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Abstract

We consider bounded width CNF-formulas where the width is measured by popular
graph width measures on graphs associated to CNF-formulas. Such restricted graph classes,
in particular those of bounded treewidth, have been extensively studied for their uses in
the design of algorithms for various computational problems on CNF-formulas. Here we
consider the expressivity of these formulas in the model of clausal encodings with auxiliary
variables. We first show that bounding the width for many of the measures from the
literature leads to a dramatic loss of expressivity, restricting the formulas to those of low
communication complexity. We then show that the width of optimal encodings with respect
to different measures is strongly linked: there are two classes of width measures, one
containing primal treewidth and the other incidence cliquewidth, such that in each class
the width of optimal encodings only differs by constant factors. Moreover, between the two
classes the width differs at most by a factor logarithmic in the number of variables. Both
these results are in stark contrast to the setting without auxiliary variables where all width
measures we consider here differ by more than constant factors and in many cases even by
linear factors.

1. Introduction

Graph width measures like treewidth and cliquewidth have been studied extensively in the
context of propositional satisfiability. The general idea is to assign graphs to CNF-formulas
and compute their width with respect to different width measures. Then, if the resulting
width is small, there are algorithms that solve SAT, but also more complex problems like
#SAT or MAX-SAT or even QBF efficiently (see e.g. Samer & Szeider, 2010a; Fischer,
Makowsky, & Ravve, 2008; Slivovsky & Szeider, 2013; Paulusma, Slivovsky, & Szeider,
2016; Sæther, Telle, & Vatshelle, 2015; Chen, 2004). There is also a considerable body
of work on reasoning problems from artificial intelligence restricted to knowledge encoded
by CNF-formulas with restricted underlying graphs: for example, treewidth restrictions
have been studied for abduction, closed world reasoning, circumscription, disjunctive logic
programming (Gottlob, Pichler, & Wei, 2010) and answer set programming (Jakl, Pichler,
& Woltran, 2009). There is thus by now a large body of work on how problems can be
solved on bounded width CNF-formulas for different graph width measures.

Curiously, however, there seems to be very little work on the natural question of what
we can actually encode with these restricted CNF-formulas. This question is pertinent
because good algorithms for problems are less attractive if they cannot deal with interesting
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instances. We make two main contributions on the expressivity of bounded width CNF-
formulas here.

As a first main contribution, we show, for a wide class of width measures, that one
can give width lower bounds of any encoding of a function by means of communication
complexity (Theorem 9). Such lower bounds were known for treewidth (Briquel, Koiran,
& Meer, 2011), but with our general approach, we extend them for many different width
measures, in particular (signed and unsigned) cliquewidth (Fischer et al., 2008; Slivovsky &
Szeider, 2013), modular treewidth (Paulusma et al., 2016) and MIM-width (Sæther et al.,
2015). As a consequence, in a sense, for all these measures, formulas of bounded width can
only encode simple functions.

All these lower bounds not only work for representations of functions as CNF-formulas
but also on clausal encodings, i.e. CNF-formulas using auxiliary variables. It is folklore
that adding auxiliary variables can decrease the size of an encoding: for example the parity
function has no subexponential CNF-representations but there is an easy linear size encoding
using auxiliary variables. We here observe a similar effect for the example of treewidth:
we show that any CNF-representation of the AtMostOnen-function of n inputs without
auxiliary variables has primal treewidth n − 1 which is the highest possible. But when
authorizing the use of auxiliary variables, AtMostOnen can be computed with formulas
of bounded treewidth easily. This shows that lower bounds for clausal encodings are far
stronger than those of CNF-representations. Considering that AtMostOnen is arguably a
very easy function, we feel that encodings with auxiliary variables are the more interesting
notion in our setting so we focus on them here.

We remark that this is of course not the first time that communication complexity
has been used to show lower bounds on the size or width of representations for Boolean
functions. In fact, this is one of the motivations for the development of the area and there
is a large literature on this (see e.g. Kushilevitz & Nisan, 1997; Hromkovic, 1997; Jukna,
2012). In particular, there are many results for showing lower bounds on different forms of
branching programs by means of communication complexity (see e.g. Wegener, 2000; Duris,
Hromkovic, Jukna, Sauerhoff, & Schnitger, 2004). More recently, this approach has been
generalized to more general languages considered in knowledge compilation (Pipatsrisawat
& Darwiche, 2010; Bova, Capelli, Mengel, & Slivovsky, 2016). However, beyond the lower
bounds on treewidth already discussed by Briquel et al. (2011), we are not aware of any
use of communication complexity to show bounds on width measures of CNF-formulas.

In a second main contribution, we focus on the relative expressive power of different
graph width measures for clausal encodings. For the graph width measures studied in
the literature, it is known that without auxiliary variables the expressivity of bounded
width CNF-formulas is different for all notions and they form a partial order with so-called
MIM-width as the most general notion (see e.g. Brault-Baron, Capelli, & Mengel, 2014,
Section 5). Somewhat surprisingly, the situation changes completely when one allows auxil-
iary variables: in this setting, the commonly considered width notions are all up to constant
factors equivalent to either primal treewidth or to incidence cliquewidth (Theorem 23). This
is true for every individual function. We remark that for the parameters primal treewidth,
dual treewidth and incidence treewidth, it was already known that the width of encodings
minimizing the respective width measures differs only by constant factors (Samer & Szeider,
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2010b; Briquel et al., 2011; Lampis, Mengel, & Mitsou, 2018). All other relationships are
new.

We also show that, assuming that an optimal encoding of a function has at least pri-
mal treewidth log(n) where n is the number of variables, incidence cliquewidth and primal
treewidth differ exactly by a factor of Θ(log(n)) for optimal encodings. So, up to a loga-
rithmic scaling, in fact all the commonly used width measures (Samer & Szeider, 2010a;
Fischer et al., 2008; Slivovsky & Szeider, 2013; Paulusma et al., 2016; Sæther et al., 2015)
coincide when allowing auxiliary variables. Note that this scaling exactly corresponds to
the runtime differences of many algorithms: while treewidth based algorithms often have
runtimes of the type 2O(k)nc for treewidth k and a constant c, cliquewidth based algorithms
typically give runtimes roughly nO(k′) for cliquewidth k′. These runtimes coincide exactly
when treewidth and cliquewidth differ by a logarithmic factor which, as we show here, they
do generally for encodings with auxiliary variables.

We finally use our main results for several applications. In particular, we answer an open
question of Briquel et al. (2011) on the cliquewidth of the permutation function PERMn

and generalize a classical theorem on planar circuits by Lipton and Tarjan (1980), see
Section 6 for details.

Most of our results use machinery recently developed in the area of knowledge com-
pilation. In particular, we use a combination of the algorithm proposed by Bova, Capelli,
Mengel, and Slivovsky (2015), the width notion for DNNF developed by Capelli and Mengel
(2019) and the lower bound techniques introduced by Pipatsrisawat and Darwiche (2010)
and Bova et al. (2016). Relying on these building blocks, most of our proofs become rather
simple.

2. Preliminaries

2.1 CNF-Formulas and their Graphs

We use standard notations for CNF-formulas as the ones used by Biere, Heule, van Maaren,
and Walsh (2009). Let X be a set of variables. A CNF-representation of a Boolean function
f in variables X is a CNF-formula F on the variable set X that has as models exactly the
assignments on which f evaluates to true. A clausal encoding of f is a CNF-formula F ′ on
a variable set X ∪ Y such that

• for every assignment a : X → {0, 1} on which f evaluates to true, there is an extension
a′ of a to Y that is a model of F ′, and

• for every assignment a : X → {0, 1} on which f evaluates to false, no extension a′ of
a to Y is a model of F ′.

The variables in Y are called auxiliary variables. An auxiliary variable y is called dependent
if and only if in the first item above all extensions a′ satisfying F ′ take the same value on
y (Giunchiglia, Maratea, & Tacchella, 2002). We say that a clausal encoding has dependent
auxiliary variables if all its auxiliary variables are dependent. Note that for such an encoding
the extension a′ is unique.

411



Mengel & Wallon

x1

x2 x3

x4x5 x1 x2 x3 x4 x5

C1 C2 C3 C4

Figure 1: Graphs associated to the CNF-formula F in Example 1: primal graph (left) and
incidence graph (right).

We use standard notations from graph theory and assume the reader to have a basic
background in the area (Diestel, 2012). By N(v) we denote the open neighborhood of a
vertex in a graph.

In some parts of this paper, we will also deal with Boolean circuits. We assume that
the reader is familiar with basic definitions in the area. As it is common when considering
circuits with structurally restricted underlying graphs, we assume that every input variable
appears in only one input gate. This property is sometimes called the read-once property.

To every CNF-formula F , we assign two graphs. The primal graph of F has as vertices
the variables of F and two variables x, y are connected by an edge if and only if there is a
clause C such that a literal in x and a literal in y appear in C. The incidence graph of F has
as vertex set the union of the variable set and the clause set of F . Edges in the incidence
graph are exactly the pairs x,C where x is a variable and C a clause that contains a literal
in x.

Example 1. Let us consider the clauses C1 := x1 ∨ ¬x2, C2 := x2 ∨ x3 ∨ ¬x4 ∨ ¬x5, C3 :=
¬x4∨x5 and C4 := x4∨x5, and let the CNF-formula F be defined as F := C1∧C2∧C3∧C4.
Its primal and incidence graphs are given in Figure 1.

2.2 Graph Width Measures

In this section, we will introduce several graph width measures we will consider throughout
this paper. A tree decomposition (T, (Bt)t∈V (T )) of a graph G = (V,E) consists of a tree T
and, for every node t of T , a set Bt ⊆ V called bag such that:

•
⋃
t∈V (T )Bt = V ,

• for every edge uv ∈ E, there is a bag Bt such that {u, v} ⊆ Bt, and

• for every v ∈ V , the set {t ∈ V (T ) | v ∈ Bt} is connected in T .

The width of a tree decomposition is defined as max{|Bt| | t ∈ V (T )} − 1. The treewidth
tw(G) of G is defined as the minimum width taken over all tree decompositions of G. The
primal treewidth twp(F ) of a CNF-formula F is defined as the treewidth of its primal graph
and the incidence treewidth twi(F ) of F is defined as that of the incidence graph.

Example 2. Let us again consider the formula F of Example 1. Figure 2 shows a tree de-
composition of the primal graph and the incidence graph of F . Both of these decompositions
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Figure 2: Tree decompositions of the graphs associated to the CNF-formula F in Example 2:
primal graph (left) and incidence graph (right).

are optimal: it is well-known that for every tree decomposition of a graph G, the vertices
of every clique must be contained in a common bag. So, in this case, x2, x3, x4, x5 must
be in one bag for every tree decomposition of the primal graph of F and thus twp(F ) ≥ 3
which shows that the decomposition of Figure 2 is optimal and twp(F ) = 3. Concerning the
treewidth of the incidence graph, remark that this graph has a cycle and is thus not a tree.
Since trees are well-known to be the only graphs of treewidth 1, it follows that twi(F ) ≥ 2
and thus the decomposition in Figure 2 is optimal and twi(F ) = 2.

We say that two vertices u, v in a graph G = (V,E) have the same neighborhood type if
and only if N(u) \ {v} = N(v) \ {u}. It can be shown that having the same neighborhood
type is an equivalence relation on V . A generalization of treewidth is modular treewidth
which is defined as follows: from a graph G we construct a new graph G′ by contracting
all vertices sharing a neighborhood type, i.e., from every equivalence class we delete all
vertices but one. The modular treewidth of G is then defined to be the treewidth of G′.
The modular treewidth mtw(F ) of a CNF-formula F is defined as the modular treewidth
of its incidence graph.

Example 3. Let us consider again the formula F from Example 1. Figure 3 shows a
contraction of all vertices sharing a neighborhood type in the incidence graph of F . This
contraction resulting in a tree, we have that mtw(F ) = 1.

The cliquewidth cw(G) of a graph G is defined as the minimum number of labels needed
to construct G with the following operations:

• creating a new vertex with label i,

• taking the disjoint union of two labeled graphs,

• joining all vertices with a label i to all vertices with a label j for i 6= j, and

• renaming a label i to j for i 6= j.

413



Mengel & Wallon

x1 x2 x3 x4

C1 C2 C3

Figure 3: A contraction of the incidence graph of the CNF-formula F in Example 3. In the
original graph, x4 and x5 have the same neighborhood type, as do C3 and C4. We thus get
the shown contraction by deleting x5 and C4. Note that the obtained graph is a tree.

The incidence cliquewidth cw(F ) of a formula F is defined as the cliquewidth of the incidence
graph of F (Slivovsky & Szeider, 2013).

Finally, we consider the adaption of cliquewidth to signed graphs. To this end, let us
make some additional definitions. The signed incidence graph G′ of a CNF-formula F is
the graph we get from the incidence graph G = (V,E) by labeling the edges with {+,−}
as follows:

• every edge xC such that x appears positively in C is labeled by +, and

• every edge xC such that x appears negatively in C is labeled by −.

The signed cliquewidth of a graph G′ is defined as the minimum number of labels needed
to construct G′ with the following operations:

• creating a new vertex with label i,

• taking the disjoint union of two labeled graphs,

• joining all vertices with a label i to all vertices with a label j for i 6= j by an edge
with label +,

• joining all vertices with a label i to all vertices with a label j for i 6= j by an edge
with label −, and

• renaming a label i to j for i 6= j.

The signed incidence cliquewidth scw(F ) of F is defined as the signed cliquewidth of its
signed incidence graph (Fischer et al., 2008).

We will deal with several other graph width measures for a CNF-formula in the remain-
der of this paper, in particular dual treewidth twd(F ) and MIM-width mimw(F ). Since for
those notions we will only use some of their properties, we will refrain from overwhelming
the reader by giving their definitions and refer to the literature (see e.g. Samer & Szeider,
2010a; Fischer et al., 2008; Vatshelle, 2012; Sæther et al., 2015; Slivovsky & Szeider, 2013).
We also consider the treewidth tw(C) and the cliquewidth cw(C) of Boolean circuits C.
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2.3 Communication Complexity

Here we give some very basic notions of communication complexity, focusing only on so-
called combinatorial rectangles, which are an important object in the field. For more details,
the reader is referred to the very readable textbook by Kushilevitz and Nisan (1997).

Let X be a set of variables and Π = (Y,Z) a partition of X. A combinatorial rectangle
respecting Π is a Boolean function r(X) that can be written as a conjunction r(X) =
r1(Y ) ∧ r2(Z). For a Boolean function f on X, a rectangle cover of size s respecting Π is
defined to be a representation

f(X) =
s∨
i=1

ri(X) =
s∨
i=1

ri1(Y ) ∧ ri2(Z),

where all ri(X) = ri1(Y ) ∧ ri2(Z) are combinatorial rectangles respecting Π. The non-
deterministic communication complexity cc(f,Π) = cc(f, (Y, Z)) of f is defined as log(smin)
where smin is the minimum size of any rectangle cover of f respecting Π.

Example 4. By definition, all formulas in disjunctive normal forms are rectangle covers of
the functions they compute respecting all possible partitions. For example,

F = (¬x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ ¬z)

is a rectangle cover of size 3 respecting every partition of {x, y, z}. However, for example
for the partition ({x, y}, {z}), there is the smaller rectangle cover

(((¬x ∧ ¬y) ∨ (x ∧ y)) ∧ z) ∨ (x ∧ ¬y ∧ ¬z)

of size 2. It is not hard to see that there is no smaller rectangle cover of F for this partition.

The best-case non-deterministic communication complexity with 1
3 -balance cc

1/3
best(f) is

defined as cc
1/3
best(f) := minΠ(cc(f,Π)) where the minimum is over all partitions Π = (Y,Z)

of X with min(|Y |, |Z|) ≥ |X|/3.

Example 5. Consider the function EQn(x1, . . . xn, y1, . . . , yn) which is true if and only
if for every i ∈ [n] we have xi = yi. It is well-known that for the partition Π1 =
({x1, . . . , xn}, {y1, . . . , yn}) we have cc(EQn,Π1) = n (see e.g. Kushilevitz & Nisan, 1997,
Chapter 2). However, for the partition

Π2 = ({x1, y1, . . . , xdn/2e, ydn/2e}, {xdn/2e+1, ydn/2e+1, . . . , xn, yn})

we have that

EQn(x1, . . . xn, y1, . . . , yn) =

dn/2e∧
i=1

xi = yi

 ∧
 n∧
i=dn/2e

xi = yi


is a rectangle cover of size 1 respecting Π2. Thus, we have cc

1/3
best(EQn) = cc(EQn,Π2) = 0.
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Figure 4: A v-tree on the left and a complete structured DNNF structured by this v-tree.
For the internal nodes of the v-tree, we give node names on the right of the nodes whereas
for leaves we assume that the name is the label. All gates of the complete structured DNNF
show the operation of the gate (on top) and the name t of the node in the v-tree for which
this gate is in µ(t) (on bottom).

2.4 Structured Deterministic DNNF

Out of the rich landscape of representations from knowledge compilation (Darwiche &
Marquis, 2002; Pipatsrisawat & Darwiche, 2008), we only introduce one that we will use in
the remainder of this paper. For all circuits in this section, we assume that ∧-gates have
exactly two inputs while the number of ∨-gates may be arbitrary.

A v-tree T for a variable set X is a full binary tree whose leaves are in bijection with X.
We call the variable assigned by this bijection to a leaf v the label of v. For a node t ∈ T ,
we denote by Tt the subtree of T that has t as its root and by var(Tt) the variables that are
labels of leaves in Tt.

Example 6. We give a v-tree for the variable set {x, y, z} on the left of Figure 4.

We give some definitions introduced by Capelli and Mengel (2019). A complete struc-
tured DNNF D structured by a v-tree T is a Boolean circuit with the following properties:
there is a labeling µ of the nodes in T with subsets of gates of D such that:

• For every gate g of D there is a unique node tg of T with g ∈ µ(tg).

• If t is a leaf labeled by a variable x, then µ(t) may only contain x and ¬x. Moreover,
for every input gate g, the node tg is a leaf.

• For every ∨-gate g, all inputs are ∧-gates in µ(tg).

• Every ∧-gate g has exactly two inputs g1, g2 that are both ∨-gates or input gates.
Moreover, tg1 and tg2 are the children of tg in T and in particular tg1 6= tg2 .
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The width wi(D) of D is defined as the maximal number of ∨-gates in any set µ(t). We often
speak of complete structured DNNF without mentioning the v-tree by which it is structured
in cases where the form of the v-tree is unsubstantial. Intuitively, a complete structured
DNNF is a Boolean circuit in negation normal form in which the gates are organized into
blocks λ(t) which form a tree shape. In every block one then computes a 2-DNF whose
inputs are gates from the blocks that are the children of λ(t) in the tree shape.

Example 7. On the right side of Figure 4, we give a complete structured DNNF structured
by the v-tree of Example 6. There are 3 ∨-gates in µ(b), so the width of the given complete
structured DNNF is 3.

A complete structured DNNF is called deterministic if and only if for every assignment
and for every ∨-gate, at most one input evaluates to true. Note that we do not allow constant
input gates here. We remark that if we allowed those, we could always get rid of them in
the circuit by propagation without changing any other properties of the circuit (Capelli
& Mengel, 2019, Section 4). We also remark that in a complete structured DNNF D, we
can forget a variable x, i.e., construct a complete structured DNNF D′ computing ∃xD,
by setting all occurrences of x and ¬x to 1 and propagating the constants in the obvious
way. This operation does not increase the width (Capelli & Mengel, 2019). However, if D
is deterministic, this is generally not the case for D′.

3. The Effect of Auxiliary Variables

In this section, we will motivate the use of auxiliary variables when considering width
measures of CNF-encodings. To this end, we will show with an example that auxiliary
variables may arbitrarily reduce the treewidth of encodings. Note that this is not very
surprising since it is not too hard to see that CNF-representations of, say, the parity function,
are of high treewidth. However, in this case the size of the representation is exponential, so
in a sense parity is a hard function for CNF-representations anyway. Here we will show that
even for functions that have small CNF-representations there can be a large gap between
the treewidth of representations and clausal encodings with auxiliary variables. That is
why we think it is useful to systematically study width measures for clausal encodings.

As an example for a function where auxiliary variables have a dramatic impact on
width, consider the AtMostOnen-function on variables x1, . . . , xn which accepts exactly
those assignments in which at most one variable is assigned to 1. There is an obvious
quadratic size representation as

AtMostOnen(x1, . . . , xn) =
∧

i,j∈[n],i<j

¬xi ∨ ¬xj .

However, this representation has as primal graph the clique Kn which is of treewidth n− 1.
We will see that in fact there is no representation of AtMostOnen that is of smaller primal
treewidth unless one adds auxiliary variables, in which case there is a simple encoding of
primal treewidth 2.

Theorem 1. Any CNF-representation of the AtMostOnen-function of n inputs without
auxiliary variables has primal treewidth n − 1. However, there is a clausal encoding of
AtMostOnen of primal treewidth 2.
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To prove Theorem 1, we split the statement into two lemmas.

Lemma 2. Any CNF-representation of the AtMostOnen-function of n inputs without
auxiliary variables has primal treewidth n− 1.

Proof. Let x1, . . . , xn be the variables of AtMostOnen. We proceed with two claims.

Claim 3. Every non-tautological clause C of any CNF-representation of
AtMostOnen must contain at least the negation of two variables from x1, . . . , xn.

Proof. Suppose that a clause C does not contain two such literals. Then, there are two
possible cases: either C contains no negated variables, or exactly one. In the first case, the
model of AtMostOnen setting all variables to 0 does not satisfy C, so C cannot be part of
the CNF-representation. In the second case, let xi be the (only) variable of AtMostOnen
appearing negatively in C. Then, the model of AtMostOnen setting only xi to 1 and all
other variables to 0 does not satisfy C, so C cannot be part of the CNF-representation,
either. Hence, at least two negated variables must appear in C.

From Claim 3, we will deduce that all pairs of variables must appear conjointly in at
least one clause.

Claim 4. For each pair of variables xi, xj from x1, . . . , xn with i 6= j, there is a clause in
the CNF-representation of AtMostOnen containing both ¬xi and ¬xj.

Proof. Suppose that, for a pair xi, xj , such a clause does not exist. Let a be the assignment
that sets exactly the variables xi, xj to 1 and all other variables to 0. Let C be a clause
from the CNF-representation. By our previous claim, C contains two negated variables
from x1, . . . , xn. Because of our assumption, at least one of these literals is neither ¬xi nor
¬xj , and this literal is satisfied by a. Thus C is satisfied by a. Since this is true for every
clause C, it follows that a satisfies all the clauses of the representation, so it is one of its
models. However, a is not a model of AtMostOnen. As a consequence, a clause containing
both ¬xi and ¬xj must exist, which is also true for every pair xi, xj .

Claim 4 shows that for each pair of variables, there is a clause containing both of them.
It follows that all variables are connected to all other variables in the primal graph of the
representation. So the primal graph is a clique which has treewidth n− 1.

We now prove the second part of Theorem 1, which shows that if we allow the use of
auxiliary variables, we may decrease the treewidth dramatically.

Lemma 5. There is a clausal encoding of AtMostOnen of primal treewidth 2.

Proof. We use the well-known ladder encoding presented by Gent and Nightingale (2004)
and Biere et al. (2009, Section 2.2.5). We introduce the auxiliary variables y0, . . . , yn. The
encoding consists of the following clauses, for every i ∈ [n]:

• the validity clauses ¬yi−1 ∨ yi, and

• clauses representing the constraint xi ↔ (¬yi−1 ∧ yi)

418



Graph Width Measures for CNF-Encodings with Auxiliary Variables

It is easy to see that this encoding is correct: the auxiliary variables yi encode if one of the
variables xj for j ≤ i is assigned to 1. Concerning the treewidth bound, we construct for
every index i ∈ [n] the bag Bi := {yi−1, yi, xi}. Then (Pn, (Bi)i∈[n]) where Pn has nodes [n]
and edges {(i, i+ 1) | i ∈ [n− 1]} is a tree decomposition of the encoding of width 2.

4. Width vs. Communication

In this section, we show that from communication complexity we get lower bounds for the
various width notions of Boolean functions. The main building block is the following result
that is an application of the main result of Pipatsrisawat and Darwiche (2010) to complete
structured DNNF.

Theorem 6. Let D be a complete structured DNNF structured by a v-tree T computing a
function f in variables X. Let t be a node of T and let Y := var(Tt) and Z = X \ var(Tt).
Finally, let ` be the number of ∨-gates in µ(t). Then there is a rectangle cover of f respecting
(Y,Z) of size at most `.

Note that Pipatsrisawat and Darwiche (2010) consider models that are structured DNNF
which are not necessarily complete, a slightly more general model than ours. Thus their
statement is slightly different. However, it is easy to see that in our restricted setting, their
proof shows the statement we give above (see also Bova et al., 2016, Section 5). Since
Theorem 6 is somewhat technical, it will be more convenient here to use the following easy
consequence.

Proposition 7. Let D be a complete structured DNNF structured by a v-tree T computing
a function f in variables X. Let t be a node of T and let Y := var(Tt) and Z = X \ var(Tt).
Then

log(wi(D)) ≥ cc(f, (Y,Z)).

Proof. From Theorem 6 and the definition of width, it follows directly that the size of any
rectangle cover of f respecting (Y,Z) is upper bounded by the width of D. Taking the
logarithm on both sides yields the claim.

In many cases, instead of considering explicit v-trees, it is more convenient to simply
use best-case communication complexity.

Corollary 8. Let f be a Boolean function in variables X. Then, for every complete struc-
tured DNNF computing f , we have

wi(D) ≥ 2cc
1/3
best(f).

Proof. Note that for every v-tree with X on the leaves, there is a node t such that |X|/3 ≤
|var(Tt)| ≤ 2|X|/3. Plugging this into Proposition 7 directly yields the result.

We will use Corollary 8 to turn compilation algorithms that produce complete structured
DNNF based on a parameter of the input (see Amarilli, Capelli, Monet, & Senellart, 2018a;
Bova & Szeider, 2017) into inexpressivity bounds based on this parameter. We first give an
abstract version of this result that we will instantiate for concrete measures later on.
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Theorem 9. Let C be a (fully expressive) representation language for Boolean functions.
Let p be a parameter p : C → N. Assume that there is for every Boolean function f and
every C ∈ C that encodes f a complete structured DNNF with

wi(D) ≤ 2p(C).

Then we have
p(C) ≥ cc

1/3
best(f).

Proof. From the assumption, we get p(C) ≥ log(wi(D)). Then we apply Corollary 8 to
directly get the result.

Intuitively, it is exactly the algorithmic usefulness of parameters that makes the resulting
instances inexpressive. Note that it is not surprising that instances whose expressiveness
is severely restricted allow for good algorithmic properties. However, here we see that
the inverse of this statement is also true in a quite harsh way: if a parameter has good
algorithmic properties allowing efficient compilation into DNNF, then this parameter puts
strong restrictions on the complexity of the expressible functions.

Note that instead of Corollary 8 we could have used Proposition 7 in the proof of
Theorem 9 to get a slightly stronger result. We chose to go with a simpler statement here
but note that we will use the extended strength of Proposition 7 later on in Section 6.

From Theorem 9, we directly get lower bounds for many of the remaining width measures
(as those from Paulusma, Slivovsky, & Szeider, 2013; Samer & Szeider, 2010a; Fischer
et al., 2008; Slivovsky & Szeider, 2013; Sæther et al., 2015). The first result considers the
parameters with respect to which SAT is fixed-parameter tractable.

Corollary 10. There is a constant b > 0 such that for every Boolean function f and every
CNF C encoding f we have

min{twi(C), twp(C), twd(C), scw(C)} ≥ b · cc1/3best(f).

Proof. This follows directly from Theorem 9 and the fact that for all these parameters there
are algorithms that, given an input CNF of parameter value k, construct an equivalent
complete structured DNNF of width 2O(k).

Using the compilation algorithm by Amarilli et al. (2018a) and Amarilli, Monet, and
Senellart (2018b), we get essentially the same result for circuit representations.

Corollary 11. There is a constant b > 0 such that for every Boolean function f and every
circuit C encoding f we have

min{tw(C), cw(C)} ≥ b · cc1/3best(f).

We remark that for treewidth 1 the circuits of Corollary 11 boil down to so-called read-
once functions which have been studied extensively (see e.g. Crama & L. Hammer, 2011,
Chapter 10).

Finally, we give a version for parameters that allow polynomial time algorithms when
fixed but no fixed-parameter algorithms.
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Corollary 12. There is a constant b > 0 such that for every Boolean function f in n
variables and every CNF C encoding f we have

min{mimw(C), cw(C),mtw(C)} ≥ b ·
cc

1/3
best(f)

log(n)
.

Proof. All of the width measures in the statement allow compilation into complete struc-
tured DNNF of size – and thus also width – nO(k) for parameter value k and n vari-
ables (Bova et al., 2015). Thus, with Theorem 9, for each measure there is a constant b′

with log(nk) = k log(n) ≥ b′cc1/3best(f) which completes the proof.

Note that the bounds of Corollary 12 are lower by a factor of log(n) than those of
Corollary 10. We will see in the next section that in a sense this difference is unavoidable.

5. Relations between Different Width Measures of Encodings

In this section, we will show that the different width measures for optimal clausal encodings
are strongly related. To this end, in different subsections, we will show the relation of
treewidth to all other width measures we consider. We will then combine these relationships
between treewidth and other width measures to analyze the relationships between all width
measures we consider.

5.1 From Treewidth to Modular Treewidth and Cliquewidth

We will start by proving that primal treewidth bounds imply bounds for modular treewidth
and cliquewidth.

Theorem 13. Let k be a positive integer and f be a Boolean function of n variables that has
a CNF-encoding F of primal treewidth at most k log(n). Then f also has a CNF-encoding
F ′ of modular incidence treewidth and cliquewidth O(k). Moreover, if F has dependent
auxiliary variables, then so has F ′.

Before we prove Theorem 13, let us here discuss this result a little. It is well known that
the modular treewidth and the cliquewidth of a CNF formula can be much smaller than its
treewidth (Slivovsky & Szeider, 2013). Theorem 13 strengthens this by saying essentially
that for every function we can gain a factor logarithmic in the number of variables.

In particular, this shows that the lower bounds we can get from Corollary 12 are the best
possible: the maximal lower bounds we can show are of the form n/ log(n) and since there
is always an encoding of every function of treewidth n, by Theorem 13 there is always an
encoding of cliquewidth roughly n/ log(n). Thus the maximal lower bounds of Corollary 12
are tight up to constants.

Note that for Theorem 13, it is important that we are allowed to change the encoding.
For example, the primal graph of the formula F =

∧
i,j∈[n](xi,j ∨ xi+1,j)∧ (xi,j ∨ xi,j+1) has

the n × n-grid as a minor and thus treewidth n (see e.g. Diestel, 2012, Chapter 12). But
the incidence graph of F has no modules and also has the n× n-grid as a minor, so F has
modular incidence treewidth at least n as well. So we gain nothing by going from primal
treewidth to modular treewidth without changing the encoding. What Theorem 13 tells us
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is that there is a different formula F ′ that encodes the function of F , potentially with some
additional variables, such that the treewidth of F ′ is at most O(n/ log(n)).

Let us note that encodings with dependent auxiliary variables are often useful, e.g. when
considering counting problems. In fact, for such clausal encodings, the number of models is
the same as for the function they encode. It is thus interesting to see that dependence of
the auxiliary variables can be maintained by the construction of Theorem 13. We will see
that this is also the case for most other constructions we make.

Proof (of Theorem 13). The basic idea is that we do not treat the variables in the bags of
the tree decomposition individually but organize them in groups of size log(n). We then
simulate the clauses of the original formula by clauses that work on the groups. Since
for every group there are only a linear number of assignments, all encoding sizes stay
polynomial. We now give the details of the proof.

Let (T, (Bt)t∈T ) be a tree decomposition of F of width at most k log(n). For every clause
C of F there is a bag λ(C) that contains the variables of C. By adding some copies of bags,
we may assume w.l.o.g. that for every bag B there is at most one clause with λ(C) = B
and call this clause λ−1(B).

In a first step, we construct a coloring µ : var(F )→ [k+ 1] such that in every bag there
are at most log(n) variables of every color. This can be done iteratively as follows: first split
the bag Br at the root r into color classes as required. Since there are at most k log(n) + 1
variables in Br by assumption, we can split them into k + 1 color classes of size at most
log(n) arbitrarily. Now let t be a node of T with parent t′. By the coloring of the variables
in Bt′ , some of the variables in Bt are already colored. We simply add the variables not
appearing in Bt′ arbitrarily to color classes such that no color class is too big. Again, since
Bt contains at most k log(n) + 1 variables, this is always possible. Moreover, due to the
connectivity condition, there is for every variable x a unique node tx that is closest to the
root under the bags containing x. Consequently, we can make no contradictory decisions
during this coloring process, so µ is well-defined.

We now construct F ′. To this end, we first introduce for every variable x and every
node t such that x ∈ Bt a new variable xt. Now for every node t with parent t′ and every
color i, we add a set Ct′,t,i of clauses in all variables xt, xt′ with µ(x) = i. We construct
these clauses in such a way that they are satisfied by exactly the assignments in which for
each pair xt, xt′ such that both these variables exist, both variables take the same value.
Note that the clauses in Ct,t′,i have at most 2 log(n) variables, so there are at most n2 of
them. Moreover, they contain all the same variables. The result is a formula in which all
xt for a variable x take the same value in all satisfying assignments.

In a next step, we do for each clause C the following: let t = λ(C). For every color i,
we define Xi,t to be the set of variables xt such that µ(x) = i. We add a fresh variable yC,i
and clauses CC,i in the variables Xi,t ∪ {yC,i} that accept exactly the assignments a with

• a(yC,i) = 1 and there is an xt ∈ Xi,t such that setting x to a(xt) satisfies C, or

• a(yC,i) = 0 and there is no xt ∈ Xi,t such that setting x to a(xt) satisfies C.

Next, we add the clause C ′ =
∨
i∈[k+1] yC,i. Finally, for every variable x, rename one

arbitrary variable xt to x. This completes the construction of F ′.
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We claim that F ′ is an encoding of f . To see this, first note that, as discussed before, for
every variable x of F , in the satisfying assignments of F ′, all xt and x take the same value.
So, we define for every assignment a of F a partial assignment a′ of F ′ as an extension of
a by setting a′(xt) = a(x) for every xt. a satisfies a clause C if and only if there is at least
one variable x of C such that a(x) makes C true. Let µ(x) = i, then a satisfies C if and
only if CC,i is satisfied by the extension of a′ that sets yC,i to 1. So a satisfies C if and only
if there is an extension of a′ that satisfies CC,i. Consequently, a satisfies F if and only if
there is an extension a′′ of a that satisfies F ′, so F ′ is an encoding of f as claimed.

To see that the construction maintains dependence of auxiliary variables, observe first
that the auxiliary variables already present in F are still in F ′ and they are still dependent.
We claim that all the new variables depend on those of F . For the variables xt, this
is immediate since they must take the same value as x in every model. Moreover, the
variables yC,i depend on the xt by definition. As a consequence, all auxiliary variables are
dependent

We now show that the modular treewidth of F ′ is at most O(k). First note that all sets
Xi,t are modules as are the clause sets Ct,t′,i and CC,i. W.l.o.g. we may assume that for every
t, there is at most one clause C with λ(C) = t and that T is a binary tree. We construct
a tree decomposition (T, (Bt)t∈V (T )) as follows: we put a representant of Xi,t, Ct,t′,i, Ct′,t,i
and CC,i into B′t. Moreover, we add yC,i and C ′ to B′t. It is easy to see that constructed
like this, (T, (Bt)t∈V (T )) is a tree decomposition of width at most O(k).

Finally, we will show that the incidence graph of the formula i can be constructed with
O(k) labels. In this construction, the relabeling operation will only ever be used to forget
labels, i.e., we change a label i into a global dummy label d such that vertices labeled by d
are never used in joining operations.

In a first step, we color T with 4 colors such that for every node t, the node t, its at most
two children and its parent all have different colors. We denote the color of t by η(t). Then,
for every t individually, we create the nodes in CC,i, Xt,i where C is such that λ(C) = t. The
clauses in CC,I get label (i, η(t), 0) and the variables in Xt,i get label (i, η(t), 1). By joining
the vertices with labels (i, η(t), 0) with those with (i, η(t), 1), we connect the variables in Xt,i

with the clauses in CC,i. We then create the yC,i, each with individual labels and connect
them to the clauses with label (i, η, 0). Finally, we create the clause vertex C ′ with an
individual label and connect it to the yC,i. We then forget the labels of all vertices except
the Xt,i. We call the resulting graph Gt.

Note that at this point, the only thing that remains to do is to introduce the clauses in
the Ct,t′,i and connect them to the variables in Gt and Gt′ . To do so, we work in a bottom-up
fashion along T . For the leaves of T , there is nothing to do. So let t be an internal node
of T with children t1, t2; the case in which t only has one child is treated analogously. By
induction, we assume that we have graphs G′t1 and G′t2 containing Gt1 and Gt2 as respective
subgraphs such that:

• all variables appearing in G′tj are already connected to all clauses, except the variables
in the Xtj ,i which are not yet connected to the clauses Ct,t1,i,

• all vertices in G′tj except for those in the Xti have the dummy label d.

We proceed as follows: we make a disjoint union of Gt, G
′
t1 and G′t2 . Then we create nodes

for all clauses in the Ct,t1,i giving them the label (i, η(t), 2). Then we connect all nodes
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with label (i, η(t1), 1) to those with label (i, η(t), 2), i.e., we connect the nodes in Xt1,i

with the clauses in Ct,t1,i. Then we connect all nodes with label (i, η(t), 1) to those with
label (i, η(t), 2), i.e., we connect the nodes in Xt,i with the clauses in Ct,t1,i. We proceed
analogously with t2. Finally, we forget all labels but those for the Xt,i. This completes the
construction.

Verifying the clauses in F ′, one can see that the resulting graph is indeed the incidence
graph of F ′. Moreover, we have only used O(k) clauses by construction. This completes
the proof.

5.2 Back to Treewidth

We now show that the reverse of Theorem 13 is also true: upper bounds for many width
measures imply also bounds for the primal treewidth of clausal encodings. Note that this
is at first sight surprising since without auxiliary variables many of those width measures
are known to be far stronger than primal treewidth.

Theorem 14. Let f be a Boolean function of n variables.

a) If F has a clausal encoding of modular treewidth, cliquewidth or mim-width k then
f also has a clausal encoding F ′ of primal treewidth O(k log(n)) with O(kn log(n))
auxiliary variables and nO(k) clauses.

b) If F has a clausal encoding of incidence treewidth, dual treewidth, or signed incidence
cliquewidth k, then f also has a clausal encoding F ′ of primal treewidth O(k) with
O(nk) auxiliary variables and 2O(k)n clauses.

To show Theorem 14 and several similar results for other width measures in this section,
we make a detour through DNNF. The idea is to show that from certain DNNF represen-
tations of functions, we can get clausal encondings of primal treewidth strongly related to
the width of the DNNF. Since many width measures can be used to construct small width
DNNFs, we get small width clausal encodings for these width measures. We now give a
precise statement of the relation between DNNF and treewidth of clausal encodings.

Lemma 15. Let f be a Boolean function in n variables that is computed by a complete
structured DNNF of width k. Then f has a clausal encoding F of primal treewidth 9 log(k)
with O(n log(k)) variables and O(nk3) clauses. Moreover, if D is deterministic then F has
dependent auxiliary variables.

The proof of Lemma 15 will rely on so-called proof trees in DNNF, a concept that has
found wide application in circuit complexity and in particular also in knowledge compilation.
To this end, we make the following definition: a proof tree T of a complete structured DNNF
D is a circuit constructed as follows:

1. The output gate of D belongs to T .

2. Whenever T contains an ∨-gate, we add exactly one of its inputs.

3. Whenever T contains an ∧-gate, we add both of its inputs.

4. No other gates are added to T .
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Note that the choice in Step 2 is non-deterministic, so there are in general many proof trees
for D. Observe also that due to the structure of D given by its v-tree, every proof tree is
in fact a tree which justifies the name. Moreover, letting T be the v-tree of D, every proof
tree of D has exactly one ∨-gate and one ∧-gate in the set µ(t) for every non-leaf node t of
T . For every leaf t, every proof tree contains an input gate x or ¬x where x is the label of
t in T .

The following simple observation that can easily be shown by using distributivity is the
main reason for the usefulness of proof trees.

Observation 16. Let D be a complete structured DNNF and a an assignment to its vari-
ables. Then a satisfies D if and only if it satisfies one of its proof trees. Moreover, if D is
deterministic, then every assignment a that satisfies D satisfies exactly one proof tree of D.

Proof (of Lemma 15). Let D be the complete structured DNNF computing f and let T be
the v-tree of D. The idea of the proof is to use auxiliary variables to “guess” for every t an
∨-gate and an ∧-gate. Then we use clauses along the v-tree T to verify that the guessed
gates in fact form a proof tree and check in the leaves of T if the assignment to the variables
of f satisfies the encoded proof tree. We now give the details of the construction.

We first note that, as shown by Capelli and Mengel (2019), in complete structured
DNNF of width k, one may assume that every set µ(t) contains at most k2 ∧-gates so we
assume this to be the case for D. For every node t of T , we introduce a set Xt of 3 log(k)
auxiliary variables to encode one ∨-gate and one ∧-gate of µ(t) if t is an internal node. If
t is a leaf, Xt encodes one of the at most 2 input gates in µ(t). We now add clauses that
verify that the gates chosen by the variables Xt encode a proof tree by doing the following
for every t that is not a leaf: first, add clauses in Xt that check if the chosen ∧-gate is in
fact an input of the chosen ∨-gate. Since Xt has at most 3 log(k) variables, this introduces
at most k3 clauses. Let t1 and t2 be the children of t in T . Then we add clauses that verify
if the ∧-gate chosen in t has as input either the ∨-gate chosen in t1 if t1 is not a leaf, or
the input gate chosen in t1 if t1 is a leaf. Finally, we add analogous clauses for t2. Each
of these clause sets is again in 3 log(k) variables, so there are at most 2k3 clauses in them
overall. The result is a CNF-formula that accepts an assignment if and only if it encodes a
proof tree of D.

We now show how to verify if the chosen proof tree is satisfied by an assignment to
f . To this end, for every leaf t of T labeled by a variable x, add clauses that check if an
assignment to x satisfies the corresponding input gate of D. Since µ(t) contains at most 2
gates, this only requires at most 4 clauses. This completes the construction of the clausal
encoding. Overall, since T has n internal nodes, the CNF has n(3 log(k) + 1) variables and
3nk3 + 4n clauses.

It remains to show the bound on the primal treewidth. To this end, we construct a
tree decomposition (T, (Bt)t∈V (T )) with the v-tree T as underlying tree as follows: for every
internal node t ∈ V (T ), we set Bt := Xt ∪ Xt1 ∪ Xt2 where t1 and t2 are the children
of t. Note that for every clause that is used for checking if the chosen nodes form a proof
tree, the variables are thus in a bag Bt. For every leaf t, set Bt := Xt ∪ {x} where x is
the variable that is the label of t. This covers the remaining clauses. It follows that all
edges of the primal graph are covered. To check the third condition of the definition of a
tree decomposition, note that every auxiliary variable in a set Xt appears only in Bt and
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potentially in Bt′ where t′ is the parent of t in T . Thus (T, (Bt)t∈V (T )) constructed in this
way is a tree decomposition of the primal graph of C. Obviously, the width is bounded by
9 log(k) since every Xt has size 3 log(k), which completes the proof.

Proof (of Theorem 14). We first prove a). As shown by Bova et al. (2015), whenever the
function f has a clausal encoding F with one of the width measures from this statement
bounded by k, then there is also a complete structured DNNF D of width nO(k) comput-
ing F . Now forget all auxiliary variables of F to get a DNNF representation D′ of f . Note
that since forgetting does not increase the width (Capelli & Mengel, 2019), D′ also has
width at most nO(k). We then simply apply Lemma 15 to get the result.

To see b), just observe that, following the same construction, the width of D is 2O(k)

for all considered width measures (Bova et al., 2015).

Remark that the construction of Theorem 14 has a surprising property: the size and
the number of auxiliary variables of the constructed encoding F ′ does not depend on the
size of the initial encoding at all. Both depend only on the number of variables in f and
the width.

To maintain dependence of the auxiliary variables in the above construction, we have to
work some more than for Theorem 14. We start with some definitions. We call a complete
structured DNNF reduced if from every gate there is a directed path to the output gate.
Note that every complete structured DNNF can be turned into a reduced DNNF in linear
time by a simple graph traversal and that this transformation maintains determinism and
structuredness by the same v-tree. The following property will be useful.

Lemma 17. Let D be a reduced complete structured DNNF and let g be a gate in D. Let
ag be an assignment to var(g), the variables in the subcircuit rooted in g, that satisfies g.
Then, ag can be extended to an assignment a that satisfies D.

Proof. We use the fact that an assignment to D is satisfying if and only if there is a proof-
tree that witnesses this. So let Tg be a proof tree that witnesses ag satisfying g. We extend
it to a proof tree for an extension a of ag as follows: first add a path from g to the output
gate to Tg and then iteratively add more gates as required by the definition of proof trees
where the choices in ∨-gates are performed arbitrarily. The result is an extension T of Tg
which witnesses that an assignment a that extends ag satisfies D.

Let f be a function in variables X∪{z}. We say that z is definable in X with respect to f
if there is a function g such that for all assignments a with f(a) = 1 we have a(z) = g(a|X)
where a|X is the restriction of a to X.

Lemma 18. Let f be a function in variables X ∪ {z} such that z is definable in X with
respect to f . Let D be a reduced complete structured deterministic DNNF computing f .
Then the complete structured DNNF D′ we get from D by forgetting z is deterministic as
well.

Proof. By way of contradiction, assume this were not the case. Then there is an ∨-gate g
in D′ and an assignment a′ to X such that two children g1 and g2 are satisfied by a′. By
Lemma 17, we may assume that a′ satisfies D′. Then there are extensions a1 and a2 of a
that assign a value to z such that a1 satisfies g1 and a2 satisfies g2 in D. Note that both a1
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and a2 satisfy D and thus, by definability, a1 and a2 assign the same value to z. So a1 = a2

and hence a1 satisfies both g1 and g2 in D which contradicts the determinism of D.

Theorem 19. Let f be a Boolean function of n variables.

a) If F has a clausal encoding with dependent auxiliary variables of modular treewidth,
cliquewidth or mim-width k then f also has a clausal encoding F ′ with dependent aux-
iliary variables of primal treewidth O(k log(n)) with O(kn log(n)) auxiliary variables
and nO(k) clauses.

b) If F has a clausal encoding with dependent auxiliary variables of incidence treewidth,
dual treewidth, or signed incidence cliquewidth k, then f also has a clausal encoding
F ′ with dependent auxiliary variables of primal treewidth O(k) with O(nk) auxiliary
variables and 2kn clauses.

Proof. The proof is essentially the same as that of Theorem 14 with some additional twists.
First observe that the complete structured DNNF D constructed with the construction of
Bova et al. (2015) is deterministic. Then we use Lemma 18 when forgetting the auxiliary
variables and get a D′ that is deterministic without increasing the width. Then, since D′ is
deterministic, we can construct a clausal encoding with dependent auxiliary variables using
Lemma 15.

Next we will show that signed incidence cliquewidth is linearly related to primal treewidth
when allowing auxiliary variables. We will state a result similar to Lemma 15.

To do so, we will start with a special case for which we introduce some more definitions:
a special tree decomposition of a graph G is defined as a tree decomposition (T, (Bt)t∈V (T ))
in which for every vertex x ∈ V (G) the set {t ∈ V (T ) | x ∈ Bt} lies on a leaf-root path in
T (Courcelle, 2012). The special treewidth is defined as the smallest width of any special
tree decomposition of G. Finally, we define the primal special treewidth of a CNF-formula
as the special treewidth of its primal graph.

Lemma 20. Every CNF-formula of primal special treewidth k has signed incidence clique-
width at most k + 1.

Proof. Let (T, (Bt)t∈V (T )) be a special tree decomposition of the primal graph of F . It is
well known that for every clause C there is a node t = λ(C) of T such that all variables of
C are in Bt. By adding copies of some bags Bt along a root-leaf path in T , we may assume
that λ(C) 6= λ(C ′) for every pair C,C ′ of clauses with C 6= C ′.

We will show how to construct the signed incidence graph G′ of F with the operations
in the definition of signed cliquewidth along the tree T . In a first step, we label every
variable x of F with a color µ(x) from {1, . . . , k+ 1} such that in every bag Bt there are no
two variables with the same label µ(x). This can be done similarly to the first step of the
proof of Theorem 13 by descending from the root to the leaves and labeling the variables
in the bags along this way. The label µ(x) will be the label that the variable gets when it
is created in the construction of G′. As in the proof of Theorem 13, the only renamings
of labels that we will perform will be forget operations, i.e., renaming a label to a dummy
label d.
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For the construction of G′, we will iteratively construct for every t ∈ V (T ) a graph Gt
that contains all variables in St :=

⋃
t′∈V (Tt)

Bt where Tt is the subtree of T rooted in t.
Moreover, Gt contains all clauses such that λ(C) lies in Tt and all signed edges connecting
them to their variables.

If t is a leaf, then we create all variables in Bt and if there is a clause C with λ(C) = t,
we introduce it with color k + 2. Since all variables of C have different colors, we can then
introduce all signed edges individually. This completes the construction for the leaf case.

Let now t be an internal node with children t1, . . . , t`. By assumption, we have already
constructed Gt1 , . . . , Gt` . Note that for every i the variables in Gti that are not in Bt are
by construction already connected to all their clauses in Gti , so we can safely forget their
label in a first step. Now we take the disjoint union of all Gti . Note that this union is in
fact disjoint, because, since we start from a special tree decomposition, no node appears in
more than one Gti . Now we create the variables which appear in Bt but not in any Gti .
Note that at this point the vertices with non-dummy labels are exactly those in Bt. If there
is no clause C with λ(C) = t, we are done. Otherwise, we create C and connect it to all its
variables by signed edges as in the leaf case. This completes the construction of Gt.

For the root r of T we have Gr = G′ by definition. Moreover, we have used at most
k + 2 labels. This completes the proof.

With Lemma 20, we can give a version of Lemma 15 for signed incidence cliquewidth
easily.

Lemma 21. Let f be a Boolean function in n variables that is computed by a structured
DNNF of width k. Then f has a clausal encoding F of signed incidence cliquewidth and
primal special treewidth O(log(k)) with O(n log(k)) variables and O(nk3) clauses. Moreover,
if D is deterministic then F has dependent auxiliary variables.

Proof. We only have to observe that in fact the tree decomposition in the proof of Lemma 15
is special and apply Lemma 20.

Corollary 22. Let f be a function with a CNF-representation of primal treewidth k. Then
f has a clausal encoding of signed incidence cliquewidth and special treewidth O(k).

5.3 Putting Things Together

We can now state the main result of this section.

Theorem 23. Let A = {twp, twd, twi, scw} and B = {mtw, cw,mimw}. Let f be a Boolean
function in n variables.

a) Let w1 ∈ A and w2 ∈ B. Then there are constants c1 and c2 such that the following
holds: let F1 and F2 be clausal representations for f with minimal w1-width and w2-
width, respectively. Then

w1(F1) ≤ k log(n)⇒ w2(F2) ≤ c1k

and

w2(F2) ≤ k ⇒ w1(F1) ≤ c2k log(n).
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b) Let w1 ∈ A and w2 ∈ A or w1 ∈ B and w2 ∈ B. Then there are constants c1 and
c2 such that the following holds: let F1 and F2 be clausal representations for f of
minimal w1-width and w2-width, respectively. Then

w1(F1) ≤ k ⇒ w2(F2) ≤ c1k

and

w2(F2) ≤ k ⇒ w1(F1) ≤ c2k.

Proof. Assume first that w1 = twp. For a) we get the second statement directly from
Theorem 14 a). For cw and mtw we get the first statement by Theorem 13. For mimw it
follows by the fact that for every graph mimw(G) ≤ c · cw(G) for some absolute constant c
(Vatshelle, 2012, Section 4).

For b), the second statement is Theorem 14 b). Since for every formula F we have
twi(F ) ≤ twp(F ) + 1, (see e.g. Fischer et al., 2008), the first statement for twi is immediate.
For scw it is shown in Corollary 22, while for twd it has been shown by Samer and Szeider
(2010b). All other combinations of w1 and w2 can now be shown by an intermediate step
using twp.

6. Applications

6.1 Cardinality Constraints

In this section, we consider cardinality constraints, i.e., constraints of the form
∑

i∈[n] xi ≤ k
in the Boolean variables x1, . . . , xn. The value k is commonly called the degree or the
threshold of the constraint. Let us denote by Ckn the cardinality constraint with n variables
and degree k. Cardinality constraints have been studied extensively and many encodings
are known (see e.g. Sinz, 2005a). Here we add another perspective on cardinality constraint
encodings by determining their optimal treewidth. We remark that we could have studied
cardinality constraints in which the relation is ≥ instead of ≤ with essentially the same
results. We start with an easy observation:

Observation 24. Ckn has an encoding of primal treewidth O(log(min(k, n− k)))

Proof. First assume that k < n/2. We iteratively compute the partial sums of Sj :=∑
i∈[j] xi and encode their values in log(k) + 1 bits Y j := {yj1, . . . , y

j
log(k)+1}. We cut these

sums off at k+1 (if we have seen at least k+1 variables set to 1, this is sufficient to compute
the output). In the end we encode a comparator comparing the last sum Sn to k.

Since the computation of Sj+1 can be done from Sj and xj+1, we can compute the
partial sums with clauses containing only the variables in Y j ∪Y j+1 ∪{xj+1}, so O(log(k))
variables. The resulting CNF-formula can easily be seen to be of treewidth O(log(k)).

If k > n/2, we proceed similarly but count variables assigned to 0 instead of those set
to 1.

We remark that our construction is the “basic approach” described by Biere et al.
(2009, Section 8.6.7). It has some similarity with the sequential counter introduced by Sinz
(2005b). The main difference is that we encode the partial sums Sj in binary whereas in the
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sequential counter, they are encoded in unary. This latter encoding has better properties
with respect to unit propagation, whereas our encoding has smaller treewidth, which is the
parameter we are optimizing for. We now show that Observation 24 is essentially optimal.

Proposition 25. Let k < n/2. Then

cc
1/3
best(C

k
n) = Ω(log(min(k, n/3))).

Proof. Let s = min(k, n3 ). Consider an arbitrary partition Y, Z with n
3 ≤ |Y | ≤

2n
3 . We show

that every rectangle cover of Ckn must have s rectangles. To this end, choose assignments
(a0, b0), . . . , (as, bs) such that ai : Y → {0, 1} assigns i variables to 1 and bi : Z → {0, 1}
assigns k− i variables to 1. Note that every (ai, bi) satisfies Ckn. We claim that no rectangle
r1(Y ) ∧ r2(Z) in a rectangle cover of Ckn can have models (ai, bi) and (aj , bj) for i 6= j.
To see this, assume that such a model exists and that i < j. Then the assignment (aj , bi)
is also a model of the rectangle since aj satisfies r1(Y ) and bi satisfies r2(Z). But (aj , bi)
contains more than k variables assigned to 1, so the rectangle r1(Y )∧ r2(Z) cannot appear
in a rectangle cover of Ckn. Thus, every rectangle cover of Ckn must have a different rectangle
for every model (ai, bi) and thus at least s rectangles. This completes the proof for this
case.

A symmetric argument shows that for k > n/2 we have the lower bound cc
1/3
best(C

k
n) =

Ω(log(min(n − k, n/3))). Observing that k < n for non-trivial cardinality constraints, we
get the following from Theorem 6.

Corollary 26. Clausal encodings of smallest primal treewidth for Ckn have primal treewidth
Θ(log(s)) for s = min(k, n−k). The same statement is true for dual and incidence treewidth
and signed incidence cliquewidth. For incidence cliquewidth, modular treewidth and mim-
width, there are clausal encodings of Ckn of constant width.

6.2 The Permutation Function

We now consider the permutation function PERMn which has the n2 input variables
Xn = {xij | i, j ∈ [n]} thought of as a matrix in these variables. PERMn evaluates to 1 on
an input a if and only if a is a permutation matrix, i.e., in every row and in every column
of a there is exactly one 1.

Example 8. The function PERM2 has the variables x11, x12, x21, x22 which we interpret

organized as the matrix

(
x11 x12

x21 x22

)
. The only inputs on which PERM2 evaluates to 1

are

(
1 0
0 1

)
and

(
0 1
1 0

)
. Inputs on which PERM2 evaluates to 0 are for example

(
1 1
1 0

)
(the first row has more than one 1-entry) and

(
0 1
0 0

)
(the first column has no 1-entry).

PERMn is known to be hard in several versions of branching programs (Wegener,
2000). Briquel et al. (2011) showed that clausal encodings of PERMn require tree-
width Ω(n/ log(n)). We here give an improvement by a logarithmic factor.
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Lemma 27. For every v-tree T on variables Xn, there is a node t of T such that

cc(PERMn, Y, Z) = Ω(n)

where Y = var(Tt) and Z = X \ Y .

Proof. The proof is a variation of arguments used by Briquel et al. (2011), Krause (1988)
and (Wegener, 2000, Section 4.12). Since all models of PERMn assign exactly n variables
to 1, for every model a of PERMn there is a node ta in T such that Tt contains between
n/3 and 2n/3 variables assigned to 1 by a. Since T has n internal nodes and PERMn has
n! models, there must be a node t such that for at least (n − 1)! of the models a we have
t = ta. We will show in the remainder that t has the desired property.

Denote by A the set of models of PERMn for which ta = t. Let Y = var(Tt) and
Z = Xn \ Y as in the statement of the lemma. Every model a of PERMn corresponds to
a permutation πa on [n] that assigns every i ∈ [n] to the j such that a(xij) = 1. Note that
because of the properties of a, πa is well-defined and indeed a permutation.

Let R(X) = r1(Y )∧r2(Z) be a rectangle in a rectangle cover of PERMn with partition
(Y,Z). We will show that R(X) contains few models from A. To this end, fix a model a ∈ A
of R(X) and define I(a) = {i | xi,πa(i) ∈ Y }. Note that k := |I(a)| is the number of variables
in Y that are assigned to 1 by a and thus n/3 ≤ k ≤ 2n/3. Let a′ be another model of R(X).
Then I(a′) = I(a) because otherwise a|Y ∪ a′|Z does not encode a permutation where a|Y
denotes the restriction of a to Y and a′|Z that of a′ to Z. Letting I ′(a) = {πa(i) | i ∈ I(a)},
we get similarly that for all models a′ of R(X) we have I ′(a) = I ′(a′). It follows that the
models of r1(Y ) are all bijections between I(a) and I ′(a) and thus r1(Y ) has at most k!
models.

By a symmetric argument, one sees that r2(Z) has at most (n− k)! models. Thus, the
number of models of R is bounded by k!(n − k)! ≤

(
n
3

)
!
(

2n
3

)
!. As a consequence, to cover

all (n− 1)! models in a, one needs at least

(n− 1)!(
n
3

)
!
(

2n
3

)
!

=
1

n

(
n
n
3

)
≥ 1

n

(
n
n
3

)n
3

=
1

n
3
√

3
n

rectangles, which completes the proof.

As a consequence of Lemma 27, we get an asymptotically tight treewidth bound for
encodings of PERMn.

Corollary 28. Clausal encodings of smallest primal treewidth for Ckn have primal treewidth
Θ(n).

Proof (sketch). The lower bound follows by using Lemma 27 and Proposition 7 and then
arguing as in the proof of Theorem 9.

For the upper bound, observe that checking if out of n variables exactly one has the
value 1 can easily be done with n variables. We apply this for every row in a bag of a tree
decomposition. We perform these checks for one row after the other and additionally use
variables for the columns that remember if in a column we have seen a variable assigned 1
so far. Overall, to implement this, one needs O(n2) auxiliary variables and gets a formula
of treewidth O(n).
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From Corollary 28 we get the following bound by applying Theorem 13. This answers
an open problem of Briquel et al. (2011), who showed only conditional lower bounds for
the incidence cliquewidth of encodings of PERMn.

Corollary 29. Clausal encodings of smallest incidence cliquewidth for Ckn have width
Θ(n/log(n)).

6.3 Improved Lower Bounds for Minor-Free Graphs

In this section, we show how our approach can be used to improve lower bounds for struc-
turally restricted classes of circuits. We recall that a minor H of a graph G is a graph that
we can get from G by deleting vertices, deleting edges and contracting edges. For a graph
H, the class of H-minor-free graphs is defined as the class of graphs consisting of all graphs
that do not have H as a minor. H-minor-free graphs have been studied extensively. In par-
ticular, it is known that for planar graphs, and more generally for all graphs embeddable in
a fixed surface, there is a graph H such that those graphs are H-minor free. For example,
planar graphs are K5-minor-free and K3,3-minor-free.

We say that a Boolean circuit C is H-minor-free if the underlying undirected graph
of C is H-minor-free. Remember that we assume that every input variable is the label
of at most one input gate. There have long been quadratic lower bounds for planar cir-
cuits (Lipton & Tarjan, 1980). Those were generalized to almost quadratic lower bounds of
the order Ω(n2/ log(n)2) for H-minor-free circuits shown by de Oliveira Oliveira (2018). We
show here that with our techniques it is easy to improve these bounds to quadratic lower
bounds.

The basic building block for our lower bound will be the following result on the treewidth
of H-minor-free graphs (as in de Oliveira Oliveira, 2018).

Theorem 30 (Alon, Seymour, & Thomas, 1990). For every graph H there is a constant h
such that every H-minor-free graph G has treewidth at most h

√
|V (G)|.

Corollary 31. For every graph H there is a constant h′ such that for every function f ,

every H-minor-free circuit C computing f has at least cc
1/3
best(f)2 gates.

Proof. By Corollary 11, any circuit computing f must have treewidth Ω(cc
1/3
best(f)). By

Theorem 30, the treewidth of C is at most
√
s where s is the number of gates in C. Thus

√
s ≥ cc

1/3
best(f) and the claim follows.

To show a quadratic lower bound, consider the function 4-freen in variables Xij with
1 ≤ i < j ≤ n which is defined as follows: interpret the input as the adjacency matrix of a
graph G and return 1 if and only if G does not have a triangle as a subgraph. We note that
4-freen is a classical function, considered in communication complexity essentially since
the creation of the field (Papadimitriou & Sipser, 1984). Here, we will use the following
result:

Theorem 32 (Jukna & Schnitger, 2002). The best-case non-deterministic communication
complexity with 1

3 -balance of 4-freen is quadratic in n, i.e.,

cc
1/3
best(4-freen) = Ω(n2).
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We directly get the following generalization of the quadratic lower bound shown by
Lipton and Tarjan (1980), which improves that of de Oliveira Oliveira (2018).

Theorem 33. For every fixed graph H there is a constant h′ such that every H-minor-free
circuit computing 4-freen has Ω(n4) gates, i.e., quadratic in the number of inputs.

7. Conclusion

We have shown several results on the expressivity of clausal encodings with restricted un-
derlying graphs. In particular, we have seen that many graph width measures from the
literature put strong restrictions on the expressivity of encodings. We have also seen that,
contrary to the case of representations by CNF-formulas, in the case where auxiliary vari-
ables are allowed, all width measures we have considered are strongly related to primal
treewidth and never differ by more than a logarithmic factor. Moreover, most of our results
are also true while maintaining dependence of auxiliary variables.

From a practical standpoint, one point of our results might be that formulas solved
with width-based algorithms as those from the theoretical literature can likely only deal
with quite simple formulas. Otherwise, for example if formulas contain big cardinality
constraints or pseudo-Boolean constraints, the width of the formulas might be infeasibly
high. This is because all those algorithms are at least exponential in the width of the input.
An implementation of such algorithms would thus likely have to implement heuristics and
optimizations not presented in the theory literature. For example, Fichte, Hecher, and
Zisser (2019) showed that one can use parallelism of GPUs to improve the efficiency of
treewidth-based counting and thus scale to higher treewidth.

To close the paper, let us discuss several questions. First, the number of clauses of the
encodings guaranteed by Theorem 14 is very high. In particular, it is exponential in the
width k. It would be interesting to understand if this can be avoided, i.e., if there are
encodings of roughly the same primal treewidth whose size is polynomial in k.

It would also be interesting to see if our results can be extended to other classes of
CNF-formulas on which SAT is tractable. Interesting classes to consider would e.g. be the
classes described by Ganian and Szeider (2017). In this paper, the authors define another
graph for CNF-formulas for which bounded treewidth yields tractable model counting. It
is not clear if the classes characterized that way allow small complete structured DNNF so
our framework does not apply directly. It would still be interesting to see if one can show
similar expressivity results to those here. Other interesting classes one could consider are
those defined by backdoors (see e.g. Gaspers & Szeider, 2013).
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