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Abstract

Traditional machine learning methods share a common hypothesis: training and testing
datasets must be in a common feature space with the same distribution. However, in
reality, the labeled target data may be rare, so that target space does not share the same
feature space or distribution as an available training set (source domain). To address the
mismatch of domains, we propose a Dual-Subspace Transfer Learning (DSTL) framework
that considers both the common and specific information of the two domains. In DSTL,
a latent common subspace is first learned to preserve the data properties and reduce the
discrepancy of domains. Then, we propose a mapping strategy to transfer the source-
specific information to the target subspace. The integration of the domain-common and
specific information constructs the proposed DSTL framework. In comparison to the state-
art-of works, the main contribution of our work is that the DSTL framework not only
considers the commonalities, but also exploits the specific information. Experiments on
three emotional speech corpora verify the effectiveness of our approach. The results show
that the methods which include both domain-common and specific information perform
better than the baseline methods which only exploit the domain commonalities.

1. Introduction

Speech Emotion Recognition (SER), as an important branch of affective computing, has
been a popular topic in Human-Computer Interaction (HCI) fields (Zhang, Zhang, Huang,
& Gao, 2018; Schuller et al., 2010), aiming to identify the emotional states (e.g., neutral,
happiness, fear, sadness.) of human speech. SER recently has been extensively used in
various areas, such as detecting the mental state of the driver and reminding him to avoid
a traffic accident when needed, facilitating emotional tracking of patients with depression,
and so on.

A number of Machine Learning (ML) approaches have been proposed in the field of SER,
including linear methods, such as Support Vector Machine (SVM) (Vaishali & Gohokar,
2012), Artificial Neural Network (ANN) (Goldberg, 2016; Safdarkhani, Mojaver, Atieghechi,
Molanoori, & Riahi, 2012), Näıve Bayes Classifier; and other non-linear methods, e.g.,
Gaussian Mixture Model (GMM) (Vlassis & Likas, 2002), K-Nearest Neighbor algorithms
(K-NN), Decision Trees, etc. These above mentioned methods perform well under a vital
common assumption: training and testing data are in the same feature space and have the
same distribution (Pan & Yang, 2010; Daumé III & Marcu, 2006). However, when the
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distribution changes, most statistical models need to be rebuilt from the very beginning
using newly collected training data, which is expensive and does not scale. Another fact is
that the scales of existing emotional speech corpora are usually small due to the high cost
in data labeling. According to the survey (Wang & Zheng, 2015), there are more than 5000
languages around the world, but only a few languages have adequate resources (e.g., speech
signal, text corpus, emotional speech corpus, etc). The sharing of the available sources also
suffers from a number of factors, such as different languages, types of emotion expressions
(acted vs. naturalistic) (Deng, Zhang, & Schuller, 2014), ages of speakers (children vs.
adults) (Tong, Wang, & Ma, 2017), types of recording situations. Directly applying a
model trained on one corpus to another will cause severe degradation of performance for
most ML approaches due to mismatch. Transfer learning methods can be a great tool to
alleviate this problem.

Transfer learning, in contrast with traditional ML, allows the domains, tasks, and dis-
tributions used in training and testing to be different (Pan & Yang, 2010). Specifically,
the motivation of transfer learning is to attempt to transfer the knowledge in a supervised
domain (termed as source domain) to another different but related domain with only lim-
ited information (termed as target domain) to induce a better model (Gasulla et al., 2018).
Transfer learning approaches have already been used in a number of applications and do-
mains. For example, in face recognition, Kan et al. (2014) transferred the knowledge from
a model trained on a source dataset to a new face dataset, which lacks data labels and
possesses different lighting conditions and subjects. Also, in Natural Language Processing
(NLP), labeled data for tasks like part-of-speech tagging, parsing, or information extraction
are generally drawn from a limited set of document types and genres in a given language
because of availability, cost, and project goals. Thus, David, Blitzer, Crammer, and Pereira
(2006) adapted a classification model trained on some document sets (source domain) for
a new document set (target domain). Facing the similar situation, the transfer learning
approaches can also be effective in SER.

Various transfer learning approaches (Pan & Yang, 2010; Yang & Gao, 2014; Deng, Xu,
Zhang, Frühholz, & Schuller, 2018) have been proposed to cope with the mismatch between
training and testing datasets. Mainstream approaches are common/feature-based methods,
which explore the commonalities of both source and target domains, such as common feature
representation or a common subspace. A key factor in this kind of approaches is to find
a good feature representation for two domains with different distributions, to preserve the
discriminative properties and reduce the discrepancy as much as possible (Pan, Tsang,
Kwok, & Yang, 2011; Kan, Wu, Shan, & Chen, 2014).

An early representative common/feature-based method was Maximum Mean Discrep-
ancy Embedding (MMDE) (Pan, Kwok, & Yang, 2008), which aims to learn a latent space
where the distribution differences can be reduced and the data variance can be preserved.
Its limitation as not generalizing out of sample patterns was later solved in Transfer Com-
ponent Analysis (TCA) framework (Pan et al., 2011), which can not only find the main
components of domains, but also reduce the distribution differences. More recent meth-
ods include Transfer Non-negative Matrix Factorization (TNMF) method, where Maxi-
mum Mean Discrepancy (MMD) and Graph Embedding (GE), as regularization terms, are
combined with non-negative matrix factorization method, and MMD is directly computed
without non-kernel mapping (Song, Ou, Zheng, Jin, & Zhao, 2016). Furthermore, Trans-
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fer Linear Subspace Learning (TLSL) method employs a novel feature grouping strategy
by preserving the high transfer part and suppressing the low transfer part, to avoid the
negative transfer of knowledge (Song, 2017).

Most of these above common/feature-based methods are suitable for the mismatch prob-
lems, so that the distributions of the source and target domains are close to each other.
However, this kind of methods concerns only the domain-common information, while ignores
the domain-specific information. Researches show that combination of common and specific
information can better adapt to the problems with more extensive potential of applications
(Song, 2017; Fernando, Habard, Sebban, & Tuytelaars, 2013). In our work, we propose to
transfer the source-specific information to the target subspace by using a mapping matrix,
to solve the lack of labeled training data.

The method proposed in this work is named Dual-Subspace Transfer Learning (DSTL)
framework, which combines the commonalities in a common subspace and specific infor-
mation in the target subspace. The term“dual-subspace” refers to two subspaces: common
subspace for commonalities, and target subspace for specific information. The low dimen-
sional common subspace is extracted by certain common-based methods, so as to preserve
the data properties and reduce the distribution differences. To bridge the two subspaces
for transferring the source-specific information to the target subspace, we propose a novel
mapping strategy as SMT (Source-specific Mapping to Target subspace, to be stated in Sec-
tion 2.2.2). Finally, the common and specific information are combined in DSTL to train
a supervised classifier for predicting the class labels of the target data. DSTL is a general
framework that can combine most common/feature-based methods with SMT method, and
thus it focuses on commonalities and specific information simultaneously.

The rest of this paper is organized as follows: Section 2 describes our proposed DSTL
framework in detail, including finding a latent common subspace between domains and
transferring the source-specific knowledge to the target subspace. In Section 3, we verify
the performance of the proposed method on three different emotional speech corpora for
cross-corpus emotion recognition. In Section 4, some research issues are discussed. Finally,
we give a conclusion in the last section.

2. Dual-Subspace Transfer Learning

The common space between domains dominates the discussion in the transfer learning
method literature, while essential domain-specific information is ignored. Therefore, in this
work, both commonalities and domain-specific information are included in our proposed
DSTL framework. After finding a common space of both source and target domains, we
aim to capture specific information of the source/target domains, and transfer the source-
specific information to the target subspace, to maintain the source supervised knowledge at
utmost.

The overall diagram of the DSTL framework is illustrated in Figure 1. The two sub-
spaces in the term of dual-subspace are: a) the common subspace between the source and
target domains; b) the specific subspace, mapped from source data to target subspace. The
common subspace is derived with several baseline methods, which assembles certain dis-
tance measurements and MPCA (Modified Principal Component Analysis). According to
the distance measurements, the common subspace extraction methods are MMD+MPCA
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(M-MPCA), GE+MPCA (G-MPCA), and MMD+GE+MPCA (MG-MPCA) (Song, 2017).
Following these methods, this paper proposes a novel method called SMT, to preserve the
specific information. The xPCAs and the SMT together constitute the DSTL framework,
as D-M-MPCA, D-G-MPCA, and D-MG-MPCA.

Source 

Data

Target 

Data

M-MPCA SMT

SMTMG-MPCA

G-MPCA SMT Model training 

of DSTL

Finding common 

subspace 

(in Subsection 2.2.1)

Mapping the source 

data to the target 

subspace 

(in Subsection 2.2.2)

(in Subsection 2.3)

Figure 1: Overview of the DSTL framework. Three baseline methods (i.e., M-MPCA, G-
MPCA, MG-MPCA) for commonalities are combined with SMT to obtain the
DSTL methods (i.e., D-M-MPCA, D-G-MPCA, D-MG-MPCA).

2.1 Problem Description and Notation

Suppose that there are two different corpora with the same emotional classification task,
where one is labeled, while the other is not. We regard the labeled corpus as the source
domain, and expect to predict the emotional states for the other corpus (target domain)
using the source knowledge. Thus, our proposed approach falls into the transductive transfer
learning type (Pan & Yang, 2010).

The following parameters are defined for the rest of this paper. For source domain
with ns samples in c emotional classes and feature set of d dimensions, the data matrix is
expressed as Xs = {xs1, xs2, . . . , xsns

} ∈ Rd×ns , where xsi | ∈ Rd×1(i = 1, 2, . . . , ns) denotes the
ith sample. The label matrix is denoted as Ys = {ys1, ys2, . . . , ysns

} ∈ R1×ns , ysi ∈ {1, 2, . . . , c},
where ysi (i = 1, 2, . . . , ns) is the emotional label of the ith sample.
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Similarly, for the target domain, which is also with feature set of d dimensions and con-
tains nt samples, but with limited labels, the data matrix is denoted asXt = {xt1, xt2, . . . , xtnt

} ∈
Rd×nt , where xti| ∈ Rd×1 is the ith sample. The data matrices of source domain Xs and
target domain Xt can be concatenated as X = [Xs, Xt].

In general, unless otherwise specified, the subscripts/superscripts s and t represent the
source domain and target domain, respectively. Other frequently used parameters in this
paper are summarized in Table 1.

Parameters Description
Xim/Xun original important/unimportant features
Cs/Ct commonalities of source/target domain
Fs/Ft specific information of source/target domain
Fst specific information of source domain in target subspace
Ts/Tt combination of Cs/Ct and Fst/Ft
P projected common subspace

Ds/Dt source/target subspace
Sim/Sun scatter matrix of Xim/Xun

Db matrix of between-class distance
Dw matrix of within-class distance
M MMD matrix
W weight matrix of GE
γ regularization parameter of MMD
β regularization parameter of GE
p number of nearest neighbors

Table 1: Description of frequently used parameters.

2.2 General Framework

Inspired by former studies(Deng et al., 2014; Song, 2017), this work aims to build a dis-
criminative model for the target domain, which is trained on the labeled source domain.
The first step of this work is to find a latent common feature subspace between source and
target domains, to retain the common discriminative features of both domains. Existent
algorithms on distribution discrepancies include Maximum Mean Discrepancy (Xu, Fang,
Wu, Li, & Zhang, 2016; Zhang, Provost, & Essl, 2016), Graph Embedding (Song & Zheng,
2017), Bregman Divergence (Si, Tao, & Geng, 2010), Kullback-Leibler (Noda, Yano, Doki,
& Okuma, 2006), etc. Two of them, Maximum Mean Discrepancy and Graph Embedding,
are used in this work to yield a low-dimensional common subspace by reducing distribution
differences.

Besides the common subspace, the domain-specific information is also essential in trans-
fer learning (Kan et al., 2014). Therefore, we propose a SMT (Source-specific Mapping to
Target subspace) method to make use of the domain-specific information. The processing
of SMT is shown in Table 2, and each processing step is marked with circled number, as
shown below: 1) PCAs are applied to source and target data respectively, to capture the
domain-specific information. This step results in source-specific features Fs and target-
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specific features Ft, which construct a source subspace Ds and a target subspace Dt ; 2)
a mapping matrix R is developed according to the relationship between the subspaces Ds

and Dt; 3) the source-specific features can be mapped onto the target subspace via R as
Fst.

Source 

Data

Target 

Data

PCA

PCA

Ds

Dt

Mapping 

matrix R

1

1

2

Figure 2: Overview of the SMT method. Each circled number corresponds to different
processing steps: 1 PCA processing aims to reduce the feature dimension and
find specific information (i.e., Fs and Ft); 2) we learn the mapping matrix R by
using Ds and Dt; 3) the source-specific information is transferred to the target
subspace as Fst.

The commonalities and domain-specific information work together to achieve an effective
recognition model, which is called as Dual-Subspace Transfer Learning (DSTL) framework.

The performance of the DSTL framework is evaluated in a comparison way. The ap-
proaches applying only commonalities are used as baselines: M-MPCA, G-MPCA, MG-
MPCA (to be stated in Section 2.2.1). The corresponding representations in DSTL frame-
work, as DSTL for M-MPCA (D-M-MPCA), DSTL for G-MPCA (D-G-MPCA) and DSTL
for MG-MPCA (D-MG-MPCA), are exhibited to show the advantage of the proposed DSTL.

2.2.1 Find Latent Common Subspace

For two corpora which share the same recognition task, there exist both consistency and
inconsistency between source and target domains. The inconsistency prevents the direct
application of models trained on source domain to target domain, while the consistency
provides the possibility to find a common space between the domains. A transformation
matrix P is presented to project the source and target data into a common space, in which
the distributions of the source and target domains are close to each other. The projected
source and target samples are represented as Cs = {cs1, cs2, . . . , csns

} and Ct = {ct1, ct2, . . . , ctnt
}

respectively, as follows:

csi = P Txsi i = 1, 2, . . . , ns (1)

cti = P Txti i = 1, 2, . . . , nt (2)
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or

Cs = P TXs (3)

Ct = P TXt (4)

Two-step methods, which reduce the feature dimension in the first step, and reduce the
distribution differences between domains in the second step (Song et al., 2016; Song, 2017),
are developed in this work. Modified Principal Component Analysis (MPCA) is chosen for
dimensional reduction, and Maximum Mean Discrepancy (MMD) and Graph Embedding
(GE) are chosen to evaluate the distribution differences.

• Step 1 - dimensional reduction: MPCA

The classic PCA aims to find the projected subspace P with maximum variance by
removing the projection direction with minimal variance, so as to preserve the prin-
cipal components of data (Yan, Xu, Zhang, & Zhang, 2005). The objective function
can be expressed as:

max
P

tr(P TSP )

s.t. P TP = I (5)

where S is the covariance matrix of the whole data matrix as X = [Xs, Xt], and I
is an identity matrix; tr(·) means the trace of a matrix. Thus, the source and target
data can be projected from the original feature space into a new subspace by P .

In order to get optimum performance, the original features are first evaluated
according to their importance before the projection by PCA (Song, 2017), and dif-
ferent weighting coefficients are assigned to the features. We define two categories as
important feature set Xim and unimportant feature set Xun by evaluating the ratios
of between-class distance Db = {db,1, db,2, . . . , db,d} ∈ R1×d and within-class distance
Dw = {dw,1, dw,2, . . . , dw,d} ∈ R1×d in the fully labeled source domain. The between-
class distance db,r and within-class distance dw,r of the rth dimensional feature are
expressed as:

db,r =

c∑
i=1

ni(ui,r − ūr)2 r = 1, 2, . . . , d (6)

dw,r =

c∑
i=1

∑
xsk∈class i

(ui,r − xsk,r)2 r = 1, 2, . . . , d (7)

where c is the total number of classes; ni is the number of source samples in the ith

class (i = 1, 2, . . . , c), and ui,r is the mean value of the rth dimensional feature for the
source samples in the ith class; ūr is the mean value of the rth dimensional feature of all
source samples. Both equations (6) and (7) iterate over all the i = 1, 2, · · · , c classes,
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and equation (7) also iterates over all the samples of the ith class in the inner loop.
Larger between-class distance db,r and smaller within-class distance dw,r indicate a
feature with a high ability to distinguish between classes. This can be evaluated with
the ratio σr between db,r and dw,r of the rth dimensional feature as:

σr =
db,r
dw,r

r = 1, 2, . . . , d (8)

The features are then ranked in descending order according to σr. An Importance
Ratio Parameter (IRP) is defined as α in the range of 0 to 1, to assign the first r1

features with higher σr as important features, and the rest features as unimportant
features, where r1 = αd (r1 should be an integer). Therefore, the important features
of the source and target sets can be expressed as Xs

im and Xt
im, and the unimportant

features are represented as Xs
un and Xt

un.

To preserve the important features and suppress the unimportant features, we
modified PCA in Eq. (5) with Xim and Xun as MPCA:

max
P

tr(P TSimP )

tr(P TSunP )

s.t. P TP = I (9)

where Sim and Sun are the covariance matrices of the important feature set Xim =
[Xs

im, X
t
im] and the unimportant feature set Xun = [Xs

un, X
t
un], as shown below:

Sim =
N∑
i=1

(ximi − ūim)(ximi − ūim)T (10)

Sun =
N∑
i=1

(xuni − ūun)(xuni − ūun)T (11)

where N is the number of all samples; ximi is the ith sample of Xim; ūim is the mean
of all samples in Xim. Similarly, xuni is the ith sample of Xun, and ūun is the mean
value of all samples in Xun.

The MPCA technique can preserve the essential information in a low-dimensional
subspace, while the inconsistency between source and target corpora due to their
different origination may be still large. Thus, the distribution differences will be
measured and eliminated in the next step.

• Step 2 - discrepancy measurement

Two discrepancy-measurement methods, MMD and GE, are used in step 2 to measure
the distribution differences between source and target domains.
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1) Maximum Mean Discrepancy

The main idea of MMD is to measure the similarity of the two domains via
computing the mean values of source data and target data in a m dimensional
feature space. The distance between the two domains can be measured with
a Reproducing Kernel Hilbert Space (RKHS), or without non-kernel mapping
as a regularization term (Song et al., 2016). In the case without mapping, the
distance of two domains can be expressed as:

D(Cs, Ct) = ‖ 1

ns

ns∑
i=1

csi −
1

nt

nt∑
i=1

cti‖2

= ‖ 1

ns

ns∑
i=1

P Txsi −
1

nt

nt∑
i=1

P Txti‖2

= P T (
1

n2
s

XsIsI
T
s X

T
s −

1

nsnt
XsIsI

T
t X

T
t

− 1

ntns
XtItI

T
s X

T
s +

1

n2
t

XtItI
T
t X

T
t )P

= tr(P TXMXTP ) (12)

whereX = [Xs, Xt] ∈ Rd×(ns+nt); Is = [1, 1, · · · , 1]T ∈ Rns×1; It = [1, 1, · · · , 1]T ∈
Rnt×1; ns and nt are the number of samples in the source and target domains;
Cs and Ct are the common features projected by MPCA, respectively. M is the
MMD matrix with elements mij as:

mij =



1

n2
s

xi, xj ∈ Xs

1

n2
t

xi, xj ∈ Xt

−1

nsnt
otherwise

(13)

2) Graph Embedding
Graph Embedding is a dimensional reduction method by preserving the similari-
ties of the neighboring points (Yan et al., 2005), which can be used as a distance
criterion to measure the differences of two different domains. It can preserve
intrinsic geometrical information that is important to the discrimination of data
by giving larger weight for points with high similarity to each other. The GE
method treats each vector as a vertex of a graph, and preserves the similarities
of vertex pairs by calculating the graph similarity matrix, which can characterize
statistical or geometrical property of a data set (Yan et al., 2005).

Given a graph with vertices, every vertex represents a sample vector. For
each sample vector, we can find its p nearest neighbors in terms of Euclidean
distance. We define a 0-1 weight matrix W = [wij ] ∈ R(ns+nt)×(ns+nt) as:

wij =

{
1 if xsi ∈ Np(x

t
j) or xtj ∈ Np(x

s
i )

0 otherwise
(14)
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where the Np(x
t
j) and Np(x

s
i ) refer to the p nearest neighbors of xtj and xsi ,

respectively. The element wij of W denotes the similarity of the vertex pair.
The objective function of the GE is calculated as:

G(P ) =
1

2

N∑
i,j=1

‖ci − cj‖2wij

=
1

2
(
N∑
i=1

c2
i

N∑
j=1

wij +
N∑
j=1

c2
j

N∑
i=1

wij − 2
N∑
i=1

N∑
j=1

cicjwij)

=

N∑
i=1

c2
iDii −

N∑
i=1

N∑
j=1

cicjwij

= tr(P TXLXTP ) (15)

where ci, cj ∈ C and C = [Cs, Ct]; N = ns + nt; L is a Laplacian matrix which
can be expressed as L = D −W , and D is a diagonal matrix whose entries are
the column sums of W .

With the MPCA for dimensional reduction in step 1, and MMD or GE for discrepancy
measurement in step 2, the two-step common subspace finding methods in this work in-
clude the following 3 assemblies of the two steps, as M-MPCA (MMD+MPCA), G-MPCA
(GE+MPCA) and MG-MPCA (MMD+GE+MPCA).

(1) MMD + MPCA (M-MPCA)
In this assembly, the difference between the mean values of source and target corpora
should be minimized according to the MMD principle. Thus, Eq. (12) is applied to Eq.
(9) as a regularization constraint to result in:

min
P

tr(P TSunP )

tr(P TSimP )
+ γtr(P TXMXTP )

s.t. P TP = I (16)

where γ is a regularization parameter to control the trade-off between the direction with
maximum variance and distribution differences. The trace term can be formulated as
a new form using Maximum Margin Criterion (MMC) (Song, 2017) as:

min
P
tr(P TSunP )− tr(P TSimP ) + γtr(P TXMXTP )

s.t. P TP = I (17)

The Lagrange multiplier method is employed to further optimize this formula. Let
V = XMXT , and λ be the Lagrange multiplier. Eq. (17) can be modified as

L(P, λ) = tr(P T (Sun − Sim + γV )P ) + λ(I − P TP ) (18)
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Subsequently, let ∂L(P,λ)
∂P = 0, we can obtain a final expression of M-MPCA as:

(Sun − Sim + γV )P = λP (19)

This is a generalized eigendecomposition form. To minimize the objective function in
Eq. (16), the eigenvalues are sorted from small to large, and the first k eigenvectors are
selected to build the common subspace P .

(2) GE + MPCA (G-MPCA)
In this assembly, the objective function of GE used as a regularization constraint term,
is combined with MPCA. The final objective function can be expressed as:

(Sun − Sim + βH)P = λP (20)

where β is a regularization parameter, and H = XLXT , L is the Laplacian matrix as
defined in Eq. (15).

(3) MMD + GE + MPCA (MG-MPCA)
In MG-MPCA, both objective functions of MMD and GE are used as constraint terms
to the optimization of MPCA. The objective function of MG-MPCA can be expressed
as:

min
P

tr(P TSunP )

tr(P TSimP )
+ γtr(P TXMXTP ) + βtr(P TXLXTP )

s.t. P TP = I (21)

where the first term aims to discover the common important features of the two domains;
the second term is designed to reduce the domain differences; and the last term is to
preserve the local neighboring information.

Eq. (21) can be simplified as :

(Sun − Sim + γV + βH)P = λP (22)

The resulted common subspace P consists of k eigenvectors corresponding to the first
k smallest eigenvalues.

Among these three methods of finding common space in the cross-corpus recognition
task, M-MPCA method mainly focuses on the global discrepancy by computing the mean
values of the two datasets. G-MPCA method more concerns the similarities of the neighbor-
ing points, so as to preserve the local geometrical structures of data. Moreover, MG-MPCA
method inherits the advantages of both methods by considering both global and local sim-
ilarities.

2.2.2 SMT - Source-Specific Mapping to Target Domain

The methods in finding common space between source and target domains (i.e., M-MPCA,
G-MPCA, MG-MPCA ) risk losing domain-specific information, thus specific information
of the two domains is needed to solve this problem.
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A mapping strategy called SMT is proposed in this work. First, the specific information
of each domain is extracted with a coordinate transformation using PCA, as follows:

max
Ds

tr(DT
s SsDs)

s.t. DT
s Ds = I (23)

max
Dt

tr(DT
t StDt)

s.t. DT
t Dt = I (24)

where Ss and St are the covariance matrices of the source and target data. the directions
with the first h largest variances of the projected samples are selected as source subspace
Ds ∈ Rd×h and target subspace Dt ∈ Rd×h, which can preserve the essential specific
information of each domain. Thus, the specific information Fs and Ft in each subspace can
be expressed as:

Fs = DT
s Xs (25)

Ft = DT
t Xt (26)

Then, a mapping matrix R from the source subspace to the target subspace is learned
to find the relationship of the two different subspaces. We expect that the source subspace
mapped by R has a minimum distance with target subspace:

arg min
R
‖DsR−Dt‖2F

s.t. RTR = I (27)

where ‖ · ‖F refers to Frobenius norm, which is defined to be the square root of the sum
of squares of the entries of the matrix (Hartley, 1997); R is the mapping matrix of the two
subspaces. We expand this formula as:

‖DsR−Dt‖2F = tr(RTDT
s DsR− 2DT

t DsR+DT
t Dt) (28)

Because Ds and Dt are orthogonal matrices, Ds and Dt can satisfy DT
s Ds = I and

DT
t Dt = I. Besides, RTDT

s DsR and DT
t Dt are both constant terms due to the constraint

of RTR = I. Therefore, Eq. (27) becomes:

arg max
R

tr(DT
t DsR)

s.t. RTR = I (29)

We perform a singular value decomposition on DT
t Ds to achieve DT

t Ds = USV T , and
thus Eq. (29) further becomes:

arg max
R

tr(USV TR)

s.t. RTR = I (30)
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Let Z = V TRU , then the objective function of Eq. (30) is converted to Eq. (31) as:

arg max
R

tr(SZ) =
d∑

τ=1

στzττ (31)

where στ is the τ th singular value of S.
Due to ZTZ = UTRTV V TRU = I, Eq. (31) can obtain the maximum value when

zττ = 1, that is,
∑d

τ=1 zττστ ≤
∑d

τ=1 στ , then

arg max
R

tr(DT
t DsR) =

d∑
τ=1

στ = tr(S) (32)

Thus, the objective function Eq. (27) has the minimum value when Z = I, and
R = V UT can be derived.

Then, the source specific information Fs can be mapped to the target subspace as the
targetized source data Fst iva the mapping function R. Fst is the source specific information
represented by the target subspace.

Fst = RFs (33)

The mapping step in SMT can not only transfer the supervised specific information
of source domain to the target subspace, but also retain discriminative information of the
target subspace as much as possible. Hence, Fst and Ft can preserve the specific information
of source and target domains, respectively.

2.3 DSTL Frame Work

In Section 2.2.2, two kinds of subspaces can be derived from different source and target
domains for a same emotion recognition task:

(1) Common information subspace, which can be obtained via M-MPCA, G-MPCA, or
MG-MPCA, to result in the commonalities C = [Cs, Ct];

(2) Specific information subspace, which can map the source-specific information to target
domain via SMT, to result in specific information F = [Fst, Ft].

A DSTL (Dual-Subspace Transfer Learning) framework is proposed in this work to
fully benefit information from both common and specific subspaces. To correspond to the
common space finding methods, the approaches in the DSTL are named as D-M-MPCA
(D refers to dual subspaces), D-G-MPCA, and D-MG-MPCA. The transferred source and
target domains, carrying information from both subspaces, are presented as:

Ts =

{(
Cs
Fst

)
, Ys

}
(34)

Tt =

{(
Ct
Ft

)}
(35)

393



Chen, Xiao, Zhang & Tao

where Ys in Eq.(34) represents the class labels of the source samples.

In the transferred domains, the recognition model trained on the labeled data Ts can be
used to predict the class labels of Tt. Algorithm 1 shows the processing steps of the DSTL
framework.

Algorithm 1 : Algorithm for DSTL

Input:
The source domain dataset Xs with corresponding class labels Ys;
The target domain dataset Xt.

Output:
Commonalities C = [Cs, Ct];
Specific information F = [Fst, Ft];
Class labels Yt ∈ R1×nt of target samples.

1. Find a common subspace P ∈ Rd×k using a common space finding method ;
2. Generate common features C = P TX , where X = [Xs, Xt];
3. Learn the specific information of the source and target domains using equations

(23) - (26);
For source domain: Fs = DT

s Xs;
For target domain: Ft = DT

t Xt;
4. Find the mapping matrix R between the two domains using Eq. (27);
5. Calculate the target specific information Fst from the source domain: Fst = RFs;

6. Combine the common and specific information: Ts =

{(
Cs
Fst

)
, Ys

}
, Tt =

{(
Ct
Ft

)}
;

7. The recognition model trained on Ts is used to predict the class labels of the
target dataset.

The italicized words in the table can be replaced as shown below:
DSTL: D-M-MPCA, D-G-MPCA, or D-MG-MPCA
common space finding method : M-MPCA in Eq. (19), G-MPCA in Eq. (20), or MG-MPCA in Eq. (22)

3. Experiment and Results

The DSTL framework is applied in this section on cross-corpus speech emotion recognition
task. Only the discrete emotional states that are common to all the chosen corpora are
considered. Although all the corpora chosen in the experiments are labeled with emotional
states, the full labels are used only when the corresponding corpus is taken as the source
corpus. When used as target corpus, a major part of the labels is omitted to simulate the
case of partially labeled corpus. In this section, we show the recognition performance of
four common emotional states on cross-corpus recognition.

3.1 Corpora Selection

Three emotional speech corpora covering two different languages are chosen in this work:
MES-P (Xiao, Chen, Dou, Tao, & Chen, 2018), CDESD (Jing, Mao, Chen, & Zhang, 2015)
and SAVEE (Jackson, 2011), where the first two are in Mandarin, and the third one is in
English. The reasons to choose these three corpora are three fold:
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(1) Cross-corpus SER can be investigated for both cases with the same language, and cross
languages;

(2) There are four emotional states in common over these three corpora: neutral, happiness,
anger, and sadness;

(3) Some differences exist in these three corpora, such as languages, induction means, and
recording conditions, which make the three corpora have different feature distributions.
Therefore, we can make full use of transfer learning for cross-corpus recognition of these
three corpora to enhance the recognition performance.

The information of the three corpora is summarized and compared in Table 2.

Corpus Language Num #m #f Style h:mm Ave Emotion classes
MES-P Mandarin 5376 8 8 acted 6:07 4.1s moderate and intense

versions of joy, anger,
sadness and neutral.

CDESD Mandarin 8400 13 7 acted 3:38 1.6s sadness, happiness,
fear, surprise, neutral,

anger, disgust.
SAVEE English 480 4 0 induced 0:51 3.8s Anger, disgust, fear,

happiness, sadness,
surprise, neutral.

Table 2: The detailed information of the three corpora, where the first two are Mandarin
corpora and the last one is an English corpus. The number of all utterances in
each corpus (Num). Number of male (#m) and female (#f). Style of emotion
recording (Style). Total audio time (h:mm) and average duration (Ave) of the
utterances in each corpus. Additionally, these three corpora have four common
emotions, namely neutral, happiness, anger and sadness.

Mandarin Emotional Speech Dataset Portrayed (MES-P) was built in Soochow Univer-
sity in 2017. It consists of 5376 portrayed utterances from 16 native speakers of Mandarin
(8 males, 8 females), where 768 utterances per emotion, on a script of 16 sentences covering
all phonemes of Mandarin. The total duration of male speech and female speech are 2h57m
and 3h10m, with average duration of 3.9s and 4.2s per utterance, respectively. MES-P
possesses two unique features. First, two sets of emotional labels as distal labels (speakers’
attention) and proximal labels (listeners’ perception) are developed to study the possible
distortion in emotional transfer from speakers to listeners. Second, two different levels of
emotional intensity (“moderate” vs. “intense”) are considered, where the term “intensity”
refers to how far a person is away from a state of pure, cool rationality, whatever the direc-
tion (Gune, Schuller, Pantic, & Cowie, 2011). The intense versions of emotions have strong
typicality, which are mainly used in the evaluation of this work in Section 3.3.1. Further, the
moderate versions of emotions are also used to verify the effectiveness of DSTL in Section
3.3.2.
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Chinese Dual-model Emotional Speech Database (CDESD) is also an acted corpus in
Mandarin, developed by Beihang University. Evoking scenes are set to help speakers to bet-
ter produce utterances for the 7 corresponding emotional states, on a script of 20 sentences,
by 20 native speakers of Mandarin (13 males, 7 females). Each sentence is repeated 3 times
by each speaker in each emotional state, to result in totally 1200 × 7 = 8400 utterances,
1200 utterances for each emotional state. The total duration is 2h15m and 1h23m for male
and female speech, with average utterance duration of 1.49s and 1.70s respectively.

Surrey Audio-Visual Expressed Emotion database (SAVEE) is recorded by four native
English male speakers, where the emotions are induced by watching the audio-visual videos,
on Ekman’s 6 basic emotions (Ekman et al., 1987) as anger, disgust, fear, happiness, sadness
and surprise, plus neutral. The script consists of 15 phonetically-balanced sentences for each
emotion, including 3 common ones, 2 emotion-specific ones, and 10 generic ones. Besides,
3 common and 2× 6 = 12 emotion-specific sentences are also recorded as neutral to obtain
totally 30 neutral sentences per speaker. The total number of utterances is 480, with
30 × 4 = 120 neutral utterances, and 15 × 4 = 60 utterances for each of the other 6
emotions.

Among the 3 corpora, MES-P (768 utterances per emotion) and CDESD (1200 ut-
terances per emotion) are balanced, while SAVEE (120 utterances for neutral, while 60
utterances for other 6 emotions) is imbalanced. For both MES-P and CDESD, the average
utterance duration of male speakers is shorter than that of female speakers, indicating that
male speakers tend to speak faster when expressing the same emotion. Due to the gender
bias in CDESD (fewer females than males) and SAVEE (no female speakers), and the pos-
sible emotional expressive difference between the two genders, the experiments on female
speech and on male speech are taken out separately in this work. As shown in Table 3,
the following eight sets of experiments are designed for cross-corpus emotion recognition.
Setting code for each case consists of 3 letters, where the first two capital letters correspond
to training set and testing set respectively, and the last lower-case letter means gender. The
form of setting code is: training corpus (M/C/S) - testing corpus (M/C/S) - gender (m/f),
where “M” refers to MES-P, “C” refers to CDEDS, “S” refers to SAVEE, “m” refers to
male speech, and “f” refers to female speech.

3.2 Experiment Setup

To make our work comparable to others in the sense of learning method rather than empha-
sizing effective features, we use the standard emotional feature sets, such as the feature sets
proposed in INTERSPEECH 2009 Emotional Challenge (EC) (Schuller, Steidl, & Batliner,
2009), or in INTERSPEECH 2013 Computational Paralinguistics Evaluation (ComParE)
(Schuller et al., 2013), which are widely used in the field of emotion recognition. The IN-
TERSPEECH 2009 feature set, which consists of 384 features, is still used in some latest
works (Ma, Wu, Jia, Xu, Meng, & Cai, 2017; Zong, Zheng, Zhang, & Huang, 2016). There-
fore, we apply this feature set in our experiments to avoid feature redundancy caused by
other larger feature sets.

These features are extracted using OpenSMILE toolkit (Eyben, Wöllmer, & Schuller,
2010), which is written in C++ and enables extraction of large audio features on a time
window of 25ms, with a frame shift of 10ms using Hamming window. The 384 features of
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Gender Setting
Code

Training set Testing set

Male M-S-m MES-P SAVEE
C-S-m CDESD SAVEE
M-C-m MES-P CDESD
C-M-m CDESD MES-P
S-C-m SAVEE CDESD
S-M-m SAVEE MES-P

Female M-C-f MES-P CDESD
C-M-f CDESD MES-P

Table 3: Eight sets of experimental settings are designed in our work. In this table, each case
is represented by setting code consisting of 3 letters. The first letter in setting code
is the training corpus (M/C/S), the second letter is the testing corpus (M/C/S),
and the third letter is the gender (m/f), where M, C, S refer to MES-P, CDESD,
and SAVEE respectively, and the lower-case letters m and f denote male and
female speech, accordingly. For example, M-S-m refers to MES-P as training set,
SAVEE as testing set, using male speech. The detailed description about these
three corpora can be found in Table 2.

the INTERSPEECH 2009 feature set come for 16 acoustic Low-Level Descriptors (LLDs)
and their first order differences (denoted as ∆), such as Zero-Crossing-Rates (ZCR), Root
Mean Square frame energy (RMS), Harmonics-to-Noise Ratio (HNR) by autocorrelation
function, Mel-Frequency Cepstral Coefficient (MFCC), Fundamental frequency (F0), as
well as statistical functions of these LLDs, including mean, standard deviation, extremes
and linear regression. We can see the details in Table 4.

LLD Number Functionals(12)
ZCR 1

mean
∆ZCR 1
RMS 1

Energy standard deviation
∆RMS 1
F0 1

kurtosis, skewness
∆F0 1
HNR 1

Extremes: Value, rel. position, range
∆HNR 1
MFCC1-12 12

linear regression: offset, slope, MSE
∆MFCC1-12 12

Table 4: Features in INTERSPEECH 2009 Emotion Challenge (Schuller et al., 2009): Low-
Level Descriptor (LLD) and its functionals. 12 functionals are calculated based
on utterance level for each LLD and its first order difference (denoted as ∆).
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Other features may also be effective for SER. For example, features based on spectro-
gram, which can simultaneously consider both time and frequency domain information,
could be a good choice in the recognition of some of the emotional states (Prasomphan,
2015). These features will be adopted in our future work when we mainly aim to improve
the recognition rate.

In cross-corpus emotion recognition, both intra-corpus discrepancy and inter-corpus
discrepancy exist, due to different recording settings and languages (Zhang, Weninger,
Wollmer, & Shculler, 2011). Thus, a normalization method for eliminating discrepancy
is essential as a pre-process. Z-normalization, (linear scaling to zero mean and unit vari-
ance) is adopted in this work.

For comparison purpose, one of the currently most widely used classifiers, Support
Vector Machine (SVM), is chosen as the base classifier in all experiments of this work. The
kernel function of SVM is chosen as Gaussian kernel. Because in the case when the feature
dimension is smaller than the number of samples, Gaussian kernel function outperforms
other kernels according to Zhou’s (2016) work. In addition, the hierarchical multi-class
SVM is adopted in our work, which can determine the order of classification according to
the separability of classes, so as to optimize the classification performance (Cheng, Zhang,
Yang, & Ma, 2008). Finally, models are trained on the source feature set Ts (Eq. (34))
and tested on the target feature set Tt (Eq. (35)) to predict the class labels on a set of
parameters.

The following parameters are tested to optimize the DSTL framework:

• α - Importance Ratio Parameter (IRP) of MPCA;

• γ - MMD regularization parameter in Eq. (19);

• β - GE regularization parameter in Eq. (20);

• p - the number of nearest neighbors;

• k - feature dimension for common features;

• h - feature dimension for specific features.

Note that in our task, the training and testing sets come from different corpora, and
no overlap is possible between training and testing sets, and hence it is unnecessary to
choose hyperparameters for cross validations. Song’s (2017) work empirically searches the
parameter space for the optimal parameters to evaluate all methods. Therefore, in our
work, two of the above parameters are empirically set as the number of nearest neighbors
p = 5, and the IRP α = 0.8. Other parameters are swept over a range of values to find
out the optimal values as shown in Table 5. In this table, we find the optimal values for
all parameters by searching the corresponding parameter space, to report the best results
in Section 3.3. Finally, the parameters γ, β, k, and h are optimized as 100, 1000, 80, 80
respectively. The sensitivities of γ and β are further discussed in Section 3.4.

3.3 Results Analysis

The experimental results are analyzed in this subsection.
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Parameters Range Optimal value
γ {0.001, 0.01, 0.1, 1, 10, 100, 1000,10000} 100
β {0.001, 0.01, 0.1, 1, 10, 100, 1000,10000} 1000
k {40, 60, 80, 100, 120} 80
h {40, 60, 80, 100, 120} 80

Table 5: Experimental parameters setup. According to the similar work (Song, 2017; Song
& Zheng, 2017), the ranges of these hyperparameters are set. We search the
optimal parameters to get the better performance by evaluating all methods.

3.3.1 Cross-corpus Speech Emotion Recognition on Four Emotional States

The performance of cross-corpus emotion recognition is evaluated in 3 groups of experi-
ments:

(1) Common methods: Machine learning methods without transfer information between
source and target domains. Two approaches are chosen, including a classic method,
PCA, and a deep learning method, RNN (Recurrent Neural Network, Lee & Tashev,
2015.)

(2) Baseline transfer learning methods: transfer learning methods using only the common
information, include M-MPCA, G-MPCA, and MG-MPCA.

(3) DSTL methods proposed in this work, include D-M-MPCA, D-G-MPCA, and D-MG-
MPCA.

To evaluate the performance, the recalls are selected as dominant evaluation bases for
each case. For the 3 chosen corpora in this work, MES-P and CDESD are balanced, while
SAVEE is imbalanced. Two types of recalls are considered as weighted or unweighted
average recall. Weighted Average Recall (WAR) is defined as the total number of correctly
predicted test samples of all class averaged by the total number of test samples; Unweighted
Average Recall (UAR) is defined as the accuracy per class averaged by total number of class.
For balanced corpus as testing set, WAR and UAR are the same. However, for imbalanced
corpus as testing set, both WAR and UAR are important for considering its performance.
Thus, same-language cases only involving the balanced corpora (i.e., MES-P, CDESD) as
testing set are measured by WAR, which are listed in Table 6. However, cross-language
cases involve two different aspects: balanced corpus as testing set (i.e., S-M-m, S-C-m)
and imbalanced corpus as testing set (i.e., M-S-m, C-S-m). Therefore, to evaluate the
performance of cross-language cases uniformly, WAR is first evaluated in Table 7. While
for M-S-m and C-S-m cases, both WAR and UAR are then calculated and compared in
Figure 3. Besides, confusion matrices of WAR for D-MG-MPCA are visualized in Figure 5,
and Weighted Average Precision (WAP) is also provided.

In Table 6 and Table 7, among these approaches, the PCA and RNN methods directly use
the knowledge learned from the source domain to the target domain, ignoring the differences
between domains, while all the other methods belong to transfer learning methods. In most
cases, transfer learning approaches show better performance than PCA and RNN, due to
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Common Transfer Learning
Methods Baseline Methods DSTL

Setting
Code

PCA RNN M-
MPCA

G-
MPCA

MG-
MPCA

D-M-
MPCA

D-G-
MPCA

D-MG-
MPCA

M-C-m 44.00% 40.93% 45.29% 49.49% 51.25% 46.31% 51.76% 52.05%
C-M-m 33.07% 46.61% 45.25% 43.88% 43.55% 47.85% 47.07% 47.59%
M-C-f 52.02% 47.85% 52.92% 52.50% 59.83% 56.25% 55.89% 60.74%
C-M-f 43.29% 42.14% 42.08% 46.29% 47.07% 47.33% 47.46% 47.39%
Average 42.42% 42.06% 45.14% 48.04% 50.43% 49.44% 50.55% 51.94%

Table 6: WARs of different methods (common methods vs. baseline methods vs. DSTL
framework) under same-language setting. The entry in bold for each row means
the best performance for corresponding case. Note that the improved methods D-
X-MPCA gain the better performance than their corresponding baseline methods
X-MPCA, where X refers to M, G, MG. For example, the D-M-MPCA method
outperforms M-MPCA in all cases, and the same goes for the pairs D-G-MPCA
vs. G-MPCA, and D-MG-MPCA vs. MG-MPCA. Besides, the D-MG-MPCA
method has the best average performance as 51.94%. The precision and recall of
D-MG-MPCA can be seen in Figure 5.

Common Transfer Learning
Methods Baseline Methods DSTL

Setting
Code

PCA RNN M-
MPCA

G-
MPCA

MG-
MPCA

D-M-
MPCA

D-G-
MPCA

D-MG-
MPCA

M-S-m 55.67% 36.33% 56.00% 59.33% 59.67% 57.67% 61.33% 61.67%
S-M-m 38.54% 40.42% 41.35% 42.38% 42.19% 46.88% 46.03% 46.68%
C-S-m 53.67% 41.33% 49.67% 56.33% 53.33% 53.00% 50.67% 51.67%
S-C-m 43.59% 41.46% 43.95% 45.16% 45.00% 46.54% 47.40% 46.92%
Average 47.87% 39.88% 47.74% 50.80% 50.05% 51.02% 51.36% 51.76%

Table 7: WARs of different methods (common methods vs. baseline methods vs. DSTL
framework) under cross-language setting. In this table, the meaning of boldface
also means the best performance for corresponding case (same with Table 6). It
is clear that (with one exception, i.e., C-S-m) the rates of DSTL are higher than
the corresponding baseline methods, especially for the rate of M-S-m that reaches
61.67% under D-MG-MPCA method. Overall, D-MG-MPCA method gains the
best average WAR as 51.76%. Besides, the comparison of WARs and UARs for
C-S-m and M-S-m cases is shown in Figure 3. The precision and recall of D-MG-
MPCA can also be seen in Figure 5.

the ignorance of domain differences in the traditional methods. An exception appears in
the case of C-S-m in Table 7, that PCA exhibits better recall than M-MPCA. A possible
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reason may be that the global analysis of the MMD may have a negative impact for the
imbalanced SAVEE corpus.

In comparison of the transfer learning methods, the DSTL approaches also significantly
outperform the baseline methods in most cases. The most obvious improvement occurs to
the pair M-MPCA vs. D-M-MPCA, with improvement of average recalls of 4.30% and 3.28%
for the cases of within-language and cross-language, respectively. The best average WARs
are obtained in D-MG-MPCA, as up to 51.49% and 51.76% with the utmost as 61.67% for
M-S-m. This proved that the proposed DSTL framework (common-space finding + SMT)
can not only consider the commonalities to reduce the distribution differences, but also
make full use of the supervised specific knowledge of source domain in target subspace.
Actually, DSTL, as a general framework to combine common information and domain-
specific information, can also be applied to other common space finding methods, such as
the methods proposed in Deng et al. (2014) and Zong et al.’s (2016) works.

There is only one case, i.e., C-S-m, that the best recall does not appear in the DSTL
methods. As shown in Table 7 and Figure 3(a), for C-S-m case, the best WAR and UAR both
appear in G-MPCA method. This can be explained that the distribution difference between
the two corpora with different languages is too huge to make effective specific information
transfer from CDESD to SAVEE by SMT. Thus, it can lead to the conclusion that DSTL
is more suitable for the within-language than cross-language emotion recognition, while it
may risk failing in dealing with domain specific information when the corpora difference
is excessively huge. The specific information transferring scheme still need to be further
improved in our future work.

To compare the within-language and cross-language performance of DSTL methods, the
WARs in the last three columns of Table 6 and Table 7 are illustrated in Figure 4. For the
cases involving MES-P, the recognition performance is better when it is used as training
set. For example, M-S-m performs better than C-S-m, and the same goes for M-C-f vs.
C-M-f. The highest WARs are M-C-f and M-S-m with D-MG-MPCA, up to 60.74% and
61.97% respectively. The only exception is M-C-m vs. C-M-m with D-M-MPCA. This
tendency indicates that MES-P corpus exhibits strong typicality and distinction in emotion
expressing. Another pattern presented in Figure 4 is that there is no significant difference
between the performance between within-language and cross-language recognition. Thus,
the methods proposed in this work can learn the mapping relationships between different
languages. The WARs of S-C-m and S-M-m are slightly lower than the other cases, probably
due to the extreme small scale of the SAVEE corpus.

The confusion matrices of WAR for all eight different cases with D-MG-MPCA are shown
in Figure 5, where Weighted Average Precision (WAP) and WAR are also included for each
case in the caption. The diagonal numbers of each confusion matrix represent the correct
WAR for each emotion under the corresponding case. The correct WAR of each emotion
is higher than chance level (1/4 = 0.25) for all cases, and even reaches 76% for happiness
emotion in M-C-f. The highest confusion occurs between neutral and sadness, even over
40% for M-C-m. The second highest confusion occurs between anger and happiness, with
up to 38% of happy utterances misjudged as anger for C-S-m. We will attempt to introduce
some new effective features to better categorize these highly confusing emotional pairs.

In addition, we summarize the statistical significance of the results using rank sum test
(we define the significance level as p = 0.05). The best improved method D-MG-MPCA is
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(a). C-S-m.

(b). M-S-m.

Figure 3: The WAR and UAR of C-S-m and M-S-m cases under different methods. The
testing set of the two cases is imbalanced corpus SAVEE, hence WAR and UAR
are both considered. In Figure 3(a), G-MPCA performs better than other meth-
ods in that SAVEE, as an imbalanced database, has a bias when using MMD. In
addition, specific information may have negative impact in this case due to the
huge difference. In Figure 3(b), the improved methods have significant improve-
ment compared to the corresponding baseline methods.

compared with the best common method PCA and the baseline methods (i.e., M-MPCA,
G-MPCA, MG-MPCA), respectively. We observe that the D-MG-MPCA has a statistical
significance at the 0.03 level compared with PCA method. Compared with the other base-
lines methods, i.e., M-MPCA and G-MPCA, D-MG-MPCA passes the significant test at the
0.005 and 0.03 levels against the M-MPCA and G-MPCA methods, which indicates D-MG-
MPCA has significant improvement. However, D-MG-MPCA shows the significance level
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Figure 4: The WARs of three improved methods under different cases. In this figure, we
can see that when MES-P is used as training set, the recognition rates are better
than that of other corpora used as training set in most cases (with only one excep-
tion, i.e., M-C-m vs. C-M-m under D-M-MPCA method). For example, M-S-m
outperforms C-S-M, M-C-m outperforms C-M-m, and M-C-f outperforms C-M-f.
In addition, there is no significant difference between same-language and cross-
language cases in terms of performance, indicating that the proposed methods
can learn the mapping relationships between different languages.

at 0.16 against the MG-MPCA, indicating that the proposed approach has improvement
but fails to achieve a customary level of statistical significance compared to MG-MPCA.

3.3.2 Recognition Performance on Moderate Emotional States

MES-P includes not only intense versions of emotions, but also moderate versions of emo-
tions. Thus, we conduct the experiments for moderate versions of emotions to verify the
validity of the DSTL framework using the best baseline method MG-MPCA and the best
improved method D-MG-MPCA, as shown in Figure 6. This figure shows the WARs of all
cases involving MES-P using moderate versions of emotion. From this figure, the overall
WARs of moderate versions are not as high as that of intense versions of emotions which
have more obvious emotional characteristics. However, it is clear to see that the D-MG-
MPCA method still outperforms MG-MPCA method. The results show that the improved
method does have the better performance than the baseline method in both moderate and
intense versions of emotions.

3.4 Discussion on Regularization Parameter Sensitivity - γ and β

In the two methods of discrepancy measurement adopted in this work, MMD and GE,
there is a regularization parameter for each of the methods: γ for MMD in Eq. (19),
and β for GE in Eq. (20). The two parameters are evaluated on a series of values: γ on
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Figure 5: Confusion matrices of WAR under D-MG-MPCA for different cases, where
Weighted Average Precision (WAP) and recall (WAR) are given for each case
in the caption. Note that the recognition rate of each emotion (diagnoal numbers
in each confusion matrix) is higher than chance level. Neutral-sadness, happiness-
anger are easily confused with each other.
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Figure 6: The WARs of all cases involving MES-P corpus using moderate versions of emo-
tions. This figure shows that the improved method D-MG-MPCA has significant
improvement compared to MG-MPCA under all cases.

approaches M-MPCA and D-M-MPCA, and β on approaches G-MPCA and D-G-MPCA.
The performance is illustrated in Figure 7.

According to Figure 7, performance from D-X-MPCA is always better than those from
X-MPCA (X for M or G), with all regularization parameter settings. For γ, M-MPCA and
D-M-MPCA have similar tendencies, and both reach optimal recognition at γ = 100. For
β, the tendencies of G-MPCA and D-G-MPCA differ a lot with smaller βs, while become
relatively stable for larger βs, and β = 1000 could be seen as an optimal value for both
approaches. Thus, the two regularization parameters are optimized to γ = 100 and β = 1000
for all the experiments involving them in Section 3.3.

4. Discussion

Some of the important research issues in SER are briefly discussed below:

• Three different corpora are selected to verify the validity of our proposed methods,
where two of them are acted corpora, while the remaining one is an induced corpus.
However, the real challenge is to recognize emotions from natural speech. Some differ-
ences are existed between acted/induced corpora and the natural speech that people
spontaneously express in real life. Compared with acted/induced corpora, natural
speech is mildly expressed, thus sometimes it may be difficult to clearly recognize
these emotions. To improve the recognition rate of natural speech, two possible ways
can be considered: on one hand, the expression of emotions is not only included in
speech, but also in other modalities like bio-signals, facial expression, and thus mul-
timodal recognition may dominate in emotion recognition in the future; on the other
hand, emotion information can be predicted from the linguistic contents of speech, and
hence, the addition of textual information may be more helpful in recognizing emo-

405



Chen, Xiao, Zhang & Tao

β

0.001 0.01 0.1 1 10 100 1000 10000

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

35

40

45

50

55

60

M-MPCA
D-M-MPCA

γ
(a). γ for M-MPCA and D-M-MPCA

β

0.001 0.01 0.1 1 10 100 1000 10000

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

35

40

45

50

55

60

G-MPCA
D-G-MPCA

β
(b). β for G-MPCA and D-G-MPCA

Figure 7: The recognition performance of our proposed methods varies with parameters
γ and β : (a) The recognition performance of M-MPCA and D-M-MPCA with
respect to γ ; (b) The recognition performance of G-MPCA and D-G-MPCA with
respect to β ;

tions. Besides, the proposed DSTL framework is not limited to these acted/induced
corpora, but also can be used to improve the performance of spontaneous corpus.

• Most existing corpora contain only a limited number of emotional types. Research
shows that about 70% databases contain only 4-5 basic emotions and few emotional
speech databases contain 7-8 emotions (Koolagudi & Rao, 2012). However, human
can express a wide range of emotions, the number of which far exceeds that in most
corpora. Realization of this, collection of good emotional speech corpora covering a
wider range of emotions is another challenge. One possible and easy-to-realize way is
to capture the emotional segments from the TV dramas, which are usually performed
by professional actors and convey rich and natural emotional states.

• Although our work uses DSTL framework for cross-corpus emotion recognition in
terms of Mandarin and English, this framework can also be extended to resource-poor
areas or other areas. For instance, there are few databases for the following languages,
like Russian, Swedish, Japanese, and Indian. The DSTL framework can also help
to recognize the task of these resource-poor languages based on some resource-rich
language models (i.e., Mandarin, English, German). In addition, other areas, like face
recognition, natural language processing, can also use DSTL framework to improve
recognition performance.

• The DSTL includes two completely separate steps: common space finding methods
and specific information transferring method as SMT. Thus, the specific information
obtained by SMT may exist some overlapping or redundant features with common
features. To deal with this issue, the solution will be implemented in the future work:
excluding the common features from the whole features before SMT, then obtaining
the specific information from the rest features by SMT. The redundancy of common
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features and specific features obtained in this way will be reduced to enhance the
performance.

• The methods proposed in this paper are based on linear assumption. Firstly, the
distance measure (inter- and intra-) and PCA can perform well under the assumption
that the source and target spaces are linear. However, some kernel mapping will
be introduced for non-linear condition, so that the source and target spaces become
linear in a high dimensional space (Yan et al., 2005). Secondly, the mapping matrix
learned by SMT method can transfer the source-specific information to target subspace
effectively when there is a linear transformation between the two domains. However,
for non-linear transformation, some deep learning methods, like autoencoders, may
be helpful to learn the mapping relationships between the two domains (Deng et al.,
2014).

• In this work, the problems we solved are that the source and target domains are from
the same field, i.e., speech emotion, but with different feature distributions. Thus, we
adopt a same emotional feature set for the both datasets, resulting in the same feature
dimensions for the two domains. However, in the future work, the proposed DSTL
framework will be extended to solve this problem when there are different feature
dimensions for the source and target domains.

5. Conclusion

In this paper, a general framework called Dual-Subspace Transfer Learning (DSTL) has been
proposed for cross-corpus speech emotion recognition, which compensates for the shortcom-
ing of most current common/feature-based methods by exploiting specific information of
the two domains.

Based on several common/feature-based methods (i.e., M-MPCA, G-MPCA, MG-MPCA)
as baselines, we propose a mapping strategy as SMT, to transfer the source-specific informa-
tion to the target subspace. The combination of the common/feature-based methods and
the SMT constructs a DSTL framework, presented as improved methods as D-M-MPCA, D-
G-MPCA, and D-MG-MPCA. Both the baselines and the improved methods are evaluated
on three corpora upon eight settings of cross-corpus emotion recognition task, including
within-language cases and cross-language cases. The results prove that the dual-subspace
solution proposed in this work does present obvious advantage compared to the baselines
which only concern the common space. The DSTL framework can also be assembled with
other common/feature-based methods for amelioration, and can be applied to other fields,
such as face recognition, natural language processing.

The results of this work also propose us several further tasks to be solved in the future
as discussed in Section 4. Therefore, future work will tend to build a standard corpus
with more emotions, and multimodal recognition will dominate this field to contain more
effective features.
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