP-completeness as well; however, surprisingly, in con-
trast to the conflict-free and admissible semantics, AF synthesis under the stable semantics is NP-
complete even when E− is empty. The reduction is technically more involved, which is why we
present the proof in Appendix A. Intuitively, presence of attacks can be simulated via arguments
outside the set of a positive example, since if the set is stable, it has to attack all arguments outside
the set. This is also a reason why hardness holds even if E− is empty.

Proposition 10. AF synthesis is NP-complete for stable semantics, even if the set of negative exam-
ples is empty.

For preferred semantics, the same hardness proof as for stable semantics can be used to show
NP-hardness. We also establish membership in the class ΣP

2 .

Proposition 11. AF synthesis is in ΣP
2 and NP-hard for preferred semantics. Hardness holds even

if the set of negative examples is empty.

Finally we observe that AF synthesis under the grounded semantics is computable in polynomial
time, since exactly one grounded extension is present in an AF.

Proposition 12. Let P = (A,E+, E−, grd) be an instance of the AF synthesis problem. An optimal
solution AF F ∗ to P can be constructed in polynomial time.

521

NISKANEN, WALLNER, & JÄRVISALO

Proof. Any solution AF F for a given instance P = (A,E+, E−, grd) has exactly one grounded
extension. For a given set of arguments E, an AF F with grd(F) = {E} can be constructed in
polynomial time (all arguments outside of E self-attacking). To find one with minimum cost, one
can iterate in polynomial time through all candidate AFs.

1. Candidate AF F with its grounded extension E among the positive examples, i.e. e ∈ E+

with Se = E. The cost of F is equal to the sum of all weights of E+ \ {e} plus we′ if there
is a negative example e′ with Se′ = E. Iterating over all positive examples yields one with
minimum cost from these candidates.

2. Candidate AF F with its grounded extension E not among the positive examples, i.e., E /∈
SE+ . The cost of F is is equal to the sum of all weights of E+ plus we′ if there is a negative
example e′ with Se′ = E. If there is a set of arguments neither among the positive examples
nor the negative examples, i.e., 2A \ (SE+ ∪ SE−) 6= ∅, then an AF with minimum cost, over
the candidates, is equal to the sum of all weights of E+. Otherwise, if 2A \ (SE+ ∪SE−) = ∅,
iterating over all negative examples yields one with minimum cost over all the considered
candidates.

By considering both alternatives above, a minimum cost AF F for P can be found. Running time
is polynomial, since we iterate over examples from the input.

Example 10. Consider an AF synthesis instance P = (A,E+, E−, grd) with A = {a, b, c}, E+ =
{({a, b}, 1), ({a, c}, 1), ({b, c}, 5)}, and E− = {({a}, 1), ({a, b, c}, 5)}. We iterate through the
candidate AFs. For each positive example e ∈ E+, we construct an AF by adding a self-attack to
all arguments outside Se. This results in three AFs, and the one with minimum cost is F = (A,R)
with R = {(a, a)}, satisfying the maximum-weight positive example ({b, c}, 5). The cost of F is 2,
since the two other positive examples are not satisfied, and all negative examples are satisfied. It
remains to consider the candidate AF with the grounded extension not among the positive examples.
However, the cost of such an AF is at least the sum of the weights of positive examples, which is
strictly larger than the cost of F . Hence we have arrived at an optimal solution with F .

Finally, we note that AF synthesis under the complete semantics is in NP without restrictions
on the type of examples. This is witnessed by the polynomial-time (Max)SAT encoding presented
in Section 6.

Proposition 13. AF synthesis is in NP for complete semantics.

However, the question of whether NP-hardness can be established remains at present open. In
particular, the NP-hardness reductions presented here do not appear to be directly adaptable to the
case of the complete semantics. In the empirical evaluation presented in Section 7, we observe that
at least empirically AF synthesis under complete is not easier than for the semantics for which we
established NP-completeness.

6. Constraint-Based Synthesis of AFs

We continue by presenting declarative encodings for AF synthesis under several different argumen-
tation semantics. We provide encodings both in answer-set programming (using the built-in opti-
mization constructs) and as maximum satisfiability. The success of ASP and SAT-based approaches
to acceptance and enumeration problems over AFs motivates our choice of declarative languages.

522

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

6.1 MaxSAT-based AF Synthesis for NP Fragments

We start with presenting MaxSAT encodings of AF synthesis. For background on MaxSAT, recall
that for a Boolean variable x, there are two literals, x and¬x. A clause is a disjunction (∨) of literals.
A truth assignment τ is a function from variables to true (1) and false (0). Satisfaction is defined as
usual. A weighted partial MaxSAT (or simply MaxSAT) instance consists of hard clauses ϕh, soft
clauses ϕs, and a weight function w associating to each soft clause C ∈ ϕs a positive weight w(C).
An assignment τ is a solution to a MaxSAT instance (ϕh, ϕs, w) if τ satisfies ϕh. The cost of τ ,
c(τ), is the sum of weights of the soft clauses not satisfied by τ . A solution τ to MaxSAT instance
ϕ is optimal if c(τ) ≤ c(τ ′) for any solution τ ′ to ϕ.

Let P = (A,E+, E−, σ) be an AF synthesis instance with A = {a1, . . . , an} the set of ar-
guments, E+ the set of positive examples, E− the set of negative examples, and a semantics
σ ∈ {cf , adm, stb, com}. In order to synthesize an optimal solution AF F = (A,R) for P ,
we declare propositional variables Exte for each e ∈ E+ ∪ E−, and ra,b for each a, b ∈ A. The
intended meaning of these variables is as follows: Exte = 1 indicates Se ∈ σ(F), and ra,b = 1
indicates (a, b) ∈ R. The hard clauses are of the form∧

e∈E+

(Exte → ϕσ(Se)) ∧
∧
e∈E−

(¬Exte → ¬ϕσ(Se))

where ϕσ(Se) encodes the fact that Se is a σ-extension. In other words, for conflict-free sets we
have the conjunction of negative literals

ϕcf (Se) =
∧

a,b∈Se

¬ra,b,

stating that no attacks should occur between arguments in the set Se of the example e. Admissible
sets are encoded by the formula

ϕadm(Se) = ϕcf (Se) ∧
∧
a∈Se

∧
b∈A\Se

(
rb,a →

∨
c∈Se

rc,b

)
,

that is, Se is conflict-free, and any attack on an argument in Se implies a defending attack on
the attacking argument, i.e., every argument in Se is defended by Se. Likewise, if Se is a stable
extension, it is conflict-free and its range is the whole set of arguments, which we encode as

ϕstb(Se) = ϕcf (Se) ∧
∧

a∈A\Se

∨
b∈Se

rb,a

 .

Finally, our encoding for the complete semantics is

ϕcom(Se) = ϕadm(Se) ∧
∧

a∈A\Se

(∨
b∈A

(
rb,a ∧

∧
c∈Se

¬rc,b

))
,

ensuring that all arguments outside Se are not defended by Se.
The soft clauses, on the other hand, encode the objective function of AF synthesis under mini-

mization. For each e ∈ E+ we have a soft clause Exte, and for each e ∈ E− a soft clause ¬Exte,
with corresponding weights. An optimal solution to an AF synthesis instance is directly extracted
from an optimal solution τ to the MaxSAT instance by including (a, b) to the attack structure iff
τ(ra,b) = 1.

523

NISKANEN, WALLNER, & JÄRVISALO

6.2 MaxSAT-based CEGAR for AF Synthesis under Preferred Semantics

We continue by providing a MaxSAT-based algorithm for AF synthesis under the preferred seman-
tics, instantiating a general approach called counterexample-guided abstraction refinement (CE-
GAR) (Clarke, Grumberg, Jha, Lu, & Veith, 2003; Clarke, Gupta, & Strichman, 2004). The al-
gorithm (see Algorithm 1) starts with an NP-abstraction, which overapproximates the problem at
hand and is in this case solved via MaxSAT. We use a SAT solver to check whether the solution
to the abstraction is actually a solution to the original problem by asking for a counterexample. If
no such counterexample exists, we have found an optimal solution, and otherwise, we refine the
NP-abstraction by adding constraints that rule out the given counterexample, and iteratively call
MaxSAT on the refined abstraction.

For AF synthesis under the preferred semantics, an NP-abstraction is formed by considering
the complete semantics for positive examples, since AF synthesis under complete is solvable via a
single MaxSAT call. For negative examples, we can simply encode the property ’not preferred’ in
NP via a disjunction of ’not admissible’ and ’exists admissible superset’. To this end, we introduce
fresh Boolean variables Supersete, interpreting Supersete = 1 iff Se has an admissible superset.
Now, the soft clauses SOFTCLAUSES(E+, E−) are almost the same as presented in the previous
section for NP-fragments. For each positive example e ∈ E+ we add a unit soft clause Exte, and
for each negative e ∈ E− a binary soft clause ¬Exte∨Supersete, with weights corresponding to the
weights of the examples.5

Similarly as for the NP fragments, we encode the intended meaning of the Exte and the Supersete
variables as hard clauses. In order to accomplish this for the Supersete variables, for each a ∈ A
and e ∈ E− we define a Boolean variable xea with the interpretation xea = 1 iff the argument a is
included in an admissible superset of Se. Hence, the hard clauses of the MaxSAT encoding of this
abstraction are

ABSTRACTION(E+, E−) =
∧
e∈E+

(Exte → ϕcom(Se)) ∧
∧
e∈E−

(¬Exte → ¬ϕadm(Se))

∧
∧
e∈E−

(Supersete → ψ(Se)) ,

where ϕadm(Se) and ϕcom(Se) are defined as in the NP fragments, and the formula

ψ(Se) =
∧
a∈Se

xea∧
∨

a∈A\Se

xea∧
∧
a,b∈A

(ra,b → (¬xea ∨ ¬xeb))∧
∧
a,b∈A

(
(xea ∧ rb,a)→

∨
c∈A

(xec ∧ rc,b)

)

expresses an admissible superset of Se. In addition, we observe that if there exist two positive
examples e, e′ ∈ E+ with Se ⊂ Se′ , either e or e′ is not satisfied under preferred semantics due to
the subset-maximality property of the preferred semantics. Hence we also include the binary hard
clauses

NOSUBSET(E+) =
∧

e,e′∈E+,Se⊂Se′

(¬Exte ∨ ¬Exte′)

to the MaxSAT encoding.

5. We note that one presumably cannot similarly encode ’is preferred’ for a positive example, since one would have to
consider the admissibility of all possible supersets of the example, unlike for a negative example, the satisfaction of
which is implied by a single admissible superset.

524

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Algorithm 1 CEGAR-based AF synthesis on input (A,E+, E−, σ = prf).
1: ϕh ← ABSTRACTION(E+, E−) ∧ NOSUBSET(E+)
2: ϕs ← SOFTCLAUSES(E+, E−)
3: while true do
4: τ ← MAXSAT(ϕh, ϕs)
5: optimal← true
6: for e ∈ E+, e is satisfied do
7: result ← SAT(COUNTEREXAMPLE(e, τ))
8: if result = satisfiable then
9: ϕh ← ϕh ∧ REFINE(e, τ)

10: optimal← false
11: break
12: if optimal = true then return Fτ

Next, we enter the main loop of the CEGAR algorithm, starting with a MaxSAT call. From an
optimal truth assignment τ we construct the candidate solution AF Fτ = (A,Rτ) with

Rτ = {(a, b) | a, b ∈ A, τ(ra,b) = 1}.

Now we need to check whether Fτ is a valid solution under preferred semantics, which is ac-
complished by considering all positive examples, since negative examples are taken care of in the
MaxSAT call. If a positive example e ∈ E+ is not satisfied, we know that Se 6∈ com(Fτ), and
hence Se 6∈ prf (Fτ). However, if e ∈ E+ is satisfied (Se ∈ com(Fτ)), we still need to check
whether Se ∈ prf (Fτ).

Therefore, we loop through all satisfied positive examples e, and check using a SAT solver
whether Se ∈ prf (Fτ) by asking it for a counterexample, which in this case is a complete exten-
sion which is a strict superset of Se. For this SAT solver call, complete semantics are encoded
following Besnard and Doutre (2004). For each a ∈ A, we define a Boolean variable xa with the in-
terpretation xa = 1 iff a is included in a complete extension of the candidate AF Fτ . The complete
semantics can now be expressed by the Boolean formula

EXTENSION(Fτ , com) =
∧

(a,b)∈Rτ

(¬xa ∨ ¬xb) ∧
∧

(b,a)∈Rτ

xa →
 ∨

(c,b)∈Rτ

xc


∧
∧
a∈A

 ∧
(b,a)∈Rτ

 ∨
(c,b)∈Rτ

xc

→ xa

 .

The satisfying truth assignments to the formula above correspond exactly to the complete extensions
of the AF Fτ . Finally, we need to check whether there is a strict superset of Se, expressed by

SUPERSET(Se) =
∧
a∈Se

xa ∧
∨

a∈A\Se

xa.

Now, if there exists a superset of Se which is also a complete extension, the formula

COUNTEREXAMPLE(e, τ) = EXTENSION(Fτ , com) ∧ SUPERSET(Se)

525

NISKANEN, WALLNER, & JÄRVISALO

is satisfiable, proving that Se 6∈ prf (Fτ). If this is the case, we have not arrived at a valid solution,
since e is not satisfied under preferred semantics, although it is satisfied under complete semantics.
In this case, we add the refinement clause

REFINE(e, τ) = Exte →

 ∨
(a,b)∈Rτ

¬ra,b ∨
∨

(a,b) 6∈Rτ

ra,b

 ,

which states that if we want to satisfy the example, we need a different attack structure. When for
each satisfied example e ∈ E+ it holds that Se ∈ prf (Fτ), we have arrived at an optimal solution.

6.3 ASP-Based AF Synthesis

In this section we describe answer-set programming (ASP) (Brewka, Eiter, & Truszczynski, 2011)
encodings for the AF synthesis problem. We begin by recalling ASP, but also refer the reader
to further introductions on this topic (e.g. Eiter, Ianni, & Krennwallner, 2009; Gebser, Kaminski,
Kaufmann, & Schaub, 2012).

We fix a countable set U of constants. An atom is an expression p(t1, . . . , tn), where p is a
predicate of arity n ≥ 0 and each term ti is either a variable or an element from U . An atom is
ground if it is free of variables. BU denotes the set of all ground atoms over U . A (disjunctive) rule
r is of the form

a1 | · · · | an ← b1, . . . , bk, not bk+1, . . . , not bm. (7)

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are atoms, and “not ”
stands for default negation. The head of r is the set head(r) = {a1, . . . , an} and the body of
r is body(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, body+(r) = {b1, . . . , bk} and
body−(r) = {bk+1, . . . , bm}. A rule r is ground if r does not contain variables. A program is a finite
set of disjunctive rules. If each rule in a program is ground, we call the program ground.

For any program π, let UP be the set of all constants appearing in π. Define GP as the set of
rules rσ obtained by applying, to each rule r ∈ π, all possible substitutions σ from the variables
in r to elements of UP . An interpretation I ⊆ BU satisfies a ground rule r iff head(r) ∩ I 6= ∅
whenever body+(r) ⊆ I and body−(r) ∩ I = ∅. Interpretation I satisfies a ground program π, if
each r ∈ π is satisfied by I . A non-ground rule r (resp., a program π) is satisfied by an interpretation
I iff I satisfies all groundings of r (resp., GP). An interpretation I ⊆ BU is an answer set of π
if it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct πI = {head(r) ← body+(r) |
I ∩ body−(r) = ∅, r ∈ GP}.

In this work we also consider optimization programs (following Calimeri, Faber, Gebser, Ianni,
Kaminski, Krennwallner, Leone, Ricca, & Schaub, 2012), in particular programs with weak con-
straints of the form

⇐ b1, . . . , bn.[w, t1, . . . , tm], (8)

with each bi an atom, each tj a term, and w an integer. Towards optimal answer sets we define
weak(π, I) = {(w, t1, . . . , tm) | ⇐ b1, . . . , bn.[w, t1, . . . , tm] ∈ GP and {b1, . . . , bn} ⊆ I}, for
an answer set I . In words, in weak(π, I) we collect all weak constraints satisfied by I (terms ti
can be used to distinguish different sources with the same weight in the set weak(π, I)). The cost
of I is then

∑
(w,t1,...,tm)∈weak(π,I)w, i.e., the sum of weights of each satisfied weak constraint. An

answer set I is optimal if there is no answer set J that has strictly lower cost than I .

526

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

% extract which sets are positive (negative)
set(ID,pos)← pos(ID,X).
set(ID,neg)← neg(ID,X).
% non−deterministically choose sets to satisfy
choose(ID)← set(ID,M), not n choose(ID).
n choose(ID)← set(ID,M), not choose(ID).
% weights
⇐ n choose(ID), weight(ID,W). [W,ID]

Listing 1: Module πbase

% non−deterministically guess attack structure
att(X,Y)← arg(X), arg(Y), not n att(X,Y).
n att(X,Y)← arg(X), arg(Y), not att(X,Y).

Listing 2: Module πatt

Our ASP encoding of AF synthesis is based on several program modules that we conjoin for the
different semantics. We partially base our NP encodings on existing encodings for static problems
for AFs from Egly et al. (2010). For preferred semantics, we adapt the recent disjunctive encoding
from Gaggl et al. (2015). Let P = (A,E+, E−, σ) be an AF synthesis instance. We encode
arguments A, examples E+ = {e1, . . . , en} and E− = {en+1, . . . , em}, weights, and semantics as

{arg(a). | a ∈ A} ∪
{pos(i, a). | a ∈ Sei , ei ∈ E+} ∪
{neg(i, a). | a ∈ Sei , ei ∈ E−} ∪

{weight(i, wei). | ei ∈ E+ ∪ E−} ∪
{sem(i, σ). | ei ∈ E+ ∪ E−}.

We denote this set of facts by πP .
In Listing 1 we encode semantics independent derivations. In particular, we first derive via

the set predicate for each example its polarity (positive or negative). The next two rules encode
a typical ASP “guess”, i.e., we can choose to either include an example or not with the predicates
choose and n choose. Finally for this listing, we encode via the weak constraint the penalty for
not including an example, which is equal to the weight of the examples not chosen.

The ASP rules in Listing 2 encode the guess for an attack structure for which we verify whether
an example is satisfied or not.

The subsequent ASP rules encode the constraints for each semantics individually. We start with
conflict-free sets in Listing 3. The first rule in this listing encodes a so-called ASP constraint, stating
that it cannot be the case that we have chosen to include a positive example which is not satisfied
in the guessed attack structure: there is an attack between two arguments in the example. Similarly,
the next three rules encode this for the negative examples. More concretely, if we have chosen to
include a negative example, and we have found a conflict inside the set, we derive neg ex ok(i)
for the example ei. The final rule states that it cannot be the case that we have chosen a negative

527

NISKANEN, WALLNER, & JÄRVISALO

% positive examples
← choose(ID), sem(ID,cf), pos(ID,X), pos(ID,Y), att(X,Y).
% negative examples
n cf(ID)← choose(ID), neg(ID,X), neg(ID,Y), att(X,Y), sem(ID,cf).
neg ex ok(ID)← choose(ID), n cf(ID), sem(ID,cf), set(ID,neg).
← sem(ID,S), not neg ex ok(ID), set(ID,neg), choose(ID).

Listing 3: Module πcf

% positive examples
sem(ID,cf)← choose(ID), set(ID,pos), sem(ID,adm).
defeated(ID,X)← choose(ID), pos(ID,Y), sem(ID,adm), att(Y,X).
← choose(ID), att(Y,X), not defeated(ID,Y), sem(ID,adm), pos(ID,X).
% negative examples
sem(ID,cf)← choose(ID), set(ID,neg), sem(ID,adm).
defeated(ID,X)← choose(ID), neg(ID,Y), sem(ID,adm), att(Y,X).
n defended(ID,X)← choose(ID), att(Y,X), not defeated(ID,Y), sem(ID,adm), neg(ID,X).
neg ex ok(ID)← choose(ID), n defended(ID,X), sem(ID,adm), neg(ID,X).

Listing 4: Module πadm

example and have not found a conflict. In the atom sem(ID, S) we use a variable for the semantics
(S) in order to re-use this rule for other semantics.6

For admissible semantics, we encode the requirements for positive and negative examples by
conjoining the rules for conflict-free semantics and the rules in Listing 4. First, in both positive and
negative examples, we rely on the corresponding requirements stated for conflict-free sets. For a
positive example to be satisfied, we require that each attack from outside the set is counterattacked,
encoded here via the second and third rule stating that we defeat each argument outside, and that
it cannot be the case that an argument inside is attacked by a non-defeated attacker. That is, in the
predicate defeated we gather all arguments attacked by an example we have chosen to satisfy, and
the ASP constraint specifies that it cannot be the case that an argument in the example is attacked but
not defended. For the negative examples, we derive neg ex ok(i), i.e., that the example is satisfied,
when either there is a conflict from the conflict-free module or an attacker is not counter-attacked.

The rules for complete semantics (Listing 5) depend on the module for admissible semantics,
and, additionally, state the requirement for a set to be (not) complete. A positive example is satisfied
only if all defended arguments are included, specified by the second and third rule. For negative
examples, analogously, the example is satisfied if a defended argument is not included.

The encoding for stable semantics, shown in Listing 6, depends on the module for conflict-
free sets and states that a positive example is satisfied if we attack all outside arguments (defeat
all outside arguments). We encode this here by stating that it cannot be the case that an argument

6. We note that the first two rules for the negative examples in Listing 3 can be rewritten to a single rule (deriving
neg ex ok), but when experimenting with this variant no noticeable performance difference was observed; we
thus opt for the current slightly more readable encoding. A similar observation was made for the last two rules for
Listing 4. Likewise, there is some redundancy, for an ASP solver, in the last rule of Listing 3, which is re-used for all
semantics: one can “hardcode” the semantics instead of variable S, but, again, our experiments did not indicate any
significant performance difference.

528

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

% positive examples
sem(ID,adm)← choose(ID), set(ID,pos), sem(ID,com).
n defended(ID,X)← choose(ID), att(Y,X), not defeated(ID,Y), sem(ID,com), not pos(ID,X).
← choose(ID), not pos(ID,X), arg(X), not n defended(ID,X), sem(ID,com), set(ID,pos).
% negative examples
sem(ID,adm)← choose(ID), set(ID,neg), sem(ID,com).
n defended(ID,X)← choose(ID), att(Y,X), not defeated(ID,Y), sem(ID,com), not neg(ID,X).
neg ex ok(ID)← choose(ID), not neg(ID,X), arg(X), not n defended(ID,X), sem(ID,com), set(ID,neg).

Listing 5: Module πcom

% positive examples
sem(ID,cf)← choose(ID), set(ID,pos), sem(ID,stb).
defeated(ID,Y)← choose(ID), sem(ID,stb), pos(ID,X), att(X,Y).
← choose(ID), sem(ID,stb), set(ID,pos), arg(X), not pos(ID,X), not defeated(ID,X).
% negative examples
sem(ID,cf)← choose(ID), set(ID,neg), sem(ID,stb).
defeated(ID,Y)← choose(ID), sem(ID,stb), neg(ID,X), att(X,Y).
neg ex ok(ID)← choose(ID), arg(X), not neg(ID,X), not defeated(ID,X), sem(ID,stb), set(ID,neg).

Listing 6: Module πstb

is, for a chosen positive example, neither in the example nor defeated. Analogously, a negative
example is satisfied if it is not conflict-free or there exists an argument outside that is non-attacked
(not defeated).

For obtaining an ASP encoding of AF synthesis for preferred semantics, we extend a recently
proposed encoding of preferred extensions for an AF by Gaggl et al. (2015). While there are other
encodings for (enumerating) preferred extensions for a given AF (Egly et al., 2010; Dvorák, Gaggl,
Wallner, & Woltran, 2011), in the 2015 argumentation competition (Thimm & Villata, 2017) a
comparison between ASP encodings for preferred semantics showed favourable performance for
the encoding of Gaggl et al. (2015).

Our encoding is presented as Listing 7. Encoding AF synthesis for the positive examples follows
very closely the encoding of Gaggl et al. (2015) with the exceptions that the “guess” of a set of
arguments is removed (this part in our encoding of AF synthesis is in the “guess” of an example).
For intuition on this encoding, two techniques have been applied in conjunction with each other
in this encoding: utilization of disjunctive ASP rules to solve coNP or ΣP

2 problems in ASP and
conditional literals. We explain the core part of these techniques, and their usage for our encoding
in sequence.

First, the usage of the spoil follows the nowadays standard technique for encoding coNP or ΣP
2

problems in ASP with disjunctive rules; see also Eiter et al. (2009). Briefly, with this technique, we
here consider a “second” guess that can be a counterexample to the example set being a preferred
extension. This is realized in Line 5 and Line 6: we guess an argument outside the set of arguments
in the example, and extend this set whenever that argument is attacked by a (possible) defender.
The set constructed via the second guess is named “witness”, as its purpose is to witness that the
example set is (not) a preferred extension. In this way, another admissible set (possibly overlapping

529

NISKANEN, WALLNER, & JÄRVISALO

1 % positive examples
2 sem(ID,adm)← choose(ID), set(ID,pos), sem(ID,prf).
3 out(ID,X)← arg(X), not pos(ID,X), choose(ID), set(ID,pos), sem(ID,prf).
4 n trivial(ID)← arg(X), not pos(ID,X), choose(ID), set(ID,pos), sem(ID,prf).
5 witness(ID,X) : out(ID,X)← n trivial(ID), choose(ID), set(ID,pos), sem(ID,prf).
6 spoil(ID) | witness(ID,Z) : att(Z,Y)← witness(ID,X), att(Y,X), choose(ID), set(ID,pos), sem(ID,prf).
7 spoil(ID)← witness(ID,X), witness(ID,Y), att(X,Y), choose(ID), set(ID,pos), sem(ID,prf).
8 spoil(ID)← pos(ID,X), witness(ID,Y), att(X,Y), choose(ID), set(ID,pos), sem(ID,prf).
9 witness(ID,X)← spoil(ID), arg(X), choose(ID), set(ID,pos), sem(ID,prf).

10 ← n trivial(ID), not spoil(ID), choose(ID), set(ID,pos), sem(ID,prf).
11 % negative examples
12 sem(ID,adm)← choose(ID), set(ID,neg), sem(ID,prf).
13 supIn(ID,X)← choose(ID), neg(ID,X), sem(ID,prf).
14 supIn(ID,X)← choose(ID), not supOut(ID,X), not neg(ID,X), sem(ID,prf), arg(X), set(ID,neg).
15 supOut(ID,X)← choose(ID), not supIn(ID,X), not neg(ID,X), sem(ID,prf), arg(X), set(ID,neg).
16 conflictingPRF(ID)← supIn(ID,X), supIn(ID,Y), att(X,Y), choose(ID), set(ID,neg), sem(ID,prf).
17 defeatedPRF(ID,X)← supIn(ID,Y), att(Y,X), choose(ID), set(ID,neg), sem(ID,prf).
18 n defendedPRF(ID,X)← att(Y,X), not defeatedPRF(ID,Y), choose(ID), set(ID,neg), sem(ID,prf).
19 setNotDefendedPRF(ID)← supIn(ID,X), n defendedPRF(ID,X), choose(ID), set(ID,neg),
20 sem(ID,prf).
21 admissibleSetPRF(ID)← choose(ID), not conflictingPRF(ID), not setNotDefendedPRF(ID),
22 set(ID,neg), sem(ID,prf).
23 neg ex ok(ID)← supIn(ID,X), not neg(ID,X), admissibleSetPRF(ID), choose(ID), set(ID,neg),
24 sem(ID,prf).

Listing 7: Module πprf

with the first) is constructed. By standard results in abstract argumentation, if two admissible sets
are non-conflicting, their union is also admissible. If such a set exists, then the union is a larger
admissible set (by Line 5 at least one argument outside the first guess is added), implying that the
example set is not a preferred extension.

By the previous encodings, the example set is forced to be admissible, and thus a second guess
is a counterexample if it represents an admissible set that is a strict superset of the example set. If no
such counterexample exists, then the example set is a preferred extension (by definition). Whenever
spoil is derived, the second guess does not correspond to a strictly larger admissible set. This is
the case when the guessed set (i) is not defended (Line 6), is not conflict-free (Line 7), or is in
conflict with the example set (Line 8). If the example set corresponds to a preferred extension (there
is no counterexample), then one wants to avoid the situation that one has many answer sets for an
individual preferred extension, since many second guesses correspond to non-counterexamples. To
ensure that one has one answer set per preferred extension, and not one per preferred extension and
non-counterexample, whenever spoil is derived, all possible atoms making up counterexamples are
derived, as well. This implies that all the non-counterexamples collapse to one answer set (i.e., each
counterexample is “saturated” to the full unique set of atoms). This is done in Line 9. In this line
of reasoning, disjunctive rules for generating the second guess are required: otherwise deriving all
atoms would not yield a valid answer set (a guess constructed by usage of default negation assumes
non-derivability of atoms not guessed).

530

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

On the other hand, if a counterexample exists (implying that the example set is not preferred),
then in one candidate for an answer set spoil is not derived. Via a simple ASP constraint (Line 10),
this candidate is prevented from being an answer set. By subset-minimality of answer sets (w.r.t.
the reduct), this one counterexample prevents all other non-counterexamples to lead to an answer
set (non-counterexamples are then larger w.r.t. subset inclusion within the reduct). This implies that
there is no answer set for an example set that does not correspond to a subset maximal admissible set
(thus implementing that preferred extensions are subset-maximal admissible sets). Finally, Line 3
and Line 4 are auxiliary rules: deriving the complement of the example set and deriving an atom
indicating non-trivialness (an example set is deemed trivial if it spans the whole set of arguments;
then, in case admissibility holds, the set in question is trivially a preferred extension).

The second technique that was previously employed by Gaggl et al. (2015) on “top” of the tech-
nique to encode coNP or ΣP

2 problems is the use of the conditional “:”, supported by clingo (Geb-
ser, Kaminski, Kaufmann, Ostrowski, Schaub, & Wanko, 2016). Put simply, this conditional is
expanded to a list of literals that satisfy the condition (e.g., to a list of disjunctions on the head).
Conditional literals are utilized in Line 5 (to guess only arguments outside the example set) and in
Line 6 (to expand the disjunction to spoil and any potential defender of an argument in the guess).
For further details, we refer the reader to Gaggl et al. (2015).

For the negative examples, we check, using the already described program modules, whether
admissibility of the example is violated. If this is the case, the example is satisfied. If admis-
sibility holds, the example can only be satisfied in case there exists a superset that is admissible
(i.e., the admissible set is not a preferred extension). To verify this, we guess a superset via the
predicates supIn and supOut, and check admissibility of the superset via auxiliary predicates
conflictingPRF and admissibleSetPRF.

Summarizing, the programs for the semantics are πcf (conflict-free), πcf ∪ πadm (admissible),
πcf ∪ πadm ∪ πcom (complete), πcf ∪ πstb (stable), and πcf ∪ πadm ∪ πprf (preferred). An optimal
answer set for the program for a semantics, when conjoined with πbase ∪ πatt ∪ πP , corresponds to
an optimal solution to the AF synthesis P .

7. Experiments

Complementing the theoretical results, we continue by detailing and presenting results from an
extensive empirical evaluation of the scalability of the MaxSAT and ASP approaches to AF synthe-
sis under various central AF semantics. For the experiments, we considered two distinct ways of
constructing AF synthesis instances. In addition to evaluating the relative performance of different
solvers and algorithms for AF synthesis, we also empirically study the impact of allowing additional
arguments (outside the set of arguments in the given examples) on the cost of optimal solution AFs.

The implementations and benchmarks used in the evaluation are available online at
http://www.cs.helsinki.fi/group/coreo/afsynth/.

7.1 Benchmarks

For the empirical evaluation, we used two different approaches to construct AF synthesis instances.
The first set of benchmarks was generated based on the benchmark AFs used in the ICCMA’15
competition (Thimm et al., 2016) as follows. We selected all AFs among the benchmarks that
have at least five stable extensions. The number of arguments in these 17 AFs ranges from 141 to
964. For each AF, we picked uniformly at random 5 positive examples from the set of extensions.

531

NISKANEN, WALLNER, & JÄRVISALO

To obtain negative examples, we selected 10, 20, . . . , 150 subsets of
⋃
SE+ uniformly at random,

using parg =
∑
e∈E+ |Se|/|E+|
|
⋃

SE+ | as the probability of including an argument in a negative example.
For intuition, this choice of parg makes the sizes of positive and negative examples approximately
the same. Letting A =

⋃
SE+ resulted in instances containing 54 to 370 arguments. Further, we

introduced noise by flipping the role of each example—from positive to negative and vice versa—
with a fixed probability pnoise ∈ {0, 0.25, 0.5}. Weights were associated to each example by picking
uniformly at random integers from the interval [1, 10].

The second set of benchmarks was generated using the following random model. We picked
5, 10, . . . , 80 positive examples from a set of 100 arguments uniformly at random with probability
p+arg = 0.25. Then |E−| = 20, 40, . . . , 200 negative examples were sampled from the set A =⋃
SE+ , and each argument was included with probability p−arg =

∑
e∈E+ |Se|/|E+|
|
⋃

SE+ | . Again, each
example was assigned as weight a random integer from the interval [1, 10]. For each choice of
parameters, this procedure was repeated 10 times to obtain a representative set of benchmarks. The
instances for preferred semantics were generated following the same random model, using |A| = 20,
|E+| = 5, 10, 15, 20 and |E−| = 10, 20, 30, 40, 50 as parameters.

7.2 Experiment Setup

The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core machines with 32-GB mem-
ory and Debian GNU/Linux 8 using a per-instance timeout of 900 seconds. For the experiments,
we used a variety of state-of-the-art MaxSAT solvers to test which type of algorithmic approaches
perform best for AF synthesis under different semantics: MaxHS (version 2.9.0) (Davies & Bac-
chus, 2013) (a SAT-IP hybrid solver based on the implicit hitting set paradigm), as well as the
SAT-based core-guided solvers Maxino (version k16) (Alviano, Dodaro, & Ricca, 2015), MSCG
(version 2014) (Morgado, Ignatiev, & Marques-Silva, 2015), Open-WBO (version 1.3.1) (Martins,
Manquinho, & Lynce, 2014), and WPM3 (version 2015.co) (Ansótegui & Gabàs, 2017). As the
(both non-disjunctive and disjunctive) ASP solver, we used Clingo (version 5.2.1) (Gebser et al.,
2016) as arguably the most efficient current ASP solver. We also experimented with the commercial
IBM CPLEX integer programming solver (version 12.6) on the considered AF synthesis instances
via direct translation of MaxSAT to ILP (Ansótegui & Gabàs, 2013), but it proved to produce con-
siderably more timeouts than any of the other solvers, and is therefore excluded from this evaluation.
For the presumably harder problem of AF synthesis under preferred semantics, we used the SAT-
IP hybrid MaxSAT solver LMHS (MaxSAT evaluation 2016 version) (Saikko, Berg, & Järvisalo,
2016) in the implementation of the abstraction solver in the CEGAR algorithm due to its API which
enables incremental use of the solver. Furthermore, we used MiniSAT (Eén & Sörensson, 2004)
(version 2.2.0) as the SAT solver within the CEGAR approach.

7.3 Results

We overview the results of the evaluation. We begin with the evaluation of the benchmark generation
approach in terms of relevance of the instances produced in terms of non-zero solution costs. Then,
we present detailed results on the algorithmic and solver performance on solving AF synthesis
instances, first on the NP fragments and then on the presumable second-level problem variant under
the preferred semantics.

532

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

number of positive examples

fr
eq

ue
nc

y

0
20

40
60

80
10

0

semantics

admissible
stable
complete

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

number of negative examples

fr
eq

ue
nc

y

0
20

40
60

80
10

0
12

0
14

0

semantics

admissible
stable
complete

Figure 6: Frequency of 0-cost randomly generated instances with respect to the number of positive
(left) and negative (right) examples (over all numbers of negative (left) and positive (right)
examples).

7.3.1 OPTIMAL SOLUTION COSTS

For the benchmarks drawn from the random model, we counted the number of 0-cost instances un-
der each semantics (noting that since these are essentially trivial instances, most of them are indeed
solved in the timeout limit). In Figure 6 (left) we show the frequency of 0-cost instances for admissi-
ble, complete, and stable semantics with respect to the number of positive examples. Increasing this
number significantly reduces the frequency of 0-cost instances, which is intuitive: the more positive
examples one has, the more conflicting examples can arise. Under stable semantics, 20 positive ex-
amples is enough to render all generated instances non-trivial. Under admissible, on the other hand,
even at 80 positive examples we still have a few 0-cost instances, although their frequency drops
significantly at around 60 examples. The frequency of 0-cost instances under complete semantics
lies between admissible and stable, dropping noticeably after 30 positive examples. On the other
hand, Figure 6 (right) illustrates the same frequency with respect to the negative examples. Evi-
dently, under all semantics, the number of negative examples does not affect the number of trivial
instances as significantly as the number of positive examples.

7.3.2 SOLVER COMPARISON ON NP FRAGMENTS

We now turn the attention to the impact of the MaxSAT solvers used to solve the NP-encodings for
AF synthesis under the admissible, complete, and stable semantics. We report on the comparison
in terms of median running times as well as so-called “cactus” plots7, which show the number of

7. The so-called cactus plots are frequently used for comparing the performance of different SAT and MaxSAT solvers
in the literature.

533

NISKANEN, WALLNER, & JÄRVISALO

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●
●●●●●
●●●●●●●

●●
●●●●●
●●●
●●●●
●●●●●
●
●●●
●●●●
●●●●●●
●●
●●●●●
●●●
●●
●
●

●●●●
●
●●●
●
●●●
●●
●●

●

●●●●
●
●
●

●●●●
●●

●
●
●●
●
●
●●●
●
●●
●
●●

●●

●

0 100 200 300 400 500

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

●
●

●
●

●

●

●
●

●

●

●

●
● ●

●

total number of examples
m

ed
ia

n
C

P
U

 ti
m

e
15 35 55 75 95 115 135 155

0.
01

0.
1

1
10

10
0

10
00

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

Figure 7: MaxSAT solver comparison on ICCMA instances under the stable semantics.

instances solved by a specific solver (x-axis) under different per-instance time limits (y-axis). The
reported median runtimes are over all benchmark instances, while the cactus plots are over instances
with non-zero cost to provide a comparison of solver performance on true optimization problems.

We start with the instances generated from ICCMA AFs. Figure 7 summarizes the results for
stable semantics. From the cactus plot (left) we observe that the core-guided MaxSAT solvers
Maxino and WPM3 clearly solve more of these instances than any other solver considered. The
other two core-guided solvers MSCG and Maxino, and the ASP solver Clingo, are essentially on
par with respect to the number of instances solved, although Clingo consumes more CPU time on
average. The SAT-IP hybrid MaxHS shows weak performance, solving only approximately 300
instances. From the median runtimes (right) we observe that the most efficient solver is indeed
WPM3, and additionally, MaxHS surpasses Clingo on smaller instances with less than 75 examples.
Finally, we note that under admissible, these instances turned out to be very easy for our approach
until running out of memory due to the increasing size of the encoding. Under complete, the size of
the encoding becomes at present a bottleneck for scaling up on these benchmarks.

We continue with the second set of benchmarks, generated using the random model. The re-
sults for admissible semantics are illustrated in Figure 8. As seen from the left plot, in terms of
the number of non-trivial instances solved, the core-guided MaxSAT solvers WPM3, Maxino, and
MSCG perform best, with WPM3 solving slightly more instances than the other two. This is also
evident from the median runtimes shown on the right. Interestingly, MaxHS and Open-WBO are
noticeably slower than the rest of the solvers, although Open-WBO is also core-guided. The ASP
solver Clingo performs slightly better than Open-WBO in terms of solving more instances with
lower median runtimes for smaller instances.

534

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●
●●●
●●●●●

●●●●
●●
●●●
●●●●
●
●●
●
●
●

●
●
●

●

●

●
●●●●
●

●

●●

●
●
●
●

●

●●●

●●
●

●

0 100 200 300 400

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

●

●
●

● ● ●
●

●

●

●

●
●

●

●

●

number of positive examples
m

ed
ia

n
C

P
U

 ti
m

e
5 15 25 35 45 55 65 75

1
10

10
0

10
00

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

Figure 8: MaxSAT solver comparison on randomly generated instances under the admissible se-
mantics.

●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●
●
●●●●●●●●●●●

●●●●●
●●●●
●●●
●●●●●●●
●●●●●●●
●●●●
●
●●●
●●●●●●
●●●●●
●●●
●
●●●●
●●
●●●●
●
●●
●
●

●●●
●●
●
●●
●

●
●
●
●●
●

●●●●
●

●●●
●
●

●
●●●
●

●●

●
●●

●●
●●●
●
●

0 200 400 600 800

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

●

●
●

●

●

●

●

number of positive examples

m
ed

ia
n

C
P

U
 ti

m
e

5 10 15 20 25 30 35 40 45 50

0.
1

1
10

10
0

10
00

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

Figure 9: MaxSAT solver comparison on randomly generated instances under the stable semantics.

535

NISKANEN, WALLNER, & JÄRVISALO

●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●

●●●●●
●●●●●●●●

●●●
●●
●●●●

●●●●●
●●●

●●●●
●●
●●
●●●●

●●
●●
●●●

●●
●●●●

●●
●●
●●●

●●●
●●●●

●●
●●●

●●
●●
●●
●●
●●●

●●
●●●

●

●
●
●●●●

●

●
●

●●

●
●●●●

●

●
●●

0 50 100 150 200

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

●

●

●
●

●

●

●

●

number of positive examples
m

ed
ia

n
C

P
U

 ti
m

e
5 10 15 20 25 30 35 40

10
10

0
10

00

● Clingo
MaxHS
Maxino
MSCG
Open−WBO
WPM3

Figure 10: MaxSAT solver comparison on randomly generated instances under the complete se-
mantics.

Regarding the stable semantics, we show the number of instances solved and the median run-
times in Figure 9 on the left and right, respectively. The solvers were unable to solve most of the
instances with |E+| > 50, and hence these instances are excluded from this evaluation. We observe
that in this case the performance of solvers has a clear ranking from best to worst: WPM3, Max-
ino, MaxHS, MSCG, Clingo, Open-WBO. However, from the median runtimes we see that MaxHS
tends to be slightly slower on smaller instances with less than 40 positive examples. In addition, the
performance of Open-WBO drops drastically when the number of positive examples is above 25.
In the case of stable semantics, all MaxSAT solvers except Open-WBO clearly outperform the ASP
solver Clingo.

Results from the solver comparison under complete semantics are illustrated in Figure 10. All
of the solvers produced considerably more timeouts than optimal solutions for |E+| > 40, which is
why we do not include these instances in the evaluation. The core-guided MaxSAT solver MSCG
solves more nontrivial instances than any other solver, and the ASP solver Clingo is a close second,
which is evident from the left plot. We also observe that the other MaxSAT solvers do not perform
as well—only the SAT-IP hybrid MaxHS is able to solve over a hundred instances in the timeout
limit. The median runtimes on the right reveal that on easier instances with less than 20 positive
examples, Maxino and WPM3 are more efficient. An interesting observation is that the median
runtime of the top solver MSCG drops at 35 positive examples. We hypothesize that the subpar
performance of most MaxSAT solvers on these instances is due to the large size of the MaxSAT
encoding for complete semantics.

536

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

●

●

●
●

●
● ●

● ●
●

number of negative examples

m
ed

ia
n

C
P

U
 ti

m
e

(s
ec

on
ds

)

20 40 60 80 100 120 140 160 180 200

0.
1

1
10

10
0

10
00

●

|E+|

80
75
70
60
50
40
30
20
10

●

●
●

●
●

● ●
● ● ●

number of negative examples

m
ed

ia
n

C
P

U
 ti

m
e

(s
ec

on
ds

)

●

●
● ●

●

● ● ●

●

●

20 40 60 80 100 120 140 160 180 200

0.
01

0.
1

1
10

10
0

10
00

●

●

|E+|

50
45
40
35
30
25
20
15
10
5

Figure 11: Solver scalability: WPM3 on randomly generated instances under admissible (left) and
stable (right) semantics.

7.3.3 SCALABILITY

Scalability results for the randomly generated benchmarks with respect to the number of positive
and number of negative examples for the admissible and stable semantics are shown in Figure 11,
using the empirically best solver, WPM3. On randomly generated instances under admissible, both
|E+| and |E−| correlate positively with the runtimes. However, under stable semantics, the number
of negative examples does not appear to noticeably affect the runtimes. This is in line with our
complexity results—recall that under stable the AF synthesis problem remains NP-complete even
without negative examples, unlike under admissible.

Under complete semantics, the empirically best solver turned out to be MSCG. Figure 12 (left)
illustrates the scalability with respect to both |E+| and |E−|. Again, like under admissible, increas-
ing the number of positive examples increases the median runtime of the solver. The same applies
to increasing the number of negative examples, with the exception of |E−| = 35, 40, with median
runtimes below |E−| = 30. However, we did not notice this kind of behavior with any other solver.

As is evident from the solver comparison, the most efficient solver for ICCMA instances un-
der the stable semantics is WPM3. As seen from Figure 12 (right), every instance can be solved
within the timeout limit for up to 115 examples, and the median runtime for 155 examples is un-
der 10 seconds. The noise probability pnoise correlates positively with empirical hardness. Recall
that the instances were generated by flipping the role of each example. Since we start off with a
small number of positive examples and a large number of negative examples, by increasing pnoise
we are increasing the number of positive examples. We hypothesize this to be the reason for this
correlation—recall that AF synthesis under stable remains NP-complete even with no negative ex-
amples, and hence positive examples are a source for NP-hardness.

537

NISKANEN, WALLNER, & JÄRVISALO

●

●

●

●
●

●

● ● ●

●

number of negative examples

m
ed

ia
n

C
P

U
 ti

m
e

(s
ec

on
ds

)

20 40 60 80 100 120 140 160 180 200

1
10

10
0

10
00

●

|E+|

40
35
30
25
20
15
10
5

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
●● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

total number of examples

C
P

U
 ti

m
e

(s
ec

on
ds

)
15 35 55 75 95 115 135 155

0.
01

0.
1

1
10

10
0

10
00

●

median
p_noise = 0.5
p_noise = 0.25
p_noise = 0

Figure 12: Solver scalability: MSCG on randomly generated instances under complete semantics
(left); WPM3 on ICCMA instances under stable semantics (right).

7.3.4 ASP VERSUS CEGAR UNDER PREFERRED SEMANTICS

For preferred semantics, we compare the performance of the CEGAR algorithm implemented using
LMHS as the underlying MaxSAT solver for the base semantics, and Clingo on the disjunctive
ASP encoding using the randomly generated instances. The results are shown as a cactus plot
in Figure 13. The two approaches show similar performance, with the CEGAR approach being
somewhat faster on average, and, on the other hand, Clingo solving one instance more than CEGAR.
Although the two approaches are non-trivial, scaling up approaches to AF synthesis under preferred
semantics remains currently a challenge: neither of the approach could solve a majority of the
benchmark instances even for |E+| = 10 within the enforced per-instance time limit of 900 seconds.

7.3.5 EFFECT OF ADDITIONAL ARGUMENTS ON COST OF OPTIMAL SOLUTIONS

Finally, we investigate the effect of adding arguments not occurring in the examples on the cost
of the instance. For this, we also used the set of benchmarks generated using the random model.
Under admissible semantics, even one additional argument in all instances reduces the cost of most
instances to zero, as illustrated in Figure 14 (left). With five additional arguments, all examples in
all solved instances are satisfied. Under stable semantics, even adding ten additional arguments does
not have any effect on the optimal cost for this set of instances, as can be observed from Figure 14
(right). This demonstrates that, at least on the considered benchmark instances, the number of auxil-
iary arguments required for admissible semantics in order to obtain a 0-cost instance is considerably
smaller than for stable semantics. An interesting open question is whether this empirical observa-

538

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

● ●
● ● ●

●
●

●

●

●

●

●

●
●

0 10 20 30 40

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

● Clingo on ASP encoding
LMHS on CEGAR algorithm

Figure 13: Solver scalability: Clingo and LMHS on randomly generated instances under preferred
semantics.

tion could translate into differences between semantics in terms of how many auxiliary arguments
are needed to obtain 0-cost solutions.

8. Generalizations and Variants of AF Synthesis

Finally, we explain how the algorithms proposed in this work allow for enforcing additional con-
straints and preferences on the outcomes of the AF synthesis process, thereby enabling a tighter
control on the AFs synthesized. Furthermore, we also shortly discuss further generalizations and
variants of AF synthesis, namely, synthesis under multiple semantics and synthesis from symboli-
cally represented examples.

8.1 Enforcing Additional Constraints and Preferences on Outcomes

The declarative methods presented in this work straightforwardly allow for posing additional con-
straints on the solution AFs of interest, e.g., via MaxSAT we encode such constraints as hard (or
soft) clauses. For instance, the presence (resp. absence) of any particular attack (a, b) can be fixed
by including the hard clause (ra,b) (resp. (¬ra,b)). This is particularly useful in the case where a
part of the attack structure is certain, for instance obtained by inspecting the logical structure of the
arguments, and we do not want to allow arbitrary modifications. Alternatively, one may harden a
soft clause (Exte) (or (¬Exte)) to ensure that Se is (or is not) a σ-extension in the solution AF. By
hardening all such soft clauses, the AF synthesis problem reduces to realizability, for the given set
of arguments. Hence, our methods allow for solving (partial) realizability as well.

539

NISKANEN, WALLNER, & JÄRVISALO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cost of optimal solution

pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

number of additional arguments

none
one
two
five

0
10

20
30

40
50

60
70

80
90

10
0

1−
5

6−
10

11
−

15

16
−

20

21
−

25

26
−

30

31
−

35

36
−

40

41
−

45

46
−

50

51
−

55

56
−

60

61
−

65

66
−

70

71
−

75

76
−

80

81
−

85

cost of optimal solution

pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

number of additional arguments

none
ten

0
1

2
3

4
5

6
7

8
9

10
11

Figure 14: Effect of additional arguments on the cost of the optimal solutions on randomly gener-
ated instances under admissible (left) and stable (right) semantics.

Furthermore, one can for instance also synthesize an AF with the minimum number of at-
tacks satisfying the maximum number of examples by adding soft clauses which state that the
secondary preference is minimizing the number of attacks in the style of multi-level Boolean op-
timization (Argelich, Lynce, & Marques-Silva, 2009); in this case, in order to still guarantee that
the primary objective of satisfying the maximum number of examples is met, the weights of the
examples can be adjusted to be larger than the sum of the weights imposed on adding individual
attacks to the solution AFs. As an alternative to the minimum number of attacks, in this way one
may also minimize the structural distance to a known AF.

8.2 Covering Multiple Semantics

So far for each AF synthesis problem we required that all examples are given w.r.t. a specific seman-
tics. A natural generalization is to let each example individually be linked to a semantics. Formally,
an example e = (S,w, σ) is then a triple with a semantics σ, denoted by σe. The cost of an AF F is
given by ∑

e∈E+

we · I(Se /∈ σe(F)) +
∑
e∈E−

we · I(Se ∈ σe(F)).

Example 11. Consider E+ = {({a, c}, 1, cf), ({b, c}, 1, stb)} and E− = {({a}, 1, adm)}. This
defines a unique 0-cost AF F = (A,R) with A = {a, b, c} for the AF synthesis instance with
multiple semantics P = (A,E+, E−) by R = {(b, a)}.

540

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

The corresponding decision problem, i.e., for a given AF synthesis problem with multiple se-
mantics P = (A,E+, E−), is there an AF F with cost(P, F) ≤ k for an integer k ≥ 0, does not
exhibit higher computational complexity among the conflict-free, admissible, complete, and stable
semantics.

Corollary 14. AF synthesis with multiple semantics among the conflict-free, admissible, complete,
and stable semantics is NP-complete.

For solving AF synthesis with multiple semantics we can make use of our encodings of Sec-
tion 6. In particular, we can conjoin the corresponding formulas for the different semantics and
share the variables for attacks.

In connection to realizability, we note that Dunne, Spanring, Linsbichler, and Woltran (2016)
studied a related problem that asks whether there is an AF that has exactly as its σ-extensions a
given set S and as σ′-extensions a given set S′.

8.3 Symbolic Representation of Examples

For a setA of arguments, there can be in general up to 2|A| positive or negative examples. This expo-
nentiality in the input can be restrictive for a large number of examples. Following ideas from Dunne
et al. (2015), we note that, instead of explicit representation, examples could also be represented
symbolically by encoding them succinctly in Boolean logic. This gives rise to the problem vari-
ant of AF synthesis with symbolic representation, with instances of the form P = (A, φ+, φ−, σ),
where φ+ and φ− are Boolean formulas. Let Mod(φ) be the set of models (satisfying assignments)
of a Boolean formula φ, represented as sets themselves (variables assigned to true). For a given AF
F , its associated cost cost(P, F) is∑

m∈Mod(φ+)

I(m /∈ σ(F)) +
∑

m∈Mod(φ−)

I(m ∈ σ(F)),

that is, unit weight is applied when a model of φ+ is not a σ-extension of F and when a model of
φ− is a σ-extension of F .

Lemma 15. Let φ be a Boolean formula, A the vocabulary of φ, F an AF, and σ a semantics. It
holds that |Mod(φ)| = cost(P, F) for P = (A, φ, φ, σ).

Proof. Any AF F satisfies exactly |Mod(φ)| examples encoded in the formulas, since if m ∈
Mod(φ), then either m ∈ σ(F) or m /∈ σ(F) (each implies unit weight). If m /∈ Mod(φ),
then both m ∈ σ(F) and m /∈ σ(F) imply no weight.

Based on this lemma, it follows that determining the cost of a given AF for an AF synthesis
instance with symbolic representation is presumably very complex. More concretely, it immedi-
ately follows from Lemma 15 that for those semantics σ for which we can in polynomial time
verify whether a given set of arguments is a σ-extension, this problem is #P-complete8. Thus #P-
completeness is established for all of the considered semantics except for preferred. For preferred,
this gives a complexity lower bound, i.e., establishes #P-hardness.

8. #P is the class of counting problems where the task is to count the number of accepting paths of a given non-
deterministic polynomial-time Turing machine; see Valiant (1979a, 1979b). As a prominent example, counting the
number of models of a Boolean formula is #P-complete.

541

NISKANEN, WALLNER, & JÄRVISALO

Corollary 16. Counting the number of examples from a given AF synthesis instance with symbolic
representation that are not satisfied by a given AF is #P-complete under the conflict-free, admissi-
ble, complete, grounded, and stable semantics, and #P-hard under preferred semantics.

9. Related Work

As AF synthesis generalizes the notion of realizability, the most closely related work focuses on
realizability of AFs (Baumann et al., 2014; Dyrkolbotn, 2014; Dunne et al., 2015; Linsbichler et al.,
2015; Baumann, 2018), as already discussed earlier. Initiated by Dunne et al. (2015), realizability
considers the question of whether a given set of sets (of arguments) S can be realized by an AF, i.e.,
whether an AF F with σ(F) = S for a semantics σ exists. Baumann et al. (2014) and Linsbichler
et al. (2015) studied realizability under the restriction that the set of arguments of the constructed
AF has to match exactly the set of arguments occurring in the input, i.e., that the set of arguments
equals

⋃
S∈S S. Dyrkolbotn (2014) gave a construction for an AF using additional arguments in the

three-valued labeling setting under the preferred and semi-stable semantics. We study the problem
of synthesizing an AF that optimally matches a given set of examples semantically, even when an ex-
act realization (a 0-cost solution) is not possible. Also, we analyze the complexity of AF synthesis,
showing that, in contrast to polynomial-time results for checking realizability (Dunne et al., 2015),
AF synthesis is in general NP-hard. To our best knowledge, no previous systems for solving realiz-
ability have been empirically evaluated. Recently a declarative encoding in answer set programming
(ASP) for realizability was presented but not empirically evaluated (Pührer, 2015; Linsbichler et al.,
2016a, 2016b). Our MaxSAT and ASP based implementations for the AF synthesis problem also
cover realizability.

The AF synthesis problem connects also with research on change of AFs where the goal is
to produce a modified AF. In particular, it shares many similarities to the extension enforcement
problem (Baumann & Brewka, 2010; Baumann, 2012; Coste-Marquis et al., 2015; de Saint-Cyr,
Bisquert, Cayrol, & Lagasquie-Schiex, 2016; Wallner et al., 2017), where we are given an AF and a
subset of its arguments, and asked to modify the attacks in such a way that the subset becomes an ex-
tension, minimizing the structural distance to the original attack structure. On the other hand, in AF
synthesis, there is no original structure, and instead of a single hard constraint on an extension, we
pose multiple (possibly weighted) soft constraints on extensions and non-extensions. Furthermore,
AF synthesis connects to AF revision and aggregation (merging) of AFs (Coste-Marquis et al., 2007;
Tohmé et al., 2008; Coste-Marquis et al., 2014a, 2014b; Baumann & Brewka, 2015; Delobelle et al.,
2015, 2016; Bodanza et al., 2017; Diller et al., 2018). More concretely, AF synthesis can be seen
as an approach to extend many proposed operators for AF revision (Coste-Marquis et al., 2014a)
and as an approach to aggregation that ensures that the (extended) operators produce a single AF
for the revision or aggregation problem at hand. We discuss this relation of AF synthesis to revision
and aggregation in Section 3. A different approach that guarantees a single AF in case of revision
is to develop new revision operators (Diller et al., 2018). In contrast, AF synthesis allows for using
standard operators for revision as a basis, and then applying a synthesis process afterwards, which
also is able to handle user-specified weights and constraints (see also Section 8). To our knowledge,
for the task of semantical merging of AFs (Delobelle et al., 2016), there are no general operators
that guarantee a single AF as output.

In related work that incorporates AF construction from examples, Ontañón, Dellunde, Godo,
and Plaza (2012) formally studied a logical characterization of inductive concept learning and AF

542

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

learning in a multi-agent setting. In contrast to our work, they induce a rule-based theory and
construct an AF based on conflicting rules. Riveret and Governatori (2016) studied probabilistic
AF (Li, Oren, & Norman, 2011; Hunter, 2014; Riveret, Korkinof, Draief, & Pitt, 2015) learning
with non-exact methods; we tackle the exact optimization problem of AF synthesis. Furthermore,
Riveret (2016) considered on-the-fly computation of argumentation graphs from so-called statement
acceptance labellings under the grounded semantics.

Related to allowing weights on entities such as subsets of arguments (i.e., examples) or attacks,
Dunne, Hunter, McBurney, Parsons, and Wooldridge (2011) proposed the notion of weighted argu-
ment systems, where weights are assigned on individual attacks in a fixed AF F , an inconsistency
budget is enforced on allowing subsets of arguments to be extensions: a conflicting subsetE of argu-
ments is considered an extension within an inconsistency budget b if by disregarding (or removing)
a subset of the attacks in F of total weight at most b makes E an extension of F . In contrast, in AF
synthesis, we allow (in case one wants to do so) assigning weights on the examples, instead of in-
ducing a measure of inconsistency for extensions through weighted attacks. On the other hand, the
way of inducing weights on subsets of arguments proposed by Dunne et al. (2011) (see therein for
additional motivations for this way of inducing weights) could also be viewed as a way of assigning
weights on examples e.g. in scenarios with multiple sources for examples. We also note that, as
explained in Section 8.1, our algorithms allow for taking into account hard and soft constraints on
individual attacks within the AF synthesis setting.

Finally, going beyond argumentation, it should be noted that there is a long line of research of
constructing, inducing, or learning logical structures from examples, from Valiant (1984) to, e.g,
work for constraint acquisition (Bessiere, Koriche, Lazaar, & O’Sullivan, 2017) as well as inductive
logic programming (Bergadano & Gunetti, 1996; Davis & Ramon, 2015).

10. Conclusions

In this work we studied a computational perspective to the central knowledge representation prob-
lem in abstract argumentation, namely, that of compactly representing extensions as an argumenta-
tion framework. The central notion of realizability of AFs gives a measure of the expressive power
of AFs under different semantics. However, in terms of representing sets of extensions via AFs in
practice, realizability is a very strict notion: for a collection of sets of arguments to be realizable, it
is required that there must be an AF the extensions of which are exactly the given sets of arguments.
In other words, the exact set of extensions must be known in advance, and no other extensions are
allowed. In this work, we proposed and studied the AF synthesis problem as a natural extension
of realizability, addressing some of the shortcomings arising from the relatively stringent definition
of realizability. By relaxing realizability in a natural way, AF synthesis allows for accommodat-
ing incomplete and noisy information. From the theoretical perspective, we related AF synthesis
to realizability, and analyzed the complexity of AF synthesis both in the general case and in re-
stricted settings. Motivated by the NP-hardness of AF synthesis under several AF semantics, we
proposed Boolean optimization based algorithmic solutions for the problem, providing MaxSAT
and ASP encodings for AF synthesis. We empirically studied this first approach to AF synthesis
using state-of-the-art MaxSAT and ASP solvers on different types of AF synthesis instances.

Regarding future aspects, proving sharper bounds of the computational complexity of AF syn-
thesis under complete and preferred, as well as considering other AF semantics, are a natural way
to extend this work theoretically. Further, the question of how to extend the analysis presented

543

NISKANEN, WALLNER, & JÄRVISALO

in Section 4 on conditions for 0-cost solutions to other semantics such as complete remains un-
addressed. There is potential for generalizing the very recent (and yet unpublished) analysis on
conditions for realizability under complete semantics (Linsbichler, 2018) to analyze AF synthesis;
however, this would require a non-trivial extension of the results presented in Section 4. On the al-
gorithmic side, improving the efficiency of the current approach—especially tackling the seemingly
hard problem of synthesis under preferred semantics remains a challenge. Investigating synthesis
under ranking-based semantics (Bonzon, Delobelle, Konieczny, & Maudet, 2016), where instead of
extensions a ranking of arguments is produced, is also a potential direction for future work. Finally,
as noted by Thimm and Villata (2017), AF synthesis could be used for generating interesting and
hard benchmarks for argumentation solvers e.g. for the central AF acceptance problems.

Acknowledgments

We thank Thomas Linsbichler for insightful discussions on (compact) realizability. This work has
been financially supported by Academy of Finland (grants 251170 COIN, 284591, and 312662),
Research Funds of the University of Helsinki, Doctoral Programme in Computer Science (DoCS)
at the University of Helsinki, and the Austrian Science Fund (FWF): P30168-N31.

Appendix A. Proofs

We provide formal proofs for the results presented in Sections 3 and 5. We start by restating defini-
tions from Dunne et al. (2015), which we need for auxiliary results towards the main proofs.

Definition 6. (Dunne et al., 2015, Definitions 6, 7, and 8) Let A be a set of arguments and S ⊆ 2A

a set of sets of arguments. Set S is

• incomparable if S 6⊆ S′ holds for all S, S′ ∈ S with S 6= S′;

• tight if for all S ∈ S and all a ∈ A it holds that S ∪ {a} /∈ S implies that there exists a b ∈ S
s.t. {a, b} 6⊆ S′ for all S′ ∈ S;

• conflict-sensitive if for each S, S′ ∈ S s.t. S ∪ S′ /∈ S it holds that ∃a, b ∈ S ∪ S′ s.t.
{a, b} 6⊆ S′′ for all S′′ ∈ S; and

• downward closed if S = {S′ | S ∈ S, S′ ⊆ S}.

For proving Proposition 2 we use the following lemma.

Lemma 17. Let S ⊆ 2A for a set A. It holds that ImpliedCF (S) (i) contains ∅, (ii) is downward
closed, (iii) is tight, and (iv) S ⊆ ImpliedCF (S).

Proof. From the definition it directly follows that ∅ is contained in ImpliedCF (S) for any S. Let
S ∈ ImpliedCF (S). Then for all a, b ∈ S it holds that ∃S′ ∈ ImpliedCF (S) s.t. {a, b} ⊆ S′. It
follows that for any S′′ ⊆ S it holds that S′′ ∈ ImpliedCF (S). To show (iii), suppose that the set is
not tight, i.e., ∃S ∈ ImpliedCF (S) and a ∈ A s.t. S ∪{a} /∈ ImpliedCF (S) and for all b ∈ S there
exists an S′ ∈ ImpliedCF (S) s.t. {a, b} ⊆ S′. This implies that for all x, y ∈ S ∪ {a} we have
∃S′′ ∈ S s.t. {x, y} ⊆ S′′, and thus S ∪{a} ∈ ImpliedCF (S). This contradicts the assumption that
ImpliedCF (S) is not tight. Finally, if S ∈ S, then by definition S ∈ ImpliedCF (S) (iv).

544

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

For proving Proposition 4 we utilize the following lemma.

Lemma 18. Let S ⊆ 2A for a set A. It holds that ImpliedADM (S) (i) contains ∅, (ii) is conflict-
sensitive, and (iii) S ⊆ ImpliedADM (S).

Proof. Claim (i) follows from the definition. Suppose (ii) does not hold, i.e., there exist S, S′ ∈
ImpliedADM (S) s.t. S ∪ S′ /∈ ImpliedADM (S) and for all a, b ∈ S ∪ S′ there exists an S′′ ∈
ImpliedADM (S) with {a, b} ⊆ S′′. It follows that S ∪ S′ ∈ ImpliedCF (S) and S ∪ S′ ∈
ImpliedADM (S). This contradicts the assumption that ImpliedADM (S) is not conflict-sensitive.
Finally, assume S ∈ S. By Lemma 17, it follows that S ∈ ImpliedCF (S), and by definition of
ImpliedADM , also S ∈ ImpliedADM (S) (S is equal to the union of elements in {S} ⊆ S).

Next, we prove two formal statements regarding the existence of 0-solutions for stable and
preferred semantics, namely, Propositions 5 and 6.

Proof of Proposition 5. The claims of the proposition follow directly for the special case withE+ =
∅. We proceed with the case that E+ is non-empty. For the first claim, assume that F is a 0-cost
solution to P . Conditions 2 and 3 follow immediately. For condition 1, since SE+ ⊆ stb(F) it
follows that SE+ ⊆ cf (F) and thus ImpliedCF (SE+) ⊆ cf (F). Assuming that condition 1 does
not hold directly violates SE+ ⊆ stb(F) (stable extensions are subset-maximal conflict-free sets).
For the second claim, assume that conditions 1-4 hold. Then SE+ is a subset of the ⊆-maximal
elements of ImpliedCF (SE+) due to SE+ ⊆ ImpliedCF (SE+) (Lemma 17), assuming condition
1. By Dunne et al. (2015, Lemma 2) it follows that SE+ is tight. Further, by Dunne et al. (2015,
Proposition 7) and conditions 1-4, it follows that there exists an AF F ′ = (A′, R′) with A′ ⊆ A s.t.
stb(F ′) = SE+ . Construct F = (A,R) by extending R′ to contain self-attacks for each argument
in A \A′ and attacks from each argument in SE+ to each A \A′.

Proof of Proposition 6. This proof follows a similar line of reasoning as the proof of Proposition 5.
Assume that there is a solution AF F to P with cost(P, F) = 0. Condition 2 follows immediately
from the existence of a 0-cost solution AF. Suppose condition 1 is violated. Due to the assumption
and Lemma 3, it holds that SE+ ⊆ prf (F), SE+ ⊆ adm(F), and ImpliedADM (SE+) ⊆ adm(F).
If, by presumption, there is an S′ ∈ ImpliedADM (SE+) and S ∈ SE+ s.t. S ⊆ S′, then S /∈
prf (F) and SE+ 6⊆ prf (F). This is a contradiction to F being a 0-cost solution AF to P .

Assume that conditions 1-3 hold. We show that there is a solution AF F with cost(P, F) = 0.
Now we have that SE+ is a subset of the⊆-maximal elements in ImpliedADM (SE+), since SE+ ⊆
ImpliedADM (SE+) (Lemma 18) and by assumption of condition 1. Due to Dunne et al. (2015,
Lemma 4), it holds that SE+ is conflict-sensitive. By Dunne et al. (2015, Proposition 9), it follows
that there is an AF F ′ = (A′, R′) with prf (F ′) = SE+ with A′ ⊆ A. Construct F = (A,R) by
extending R′ to R via adding self-attacks for each argument in A \A′.

We move on to proofs of complexity results.

Proof of Proposition 10 and Proposition 11. For an AF synthesis instance P with stable semantics,
membership follows from a non-deterministic guess of an AF F and computing cost(P, F) (which
can be done in polynomial time by checking each example individually).

Given an AF synthesis instance P with preferred semantics, cost(P, F) can be computed as
follows. Non-deterministically guess a solution AF F and check for each example, via an NP
oracle, whether the example is satisfied or not, i.e., whether the example is a preferred extension

545

NISKANEN, WALLNER, & JÄRVISALO

in F . Determining whether a given set of arguments is a preferred extension in a given AF is a
problem in coNP (follows from results by Dimopoulos & Torres, 1996).

For both semantics, we prove hardness by a reduction from the Boolean satisfiability problem.
Let φ be a Boolean formula in CNF with vocabulary X , |X| = n, and set of clauses C.

A ={xT , xF , dx | x ∈ X} ∪ {d′c, d′′c | c ∈ C} ∪ {d} (9)

E+ ={({d′c} ∪ {xT | x ∈ c} ∪ {xF | ¬x ∈ c}, n+ 1) | c ∈ C} ∪ (10)

{({d′c, d′′c , d}, n+ 1) | c ∈ C} ∪ (11)

{({xT , xF , dx}, n+ 1) | x ∈ X} ∪ (12)

{({xT , dx, d}, 1) | x ∈ X} ∪ (13)

{({xF , dx, d}, 1) | x ∈ X} (14)

Let Pstb = (A,E+, ∅, stb), Pprf = (A,E+, ∅, prf), with bound k = n. These AF synthesis
instances can be constructed in polynomial time. The intuition behind this reduction is similar to
the proof of Proposition 8: we have to choose between the unit-weighted examples (13,14) that
simulate truth assignments, include a positive example that simulates satisfaction of a clause (10),
and have certain examples ensuring integrity of this simulation (11,12).

We claim that

1. there exists an AF F s.t. cost(Pstb , F) ≤ n iff

2. there exists an AF F s.t. cost(Pprf , F) ≤ n iff

3. φ satisfiable.

We now prove that the first statement in the list implies the second, which, in turn, implies
the third, which implies the first. Assume that there is an AF F s.t. cost(Pstb , F) ≤ n. Since
stb(F) ⊆ prf (F), we have cost(Pprf , F) ≤ n (recall that we only have positive examples; addi-
tional preferred extensions, that are not stable, can only lower the cost).

Assume that there exists an AF F s.t. cost(Pprf , F) ≤ n. It is immediate that all examples
with weight n + 1 are satisfied by F . For each x ∈ X it holds that exactly one example from
{({xT , dx, d}, 1), ({xF , dx, d}, 1)} is satisfied. To see this, we first prove that it cannot be the case
that both are satisfied. Suppose the contrary, i.e., both are satisfied. Then both {xT , dx, d} and
{xF , dx, d} are preferred extensions of F . This implies that S = {xT , xF , dx, d} is conflict-free
(due to {xT , xF , dx} being preferred as well due to examples of the form (12)). Further, S is
admissible in F , since S is a union of two admissible sets, S = {xT , dx, d} ∪ {xT , xF , dx}, which
is also conflict-free. This directly violates {xT , xF , dx} being preferred (S is a proper superset),
and the cost of F has to be higher than n. If there exists an x ∈ X s.t. neither ({xT , dx, d}, 1) nor
({xF , dx, d}, 1) is satisfied, then the cost of F is higher than n as well, since for each x′ ∈ X \ {x}
at least one example is not satisfied, contributing at least unit cost to F .

The unit-weight examples satisfied by F define a truth assignment τ(x) = 0 iff ({xT , dx, d}, 1)
is satisfied by F and τ(x) = 1 otherwise. We claim that τ |= φ. Suppose the contrary. Then ∃c ∈ C

546

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

with τ 6|= c and all literals in c are not satisfied by τ .

τ 6|= φ

iff ∃c ∈ C, τ 6|= c

iff ∃c ∈ C s.t.

if x ∈ c then τ(x) = 0 and

if ¬x ∈ c then τ(x) = 1

iff ∃c ∈ C s.t.

if x ∈ c then {xT , dx, d} ∈ prf (F) and

if ¬x ∈ c then {xF , dx, d} ∈ prf (F)

only if ∃c ∈ C s.t. S′ = {d, d′c} ∪ {xT | x ∈ c} ∪ {xF | ¬x ∈ c} ∈ cf (F)

Consider the set S′ \ {d} = {d′c} ∪ {xT | x ∈ c} ∪ {xF | ¬x ∈ c}, which must be preferred in
F due to examples of the form (10). The last implication holds, since {d′c, d′′c , d} is also preferred
due to examples of the form (11), and, by the previous items in the iff chain, no argument from
{xT | x ∈ c} ∪ {xF | ¬x ∈ c} can attack d. We now show that S′ is admissible in F . By
assumption each argument in S′ \ {d} is defended by S′. Since {d′c, d′′c , d} is preferred, and for
all x ∈ X exactly one example from {xT , dx, d} and {xF , dx, d} is preferred, it follows that only
arguments yT or yF , for some y ∈ X , can attack d. Assume (yT , d) is an attack in F (the claim is
symmetric for yF). Suppose that the attack (d, yT) is not present in F . Now both {yF , dy, d} and
{yT , yF , dy} are preferred in F (the former set is preferred, since either {yT , dy, d} or {yF , dy, d}
must be preferred). This implies that {yF , dy, d} does not defend itself against the attack (yT , d),
and thus, cannot be preferred, which is a contradiction. Now we have shown that d defends itself
against all attacks (all attacks are, in fact, bidirectional attacks). Since S′ \ {d} is admissible, also
S′ is admissible, and hence, S′ \ {d} cannot be preferred, violating the corresponding assumption.
This means τ |= c.

Assume now that φ is satisfiable. Construct AF F = (A,R) with

R ={(d′′c , dx), (dx, d
′′
c) | c ∈ C, x ∈ X} ∪

{(d′′c , xT), (d′′c , x
F), (xT , d′′c), (x

F , d′′c) | c ∈ C, x ∈ X} ∪
{(a, b), (b, a) | a∈{d′c, d′′c}, b∈{d′c′ , d′′c′}, c, c′∈C, c 6= c′} ∪
{(dx, dy), (dx, z), (z, dx) | x, y ∈ X,x 6= y, z∈{yT , yF }} ∪
{(dx, d′c), (d′c, dx) | c ∈ C, x ∈ X} ∪
{(d′c, xT), (xT , d′c) | c ∈ C, x ∈ X,x /∈ c} ∪
{(d′c, xF), (xF , d′c) | c ∈ C, x ∈ X,¬x /∈ c} ∪
{(xT , d), (d, xT) | τ(x) = 1} ∪
{(xF , d), (d, xF) | τ(x) = 0}.

We illustrate this constructed AF in Figure 15 for a simple satisfiable formula and a truth assignment
that assigns 1 to x and 0 to y. The corresponding satisfaction of examples, for Pstb , is also shown
in that figure.

547

NISKANEN, WALLNER, & JÄRVISALO

examples satisfied?
({d′c, xT , yF }, 3) yes
({d′c, d′′c , d}, 3) yes
({xT , xF , dx}, 3) yes
({yT , yF , dy}, 3) yes
({xT , dx, d}, 1) no
({xF , dx, d}, 1) yes
({yT , dy, d}, 1) yes
({yT , dy, d}, 1) no

xT

xF

yT

yF
dxdy

d′c

d′′c

d

Figure 15: Illustration of reduction in proof of Proposition 10 for formula c = (x ∨ ¬y).

We now show that F has cost n for Pstb under the assumption that φ is satisfiable. The con-
structed AF F has bidirectional attacks between arguments to ensure that all the examples (11) and
(12) are stable. By construction of F it is immediate that the sets of the examples are conflict-free.
Consider set {d′c, d′′c , d} for some c ∈ C. Then A \ {d′c, d′′c , d} is attacked by this set, directly by
construction of R. The same holds for {xT , xF , dx} for x ∈ X .

A mutual attack is added between xT and d (xF and d) based on the truth assignment τ , violating
one of the unit-weighted examples. The other unit-weighted example is satisfied. Finally, examples
of form (10) are satisfied, since one of the arguments in these sets (except d′c) attacks d due to
assumption that τ satisfies φ. Intuitively, the examples encoding the clauses (10) are satisfied since
one of the arguments corresponding to the chosen truth assignment that satisfies one of the literals
attacks d.

References

Airiau, S., Bonzon, E., Endriss, U., Maudet, N., & Rossit, J. (2017). Rationalisation of profiles of
abstract argumentation frameworks: Characterisation and complexity. Journal of Artificial
Intelligence Research, 60, 149–177.

Alviano, M., Dodaro, C., & Ricca, F. (2015). A MaxSAT algorithm using cardinality constraints
of bounded size. In Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 2677–2683. AAAI
Press / IJCAI.

Ansótegui, C., & Gabàs, J. (2013). Solving (weighted) partial MaxSAT with ILP. In Gomes, C. P.,
& Sellmann, M. (Eds.), Proc. CPAIOR, Vol. 7874 of Lecture Notes in Computer Science, pp.
403–409. Springer.

Ansótegui, C., & Gabàs, J. (2017). WPM3: An (in)complete algorithm for weighted partial
MaxSAT. Artificial Intelligence, 250, 37–57.

Argelich, J., Lynce, I., & Marques-Silva, J. P. (2009). On solving Boolean multilevel optimization
problems. In Boutilier, C. (Ed.), Proc. IJCAI, pp. 393–398. AAAI Press.

548

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation semantics.
Knowledge Engineering Review, 26(4), 365–410.

Baroni, P., Caminada, M., & Giacomin, M. (2018a). Abstract argumentation frameworks and their
semantics. In Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L. (Eds.), Handbook of
Formal Argumentation, chap. 4, pp. 159–236. College Publications.

Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L. (Eds.). (2018b). Handbook of Formal
Argumentation. College Publications.

Baumann, R. (2012). What does it take to enforce an argument? Minimal change in abstract ar-
gumentation. In Raedt, L. D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz,
F., & Lucas, P. J. F. (Eds.), Proc. ECAI, Vol. 242 of Frontiers in Artificial Intelligence and
Applications, pp. 127–132.

Baumann, R., & Brewka, G. (2010). Expanding argumentation frameworks: Enforcing and
monotonicity results. In Baroni, P., Cerutti, F., Giacomin, M., & Simari, G. R. (Eds.),
Proc. COMMA, Vol. 216 of Frontiers in Artificial Intelligence and Applications, pp. 75–86.
IOS Press.

Baumann, R., & Brewka, G. (2015). AGM meets abstract argumentation: Expansion and revision
for Dung frameworks. In Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 2734–2740.
AAAI Press.

Baumann, R. (2018). On the nature of argumentation semantics: Existence and uniqueness, ex-
pressibility, and replaceability. In Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L.
(Eds.), Handbook of Formal Argumentation, chap. 17, pp. 839–936. College Publications.

Baumann, R., Dvořák, W., Linsbichler, T., Spanring, C., Strass, H., & Woltran, S. (2016). On
rejected arguments and implicit conflicts: The hidden power of argumentation semantics. Ar-
tificial Intelligence, 241, 244–284.

Baumann, R., Dvořák, W., Linsbichler, T., Strass, H., & Woltran, S. (2014). Compact argumentation
frameworks. In Schaub, T., Friedrich, G., & O’Sullivan, B. (Eds.), Proc. ECAI, Vol. 263 of
Frontiers in Artificial Intelligence and Applications, pp. 69–74. IOS Press.

Baumann, R., & Strass, H. (2013). On the maximal and average numbers of stable extensions. In
Black, E., Modgil, S., & Oren, N. (Eds.), Proc. TAFA, Vol. 8306 of Lecture Notes in Computer
Science, pp. 111–126. Springer.

Bench-Capon, T., & Dunne, P. E. (2007). Argumentation in artificial intelligence. Artificial Intelli-
gence, 171(10-15), 619–641.

Bergadano, F., & Gunetti, D. (1996). Inductive logic programming - from machine learning to
software engineering. MIT Press.

Besnard, P., & Doutre, S. (2004). Checking the acceptability of a set of arguments. In Delgrande,
J. P., & Schaub, T. (Eds.), Proc. NMR, pp. 59–64.

Bessiere, C., Koriche, F., Lazaar, N., & O’Sullivan, B. (2017). Constraint acquisition. Artificial
Intelligence, 244, 315–342.

Bistarelli, S., & Santini, F. (2011). ConArg: A constraint-based computational framework for ar-
gumentation systems. In Khoshgoftaar, T. M., & Zhu, X. (Eds.), Proc. ICTAI, pp. 605–612.
IEEE Computer Society.

549

NISKANEN, WALLNER, & JÄRVISALO

Black, E., Coles, A. J., & Bernardini, S. (2014). Automated planning of simple persuasion dia-
logues. In Bulling, N., van der Torre, L. W. N., Villata, S., Jamroga, W., & Vasconcelos,
W. W. (Eds.), Proc. CLIMA, Vol. 8624 of Lecture Notes in Computer Science, pp. 87–104.
Springer.

Black, E., & Hunter, A. (2012). A relevance-theoretic framework for constructing and deconstruct-
ing enthymemes. Journal of Logic and Computation, 22(1), 55–78.

Black, E., & Hunter, A. (2015). Reasons and options for updating an opponent model in persuasion
dialogues. In Black, E., Modgil, S., & Oren, N. (Eds.), Proc. TAFA, Revised Selected Papers,
Vol. 9524 of Lecture Notes in Computer Science, pp. 21–39. Springer.

Bodanza, G. A., Tohmé, F., & Auday, M. (2017). Collective argumentation: A survey of aggregation
issues around argumentation frameworks. Argument & Computation, 8(1), 1–34.

Bonzon, E., Delobelle, J., Konieczny, S., & Maudet, N. (2016). A comparative study of ranking-
based semantics for abstract argumentation. In Schuurmans, D., & Wellman, M. P. (Eds.),
Proc. AAAI, pp. 914–920. AAAI Press.

Brewka, G., Eiter, T., & Truszczynski, M. (2011). Answer set programming at a glance. Communi-
cations of the ACM, 54(12), 92–103.

Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J. P., & Woltran, S. (2018). Abstract dialectical
frameworks. In Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L. (Eds.), Handbook
of Formal Argumentation, chap. 5, pp. 237–285. College Publications.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Ricca,
F., & Schaub, T. (2012). ASP-Core-2 input language format. Available at https://www.
mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf.

Caminada, M. (2007). Comparing two unique extension semantics for formal argumentation: Ideal
and eager. In Dastani, M., & de Jong, E. (Eds.), Proc. BNAIC, pp. 81–87.

Cayrol, C., de Saint-Cyr, F. D., & Lagasquie-Schiex, M. (2010). Change in abstract argumentation
frameworks: Adding an argument. Journal of Artificial Intelligence Research, 38, 49–84.

Cerutti, F., Dunne, P. E., Giacomin, M., & Vallati, M. (2014a). Computing preferred extensions in
abstract argumentation: A SAT-based approach. In Black, E., Modgil, S., & Oren, N. (Eds.),
Proc. TAFA 2013 Revised Selected Papers, Vol. 8306 of Lecture Notes in Computer Science,
pp. 176–193. Springer.

Cerutti, F., Giacomin, M., & Vallati, M. (2014b). ArgSemSAT: Solving argumentation problems
using SAT. In Parsons, S., Oren, N., Reed, C., & Cerutti, F. (Eds.), Proc. COMMA, Vol. 266
of Frontiers in Artificial Intelligence and Applications, pp. 455–456. IOS Press.

Cerutti, F., Gaggl, S. A., Thimm, M., & Wallner, J. P. (2018). Foundations of implementations for
formal argumentation. In Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L. (Eds.),
Handbook of Formal Argumentation, chap. 15, pp. 688–767. College Publications.

Clarke, E. M., Gupta, A., & Strichman, O. (2004). SAT-based counterexample-guided abstrac-
tion refinement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 23(7), 1113–1123.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM, 50(5), 752–794.

550

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Coste-Marquis, S., Konieczny, S., Mailly, J.-G., & Marquis, P. (2014a). On the revision of argu-
mentation systems: Minimal change of arguments statuses. In Baral, C., Giacomo, G. D., &
Eiter, T. (Eds.), Proc. KR, pp. 52–61. AAAI Press.

Coste-Marquis, S., Konieczny, S., Mailly, J.-G., & Marquis, P. (2014b). A translation-based
approach for revision of argumentation frameworks. In Fermé, E., & Leite, J. (Eds.),
Proc. JELIA, Vol. 8761 of Lecture Notes in Computer Science, pp. 397–411. Springer.

Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M., & Marquis, P. (2007). On the
merging of Dung’s argumentation systems. Artificial Intelligence, 171(10-15), 730–753.

Coste-Marquis, S., Konieczny, S., Mailly, J., & Marquis, P. (2015). Extension enforcement in ab-
stract argumentation as an optimization problem. In Yang, Q., & Wooldridge, M. (Eds.),
Proc. IJCAI, pp. 2876–2882. AAAI Press.

Davies, J., & Bacchus, F. (2013). Exploiting the power of MIP solvers in MAXSAT. In Järvisalo,
M., & Gelder, A. V. (Eds.), Proc. SAT, Vol. 7962 of Lecture Notes in Computer Science, pp.
166–181. Springer.

Davis, J., & Ramon, J. (Eds.). (2015). Inductive Logic Programming - 24th International Confer-
ence, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers, Vol. 9046
of Lecture Notes in Computer Science. Springer.

de Saint-Cyr, F. D., Bisquert, P., Cayrol, C., & Lagasquie-Schiex, M. (2016). Argumentation up-
date in YALLA (Yet Another Logic Language for Argumentation). International Journal of
Approximate Reasoning, 75, 57–92.

Delobelle, J., Haret, A., Konieczny, S., Mailly, J.-G., Rossit, J., & Woltran, S. (2016). Merging
of abstract argumentation frameworks. In Baral, C., Delgrande, J. P., & Wolter, F. (Eds.),
Proc. KR, pp. 33–42. AAAI Press.

Delobelle, J., Konieczny, S., & Vesic, S. (2015). On the aggregation of argumentation frameworks.
In Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 2911–2917. AAAI Press.

Diller, M., Haret, A., Linsbichler, T., Rümmele, S., & Woltran, S. (2018). An extension-based
approach to belief revision in abstract argumentation. International Journal of Approximate
Reasoning, 93, 395–423.

Dimopoulos, Y., & Torres, A. (1996). Graph theoretical structures in logic programs and default
theories. Theoretical Computer Science, 170(1-2), 209–244.

Dimopoulos, Y., Mailly, J., & Moraitis, P. (2018). Control argumentation frameworks. In McIlraith,
S. A., & Weinberger, K. Q. (Eds.), Proc. AAAI, pp. 4678–4685. AAAI Press.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–358.

Dung, P. M., & Thang, P. M. (2018). Fundamental properties of attack relations in structured
argumentation with priorities. Artificial Intelligence, 255, 1–42.

Dunne, P. E., Hunter, A., McBurney, P., Parsons, S., & Wooldridge, M. (2011). Weighted argument
systems: Basic definitions, algorithms, and complexity results. Artificial Intelligence, 175(2),
457–486.

Dunne, P. E., & Wooldridge, M. (2009). Complexity of abstract argumentation. In Simari, G., &
Rahwan, I. (Eds.), Argumentation in Artificial Intelligence, pp. 85–104. Springer.

551

NISKANEN, WALLNER, & JÄRVISALO

Dunne, P. E., Dvořák, W., Linsbichler, T., & Woltran, S. (2015). Characteristics of multiple view-
points in abstract argumentation. Artificial Intelligence, 228, 153–178.

Dunne, P. E., Marquis, P., & Wooldridge, M. (2012). Argument aggregation: Basic axioms and
complexity results. In Verheij, B., Szeider, S., & Woltran, S. (Eds.), Proc. COMMA, Vol. 245
of Frontiers in Artificial Intelligence and Applications, pp. 129–140. IOS Press.

Dunne, P. E., Spanring, C., Linsbichler, T., & Woltran, S. (2016). Investigating the relationship
between argumentation semantics via signatures. In Kambhampati, S. (Ed.), Proc. IJCAI, pp.
1051–1057. IJCAI/AAAI Press.

Dvorák, W., Gaggl, S. A., Wallner, J. P., & Woltran, S. (2011). Making use of advances in answer-
set programming for abstract argumentation systems. In Tompits, H., Abreu, S., Oetsch, J.,
Pührer, J., Seipel, D., Umeda, M., & Wolf, A. (Eds.), Proc. INAP, Revised Selected Papers,
Vol. 7773 of Lecture Notes in Computer Science, pp. 114–133. Springer.

Dvořák, W., Järvisalo, M., Wallner, J. P., & Woltran, S. (2014). Complexity-sensitive decision
procedures for abstract argumentation. Artificial Intelligence, 206, 53–78.

Dvořák, W., & Dunne, P. E. (2018). Computational problems in formal argumentation and their
complexity. In Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L. (Eds.), Handbook
of Formal Argumentation, chap. 14. College Publications.

Dyrkolbotn, S. K. (2014). How to argue for anything: Enforcing arbitrary sets of labellings using
AFs. In Baral, C., Giacomo, G. D., & Eiter, T. (Eds.), Proc. KR, pp. 626–629. AAAI Press.

Eén, N., & Sörensson, N. (2004). An extensible SAT-solver. In Giunchiglia, E., & Tacchella, A.
(Eds.), SAT 2003 Selected Revised Papers, Vol. 2919 of Lecture Notes in Computer Science,
pp. 502–518. Springer.

Egly, U., Gaggl, S., & Woltran, S. (2010). Answer-set programming encodings for argumentation
frameworks. Argument & Computation, 1(2), 147–177.

Eiter, T., Ianni, G., & Krennwallner, T. (2009). Answer set programming: A primer. In Tessaris, S.,
Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M., & Schmidt, R. A. (Eds.),
Reasoning Web. Semantic Technologies for Information Systems, 5th International Summer
School 2009, Brixen-Bressanone, Italy, August 30 - September 4, 2009, Tutorial Lectures, Vol.
5689 of Lecture Notes in Computer Science, pp. 40–110. Springer.

Gaggl, S. A., Manthey, N., Ronca, A., Wallner, J. P., & Woltran, S. (2015). Improved answer-set
programming encodings for abstract argumentation. Theory and Practice of Logic Program-
ming, 15(4-5), 434–448.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Wanko, P. (2016). Theory
solving made easy with clingo 5. In Technical Communications of the 32nd International
Conference on Logic Programming, pp. 2:1–2:15.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-
lishers.

Hosseini, S. A., Modgil, S., & Rodrigues, O. (2014). Enthymeme construction in dialogues using
shared knowledge. In Parsons, S., Oren, N., Reed, C., & Cerutti, F. (Eds.), Proc. COMMA,
Vol. 266 of Frontiers in Artificial Intelligence and Applications, pp. 325–332. IOS Press.

552

SYNTHESIZING ARGUMENTATION FRAMEWORKS FROM EXAMPLES

Hunter, A. (2007). Real arguments are approximate arguments. In Proc. AAAI, pp. 66–71. AAAI
Press.

Hunter, A. (2014). Probabilistic qualification of attack in abstract argumentation. International
Journal of Approximate Reasoning, 55(2), 607–638.

Hunter, A., & Williams, M. (2012). Aggregating evidence about the positive and negative effects of
treatments. Artificial Intelligence in Medicine, 56(3), 173–190.

Li, H., Oren, N., & Norman, T. J. (2011). Probabilistic argumentation frameworks. In Modgil, S.,
Oren, N., & Toni, F. (Eds.), Proc. TAFA, Vol. 7132 of Lecture Notes in Computer Science, pp.
1–16. Springer.

Liao, B., Jin, L., & Koons, R. C. (2011). Dynamics of argumentation systems: a division-based
method. Artificial Intelligence, 175(11), 1790–1814.

Linsbichler, T. (2018). Characteristics of multiple viewpoints in abstract argumentation under com-
plete semantics. Tech. rep. DBAI-TR-2018-113, Vienna University of Technology, Institut
für Logic and Computation, Abteilung Datenbanken und Artificial Intelligence.

Linsbichler, T., Pührer, J., & Strass, H. (2016a). Characterizing realizability in abstract argumenta-
tion. In Kern-Isberner, G., & Wassermann, R. (Eds.), Proc. NMR, pp. 85–94.

Linsbichler, T., Pührer, J., & Strass, H. (2016b). A uniform account of realizability in abstract argu-
mentation. In Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum,
F., & van Harmelen, F. (Eds.), Proc. ECAI, Vol. 285 of Frontiers in Artificial Intelligence and
Applications, pp. 252–260. IOS Press.

Linsbichler, T., Spanring, C., & Woltran, S. (2015). The hidden power of abstract argumentation
semantics. In Black, E., Modgil, S., & Oren, N. (Eds.), Proc. TAFA, Vol. 9524 of Lecture
Notes in Computer Science, pp. 146–162. Springer.

Mailly, J.-G. (2016). Using enthymemes to fill the gap between logical argumentation and revision
of abstract argumentation frameworks. In Proc. NMR.

Martins, R., Manquinho, V. M., & Lynce, I. (2014). Open-WBO: A modular MaxSAT solver. In
Sinz, C., & Egly, U. (Eds.), Proc. SAT, Vol. 8561 of Lecture Notes in Computer Science, pp.
438–445. Springer.

Morgado, A., Ignatiev, A., & Marques-Silva, J. (2015). MSCG: Robust core-guided MaxSAT solv-
ing. Journal on Satisfiability, Boolean Modeling and Computation, 9, 129–134.

Murphy, J., Black, E., & Luck, M. (2016). A heuristic strategy for persuasion dialogues. In Baroni,
P., Gordon, T. F., Scheffler, T., & Stede, M. (Eds.), Proc. COMMA, Vol. 287 of Frontiers in
Artificial Intelligence and Applications, pp. 411–418. IOS Press.

Niskanen, A., Wallner, J. P., & Järvisalo, M. (2016a). Pakota: A system for enforcement in abstract
argumentation. In Michael, L., & Kakas, A. C. (Eds.), Proc. JELIA, Vol. 10021 of Lecture
Notes in Computer Science, pp. 385–400. Springer.

Niskanen, A., Wallner, J. P., & Järvisalo, M. (2016b). Synthesizing argumentation frameworks from
examples. In Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum,
F., & van Harmelen, F. (Eds.), Proc. ECAI, Vol. 285 of Frontiers in Artificial Intelligence and
Applications, pp. 551–559. IOS Press.

553

NISKANEN, WALLNER, & JÄRVISALO

Nofal, S., Atkinson, K., & Dunne, P. E. (2014). Algorithms for decision problems in argument
systems under preferred semantics. Artificial Intelligence, 207, 23–51.

Ontañón, S., Dellunde, P., Godo, L., & Plaza, E. (2012). A defeasible reasoning model of inductive
concept learning from examples and communication. Artificial Intelligence, 193, 129–148.

Oren, N., & Norman, T. J. (2009). Arguing using opponent models. In Peter, M., Iyad, R., &
Parsons Simon, M. N. (Eds.), Proc. ArgMAS.

Pührer, J. (2015). Realizability of three-valued semantics for abstract dialectical frameworks. In
Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 3171–3177. AAAI Press.

Rienstra, T., Thimm, M., & Oren, N. (2013). Opponent models with uncertainty for strategic argu-
mentation. In Rossi, F. (Ed.), Proc. IJCAI, pp. 332–338. IJCAI/AAAI.

Riveret, R. (2016). On learning abstract argumentation graphs from bivalent statement labellings.
In Proc. ICTAI, pp. 190–195. IEEE Computer Society.

Riveret, R., & Governatori, G. (2016). On learning attacks in probabilistic abstract argumentation.
In Jonker, C. M., Marsella, S., Thangarajah, J., & Tuyls, K. (Eds.), Proc. AAMAS, pp. 653–
661. ACM.

Riveret, R., Korkinof, D., Draief, M., & Pitt, J. V. (2015). Probabilistic abstract argumentation: an
investigation with Boltzmann machines. Argument & Computation, 6(2), 178–218.

Saikko, P., Berg, J., & Järvisalo, M. (2016). LMHS: A SAT-IP hybrid MaxSAT solver. In Creignou,
N., & Berre, D. L. (Eds.), Proc. SAT, Vol. 9710 of Lecture Notes in Computer Science, pp.
539–546. Springer.

Thimm, M., & Villata, S. (2017). The first international competition on computational models of
argumentation: Results and analysis. Artificial Intelligence, 252, 267–294.

Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., & Vallati, M. (2016). Summary report of
the first international competition on computational models of argumentation. AI Magazine,
37(1), 102–104.

Tohmé, F. A., Bodanza, G. A., & Simari, G. R. (2008). Aggregation of attack relations: A social-
choice theoretical analysis of defeasibility criteria. In Hartmann, S., & Kern-Isberner, G.
(Eds.), Proc. FoIKS, Vol. 4932 of Lecture Notes in Computer Science, pp. 8–23. Springer.

Valiant, L. G. (1979a). The complexity of computing the permanent. Theoretical Computer Science,
8, 189–201.

Valiant, L. G. (1979b). The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3), 410–421.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142.

Wallner, J. P., Niskanen, A., & Järvisalo, M. (2017). Complexity results and algorithms for extension
enforcement in abstract argumentation. Journal of Artificial Intelligence Research, 60, 1–40.

554

